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Abstract—This technical report is an extended version of a pa-
per [1], which addresses the problem of dimensioning links in a
multiservice IP network subject to satisfying varying performance
requirements for different traffic classes. These performance re-
quirements are viewed in terms of mean end-to-end delays re-
quired for the various traffic classes or in terms of random varia-
tions of their delays (i.e., jitter) or a combination of both.

In this report we provide a detailed presentation and analysis of
the recursive methods for inversion of the well-known QNA per-
formance models, which [1] employs. Also, the accuracy of the
model is investigated by means of a simulation study over an ex-
tended range of test cases. The results demonstate the capability
of the model in guaranteeing the end-to-end delay requirements
for the traffic classes.

I. I NTRODUCTION

Generally defined, the capacity allocation (CA) problem con-
sidered in [1] is the problem of determining bandwidth alloca-
tions for the delay-sensitive traffic classes, as well as total band-
width (capacities) of the links in the network so that multiple
delay constraints for the traffic classes can be satisfied. Deter-
mining bandwidth allocations for the various traffic classes on
the links is an important design issue as standard Weighted Fair
Queueing (WFQ) service disciplines [2], [3] can only provide
tight end-to-end delay guarantees for the classes if an adequate
level of resources (in terms of bandwidth and buffer space) is
allocated along their respective data paths through the network.

The CA problem poses the challenge of performing appro-
priate link dimensioning in order to balance quality of service
against costly overprovisioning. For this problem, an accurate
model for describing the characteristics of both the external IP
traffic flows and the internal flows (on the links) is required.
However, there is a tradeoff between the modelling power of
the traffic descriptors used to describe the real traffic and the
complexity that they impose when used in network planning
functions. In this report, we present an extended version of a
dimensioning model presented in [1] for the solution of the CA
problem, which incorporates traffic characterisation procedures
that allow burstiness of multi-class IP traffic to be effectively
modelled. The selection of renewal traffic model i.e., GI ar-
rival process, for this purpose, represents a reasonable balance
between the accuracy (modelling power) and the efficiency re-
quired by a network planning tool.

Based on analysis of the Quality of Service (QoS) mecha-
nisms employed in multiservice IP networks and their impli-
cations for network planning, an approximate model of QoS-
based queueing mechanisms used at the routers was discussed
in [1]. This approximate model assumes fixed bandwidth par-
titioning to split the link capacity between different traffic
classes. Such a model allows us to consider the different traf-
fic classes separately and determine their bandwidth allocations
on the links independently. Figure 1 shows the network dimen-
sioning process that we consider for the solution of the problem
CA. The information required for this process includes:
• Traffic descriptors for the demands of the delay-sensitive

classes,
• Routing information for the delay-sensitive classes,
• Local (link) partitions of the global (end-to-end) QoS con-

straints for the delay-sensitive classes,
• Network topology
The algorithms for the solution of Problem OPQR-G (Opti-

mal QoS Partition and Routing in multicommodity flow net-
work), discussed in [4], [5], when applied for each delay-
sensitive class of traffic independently, will determine the re-
quired input for the dimensioning process; that is, the primary
routes between the origin-destination (OD) pairs and the QoS
partitions on the links for each class of traffic, respectively. We
define aclass flowas a single class of traffic between an OD
pair. We model the class flow as a general (GI) arrival pro-
cess characterised by a mean packet arrival rate and a squared
coefficient of variation (SQV) of the packet inter-arrival time.
For this renewal process, the coefficient of variation is used to
characterise traffic burstiness, i.e., the variablity of the arrival
stream. IP traffic is bursty in the sense that its squared coef-
ficient of variation is always greater than or equal to unity. In
[6], we have presented models, which can be used to translate
the OD pair traffic demands for each class of traffic as obtained
from traffic measurement data into equivalent class flow traffic
descriptors (i.e., GI arrival process parameters) for direct appli-
cation into the dimensioning procedure.

The dimensioning process can be summarised into three ma-
jor stages (depicted in Fig. 1 as shaded boxes):

1) Traffic-based decomposition model. From the offered
class flows to the network and the given routing informa-
tion, obtain a characterisation of the internal (or intern-
ode) class flows by applying the methods for superposi-
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Fig. 1. Multiservice IP network dimensioning process

tion, departure and splitting of GI traffic arrival processes.
2) Link dimensioning model. On a link by link basis, given

the internal class flows and their link QoS constraints, de-
termine the bandwidth allocations required for the delay-
sensitive classes, as well as, the total link capacities by
using a link dimensining model.

3) Dimensioning model validation. Examine the end-to-end
QoS performance of the class flows in the capacitated net-
work by using a queueing network simulator.

It is important to emphasize here that, the solution of the CA
problem, as obtained from the above dimensioning process, will
determine the bandwidth allocations on the links for the delay-
sensitive traffic classes. The so-called total link capacities ob-
tained through this process, shall be used assetuplink capac-
ities in a further optimisation process that the network planner
has to consider, as in practise link capacities are limited to a
discrete set of values [7].

The rest of this report is organized as follows. In Section II,
renewal-based traffic decomposition models are reviewed. A
detailed description of the procedures that combine these mod-
els in order to achieve characterisation of the internal class
flows for the specific network model considered in [1] is given
in Section III. The algorithm for determining the class-based
bandwidth allocations on the links is decribed in Section IV
along with the recursive methods that it employs for inverting
an appropriate link performance model. Finally, this report con-
cludes with a simulation study that validates the dimensioning
model used in solving the CA problem.

II. RENEWAL-BASED TRAFFIC DECOMPOSITIONMODEL

Traffic-based decomposition models encompass procedures
required for modelling of the basic network operations of merg-
ing, departure and splitting, arising due to the common sharing
of the resources and routing decisions in the network. In ad-
dition, they deliver approximations for performance measures
(i.e., mean queue lengths, mean waiting times, the correspond-
ing second moments, etc.) on both a per-queue and a per-
network basis. In any case, only the steady-state of the network
is considered.

For the traffic-based decomposition models that employ GI
arrival processes as traffic descriptors, two different solution
approaches can be identified: the successive/iterative approach

and linearization. For a comprehensive study on traffic-based
decomposition models see [8]. In the first case, starting from
the external inputs, the basic network operations are applied
successively one at a time for each node of the network in isola-
tion. For each node, the departure (or output) process is approx-
imated. According to the probabilistic routing after the node,
the output traffic process is split and subsequently merged (or
superposed) with other traffic processes in order to obtain the
inputs for the nodes further downstream in the network. The
internal flows and performance measures can be obtained in a
single iteration step i.e., after single analysis of each node, if
there are no feedback loops present in the network. Otherwise,
additional iterations are required until convergence at the nodes
within the feedback loop is reached. In the linearization so-
lution approach, approximating linear equations are needed to
describe the transformations for the parameters of the internal
flows, arising from the basic network operations. The parame-
ters of the internal flows are then obtained by solving a system
of linear equations.

1) Kühn’s and Whitt’s decomposition models:In 1979,
Kühn published a traffic-based decomposition model for open
networks of GI / G /1 queues [9]. The arrival processes and the
service-time distributions are partially characterised by their
first two moments or, equivalently, byλA (the mean arrival
rate),c2

A (the SQV of the interarrival time),τS (the mean ser-
vice time), andc2

S (the SQV of the service time). The per-
formance at each node is described by approximate formulae
that depend only on these parameters. This model employs a
successive/iterative approach to solve for the internal flows and
performance measures at the nodes in the network. Later, in
1983, Whitt extended K̈uhn’s model by adding several new fea-
tures and he also implemented his decomposition model into a
software tool widely known as QNA (Queueing Network An-
alyzer) [10], [11]. Specifically, he improved and modified the
merging operation for GI traffic arrival processes and applied a
linearization solution approach for the network decomposition.
He developed second-order traffic equations, which when com-
bined with Jackson’s first-order traffic equations [12] enable the
two characteristic parameters of the internal flows to be derived
from a system of linear equations.

In view of the two-parameter descriptions of the arrival pro-
cess(λA, c2

A) and service time(τS , c2
S) at a considered node,

the elementary calculus that transforms the two parameters of
the internal flows for each of the three basic network operations,
as given in [10], is described in the following:

a) Superposition of GI traffic flows:The superposed pro-
cess ofn individual GI flows, each characterised byλj and
c2
j (j = 1, . . . , n), as it enters the considered node is approx-

imated by a GI traffic flow with parametersλA andc2
A, repre-

senting the mean arrival rate and SQV of the inter-arrival time
of the superposed flow, respectively. By conservation of flow,
the mean arrival rate of the superposed flow is given by:

λA =
n∑

j=1

λj . (1)

For the derivation of the SQV of the inter-arrival time of the su-
perposed flow, Whitt combines the stationary-interval method
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implemented by K̈uhn with the asymptotic method [13] into a
hybrid procedure:

c2
A = w

n∑

j=1

λj

λA
c2
j + 1− w , (2)

with:

w =
1

1 + 4(1− ρ)2(ν − 1)
, ν =

1
∑n

j=1

(
λj

λA

)2

andρ is thetraffic intensityor utilisation at the node, defined by
ρ = λAτS . The superposition of renewal processes represents
a nonrenewal point process as the inter-departure times are cor-
related. In this regard, the variability parameter represents the
SQV of the interarrival time in the approximating superposed
renewal process, but this does not mean that the dependence in
the original process is completely ignored. Whitt conveys this
dependence by making the variability parameter depend on the
traffic intensity of the queue (even though the arrival process
is independent of the service time in the queue), as he showed
earlier [14] that the relevant covariances tend to depend on the
traffic intensity in the queue.

b) Departure flow from a queue:Except for a very few
specialized cases (e.g., M / M /m and M / G /∞ whose depar-
ture process is Poisson), the departure process from a queue
represents a nonrenewal point process as the inter-departure
times are correlated. The departure flow from a queue is ap-
proximated as a GI traffic flow, characterised byλD and c2

D,
representing the mean arrival rate and SQV of the inter-arrival
time of the departure flow, respectively. Under equilibrium con-
ditions, the mean flow entering a queue is always equal to the
mean flow exiting the queue (by conservation of flow) and con-
sequentlyλD = λA. The SQV of inter-arrival time of the de-
parture flow is given by:

c2
D = ρ2c2

s + (1− ρ2)c2
A . (3)

Whitt obtains the above result by applying a linear approxima-
tion to the stationary-interval method implemented by Kühn.

c) Splitting a GI flow Probabilistically: If a GI flow with
parametersλ, andc2 is split into n flows, each selected inde-
pendently with probabilityqi, the parameters for thei-th flow
will be given by:

λi = qiλ , (4)

c2
i = qic

2 + (1− qi) . (5)

These basic network operations are illustrated in Fig. 2. In
addition to these basic operations, traffic based-decomposition
models also provide a method for eliminating immediate feed-
back, which we do not discuss here, as such operation becomes
redundant in the modelling of practical communication net-
works.

Despite the comprehensivness of QNA, the algoritmic pro-
cedure that we adopt for the solution of the internal flows in
the network, which we discuss next, is based on the successive
solution approach introduced by Kühn. Whitt’s improved re-
sults for the basic network operations (as described above) are,
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Fig. 2. Basic network operations

however, considered in the procedure. In doing so, our inten-
tion is to develop a unique framework for implementation of the
traffic-based decomposition (i.e., for the computation of the in-
ternal flows) that would also be employed when more complex
traffic descriptors are considered.

III. M ODELLING INTERNAL CLASS FLOWS

After the preliminaries discussed in the previous section, we
devote our attention to the actual algorithmic procedure used in
the computation of the internal flows. The approximate network
model discussed in [1] enables us to confine the CA problem to
a network of single-server queues for each class of traffic, re-
spectively, and determine the class-based flows and bandwidth
allocations on the links independently. This network model is
based on the assumption that a queue is associated with each
link in the network. Accordingly, the departure process from a
queue is the actual process (from a specific class) observed on
a link. The departure processes from queues may be split and
subsequently merged (also with external input traffic) in order
to serve as inputs in the downstream queues. Note that, in real-
ity, in this type of network, probabilistic splitting does not oc-
cur. Instead, the splitting is based on predetermined static rout-
ing matrix (resulting from the fixed routing assumption) and
therefore is deterministic. Whitt discusses this in the context
of “deterministic flows” and suggests an equivalent probabilis-
tic routing interpretation for deterministic (fixed) routing. We
shall use this probabilistic routing approximation subsequently.

From the input class flows and the given routing information,
one can obtain a characterisation of the total traffic flows for
each classc (c = 1, . . . , C) on every link in the network, which
are also referred to asinternal class flows. Each input class
c flow between an OD pair(u, v) ∈ Π is assigned to a fixed
routeruv

c (ruv
c ∈ rc), whererc is the set of routes for class

c. We characterise an input class flow with the following set of
parameters{λc, c2

c , Xc, X2
c }ruv

c ∈rc . The first two parameters
denote the mean packet arrival rate and the SQV of the packet
inter-arrival times of the classc flow (c = 1, 2, . . . C), which
has been assigned a routeruv

c
1. The third and fourth parameter

denote the first two moments of the packet size of classc flow,
respectively. We shall use the following notation:
• λcl - mean packet arrival rate of classc flow into the queue

(reserved for classc) associated with the linkl,

1Where required we will use superscriptuv for the class flow parameters
(λc, c2c) to designate to which OD pair(u, v) ∈ Π the flow is assigned.
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Fig. 3. Network queueing model

• c2
cl - SQV of the packet interarrival time of classc flow

entering the queue (for classc) on the linkl,
• ρcl = λclτcl - traffic intensity (utilisation) of classc on

link l.
By applying the method for superposition (1), the mean packet
arrival rate of classc flow on a link l, can be determined as the
sum of all classc flows, whose routes traverse the linkl:

λcl =
∑

(u,v)∈Π

λuv
c auv

cl (6)

whereauv
cl is an indicator function with value 1 if linkl lies on

routeruv
c and 0 otherwise.

In order to obtain the variability parameter of the internal
class flows i.e.,c2

cl for (l ∈ E, c ∈ Ĉ), we apply the approxi-
mate methods for merging, departure and splitting of GI traffic
flows. We illustrate the procedure for the derivation of the vari-
ability parameter of the internal flows by means of the follow-
ing example. Consider the problem of finding the variability
parameter of a flow on a linkl connecting nodes(j, k), denoted
by c2

jk, in the example network shown in Fig. 2 (for this illus-
tration, we adopt the convention of representing a link with the
pair of nodes that it connects). The two characteristic parame-
ters for the three input flows depicted in the figure are consid-
ered given. The equivalent queueing network model is shown
in Fig. 3.

The procedure for the derivation of the variability parameter
of the internal flow on link(j, k) consists of the following three
steps:

1) Splitting First, find all incoming links to nodej. For
the flow on each incoming link(i, j) ∀i, i 6= j, find the
proportion of it, denoted byqij,jk, which enters the link
(j, k) and subsequently find the mean arrival rateλij,jk

and SQV of inter-arrival timec2
ij,jk of this fractional flow.

The mean arrival rateλij,jk is readily determined from
the routing information for the flows, as the sum of all
flows whose routes traverse the links(i, j) and(j, k) in
sequence. Similarly, from (6), the mean arival rate of the
flow on each incoming link(i, j), λij , is determined as
the sum of all flows whose routes traverse that link. The
proportionqij,jk is then readily computed as:

qij,jk =
λij,jk

λij
(7)

and this is subsequently used for the derivation ofc2
ij,jk

by applying (5).

2) Merging By applying (1) and (2) merge all the fractional
flowsλij,jk, c2

ij,jk (∀i, i 6= j) to derive the mean rate and
the SQV of the inter-arrival time of the flow entering link
(j, k), represented byλ∗jk, c∗2jk.

3) Departure From the input flow to the queue associated
with link (j, k) λ∗jk, c∗2jk, apply (3) to determine the de-
parture flow (i.e., the actual flow on link(j, k), denoted
by λjk, c2

jk.

In step 1, the SQV of the fractional flowc2
ij,jk is found by

applying the splitting method (5) to the SQV of the flow on
link (i, j) as: c2

ij,jk = qij,jkc2
ij + (1 − qij,jk). Subsequently,

we use the values ofc2
ij,jk to determine the values ofc∗2jk and

c2
jk in step 2 and step 3, respectively. Note that, the values of

c2
ij,jk, c∗2jk, c2

jk will not be initially known. According to the
successive approach for network decomposition, the computa-
tion of these values starts with the queues associated with the
links that are incident to the nodes where the external flows en-
ter the network, as the mean rate and the SQV parameter for
the external flows are given. Then, by performing the calculus
for split, merge and departure operations for each flow, the al-
gorithm proceeds until the destination for each of the flows is
reached. For the example in Fig 3, we start by computing the
departure processes from queues(n, i) and (m, i) and subse-
quently merge these two processes to determine the input flow
into queue(i, j). After the departure process from link(i, j)
is derived, this flow is split according to deterministic rout-
ing into two fractional flows. The fraction of the flow on link
(i, j), which enters the downstream queue(j, k) is derived as
qij,jk = λflow1

λflow1+flow2
. Finally, this fractional flow is merged

with flow 3 to determine the input flow into the queue(j, k).
Note that the fraction of flow 3 that goes next to queue(j, l) is
actually equal to zero. As illustrated in this example, the com-
putation of the variability parameters may be done directly by
tracing each flow from its origin to destination. In this case, the
ordering in which the queues are selected for processing plays a
crucial role. This may be difficult to implement, and therefore,
we employ the following iterative procedure.

Figure 4 depicts the iterative procedure that we employ in
determining the parameters of the internal flows for each ser-
vice class. The algorithm executes only if the condition that
all queues in the network are stable is satisfied. The queue is
stable if the traffic intensity (utilisation) is less than unity. The
algorithm starts by initializing the variablity parameters of all
flows before and after entering the queues associated with the
links in the network, as well as the variablity parameters of all
fractional flows. Specifically, the initialization process first sets
the values of the variability parameters of all fractional flows to
zero. Further, the variability parameters of all flows on the links
(i.e., after the queues on the links) are set to zero. Finally, the
variability parameters of all flows before entering the queues
on the links are also set to zero, except for the links which rep-
resent first traversing links in the paths through the network of
the external flows. The variability parameters of such flows are
computed from the variability parameters of the external flows
by applying the calculus for the merge operation (2) if more
than one external flow traverses the given link. For clarity, in
the flow chart (Fig 4) the queues (associated with the links in
the network) are indexed by numbers from0 to E − 1, with E
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Fig. 4. Algorithm for determining internal flows

being the total number of links in the network. The algorithm
proceeds by performing the calculus for the three basic oper-
ations for each queue independently. The order in which the
algorithm selects the queues for processing, in general, may be
arbitrary. After each queue in the network has been considered
the algorithm will execute another iteration if a suitable conver-
gence criterion has not been met. Convergence is reached when
the maximum relative error of the variability parameters of the
flows on all links in the network between two consecutive it-
erations becomes less than or equal to a predefined sufficiently
small value. That is, for a given classc the stopping criteria is

defined bymax
{∣∣∣∣

c2
cl−ĉ2

cl

ĉ2
cl

∣∣∣∣
}

l∈E

≤ ε with c2
cl andĉ2

cl denoting

the variablity parameters of the internal classc flow on link l,
as computed in the last and second last iteration, respectively,
andε = 0.0001 (for example).

From the models for superposition of GI processes as they
enter the queue and for the departure from a queue it should
be noted that the respective input and output processes depend
on the traffic intensity at the queue. Specifically, the variability
parameter of classc flow on each linkl in the network,c2

cl, de-
pends on the traffic intensity of the queue associated with class
c on each link,ρcl. The traffic intensityρcl, on the other hand,
is a function of the portion of the capacity of linkl allocated
to classc, which we actually need to determine. Therefore, we
shall calculate the internal flows (e.g., the variability parameters
of the flows) iteratively, as part of the dimensioning procedure,
as discussed in the next section.

IV. D ETERMINING CLASS-BASED BANDWIDTH

ALLOCATIONS ON L INKS

The bandwidth required for each delay-sensitive classc on a
link l, which we denote bybcl, can be determined from the traf-
fic characteristics of the total amount of classc traffic on a link
l and its delay (QoS) constraint for that linkqcl, by inverting an
approximate delay formulaF ; that is, findbcl where:

qc l = F (λcl, c
2
cl, bcl) c = 1, 2, . . . , Ĉ .

For this purpose, we analyse the GI / G /1 delay performance
model. The delay (QoS) constraint for a traffic class on a link,
qcl, can be expressed in terms of the mean delay and the vari-
ance of the delay, which we denote asdcl, andσ2

d cl, respec-
tively.

The mean delay of a packet from classc on a linkl represents
the sum of the waiting time of the packet in the queue until it is
being serviced,Wcl, and the service time of the packet,τcl:

dcl = Wcl + τcl . (8)

In a similar way, the variance of the delay for a packet of class
c on a link l, is the sum of the variance of the waiting time of
the packet in the queue,σ2

W cl, and the variance of the service
time of a packet,σ2

τ cl:

σ2
d cl = σ2

W cl + σ2
τ cl . (9)

The mean delay for a packet of classc in the queue associated
with classc on a link l may be approximated using the QNA
approximation (Kramer and Langenbach-Belz approximation)
[10] as follows:

Wcl =
τclρcl(c2

cl + c2
s cl)g

2(1− ρcl)
(10)

whereg ≡ g(ρcl, c
2
cl, c

2
s cl) is defined as

g(ρcl, c
2
cl, c

2
s cl) =





exp
[
− 2(1−ρcl)(1−c2

cl)
2

3ρcl(c2
cl+c2

s cl)

]
for c2

cl < 1 ,

1 for c2
cl ≥ 1 ,

(11)
and:
• τcl is the mean service time of a packet of classc on link l

i.e, the time it takes for the mean sized packet of classc to
be transmitted on the link which has capacitybcl:

τcl =
Xcs

bcl
, (12)

• c2
s cl is the SQV of the service time for a packet of class

c, which is the variance of the service time divided by the
square of its mean and after some algebraic manipulation
it can be shown that it is equal to the SQV of the packet
size,σ2

X c:

c2
s cl =

X2
c −Xc

2

Xc
2 = σ2

X c , (13)

• bcl is the service rate or bandwidth allocated to classc (in
bps) on linkl, ands is a scaling factor (s = 8, as 1 byte =
8 bits).
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The variance of the queueing delay for packets of classc in
the queue may be approximated by using the QNA model result
[10] as follows:

σ2
W cl = W 2

clc
2
W cl (14)

wherec2
W cl is the SQV of the queueing delay defined by

c2
W cl =

c2
D + 1− χ

χ
(15)

with χ denoting the probability of delayχ = P{Wq > 0},
which is given by

χ = ρcl + (c2
cl − 1)ρcl(1− ρcl)h , (16)

h =





1+c2
cl+ρclc

2
s cl

1+ρcl(c2
s cl−1)+ρ2

cl(4c2
cl+c2

s cl)
for c2

cl < 1 ,

4ρcl

c2
cl+ρ2

cl(4c2
cl+c2

s cl)
for c2

cl ≥ 1 ,
(17)

and

C2
D = 2ρcl − 1 +

4(1− ρcl)α
3(c2

s cl + 1)2
, (18)

α =

{
3c2

s cl(1 + c2
s cl) for c2

s cl ≥ 1 ,

(2c2
s cl + 1)(c2

s cl + 1) for c2
s cl < 1 .

(19)

The variance of the service time of a packet,σ2
τ cl, is given by:

σ2
τ cl = τ2

clc
2
s cl.

The algorithm for determining the bandwidth allocations for
the delay-sensitive classes is described in figure 5. Based on
the given topology, offered class flows, routing information and
link delay QoS constraints for each class of traffic, the algo-
rithm returns class-based bandwidth allocations for all links in
the network. Initialization of the algorithm involves assigning
starting values for the service times at the nodes for each traffic
class, respectively. The service times for the classes are speci-
fied by the two parameters(τcl, c

2
s cl) and their initial values are

computed from the first two moments of the packet size for the
classes and their initial fixed capacity shares on the links,b̂cl, by
applying (12) and (13), respectively. The fixed capacity shares
of each class on the links,̂bcl, are initially set to sufficiently
large values in the following way:̂bcl ≥ λclXcs

ρinit
, whereρinit is

the value for the initial traffic intensities of all link queues in
the network i.e.,ρcl = ρinit (l ∈ E), which we set to an appro-
priately small value e.g.,10−3. The mean arrival rates of the
internal class flowsλcl (l ∈ E, c ∈ Ĉ) are computed from (6).

Once the initialisation step is completed the variability pa-
rameters of the internal class flows are computedc2

cl (l ∈ E, c ∈
Ĉ), by applying the algorithm described in figure 4. After
the internal flows have been determined, the algorithm cycles
through the classes and, on a link by link basis, determines their
required bandwidth allocationsbcl by numerically inverting a
delay formula, a variance of delay formula or both depending
on the type of class considered. Fordelay-sensitivetype service
class we need to find the value of its bandwidth allocation on
a link for which the resulting link delay would be less than or
equal to its link delay constraint. Similarly, forjitter-sensitive

Input: G(V, E), rc =
{ruv

c }(u,v)∈Π, qc = {qcl}l∈E ,

Λc = {(λc, c2c , Xc, X2
c )}ruv

c ∈rc for

c ∈ Ĉ.

Output: bcl = {bcl}l∈E for all QoS
sensitive classes.

1 for classc = 1 to C − 1

2 for all link (l ∈ E)

3 τcl ← Xcs

b̂cl
, c2s cl ← c2X c

4 for classc = 1 to C − 1

5 switch (qc)

6 caseqc = {dcl}l∈E

6a for all link (l ∈ E)

6b Calculate internal flows:{(λcl, c
2
cl)}l∈E ,

6c Invert the delay formula (8) to derivebcl,

6d if max

{∣∣∣∣ bcl−b̂cl

b̂cl

∣∣∣∣
}

l∈E

> ε

6e b̂cl ← bcl for ∀l and repeat steps 3,6.

7 caseqc = {σ2
d cl}l∈E

7a The same as step 6, except in 6c, invert the
variance formula (9) to derivebcl.

8 caseqc = {dcl, σ
2
d cl}l∈E

8a do steps 6 and 7 to get(bcl)step 6 and(bcl)step 7 for ∀l,
8b bcl ← max{(bcl)step 6, (bcl)step 7} for ∀l.
9 return the set of class-based link capacitiesbcl.

Fig. 5. Algorithm to determine class-based bandwidth allocations

type service class we need to find the value of its bandwidth al-
location on a link such that its jitter link constraint is satisfied.
In the case ofdelay- and jitter-sensitiveservice class we are
given two constraints for each link, one for the delay and one
for the jitter, respectively. As before, we need to find the band-
width allocations which are required to satisfy these constraints
individually. The bandwidth allocation for this class would then
be the maximum of these two values.

The algorithm calculates the internal flows and the class-
based bandwidth allocations iteratively, until the class-based
bandwidth allocations on the links converge. The iterative pro-
cess stops when the maximum relative error of the class-based
bandwidth allocations on all links between two consecutive it-
erations becomes less than or equal to a specified sufficiently

small value e.g.,max
{∣∣∣ bcl−b̂cl

b̂cl

∣∣∣
}

l∈E
≤ ε whereε = 0.0001.

For inverting the delay and the variance formulae in steps
7c. and 8c., respectively, we have used two different iterative
methods, which we discuss in the next section. One is based
on Newton’s method and the other one is based on an algebraic
transformation of the given formula. In practice, we have found
both methods converge very rapidly, so that either method can
be used.

Having obtained the bandwidth required for each delay-
sensitive traffic class on a link,bcl (c = 1, 2, .., Ĉ), the total
capacity of the actual link (i.e., link setup capacity), can be de-
termined as the minimum capacity of all available capacities
on the link that is higher than the linear sum of the individual
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bandwidth allocations for the classes i.e.:

θsetup
l = mod




Ĉ∑
c=1

bcl




(20)

wheremodd·e is a ceiling function. The set of these link setup
capacitiesθsetup

l (l ∈ E) will determine the required input for
the solution of the optimisation problem considered in [7].

A. Iterative Methods for Class-based Bandwidth Allocations

As discussed in the previous section, the bandwidth required
for a delay-sensitive class on a link can be determined from
the traffic characteristics of its total flow on the link and its
delay (QoS) constraint for that link by inverting an approximate
delay performance formula. Based on the type of the delay
(QoS) constraint for the class, an inversion of a delay and/or
variance of the delay formula is performed for this purpose.
In the following, we outline the iterative procedures employed
for the inversion of a link delay formula. The details of the
respective procedures for the variance of the delay formula can
be found in Appendix B.

The total time of a packet spent at a queue associated with a
link, represents the sum of the waiting time in the queue and the
time it takes for the packet to be transmitted on the link. Thus,
the total delay for a packet of classc at link l is given by:

dcl =
ρcl

λcl

[
1 +

ρcl(c2
cl + c2

s cl)g
2(1− ρcl)

]
. (21)

Considering the above link delay formula, we want for a given
link delay constraint,dcl, traffic arrival and service character-
istics,λcl, c

2
cl, c

2
s cl, to obtain a solution for the link queue util-

isationρcl. Having determined the link queue utilisation,ρcl,
we can directly derive the mean service timeτcl = ρcl

λcl
, as well

as the service capacity on the linkl i.e., the bandwidth alloca-
tion for classc on a link l, bcl = λclXcs

ρcl
, (λclXcs is the mean

flow rate of classc in bit/sec entering the queue at linkl). Note
that, in the delay formula given above the parameterg can take
one of two possible values, depending on the SQV of the arrival
flow in the queue,c2

cl (see equation (11)) and, thus, two itera-
tion procedures are required for the computation ofρcl (one for
each case).

For the solution ofρcl in the above delay formula we employ
two standard iterative methods for solving equations of the form
f(x) = 0. Thus, we first rewrite (21) in this form for both cases
(the subscript indexing the link queuecl is suppressed in the
following for clarity):

Case 1: c2 ≥ 1

f1(ρ) = ρ2(c2 + c2
s − 2) + 2ρ(1 + λd)− 2λd = 0 , (22)

Case 2: c2 < 1

f2(ρ) = ρ2
[
(c2 + c2

s)e
−A − 2

]
+2ρ(1+λd)−2λd = 0 (23)

where:

A =
2(1− ρ)(1− c2)2

3ρ(c2 + c2
s)

.

1) Algebraic Transformation Iterative Method:In the first
iterative method, the equations (22) and (23) are transformed
algebraically into the formρ = g(ρ). Then the correspond-
ing iteration procedure is given byρn+1 = g(ρn). The itera-
tion process defined in this way, is said to be convergent forρ0

if the corresponding sequenceρ0, ρ1, ρ2, . . . is convergent. A
sufficient condition for convergence is|g′(ρ) < 1|. In order to
apply this method, (22) is transformed in the following way:

ρ = g1(ρ) =
2λd

ρ(c2 + c2
s − 2) + 2(1 + λd)

,

which results in the following iteration procedure for case 1
(i.e., c2 ≥ 1):

ρn+1 =
2λd

ρn(c2 + c2
s − 2) + 2(1 + λd)

(n = 0, 1, 2, . . .) .

(24)
Similarly, for case 2 (i.e.,c2 ≤ 1), (23) can be transformed in
the following way:

ρ = g2(ρ) =
2λd

ρ [(c2 + c2
s)e−A − 2] + 2(1 + λd)

,

and consequently the iteration procedure for case 2 (i.e.,c2 <
1) is given by:

ρn+1 =
2λd

ρn [(c2 + c2
s)e−A − 2] + 2(1 + λd)

(n = 0, 1, 2, . . .) .

(25)
2) Newton’s Iterative Method: Newton’s method (also

called the Newton-Raphson method) can also be used for so-
lution of equations of the formf(x) = 0, wheref is differen-
tiable. In some cases, it produces faster convergence than the
previous method. According to this method, the general for-
mula for the iteration procedure in our case is given by:

ρn+1 = ρn − f(ρn)
f ′(ρn)

(n = 0, 1, 2, . . .) . (26)

Specifically, the iteration procedure for case 1 (i.e.,c2 ≥ 1),
wheref(ρ) is given by (22), after some algebraic transforma-
tions can be written as follows:

ρn+1 =
ρ2

n(c2 + c2
s − 2) + 2λd

2ρn(c2 + c2
s − 2) + 2(1 + λd)

. (27)

Similarly, the iteration procedure for case 2 (i.e.,c2 < 1),
wheref(ρ) is given by (23), after some algebraic transforma-
tions can be written as follows:

ρn+1 =
ρ2

n

[
γ

(
1− ρnA ∂A

∂ρn

)
− 2

]
+ 2λd

ρn

[
γ

(
2− ρnA ∂A

∂ρn

)
− 4

]
+ 2(1 + λd)

(28)

with

A
∂A

∂ρn
= −4(1− ρn)(1− c2)4

9ρ3
n(c2 + c2

s)2
and γ = (c2+c2

s )e
−A .

For the inversion of the variance of the delay formula, given
in (9), four iteration procedures are required for the computa-
tion of ρcl, as there are four distinctive cases to be considered.
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Depending on the SQV of the arrival flow in the queue,h in
(16) can take two possible values. Similarly,α in (18) can take
one of two possible values, depending on the SQV of the ser-
vice time for a packet, thus, resulting in altogether four possible
cases for the variance formula, which need to be considered in-
dependently in the iterative procedures. For details on the itera-
tive procedures employed for the variance of the delay formula,
see Appendix A.

V. SIMULATION RESULTS

The most critical components of the dimensioning methodol-
ogy presented in this report with respect to accuracy are the ap-
proximate models comprising the renewal-based traffic decom-
position. In this traffic decomposition model, individual queues
are analysed separately after approximately characterising the
external and internal flows as renewal processes. The renewal
processes are characterised by two parameters representing the
arrival rate and SQV of interarrival time, respectively. The ar-
rival rates of the internal flows are computed exactly, whereas
the variability parameters are obtained approximately and this
represents the major approximation of this model. Computing
performance measures for each queue, given its arrival and ser-
vice parameters, also involves an approximation, but the qual-
ity of this approximation is relatively well understood, and is
pretty good, as reported in [16]. The greatest difficulty with
this decomposition model is determining appropriate variabil-
ity parameters for the arrival processes to the queues.

In the following, we present a simulation study to assess
the capability of the proposed dimensioning methodology in
delivering the end-to-end delay QoS guarantees for the traffic
classes. The test scenarios used in our simulation study are sim-
ple, but sufficiently illustrative, to indicate the quality that can
be expected from the proposed dimensioning method across a
wide range of traffic input parameters and traffic intensities at
the nodes.

For this study, we have used the ns-2 simulation tool [17].
It is a stochastic discrete-event network simulation tool which,
since its development in 1989, has become very popular within
the research community. As ns-2 is an open-source project, it
is possible to integrate new components or modify existing im-
plementations of components within the object-oriented archi-
tecture of ns-2. This enabled us to construct specific simulation
scenarios relevant for our study. In addition to ensuring that a
valid simulation model is used, two other main issues that have
to be addressed for ensuring validity of a simulation study are
[18]: (1) application of appropriate pseudo-random generators
of independent uniformly distributed numbers, and (2) appro-
priate analysis of simulation output data.

The source of randomness in ns-2 is provided by a random
number generator (RNG), which implements the well-known
“minimal standard” generator, originally designed for the IBM
System/360 [19] and later improved by Park and Miller in [20].
However, a main shortcoming of this RNG is the length of its
cycle 232 − 1, which with the recent advances in computing
power becomes obsolete in all but very short lasting simulation
studies. In order to overcome this pitfall, we have integrated the
current state-of-the-art RNG, known as theMersenne Twister
into the ns-2 RNG component. The Mersenne Twister RNG,

proposed by Matsumoto and Nishimura in [21], has an astro-
nomical cycle length of219937 − 1, and good virtual random-
ness in up to 623 dimensions, for up to 32-bit accuracy. The
source code for this RNG is freely available at the Mersenne
Twister home page [22].

In a simulation study, a sampling experiment is performed on
a set of random variables, and, as in traffic measurements, the
output is subject to statistical errors. Statistical error associated
with a result obtained from a statistical experiment is measured
by the corresponding confidence interval at a given confidence
level. As the width of a confidence interval (in any correctly
implemented simulation) decreases with the number of samples
taken, we have performed sufficiently long simulation runs to
permit useful interpretation of the results.

There are a number of possible methods for recording the
statistics from a simulation study in order to determine confi-
dence intervals for the performance indicators that are under
study. Our approach throughout this thesis is to use the repli-
cation method with individual warm-up periods prior to each
simulation. A simulation study consists of a number of runs
where, after each run, statistics on the performance indicators
(i.e., end-to-end delay) are taken and accumulated for each traf-
fic stream in the network. As we are interested in studying the
behaviour of the network in the steady-state, data collected dur-
ing the warm-up periods are not used to calculate the estimates
of the performance measures. At the conclusion of the simu-
lation, the accumulated statistics are used to find the average
performance of the traffic streams and confidence limits are ob-
tained using standard statistical theory. For calculating steady-
state confidence limits of mean values, see for example [23].

The external arrival processes in the proposed dimensioning
model represent class-based aggregates offered to the network
and along with their associated static routes they define the set
of traffic streams (or class flows) in the network. In our simu-
lation experiments each traffic stream (TS) is modelled as a hy-
perexponential process, which represents a suitable model for a
bursty renewal traffic since its squared coefficient of variation
of inter-arrival times is always greater than unity. Specifically,
the interarrival times for the packets are generated according
to hyperexponential distribution with two transient statesHb

2 ,
i.e., the mixture of two exponential distributions with balanced
means: one with meanm1 realized with probabilityp and the
other with meanm2 realized with probability1 − p, where
pm1 = (1− p)m2.

Analysis of the results for the performance of the dimension-
ing model is performed by applying the following three-step
procedure:

1) First, for a given network model, set of traffic streams and
their corresponing end-to-end delay, as well as, link delay
requirements, run the CA algorithm to determine the re-
quired bandwidth allocations on the links in the network.

2) Run ns-2 for the same network model and set of traffic
streams by setting the link capacities in the network ac-
cording to the output results of the CA algorithm.

3) Compare the delay statistics for the OD pairs in the net-
work obtained from the simulator with the target values
specified at input, in order to examine the capability of
the dimensioning model to deliver the end-to-end delay
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Fig. 6. Simple test network

TABLE I
INPUT TRAFFIC STREAMS

Number Mean- λ SQV- c2

1 0.5 1.5
2 1.0 2.0
3 1.5 3.5
4 2.0 6.0
5 3.0 8.0

guarantees.

Since, the dimensioning model considers the different traffic
classes separately and determines their bandwidth allocations
on the links independently, in the experiments we have consid-
ered the case of a single delay-sensitive service class only. The
purpose is to assess the capability of the proposed dimension-
ing methodology in determining the bandwidth allocations on
the links in the network for a given delay-sensitive service class
so that the end-to-end delay QoS requirements for that class
are guaranteed. Since the network dimensioning model effec-
tively does not take account of the statistical multiplexing at the
nodes, the capability of the designed network in delivering the
end-to-end delay QoS guarantees for a given service class will
always be better than the performance of the individual service
class case.

The specific network model that we analyse consists of 4
nodes and 3 links (see Fig 6). A single service class is con-
sidered and the traffic offered to the network is comprised of
a number of traffic streamsn, assigned between each OD pair
i.e., OD pair(1, 4) and(2, 4), respectively. We consider twenty
different cases for the traffic load in the network involving two
values ofn, n = 10 and20 (which result in total of 20 and
40 traffic streams in the network, respectively) and five differ-
ent types of traffic streams, each having different values for the
mean packet arrival rate(λ) and SQV of interarrival times(c2)
as defined in Table I. The packet size for the traffic streams is
set to a constant value of1000 bytes, thus, our model results
in a network of GI / D /1 queues. Note that we are testing our
model with very bursty traffic streams whose arrival rates vary
significantly, as for example, TS 5 has a packet arrival rate that
is six times higher than the rate of TS 1. Whitt reported in [11],
[15] that the reliability of the approximations used in the QNA
decreases when the variability of the external arrival processes

TABLE II
END-TO-END PACKET DELAY RE FOR VARIOUS TRAFFIC INPUTS AND

TRAFFIC INTENSITIES AT THE NODES FROM0.30 TO 0.65

Simulation Simulation CA model CA model

d(1,4) [msec] d(2,4) [msec] RE ford(1,4) RE ford(2,4)

107.75 92.51 −2.04 −2.62
(± 3.2e-5) (± 2.0e-5) −− −−

107.04 89.88 −2.69 −5.38
(± 2.9e-4) (± 1.3e-5) −− −−

106.05 87.31 −3.59 −8.08
(± 2.3e-5) (± 1.1e-5) −− −−

104.82 83.12 −4.70 −12.50
(± 4.6e-5) (± 2.4e-5) −− −−

105.80 88.82 −3.81 −6.50
(± 7.5e-5) (± 4.7e-5) −− −−

105.01 86.89 −4.53 −8.53
(± 3.3e-5) (± 4.2e-5) −− −−

104.04 82.38 −5.41 −13.28
(± 6.3e-5) (± 5.4e-5) −− −−

102.58 85.91 −6.74 −9.56
(± 2.8e-5) (± 1.9e-4) −− −−

101.99 82.27 −7.28 −13.40
(± 1.3e-4) (± 9.2e-5) −− −−

99.35 81.73 −9.68 −13.96
(± 4.5e-4) (± 5.3e-4) −− −−
−− −− 5.04 9.37

increases and when the arrival processes are not in the same
time scale (i.e., do not have similar rates). Thus, our intention
is to test the dimensioning model with traffic loads of such char-
acteristics that can potentially expose its worst performance.

The packet delay requirements for the traffic aggregates be-
tween the OD pairs is 110 msec and 95 msec, respectively (see
Fig 6). The link delay requirements are as follows:d1−3 = 85
msec,d2−3 = 70 andd3−4 = 25 msec, where the subscript
denotes the connecting nodes of the link.

The first test we performed consideredn = 10 traffic streams
of type i between the OD pair(1, 4) and 10 traffic streams of
type j between the OD pair(2, 4), wherei, j = {1, 2, 3, 4, 5}
andi 6= j. In this case, all combinations for(i, j) were con-
sidered, which results in 10 different traffic load scenarios. The
link bandwidth allocations obtained from the CA algorithm for
all traffic load scenarios considered in this test resulted in traf-
fic intensities at the nodes (links)ρi(i = 1, 2, 3) that fall in the
range from 0.30 to 0.65 (i.e.,ρi = λi1000·8

bli
wherebli is the link

bandwidth in bps). Thus, this simulation test assesses the accu-
racy of the dimensioning model for the(0.30 − 0.65) range of
traffic intensities at the nodes in the network.

For each test scenario (i.e.,(i, j) pair) network simulation
experiment was set up based on the link capacities obtained
from the dimensioning model. For each experiment we per-
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formed nine simulations with different seeds for the random
number generator. The estimates of the mean packet delays
were computed based on the replication method and 95-percent
confidence intervals were obtained assuming a Student-t distri-
bution. The results for all combinations of(i, j) traffic streams
andn = 10 are summarised in Table II. Each row in the ta-
ble indicates the traffic load scenario considered in the test. For
example, the test scenario in the first row consists of 10 traffic
streams of type 1 assigned between the OD pair(1, 4) and 10
traffic streams of type 2 between the OD pair(2, 4). The first
and second column show the results obtained from the simula-
tions for the mean packet delay of the traffic aggregates between
the node pairs(1, 4) and(2, 4), respectively, in the capacitated
network. The confidence limits are given in parentheses below
the simulation estimates. Columns three and four show the rel-
ative percentage errors for the mean packet delays between the
two node pairs with respect to the target delays, respectively,
which are defined as

RE =
Simulation delay − Target delay

Target delay
· 100% . (29)

At the bottom of the table are the average absolute relative per-
cent errors (ARE) for each OD pair, respectively, which are
defined asARE =

∑10
i=1 |REi|/10.

The table shows the difference between the end-to-end
packet delays in the capacitated network and the delay re-
quirements given at input for various traffic loads for which
the resulting traffic intensities at the nodes fall in the range
(0.30− 0.65). It can be seen that, for this range of traffic inten-
sities, the dimensioning model performs well with ARE for the
two OD pairs of7.20%.

The second test we performed consideredn = 20 traffic
streams of typei between the OD pair(1, 4) and 20 traffic
streams of typej between the OD pair(2, 4), wherei, j =
{1, 2, 3, 4, 5} and i 6= j. Similarly to the previous test, all
combinations for(i, j) were considered, which results in 10
different traffic load scenarios. Also, the same packet delay re-
quirements for the traffic aggregates between the two OD pairs,
as well as, link delay requirements are considered. Based on
the given traffic demands for this set of test scenarios and the
delay requirements, the link bandwidths computed by the CA
algorithm resulted in traffic intensities at the nodes, which fall
in the range fromρi = 0.50 to ρi = 0.90 (i = 1, 2, 3). The
results for all combinations of(i, j) traffic streams andn = 20
are summarised in Table III.

The results in Table III show that for the case of various traf-
fic loads, which result in traffic intensities at the nodes in the
range(0.50 − 0.90), the dimensioning model performs well
with ARE for the node pairs delay requirements of8.97%.
These results together with the results from Table II lead us
to conclude that the dimensioning model performs well with
repect to guaranteeing the end-to-end delay requirements for
the traffic demands in the case of various tarffic loads and traf-
fic intensities at the nodes in the range of(0.30− 0.90). In our
analysis we did not consider the case where traffic intensities at
the nodes fall out of this range as such cases are not of practical
interest when considering a well planned functional network.

In all cases, the dimensioning model slightly overprovisions
the network, as the mean delays obtained in the capacitated net-

TABLE III
END-TO-END PACKET DELAY RE FOR VARIOUS TRAFFIC INPUTS AND

TRAFFIC INTENSITIES AT THE NODES FROM0.50 TO 0.90

Simulation Simulation CA model CA model

d(1,4) [msec] d(2,4) [msec] RE ford(1,4) RE ford(2,4)

105.95 90.46 −3.68 −4.77
(± 8.1e-5) (± 9.3e-5) −− −−

104.20 87.15 −5.27 −8.26
(± 8.7e-5) (± 8.2e-5) −− −−

102.88 85.95 −6.47 −9.52
(± 1.0e-4) (± 1.2e-4) −− −−

100.61 81.79 −8.53 −13.90
(± 2.2e-4) (± 2.5e-4) −− −−

103.40 86.04 −6.00 −9.43
(± 3.0e-5) (± 3.6e-4) −− −−

101.73 85.18 −7.51 −10.33
(± 7.3e-4) (± 6.2e-4) −− −−

101.08 81.34 −8.10 −14.37
(± 4.9e-5) (± 5.3e-4) −− −−

101.12 84.59 −8.07 −10.95
(± 3.7e-4) (± 4.2e-4) −− −−

99.58 82.60 −9.47 −13.05
(± 5.0e-4) (± 5.2e-4) −− −−

99.95 83.01 −9.13 −12.62
(± 6.3e-4) (± 6.8e-4) −− −−
−− −− 7.22 10.72

work are always less than the specified end-to-end delay con-
straints. Thus, the performance of the network is guaranted
to be better than what is required by the delay-sensitive traffic
classes. The results also indicate, as expected, that the reliabil-
ity of the approximations used in QNA and, thus the accuracy
of the dimensioning model, decreases when the variability of
the external arrival processes increases (e.g.,c2 > 6) and when
the arrival processes have rates that vary significantly.

VI. CONCLUSIONS

In this report, we presented a dimensioning model for the so-
lution of the CA problem. Specifiicaly, it determines bandwidth
allocations for the delay-sensitive traffic classes, as well as the
total continuous bandwidth of the links by taking into account
the varying delay requirements (QoS) of the traffic classes. This
model allows the burstiness of IP traffic to some extent to be
modelled, however, it cannot handle correlations often observed
in real input traffic. Although it lacks modelling accuracy in de-
scribing the characteristics of the external and internal IP traffic
flows, this model is very computationaly efficient and, there-
fore, is appropriate to be used as a solution method for problem
CA when large size networks are being considered. Not only
should this model be used in this case, due to its efficiency,
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but also because it provides a reasonable solution method when
large networks, as well as large aggregates of individual flows
into service classes are considered. This is due to the multi-
plexing which occurs on a very large scale in this case and, as
a result, the correlations significantly reduce due to the inter-
mixing of packets from different traffic streams.

The proposed algorithm for the solution of the CA prob-
lem consists of two main algorithmic steps. In the first step,
from the offered class flows to the network and the given rout-
ing information characterisation of the internal class flows is
achieved by applying the methods for superposition, departure
and splitting of GI traffic arrival processes as provided by the
famous QNA approach. For this purpose we have incorporated
the QNA procedures in an efficient algorithm for computation
of the variability parameters of the internal flows. Having de-
termined the internal class flows, the second step employs an
algorithm, which on a link by link basis determines the class-
based bandwidth allocations by numerically inverting a delay
formula, a variance of delay formula or both depending on the
type of class considered. For the inversion of the delay and
variance of the delay formulae we have devised two iterative
procedures.

Although, the required building blocks for consideration of
a service class which is sensitive to the variations of the delay
(i.e., jitter) are developed, they haven not been implemented
into the dimensioning tool. Therefore, in this report we have
evaluated the capability of the dimensioning model in gurantee-
ing the end-to-end delays only for the service classes. The sim-
ulation study validated the modelling approach and confirmed
that in the case of renewal traffic inputs the dimensioning model
performs well with respect to guaranteeing the end-to-end de-
lay requirements for the traffic demands. The accuracy of the
model has been demonstrated for various burstiness character-
istics of the traffic load and for a wide range of the traffic inten-
sities at the nodes.

Finally, we recognize that the dependence (i.e., correlation
of inter-arrival times) in both external and internal arrival pro-
cesses deserves further emphasis, especially when smaller sized
networks are considered and, therefore, in [24] we have consid-
ered development of a dimensioning model that takes account
of this dependence.

APPENDIX A

The following four distinctive cases have to be considered in
the iteration procedures for inversion of the variance of the de-
lay formula, given in (9) (the subscript indexing the link queue
c l is suppressed for clarity):
• Case 1:c2 ≥ 1 andc2

s ≥ 1,
• Case 2:c2 ≥ 1 andc2

s < 1,
• Case 3:c2 < 1 andc2

s ≥ 1,
• Case 4:c2 < 1 andc2

s < 1.
For the solution ofρ in the variance of the delay formula

(from which we can directly obtain the service capacity or
bandwidth required on a link) we employ the two iterative
methods for solving equations of the formf(x) = 0, as dis-
cussed in Section IV-A. For this purpose, we first rewrite (9) in
this form in a general way that is applicable to all four cases,
where the subscripti indicates the case under consideration:

Case i:

f(i)(ρ) =
ρ2

λ2
c2
s+

(
ρ4(c2 + c2

s)2g2
(i)

4λ2(1− ρ)2

) (
c2
D(i) + 1

χ(i)
− 1

)
−σ2

d = 0

(A.1)
where bothg(i) andχ(i) depend only on the variability param-
eter of the arrival process,c2, andc2

D(i) depends only on the

variability parameter of the service timec2
s. Their respective

values for all four cases are as follows:

c2
D(i) =





2ρ− 1 + 4(1−ρ)c2
s

c2
s+1 i = 1, 3 (c2

s ≥ 1)

2ρ− 1 + 4(1−ρ)(2c2
s+1)

3(c2
s+1) i = 2, 4 (c2

s < 1) ,

χ(i) =





ρ + 4ρ2(1−ρ)(c2−1)
c2+ρ2(4c2+c2

s) i = 1, 2 (c2 ≥ 1)

ρ + ρ(1−ρ)(c2−1)(1+c2+ρc2
s)

1+ρ(c2
s−1)+ρ2(4c2+c2

s) i = 3, 4 (c2 < 1) ,

g(i) =





1 i = 1, 2 (c2 ≥ 1)

e
− 2(1−ρ)(1−c2)2

3ρ(c2+c2s) i = 3, 4 (c2 < 1) .

After some algebraic manipulations we rewrite (A.1) in the
following way:

f(i)(ρ) = a6(i)ρ
6+a5(i)ρ

5a4(i)ρ
4+a3(i)ρ

3+a2(i)ρ
2+a1(i)ρ+a0(i) = 0

(A.2)
where the parametersa6(i), a5(i), a4(i), a3(i), a2(i), a1(i), a0(i)

for each casei = 1, 2, 3, 4 are given below:

Case 1:c2 ≥ 1 andc2
s ≥ 1

a6 = 8c2c2
s + 3(c2

s)
4 − 16(c2

s)
2 + 4(c2)2 + 19(c2)2(c2

s)
2 −

2c2(c2
s)

2 − (c2
s)

3 + 8(c2)3c2
s − 8(c2)3 − 13(c2)2c2

s +
14c2(c2

s)
3 − 16c2

s

a5 = −20c2(c2
s)

2 + 4(c2
s)

3 + 52(c2
s)

2 − 28(c2
s)

2(c2)2 −
24c2c2

s + 4c2
s(c

2)2 + 48c2
s − 20(c2

s)
3c2 − 4(c2

s)
4 −

12(c2)3c2
s + 4(c2)3 − 4(c2)2

a4 = 20σ2
dλ2c2

s + 28c2c2
s − 2c2

s(c
2)2 + 3(c2

s)
3c2 − (c2)3 +

3(c2)3c2
s + 16σ2

dλ2 + 4σ2
dλ2(c2

s)
2 + 27(c2

s)
2c2 −

48c2
s − 4(c2

s)
3 − 52(c2

s)
2 + 6(c2

s)
2(c2)2

a3 = −8σ2
dλ2(c2

s)
2 − 48σ2

dλ2 − 8(c2
s)

2c2 − 56σ2
dλ2c2

s +
16c2

s − 8(c2
s)

2(c2)2 − 16(c2
s)

2 + 16σ2
dλ2c2c2

s −
4(c2)3c2

s − 4(c2
s)

3c2 + 16σ2
dλ2c2

a2 = 4(c2
s + 1)(σ2

dλ2c2
s − c2c2

s + 12σ2
dλ2 − 7σ2

dλ2c2)
a1 = 8σ2

dλ2(c2 − 2)(c2
s + 1)

a0 = 4σ2
dλ2c2(c2

s + 1)
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Case 2:c2 ≥ 1 andc2
s < 1

a6 = 12(c2)2 + 24c2c2
s + 5(c2

s)
4 − 48(c2

s)
2 − 48c2

s +
21(c2

s)
2(c2)2 + 18(c2

s)
2c2 + (c2

s)
3 + 8(c2)3 −

8(c2)3c2
s − 3c2

s(c
2)2 + 18(c2

s)
3c2

a5 = −8(c2
s)

4 + 8(c2
s)

3 + 156(c2
s)

2 − 24(c2
s)(c

2)2 −
48(c2

s)
2(c2)2 − 84(c2

s)
2c2 − 4(c2)3 − 20(c2)3c2

s +
144c2

s − 72c2c2
s − 36(c2

s)
3c2 − 12(c2)2

a4 = 5(c2)3c2
s + 84c2c2

s + 2c2
s(c

2)2 + 5(c2
s)

3c2 + (c2)3 +
48σ2

dλ2 − 144c2
s + 60σ2

dλ2c2
s + 85(c2

s)
2c2 − 12(c2

s)
3 −

156(c2
s)

2 + 12σ2
dλ2(c2

s)
2 + 10(c2

s)
2(c2)2

a3 = −24σ2
dλ2(c2

s)
2 − 168σ2

dλ2c2
s − 4(c2)3 − 144σ2

dλ2 −
8c2

s(c
2)2 + 48σ2

dλ2c2 + 48c2
s − 16(c2

s)
2(c2)2 −

24c2c2
s − 28(c2

s)
2c2 − 8(c2)3c2

s − 8(c2
s)

3c2 +
48σ2

dλ2c2c2
s + 48(c2

s)
2

a2 = 12(c2
s + 1)(σ2

dλ2c2
s − c2

sc
2 + 12σ2

dλ2 − 7σ2
dλ2c2)

a1 = 24σ2
dλ2(c2 − 2)(c2

s + 1)
a0 = 12σ2

dλ2c2(c2
s + 1)

Case 3:c2 < 1 andc2
s ≥ 1

a6 = 8(c2
s)

3 + 8(c2
s)

2 + 16c2c2
s + 12(c2

s)
2c2 − 4(c2

s)
3c2 +

8e−2A(c2)2c2
s + 2e−2A(c2

s)
3(c2)2 + e−2A(c2

s)
4c2 +

e−2A(c2)3(c2
s)

2 − 11e−2A(c2)3c2
s − 4e−2A(c2

s)
4 −

19e−2A(c2
s)

3c2 − 26e−2A(c2)2(c2
s)

2 +
4e−2A(c2)3 + 4e−2A(c2

s)
2c2

a5 = −16(c2
s)

3 − 16(c2
s)

2 − 32c2c2
s − 20(c2

s)
2c2 −

4(c2
s)

2(c2)2 − 4c2
s(c

2)2 + 12(c2
s)

3c2 + 4e−2A(c2)2c2
s −

e−2A(c2
s)

3(c2)2 − e−2A(c2
s)

4c2 + e−2A(c2)3(c2
s)

2 +
8e−2A(c2

s)
2c2 + 17e−2A(c2)3c2

s + 33e−2A(c2)2(c2
s)

2 +
19e−2A(c2

s)
3c2 + 2e−2A(c2

s)
4 + 4e−2A(c2

s)
3 +

e−2A(c2)4 + e−2A(c2)4c2
s − 4e−2Ac2c2

s −
2e−2A(c2

s)
2 − 2e−2A(c2)2

a4 = 4σ2
dλ2c2(c2

s)
2 + 12(c2

s)
2(c2)2 − 12σ2

dλ2c2c2
s +

16c2c2
s + 8(c2

s)
2 − 16σ2

dλ2c2 − 8σ2
dλ2(c2

s)
2 −

8σ2
dλ2c2

s − 12(c2
s)

3c2 + 4(c2
s)

2c2 + 12c2
s(c

2)2 +
4e−2A(c2

s)
4 − 6e−2A(c2)2c2

s − e−2A(c2
s)

3(c2)2 −
2e−2A(c2)3(c2

s)
2 + 8(c2

s)
3 − 12e−2A(c2

s)
2c2 −

2e−2A(c2)3c2
s + 3e−2A(c2)2(c2

s)
2 + 8e−2A(c2

s)
3c2 −

6e−2A(c2
s)

3 − e−2A(c2)4 + 2e−2A(c2
s)

2 +
2e−2A(c2)2 − e−2A(c2)4c2

s + 4e−2Ac2c2
s

a3 = −12σ2
dλ2(c2

s)
2c2 + 4σ2

dλ2c2
s(c

2)2 + 4σ2
dλ2(c2)2 +

20σ2
dλ2c2c2

s + 4(c2
s)

2c2 + 4c2(c2
s)

3 − 12(c2
s)

2(c2)2 −
12c2

s(c
2)2 + 16σ2

dλ2(c2
s)

2 + 16σ2
dλ2c2

s + 32σ2
dλ2c2 +

4e−2A(c2)2c2
s + 8e−2A(c2

s)
2c2 + 4e−2A(c2

s)
3

a2 = 4(c2
s + 1)(3σ2

dλ2c2c2
s − 2σ2

dλ2c2
s + c2

s(c
2)2 −

4σ2
dλ2c2 − 3σ2

dλ2(c2)2)
a1 = −4σ2

dλ2c2(c2
s + 1)(c2

s − 3c2)
a0 = −4σ2

dλ2(c2)2(c2
s + 1)

Case 4:c2 < 1 andc2
s < 1

a6 = 24(c2
s)

3 + 24(c2
s)

2 + 48c2c2
s − 42e−2A(c2)2(c2

s)
2 −

12(c2
s)

3c2 − 12e−2A(c2)2c2
s + 6e−2A(c2

s)
3(c2)2 +

3e−2A(c2
s)

4c2 + 3e−2A(c2)3(c2
s)

2 − 12e−2A(c2
s)

2c2 −
17e−2A(c2)3c2

s + 36(c2
s)

2c2 − 33e−2A(c2
s)

3c2 −
8e−2Ac2

s
4 − 4e−2A(c2)3 − 4e−2A(c2

s)
3

a5 = −48(c2
s)

3 − 48(c2
s)

2 − 96c2c2
s − 60(c2

s)
2c2 −

12(c2
s)

2(c2)2 + 3e−2A(c2)3(c2
s)

2 + 36(c2
s)

3c2 +
40e−2A(c2)2c2

s − 3e−2A(c2
s)

3(c2)2 − 3e−2A(c2
s)

4c2 −
12c2

s(c
2)2 + 32e−2A(c2

s)
2c2 + 35e−2A(c2)3c2

s +
67e−2A(c2)2(c2

s)
2 + 41e−2A(c2

s)
3c2 + 6e−2A(c2

s)
4 +

16e−2A(c2)3 + 3e−2A(c2)4c2
s − 4e−2Ac2c2

s +
8e−2A(c2

s)
3 + 3e−2A(c2)4 − 2e−2A(c2

s)
2 − 2e−2A(c2)2

a4 = 12σ2
dλ2(c2

s)
2c2 + 36(c2

s)
2(c2)2 − 36σ2

dλ2c2c2
s +

48c2c2
s + 24(c2

s)
2 − 48σ2

dλ2c2 − 24σ2
dλ2(c2

s)
2 −

24σ2
dλ2c2

s − 36(c2
s)

3c2 + 12(c2
s)

2c2 + 36c2
s(c

2)2 +
24(c2

s)
3 + 8e−2A(c2

s)
4 − 6e−2A(c2)2c2

s −
3e−2A(c2

s)
3(c2)2 − 6e−2A(c2)3(c2

s)
2 − 4e−2Ac2c2

s −
6e−2A(c2)3c2

s + 5e−2A(c2)2(c2
s)

2 + 16e−2A(c2
s)

3c2 −
6e−2A(c2

s)
3 − 3e−2A(c2)4 − 2e−2A(c2

s)
2 −

2e−2A(c2)2 − 3e−2A(c2)4c2
s − 12e−2A(c2

s)
2c2

a3 = −36σ2
dλ2(c2

s)
2c2 + 12σ2

dλ2c2
s(c

2)2 + 12σ2
dλ2(c2)2 +

60σ2
dλ2c2c2

s − 36(c2
s)

2(c2)2 − 36c2
s(c

2)2 + 12c2(c2
s)

3 +
48σ2

dλ2(c2
s)

2 + 48σ2
dλ2c2

s + 96σ2
dλ2c2 +

8e−2A(c2)2c2
s + 12c2(c2

s)
2 + 16e−2A(c2

s)
2c2 +

8e−2A(c2
s)

3 + 8e−2Ac2c2
s + 4e−2A(c2

s)
2 + 4e−2A(c2)2

a2 = 12(c2
s + 1)(3σ2

dλ2c2c2
s − 2σ2

dλ2c2
s + c2

s(c
2)2 −

4σ2
dλ2c2 − 3σ2

dλ2(c2)2)
a1 = −12σ2

dλ2c2(c2
s + 1)(c2

s − 3c2)
a0 = −12σ2

dλ2(c2)2(c2
s + 1)

with A = 2(1−ρ)(1−c2)2

3ρ(c2+c2
s) .

In order to apply the first iterative method, as discussed in
Section IV-A, we perform an algebraic transformation of (A.2)
into the formρ = g(i)(ρ) for each casei as follows:

ρ = g(i)(ρ) =
−a0(i)

a6(i)ρ5 + a5(i)ρ4a4(i)ρ3 + a3(i)ρ2 + a2(i)ρ + a1(i)

(A.3)
wherei = {1, 2, 3, 4} and consequently the iteration procedure
for casei is given by:

ρn+1 =
−a0(i)

a6(i)ρ5
n + a5(i)ρ4

na4(i)ρ3
n + a3(i)ρ2

n + a2(i)ρn + a1(i)

(A.4)

CAIA Technical Report 040611A June 2004 Page: 12 of 13



for n = 0, 1, 2, . . ..
According to the second iterative method (Newton’s method)

the general formula for the iteration procedure for casei is
given by:

ρn+1 = ρn −
f(i)(ρn)
f ′(i)(ρn)

(n = 0, 1, 2, . . .) (A.5)

with f(i)(ρ) given in (A.2) and f ′(i)(ρ) = 6a6(i)ρ
5 +

5a5(i)ρ
44a4(i)ρ

3 + 3a3(i)ρ
2 + 2a2(i)ρ + a1(i).

The iteration procedure for casei after some algebraic
transformations can be rewritten as follows:

ρn+1 =
5a6(i)ρ

6 + 4a5(i)ρ
5 + 3a4(i)ρ

4 + 2a3(i)ρ
3 + a2(i)ρ

2 − a0(i)

6a6(i)ρ5 + 5a5(i)ρ44a4(i)ρ3 + 3a3(i)ρ2 + 2a2(i)ρ + a1(i)
.

(A.6)
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