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Abstract

Exact solutions of the nonlinear shallow water wave equations for

forced flow involving linear bottom friction in a region with quadratic

bathymetry have been found. These solutions also involve moving

shorelines. The motion decays over time. In the solution of the three

simultaneous nonlinear partial differential shallow water wave equa-

tions it is assumed that the velocity is a function of time only and

along one axis. This assumption reduces the three simultaneous non-

linear partial differential equations to two simultaneous linear ordinary

differential equations. The analytical model has been tested against

a numerical solution with good agreement between the numerical and

analytical solutions. The analytical model is useful for testing the

accuracy of a moving boundary shallow water numerical model.
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1 Introduction

Exact solutions of the nonlinear shallow water wave equations were found
by Thacker [13] for unforced frictionless flow involving the Coriolis force in
parabolic canals. The solutions involve moving shorelines. The motion is
oscillatory and continues indefinitely over time. Sachdev, Paliannapan and
Sarathy [9] built on Thacker’s work.

Carrier and Greenspan [2] obtained moving boundary analytical solutions
of the one dimensional nonlinear shallow water wave equations for motion
caused by periodic forcing in a frictionless fluid above a bed of constant slope.
Johns [4] expressed these results in a simpler form.

The work in this article builds on the work of Thacker [13] for unforced
flow in a parabolic canal; Thacker’s solutions were discussed in detail by
Sampson, Easton and Singh [11]. There have been no other analytical so-
lutions of the nonlinear shallow water wave equations as a consequence of
the work of Thacker [13] apart from three previous articles by Sampson et
al. [10, 11, 12] and the article by Sachdev, Paliannapan and Sarathy [9].
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Balzano [1], Holdahl, Holden and Lie [3], Lewis and Adams [6], Peterson et
al. [8] and Yoon and Cho [15] compared numerical solutions of the nonlin-
ear shallow water wave equations with some of the analytical solutions by
Thacker [13].

Exact solutions of the nonlinear shallow water wave equations for forced
flow involving linear bottom friction and without the Coriolis force in a region
with quadratic bathymetry are found. These solutions also involve moving
shorelines. The motion decays over time. The exact solutions developed here
are a modification of the solutions given by Sampson et al. [11].

The analytical model has been tested against a numerical solution with
good agreement between the numerical and analytical solutions. The nu-
merical model is adapted from the slm (Selective Lumped Mass) numerical
model of Kawahara, Hirano and Tsubota [5]. The wetting and drying scheme
used is different to that in the slm model. The slm model is finite element in
space, using fixed triangular elements, finite difference in time and is explicit.

2 Model equations

We consider the case where the motion of shallow water in a basin is governed
by the equations [14]

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ τU + g

∂ζ

∂x
= 0 , (1)

∂V

∂t
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∂ζ

∂t
+
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∂x
+

∂(h + ζ)V

∂y
= 0 , (3)

where ζ(x, y, t) is the height of the water surface above mean water level,
z = −h(x, y) is the bottom surface, U(x, y, t) is the depth averaged velocity
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component of the water current to the East, V (x, y, t) is the depth averaged
velocity component of the water current to the North, g is the acceleration
due to gravity, τ is the bottom friction parameter and t is the time. The
bottom friction parameter, τ , is considered to be constant, which implies that
the bottom friction force varies linearly with velocity. In tidal modelling
the bottom friction parameter is usually taken to be proportional to the
magnitude of the velocity but occasionally it is accurate to consider it a
constant [7]. Equations (1) and (2) are equations of the form force equals
mass times acceleration, where the force terms are friction and hydrostatic
pressure, while (3) is a statement of mass conservation.

Equations (1), (2) and (3) differ from Thacker’s in that whereas Thacker’s
equations included Coriolis force terms but did not include friction terms,
equations (1), (2) and (3) do not include Coriolis force terms, but do include
friction terms. Thacker [13] assumed that U and V were functions of t only.

Here we assume that

U = u0(t) , (4)

V = 0 , (5)

Then equations (1) and (2 ) together with equations (4) and (5) imply that

ζ(x, y, t) = ζ0(t) + xζ1(t) , (6)

where (1) and (4) imply that

ζ1(t) = −
1

g

[

du0(t)

dt
+ τu0(t)

]

. (7)

Equation (16) determines ζ0(t). Equation (6) implies that at any time t the
water surface is a plane.

Section 3 considers flow in a region with quadratic bathymetry. The
discussion is similar to that by Thacker [13], but because the shallow water
equations (1) and (2) used in this article have a slightly different form to
Thacker’s and we made slightly different assumptions about the velocity’s
functional form the discussion leads to different conclusions.
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3 Flow in a region with quadratic

bathymetry

Assume that

h = h0

(

1 −
x2

a2

)

, x ≥ 0 . (8)

with h0 and a constant, so that flow takes place in a region with quadratic
bathymetry.

As was shown by Sampson et al. [11], substituting (4), (5), (6), and (8)
in (3) and making use of (7) gives

d2u0 (t)

dt2
+ τ

du0 (t)

dt
+

2gh0u0 (t)

a2
= 0 , (9)

and
dζ0 (t)

dt
−

1

g
u0(t)

du0

dt
−

τ

g
u0(t)

2 = 0 . (10)

Equation (9) has to be solved for u0(t). As equation (9) is a second order
differential equations, it requires two boundary conditions. The solution
of (9) is substituted in (10), which is first order and hence needs one boundary
condition to be solved uniquely for ζ0(t).

The auxiliary equation for (9) is

λ2 + τλ +
2gh0

a2
= 0 . (11)

The roots of (11) are

λ =
−τ ±

√

τ 2 − p2

2
. (12)

where we define

p =

√

8gh0

a2
. (13)
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Hence, the three possible solutions of (11) are for when τ < p , τ > p , and
τ = p . The solutions of (6), (7), (9) and (10) for τ < p only are discussed in
equations (14)–(18).

If τ < p , then the general solution of (9) is

u0(t) = Ae−τt/2 cos st + Be−τt/2 sin st (14)

where A and B are constants and where

s =

√

p2 − τ 2

2
. (15)

Equation (14) implies that u0(t) → 0 as t → ∞ .

Substituting (14) in (10) and integrating with respect to t gives

ζ0(t) =
a2e−τt

8g2h0

{[

(B2 − A2)s + τAB

2

]

(−τ sin 2st − 2s cos 2st)

}

+
a2e−τt

8g2h0

[

ABs +
τ(A2 − B2)

4

]

(−τ cos 2st + 2s sin 2st)

−
(A2 + B2)e−τt

4g
, (16)

with the constant of integration being zero because of the assumption that
ζ0(t) → 0 as t → ∞ . Substituting (14) in (7) gives

ζ1(t) = −
e−τt/2

g

[

(−As sin st + Bs cos st) +
(τ

2

)

(A cos st + B sin st)
]

.

(17)
Substituting (16) and (17) into (6) gives

ζ(x, t) =
a2e−τt

8g2h0

{[

(B2 − A2)s + τAB

2

]

(−τ sin 2st − 2s cos 2st)

}

+
a2e−τt

8g2h0

[

ABs +
τ(A2 − B2)

4

]

(−τ cos 2st + 2s sin 2st)
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−
e−τt/2

g

[

(−As sin st + Bs cos st) +
(τ

2

)

(A cos st + B sin st)
]

x

−
(A2 + B2)e−τt

4g
. (18)

Here we assume that the flow is subject to a forcing at x = 0 :

ζ(0, t) =
a2B2e−τt

8g2h0

[

−sτ sin 2st +

(

τ 2

4
− s2

)

cos 2st

]

−
B2e−τt

4g
. (19)

where B is a constant.

The forcing at x = 0 , as specified in (19), will be satisfied, as can be seen
from (18), if A = 0 and B 6= 0 , and then it follows from (14) and (18) that

u0(t) = Be−τt/2 sin st , (20)

and

ζ(x, t) =
a2B2e−τt

8g2h0

[

−sτ sin 2st +

(

τ 2

4
− s2

)

cos 2st

]

−
B2e−τt

4g

−
e−τt/2

g

(

Bs cos st +
τB

2
sin st

)

x . (21)

At the shoreline, the total depth

h + ζ = 0 . (22)

Substituting (8) and (21) in (22) gives

x =
a2e−τt/2

2h0g

(

−Bs cos st −
τB

2
sin st

)

+ a . (23)

Hence, the projection of the moving shoreline on the xy plane is a straight
line.
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The water moves backwards and forwards across the region of flow with
motion dying out as t → ∞ . As t → ∞ the shoreline approaches

x = a (24)

the shoreline for an undisturbed surface, and ζ → 0 , so that the motion will
eventually die out.

4 The analytical solution versus the

numerical solution

The analytical model has been tested against a numerical solution with good
agreement between the numerical and analytical solutions. As the shoreline
moves over time, in the numerical solution there will be some nodes that are
wet part of the time and dry part of the time. The numerical model is adapted
from the slm (Selective Lumped Mass) numerical model of Kawahara et
al. [5]. The wetting and drying scheme used, discussed in detail by Sampson
et al. [12], is different to that in the slm model. The slm model is finite
element in space, using fixed triangular elements, finite difference in time
and is explicit.

For the numerical model the values chosen were h0 = 10m, a = 3000m,
τ = 0.001 s−1 and B = 2ms−1 with the initial values of ζ and U set to
those of the analytical model. The period of the trigonometric terms in
the motion, T , is 1353 s. The initial velocity is 0ms−1. At the open water
boundary, at x = 0 , the water level was specified as the same function of
time as in the analytical model. The calculation, using a program written in
Visual C++, was done over eight periods (10827 s).

A triangular mesh was used, covering a rectangular region of width 4320m
in the x direction and height 240 m in the y direction. Each triangle in the
mesh is an isosceles right angled triangle. The mesh contains 4913 nodes
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and 9216 elements. In the calculations, the time step δt had to be set to less
than or equal to 0.195 s for convergence. The values of water elevation, ζ,
and the shoreline discussed below are for nodes sitting on a line parallel to
the base of the rectangular region and half way between the base and top of
the region.

A plot of the numerical and analytical x-coordinates of the shoreline as
a function of time over one period, T , is shown in Figure 1. The analytical
solution is shown in each diagram as a continuous curve while the numer-
ical solution is a number of points; these points are so close together that
they appear to be a number of straight lines parallel to the time axis. As
the distance between successive nodes is 15m, the distance between succes-
sive apparent straight lines is 15m, which means that numerically when the
shoreline moves it moves 15m in one time step. There is good agreement
between the analytical and numerical values.

A graphical comparison of the numerical and analytical values for the
water level, ζ, against x at time t = T/2 is shown respectively in Figures 2.
The values are close.

5 Conclusions

Exact solutions of the one dimensional nonlinear shallow water wave equa-
tions in the case of forced flow involving bottom friction and without the
Coriolis force in a region with quadratic bathymetry have been found. These
solutions also involve moving shorelines. The motion decays over time as
expected in a motion involving friction and an input force that decays over
time. In contrast, Thacker found exact solutions of the two dimensional non-
linear shallow water wave equations in the case of unforced frictionless flow
involving the Coriolis force in a parabolic canal. These solutions also involve
moving shorelines. The motion is oscillatory and continues indefinitely over
time as expected for motion involving no friction.
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Figure 1: A plot of the numerical and analytical values of the x-coordinate
of the shoreline as a function of time over one period. The analytical solution
is a continuous curve while the numerical solution is a number of points.
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Figure 2: A comparison of the numerical and analytical values of the water
surface at time t = T/2 . The analytical solution is a continuous line whereas
the numerical solution is a series of dots; the results for every fourth node
are shown.
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The solutions found are useful for testing numerical solutions of the non-
linear shallow water wave equations which include bottom friction and whose
flow involves moving shorelines. The analytical model has been tested against
a numerical solution with good agreement between the numerical and ana-
lytical solutions.

References

[1] Balzano, A., Evaluation of methods for numerical simulation of wetting
and drying in shallow water flow models, Coastal Engineering, 34,
1998, 83–107. C668

[2] Carrier, G. F. and Greenspan, H. P., Water waves of finite amplitudes
on a sloping beach, Journal of Fluid Mechanics, 4, 1958, 97–109. C667

[3] Holdahl, R., Holden, H., and Lie,K-A., Unconditionally Stable Splitting
Methods For the Shallow Water Equations, BIT, 39, 1998, 451–472.
C668

[4] Johns, B., Numerical integration of the shallow water equations over a
sloping shelf, International Journal for Numerical Methods in Fluids, 2,
1982, 253–261. C667

[5] Kawahara, M., Hirano, H., and Tsubota, K., Selective lumping finite
element method for shallow water flow, International Journal for

Numerical Methods in Fluids, 2, 1982, 89–112. C668, C673

[6] Lewis, C. H. III and Adams, W. M., Development of a tsunami-flooding
model having versatile formation of moving boundary conditions, The

Tsunami Society Monograph Series, 1983, No. 1, 128 pp. C668

[7] Parker, B. B., Frictional Effects on the Tidal Dynamics of a Shallow

Estuary, PhD thesis, The John Hopkins University, 1984. C669



References C678

[8] Peterson P., Hauser J., Thacker W. C., Eppel D., An Error-Minimizing
Algorithm for the Non-Linear Shallow-Water Wave Equations with
Moving Boundaries. In Numerical Methods for Non-Linear Problems,
editors C. Taylor, E. Hinton, D. R. J. Owen and E. Onate, 2, Pineridge
Press, 1984, 826–836, http://www.cle.de/hpcc/publications/ C668

[9] Sachdev, P. L., Paliannapan, D. and Sarathy, R., Regular and chaotic
flows in paraboloidal basins and eddies, Chaos, Solitons and Fractals, 7,
1996, 383–408 . C667

[10] Sampson, J., Easton, A., and Singh, M., Moving Boundary Shallow
Water Flow in Circular Paraboloidal Basins. Proceedings of the Sixth

Engineering Mathematics and Applications Conference, 5th

International Congress on Industrial and Applied Mathematics, at the

University of Technology, Sydney, Australia, editors R. L. May and
W. F. Blyth, 2003, 223–227. C667

[11] Sampson, J., Easton, A., and Singh, M., Moving boundary shallow
water flow in parabolic bottom topography, Australian and New

Zealand Industrial and Applied Mathematics Journal, 47
(EMAC2005), C373–C387, 2006,
http://anziamj.austms.org.au/V47EMAC2005/Sampson C667, C668,
C670

[12] Sampson, Joe, Easton, Alan and Singh, Manmohan, A New Moving
Boundary Shallow Water Wave Numerical Model, Australian and New

Zealand Industrial and Applied Mathematics Journal,48 (CTAC2006),
C605–C617, 2007, http://anziamj.austms.org.au/ojs/index.php/
ANZIAMJ/article/view/78 C667, C673

[13] Thacker, W. C., Some exact solutions to the nonlinear shallow-water
wave equations, J. Fluid. Mech., 107, 1981, 499–508. C667, C668, C669

[14] Vreugdenhil, C. B., Numerical Methods for Shallow-Water Flow,
Kluwer Academic Publishers, 1998. C668

http://www.cle.de/hpcc/publications/
http://anziamj.austms.org.au/V47EMAC2005/Sampson
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/78
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/78


References C679

[15] Yoon S. B., and Cho J. H., Numerical simulation of Coastal
Inundation over Discontinuous Topography, Water Engineering

Research, 2(2), 2001, 75–87 C668



References C680

Author addresses

1. Joe Sampson, Mathematics Discipline, Faculty of Engineering and
Industrial Sciences, Swinburne University of Technology, Melbourne,
Australia.
mailto:jsampson@swin.edu.au

2. Alan Easton, Mathematics, Statistics and Computer Science
Discipline, School of Natural and Physical Sciences,University of
Papua New Guinea, Port Moresby, Papua New Guinea; and
Mathematics Discipline, Faculty of Engineering and Industrial
Sciences, Swinburne University of Technology, Melbourne,
Australia.
mailto:alan.easton@upng.ac.pg

3. Manmohan Singh, Mathematics Discipline, Faculty of Engineering
and Industrial Sciences, Swinburne University of Technology,
Melbourne, Australia.
mailto:msingh@swin.edu.au

mailto:jsampson@swin.edu.au
mailto:alan.easton@upng.ac.pg
mailto:msingh@swin.edu.au

	Introduction
	Model equations
	Flow in a region with quadratic bathymetry
	The analytical solution versus the numerical solution
	Conclusions
	References

