
Abstract

The dynamic classification and identification of
network applications responsible for network traffic
flows offers substantial benefits to a number of key
areas in IP network engineering, management and
surveillance. Currently such classifications rely on
selected packet header fields (e.g. port numbers) or
application layer protocol decoding. These methods
have a number of shortfalls e.g. many applications
can use unpredictable port numbers and protocol
decoding requires a high amount of computing
resources or is simply infeasible in case protocols are
unknown or encrypted. We propose a novel method for
traffic classification and application identification
using an unsupervised machine learning technique.
Flows are automatically classified based on statistical
flow characteristics. We evaluate the efficiency of our
approach using data from several traffic traces
collected at different locations of the Internet. We use
feature selection to find an optimal feature set and
determine the influence of different features.

1. Introduction

Recent years have seen a dramatic increase in the
variety of applications using the Internet. In addition
to 'traditional' applications (e.g. email, web or ftp) new
applications have gained strong momentum (e.g.
streaming, gaming or peer-to-peer (P2P)). The ability
to dynamically identify and classify flows according to
their network applications is highly beneficial for:
�� Trend analyses (estimating the size and origins of

capacity demand trends for network planning)
�� Adaptive, network-based marking of traffic

requiring specific QoS without direct client-
application or end-host involvement

�� Dynamic access control (adaptive firewalls that
can detect forbidden applications, Denial of
Service (DoS) attacks or other unwanted traffic)

�� Lawful Interception (enabling minimally invasive
warrants and wire-taps based on statistical
summaries of traffic details)

�� Intrusion detection (detect suspicious activities
related to security breaches due to malicious users
or worms)

The most common identification technique based
on the inspection of ‘known port numbers’ is no
longer accurate because many applications no longer
use fixed, predictable port numbers. The Internet
Assigned Numbers Authority (IANA) [1] assigns the
well-known ports from 0-1023 and registers port
numbers in the range from 1024-49151. But many
applications have no IANA assigned or registered
ports and only utilise ‘well known’ default ports.
Often these ports overlap with IANA ports and an
unambiguous identification is no longer possible [2].
Even applications with well-known or registered ports
can end up using different port numbers because (i)
non-privileged users often have to use ports above
1023, (ii) users may be deliberately trying to hide their
existence or bypass port-based filters, or (iii) multiple
servers are sharing a single IP address (host).
Furthermore some applications (e.g. passive FTP or
video/voice communication) use dynamic ports
unknowable in advance.

A more reliable technique used in many current
industry products involves stateful reconstruction of
session and application information from packet
content (e.g. [3]). Although this technique avoids
reliance on fixed port numbers, it imposes significant
complexity and processing load on the traffic
identification device. It must be kept up-to-date with
extensive knowledge of application semantics and
network-level syntax, and must be powerful enough to
perform concurrent analysis of a potentially large
number of flows. This approach can be difficult or

Automated Traffic Classification and Application Identification using
Machine Learning

Sebastian Zander, Thuy Nguyen, Grenville Armitage
Centre for Advanced Internet Architectures

Swinburne University of Technology, Melbourne, Australia
{szander,tnguyen,garmitage}@swin.edu.au

The authors thank Cisco Systems, Inc. for supporting this work with a
University Research Project grant.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

impossible when dealing with proprietary protocols or
encrypted traffic. Another problem is that direct
analysis of session and application layer content may
represent an explicit breach of organisational privacy
policies or violation of relevant privacy legislation.
The authors of [4] propose signature-based methods to
classify P2P traffic. Although these approaches are
more efficient than stateful reconstruction and provide
better classification than the port-based approach they
are still protocol dependent. The authors of [5]
describe a method to bypass protocol-based detectors.

Previous work used a number of different
parameters to describe network traffic (e.g. [4], [6],
[7]) including the size and duration of flows, packet
length and interarrival time distributions, flow idle
times etc. We propose to use Machine Learning (ML)
[8] to automatically classify and identify network
applications based on these parameters. A ML
algorithm automatically builds a classifier by learning
the inherent structure of a dataset depending on the
characteristics. Over the past decade, ML has evolved
from a field of laboratory demonstrations to a field of
significant commercial value [9]. Our approach
includes the task of identifying the optimal set of flow
attributes that minimizes the processing cost, while
maximizing the classification accuracy. We evaluate
the effectiveness of our approach using traffic traces
collected at different locations of the Internet.

The rest of the paper is organized as follows.
Section 2 presents an overview about related work.
Section 3 describes our approach for ML-based
application identification. Section 4 evaluates our
approach using traffic traces. Section 5 concludes and
outlines future work.

2. Related Work

The idea of using ML techniques for flow
classification was first introduced in the context of
intrusion detection [10].

The authors of [11] use principal component
analysis (PCA) and density estimation to classify
traffic into different applications. They use the
distributions of two flow attributes from a fairly small
dataset and study a few well-known ports.

In [12] the authors use nearest neighbour (NN) and
linear discriminate analysis (LDA) to successfully map
applications to different QoS classes using up to four
attributes. With this approach, the number of classes is
small and known a-priori. The attributes used for the
classification have been aggregated over 24 hour
periods.

The Expectation Maximization (EM) algorithm is
used in [13] to cluster flows into different application
types using a fixed set of attributes. The authors find
that the algorithm separates the traffic into few basic
classes, but from their evaluation it is not clear what
influence different attributes and EM parameters have
and how good the clustering actually is.

In [14] the authors use a simulated annealing EM
algorithm to classify traffic flows based on their size
(e.g. mice and elephants). The authors conclude that
their approach produces more meaningful results than
previous threshold-based methods.

We have proposed an ML-based approach for
identifying different network applications in [15]. In
this paper we evaluate the approach using a number of
traffic traces collected at different locations in the
Internet.

The authors of [16] are using a similar approach
based on the Naïve Bayes classifier and a large
number of flow attributes. They only use one data set
but the flows in this set have been hand-classified
allowing a very accurate evaluation.

Research on combining different non-ML
techniques to identify network applications is
presented in [17].

3. ML-based Application Identification

First we classify packets into bidirectional flows
and compute the flow characteristics using NetMate
[18]. Sampling can be used to only select a subset of
the flow data to improve the performance of the
learning process (see [15] for more details). The flow
characteristics and a model of the flow attributes are
then used to learn the classes (1). Once the classes
have been learned new flows can be classified (2).

(Sub)Sampling

Result
Usage

ML Learning (1)
& Classification (2)

Offline

Traces

Online

Packet Classification Flow
Statistics

Flow
Attribute
Models

ML

Result
Evaluation

Packet
Classification

Packet
Sniffing

Data Source

Learned
Classes

QoS
Mapping,

etc.

(1)

(2)

(1)

(2)

Figure 1: ML-based flow classification

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

Note that we use the term learning for the initial
process of constructing the classifier to differentiate it
from the latter process of classification. However, in
other work this is sometimes called classification or
clustering. The results of the learning and
classification can be exported for evaluation. The
results of the classification would be used for e.g. QoS
mapping, trend analysis etc.

3.1. ML Algorithm

For the machine learning we use the autoclass
approach [19]. autoclass is an unsupervised Bayesian
classifier that automatically learns the ‘natural’ classes
(also called clustering) inherent in a training dataset
with unclassified instances based on some attributes of
the instances. The resulting classifier can then be used
to classify new unseen instances. In this section we
only provide an overview and the reader is encouraged
to read [19] for a detailed description of the algorithm.

In the autoclass model all instances must be
conditionally independent and therefore any similarity
between two instances is accounted for by their class
membership only. The class an instance is a member
of is an unknown or hidden attribute of each instance.

The probability that an instance Xi of a set of I
instances (the database) with attributes iX

�

is a

member of a particular class Cj of a set of J classes
consists of two parts: the interclass probability and the
probability density function of each class (intraclass
probability). Because the classes constitute a discrete
partitioning of the data, the appropriate interclass
probability density function is a Bernoulli distribution
characterised by a set jV

�

of probabilities {π1,…,πj}

constrained that 0≤πj≤1 and 1jj
π =� . Thus

(|)i j c jP X C V∈ ≡ π
�

(1)

The interclass probability does only depend on J
and the known number of instances assigned to Cj but
not on iX

�

. The intraclass probability is the product of

the conditionally independent probability distributions
of the k attributes:

(| ,) (| ,)i i j j ik i j jk
k

P X X C V P X X C V∈ = ∈∏
� � �

(2)

autoclass supports discrete and real valued
attribute models for the individual P(Xik). However,
we only use real attributes, which are modelled with
lognormal distributions. Therefore we assume there is
only one functional form for the attribute probability
density functions and have omitted this parameter

from all the equations (see [19] for the more general
approach). Combining the interclass and intraclass
probabilities we get the direct probability that an
instance Xi with attribute values iX

�

is a member of

class Cj:

,(, |) (| ,)i i j c j j ik i j jk

k

P X X C V V P X X C V∈ = π ∈∏� � � �

(3)

By introducing priors on the parameter set this can
be converted into a Bayesian model obtaining the joint
probability of the parameter set V

�

and the current
database X:

() () (|)P XV P V P X V=
� � �

(4)

The goal is to find maximum posterior parameter
values obtained from the parameters posterior
probability density function:

(,) (,)
(|)

() (,)

P X V P X V
P V X

P X dV P X V
= =

�

� �

�

� �

(5)

One could use this equation directly, computing
the posterior probabilities for every partitioning of the
data into J non-empty subsets. But the number of
possible partitions approach JI for small J making the
approach computationally infeasible for large sets of
instances and/or classes. Therefore autoclass uses
approximation based on the EM algorithm [20].
autoclass cycles between estimating the class
assignments for all instances and estimating the
parameters V

�

. The EM algorithm is guaranteed to
converge to a local maximum. In an attempt to find
the global maximum autoclass performs repeated EM
searches starting from pseudo-random points in the
parameter space. The model with the parameter set
scoring the highest probability given the current
database is chosen as the best.

autoclass can be preconfigured with the number of
classes (if known) or it can try to estimate the number
of classes itself. For our problem the exact number of
classes is unknown in advance. One could argue that
there should be exactly one class per application.
However, we found the distributions of flow attributes
– even for a single application – can be quite complex.
Because we are using simple attribute models
(lognormal distributions) it is not possible to model
each application with a single class. When the number
of classes is unknown autoclass is configured with a
start list of class numbers startJ

�

. Then for each EM

search the initial number of classes is taken from the
next entry in startJ

�

as long as there are entries left.

The number of classes at the end of an EM search can
be smaller if some of the classes drop out of
convergence. For all further iterations after the start

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

list is exhausted autoclass randomly chooses J from a
lognormal distribution fitted to the number of classes
of the best 10 classifications found so far.

Having multiple classes per application provides
the advantage of a more fine-grained view into an
application. For instance, web traffic is used for
different purposes (e.g. bulk transfers, interactive
interfaces, streaming, etc.) and for detailed analysis it
would be beneficial to differentiate between them. On
the other hand an increasing number of classes
decreases the performance of the approach in terms of
runtime and memory.

3.2. Feature Selection

Our feature selection technique is based on the
actual performance of the learning algorithm. This
method generally achieves the highest accuracy
because it ‘tailors’ the feature set to the algorithm. On
the downside it is much more computationally
expensive (especially when the learning algorithm is
not very fast) than algorithm-independent methods
such as correlation-based feature selection (CFS) [21].

Finding the combination of attributes that provides
the most contrasting application classes is a repeated
process of (i) selecting a subset of attributes, (ii)
learning the classes and (iii) evaluating the class
structure. We implemented sequential forward
selection (SFS) to find the best attribute set because an
exhaustive search is not feasible. The algorithm starts
with every single attribute. The attribute that produces
the best result is placed in a list of selected attributes
SEL(1). Then all combinations of SEL(1) and a
second attribute not in SEL(1) are tried. The
combination that produces the best result becomes
SEL(2). The process is repeated until no further
improvement is achieved. SFS is only one (simple)
approach to identify the most useful feature set and
there are other approaches such as sequential
backward elimination (see [22]).

To assess the quality of the resulting classes we
have developed a metric termed intra-class
homogeneity H. We define A and C as sets of
applications and classes found during the learning
respectively. We also define a function count(a,c) that
counts the number of flows that application a∈A has
in class c∈C. Then the homogeneity H(c) of a class c
is defined as the largest fraction of flows of one
application in the class:

max((,) |)
()

(,)
a

count a c a A
H c

count a c

∈=
�

(6)

The overall homogeneity H of a set of classes is the
mean of the class homogeneities:

()
c
H c

H
C

=� and (0≤H≤1) (7)

The goal is to maximize H to achieve a good
separation between different applications. The reason
why we use H as an evaluation metric, instead of
standard metrics like accuracy, precision and recall, is
that we are using an unsupervised learning technique.
The number of classes and the class to application
mapping is not known before the learning. Afterwards
each class can be assigned to the application that has
the most flows in it. However, if more than one
application contributes a significant number of flows
to a class the mapping can be difficult. High
homogeneity values are required in order to
unambiguously map a class to an application.

4. Evaluation

4.1. Trace Files

For the evaluation we use the Auckland-VI, NZIX-
II and Leipzig-II traces from NLANR [23] captured in
different years at different locations in the Internet.
Because we are limited to use public available
anonymised traces we are unable to verify the true
applications that created the flows. In our evaluation
we therefore assume a flow’s IANA defined or
registered server port identifies the application. In our
case the server port is usually the destination port of
the bidirectional flows. In rare cases where the source
port was the IANA defined port we have swapped both
directions of the flow (including IP addresses, ports
and flow attributes).

We admit that assuming the server port always
identifies an application is not correct. However, we
assume that for the ports we use in this study the
majority of the traffic is from the expected application.
Then it is most likely that few ‘wrong’ flows would
decrease the homogeneity of the learned classes.
Therefore our evaluation results can be treated as
lower bound of the effectiveness. We also do not
consider traffic of the selected applications on other
than the standard server ports e.g. we do only consider
web traffic on port 80 but not on port 81. Assuming
there is no strong correlation between the used server
port and the application characteristics this does not
introduce any additional bias because it can be viewed
as random sampling.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

4.2. Flow Attributes

Our attribute set includes packet inter-arrival time
and packet length mean and variance, flow size (bytes)
and duration. Aside from duration all attributes are
bidirectional meaning they are separately computed
for both directions of a flow. Our goal is to minimise
the number of attributes and we only use ‘basic’
attributes that can be easily computed. We are not
using the server port as an attribute because ‘wrong’
ports could introduce an unknown bias.

In our analysis we exclude flows that have less
than three packets in each direction because for very
short flows only some attributes could be computed
e.g. flows containing only a single packet would
provide no inter-arrival time statistics and packet
length statistics can only be computed in the forward
direction. This would more than halve the number of
available attributes making it difficult to separate
different applications and would most likely bias the
attribute influence results. Furthermore any valid TCP
flows should have at least six packets. However, valid
UDP flows can consist of just two packets and
therefore excluding small UDP flows may have biased
the results for DNS and Half-Life traffic.

This strategy clearly leaves aside a substantial
number of flows but in this work we aim to separate
different applications and we are not interested in
‘strange’ flows or anomalies. In fact using these flows
would be dangerous because we rely on the server port
for validating our approach. For instance, if we would
use one-packet flows we might confuse port scans with
the real application. However, in general small flows
can provide interesting insights and should not be
ignored especially from a security viewpoint.

4.3. Identifying Network Applications

For performance reasons we use a subset of 8,000
flows from each trace file. For each application (FTP
data, Telnet, SMTP, DNS, HTTP, AOL Messenger,
Napster, Half-Life) we randomly sample 1,000 flows
out of all flows of that particular application. We
derive the flow samples and perform the SFS for each
of the four traces using the same parameters for the
learning algorithm.

Figure 2 shows an example result of a single run of
the algorithm with a fixed attribute set. It shows how
the applications are distributed among the classes that
have been found. The classes are ordered with
decreasing class size from left to right (increasing
class number). For each of the classes the homogeneity
is the maximum fraction of flows of one application

e.g. H(leftmost)=0.52 and H(rightmost)=1. The
overall homogeneity H is the mean of all class
homogeneities and in this case H=0.86.

0 3 6 9 13 17 21 25 29 33 37 41 45 49

Half-Life
Napster
AOL
Web
DNS
SMTP
Telnet
FTP Data

Class

P
e

rc
en

ta
ge

of
F

lo
w

s

0
20

40
6

0
8

0
10

0

Figure 2: Example distribution of
applications across the classes

Figure 3 shows the overall mean H depending on
the number of attributes. It shows the overall
efficiency in identifying the different application
increases with the number of attributes until it reaches
a maximum between 0.85 and 0.89 depending on the
trace. That means on average there is fairly high
separation between the flows of different applications.
The number of attributes in the final best sets varies
between four and six but is always significantly
smaller than the total number of attributes used in the
SFS (eleven). We also performed training on the full
feature set for all traces but found no significant
homogeneity improvement (values between 0.85 and
0.90) but the learning was significantly slower.

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Attributes

In
tra

-c
la

ss
H

om
og

en
ity

H

Auckland-VI part 1
Auckland-VI part 2
NZIX-II
Leipzig-II

Figure 3: Homogeneity depending on the
number of flow attributes and different traces

Figure 4 shows what features have been selected
for the best sets for each of the traces. The y-axis
shows the percentage of traces a feature made it into
the best set. Although the best feature sets are different
for all the traces there is a clear trend towards some of
the features. Packet length statistics seems to be
preferred over inter-arrival times statistics and
duration and backward volume also seem to be of
limited value.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

Feature

P
er

ce
nt

ag
e

Fwd-
Pkt-

Le
n-

Mea
n

Fwd-
Pkt-

Le
n-

Var

Bck
-P

k t-L
en

-M
ea

n

Bck
-P

kt-
Le

n-V
ar

Fwd-
Ia

t-M
ea

n

Fwd-
Iat-V

ar

Bc k-I
at

-M
ea

n

Bc k-
Iat

-V
ar

Dur
ati

on

Fwd-S
ize

Bck
-S

ize

0
20

40
60

80
1

00
Auckland-VI, day 1
Auckland-VI, day 2

Leipzig-II
NZIX-II

Figure 4: Features selected for the best
feature sets of different traces

We believe the reason why the packet length is
preferred over inter-arrival times is because none of
the applications we investigate has very characteristic
inter-arrival time distributions. If for instance we had
chosen voice communication where applications have
very characteristic inter-arrival times (e.g. one packet
every 20ms) we would expect inter-arrival times to be
much more useful.

Game traffic such as Half-Life traffic is known to
have very characteristic inter-arrival times. However,
this is only true for the traffic that exchanges game
state information during a game. Most Half-Life
traffic flows in our dataset are actually caused by
players just querying information from the server such
as the number of active players etc. A potential
problem with inter-arrival times is that packet queuing
in routers can change their distributions especially in
case of congestion. In contrast packet lengths are
usually constant in case there is no intermediate
fragmentation or encryption.

We also estimate the influence of the different
attributes on the outcome of the learning. The
influence of an attribute on a particular class is
defined as the cross entropy for the class distribution
w.r.t. the global distribution of a single class
classification. The total influence of an attribute is
then the class probability weighted average of the
influence in each of the classes. The influence values
range from 0 (no influence) to 1 (maximum
influence). Table 1 shows the mean values (based on
the learning results when using the best attribute sets)
across the different traces. The results are similar to
Figure 4 in that packet length and volume statistics
are most influential while inter-arrival times and
duration have less influence.

We computed the homogeneity of the classes for
each of the different applications. Figure 5 shows the

per-application homogeneity distribution across the
different traces. The per-application homogeneity is
defined as the mean homogeneity of all classes where
an application has the largest fraction. The
distributions are shown as boxplots. The lower end,
middle and upper end of the box are the 1st quartile,
median and 3rd quartile of the distribution. The
whiskers extend to the most extreme values.

Table 1: Attribute influence

Attribute Influence

Forward-Pkt-Len-Var 1.0

Backward-Pkt-Len-Var 0.89

Backward-Bytes 0.84

Forward-Pkt-Len-Mean 0.77

Forward-Bytes 0.75

Backward-Pkt-Len-Mean 0.69

Duration 0.62

Forward-IAT-Mean 0.56

The figure shows that the classes of some
applications are quite homogenous (e.g. Half-Life) but
for others they are less homogenous (e.g. Telnet,
Web). The higher the homogeneity the more likely it
is to separate an application from all the others. Some
applications such as Half-Life can be well separated
from the rest but others such as FTP seem to have
characteristics very similar to other applications.

FTP Telnet SMTP DNS Web AOL Napster H-Life

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Application

H
om

og
en

ei
ty

Figure 5: Mean homogeneity per
application across different traces

Figure 6 shows the percentage of flows in the
‘correct’ classes for each application and all traces
(this is usually called accuracy). To compute the
accuracy we map each class to the application that is
dominating the class (by having the largest fraction of
flows in that class). The figure indicates the expected
classification accuracy. It shows that some

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

applications have a very high accuracy but there are
some problems e.g. for Napster there is one trace
where it is not dominating any of the classes (hence
the accuracy is 0%). However, it should be noted that
the median is always 80% or higher and for some
applications it is close to 95%. The mean accuracy
across all trace files is 86.5%.

FTP Telnet SMTP DNS Web AOL Napster H-Life

0
20

40
60

80
10

0

Application

P
er

ce
nt

ag
e

Figure 6: Accuracy per application across
different traces

While the accuracy gives the percentage of
correctly classified flows it does not provide a measure
into which applications flows are likely to be
misclassified. To address this issue we also compute
the false positive rate per application, which is defined
as the number of misclassified flows divided by the
total number of flows in all classes assigned to the
application. Figure 7 shows the percentage of false
positives for each application. FTP, Telnet and Web
traffic have the highest percentage of false positives.
Telnet has the problem that it heavily overlaps with
other applications while FTP and Web seem to have
the most diverse traffic characteristics and are spread
across many classes.

FTP Telnet SMTP DNS Web AOL Napster H-Life

0
20

4
0

60
80

10
0

Application

P
e

rc
en

ta
ge

of
F

a
ls

e
P

o
si

tiv
e

s

Figure 7: False positives per application
across different traces

To visualize which applications have the most
diverse characteristics the percentage of classes an
application has at least one flow in is shown in Figure
8 (spread of an application among the different
classes). Not surprisingly web traffic is the most
distributed application (similar results were found in
[13]) whereas game traffic is the least distributed. On
average the total number of classes found was 100.

FTP Telnet SMTP DNS Web AOL Napster H-Life

0
20

40
60

80
10

0

Application

P
er

ce
nt

ag
e

of
C

la
ss

es
Figure 8: Spread of the applications over

the classes across different traces

Although the main focus is on achieving a good
separation of the different applications for the purpose
of high classification accuracy, it would also be
desirable to minimise the number of classes to
improve the speed of the learning and classification
and minimise memory requirements.

5. Conclusions and Further Research

We have proposed a novel method for ML-based
flow classification and application identification based
on statistical flow properties. We used a feature
selection technique for finding the optimal set of flow
attributes and evaluated the effectiveness of our
approach. We also quantified the influence of different
attributes on the learning. The results show that some
separation of the applications can be achieved
depending on the particular application. The average
accuracy across all traces is 86.5%. While some
applications seem to have more characteristic
attributes and can be well separated others intermingle
and are harder to identify.

We plan to evaluate our approach with a larger
number of flows and more applications. Using packet
traces with payload or flow data where the
applications have already been identified would allow
us to improve our evaluation. We work on comparing
our algorithm with a simple Bayesian classifier as
used in [16].

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

It is important to identify why some applications
cannot be easily separated from others and to develop
new, better flow attributes to improve homogeneity.
We want to experiment with attributes such as idle
time, burstiness and metrics computed from payload
information in a protocol independent way.

The precision and recall of the resulting classifier
and the classification performance needs to be
evaluated. We also have not yet investigated the effect
of flow sampling on our results, although it should be
noted that the selection of any kind of data set already
represents some form of sampling. In high-speed
networks the use of packet sampling is inevitable and
it is important to know how the sampling error affects
the flow attributes (see [24]). Another interesting
question is how many packets of a flow are required
for reliable identification (in most scenarios the flows
would have to be classified as quickly as possible) and
how stable classifications are over time (the predicted
class should only change when the network
application changes).

Possibly our approach could also be applied to
detect security incidents such as port scans or other
malicious traffic but we have not yet extended our
study into this area. Another issue left for further
study is to quantify the performance in terms of
processing time and memory consumption and to
investigate the trade-off between the approach’s
accuracy and processing overhead.

6. References

[1] IANA, http://www.iana.org/assignments/port-numbers
(as of August 2005).

[2] Ports database, http://www.portsdb.org/ (as of August
2005).

[3] Cisco IOS Documentation, “Network-Based
Application Recognition and Distributed Network-
Based Application Recognition“,
http://www.cisco.com/univercd/cc/td/doc/product/softw
are/ios122/122newft/122t/122t8/dtnbarad.htm (as of
August 2005).

[4] S. Sen, O. Spatscheck, D. Wang, “Accurate, Scalable
In-Network Identification of P2P Traffic Using
Application Signatures”, WWW 2004, New York,
USA, May 2004.

[5] Reno, NV. "An Analysis of Flow Identification in QoS
Systems", Poster at ACM SIGCSE 2003, Reno, USA,
February 2003.

[6] K. Lan, J. Heidemann, “On the correlation of Internet
flow characteristics”, Technical Report ISI-TR-574,
USC/Information Sciences Institute, July, 2003.

[7] K. Claffy, H.-W. Braun, G. Polyzos, “Internet Traffic
Profiling”, CAIDA, San Diego Supercomputer Center,
http://www.caida.org/ outreach/papers/1994/itf/ , 1994.

[8] Tom M. Mitchell, “Machine Learning”, McGraw-Hill
Education (ISE Editions), December 1997.

[9] Tom M. Mitchell, “Does Machine Learning Really
Work?”, AI Magazine 18(3), pp. 11-20, 1997.

[10] J. Frank, “Machine Learning and Intrusion Detection:
Current and Future Directions”, Proceedings of the
National 17th Computer Security Conference, 1994.

[11] T. Dunnigan, G. Ostrouchov, “Flow Characterization
for Intrusion Detection”, Oak Ridge National
Laboratory, Technical Report,
http://www.csm.ornl.gov/~ost/id/tm.ps, November
2000.

[12] M. Roughan, S. Sen, O. Spatscheck, N. Duffield,
“Class-of-Service Mapping for QoS: A statistical
signature-based approach to IP traffic classification,
ACM SIGCOMM Internet Measurement Workshop
2004, Taormina, Sicily, Italy, 2004.

[13] A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow
Clustering Using Machine Learning Techniques”,
Passive & Active Measurement Workshop 2004 (PAM
2004), France, April 19-20, 2004.

[14] A. Soule, K. Salamatian, N. Taft, R. Emilion, and K.
Papagiannaki, “Flow Classification by Histograms or
How to Go on Safari in the Internet”, In ACM
Sigmetrics, New York, U.S.A., June, 2004.

[15] S. Zander, T.T.T. Nguyen, G. Armitage, "Self-learning
IP Traffic Classification based on Statistical Flow
Characteristics", Passive & Active Measurement
Workshop (PAM) 2005, Boston, USA, March/April
2005.

[16] D. Zuev, A. Moore, “Traffic Classification using a
Statistical Approach”, Passive & Active Measurement
Workshop, Boston, U.S.A, March/April 2005.

[17] A. Moore, and K. Papagiannaki, “Toward the Accurate
Identification of Network Applications”, Passive &
Active Measurement Workshop, Boston, U.S.A.,
March/April, 2005.

[18] NetMate, http://sourceforge.net/projects/netmate-meter/
(as of August 2005).

[19] P. Cheeseman, J. Stutz, “Bayesian Classification
(Autoclass): Theory and Results”, Advances in
Knowledge Discovery and Data Mining, AAAI/MIT
Press, USA, 1996.

[20] A. Dempster, N. Laird, D. Rubin, “Maximum
Likelihood from Incomplete Data via the EM
Algorithm, Journal of Royal Statistical Society, Series
B, Vol. 30, No. 1, 1977.

[21] M. Hall, “Correlation-based Feature Selection for
Machine Learning", Ph.D diss., Waikato University,
Department of Computer Science, Hamilton, NZ, 1998.

[22] Y. Yang and J. O. Pedersen, “A comparative study on
feature selection in text categorization", Proceedings of
ICML’97, 14th International Conference on Machine
Learning", pp. 412-420, 1997.

[23] NLANR traces: http://pma.nlanr.net/Special/ (as of
August 2005).

[24] N. Hohn, D. Veitch, “Inverting Sampled Traffic”,
ACM/SIGCOMM Internet Measurement Conference,
Miami, USA, November 2003.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 7, 2010 at 22:10 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

