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Abstract— There are many difficult challenges ahead in the 
design of an energy-efficient communication stack for wireless 
sensor networks. Due to the severe nodes' constraints, protocols 
have to be simple yet scalable. To this end, collective social insects 
behavior could be adopted to guide the design of these protocols. 
We exploit the simple behaviors of ant swarms in foraging and 
brood sorting to design a hierarchical and scalable data 
dissemination strategy. In order to allow a realistic evaluation, a 
comprehensive simulator involving critical components of the 
communication stack is incorporated. The proposed scheme 
promotes a uniform distribution of clusterheads, which 
subsequently enables substantial energy savings over other 
clustering algorithms. 

Keywords-clustering; data dissemination; energy efficient; 
swarm intelligence. 

I. INTRODUCTION 
Wireless sensor technology is garnering a lot of interests 

due to its promises, enabling it to evolve rather rapidly. For 
instance, in terms of the sensor node hardware, the Mica2 mote 
has roughly eight times the memory and communication 
bandwidth as its predecessor, the Rene mote, developed in 
1999 for the same power budget [1]. These sensor nodes have 
found use in many applications such as earthquake monitoring, 
target tracking and surveillance, and structural monitoring. The 
nodes are typically less mobile due to their unique application 
needs, substantially more resource constrained and more 
densely deployed than mobile ad hoc networks (MANETs). 
Even though, there have been significant advances in recent 
years, more energy-efficient solutions are required within the 
communication stack for the conservation of the battery power. 
An approach that is likely to succeed is the use of a hierarchical 
structure [2], which also promotes scalability of wireless sensor 
networks (WSNs). 

 Clustering with data aggregation is an important 
technique in this direction, and it makes the tradeoff between 
energy efficiency and data resolution. Most clustering 
algorithms aim at generating the minimum number of clusters 
and transmission distance. These algorithms also distinguish 
themselves by how the clusterheads (CHs) are elected. The 
LEACH algorithm [3] and its related extension [4] use 
probabilistic self-election, where each sensor node has a 

probability p of becoming a CH in each round. In [4], the 
authors proposed the time-controlled clustering algorithm 
(TCCA) that allows the formation of multihop clusters 
dynamically. By considering both intra- and inter-cluster 
traffic, it was demonstrated that for TCCA’s optimal operation, 
small multihop clusters of two or three hops seem to be the 
most appropriate size.  

 Another crucial design issue to consider is the 
network reliability. To this end, social insect swarm behavior 
may provide an ideal model for the design of such less 
controllable systems. To our knowledge, very few researchers 
have considered or adopted such nature-inspired approaches for 
WSN design. However, a number of recent works has been 
based on different swarm behaviors in the design of routing 
protocols for MANETs. As there are many important 
similarities between these two ad hoc technologies, we believe 
building on these knowledge may be useful for WSNs. 

 Most of these swarm-based routing algorithms are 
simple yet robust as well as adaptive to topological changes. 
However, such algorithms cannot establish the best paths 
before sufficient number of agents is flooded [5]. This implies 
that as the number of nodes in the network increases, the 
number of agents required to establish the routing infrastructure 
may explode. A way to overcome the overhead explosion and 
attain scalability is by using hierarchical routing approach. In a 
pioneering work [6], the authors had used swarm intelligence to 
implement a distributed network of mobile sensors and 
controlled the nodes physical movements. It was demonstrated 
that the swarm behavior could be used to ensure safe 
separation between the agents to ensure coverage efficiency 
while enforcing a level of cohesion that maintains a level of 
connectivity between the mobile agents.  

 In this paper, we propose a new clustered data 
dissemination strategy based on the ant swarm behavior. This 
scheme is realized based on our initial clustering algorithm 
proposal, TCCA [4]. Unlike TCCA, an ant swarm dynamically 
controls the CH election process instead. This new algorithm 
incorporating the TCCA clustering with this ANT election 
scheme is termed as the T-ANT algorithm. T-ANT achieves 
better performance than that of a flat dissemination strategy, 
LEACH and plain TCCA. The algorithm achieves the 
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objectives by exploiting two swarm behaviors, namely foraging 
and brood sorting. 

II. RELATED WORK 
The approach that is likely to succeed to provide a scalable 

and energy-efficient solution is of a hierarchical structure. 
Initially, the clustering algorithms focused on the connectivity 
problem [7] but later energy-efficiency was more of interest [3, 
4, 8]. However, almost all focuses on reducing the number of 
clusters formed, which may not necessarily entail minimum 
energy dissipation. Generally, clustering algorithms segment a 
network into non-overlapping clusters comprising a CH each. 
Non-CHs transmit sensed data to CHs, where the sensed data 
could be aggregated and transmitted to the sink.  

LEACH [3] requires position knowledge to perform a 
precise transceiver power control, and self-elects CHs using a 
nominated probability p. The algorithm ensures that every node 
will be nominated as a CH only once in 1/p rounds for a certain 
fixed duration. However, it assumes that all nodes are in each 
other’s radio range. In [9], a fixed clustering algorithm that 
performs energy-balancing to improve network lifetime was 
proposed. It also takes into consideration the interaction 
between clustering and routing.  

Another crucial design aspect of WSNs to consider is the 
network reliability and fault-tolerance. It has been 
demonstrated in different context that the collective behavior of 
social insects has many attractive features, not the least 
robustness and reliability. However, only very limited WSN 
proposals have been inspired by nature or biologically.  

In social insects, sophisticated community behavior 
emerges from the interaction of individuals where each insect 
carries out simple tasks. Some known collective behaviors are 
foraging, nest construction, thermoregulation, brood sorting 
and cemetery formation [10]. When ants die, they are removed 
from the nest by workers and deposited in piles outside the 
nest. The cause to this action appears to be an attraction 
between dead bodies, but remains to be confirmed. These 
collective behaviors of social insects have inspired computer 
scientists to replicate them as they exhibits many attractive 
features, such as robustness and reliability through redundancy 
[5, 10]. 

The first MANET routing algorithm based on ant colony 
principles is ARA [11]. It exploited the ant pheromone laying 
behavior. Pheromone is a quality metric indicating the 
goodness of a path. Although pheromone evaporates over time, 
subsequent ants leave additional pheromone and thus reinforce 
the path. Ants gradually establish the shortest path between 
food and their nest in a fully distributed and autonomous 
manner. The fact of the gradual decay of pheromone introduces 
a form of a negative feedback to prevent old routes from 
remaining in the forwarding tables when routes fall out of favor 
with ants. Routing schemes based on such colony behavior is 
both robust and adaptable. When the shortest route is lost due 
to some event, the longer routes provide alternative options. 

There are three basic controlling behaviors that govern 
movements of agents within the swarm. Kadrovach and 
Lamont [6] have summarized these behaviors as shown: 

• Separation: Avoid collisions with nearby agents. 

• Alignment: Attempt to match velocity with nearby 
agents. 

• Cohesion: Attempt to stay close to nearby agents. 

Swarm behavior is solely based on locally observable 
phenomena, and is reflected above by the adjective nearby. The 
integration of these behaviors results in a stable swarm 
formation, where every agent is at least some minimum 
distance from others. We capitalize on the first two behaviors 
through pheromone control to achieve a near uniform 
distribution of the CHs nodes. Moreover, the algorithm 
converges faster to an optimal or near optimal solution when 
pheromone is also reduced drastically from those elements that 
make up the worst solution in each iteration. Thus, subsequent 
generations of ants are discouraged from returning to poorer 
solutions seen in the past. This constitutes the simplest way to 
implement anti-pheromone where the removal of pheromone is 
simulated by a reduction in existing pheromone levels. 

III. THE T-ANT CLUSTERING ALGORITHM 
T-ANT adopts two-phase clustering process involving the 

cluster setup and steady state phases. To guide the CH election, 
we chose to use a swarm of ants. Through the use of a swarm 
of ants, we would guarantee that the network always maintains 
an optimal number of clusters. 

During the node initialization, the sink releases a number of 
ants (i.e. control messages). Ramos and Merelo [12] suggest 
that the ratio of the number of ants to the number of objects 
(i.e. sensor nodes) should equal 0.1. When the sink releases an 
ant, it chooses one of its neighbors at random. The ant could 
travel into the network as deep as restricted by its time-to-live 
(TTL) field. When an ant arrives at a node, the next node is 
randomly chosen (excluding the sender) for its subsequent stop 
if TTL has not expired. If TTL expires, the ant remains at this 
node. However, if the final ant location overlaps with another 
ant, the former ant must find another location.  

The cluster setup (CS) phase is controlled through a CS 
timer. When this timer expires, a node checks to see whether it 
possesses an ant. If the node has an ant, it becomes a CH. 
When a node becomes a CH, it advertises to its neighbors by 
broadcasting an ADV message with its node id and a TTL field 
to constrain the ADV propagation. Upon receiving an ADV 
message, a regular node records the CH id, the sender’s id as its 
parent, the hop distance to this CH, the number of ADV 
messages received so far and total hop distance to all seen CHs, 
and then rebroadcasts it if TTL permits. A node decides to join 
a cluster when its join-timer expires. It then computes its 
pheromone level based on its total hop distance (h) to CHs, the 
number of CHs (n) in its neighborhood, and its normalized 
residual energy. The pheromone expression is based on the 
forwarding probability formula used in the ant routing 
algorithm [5], but expanded as: 
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where p∆  is given by: 
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*h  is the node’s hop distance to the selected CH, Eresi is the 
residual energy, Emax is the reference maximum battery energy 
and k is the learning rate of the algorithm ( = 0.1). This 
expression ensures that p∆  is higher when the node is only 
reachable by fewer CH nodes (smaller n), far from CHs (∑ ih ), 
has higher residual energy (Eresi) or is nearer to its selected CH 
( *h ). A regular node chooses the best cluster to join based on 
its hop distance to the CH, which would ensure minimal energy 
dissipation during the data dissemination rounds. The node 
joins a cluster by sending a JOIN message with its id, the 
selected CH id and its pheromone level. If the CH is in range, 
the message is transmitted directly; otherwise forwarded 
through its parent to the CH. When a CH receives JOIN 
messages, it finds the member with the highest pheromone 
level to attract its ant for the next round.  

Before the next CS timer expires, the ants wander to the 
nodes with the highest pheromone level among their neighbors, 
and these nodes will be the future CH. Before an ant leaves its 
current node, an amount of anti-pheromone is laid to mimic a 
rapid decay of pheromone level. The pheromone removal is 
computed with the anti-pheromone rate (β).  

The given pheromone expression guides the evolution of 
the swarm to achieve the separation behavior between ants in 
the swarm as discussed earlier. It is found empirically that 
separation is attained rather quickly within 3-5 rounds as an 
optimal swarm size is used. Another useful swarm behavior is 
alignment. In our context, the area served by each ant 
represents the alignment behavior. It is reflected by the number 
of members in a cluster. When the swarm evolves to achieve 
separation, alignment is also achieved as a side-benefit. The 
phenomena due to both behaviors are captured by the following 
fitness functions, respectively. The CH election fitness function 
S to capture the separation behavior is: 
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where nc is the number of CH nodes, ni is the number of ADVs 
seen by CH i and hij is CH i’s hop distance to CH j. The 
clustering fitness function A to represent the alignment 
behavior is as follows: 

 ∑
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where nr is the number of regular nodes and hi is node i’s hop 
distance to its CH. 

In the steady state phase, each regular node sends or 
forwards its sensory data to its CH. It is possible that the 
foraging ants may die due to the environmental uncertainty or 
node failure. To avoid a reducing number of ants in the 
network over time, ants have a finite lifetime. When ants die, 
the sink re-releases the same optimal number of ants to restart 
the process. 

IV. RESULTS AND DISCUSSIONS 
We investigate T-ANT performance against LEACH, plain 

TCCA and a flat strategy. Since LEACH can’t be applied 
directly to a multihop network, we modified this algorithm to 
use a routing protocol to forward messages whenever the 
destination is not within the radio range. We termed this 
modified algorithm as multihop-LEACH (or m-LEACH).  

For these simulation experiments, we assumed that there 
are 100 sensor nodes distributed randomly in a square M×M 
region with M = 500 m. The transceiver energy parameters are 
set as: Eelec = 50 nJ/bit and εfs = 10 pJ/bit/m2. The energy for 
data aggregation is set to EDA = 5 nJ/bit per signal [3]. The 
control and data message sizes are fixed at 30 bytes, and 
sensory data is generated at 2-second interval. Each CH node 
retains its CH status for 20 seconds. The number of ants is 
fixed at 10 and the anti-pheromone rate is 0.1. 

The performance metrics being investigated are: Clustering 
fitness: It represents the goodness of the cluster formation 
involving all regular nodes; CH election fitness: It represents 
the goodness of all the elected CH nodes; Average energy per 
round: It represents the average energy usage by the nodes per 
round; and Network lifetime: It represents the period from the 
instant the network is deployed to the moment when the first 
sensor node runs out of energy. 

Figure 1 depicts the clustering fitness value at different 
simulation time. For T-ANT, the initial value is high indicating 
that the swarm has not yet achieved the alignment behavior as 
the ants are randomly released into the network. However, as 
pheromone is laid and anti-pheromone takes effect during CS 
phases, the swarm alignment improves. Within the third 
evolution, the swarm is able to align. As for the other schemes, 
the fitness value varies rather wildly. Unlike T-ANT, TCCA 
mostly operates in sub-optimal fashion. Also for m-LEACH, 
the fitness value is always smaller than the other schemes due 
to the ADV messages being limited to first-hop nodes. Any 
uncovered nodes would have to resort to direct transmission to 
the sink. Since m-LEACH and TCCA have probabilistic CH 
election, it is possible that the CHs may even be clumped. 
When the CHs are clumped, the disparity among clusters is 
large in terms of their number of members, as each CH 
contends for the same regular nodes pool.  

134

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on February 19,2010 at 22:33:36 EST from IEEE Xplore.  Restrictions apply. 



0

50

100

150

200

250

0 100 200 300 400 500

Time (sec)

C
lu

st
er

in
g 

Fi
tn

es
s

T-ANT

TCCA

m-LEACH

 

Figure 1.  Clustering fitness at different simulation time for T-ANT, m-
LEACH and TCCA.  

In Fig. 2, the CH election fitness is depicted for the same 
three algorithms. Again, consistent behavior as above is 
obtained. For T-ANT, it has a higher function value initially, 
but it quickly converged somewhat. The ants move to a better 
node based on the calculated pheromone level, and within five 
rounds, the swarm is able to achieve the separation behavior. 
This behavior ensures the elected CHs are distributed as 
uniformly as possible. Even after the uniformity is achieved, 
the ants keep moving at each round to ensure that the CH role 
is shared among nodes, and energy-load balancing is attained. 
As for the other schemes, the topology barely settles and 
mostly has a lower value than T-ANT. A lower value indicates 
that the CHs in these schemes are mostly too close to each 
other. In m-LEACH, the fitness function quite often assumes a 
zero value compared to TCCA. This is mainly due to its 
restricted ADV propagation, where a CH is unable to recognize 
another CH located only two hops away. 
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Figure 2.  CH election fitness at different simulation time for T-ANT,  
m-LEACH and TCCA. 

The following results demonstrates how T-ANT promotes 
uniform CH distribution in the network compared to TCCA (or 
m-LEACH). Fig. 3 depicts the clustered topology formation at 
different CH rounds for cluster size of two. We chose to use 11 
ants. In the following figures, unfilled circles represent CHs, 
filled circles represent regular nodes, and the line segments link 
members to their CH or through their parent to CH. Unlinked 
regular nodes have to perform direct transmission to the sink. It 
is visually evident that when the sink randomly releases the 
ants, they could still be forced to neighboring nodes, which 
results in some regular nodes being uncovered, as shown in 
Fig. 3(a). However, as the swarm evolves, by round three the 
ants are able to achieve separation. At later evolutions, the ants 
are more uniformly distributed resulting in similar number 

members in each cluster. After reaching good separation, it is 
still possible for ants to be closer again at later rounds in order 
to promote load balancing. 

 
(a) 

 
(b) 

Figure 3.  Logical topology of T-ANT at round number: (a) 1 and (b) 3. 

Since cluster size was shown to have a significant impact 
on clustering algorithms [4], we varied ADV’s TTL value and 
compared T-ANT and TCCA. In Fig. 4, both algorithms 
exhibit the presence of an optimal cluster size, and this optimal 
size (i.e. two) is the same for both. However, T-ANT achieves 
significantly more energy savings than TCCA for cluster sizes 
up to four. When cluster size is two, T-ANT dissipates 27% 
lesser energy compared to TCCA. This observation is 
consistent with fitness values reported for both approaches in 
Figs. 1 and 2. Since TCCA mainly operates with sub-optimally 
formed topology, its energy dissipation is worse off. However, 
at larger cluster sizes, both schemes exhibit similar energy 
usage. This is mainly caused by the energy expended during 
the cluster setup phase that is significantly larger as ADV 
messages are flooded further, and the JOIN messages have to 
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be forwarded many hops before reaching their CHs. Similarly, 
during the steady state phase, significant intra-traffic is 
generated. Note that the performance of m-LEACH is the same 
as TCCA with cluster size one, and has significantly higher 
energy dissipation experience. 
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Figure 4.  Average energy usage per round against the cluster size of T-ANT 
and TCCA (and m-LEACH). 

In Fig. 5, the improvement gained through T-ANT is 
further exemplified by the network lifetime graph. For this 
investigation, we have fixed Emax at 0.1J as a reference level. It 
is evident that T-ANT exhibits the longest lifetime with all 
nodes remaining fully functional. It is found that T-ANT 
achieves almost 3.5 times the lifetime of m-LEACH and almost 
5 times of the flat approach. It also supports 50% longer 
lifetime than TCCA.  
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Figure 5.  Network lifetime against simulation time of T-ANT, TCCA,  
m-LEACH and the flat strategy. 

V. CONCLUSIONS 
To our knowledge, the T-ANT clustering algorithm is the 

first nature-inspired approach for data dissemination in a quasi-
stationary wireless sensor network. The algorithm uses a 
swarm of ants to control the clusterhead election in a totally 
distributed manner. It is evident that T-ANT is able to achieve 
two desirable swarm behaviors, namely separation and 
alignment. Due to these, a uniform distribution of clusterhead 
is almost guaranteed enabling the network to operate in an 
optimal manner throughout its lifetime. Even though it could 
also be achieved in a centralized approach as in LEACH-C [3], 
our algorithm is distributed, robust, does not require position 

knowledge and promises scalability. T-ANT also stores less 
than 10% of state overhead in memory compared to LEACH or 
TCCA. 
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