

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Phan, T., Han, J., Schneider, J.-G., & Wilson, K. D. (2008). Quality-driven
business policy specification and refinement for service-oriented systems.

Originally published in A. Bouguettaya, I. Krueger, & T. Margaria (eds.).
Proceedings of the 6th International Conference on Service-Oriented Computing

(ICSOC 2008), Sydney, New South Wales, Australia, 01–05 December 2008.
Lecture notes in computer science (Vol. 5364, pp. 5–21). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/978-3-540-89652-4_5

Copyright © Springer-Verlag Berlin Heidelberg 2008.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

Quality-Driven Business Policy Specification and
Refinement for Service-Oriented Systems

Tan Phan1, Jun Han1, Jean-Guy Schneider1, and Kirk Wilson2

1 Faculty of Information & Communication Technologies
Swinburne University of Technology

P.O. Box 218 Hawthorn, VIC 3122, AUSTRALIA
{tphan,jhan,jschneider}@swin.edu.au

2 CA Labs
One CA Plaza, Islandia, NY 11749, USA

{Kirk.Wilson@ca.com}

Abstract. Enterprise software systems play an essential role in an organization’s
business operation. Many business rules and regulations governing an organiza-
tion’s operation can be translated into quality requirements of the relevant soft-
ware systems, such as security, availability, and manageability. For systems im-
plemented using Web Services, the specification and management of these qual-
ities in the form of Web Service policies are often complicated and difficult to
be aligned with the initial business requirements. In this paper, we introduce
the HOPE (High-Level Objective-based Policy for Enterprises) framework that
supports, in a systematic manner, the specification of quality-oriented policies at
the business level and their refinement into policies at the system/service level.
Quality-oriented business requirements are expressed in HOPE as quality objec-
tives applied to business entities and further refined or translated into system-level
WS-Policy statements. The refinement relies on an application-specific business
entity model and application-independent domain quality models. We demon-
strate the approach with a case study involving policy specification and refine-
ment in the security domain.

1 Introduction

Business rules, government acts such as Sarbanes-Oxley [1], industry standards such
as Basel II [2], and enterprise-specific rules mandate non-functional or quality require-
ments of the various entities in an organization’s IT environment. These requirements
can often be formulated as high-level quality objectives (e.g., Customer data must be
kept confidential) and realized using various means for IT management and governance.

In recent years, Service-Oriented Architectures (SOA) and Web Services (WS) have
offered a new way of implementing enterprise business processes. Core business func-
tionalities are codified as network-accessible Web Services and enterprise software sys-
tems become live networks of interconnected services. To ensure that WS-based SOA
systems are reliable and interoperable, various industry standards have been proposed
to support the specification and management of quality aspects, most notably security,
reliable messaging, and transactions [3]. In general, these standards are about system-
level mechanisms to achieve some non-functional qualities. Example mechanisms in

security or distributed transaction coordination are role-based access control, message
encryption and signing, and content-based routing. The Web Services Policy Frame-
work (WS-Policy) [4] is a standard that supports the specification of various quality
properties for Web Services and service systems.

One of the issues that needs to be addressed is how to align the high-level and of-
ten business-oriented quality objectives with the system-level realization mechanisms
offered by the WS standards. Currently, the quality objectives are often identified by
practitioners who are either business analysts or IT compliance officers (hereafter re-
ferred to as policy experts). They have a good understanding of the business domain and
regulations, and have a high-level understanding of the IT systems in general. However,
policy experts are typically not SOA experts and often do not have an in-depth un-
derstanding of all the system-level realization mechanisms used to achieve the quality
objectives. They view IT systems more from a business perspective and their concerns
are to identify the quality objectives rather than how they can be realized. It is the sys-
tem developers’ responsibility to implement the quality objectives in the corresponding
IT systems. The underlying processes are generally ad-hoc and, therefore, it is difficult
to ensure that a system fully implements all required quality objectives. As such, a con-
tribution of great value would be a systematic process and related techniques that can
derive the system-level realization from the business-level requirements and can verify
that the realization actually fulfills these requirements.

In this work, we address the issue of aligning business-oriented quality objectives
with system-level WS quality properties by introducing the HOPE (High-level Objective-
based Policies for Enterprises) framework. HOPE assists policy experts in specifying
business policies and quality objectives and, by utilizing realization mechanisms avail-
able in the respective quality domains, refines them into system-level WS-Policy state-
ments that prescribe quality properties for service-based enterprise software systems.
This paper starts with a business case study as a motivating example. It then introduces
the HOPE framework and the mechanisms for policy refinement, illustrated using se-
lected examples from the case study. A prototyping tool for HOPE is also presented.
The paper concludes with a summary of the main contributions and future work.

2 A Motivating Example

In this section, we introduce an example business process and identify applicable rules
and regulations. A set of quality-oriented business policies is then derived from the rules
and regulations. We discuss the limitations of current approaches with regards to spec-
ifying and realizing such policies, motivating our approach of the HOPE framework.

2.1 Business Case: The Mortgage Loan Approval Business Process

When a customer applies for a mortgage loan product at a hypothetical multi-national
bank SwinBank, a LoanOfficier accepts the application and triggers the bank’s loan
approval business process. First, the bank arranges a professional appraiser to estimate
the market value of the collateral property. Next, the customer’s ID/social security num-
ber is forwarded to a credit checking unit to verify the customer’s credit history. A list

Fig. 1. The Mortgage Loan Approval business process

of credit scores from multiple credit rating agencies is then obtained. Finally, the repay-
ment capacity of the customer is checked by judging the income against the amount to
be repaid. Based on this information, an approval decision for the loan is made.

2.2 MortgageLoan: The Mortgage Loan Approval Application

SwinBank automates its mortgage loan approval process using SOA. The process is
implemented in BPEL utilizing a number of services (depicted in Figure 1).

The service CustomerProfileManager provides customer account information
whereas CollateralPropertyAnalyser calculates the value of a given property.
The CreditRating service, acting as a gateway to other credit rating agencies’ WS,
forwards the customer’s social security number to the agencies and obtains the cus-
tomer’s credit history report. The service RepaymentCapacityAnalyser checks the
customer’s repayment capacity based on his/her income and the amount of loan to be
repaid, taking into account interest rate, inflation, and other factors. Finally, the service
LoanApprover takes the output of the previous three services and makes a decision,
with human input, as to whether the loan is approved or not.

2.3 Rules, Regulations and SwinBank Business Policies

The discussion of the mortgage loan approval business process and system for SwinBank
has primarily focused on the business and application functionality. In reality, this busi-
ness process is also subject to many rules and regulations that may be general or specific
to the Banking Industry. The following are some of the relevant acts:

1. Bank Secrecy Act of 1970 [5]: Any information disclosed by the applicants, any
temporary data collected during the approval process, and any final decision need
to be persistently stored and traceable.

2. Australian Privacy Act 1988 [6]: Information related to loan applicants’ credit
information, customer identifier information must be available to only authorized
personnel and not disclosed to the public.

By analyzing the rules and regulations, policy and compliance experts can identify
the business policies applicable to the loan approval process and system. In general,
business policies can be functional or non-functional (i.e. system’s qualities). In this
paper, we focus on the latter. The following are some of the non-functional quality-
oriented business policies for the loan approval process and system:

(BP1): Loan application data must be persistently stored.
(BP2): Information about customers’ personal identifications and financial records

must be kept secure during transmission.
(BP3): All activities related to loan processing must be recorded.
(BP4): Loan applicants must not be able to repudiate the lodgment of a loan and the

bank must not be able to repudiate the receipt of a loan application.
(BP5): People working with customer information must be authorized.

These business policies require MortgageLoan to have the corresponding quality prop-
erties related to the privacy and security of data and loan processing activities.

2.4 Realization of Quality-Oriented Business Policies

In SOA development, system requirements (functional and non-functional) are gener-
ally realized through services and the WS policies applicable to these services (at the
assembly or deployment phase) [7]. The fact that some system requirements are realized
through policies increases the flexibility and agility of the system. For example, WS
policies can be updated to realize certain system changes without modifying the ser-
vices’ implementation. As the WS-Policy framework is predicated on WS interactions,
only requirements that concern WS interactions can be realized through Web Service
policies. Other requirements have to be realized in the services themselves. In this pa-
per, we focus on quality-oriented non-functional requirements or business policies, and
in particular those that can be realized through WS policies at the system-level (cf. Fig-
ure 2). For example, the requirement in BP1 cannot be fully realized by the WS quality
model and, therefore, needs to be realized programmatically or using other means (such
as database transaction management).

In current SOA practice (cf. Figure 2(a)), it is the system developers’ responsibility
to realize the quality-oriented business policies in terms of WS policies. This process is
generally ad-hoc and there is no easy way to ensure that all the relevant business-level
policies are properly interpreted and implemented by the developers, who have gener-
ally limited understanding of the rules and regulations [7]. Furthermore, this process is
often very tedious as well as error-prone.

To alleviate this problem, we have developed the HOPE framework with the aim to
automate the process of refining high-level business policies into system-level quality

Fig. 2. Current SOA development (a) and the HOPE approach (b)

properties (cf. Figure 2). In particular, we introduced the concept of quality objectives to
model non-functional business requirements in the form of required qualities applicable
to the various entities in a system’s design models. These quality objectives are then
refined into WS policies applicable to the service-based system.

3 The HOPE Framework

HOPE is a framework for specifying high-level, quality-oriented business policies and
refining them into system-level Web Services policies for Web Services-based enter-
prise software systems in a systematic manner. HOPE is built on a number of underlying
models as illustrated in Figure 3.

The quality models are domain-specific and identify, for a given domain (e.g., secu-
rity), the relevant quality attributes and the mechanisms to realize them. The application
entity model provides a layered hierarchy of business-oriented entities involved in the
application, and can be extracted from the application’s design models. The business
concepts in this entity model are used to specify the quality objectives for the system
and to annotate the system’s WS elements (portTypes, operations, messages etc.). Based
on the quality models and the WS annotations, HOPE refines and translates the high-
level quality objectives into system-level policy statements asserting WS properties.
The remainder of this section discusses these models in more detail.

3.1 Domain Quality Models

For each quality domain a quality model defines the set of quality attributes concerning
the domain and the realization mechanisms for these attributes. The quality model itself
is application-independent and is often derived from standards, ontologies, patterns,

Fig. 3. The HOPE framework

and best practices, respectively, and the system-level WS quality specification WS-
*, where * denotes the quality domain name for that domain. We have chosen XML
Schema as a means to specify quality models and defined a corresponding quality meta-
model each quality model must adhere to. In the following, we will further illustrate this
approach using the security domain as an example.

The Quality Meta-Model and the Security Quality Model: The quality meta-model
provides a formal structure to specify the entities of each quality domain. Throughout
the remainder of this section, we will use a simplified security quality model based
on [7,8,9,10,11] for illustration purposes (cf. Figure 4). We expect that other domain
quality models can be expressed using the same set of notations and structure as defined
in the security meta-model.

• Quality: a quality attribute or quality, q, specifies a desired quality aspect. In the se-
curity domain, the common quality attributes are confidentiality (preventing unau-
thorized access to sensitive data), integrity (preventing unauthorized modification
of the data), non-repudiation (preventing a message sender from repudiating the
fact that it was him who sent the message and a message receiver from repudiating
the fact that it was him who received the message), authentication (proving the au-
thenticity of a user), authorization (proving that the user is in the role he claims),
and audit (making sure that actions are recorded and traceable).

• Quality realization mechanism: a quality realization mechanism defines how a
quality q can be realized. It is a logical structure in disjunctive normal form (OR of
ANDs) of abstract quality functions. For example, according to [12,13], (i) confi-
dentiality can be realized by encrypting data that needs to be protected, (ii) integrity
can be realized by signing the data, and (iii) non-repudiation of a message can be
realized by logging the sending and receiving actions and signing the message.

Fig. 4. The partial security meta-model

• Quality function: a quality function specifies a measure that can be used to achieve
one or more qualities. A quality function f is specified in the form f(fb) where fb
denotes the function binding (defined below) for that function. If fb is left empty,
the function is called an abstract function, only specifying what needs to be done.
If fb is defined, the function is called a concrete function. For example, some of
the common abstract security functions as defined in [12,13] are encrypt, sign, log,
includeUsernameToken, and includeUserRoleToken.

• Function Binding Mechanism: a function binding mechanism represents a method
of realizing a quality function based on a type of quality infrastructure. A quality
domain typically has a limited set of alternatives for realizing a given quality func-
tion. For example, security functions such as encrypt or sign have the three binding
mechanisms (i) transport (using transport security such as HTTPS), (ii) symmetric
(using a shared key), and (iii) asymmetric (using a pair of public and private keys).

• Binding Property Set: a binding property set {(p1, v1), . . . , (pn, vn)} contains
name-value pairs where pi is the name of a property and vi the corresponding value.
Example security binding properties are AlgorithmSuite=SHA1, indicating that
the SHA1 algorithm suite is used, and SignatureProtection=TRUE, indicating
that both the signature and the signature confirmation elements must be encrypted.

• Function Binding Tree: a function binding tree is formed by detailing abstract
functions with binding information. The root of a binding tree is the abstract func-
tion itself containing empty binding information. The direct children of the root
node contain the function’s binding mechanisms. Child-nodes of the binding mech-
anism nodes are leaf nodes containing all possible values of available binding prop-
erties for that mechanism. Furthermore, function binding trees can be assigned pri-
orities for particular binding mechanisms and/or properties. For the security func-
tion encrypt, the binding tree is formed by having a root node being the abstract
encrypt function, the direct children of the root nodes are the binding mechanisms

transport, symmetric, and asymmetric, and the sub-nodes contain detailed binding
properties for each of the binding mechanism (e.g., Algorithm=SHA1).

Binding trees can potentially become quite large as the number of possible branches
is defined as the Cartesian product of all available binding mechanisms and all applica-
ble binding property values. However, an organization often follows a certain security
profile which has a limited number of predefined binding options. For example, the Ba-
sic Security Profile, Version 1.0 [14] mandates the use of message level mechanisms
and places some constraints on values of certain binding properties (e.g., SHA1-based
algorithms must be used for interoperability purposes).

System-level Web Services Quality Models: At the system-level, qualities are ap-
plied to Web Services in the form of WS-Policy statements. The WS Policy frame-
work (WS-Policy) allows the specification of qualities and their realization details
for WS. For each quality domain, there is a WS-*Policy standard, such as the WS-
SecurityPolicy [15] for security, that allows for the specification of the qualities and
their realization details in that domain. WS-Policy is extensible and specifications for
new quality domains can be defined and included in the framework. It is aimed at defin-
ing non-functional properties that govern service-service or service-client interactions,
but not the implementation details of the services themselves. However, there are qual-
ities that cannot be supported by the WS quality model, e.g. durability for persisting
data. Therefore, when defining a quality model, the system-level WS quality model for
that domain is taken into consideration in order to filter out the qualities, functions,
mechanisms or properties that are not supported by the system-level model.

3.2 The Application Entity Model

An application’s entity model defines application-specific business concepts. Policy ex-
perts work with this model and apply policies on the entities in the model in the form
of quality objective requirements. In general, such a model is extracted from an ap-
plication’s analysis and design models (e.g., ER or UML diagrams) made available by
business analysts or system architects during system analysis. In HOPE, a Business-
Entity represents a business-oriented concept from the application and can be classified
into one of the following basic entity types:

• Processor: performs business logic at request (e.g., LoanProcessor),
• DataItem: holds business data (e.g., CustomerTaxFileNumber), and
• UserRole: represents user roles in an organization, has access to DataItems, and

can ask Processors to perform actions (e.g., LoanOfficier).

In a HOPE entity model, each entity is a direct or indirect specialization of one of
the three basic entity types. Although an entity in a given application can be the special-
ization of more than (super-)entity, it can only be the (direct or indirect) specialization
of one of the basic entity types. For example, an entity cannot be a specialization of
both, DataItem and Processor, respectively. Using this approach, applications can be
viewed as compositions of interacting entities.

Fig. 5. Example MortgageEntityModel

A HOPE entity model can be represented as a directed graph of entities: a node cor-
responds to an entity and a (directed) edge represents an entity specialization. Figure 5
represents part of the entity model for the motivating example MortgageEntityModel
introduced in Section 2. The entities CustomerData and PersonalIdentifier and
their specializations LoanApplicationData, LoanApplicantCreditHistory, and
LoanApplicantTaxFileNumber are specializations of the basic entity type DataItem,
LoanProcessor and CreditVerifier are specializations of Processor, and finally
LoanOfficier and Teller are specializations of the basic entity type UserRole.

Annotating Services and Messages: Once the high-level entity model is defined, the
Web Services elements portTypes, operations, and messages of an application’s imple-
mentation need to be mapped to the high-level business concepts defined in the model
in order to perform policy refinement. The mapping is done via annotations using the
WS Semantic (WSDL-S) framework (chosen for its simplicity and tool support) [16].

Figure 6 shows an example of mapping Web Service elements to concepts of the
application entity model using WSDL-S for MortageLoan. The WSDL-S annotations
wssem:modelReference are used to map Web Service messages such as loanAppli-
cationRequest and message parts such as CustomerID and TaxFileNumber (rep-
resented in the WSDL description of the service) to specializations of DataItem. In a
similar manner, portTypes such as processLoanApplicationPortType and opera-
tions such as acceptApplication are mapped to the corresponding specializations of
Processor. Any service client that uses these services is also annotated with UserRole
information, indicating which user role constraints this client has to adhere to.

3.3 Quality Objectives and Policies

A central concept in HOPE is the quality objective. A quality objective, denoted by
q[e], specifies the application of the quality q on the business entity type e, meaning that
quality q must hold on all entities of type of e and all of its specializations. Furthermore,

Fig. 6. Example Web Services and entity model mapping using WSDL-S

a policy is defined as a n-tuple p(t, q1[e]1, . . ., qn−1[en−1]) where t is the textual
representation in natural language of the business policy requirement, qi[ei] is a quality
objective and {q1[e]1, . . ., qn−1[en−1]} is the set of quality objectives meeting the
requirements specified by the policy. This information is made available to the policy
experts when they apply a quality onto an entity.

Some qualities can only be applied to certain types of entities. For example, man-
ageability qualities like notifiability, controllability, or introspectability can only be ap-
plied to specializations of Processor. In the security domain, confidentiality, integrity,
and non-repudiation can only be applied to specializations of DataItems whilst authen-
tication and authorization are only applicable to specializations of UserRoles.

The example business policies specified in Section 2 can be decomposed into quality
objectives as given in Table 1. As mentioned before, BP1 cannot be supported by HOPE.
Apart from that, quality objectives of the other four policies can be refined into WS-
SecurityPolicy assertions, based on the security quality model and the annotated Web
Service descriptions (cf. Section 4).

4 Generating WS-Policy Assertions

The refinement of a quality objective into WS-Policy Assertions involves two major
steps: (i) the quality objective is realised in terms of concrete quality functions, ac-
cording to the quality model and (ii) the concrete quality functions are mapped to cor-
responding WS-Policy statements for that domain. The statements are applied on the
relevant WS that will be manifested when the services operate at runtime. In this pro-
cess, mapping information available in WS annotations is used to identify the relevant
WS elements that correspond to the business entities in the original quality objectives.

Each quality domain has its own way of generating WS-*Policy statements from the
domain’s concrete functions. We will discuss the methods for generating WS-Security-
Policy assertions from concrete security functions throughout the rest of this section.

The current version of the WS-SecurityPolicy [15] specification defines different
types of assertions for specifying the mechanisms of applying security measures on

Business Policy Quality Objectives
BP2 (“Information about customers’ . . . secure during transmission”,

confidentiality[LoanApplicantTaxFileNumber],
confidentiality[LoanApplicantCreditHistory],
integrity[LoanApplicantTaxFileNumber],
integrity[LoanApplicantCreditHistory])

BP3 (“All activities related to loan processing must be recorded”,
audit[LoanApplicationData],
audit[LoanApplicantCreditHistory],
audit[LoanApplicantCreditResult]

BP4 (“Loan applicants must not be able . . . of a loan application”,
non-repudiation[LoanApplicationData])

BP5 (“People working with customer. . . must be authorized ”,
authorization[LoanOfficier])

Table 1. Business policies and corresponding quality objectives.

SOAP messages. There are basically three types of assertion relevant to our mechanism:
(i) protection assertions, (ii) token assertions, and (iii) binding assertions.

4.1 Mapping an Abstract Functions to WS-Security Assertions

Security Functions for DataItems: The WS-SecurityPolicy protection assertions, spec-
ifying what security measures need to be applied on which parts of SOAP messages,
can be used to describe security functions for DataItems such as encryp or sign. For a
security function functionX to be applied on the entity DataItemX which, via an-
notation, is known to be carried by a collection of <Message1, . . ., MessageN>, the
corresponding WS-SecurityPolicy protection assertion for the function functionX is

<functionXAssertion>
<Xpath>Message1 </Xpath>
. . .
<Xpath>MessageN </Xpath>

</functionXAssertion>

where <Xpath>Messagei</Xpath> is the path pointing to the message or message
part relative to the SOAP document, and the mapping between functionX and its
assertion is as follows:

Quality Realization Functions WS-SecurityPolicy assertions
Integrity encrypt SignedElements

Confidentiality sign EncryptedElements

Non-
repudiation

encrypt AND log EncryptedElements

//Log assertion has not been defined

Security function for Processors and UserRoles: The focus of WS-Security and,
therefore, WS-SecurityPolicy, is not to protect UserRoles and Processors. However,

existing mechanisms can be leveraged to support the realization of authentication and
authorization by using token assertions as follows:

Quality Realization Functions WS-SecurityPolicy assertions
Authentication IncludeUsernameToken():

Attach a username token in
messages originated from
the user.

<wsse:SecurityToken

wsp:Usage="wsp:Required">

<wsse:TokenType>

wsse:UsernameToken

</wsse:TokenType>

</wsse:SecurityToken>

Authorization includeToken – SAML. At-
tach a SAML token mes-
sages originated from the
user.

<wsse:SecurityToken

wsp:Usage="wsp:Required">

<wsse:TokenType>

wsse:SAMLToken

</wsse:TokenType>

</wsse:SecurityToken>

To associate these assertions with the WS portTypes and operations, we use the
mechanisms specified in WS-PolicyAttachment [17]. The security functions applied
on a UserRole are, via entity mapping information, also applied on WS, WS port-
Types, or WS operations that the role might have access to (i.e. invoke) accordingly
using a similar mechanism. For example, LoanOfficier, via annotation is known to
have access to the portType LoanProcessor, thus quality objectives such as autho-
rization[LoanOfficier] are translated into corresponding WS-Policy assertions that are,
via WS-PolicyAttachment, applied on the LoanProcessor portType.

The reader may note that the WS-SecurityPolicy [15] standard does not define as-
sertions for all well known security functions as WS-Security itself focuses more on
message confidentiality and integrity. For example, an assertion for logging is not avail-
able. However, the standard is still evolving and it is expected that additional support
will be accommodated in future versions.

4.2 Mapping Function Binding to WS-SecurityPolicy Binding Assertions

The general structure of a WS-SecurityPolicy binding assertion is as follows

<BindingMechanism>
<Structured collection of Binding property assertions>

</BindingMechanism>

The BindingMechanism can be symmetric, asymmetric or transport binding. The
“structured collection of Binding property assertions” is generally a logical AND of
the assertions that specify the value of the binding properties. In WS-Policy syntax,
this logical AND can be represented using a wsp:Policy or a wsp:All container. For
a concrete security function, the function BindingMechanism in the quality function
is mapped to the corresponding WS-SecurityPolicy BindingMechanism assertions and
each of the BindingProperty is mapped to the corresponding WS-Policy BindingProp-
erty assertions. The mapping is relatively straightforward and is one to one.

1<sp:Policy>
2 <sp:>SymmetricBinding>
3 <wsp:Policy>
4 <sp:ProtectionToken>
5 <wsp:Policy>
6 <sp:Kerberos.../>
7 <wsp:Policy>
8 <sp:>WSSKerberosV5ApReqToken11/>
9 <wsp:Policy>
10 </sp:Kerberos>
11 </wsp:Policy>
12 </sp:ProtectionToken>
13 <sp:>SignBeforeEncrypting/>
14 <sp:>EncryptSignature/>
15 </wsp:Policy>
16 </sp:>SymmetricBinding>
17 <sp:>SignedElements...>
18 <sp:XPath>processLoanRequest/taxFileNumber</sp:XPath>
19 </sp:>SignedElements>
20</sp:Policy>

Fig. 7. WS-SecurityPolicy fragment for integrity[LoanApplicantTaxFileNumber].

4.3 An Example Assertion Generation

Figure 7 shows the generated WS-SecurityPolicy fragment for the quality objective
integrity[LoanApplicantTaxFileNumber] in the business policy BP2. This quality ob-
jective can be realized using the security function sign to sign the Web Services mes-
sage parts related to LoanApplicantTaxFileNumber. sign is mapped to the WS-
SecurityPolicy protection assertion signedElements (Line 17). We use the entity
mapping information as in the example introduced in Section 3.2 to map the mes-
sage part taxFileNumber of the message processLoanRequest to the business con-
cept LoanApplicantTaxFileNumber (Line 18). We assume that SymmetricBinding
is used (Line 2, 16) and that the preferred binding properties are as follows:

{protectionToken = KerberosV5ApReqToken11 (line 4-12),
ProtectionOrder = SignBeforeEncrypting (line 13),
EncryptSignature = True (line 14)}

meaning that a KerberosV5ApReqToken11 is used as the protection token, the digital
signature to be computed over plain text (before the message content is encrypted), and
that the signature itself should also be signed, respectively.

5 Prototype Tool

We have implemented a supporting prototype for the HOPE framework. The prototype
assumes the existence of domain quality models and application entity models. The tool

Fig. 8. Screenshot of the HOPE prototype.

also needs the WSDL descriptions of Web Services and service compositions of a given
application. As illustrated in Figure 8, the prototype allows users to specify and manage
business policies, and have them refined into WS-Policy statements. For policy editing,
the tool presents the application entities and the qualities for each of the three domains
(security, manageability, and reliability) in tabular format with one dimension being the
set of qualities available in a domain and the other dimension being the list of entities
in the application entity model (as seen in the top right corner of Figure 8). A user ticks
a checkbox corresponding to a (entity, quality) pair to apply quality to entity to form a
quality objective. The application entity model is also visualized (bottom left corner).

If a user applies a quality to an entity, the quality is also automatically applied to
all specializations of this entity. Qualities that cannot be realized by the Web Services
quality model (i.e. not supported by WS-*, WS-*Policy) are not displayed for selection.
Invalid combinations, that is, qualities that are not applicable on some types of entities,
as discussed in Section 3.3, are also disabled from user selection.

If a user clicks “Apply”, the tool associates the formed quality objectives with the
natural language representation of the policy. It then refines the business policy into
a system-level policy by generating a set of WS-Policy statements that correspond to
these objectives. In the current implementation, the tool only supports refinement in the
security domain and assumes the Basic Security Profile 1.0 [14] to be applied. During
refinement, the tool automatically uses the first available branch in the binding tree
unless the tree is annotated with user’s preferences. In that case, the branch with the
highest priority is followed.

6 Related Work

Our work is related to a number of areas, including business rule specification and man-
agement, business rule refinement, and Service Level Agreement (SLA) specification
and management.

There has been a body work on the specification and management of SLA and
Service Level Objectives that focuses on ensuring the delivery of quality services to
clients. Keller and Ludwig [18] proposed the Web Service Level Agreement (WSLA)
standard to allow the specification of service level agreements and objectives for Web
Services. SLANG [19] is another effort of specifying end-to-end service level contracts
between a client and the service. Their work considers quality of service more from
a client point of view and thus focuses on the specification of rules to govern client-
service interactions. Our research investigates quality of services from an enterprise
system governance and management viewpoint of which the purpose is to have a de-
pendable/interoperable SOA ecosystem including the SOA services and service clients
and also all the applications built on top of the services themselves. As such, the types
of interactions we are concerned with are not limited to client-service interactions.

The objective of our work is more aligned with that of business rule specification
and management as we are concerned with services being compliant to high-level busi-
ness rules and regulations. In this field, several business rules specification languages
and frameworks have been proposed [20,21] and some rule engines have been built to
support the execution of business rules. However, the target business rules are more
concerned with business logic and functional logic (e.g., “if (FlightBookingActivity is
performed) then (Role type is airline)” [20]) while we focus on the non-functional qual-
ity properties related to the various entities.

In the area of policy-based specification and refinement, frameworks such as [22,23]
support platform-independent specification of non-functional requirements such as those
related to access control or configuration management in the form of policy statements.
However, these frameworks are mainly for resource management and cannot be easily
adapted for SOA systems as discussed in our previous work [24].

There have been a number of attempts to apply model-driven architecture (MDA)
techniques for the modeling and translation of SOA qualities into system-level realiza-
tion mechanisms [25,26]. In these approaches, quality properties of services and appli-
cations are modeled in platform-independent ways and then transformed into platform-
dependent code and configurations for middle-ware to realize these qualities. However,
the entities being modeled, even though being platform-independent, are still techni-
cal entities (i.e. they represent technical concepts such as filter, connector, service, or
proxy), not business-oriented entities. This not only limits the participation of business
analysts and IT compliance officers in the modeling process, but also makes it difficult
to align the models with the original business requirements.

7 Conclusions and Future Work

In this paper, we introduced the HOPE framework that, in a systematic manner, as-
sists practitioners in defining quality-oriented business policies and refining them into

system-level Web Service policies in order to realize quality requirements in the service-
based applications. Central to the framework are domain-specific quality models, each
of which codifies the quality attributes and their realization mechanisms in a given
domain. Based on these quality models and an application’s business entity model,
quality-oriented business policies applicable to the application can be stated as qual-
ity objectives. Again using the quality models, quality objectives can be refined into
Web Service policies as part of the application’s Web Service-based implementation.
This framework assists system developers in performing such tasks with a systematic
approach and associated models, techniques, and tool support.

In general, HOPE does not aim for fully automated policy refinement as decom-
posing a high-level business policy into a set of system-level policies requires complex
modeling and reasoning. HOPE’s approach is that human decision should be leveraged
when a policy statement in natural language needs to be interpreted and decomposed
into a set of quality objectives. On the other hand, automation is provided (as much
as possible) to refine these quality objectives into system-level statements, thereby ab-
stracting away the complexity of the system-level infrastructure.

We expect that the HOPE framework can be adapted or generalized to be used with
other policy frameworks/platforms in addition to WS-Policy. As part of future work, we
will further examine the relationships among business policies, system requirements,
system qualities, service/composition design, and system-level policies to improve the
system development process and a system’s adaptability and evolvability.

References

1. P. Sarbanes, “Sarbanes-Oxley Act of 2002,” The Public Company Accounting Reform and
Investor Protection Act. Washington DC: US Congress, 2002.

2. I. Basel, “Basel II: International Convergence of Capital Measurement and Capital Stan-
dards: a Revised Framework,” 2004.

3. L. O’Brien, P. Merson, and L. Bass, “Quality attributes for service-oriented architectures,”
in SDSOA ’07: Proceedings of the International Workshop on Systems Development in SOA
Environments, (Washington, DC, USA), p. 3, IEEE Computer Society, 2007.

4. S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo, C. Kaler,
D. Langworthy, A. Malhotra, et al., “Web Services Policy Framework (WS-Policy),” Version,
vol. 1, no. 2, pp. 2006–03, 2006.

5. America, “Bank secrecy act of 1970,” 1970.
6. Australia, “Privacy act 1988,” 1988.
7. A. Bücker, I. T. S. Organization, and I. B. M. Corporation, Understanding SOA Security

Design and Implementation. Books24x7.com, 2005.
8. A. Nadalin, C. Kaler, P. Hallam-Baker, R. Monzillo, et al., “Web Services Security: SOAP

Message Security 1.0 (WS-Security 2004),” OASIS Standard, vol. 200401, 2004.
9. A. Kim, J. Luo, and M. Kang, “Security ontology for annotating resources,” in On the

Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, pp. 1483–1499,
Springer, 2005.

10. I. JTC, “SC27/WG3. Common Criteria for Information Technology Security Evaluation,”
1998.

11. K. M. Khan and J. Han, “Assessing Security Properties of Software Components: A Soft-
ware Engineer’s Perspective,” in Proceedings of the 17th Australian Software Engineering

Conference (ASWEC 2006) (J. Han and M. Staples, eds.), (Sydney, Australia), pp. 199–208,
IEEE Computer Society Press, Apr. 2006.

12. J. Meier, A. Mackman, M. Dunner, and S. Vasireddy, “Building Secure ASP .NET Applica-
tions: Authentication, Authorization, and Secure Communication,” Microsoft Patterns and
Practices. Microsoft Corporation, pp. 354–362, 2002.

13. C. Steel, R. Nagappan, and R. Lai, Core Security Patterns. Prentice Hall, 2006.
14. M. McIntosh, M. Gudgin, K. Morrison, and A. Barbir, “Basic Security Profile Version 1.0,”

WS-I Standard, vol. 30, 2007.
15. C. Kaler, A. Nadalin, et al., “Web Services Security Policy Language (WS-SecurityPolicy),”

2005.
16. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, and K. Verma, “Web

Service Semantics-WSDL-S,” 2005. W3C Member Submission.
17. S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo,

C. Kaler, A. Malhotra, H. Maruyama, et al., “Web Services Policy Attachment (WS-
PolicyAttachment),” Apr. 2006. W3C Member Submission.

18. A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services,” Journal of Network and Systems Management, vol. 11, no. 1,
pp. 57–81, 2003.

19. D. Lamanna, J. Skene, and W. Emmerich, “SLAng: A Language for Defining Service Level
Agreements,” Proc. of the 9th IEEE Workshop on Future Trends in Distributed Computing
Systems-FTDCS, pp. 100–106, 2003.

20. B. Orriens, J. Yang, and M. P. Papazoglou, “A Framework for Business Rule Driven Web
Service Composition,” in Conceptual Modeling for Novel Application Domains, LNCS 2814,
pp. 52–64, Springer, 2003.

21. I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, “SWRL: A
Semantic Web Rule Language Combining OWL and RuleML,” 2004. W3C Member Sub-
mission.

22. N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy Specification Lan-
guage,” in Proceedings of the International Workshop on Policies for Distributed Systems
and Networks (POLICY ’01), (London, UK), pp. 18–38, Springer, 2001.

23. A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson,
S. Kulkarni, and J. Lott, “Kaos policy and domain services: toward a description-logic ap-
proach to policy representation, deconfliction, and enforcement,” in Proceedings of 4th Inter-
national Workshop on Policies for Distributed Systems and Networks (POLICY ’03), pp. 93–
96, June 2003.

24. T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and T. Rogers, “A Survey of Policy-Based Man-
agement Approaches for Service Oriented Systems,” in Proceedings of the 19th Australian
Software Engineering Conference (ASWEC 2008) (F. K. Hussain and E. Chang, eds.), (Perth,
Australia), pp. 392–401, IEEE Computer Society Press, Mar. 2008.

25. H. Wada, J. Suzuki, and K. Oba, “A Model-Driven Development Framework for Non-
Functional Aspects in Service Oriented Architecture,” International Journal of Web Services
Research, vol. 5, no. 4, pp. 1–31, 2008.

26. Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono, “Model-Driven Security based on a
Web Services Security Architecture,” Proceedings of International Conference on Services
Computing, pp. 7–15, July 2005.

