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We consider an effective mass model for an electron-hole
pair in a simplified confinement potential, which is applicable
to both a nanoscopic self-assembled semiconducting InAs ring
and a quantum dot. The linear optical susceptibility, propor-
tional to the absorption intensity of near-infrared transmis-
sion, is calculated as a function of the ring radius R0. Com-
pared with the properties of the quantum dot corresponding
to the model with a very small radius R0, our results are in
qualitative agreement with the recent experimental measure-
ments by Pettersson et al.
PACS numberes: 73.20.Dx, 71.35.-y, 78.66.Fd

Recent progress in nanoscopic fabrication techniques
has made it possible to construct self-assembled semicon-
ducting nano-rings inside a completed field-effect transis-
tor [1–4]. The nanoscopic rings may be considered as the
best candidate to display various pure quantum effects,
as the nano-rings are in the scattering free and few par-
ticles limit. By using two complementary spectroscopic
techniques, Lorke and collaborators performed the first
spectroscopic measurements on semiconducting InGaAs
nano-rings occupied one or two electrons [1–3], and the
experimental results have attracted a lot of theoretical
interests at the moment [5–10]. However, the spectro-
scopic data of exciton effects in InGaAs nano-rings have
also been obtained [11] and clearly exhibited different ex-
citonic properties from the corresponding quantum dots
[12–16]. For these experimental results, so far there has
been no theoretical analysis yet.

In this paper, we attempt to describe qualitatively the
low-lying states and some spectroscopic properties of the
semiconducting nano-ring of InAs. Based on an effective
mass model Hamiltonian for an electron-hole pair in a
simplified confinement potential, the model Hamiltonian
is separated into the motion of center of mass, relative
motion of the electron-hole pair, and the mixed part. By
varying radius of the ring R0, both the quantum dots and
nano-rings are investigated within the same framework of
a theory. In the subspace of the zero total angular mo-
mentum L = 0, the energy spectrum of the exciton is
derived, and the linear optical susceptibilities for the ex-
citons with a heavy hole or a light hole are calculated,
respectively. There exist significant differences of the ex-
citonic properties between the nano-rings and quantum
dots.

The nanoscopic semiconducting ring is described by
an electron-hole pair (i = e, h) with an effective band
edge mass m∗

i moving in a x-y plane. The ring-like
structure is well described by a double well potential,

U (~ri) = 1
2R2

0

m∗
iω

2
i

(

~ri
2 −R2

0

)2
, which reproduces a soft

barrier
m∗

i
ω2

i
R2

0

2 at the center of the sample produced by
self-assembly [3,4]. Here, R0 is the radius of the ring, ωi

is the characteristic frequency of the radial confinement,

and a ring width W ≈ 2
√

~

2m∗

i
ωi

. The model Hamilto-

nian is thus given by:

H =
∑

i=e,h

[

~p2
i

2m∗
i

+ U (~ri)

]

−
e2

4πε0εr |~re −~rh|
, (1)

where ~ri = (xi, yi) and ~pi = −i~~∇i denote the posi-
tion vector and momentum operator, ε0 is the vacuum
permittivity, and εr is the static dielectric constant of
the host semiconductor. It should be pointed out that
the present double-well like confinement potential can be

rewritten as U (~ri) = 1
2m

∗
iω

2
i (ri −R0)

2 (ri+R0)2

R2

0

. If one

replaces the operator ri in factor (ri+R0)
2

R2

0

by its mean

value 〈ri〉 = R0, the confinement potential returns to the
widely used parabolic form [3,9,10]. On the other hand,
in the limit of the small radius R0 or for a small poten-
tial strength ωi, the soft barrier at the ring center is very
weak, and the description of the nano-ring is more close
to that of a quantum dot (see Fig. 1). For a fixed ring
width (or potential strength), the crossover from nano-

rings to quantum dots is determined by R0 ∼
√

2
2 W or

~ωi

2 ∼
m∗

i
ω2

i
R2

0

2 , which means the lowest energy of radial
confinement is comparable to the soft barrier at the ring
center. It should also be pointed out that our double-well
confinement potential has been used to calculate the far-
infrared spectroscopy for a two-electron nano-ring [17],
in good agreement with the recent experiment done by
Lorke et al. [3].

Introducing the relative coordinate ~r = ~re − ~rh and

center-of-mass coordinate ~R =
m∗

e
~re+m∗

h
~rh

m∗

e
+m∗

h

, the model

Hamiltonian is divided into

H = Hcm

(

~R
)

+ Hrel (~r) + Hmix

(

~R,~r
)

,

Hcm =
~P2

cm

2M
+
Mω2

cm

2R2
0

(

~R2 −R2
0

)2

,

Hrel =
~p2

rel

2µ
+
µ

2

(

m∗3
h ω

2
e +m∗3

e ω
2
h

)

M3R2
0

r4 − µω2
relr

2

−
e2

4πε0εrr
,
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Hmix = −2µ
(

ω2
e − ω2

h

)

(

~R ·~r−
~R3·~r

R2
0

)

+
µω2

rel

R2
0

[

R2r2 + 2
(

~R ·~r
)2
]

+2µ

(

m∗2
h ω

2
e −m∗2

e ω
2
h

)

M2R2
0

~R ·~r
3
, (2)

where µ =
m∗

e
m∗

h

M
is the electron-hole reduced mass and

M = m∗
e + m∗

h is the total mass. We have also intro-

duced a center-of-mass frequency ωcm =

√

(m∗

e
ω2

e
+m∗

h
ω2

h)
M

and a relative frequency ωrel =

√

m∗

h
ω2

e
+m∗

e
ω2

h

M
. The main

advantage of the separation of center-of-mass and rela-
tive coordinates is that the negative Coulomb interaction

− e2

4πε0εrr
appears in Hrel only, and the well-known poor-

convergence of the parabolic basis is thus avoided when
the characteristic scale of systems is beyond the effective
Bohr radius [18].

We assume the wave function of the exciton in the form

Ψ =
∑

λ,λ′

Aλ,λ′ψcm
λ

(

~R
)

ψrel
λ′ (~r) , (3)

where ψcm
λ

(

~R
)

and ψrel
λ′ (~r) are the respective wave

functions of the center-of-mass and the relative Hamil-
tonians Hcm and Hrel, which can be solved by the se-
ries expansion method introduced by Zhu et al. [19,20].
λ = {ncm,mcm} and λ′ = {nrel,mrel} represent the
quantum number pairs of the radial quantum number
n and orbital angular momentum quantum number m.
Due to the cylindrical symmetry of the problem, the to-
tal orbital angular momentum L = mcm +mrel is a good
quantum number of the exciton wave functions.

To obtain the coefficients Aλ,λ′ , the total Hamiltonian
is diagonalized in the space spanned by the product states

ψcm
λ

(

~R
)

ψrel
λ′ (~r). First of all, we solve the single particle

problem of center-of-mass and relative HamiltoniansHcm

and Hrel, keep several hundreds of the single particle
states, and then pick up the low-lying energy levels to
construct several thousands of product states. Note that
our numerical diagonalization scheme is very efficient and
essentially exact in the sense that the accuracy can be
improved as required by increasing the total number of
selected low-lying energy levels f . For instance, when
the product states f = 1024 are kept in L = 0 subspace,
the precision of the ground state energy has a relative
convergence of ∼ 10−6.

Once the coefficients Aλ,λ′ are obtained, one can calcu-
late directly the measurable properties, such as the linear
optical susceptibility of the nano-rings, whose imaginary
part is related to the absorption intensity measured by
the near-infrared transmission. In theory, the linear op-
tical susceptibility is proportional to the dipole matrix
elements between one electron-hole pair j state and the
vacuum state, which in turn is proportional to the os-

cillator strengths Fj . In the dipole approximation, it is
given by [13,18,21]

Fj =

∣

∣

∣

∣

∫ ∫

d~Rd~rΨ
(

~R,~r
)

δ (~r)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∑

λ,λ′

Aλ,λ′ψrel
λ′ (0)

∫

d~Rψcm
λ

(

~R
)

∣

∣

∣

∣

∣

∣

2

, (4)

where the factor ψrel
λ′ (0) and the integral over ~R ensure

that only the excitons with L = 0 (or more precisely
mcm = mrel = 0) are created by absorbing photons.
Therefore, the frequency dependence of the linear optical
susceptibility χ (ω) can be expressed as [13,18,21]

χ (ω) ∝
∑

j

Fj · (~ω − Eg − Ej − iΓ)−1, (5)

where Eg and Ej are the respective semiconducting band
gap of InAs and the bound state energy levels of the ex-
citon, and Γ has been introduced as a phenomenological
broadening parameter.

In what follows we limit ourselves in the subspace
L = 0. As an interesting example, we choose the pa-
rameters m∗

e = 0.067me [3,9], the effective mass of the
light hole m∗

lh = 0.099me, the effective mass of the heavy
hole m∗

hh = 0.335me, and the appropriate parameter
to InGaAs εr = 12.4. Moreover, the electron and hole
are considered to be confined in the a confinement po-
tential with the same strength, i.e., m∗

eω
2
e = m∗

hω
2
h. If

the characteristic energy and length scales are the effec-

tive Rydberg radius R∗
y = µe4

2~2(4πε0εr)2
and the effective

Bohr radius a∗B = 4πε0εr~
2

µe2 for the heavy hole exciton,

we find R∗
y = 5.0 meV and a∗B = 11.8 nm. In order to

simulate the InAs nano-rings with ∆Em ∼ 5 meV and
∆En ∼ 20 − 25 meV in the experimental measurements
[11], R0 and ~ωe are chosen to be 20 nm and 14 meV
respectively (~ωe = 14 meV corresponds to a ring width
W = 10 nm). ∆Em is the energy level spacing between
the single electron states with different orbital angular
momentum m and the same radial quantum number n,
while ∆En corresponds to the energy spacing with dif-
ferent radial quantum number n and the same angular
momentum m.

In Fig.2a and Fig.2b, the imaginary part of linear op-
tical susceptibility with two different ring radii: R0 = 20
nm and 5 nm is shown, where a broadening parameter
Γ = 2.5 meV is used. The solid and dashed lines corre-
spond to the heavy hole and light hole excitons. Those
curves represent all the possible transitions of excitonic
states which can be measured by photoluminescence ex-
citation measurements (PLE). Comparing these two fig-
ures, one finds the following differences: i). For a large
ring radius, only a few low-lying states transitions ap-
pear in the low photon energy regime. As photon energy
increases, the intensity of transitions damps rapidly. ii).
For a small ring radius, the low-lying states transitions
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is nearly equally distributed in the whole photon energy
regime both for the heavy-hole and light-hole excitons.
iii). The intensity magnitude of the ground state tran-
sition in Fig.2b is almost one order smaller than that
in Fig.2a. All these features amazingly coincide with
the experimental observations between nano-rings and
quantum dots structures [11]. Indeed, for the nano-ring
with a smaller radius 5 nm, its width is comparable to
the radius, W ∼ 2R0. The description of the small ra-
dius nano-ring should be equivalent to that of a quantum
dot. The imaginary part of linear optical susceptibility
for a cylindrical quantum dot in a parabolic potential
U (~r) = 1

2m
∗ω2

0r
2 (~ω0 is taken to be 28 meV) is also

displayed in Fig.2c, whose features are very similar to
that of Fig.2b.

The distinct differences between nano-rings and quan-
tum dots mainly originate from their geometries. For
quantum dots, nearly periodic distributed low-energy
transitions (the higher peaks in Figs. 2b or 2c) are re-
flections of electron-hole excitations involving the exciton
ground state and various center-of-mass replicas with-
out altering the ground state of the relative coordinate,
while the smaller amplitude peaks of the photon energy
at 1.341, 1.362, 1.368 eV in Fig. 2b correspond to inter-

nal excited states of the exciton (its relative coordinate)
[22]. However, for quasi-one-dimensional nano-rings, this
situation is totally changed. The center-of-mass degrees
of freedom are greatly suppressed by the anisotropic ring-
like confinement and the relative motion becomes domi-
nant, giving rise to the destruction of the regular patterns
observed in quantum dots.

To fully understand the effects of ring radius R0 on the
optical properties, the transition peak’s positions or the
low lying energy levels of excitons and the corresponding
oscillator strengths are plotted as a function of the ring
radius in Fig.3a and Fig.3b, respectively. Each line is de-
lineated by the transition sequence indicated in Fig.2b.
The most striking feature is that the oscillator strengths
Fj are approximately proportional to the ring radius.
Amazingly, for R0 = 20 nm, the oscillator strengths of
the ground state and first excited transitions are nearly
30 and 10, in good agreement with the experimental val-
ues Fj = 31 and 18 [11]. Moreover, in Fig.3a and Fig.3b,
the peak’s positions show a few changes of the low lying
transitions when R0 > 10 nm.

Let us now compare the theoretical results with the
near-infrared transmission data of H. Pettersson et al.

[11]. In experiment, one cannot distinguish the contri-
bution from the heavy hole or the light hole excitons.
To reproduce the experimental result for an InAs nano-
ring, in Fig.4b we plot the combination of imaginary part
of linear optical susceptibility of the heavy-hole and the
light-hole excitons with the ring radius R0 = 20 nm. Ac-
tual self-assembled nano-rings display a size distribution
which greatly affects their physical features because each
nano-ring is very small. To account for the experimental
data, here a relatively large level broadening of Γ = 5
meV has been used. By fitting the rightmost peak’s po-

sition in Fig. 4a, we take the band-gap Eg to be 1.325
eV. As shown in Fig.4, the overall trend of the exper-
iment result is qualitatively reproduced by the model
calculation, i.e., both of them exhibit three transition
peaks, and the peak’s positions and relative amplitudes
agree with each other qualitatively. The main discrep-
ancy between the present theory and experiment occurs
at high photon energy 1.4 eV, where the experimental
curve displays a steep increase, while the theory predicts
no variation. This discrepancy can be attributed to the
increasing contribution from the wetting layer [23]. The
small split of the rightmost peak is somewhat of a biasing
artifact due to the unknown ratio of the contributions of
the heavy hole and light hole excitons. However, consid-
ering the simplicity of our effective-mass model and the
use of only one fitting parameter Eg, the overall fit is still
quite surprising. Actually, more convincing fits should in-
volve a suitable set of effective mass parameters, a careful
adjusted confinenent strength, the realistic size distribu-
tion, the ratio of heavy hole and light hole excitons, and
others unknown factors in experiments.

Recently, Warburton et al. presented a beautiful ex-
periment of optical emission in a single charge-tunable
nano-ring [4]. They studied the role of multiply-charged
exciton complexes with no applied magnetic field and
found a shell structure in energy similar to that of quan-
tum dots [24,25]. Therefore, encouraged by the rapid de-
veloped nano-techniques for detection, i.e., the achieve-
ment of extremely narrow and temperature insensitive
luminescence lines from a single InAs nano-ring in GaAs,
we hope that our explanation of the distinct optical prop-
erties of quantum dots and nano-rings can be further
confronted in a more precise experiment in the future.

In conclusion, we have studied the low lying exciton
states and their optical properties in a self-assembled
semiconducting InAs nano-ring. By varying the radius
R0, both the conventional quantum dots and nano-rings
have been considered within the same framework of our
theory. The distinct optical properties of quantum dots
and nano-rings observed in recent experiments are well
explained qualitatively.
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Figures Captions

Fig.1. The confinement potential U (~r) =
m∗

e
ω2

e

2R2

0

(

~r2 −R2
0

)2

with different ring radii withm∗
e = 0.067me and ~ωe = 14

meV.

Fig.2. Imaginary part of linear optical susceptibility
for the nano-ring as a function of photon energy with
two different ring radii R0 = 20 nm (a) and R0 = 5 nm
(b). For comparison, the results for a parabolic quantum
dot are also displayed (c). The solid and dashed lines
correspond to the heavy-hole and light-hole excitons, re-
spectively. The semiconducting band gap Eg is 1.325 eV.

Fig.3. The peak’s positions of the linear optical suscep-
tibility (a) and oscillator strengths (b) for the nano-ring
as a function of the ring radius R0. The square and solid
circle symbols denote the heavy-hole and light-hole exci-
tons, respectively. Each line is labeled by the sequence
indicated in Fig.2(b).

Fig.4. The spectrum of the linear optical susceptibility
of the nano-ring as a function of photon energy. (a) is
the experimental result and (b) is our theoretical one.
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