
The Automotive Deployment Problem: A Practical Application for
Constrained Multiobjective Evolutionary Optimisation

Irene Moser, Member, IEEE and Sanaz Mostaghim, Member, IEEE

Abstract— State-of-the art constrained multiobjective opti-
misation methods are often explored and demonstrated with
the help of function optimisation problems from these ac-
counts. It is sometimes hard for practitioners to extract good
approaches for practical problems. In this paper we apply
an evolutionary algorithm to a factual problem with realistic
constraints and compare the effects of different operators and
constraint handling methods. We observe that in spite of an
apparently very insular search space, we consistently obtain
the best results when using a repair mechanism, effectively
eliminating infeasible solutions. This runs contrary to some
recommendations in the optimisation literature which propose
penalty functions for search spaces where feasible solutions are
sparse.

I. INTRODUCTION

The vast majority of publications on multiobjective optimi-
sation using evolutionary algorithms (MOEA) illustrate their
findings with experiments on well-known functions from the
continuous domain. These functions are readily available and
provide the researcher with a set of optimal solutions that
form a pareto front whose shape and difficulty are known
to the field. Practitioners who would like to benefit from
the insights into optimiser properties are often faced with
the need to solve a discrete practical (‘real-world’) problem.
It is not always easy for such a practitioner to translate
the findings gained from trials on continuous functions into
methods that are well suited to practical problems.

One example of a non-trivial discrete optimisation problem
is the software deployment problem [1], [2], which seeks
solutions to the optimal deployment of control logic com-
ponents in vehicles designed by the automotive industry.
To benefit from the advantages of mass production, vehi-
cles of the same type or series are often fitted with the
same predesigned infrastructure of Electronic Control Units
(ECUs) and data buses. ECUs are comprised of a processing
unit (CPU) and a memory. The hardware infrastructure of a
contemporary car usually consists of approx. 50–80 ECUs,
each of which is connected to one of the 3–5 data buses.
Software components which control different aspects of
functionality of a vehicle can be assigned to many different
ECUs subject to memory requirements, processing power and
similar restrictions.

The software deployment problem is multi-faceted in the
sense that there are many different objective functions to

Irene Moser is with the Faculty of Information and Communication Tech-
nologies, Swinburne University of Technology, Hawthorn 3122, Australia
(phone: +61 3 9214 4745; email: imoser@swin.edu.au).

Sanaz Mostaghim is with the Karlsruhe Institute of Technology
(KIT), 76128 Karlsruhe, Germany (phone: +49 721 6086554; email:
sanaz.mostaghim@kit.edu).

optimise, some of which are partly correlated. Also, many
different constraint formulations exist. These arise from the
variations in the way different car manufacturers approach
the problem. It is possible, for example, to optimise the
hardware infrastructure in the same optimisation process.
However, the infrastructure is usually fixed over a period
of time. Vehicles typically retain their hardware layout until
a new series is launched. A similar problem to the software
deployment problem is known as redundancy allocation [3],
[4], [5], where the goal is to introduce redundant ECUs
fulfilling identical functions to increase the reliability of the
system.

In this paper, we optimise the software deployment prob-
lem as a biobjective formulation with the reliability of data
communications between components as one and the com-
munications overhead as a second objective. The problem
is highly constrained by the limitations of ECU choices
each component has, the memory constraints that have to
be observed when allocating components to the same ECUs,
as well as prescribed colocation (a component has to reside
on the same ECU) or precluded colocation (a component
must not reside on the same ECU as another). In this paper,
we apply some of the findings of long-term research into
multiobjective optimisation and constraint handling to this
discrete practical problem and compare their performance in
a realistic domain.

II. PROBLEM DESCRIPTION

The software deployment problem described here rep-
resents one aspect of the optimisation task of allocating
the software components which provide the control logic
for contemporary vehicles (e.g. ABS and airbag control
functions). This optimisation task is based on the fact that
due to the benefits of mass production, many types of cars are
fitted with the same hardware infrastructure. The necessary
software functionality is represented by a predefined set of
software components, which have to be deployed to the
ECUs. A solution to the software deployment problem is the
mapping of all available software components C to all or a
subset of all ECUs U di ={(c1, ui1), (c2, ui2), ..., (cn, uim)},
where i1 to in are integers in [1...m]. The set of all possible
solutions is D = {d | d : C → U}. More in-depth
description of the problem and its aspects is found in [6],
[3], [7].

A. Hardware Infrastructure

The ECUs are connected to different data buses and vary
in memory capacity, processing power and failure propensity.

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 4272

Some ECUs provide sensor access. The data buses are
characterised by different data rates and degrees of reliability.
The speed and reliability of communication between two
ECUs therefore depends on the data buses they are connected
to.

More formally, the hardware architecture is defined in the
following terms:
• The set of available ECUs U = {u1, u2, ..., um}, m ∈

N;
• ECU capacity, cp : U → N;
• ECU processing speed, ps : U → N;
• ECU failure rate, fr : U → R;
• data rate of the preferred bus, dr : U × U → N;
• network delay, nd : U × CU → R;
• reliability of the preferred bus, rel : U × U → R.

B. Software

The optimisation task is to allocate a number of predefined
software components to the ECUs in the existing hardware
infrastructure. Each software component fulfils a predefined
function in the vehicle. The component has a memory
requirement (denoted by the component size) and is subject
to restrictions such as location and colocation. The location
restriction defines the set of possible ECU allocations for this
component. It reflects the fact that some functions require
features only certain ECUs provide (such as a connection
to a sensor). Some components need to communicate with
some other components and cannot rely on the data bus for
sufficient speed, hence they need to reside on the same ECU.
The constraints are explained in more detail in II-D.
• The set of components, C = {c1, c2, ..., cn}, n ∈ N;
• component size, sz : C → N;
• location restriction, lr : C → P(U);
• colocation restriction, coloc : C × C → 1,−1;
• data size sent over a link, ds : C × C × S → R;
• frequency of communication between two components,

freq : C × C → R;
• the communication link between two components i and

j, lij = (ci, cj).

C. Objective Functions

As a specific setting for our algorithms, two non-functional
quality attributes are considered, i.e. Data Transmission Re-
liability (DTR) as defined by Malek [8] and Communication
Overhead (CO) following Medvidovic and Malek [1]. Three
constraints are included, memory constraint, location and
colocation constraints.

Reliability of the data transmission is a crucial quality
attribute in a real-time embedded system, where important
decisions are taken based on the data transmitted through
the communication links. For example, timely activation of
the air-bag system in a car is highly dependent on the
reliability of the data link from the crash detection sensor to
the responsible ECU and from the ECU to the airbag firing
unit. This deployment-dependent metric represents to what
extent the total data transmission for a given architecture is

reliable. Maximum values for the DTR often take precedence
in deployment architecture decisions. The Data Transmission
Reliability (DTR) formulation we use has first been defined
by Malek [8].

fDTR(d) =
n∑

i=1

n∑
j=1

freq(ci, cj) · rel(d(ci), d(cj)) (1)

Moreover, in an embedded system, where computation and
energy resources are highly constrained, sophisticated data
recovery mechanisms, like re-transmission, are discouraged.
The deployment architecture should be determined by min-
imising the overhead enforced by the data communication
for a given set of system parameters. As a network- and
deployment-dependent metric, the overall communication
overhead of the system is used to quantify this aspect. It
was first formalised by Medvidovic and Malek [1].

fCO(d) =
n∑

i=1

n∑
j=1

freq(ci, cj) · nd(d(ci), d(cj))+

+
n∑

i=1

n∑
j=1

freq(ci, cj) · ds(ci, cj)
dr(d(ci), d(cj)) · rel(d(ci), d(cj))

(2)

D. Constraints

Not all deployment candidates d ∈ D represent feasible
alternatives. Placing many components onto a single ECU
is often desirable, as it leads to faster communication be-
tween the colocated components. However, the number of
components to be placed on a single ECU is restricted by
the memory size of the ECU and the memory requirements
of the component. In analogy with the traditional bin packing
problem, the memory constraint Ωmem is defined as follows:

Ωmem(d) = ∀u ∈ U :
∑

i∈d(ci)=uj

sz(ci) ≤ cp(uj) (3)

The location constraint Ωloc excludes certain components
from residing on particular ECUs:

Ωloc(d) = ∀c ∈ C : (u ∈ lr(c) ⇒ d(c) 6= u) (4)

The colocation constraint Ωcoloc excludes certain compo-
nents from residing on particular ECUs:

Ωcoloc(d) = ∀c ∈ C : (ci, cj ∈ coloc−1 ⇒ d(ci) 6= d(cj))
∀c ∈ C : (ci, cj ∈ coloc1 ⇒ d(ci) = d(cj))

(5)

All of the constraints Ω are hard constraints in the sense
that a solutions which violate them cannot be considered for
implementation. It is therefore meaningful to consider them
separately from the objective functions.

4273

III. ALGORITHMIC APPROACH

The Nondominated Sorting Genetic Algorithm (NSGA)
in its improved form NSGA-II by Srinivas and Deb [9] is
recognised as one of the most successful state-of-the art mul-
tiobjective problem solvers. Strong alternatives include the
Strength Pareto Evolutionary Algorithm (SPEA2) by Zitzler
et al. [10] as well as Knowles and Corne’s Pareto Archived
Evolution Strategy (PAES) [11]. Third-party comparisons of
these approaches appear inconclusive [12]. Moreover, every
algorithm takes a different approach to reducing the number
of solutions retained as a diversity mechanism. Comparisons
including this feature might not be directly applicable to
the automotive software deployment problem. Unlike appli-
cations to continous space, where the number of solutions
in the nondominated set is potentially infinite, the software
deployment problem has many constraints and is unlikely to
produce more solutions than the optimiser can use for the
improvement of the approximation sets.

NSGA-II was used as a basis for the implementation
of the optimiser for the automotive software deployment
problem. Having omitted the crowding method NSGA-II
uses to ensure diversity in the population, the remaining
discerning characteristic of the algorithm is its nondominated
ranking scheme. It is non-parametric in the sense that only
the dominance rank of a solution defines its ‘fitness’.

Once the relevant genetic operators have been applied
and the child population has been added to the current
(parent) population, all solutions are divided into successive
nondominated fronts, which determine the ranks of the
solutions. Starting from the lowest ranks, the population is
then reduced to the predefined population size. Deb [13]
provides a comprehensive explanation of the algorithm.

A. Constraints

One of the major challenges of the software deployment
problem is how to handle its numerous constraints ade-
quately. The degree of constrainedness of the problem space
can be illustrated by the fact that creating 10 million random
deployments did not produce a single feasible solution, even
after omitting the colocation constraint. As Deb [13] clarifies,
when few feasible solutions are present (the search space
consists of ‘islands’ of feasibility) the likelihood of finding
feasible solutions without traversing the infeasible space is
improbable. The experiments published by Woldesenbet, Yen
and Tessema [14] support this theory.

Michalewicz and Schoenauer [15] categorised the existing
approaches to constraint handling into penalty methods,
methods which preserve feasibility, methods which distin-
guish between feasible and infeasible solutions and methods
which repair solutions. One might argue that if solutions are
discarded after a failed repair procedure, this approach can
also be counted among the feasibilty preservation methods.

The feature model approach applied by Limbourg and
Kochs [16] on the related redundancy allocation problem
falls into the category of feasibility preservation. The authors
weigh the need to constrain the search space to meaningful

areas against the risk of precluding the creation of poten-
tially desirable solutions. The resulting feature model builds
solutions based on trees of possible component assignments,
excluding non-feasible moves.

A similar search space reduction is meaningful in the case
of software deployment. The assignment options provided for
each component in the instance’s location list, equation (4),
are a hard constraint which cannot be violated. If the genetic
operators provide the possibility of transforming one feasible
solution with one component-ECU allocation, e.g. d(ci, uj)
to another possible allocation d(ci, uk) without barriers be-
tween the solution, ergodicity is ensured. Another reason to
choose this approach is the difficulty of quantifying possible
location violations for penalty functions.

As the same reasons apply to the colocation restrictions
(equation (5)), our approach deals with both constraints using
feasibility preservation. The genetic operators change allo-
cations subject to their feasibility according to equations (4)
and (5).

Memory constraint violations can easily be quantified.
Looking to investigating the experience of Deb and oth-
ers [13], [14] regarding the effects of different memory
handling methods on the search space, we decided to imple-
ment the memory constraint (equation (3)) handling in three
different ways according to the classifications of Michalewicz
and Schoenauer [15].

1) Constrain-dominance for memory violation: For the
strategy of handling feasible and infeasible solutions sep-
arately we chose the implementation suggested by Deb [17],
[13], and favoured by many authors. Constrain-dominated
sorting is used as a solution comparison during NSGA-
II’s nondominated ranking of the successive fronts. If both
solutions are feasible, the usual dominance relationship holds
where a solution is dominated by another solution if it is
worse than that solution in at least one of the objectives.
Feasible solutions always dominated unfeasible solutions and
an unfeasible solution dominates another unfeasible solution
if its constraint violation is smaller.

2) Repairing memory violations: Our approach to repair-
ing individuals which violate the memory constraint can be
seen as feasibilty preservation. If an offspring cannot be
repaired using the repair algorithm, it is discarded.

It is clear that this approach is not guaranteed to repair
a solution. Depending on the number of components that
cannot be allocated to the same ECU (the colocation con-
straint), and the average memory capacity, reassignments
may not be possible without shifting other components first.
Solutions created randomly for the initial population are
subjected to the repair function and discarded if it fails. The
same principle applies to offspring created using the genetic
operators. Therefore, the entire population is always feasible
when we use this strategy.

3) Penalising memory violation: The third strategy is to
apply a penalty function. One of the more recent propositions
to formulate a penalty function was conceived by Woldesen-
bet et al. [14]. It is based on the concept of the infeasible
individual’s distance to the feasible region, expressed by

4274

Algorithm 1: Repair Function
foreach ECU ui that has allocations in excess of
memory capacity do

while ECU ui capacity exceeded do
foreach Component cj assigned to the ECU ui

do
foreach ECU uk in cj’s list of ECU options
do

if uk has enough memory and has no
component that conflicts with cj then

assign d(cj , uk);
remove assignment d(cj , ui);
break;

di(x) =

{
v(x), ifrf = 0√

f̃i(x)2 + v(x)2, otherwise
(6)

Here, rf stands for the proportion of feasible solutions
(|feasiblesolutions|

|population|), f̃i(x) represents a normalised objective
value and v(x) is the (normalised) quantifier of constraint
violation. To obtain the adjusted objective function value
Fi(x) we use

Fi(x) = di(x) + pi(x) (7)

The penalty value pi(x) is calculated:

pi(x) = (1− rf)Xi(x) + rfYi(x) (8)

where Xi(x) is v(x) (the quantified memory violation)
if there are feasible individuals in the population, zero
otherwise. Feasible individuals have a Yi(x) of f̃i(x) (the
normalised objective function result for the respective objec-
tive), for infeasible individuals Yi(x) is zero.

This formulation ensures that when there are no feasible
solutions, the solutions are compared solely according to
their constraint violations, whereas in the absence of infea-
sible solutions, the objective function values are compared.
When both are present, the importance of the objective func-
tion grows with the number of feasible individuals, whereas
the significance of the constraint violation declines. The only
conceivable drawback of the method is the weighting of the
constraint violation against different objective functions.

f̃i(x) =
fi(x)−min(fi(x))

max(fi(x))−min(fi(x))
(9)

Although all values are normalised according to equa-
tion (9), the fluctuations of fitness values in an average
population will vary. Hence there may be differences in the
treatment of the objectives in this approach. Also, some ad-
justments had to be made to accommodate the maximisation
of objectives.

B. Solution Representation
The representation or genotype of an individual population

member has some influence on the genetic operators that can
conveniently be implemented. The most prevalent represen-
tation with GAs is binary encoding, which is convenient -
though not well suited for real numbers’ [18]. In the case
of the software deployment problem, binary representation is
not meaningful. The most obvious options include a mapping
from components to ECUs and a mapping from ECUs to
components.

Our experiments compare two representations. The first,
component-based, is a list of length n where each item rep-
resents a component which maps to the ECU it is currently
allocated to. The second, ecu-based, is a list of length m in
which the ECUs are mapped to a list of components which
are currently allocated to this ECU. The list may contain
0−m members. (If a non-dominated solution contains ECUs
with no allocated components, we may have identified a
potential for reducing the number of ECUs in the future.)

C. Operators
Two mutation and one crossover operators have been im-

plemented on both representations. In practice, the mutation
operators will provide the same neighbourhood regardless
of representation, while there is a clear distinction in the
implementation of the crossover operator depending on the
representation. All but the crossover operator for ECU-based
representation are standard well-known implementations of
genetic operators. For a detailed discussion of all typical
crossover operators and their effects see [19].

1) Point Mutation: A random assigned component is
chosen to be reassigned to a randomly determined new ECU
from the component’s lr list of permissible ECUs. Due
to colocation constraints (coloc−1), some ECUs cannot be
assigned due to other existing allocations. While unable to
assign, the algorithm first repeatedly picks alternative ECUs.
If none of the ECUs can be allocated because of colocation
restrictions, the method randomly picks another component.
The number of attempts in all cases is twice the number of
choices. This should guarantee that most attempts try every
possible combination before abandoning. Point mutation will
only reassign a component that has no group members.

2) Swap Mutation: As with point mutation, the method
makes a number of attempts equivalent to twice the number
of options to find components to reassign. Unlike point
mutation, the swap mutation operator also chooses a second
component whose ECU assignment can be swapped with
the first choice without violating the location and colocation
constraints. Rather than abandoning the choice when a com-
ponent is found to be part of a coloc1 group, swap mutations
transfers all members of the same group onto the new ECU,
subject to location and colocation (coloc−1) restrictions.
Swap mutation has the same effect on the solution regardless
of the representation.

3) Crossover: The implementations of the crossover op-
erator differ significantly depending on the chosen represen-
tation. In the case of the component-based representation we

4275

use single-point crossover between two parents. When cross-
ing over, we do not need to check the location constraint, as
we swap only possible allocations.

Algorithm 2: Crossover - Component-Based Rep.

endif for twice the number of components 2 ∗ n do
crIndex = random (1...n);
for i = crIndex; i < n do

if cparent1
i OR cparent2

i ∈ coloc1 then
if other group members assigned AND no
coloc violation then

assign to same ECU;

else if swap di(c)parent1 AND di(c)parent2

== no coloc violation;
then

swap di(c)parent1 and di(c)parent2;

then
if previous assignments di(c)parent1 and
di(c)parent2 == no coloc violation then

keep previous assignments ;

then
restart;

if still no new solution then
throw exception;

The ECU-based representation conveniently enables the
use of a custom crossover operator which combines the
component lists of both parents for every ECU. The list’s
content can then be distributed to the same ECU in the two
offspring. The location constraint will naturally be fulfilled
(as the ECU allocations are always maintained), whereas
colocation constraints must still be imposed. We are not
aware of previous implementations of this operator.

IV. EXPERIMENTS

A. Problem Instances
For our experiments, two sets of problem instances were

created, a problem with 35 ECUs and 60 components and
a larger instance featuring 80 ECUs and 140 components.
There are two versions of both, one with colocation con-
straints (coloc1 and coloc−1), the other omitting colocation
constraints, primarily to test the effects of the decision to pre-
clude the occurrence of infeasible individuals with respect to
the colocation constraint. Where colocation constraints were
applied, 2% of the components were randomly chosen to be
incompatible (coloc−1), whereas the groups of components
that have to reside on the same ECU are usually of size
2 - 4. Approximately 40% of the components belong to a
group. This is representative of a vehicle software design,
where some components cooperate, which entails a need for
instant communication, which is not possible over a data bus.
Each component can be allocated to approximately 20% of
the available hosts.

Algorithm 3: Crossover - ECU-Based Representation
Data: parent1 lst, parent2 lst
Result: offspring1 lst and offspring2 lst
Create list ecu lst of length m and fill with empty lists;
for i 0;
i < m do

fill ecu lst[i] with components from parent1 lst[i]
and parent2 lst[i];

for restarts < 2 ∗ n do
for i=0;
i < m do

for j=0;
j< ecu lst[i].length do

if cj ∈ coloc1 OR cj ∈ coloc−1 OR cj is
duplicate in ecu lst[i] then

if assignment to offspring1 lst[i] or
offspring2 lst[i] can be made without
violation then

Assign cj to offspring1 lst[i] or
offspring2 lst[i];

else
restart;

else
With 50% probability add cj from
ecu lst[i] to offspring1 lst[i],
alternatively to offspring2 lst[i];

if still no new solution then
throw exception;

B. Algorithmic Settings

In our trials, we used a mutation rate of 0.2, which
is divided evenly between point and swap mutation. The
crossover rate was set to 1. All trials were repeated 30 times
with different random seeds. Every trial was allowed 200
generations. The regeneration rate (number of offspring) was
set to 0.9, i.e. 90% of the parent population, which was set to
50 individuals. The three approaches to constraint handling
were combined with the two representations, resulting in 6
trial series per problem instance.

C. Performance Metrics

Summary attainment surfaces [20] were used to accu-
mulate over the approximation sets over the 30 trials. The
hypervolume development over the generations was also
measured.

V. RESULTS

Figures 1 and 2 show the results for the problem instance
U35-C60 without considering the colocation constraint. U35-
C60 refers to the problems instance containing 35 ECUs
and 60 components. Between the two representations, ECU-
based is shown to provide better results than the component-
based representation. We observe this on all the results and

4276

16 18 20 22 24
0.994

0.9945

0.995

0.9955

0.996

0.9965
35 ECUs and 60 components

f
CO

f D
T

R

const−c
const−e
rep−c
rep−e
Pen−c
Pen−e

Fig. 1. Average attainment surfaces for the problem instance U35-C60
without colocation constraint.

0 50 100 150 200
74

75

76

77

78

79

80

81

82

83

84

generation

A
ve

ra
ge

 h
yp

er
vo

lu
m

e

const−c
const−e
rep−c
rep−e
Pen−c
Pen−e

Fig. 2. Average hypervolume over generations for the problem instance
U35-C60 without colocation constraint.

all the constraint handling techniques. Among the constraint
handling methods, the repair mechanism obtains consider-
ably better results than the other methods. This could be
explained by the absence of the colocation constraint, which
makes the problem similar to bin packing. For this problem,
the repair mechanism is known to be a standard constraint
handling technique [15].

The graphs also show that the constrain-dominance ap-
proach provides slightly better results than the penalty ap-
proach. When comparing the effects of a change of rep-
resentation, the results show that the ECU-based encoding
consistently outperforms the component-based trials that use
the same constraint-handling methods. Hence, the ECU-
based representation combined with the repair mechanism
produces the best results over all instances of the problem.
This approach also provides superior solutions from the very
start of the optimisation process, as shown in Figure 2. The
same experiments have subsequently been carried out on a
larger problem instance U80-C140, where we have 80 ECUs
and 140 components.

120 130 140 150 160
0.9952

0.9954

0.9956

0.9958

0.996

0.9962

0.9964
80 ECUs and 140 components

f
CO

f D
T

R

const−c
const−e
rep−c
rep−e
Pen−c
Pen−e

Fig. 3. Average attainment surfaces for the problem instance U80-C140
without colocation constraint.

The encoding list of individuals is naturally much longer
than that of the earlier problem instance. Figure 3 shows the
average attainment surfaces for all combinations of constraint
handling techniques and representations. As before, the ECU-
based representation outperforms the other approaches.

‘Switching off’ the colocation constraint for the first
experiments provides an opportunity to compare the algo-
rithm’s behaviour on different degrees of constrainedness.
Adding the colocation constraint, we specify in the problem
instance’s definition that some components must be allocated
to one ECU and others that must not be assigned together.
The results are shown in Figures 4 and 5 for the problem
instance U35-C60. The outcomes of the comparison between

14 16 18 20 22
0.9955

0.996

0.9965

0.997

0.9975

0.998
35 ECUs and 60 components

f
CO

f D
T

R

const−c
const−e
rep−c
rep−e
Pen−c
Pen−e

Fig. 4. Average attainment surfaces for the problem instance U35-C60
with colocation constraint.

the approaches here are very similar to those on the less con-
strained problem. The ECU-based representation combined
with the repair mechanism produces the best results from
the early generations compared to other methods. Generally
we can conclude that within the limits of 200 generations,
the optimisations process produces the best results when us-
ing the repair mechanism, followed by constrain-dominance

4277

0 50 100 150 200
77

78

79

80

81

82

83

84

85

86

generation

A
ve

ra
ge

 h
yp

er
vo

lu
m

e

const−c
const−e
rep−c
rep−e
Pen−c
Pen−e

Fig. 5. Average hypervolume over generations for the problem instance
U35-C60 with colocation constraint.

and penalty approaches. The comparison of the constrain-
dominance and penalty approaches are inconclusive over
different problem instances. Figures 2 and 5 also indicate
that the component-based penalty and constrain-dominated
algorithms may still improve at the time of the 200th gener-
ation. The colocation constraint was subsequently applied to
the larger problem instance U80-C140. Figure 6 shows very
similar results to results in Figure 4 in terms of the ranking
between the different approaches. This seems to indicate that,
within a problem scale of 100 ECUs, the size of the search
space does not seem to affect the behaviour of the algorithms,
and the approaches presented in the paper behave the same
when the problems have a colocation matrix.

70 75 80 85 90

0.9962

0.9964

0.9966

0.9968

0.997

0.9972

0.9974

0.9976
80 ECUs and 140 components

f
CO

f D
T

R

const−c
const−e
rep−c
rep−e
Pen−c
Pen−e

Fig. 6. Average attainment surfaces for the problem instance U80-C140
with colocation constraint.

VI. CONCLUSIONS

The results consistently indicate that the ECU-based rep-
resentation facilitates the discovery of better solutions. Our
interpretation ascribes this observation in part to the rel-
ative shortness of the representation, which might make
its complexity more manageable. The specialised crossover

operator undoubtedly contributes to shaping the search space
favourably.

The consistent superiority of the repair approach to infea-
sibility indicates that the infeasible areas are too large for
traversal using penalty-based methods. The approximation
sets obtained from the more constrained problem instances
(when applying the colocation constraint) are significantly
shorter regardless of the solver’s approach. An interesting
topic for future research is how to explore ‘more’ islands of
feasiblity in any one run.

REFERENCES

[1] N. Medvidovic and S. Malek, “Software deployment architecture and
quality-of-service in pervasive environments,” in Workshop on the
Engineering of Software Services for Pervasive Environements, ESSPE.
ACM, 2007, pp. 47–51.

[2] S. Malek, “A user-centric approach for improving a distributed soft-
ware system’s deployment architecture,” Ph.D. dissertation, Faculty of
The Graduate School University Of Southern California, 2007.

[3] L. Grunske, “Identifying ”good” architectural design alternatives with
multi-objective optimization strategies,” in International Conference
on Software Engineering, ICSE. ACM, 2006, pp. 849–852.

[4] Y.-C. Liang and A. E. Smith, “An ant system approach to redundancy
allocation,” in Congress on Evolutionary Computation. IEEE, 1999,
pp. 1478–1484.

[5] D. W. Coit and A. E. Smith, “Reliability optimization of series-parallel
systems using a genetic algorithm,” IEEE Transactions on Reliability,
vol. 45, no. 2, pp. 254–260, 1996.

[6] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya, “ArcheOpterix:
An extendable tool for architecture optimization of AADL models,”
in Model-based Methodologies for Pervasive and Embedded Software
(MOMPES). ACM and IEEE Digital Libraries, 2009, pp. 61–71.

[7] L. Grunske, “Early quality prediction of component-based systems - A
generic framework,” Journal of Systems and Software, vol. 80, no. 5,
pp. 678–686, 2007.

[8] S. Malek, “A user-centric approach for improving a distributed soft-
ware systems deployment architecture,” PhD in Computer Science,
Faculty of The Graduate School University of Southern California,
2007.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist
multi-objective genetic algorithm: Nsga-ii,” IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182–197, 2000.

[10] E. Zitzler, K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou,
T. F. (eds, E. Z. Ler, M. Laumanns, and L. Thiele, “Spea2: Improving
the strength pareto evolutionary algorithm for multiobjective optimiza-
tion,” 2002.

[11] P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Za-
lzala, Eds., The Pareto Archived Evolution Strategy: A New Baseline
Algorithm for Pareto Multiobjective Optimisation, vol. 1. IEEE Press,
June-September 1999.

[12] F. Mendoza, J. Bernal-Agustin, and J. Dominguez-Navarro, “Nsga and
spea applied to multiobjective design of power distribution systems,”
Power Systems, IEEE Transactions on, vol. 21, no. 4, pp. 1938–1945,
Nov. 2006.

[13] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
1st ed. Wiley, June 2001.

[14] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint
handling in multiobjective evolutionary optimization,” Trans. Evol.
Comp, vol. 13, no. 3, pp. 514–525, 2009.

[15] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for
constrained parameter optimization problems,” Evol. Comput., vol. 4,
no. 1, pp. 1–32, 1996.

[16] P. Limbourg and H.-D. Kochs, “Multi-objective optimization of gen-
eralized reliability design problems using feature models–a concept
for early design stages,” Reliability Engineering and System Safety,
vol. 93, no. 6, pp. 815 – 828, 2008.

[17] K. Deb, “An efficient constraint handling method for genetic algo-
rithms,” Computer Methods in Applied Mechanics and Engineering,
vol. 186, no. 2-4, pp. 311–338, June 2000.

4278

[18] U. K. Chakraborty and C. Z. Janikow, “An analysis of gray versus
binary encoding in genetic search,” Information Sciences, vol. 156,
no. 3-4, pp. 253 – 269, 2003, evolutionary Computation. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V0C-
4950PV1-7/2/02c4d8f232005b267e2293d5933d92eb

[19] M. Randall, “A general modelling system and meta-heuristic based
solver for combinatorial optimisation problems,” Ph.D. dissertation,
Griffith University, 1999.

[20] J. Knowles, “A summary-attainment-surface plotting method for vi-
sualizing the performance of stochastic multiobjective optimizers,”
in ISDA ’05: Proceedings of the 5th International Conference on
Intelligent Systems Design and Applications. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 552–557.

4279

