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Figure 3. Redshift distributions,N(z), for the 2dFGRS data (solid lines) and the normalised randomcatalogues generated using the survey luminosity function
(dashed lines) for the (a) SGP and (b) NGP.

and angular scale needed to account for the different redshift dis-
tributions. The solid line in Fig. 2 showswp, and the filled circles
showwz after applying the Limber scale factors. The error bars in
Fig. 2 showw(θ) from the full APM survey (Maddox, Efstathiou
& Sutherland 1996), also scaled to the magnitude limit of the2dF-
GRS parent sample. On scalesθ & 0.03◦ all three measurements
are consistent. On smaller scaleswz is clearly much lower than
wp, showing that the fibre collision effect becomes significantand
cannot be neglected.

The ratio of galaxy pairs counted in the parent and redshift
samples is given by(1 + wp)/(1 + wz), which is shown by the
filled circles in the lower panel of Fig. 2. As discussed in thenext
section, we use this ratio to correct the pair counts in theξ analysis.

3.3 Weighting

Each galaxy and random galaxy is given a weighting factor depend-
ing on its redshift and position on the sky. The redshift dependent
part of the weight is designed to minimize the variance on thees-
timatedξ (Efstathiou 1988; Loveday et al. 1995), and is given by
1/(1 + 4πn(zi)J3(s)), wheren(z) is the density distribution and
J3(s) =

∫ s

0
ξ(s′)s′2ds′. We usen(z) from the random catalogue

to ensure that the weights vary smoothly with redshift. We find that
our results are insensitive to the precise form ofJ3 but we derived
it using a power lawξ with s0 = 13.0 andγs = 0.75 and a maxi-
mum value ofJ3 = 400. This corresponds to the best-fit power law
over the range0.1 < s < 3 h−1Mpc with a cutoff at larger scales.

We also use the weighting scheme to correct for the galax-
ies that are not observed due to the fibre collisions. Each galaxy-
galaxy pair is weighted by the ratiowf = (1 + wp)/(1 + wz)
at the relevant angular separation according to the curve plotted in
the bottom panel of Fig. 2. This corrects the observed pair count to
what would have been counted in the parent catalogue. The open
points in Fig. 2, which have the collision correction applied, show
that this method can correctly recover the parent catalogueresult
and hence overcome the fibre collision problem. Since the random
catalogues do not have any close-pair constraints, only thegalaxy-
galaxy pair count needs correcting in this way. We also triedan
alternative approach to the fibre-collision correction that we used
previously in Norberg et al. (2001, 2002b) where the weight for
each unobserved galaxy was assigned equally to its ten nearest
neighbours. This produced similar results forθ > 0.03◦, but did

not help on smaller scales. All of our results are presented using
thewf weighting scheme. Hence each galaxy,i, is weighted by the
factor,

wi =
1

1 + 4πn(zi)J3(s)
, (1)

and each galaxy-galaxy pairi,j is given a weightwfwiwj , whereas
each galaxy-random and random-random pair is given a weight
wiwj .

3.4 The two-point correlation function, ξ(σ, π)

We use theξ estimator of Landy & Szalay (1993),

ξ(σ, π) =
DD − 2DR + RR

RR
(2)

where DD is the normalised sum of weights of galaxy-galaxy
pairs with particular(σ, π) separation,RR the normalised sum
of weights of random-random pairs with the same separation in
the random catalogue andDR the normalised sum of weights of
galaxy-random pairs with the same separation. To normalisethe
pair counts we ensure that the sum of weights of the random cat-
alogue equal the sum of weights of the real galaxy catalogue,as
a function of scale. We find that other estimators (e.g. Hamilton
1993) give similar results.

The N(z) distributions for the data and random catalogues
(scaled so that the area under the curve is the same as for the ob-
served data) are shown in Fig. 3. It is clear thatN(z) for the ran-
dom catalogues are a reasonably smooth fit toN(z) for the data.
Norberg et al. (2002a) showed that large ‘spikes’ in theN(z) are
common in the mock catalogues, and so similar features in thedata
redshift distributions indicate normal structure.

The resulting estimates ofξ(σ, π) calculated separately for the
SGP and NGP catalogues are shown in Fig. 4, along with the com-
bined result. The velocity distortions are clear at both small and
large scales, and the signal-to-noise ratio is in general very high for
σ andπ values less than20 h−1Mpc; it is ≈ 6 in each1 h−1Mpc
bin ats = 20 h−1Mpc. At very large separationsξ(σ, π) becomes
very close to zero, showing no evidence for features that could be
attributed to systematic photometric errors.

We used an earlier version of the 2dFGRS catalogue to carry
out a less detailed analysis ofξ(σ, π) (Peacock et al. 2001). The
current redshift sample has about 1.4 times as many galaxies,
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Figure 4. Grey-scale plots of the 2dFGRSξ(σ, π) (in 1 h−1Mpc bins) for (a) the SGP region, (b) the NGP region and (c) the combined data. Contours are
overlaid atξ = 4.0, 2.0, 1.0, 0.5, 0.2 and0.1.

though more importantly it is more contiguous, and the revised
photometry has improved the uniformity of the sample. Neverthe-
less our new results are very similar to our earlier analysis, demon-
strating the robustness of our results. The current larger sample al-
lows us to traceξ out to larger scales with smaller uncertainties.
Also, in our present analysis we analyse mock catalogues to ob-
tain error estimates which are more precise than the previous error
approximation (see Section 7.3).

3.5 The redshift-space correlation function, ξ(s)

Averagingξ(σ, π) at constants gives the redshift-space correlation
function, and our results for the NGP and SGP are plotted in Fig. 5
on both log and linear scales. The NGP and SGP measurements dif-
fer by about2σ between20 and50 h−1Mpc, and we find one mock
whose NGP and SGP measurements disagree by this much, and so
it is probably not significant. We tried shiftingM∗ by 0.1 mag to
better fit theN(z) at z > 0.15 in the SGP, and this moved the data
points by∼ 0.2σ for 20 < s < 50 h−1Mpc.

The redshift-space correlation function for the combined data
is plotted in Fig. 6 in the top panel. It is clear that the measuredξ(s)
is not at all well represented by a universal power law on all scales,
but we do make an estimate of the true value of the redshift-space
correlation length,s0, by fitting a localised power-law of the form,

ξ(s) =

(

s

s0

)

−γs

(3)

using a least-squares fit tolog(ξ) as a function oflog(s), using two
points either side ofξ(s) = 1. This also gives a value for the local
redshift-space slope,γs. The best-fit parameters for the separate
poles and combined estimates are listed in Table 1. In the inset
of Fig. 6 we can see, at a low amplitude, thatξ(s) goes negative
between50 . s . 90 h−1Mpc.

In the bottom panel of Fig. 6 we examine the shape ofξ(s)
more carefully. The points are the data divided by a small scale
power law fitted on scales0.1 < s < 3 h−1Mpc (dashed line).
The data are remarkably close to the power-law fit for this lim-
ited range of scales, and follow a smooth break towards zero for
3 < s < 60 h−1Mpc. The measurements from the Hubble Vol-

ume simulation are shown by the solid line, and it matches thedata
extremely well on scaless > 4 h−1Mpc. On smaller scales, where
the algorithm for placing galaxies in the simulation has little control
over the clustering amplitude (as discussed in Section 2.2), there are
discrepancies of order50%.

The meanξ(s) determined from the mock catalogues agrees
well with the true redshift-space correlation function from the full
Hubble Volume. This provides a good check that our weighting
scheme and random catalogues have not introduced any biasesin
the analysis.

3.6 Redshift-space comparisons

Redshift-space correlation functions have been measured from
many redshift surveys, but direct comparisons between different
surveys are not straightforward because galaxy clusteringdepends
on the spectral type and luminosity of galaxies (e.g. Guzzo et
al. 2000; Norberg et al. 2002b; Madgwick et al. 2003). Directcom-
parisons can be made only between surveys that are based on simi-
lar galaxy selection criteria. The 2dFGRS is selected usingpseudo-
total magnitudes in thebJ band, and the three most similar surveys
are the Stromlo-APM survey (SAPM, Loveday et al. 1992), the
Durham UKST survey (Ratcliffe et al. 1998) and the ESO Slice
Project (ESP, Guzzo et al. 2000). The Las Campanas Redshift Sur-
vey (LCRS, Lin et al. 1996, Jing et al. 1998) and Sloan DigitalSky
Survey (SDSS, Zehavi et al. 2002) are selected in theR band, but
have a very large number of galaxies, and so are also interesting for
comparisons.

The non-power-law shape ofξ(s) makes it difficult to com-
pare different measurements ofs0 andγs, because the values de-
pend sensitively on the range ofs used in the fitting procedure. In
Fig. 7(a) we compare theξ(s) measurements directly for the 2dF-
GRS, SAPM, Durham UKST and ESP surveys. Our estimate of
ξ(s) is close to the mean of previous measurements, but the uncer-
tainties are much smaller. Although we quote uncertaintiesthat are
similar in size to previous measurements, we have used the scatter
between mock catalogues to estimate them, rather than the Pois-
son or boot-strap estimates that have been used before and which
seriously underestimate the true uncertainties.
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Figure 5. The redshift-space correlation function for the NGP (open points)
and SGP (solid points) 2dFGRS data with error bars from the rms of mock
catalogue results. Inset plotted on a linear scale.

Figure 6. Top panel: The redshift-space correlation function for thecom-
bined data (points) with error bars from the rms of the mock catalogue re-
sults. The dashed line is a small scale power law fit, (s0 = 13 h−1Mpc,
γs = 0.75) and the dot-dashed line is the best-fit to points arounds0,
(s0 = 6.82 h−1Mpc, γs = 1.57). Inset is on a linear scale. Bottom
panel: As above, divided by the small scale power law. The solid line shows
the result from the Hubble Volume simulation.

Fig. 7(b) shows the 2dFGRS measurements together with the
LCRS and SDSS measurements. On scaless & 4 h−1Mpc there
appears to be no significant differences between the surveys, but
for s . 2 h−1Mpc the LCRS and SDSS have a higher ampli-
tude than the 2dFGRS. This difference is likely to be caused by
the different galaxy selection for the surveys, though the SDSS re-
sults shown are for the Early Data Release (EDR) and have larger
errors than the 2dFGRS points. The 2dFGRS is selected usingbJ,
whereas the SDSS and LCRS are selected in red bands. Since the
red (early type) galaxies are more strongly clustered than blue (late
type) galaxies (e.g. Zehavi et al. 2002; and via spectral type, Nor-

Figure 7. Comparison of 2dFGRSξ(s) with (a) otherbJ band selected
surveys as indicated and (b)R band selected surveys as indicated. These
results are discussed in the text.

berg et al. 2002b), we should expect thatξ will be higher for red
selected surveys than a blue selected survey. This issue is examined
further in Madgwick et al. (2003).

3.7 The projected correlation function, Ξ(σ)

The redshift-space correlation function differs significantly from
the real-space correlation function because of redshift-space dis-
tortions (see Section 4). We can estimate the real-space correlation
length,r0, by first calculating the projected correlation function,
Ξ(σ). This is related toξ(σ, π) via the equation,

Ξ(σ) = 2

∫

∞

0

ξ(σ, π) dπ (4)

though in practice we set the upper limit in this integral toπmax =
70 h−1Mpc. The result is insensitive to this choice forπmax >
60 h−1Mpc for our data. Since redshift space distortions move
galaxy pairs only in theπ direction, and the integral represents a
sum of pairs over allπ values,Ξ(σ) is independent of redshift-
space distortions. It is simple to show thatΞ(σ) is directly related
to the real-space correlation function (Davis & Peebles 1983),

Ξ(σ)

σ
=

2

σ

∫

∞

σ

rξ(r)dr

(r2 − σ2)
1

2

. (5)

If the real-space correlation function is a power law this can be

integrated analytically. We writeξ(r) = (r/rP
0 )−γP

r , where the
P superscripts refer to the ‘Projected’ values, rather than the ‘In-
verted’ values which are calculated in Section 3.8 and denoted by
I . With this notation we obtain,
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Figure 8. The projected correlation functions for the NGP (open points)
and SGP (solid points) 2dFGRS data with error bars from the rms spread
between mock catalogue results. Inset plotted on a linear scale.

Figure 9. Top panel: The projected correlation function of the combined
data with error bars from the rms spread between mock catalogue results.
The dashed line is the best-fit power-law for0.1 < σ < 12 h−1Mpc
(r0 = 4.98, γr = 1.72, A = 3.97). Inset is plotted on a linear scale.
Bottom panel: The combined data divided by the power-law fit.

Ξ(σ)

σ
=

(

rP
0

σ

)γP
r Γ( 1

2
)Γ(

γP
r −1

2
)

Γ(
γP

r

2
)

=

(

rP
0

σ

)γP
r

A(γP
r ). (6)

The parametersγP
r andrP

0 can then be estimated from the mea-
suredΞ(σ), giving an estimate of the real-space clustering inde-
pendent of any peculiar motions.

The projected correlation functions for the NGP and SGP are
shown in Fig. 8 and the combined data result is shown in Fig. 9.The
best-fit values ofγP

r andrP
0 for 0.1 < σ < 12 h−1Mpc are shown

in Table 1. Over this rangeΞ(σ)/σ is an accurate power law, but
it steepens forσ > 12 h−1Mpc. This deviation from power-law
behaviour limits the scales that can be probed using this approach.

Table 1. Best-fit parameters toξ. For s0 andγs the fit to ξ(s) uses only
points arounds = s0. For rP

0 , γP
r and A(γP

r ) the fit toΞ(σ)/σ uses all
points with0.1 < σ < 12 h−1Mpc. ForrI

0 andγI
r the fit to the inverted

ξ(r) uses all points with0.1 < r < 12 h−1Mpc. In each case the errors
quoted are the rms spread in the results obtained from the same analysis
with the mock catalogues.

Parameter SGP NGP Combined

s0 (h−1Mpc) 6.92 ± 0.36 6.72 ± 0.41 6.82 ± 0.28
γs 1.51 ± 0.08 1.64 ± 0.08 1.57 ± 0.07

rP
0 (h−1Mpc) 5.05 ± 0.32 4.79 ± 0.31 4.95 ± 0.25

γP
r 1.68 ± 0.06 1.77 ± 0.07 1.72 ± 0.04

A(γP
r ) 4.17 ± 0.23 3.77 ± 0.28 3.99 ± 0.16

rI
0 (h−1Mpc) 5.09 ± 0.35 5.08 ± 0.28 5.05 ± 0.26

γI
r 1.65 ± 0.03 1.70 ± 0.04 1.67 ± 0.03

3.8 The real-space correlation function, ξ(r)

It is possible to estimateξ(r) by directly invertingΞ(σ) without
making the assumption that it is a power law (Saunders, Rowan-
Robinson & Lawrence 1992, hereafter S92). They recast Eqn. 5
into the form,

ξ(r) = − 1

π

∫

∞

r

(dΞ(σ)/dσ)

(σ2 − r2)
1

2

dσ. (7)

Assuming a step function forΞ(σ) = Ξi in bins centered onσi,
and interpolating between values,

ξ(σi) = − 1

π

∑

j>i

Ξj+1 − Ξj

σj+1 − σj

ln





σj+1 +
√

σ2
j+1 − σ2

i

σj +
√

σ2
j − σ2

i



 (8)

for r = σi. S92 suggest that their method is only good for scales
r . 30 h−1Mpc in the QDOT survey becauser becomes compa-
rable to the maximum scale out to which they can estimateΞ. We
can test the reliability of our inversion of the 2dFGRS data using
the mock catalogues.

In Fig. 10 we show the meanξ(r) as determined from the
mock catalogues using the method of S92. We compare this to
the real-space correlation function determined directly from the
Hubble Volume simulation, from which the mock catalogues are
drawn. The agreement is excellent and shows that the method
works and that we can recover the real-space correlation function
out to 30 h−1Mpc. Like S92 we find that beyond this scale the
method begins to fail and the trueξ(r) is not recovered.

We have applied this technique to the combined 2dFGRS data
and obtain the real-space correlation function shown in Fig. 11.
The data are plotted out to only30 h−1Mpc due to the limi-
tations in the method described above. On small scalesξ(r) is
well represented by a power law, and a best-fit over the range
0.1 < r < 12 h−1Mpc gives the results forrI

0 andγI
r shown

in Table 1.
The points in the bottom panel of Fig. 11 show the 2dFGRS

data divided by the best-fit power law. It can be seen that at scales
0.1 < r < 20 h−1Mpc the dataξ(r) is close to the best-fit power-
law but does show hints of non power-law behaviour (see also dis-
cussion below).
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Figure 10. The mean real-space correlation function determined from the
22 mock catalogues using the method of S92. The solid line is the trueξ(r)
from the Hubble Volume and the agreement is excellent. Note the changed
scale from previous plots.

Figure 11. Top panel: The real-space correlation function of the com-
bined 2dFGRS using the method of S92, with error bars from therms
spread between mock catalogues. The dashed line is the best-fit power law
(r0 = 5.05, γr = 1.67). Inset is plotted on a linear scale. Bottom panel:
The data divided by the power law fit. The solid line is the de-projected
APM result (Padilla & Baugh 2003) as discussed in the text. The dotted
line is the result from the Hubble Volume.

3.9 Real-space comparisons

In the invertedξ(r) (and possiblyΞ[σ]) there is a weak excess of
clustering over the power-law for5 < r < 20 h−1Mpc. This
has been previously called a ‘shoulder’ inξ (see e.g. Ratcliffe et
al. 1998). Though the amplitude of the feature in our data is rather
low, it has been consistently seen in different surveys, andproba-
bly is a real feature. After submission of this work, Zehavi et al.
(2003) also saw this effect in the SDSS projected correlation func-

Table 2. Measurements ofξ(r) from 2dFGRS and other surveys, with the
quoted uncertainties as published. The various authors have used very dif-
ferent ways to estimate errors though none have included theeffects of cos-
mic variance. Since we have used the scatter between mock catalogues to
take account of this, our estimates are actually dominated by cosmic vari-
ance. These results are measured at different effective luminosities, red-
shifts and for different galaxy types.

Survey r0 (h−1Mpc) γr

2dFGRS (P ) 4.95 ± 0.25 1.72 ± 0.04
2dFGRS (I) 5.05 ± 0.26 1.67 ± 0.03
SAPM 5.1 ± 0.3 1.71 ± 0.05

ESP 4.15 ± 0.2 1.67+0.07
−0.09

Durham UKST 5.1 ± 0.3 1.6 ± 0.1
LCRS 5.06 ± 0.12 1.86 ± 0.03
SDSS 6.14 ± 0.18 1.75 ± 0.03

tion and explained the inflection point as the transition scale be-
tween a regime dominated by galaxy pairs in the same halo and
a regime dominated by pairs in separate haloes. Magliochetti &
Porciani (2003) have found the same effect when examining corre-
lation functions of different types of 2dFGRS galaxy.

The dotted line in the bottom panel of Fig. 11 shows the
Hubble Volume simulation which agrees well with the data for
r > 1 h−1Mpc. On smaller scales the Hubble Volumeξ shows
significant deviations from a power-law. On these scales, the galaxy
clustering amplitude in the simulation is incorrectly modelled since
the assignment of galaxies to particles is based on the mass distri-
bution smoothed on a scale of2 h−1Mpc (as discussed in Sec-
tion 2.2). The solid line in the bottom panel of Fig. 11 is the de-
projected APM result (Padilla & Baugh 2003), scaled down by a
factor(1 + zs)

α, with α = 1.7, suitable for evolution in aΛCDM
cosmology. There is good agreement between the 2dFGRS and
APM results which are obtained using quite different methods.

We have estimatedr0 andγr by fitting to the projected cor-
relation functionΞ(σ)/σ, and also by invertingΞ(σ)/σ and then
fitting to ξ(r). The best-fit values from the two methods are shown
in Table 1, and it is clear they lead to very similar estimatesof r0

andγr. This confirms that the power-law assumption in Section 3.7
is a good approximation over the scales we consider.

Table 2 listsr0 andγr for the 2dFGRS and other surveys es-
timated using power-law fits to the projected correlation function
Ξ(σ). As mentioned in Section 3.5 the SAPM, Durham UKST and
the ESP arebJ selected surveys, and so should be directly compa-
rable to the 2dFGRS. The values ofr0 andγr for these surveys
all agree to within one standard deviation, exceptr0 for the ESP,
which appears to be significantly lower. It is likely that thequoted
uncertainties for the ESP and Durham UKST parameters are under-
estimated since they did not include the effect of cosmic variance.
Since they each sample relatively small volumes, this will be a large
effect. The sparse sampling strategy used in the SAPM means that
it has a large effective volume, and so the cosmic variance issmall.

As in Section 3.5, the red-selected surveys, LCRS and SDSS,
are significantly different from the other surveys. The discrepancies
are most likely due to the fact that the amplitude of galaxy cluster-
ing depends on galaxy type, and that red-selected surveys have a
different mix of galaxy types. We can make a very rough approx-
imation of the expected change inξ by considering how the mean
colour difference of early and late populations changes therelative
fraction of the two populations when a magnitude limited sample
is selected in different pass bands. Zehavi et al. (2002) split their
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r−selected SDSS sample into 19603 early-type galaxies and 9532
late-type galaxies. The mean(g−r) colours are 0.5 and 0.9 respec-
tively. The 2dFGRS is selected usingbJ which is close tog, and so
compared to ther selection, the median depth for blue galaxies will
be larger that for red galaxies. The number of early and late types
will roughly scale in proportion to the volumes sampled, andso
the ratio of early-to-late galaxies in the 2dFGRS will be roughly
∼ (19603/9532) × 100.6(0.5−0.9) = 1.18. Note that this colour
split leads to a very different ratio of early-to-late galaxies com-
pared to theη split used by Madgwick et al. (2003). Assuming the
early and late correlation functions trace the same underlying field,
the combined correlation function will be

ξtot =

(

nearlybearly + nlateblate

nearly + nlate

)2

ξmass. (9)

From the power law fits of Zehavi et al., the ratio of bias val-
ues at 1 Mpc isbearly/blate = 4.95. Inserting the different ratios
nearly/nlate appropriate to the red and blue selected samples we
find that the expected ratio ofξ for a red selected sample com-
pared to a blue selected sample is roughly 1.36. Scaling the 2dF-
GRS values ofr0 = 5.05 andγr = 1.67 leads to a SDSS value
of r0 = 5.95 for γr = 1.75, within 1σ of the actual SDSS value.
This simple argument indicates that the observed difference in ξ
between the red and blue selected surveys is consistent withthe
different population mixes expected in the surveys. The extra sur-
face brightness selection applied to the LCRS may also introduce
significant biases.

Each survey is also likely to have a different effective lumi-
nosity and, as has been shown by Norberg et al. (2001), this will
cause clustering measurements to differ. The relation for 2dFGRS
galaxies found by Norberg et al. (2001) was,

(

r0

r∗0

)
γr
2

= 0.85 + 0.15

(

L

L∗

)

, (10)

which gives, forL = 1.4L∗ (see Section 2.1),r∗0 = 4.71 ± 0.24,
which will allow direct comparisons with other surveys.

4 REDSHIFT-SPACE DISTORTIONS

When analysing redshift surveys it must be remembered that the
distance to each galaxy is estimated from its redshift and isnot the
true distance. Each galaxy has, superimposed on its Hubble motion,
a peculiar velocity due to the gravitational potential in its local en-
vironment. These peculiar velocities can be in any direction and,
since this effect distorts the correlation function, it canbe used to
measure two important parameters.

The peculiar velocities are caused by two effects. On small
scales, random motions of the galaxies within groups cause ara-
dial smearing known as the ‘Finger of God’. On large scales gravi-
tational instability leads to coherent infall into overdense regions
and outflow from underdense regions. We analyse the observed
redshift-space distortions by modelingξ(σ, π). We start with a
model of the real-space correlation function,ξ(r), and include the
effects of large-scale coherent infall, which is parameterized by
β ≈ Ω0.6

m /b, whereb is the linear bias parameter. We then con-
volve this with the form of the random pairwise motions.

4.1 Constructing the model

Kaiser (1987) pointed out that, in the linear regime, the coherent in-
fall velocities take a simple form in Fourier space. Hamilton (1992)
translated these results into real space,

ξ′(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (11)

where Pℓ(µ) are Legendre polynomials,µ = cos(θ) andθ is the
angle betweenr andπ. The relations betweenξℓ, ξ(r) andβ for a
simple power-lawξ(r) = (r/r0)

−γr are (Hamilton 1992),

ξ0(s) =

(

1 +
2β

3
+

β2

5

)

ξ(r) (12)

ξ2(s) =

(

4β

3
+

4β2

7

) (

γr

γr − 3

)

ξ(r) (13)

ξ4(s) =
8β2

35

(

γr(2 + γr)

(3 − γr)(5 − γr)

)

ξ(r). (14)

The Appendix has more details of this derivation and gives the
equations for the case of non-power law forms ofξ.

We use these relations to create a modelξ′(σ, π) which we
then convolve with the distribution function of random pairwise
motions,f(v), to give the final modelξ(σ, π) (Peebles 1980):

ξ(σ, π) =

∫

∞

−∞

ξ′(σ, π − v/H0)f(v)dv (15)

and we choose to represent the random motions by an exponential
form,

f(v) =
1

a
√

2
exp

(

−
√

2|v|
a

)

(16)

wherea is the pairwise peculiar velocity dispersion (often known as
σ12). An exponential form for the random motions has been found
to fit the observed data better than other functional forms (e.g. Rat-
cliffe et al. 1998; Landy 2002; see also Section 6).

4.2 Model assumptions

In this model we make several assumptions. Firstly, we assume a
power-law for the correlation function. The power-law approxima-
tion is a good fit on scales< 20 h−1Mpc but is not so good at
larger scales. This limits the scales which we can probe using this
method. In Section 7, we consider non-power-law models forξ(r),
and recalculate Eqns. 12 to 14 using numerical integrals (see Ap-
pendix), allowing us to reliably use scales> 20 h−1Mpc. Sec-
ondly, we assume that the linear theory model described above
holds on scales. 8 h−1Mpc, which is almost certainly not true.
We also consider this in Section 7. Finally, we assume an expo-
nential distribution of peculiar velocities with a constant velocity
dispersion,a, (Eqn. 16) and this is discussed and justified in Sec-
tion 6 and Section 7.4.

4.3 Model plots

To illustrate the effect of redshift-space distortions on the ξ(σ, π)
plot we show four modelξ(σ, π)’s in Fig. 12. If there were no dis-
tortions, then the contours shown would be circular, as in the top
left panel due to the isotropy of the real-space correlationfunction.
On smallσ scales the random peculiar velocities cause an elonga-
tion of the contours in theπ direction (the bottom left panel). On
larger scales there is the flattening of the contours (top right panel)
due to the coherent infall. The bottom right panel is a model with
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Figure 12. Plot of modelξ(σ, π)’s calculated as described in Section 4. The
lines represent contours of constantξ(σ, π) = 4.0, 2.0, 1.0, 0.5, 0.2 and 0.1
for different models. The top left panel represents an undistorted correlation
function (a = 0, β = 0), the top right panel is a model with coherent infall
added (a = 0, β = 0.4), the bottom left panel is a model with just random
pairwise velocities added (a = 500 km s−1, β = 0) and the bottom right
panel has both infall and random motions added (a = 500 km s−1, β =
0.4). These four models haver0 = 5.0 h−1Mpc andγr = 1.7.

both distortion effects included. Comparing the models ofξ(σ, π)
to the 2dFGRS measurements in Fig. 4 it is clear that the data show
the two distortion effects included in the models. In Section 7 we
use the data to constrain the model directly, and deduce the best-fit
model parameters.

5 ESTIMATING β

Before using the model described above to measure the parameters
simultaneously, we first use methods that have been used in pre-
vious studies. This allows a direct comparison between our results
and previous work.

5.1 Ratio of ξ’s

The ratio of the redshift-space correlation function,ξ(s), to the
real-space correlation function,ξ(r), in the linear regime gives an
estimate of the redshift distortion parameter,β (see Eqn. 12),

ξ(s)

ξ(r)
= 1 +

2β

3
+

β2

5
. (17)

Our results for the combined 2dFGRS data, using the invertedform
of ξ(r), are shown in Fig. 13 by the solid points. The mean of the
mock catalogue results is shown by the white line, with the rms
errors shaded and the estimate from the Hubble Volume is shown
by the solid line. The data are consistent with a constant value, and
hence linear theory, on scales& 4 h−1Mpc.

The mock catalogues and Hubble Volume results asymptote to
β = 0.47, the true value ofβ in the mocks. The 2dFGRS data in
the range8 − 30 h−1Mpc are best-fit by a ratio of1.34 ± 0.13,

Figure 13. The ratio ofξ(s) to ξ(r) for the 2dFGRS combined data (solid
points), and the Hubble Volume (solid line). The mean of the mock cata-
logue results is also shown (white line), with the rms errorsshaded. The
error bars on the 2dFGRS data are from the rms spread in mock catalogue
results.

corresponding toβ = 0.45 ± 0.14. The maximum scale that we
can use in this analysis is determined by the uncertainty onξ(r)
from the Saunders et al. inversion method discussed in Section 3.8.

5.2 The quadrupole moment of ξ

We now measureβ using the quadrupole moment of the correlation
function (Hamilton 1992),

Q(s) =
4
3
β + 4

7
β2

1 + 2
3
β + 1

5
β2

=
ξ2(s)

3
s3

∫ s

0
ξ0(s′)s′2ds′ − ξ0(s)

(18)

whereξℓ is given by,

ξℓ(s) =
2ℓ + 1

2

∫ +1

−1

ξ(σ, π)Pℓ(µ)dµ. (19)

These equations assume the random peculiar velocities are negli-
gible and hence measuringQ gives an estimate ofβ. The random
uncertainties in this method are small enough that we obtainreli-
able estimates on scales< 40 h−1Mpc, as shown by the mock
catalogues (see below), but the data are noisy beyond these scales.

Fig. 14 showsQ estimates for the combined 2dFGRS data
with the inset showing the NGP and SGP separately. The effectof
the random peculiar velocities can be clearly seen at small scales,
causingQ to be negative. The best-fit value to the combined data
for 30 − 40 h−1Mpc is Q = 0.55 ± 0.18, which gives a value for
β = 0.47+0.19

−0.16 , where the error is from the rms spread in the mock
catalogue results. The solid line represents a model withβ = 0.49
anda = 506 km s−1, which matches the data well (see Section
7.1). Although asymptoting to a constant, the value ofQ in the
model is still increasing at40 h−1Mpc. This shows that non-linear
effects do introduce a small systematic error even at these scales
though this bias is small compared to the random error.

To check whether this method can correctly determineβ we
use the mock catalogues. The data points in Fig. 15 are the mean
values ofQ from the mock catalogues, with error bars on the mean,
and the dashed line is the true value ofβ = 0.47. The data points
seem to converge on large scales to the correct value ofQ. Fitting
to each mock catalogue in turn for30 − 40 h−1Mpc gives a mean
Q = 0.51± 0.18, corresponding toβ = 0.43+0.18

−0.16 . As the models
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Figure 14. TheQ factor for the combined 2dFGRS data, restricted to scales
not dominated by noise with error bars from the rms spread in mock cata-
logue results. The two dashed lines show the expected answerfor different
values ofβ which approximate the1σ errors. The solid line shows a model
with β = 0.49 anda = 506 km s−1 (see Section 7.1). The inset shows
the result for the NGP (solid points) and SGP (open points); the error bars
are placed alternately to avoid confusion.

Figure 15. The meanQ factor for the mock catalogues with error bars from
the rms spread in mock catalogue results. The dashed line is the true value
of β = 0.47. The slight bias is caused by the random peculiar velocitiesas
discussed in the text.

showed, the random velocities will lead to an underestimateof β
even at40 h−1Mpc, causing the difference between the measured
and true values. This all shows that we can determineβ with a slight
bias but the error bars are large compared to the bias.

The Q estimates from the individual mock catalogues show
a high degree of correlation between points on varying scales and
so the overall uncertainty inQ from averaging over all scales>
30 h−1Mpc is not much smaller than the uncertainty from a single
point. It is this fact which makes the spread in results from the
mock catalogues vital in the estimation of the errors on our result
(also see Section 7.3).

6 THE PECULIAR VELOCITY DISTRIBUTION

To this point we have assumed that the random peculiar velocity
distribution has an exponential form (Eqn. 16). This form has been

used by many authors in the past and has been found to fit the data
better than other forms (e.g. Ratcliffe et al. 1998). We testthis for
the 2dFGRS data by following a method similar to that of Landy,
Szalay and Broadhurst (1998, hereafter LSB98). To extract the pe-
culiar velocity distribution, we need to deconvolve the real-space
correlation function from the peculiar velocity distribution.

6.1 The method

We first take the 2-d Fourier transform of theξ(σ, π) grid to give
ξ̂(kσ, kπ) and then take cuts along thekσ andkπ axes which we de-
note byΣ(k) andΠ(k) respectively, soΣ(k) = ξ̂(kσ = k, kπ =
0) and Π(k) = ξ̂(kσ = 0, kπ = k). By the slicing-projection
theorem (see LSB98) these cuts are equivalent to the Fouriertrans-
forms of the real-space projections ofξ(σ, π) onto theσ and π
axes. The projection ofξ(σ, π) onto theσ axis is a distortion free
measurement ofΞ but the projection onto theπ axis gives usΞ
convolved with the peculiar velocity distribution, ignoring the ef-
fects of large-scale bulk flows. Since a convolution in real space
is a multiplication in Fourier space, the ratio ofΣ(k) to Π(k) is
the Fourier transform,F [f(v)], of the velocity distribution that we
want to estimate. All that is left is to inverse Fourier transform this
ratio to obtain the peculiar velocity distribution,f(v). LSB98 cut
their dataset at32 h−1Mpc and applied a Hann smoothing win-
dow; we use all the raw data. Landy (2002, hereafter L02) usedthe
LSB98 method on the 100k 2dFGRS Public Release data and his
results are discussed below.

Fitting an exponential to the resultingf(v) curve gives a value
for a assuming that the infall contribution to the velocity distribu-
tion is negligible. LSB98 and L02 claim that their method is not
sensitive to the infall velocities. We show here that this isnot the
case. The additional structure in the Fourier transform of the veloc-
ity distribution found by L02 is a direct consequence of the infall
velocities.

6.2 Testing the models

To test the LSB98 method we apply the technique to our models,
described in Section 4, with and without aβ = 0.4 infall factor, us-
ing various scales, and with and without a Hann window. In Fig. 16
we show the Fourier transform of the peculiar velocity distribution
and in Fig. 17 we show the distribution function itself.

It is clear from Fig. 16 that the shape of the Fourier trans-
form at smallk is quite badly distorted by the infall velocities. This
leads to a systematic error in the actual velocity distribution as seen
in Fig. 17, where the measured peculiar velocity dispersions are bi-
ased low, especially in the case where a smoothing window anda
limited range of scales are used. In particular the peak of the Fourier
transform is not atk = 0, and the inferredf(v) goes negative for
a range of velocities (dashed lines in the lower panels of Fig. 17).
This clearly cannot be interpreted as a physical velocity distribu-
tion; the method infers negative values because the input model
ξ(σ, π) is not consistent with the initial assumption of the method,
which is that all of the distortion inξ(σ, π) is due to random pe-
culiar velocities. We conclude that both types of peculiar velocity
need to be considered when making these measurements, and so
our preferred results come from directly fitting toξ(σ, π).

A further complication with the real data is thatf(v) may de-
pend on the pair separation (see discussion in Section 7.3).The
solid line in Fig. 18 showsF [f(v)] for a model wherea varies from
500km s−1 at σ = 0 to 300km s−1 at σ = 20 h−1Mpc. This is
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Figure 16. The Fourier transform of the peculiar velocity distribution for
various parameters (see labels). The solid line is for a model with no
smoothing and using all scales< 70 h−1Mpc. The dashed line is for a
model cut at32 h−1Mpc and smoothed with a Hann window (like L02).
The dotted line is the Lorentzian equivalent of the input exponential peculiar
velocity distribution (this coincides with the solid line in the top panels).

Figure 17. The peculiar velocity distribution for various models (seela-
bels). The solid line is the recovered distribution for a model with no
smoothing and using all scales< 70 h−1Mpc. The dashed line is the
recovered distribution for a model cut at32 h−1Mpc and smoothed with
a Hann window. The dotted line is the input exponential peculiar velocity
distribution (this coincides with the solid line in the top panels).

compared to a model witha = 500 km s−1 (dashed line), a model
with a = 300 km s−1 (dotted line) and a model wherea varies
from 300km s−1 at σ = 0 to 500 km s−1 at σ = 20 h−1Mpc
(dot-dashed line). The models with varyinga are very close to
their respective constanta models at allk values, showing that this
method leads to an estimate ofF [f(v)] determined mainly by the
value ofa at smallσ.

6.3 The mock catalogues

The mean of the peculiar velocity distributions for the mockcata-
logues is shown in Fig. 19. The distribution is compared to a model,
shown as the solid line, withβ = 0.47 and an exponentialf(v),
with dispersion,a = 575 km s−1. The exact form of the peculiar

Figure 18. The Fourier transform of the peculiar velocity distribution for
a model witha = 500 km s−1 (dashed line),a = 300 km s−1 (dot-
ted line). Also shown is a model witha decreasing from500 km s−1

to 300 km s−1 from σ = 0 to σ = 20 h−1Mpc (solid line) and a
model witha increasing from300 km s−1 to 500 km s−1 from σ = 0 to
σ = 20 h−1Mpc (dot-dashed line).β = 0.5 for all four models.

Figure 19. The recovered velocity distribution for the mock catalogues.
Filled points are the mean result with error bars from the scatter between
catalogues. This is compared to a pure exponential distribution with a =
575 km s−1 (dashed line) and a model witha = 575 km s−1 andβ =
0.47 (solid line).

velocities in the Hubble Volume, and hence mock catalogues,is not
explicitly specified and it should not be expected to conformto this
model exactly.

6.4 The 2dFGRS data

The Fourier transform of the peculiar velocity distribution for the
combined 2dFGRS data are shown in Fig. 20 compared to a best-fit
model withβ = 0.49 ± 0.05 anda = 570 ± 25 km s−1. Fig. 21
shows the peculiar velocity distribution itself compared to the same
model. We showed in Section 6.2 (with Fig. 18) that this was likely
to be the value ofa at smallσ. The distribution of random pairwise
velocities does appear to have an exponential form, with aβ influ-
ence. Sheth (1996) and Diaferio & Geller (1996) have shown that
an exponential peculiar velocity distribution is a result of gravita-
tional processes.

Ignoring the infall L02 founda = 331 km s−1, using the
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Figure 20. The Fourier transform of the peculiar velocity distribution for
the combined 2dFGRS data (solid points) compared to a model distribution
with a = 570 km s−1 andβ = 0.49 (solid line).

Figure 21. The combined 2dFGRS peculiar velocity distribution (solid
points), compared to a pure exponential distribution witha = 570 km s−1

(dashed line) and a model witha = 570 km s−1 andβ = 0.49 (solid
line). The error bars are from the scatter in mock results.

smaller, publicly available, sample of 2dFGRS galaxies. Wemade
the same approximations and repeated his procedure on our larger
sample, and finda = 370 km s−1. Using our data grid out to
70 h−1Mpc, with no smoothing and ignoringβ, gives a =
457 km s−1. We have shown that the result in L02 is biased
low by ignoring β and that the infall must be properly consid-
ered in these analyses. As shown in Fig. 21, our data are reason-
ably well described by an exponential model withβ = 0.49 and
a = 570 km s−1.

7 FITTING TO THE ξ(σ, π) GRID

7.1 Results

We now fit ourξ(σ, π) data grid to the models described in Section
4, assuming a power-law form for the real-space correlationfunc-
tion. This model has four free parameters,β, r0, γr anda. The fits
to the data are done by minimising

E =
∑

(

log[1 + ξ]model − log[1 + ξ]data

log[1 + ξ + δξ]data − log[1 + ξ − δξ]data

)2

, (20)

for s < 20 h−1Mpc, whereδξ is the rms ofξ from the mock
catalogues for a particularσ andπ. This is like a simpleχ2 min-
imization, but the points are not independent. We tried a fit to ξ
directly but found that it gave too much weight to the centralre-
gions and so instead we fit tolog[1 + ξ] so that the overall shape
of the contours has an increased influence on the fit. The best-fit
model parameters are listed in Table 3. The errors we quote are the
rms spread in errors from fitting each mock catalogue in the same
way.

There are two key assumptions made in the construction of
these models. Firstly, although the contours match well at small
scales, there are good reasons to believe that our linear theory
model will not hold in the non-linear regime fors . 8 h−1Mpc.
Secondly, we have assumed the power-law model forξ(r) and we
have seen evidence that this is not completely realistic. Using non-
power law forms will also allow us to probe to larger scales.

To test whether our result is robust to these assumptions
we firstly reject the non-linear regime corresponding tos <
8 h−1Mpc. Then, we use the shape of the Hubble Volumeξ(r)
instead of a power-law, and finally we extend the maximum scale
to s = 30 h−1Mpc. We showed in Section 3.8 that the Hub-
ble Volume shape gives a good match to the data over the range
8 < s < 30 h−1Mpc (the Appendix gives the relevant equa-
tions for performing theβ infall calculation without a power-law
assumption).

We find that the best-fit parameters change very little with
these changes but when using the Hubble Volumeξ(r), the quality
of the fit improves significantly. The best-fit model is compared to
the data in Fig. 22. Notice the excellent agreement on small scales
even though they are ignored in the fitting process. The best-fit pa-
rameters are listed in Table 3, and we adopt these results as our final
best estimates findingβ = 0.49 ± 0.09.

If we repeat our analysis on the mock catalogues we find a
mean value ofβ = 0.475 ± 0.090 (cf. the expected value of
β = 0.47, Section 2.2), showing that we can correctly determineβ
using this type of fit. When fitting the mock catalogues it became
clear thatβ and a are correlated in this fitting procedure, as we
have seen already with other methods. We use the mock catalogues
to measure the linear correlation coefficient,r (Press et al. 1992),
which quantifies this correlation, and find that, betweenβ anda,
r = 0.66. If we knew either parameter exactly, the error on the
other would be smaller than quoted.

We also tried other analytical forms for the correlation func-
tion and also different scale limits and found that some combina-
tions shifted the results by∼ 1σ.

7.2 Comparison of methods

We have now estimated the real-space clustering parametersusing
three different methods. In Section 3.9, we saw that the projection
and inversion methods gave essentially identical results for r0 and
γr whereas using 2-d fits we get slightly higher values forr0.

If ξ(r) was a perfect power-law the different methods would
give unbiased results for the parameters, but we have seen evi-
dence that this assumption is not true. The methods therefore, give
different answers as a result of the different scales and weight-
ing schemes used, as well as the vastly different treatmentsof the
redshift-space distortions.
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Figure 22. Contours ofξ(σ, π) for the 2dFGRS combined data (solid lines)
and the best-fit model (see Table 3) using the Hubble Volumeξ(r) fitted to
scales8 < s < 30 h−1Mpc (dashed lines). Contour levels are atξ = 4.0,
2.0, 1.0, 0.5, 0.2, 0.1, 0.05 and 0.0 (thick line).

Table 3. Best-fit parameters to theξ(σ, π) grids with errors from the rms
spread in mock catalogue results.

Parameter SGP NGP Combined

Power lawξ(r): (0 < s < 20 h−1Mpc)

β 0.53 ± 0.06 0.48 ± 0.08 0.51 ± 0.05

r0 (h−1Mpc) 5.63 ± 0.26 5.52 ± 0.29 5.58 ± 0.19
γr 1.66 ± 0.06 1.76 ± 0.07 1.72 ± 0.05
a (km s−1) 497 ± 24 543 ± 26 522 ± 16

Power lawξ(r): (8 < s < 20 h−1Mpc)

β 0.45 ± 0.10 0.35 ± 0.12 0.49 ± 0.09
r0 (h−1Mpc) 6.03 ± 0.36 6.06 ± 0.41 5.80 ± 0.25
γr 1.74 ± 0.08 1.88 ± 0.10 1.78 ± 0.06
a (km s−1) 457 ± 49 451 ± 51 514 ± 31

Hubble Volumeξ(r): (8 < s < 20 h−1Mpc)

β 0.47 ± 0.12 0.50 ± 0.14 0.49 ± 0.10
a (km s−1) 446 ± 73 544 ± 67 495 ± 46

Hubble Volumeξ(r): (8 < s < 30 h−1Mpc)

β 0.48 ± 0.11 0.47 ± 0.13 0.49 ± 0.09
a (km s−1) 450 ± 81 545 ± 85 506 ± 52

7.3 Previous 2dFGRS results

It is worth contrasting our present results with those obtained in a
previous 2dFGRS analysis (Peacock et al. 2001). This was based
on the data available up to the end of 2000: a total of 141 402
redshifts. The chosen redshift limit waszmax = 0.25, yielding
127 081 galaxies for the analysis ofξ(σ, π). The present analysis
uses 165 659 galaxies, but to a maximum redshift of 0.2. Because
galaxies are given a redshift-dependent weight, this difference in

redshift limit has a substantial effect on the volume sampled. For
a given area of sky, changing the redshift limit fromzmax = 0.2
to zmax = 0.25 changes the total number of galaxies by a factor
of only 1.08, whereas the total comoving volume withinzmax in-
creases by a factor of 2. Allowing for the redshift-dependent weight
used in practice, the difference in effective comoving volume for a
given area of sky due to the variation in redshift limits becomes a
factor of 1.6. Since the effective area covered by the present data
is greater by a factor of165 659/(127 081/1.08) = 1.4, the total
effective comoving volume probed in the current analysis isin fact
15% smaller than in the 2001 analysis; this would suggest random
errors on clustering statistics about 7% larger than previously. Of
course, the lower redshift limit has several important advantages:
uncertainties in the selection function in the tail of the luminos-
ity function are not an issue (see Norberg et al. 2002a); also, the
mean epoch of measurement is closer toz = 0. Given that the sky
coverage is now more uniform, and that the survey mask and selec-
tion function have been studied in greater detail, the present results
should be much more robust.

The other main difference between the present work and that
of Peacock et al. (2001) lies in the method of analysis. The ear-
lier work quantified the flattening of the contours ofξ(σ, π) via the
quadrupole-to-monopole ratio,ξ2(s)/ξ0(s). This is not to be con-
fused with the quantityQ(s) from Section 5.2, which uses an inte-
grated clustering measure instead ofξ0(s). This is inevitably more
noisy, as reflected in the error bar,δβ = 0.17, resulting from that
method. The disadvantage of usingξ2(s)/ξ0(s) directly, however,
is that the ratio depends on the true shape ofξ(r). In Peacock et al.
(2001), this was assumed to be known from the de-projection of an-
gular clustering in the APM survey (Baugh & Efstathiou 1993); in
the present paper we have made a detailed internal estimate of ξ(r),
and considered the effect of uncertainties in this quantity. Apart
from this difference, the previous method of fitting toξ2(s)/ξ0(s)
should, in principle, give results that are similar to our full fit to
ξ(σ, π) in Section 7.1. The key issue in both cases is the treatment
of the errors, which are estimated in a fully realistic fashion in the
present paper using mock samples. The previous analysis used two
simpler methods: an empirical error onξ2(s)/ξ0(s) was deduced
from the NGP–SGP difference, and correlated data were allowed
for by estimating the true number of degrees of freedom from the
value ofχ2 for the best-fit model. This estimate was compared with
a covariance matrix built from multiple realizations ofξ(σ, π) us-
ing Gaussian fields; consistent errors were obtained. We applied
the simple method of Peacock et al. (2001) to the current data,
keeping the assumed APMξ(r), and obtained the marginalized re-
sult β = 0.55 ± 0.075. The comparison with our best estimate of
β = 0.49±0.09 indicates that the systematic errors in the previous
analysis (from e.g. the assumedξ[r]) were not important, but that
the previous error bars were optimistic by about 20%.

7.4 Peculiar velocities as a function of scale

There has been much discussion in the literature on whether or not
the pairwise peculiar velocity dispersion,a, is a function of pro-
jected separation,σ. Many authors have usedN -body simulations
to make predictions for what might be observed. Davis et al. (1985)
found that the pairwise velocity dispersion of cold dark matter re-
mains approximately constant on small scales, decreases byabout
20-30% on intermediate scales and is approximately constant again
on large scales. Cen, Bahcall & Gramann (1994) found a similar
overall behaviour as did Jenkins et al. (1998) whose resultsare plot-
ted in the left panel of Fig. 23 as the solid line for aΛCDM cosmol-
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Figure 23. The variation ofa with projected separation,σ. Left panel: 2dFGRS data compared to some analytical models, as indicated in the legend. Right
panel: 2dFGRS data compared to other redshift surveys and simulated catalogues, as indicated in the legend. The 2dFGRS data and simulated catalogue results
useβ to calculate the infall velocities whereas the other results assume a functional form (see discussion in Section 7.4).

ogy. The dashed line is from Peacock & Smith (2000) who used the
halo model to predict the peculiar velocities for the galaxydistribu-
tion. Kauffmann et al. (1999) and Benson et al. (2000) used the GIF
simulations combined with semi-analytic models of galaxy forma-
tion and the galaxy predictions of Benson et al. (2000) are shown
by the dotted line. These predictions generally assumeσ8 = 0.9,
but there is evidence thatσ8 could be10% lower than this (Spergel
et al. 2003) and so the pairwise velocity dispersions implied would
also be lower.

Observationally, Jing et al. (1998) measured the pairwise ve-
locity dispersion in the Las Campanas Redshift Survey and found
no significant variation with scale. We note again that the errors
for the LCRS ignore the effects of cosmic variance and are likely
to be underestimates. Zehavi et al. (2002) used the SDSS dataand
found thata decreased with scale forσ & 5 h−1Mpc. These ob-
servations are plotted in the right panel of Fig. 23. All these obser-
vations have assumed a functional form for the infall velocities (or
‘streaming’) and not usedβ directly. We have already shown that
proper consideration of the infall parameter is vital in such stud-
ies. Indeed, Zehavi et al. (2002) say that their estimates ofa for
σ > 3 h−1Mpc depend significantly on their choice of stream-
ing model. This factor, along with a dependence ofa on luminosity
and galaxy type may help to explain the differences between the
2dFGRS and SDSS results.

The difference in results from Section 6.2 which measured the
value ofa at smallσ (570 km s−1), and from using theξ(σ, π)
grid (506 km s−1), which measures an average value, hints that
there may be such an dependence ofa on σ in the 2dFGRS data.
We test for variations ina by repeating the fits described in Sec-
tion 7.1 using a globalβ, r0 andγr but allowinga to vary in each
σ slice. The results are shown in Fig. 23, compared with the re-
sults from other surveys, and numerical simulations as discussed
above. The value of506 km s−1 obtained from the 2-d fit for scales

> 8 h−1Mpc is close to the value at8 h−1Mpc where most of the
signal is coming from. The value of570 km s−1 obtained from the
Fourier transform technique agrees well with the results found for
σ < 1 h−1Mpc. The values ofβ, r0 andγr are essentially un-
changed when fitting in this way. We note again that the effects of
the infall must be properly taken into account in these measure-
ments. We also note that we used our linear, power-law model on
all scales, but we have seen that this is a reasonable approximation
on non-linear scales.

We see that the overall shape of the 2dFGRS results are fairly
consistent with, though slightly flatter than the semi-analytic pre-
dictions, but the amplitude is certainly a little different, which could
be due to the value ofσ8 used in the models, as discussed above.
We also plot the mean of the mock catalogue results (solid line),
and the results of a simulated catalogue (dashed line) of Yang et al.
(2003, withσ8 = 0.75) and these match the real data well.

8 CONSTRAINING Ωm

We take the value ofβ measured from the multi-parameter best fit
to ξ(σ, π),

β(Ls, zs) = 0.49 ± 0.09, (21)

which is measured at the effective luminosity,Ls, and redshift,zs,
of our survey sample. In Section 2.1 we quoted these values, which
are the applicable mean values when using theJ3 weighting and
redshift cuts employed, asLs ≈ 1.4L∗ andzs ≈ 0.15. We also
note here that if we adopt anΩm = 1 geometry we find thatβ =
0.55, within the quoted 1σ errors.
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8.1 Redshift effects

The redshift distortion parameter can be written as,

β =
f(Ωm, ΩΛ, z)

b
. (22)

wheref = d ln D/d ln a, andD is the linear fluctuation growth
factor anda is the expansion factor. A good approximation forf ,
at allz, in a flat Universe, was given by Lahav et al. (1991),

f = Ω0.6
m + (2 − Ωm − Ω2

m)/140 ≈ Ω0.6
m , (23)

and so to constrainΩm from these results we need an estimate ofb.
There have been two recent papers describing such measurements.

Verde et al. (2002) measuredb(Ls, zs) from an analysis of
the bispectrum of 2dFGRS galaxies. Their results depend strongly
on the pairwise peculiar velocity dispersion,a, assumed in their
analysis. They used the result of Peacock et al. (2001), who found
a = 385 km s−1, somewhat lower than our new value of≈
500 km s−1. To deriveΩm using these results would not therefore
be consistent and so a new bispectrum analysis is in preparation.

Lahav et al. (2002) combined the estimate of the 2dF power
spectrum,P (k) (Percival et al. 2001), with pre-WMAPresults from
the CMB to obtain an estimate ofb, but this value is also dependent
onΩm. Their likelihood contours1 are reproduced in Fig. 24, as the
dashed lines. They also introduced a ‘constant galaxy clustering’
model for the evolution ofb with z. Following these equations we
can evolve our measuredβ to the present day and estimate

β(Ls, z = 0) = 0.45 ± 0.08 (24)

and these contours are shown by the solid lines in Fig. 24. These
are in good agreement with, and orthogonal to, those of Lahavet
al. (2002).

8.2 Luminosity effects

We note that the above analysis is independent of luminosityas we
examine everything at the effective luminosity of the survey, Ls.
From the correlation functions in different volume-limited samples
of 2dFGRS galaxies, Norberg et al. (2001) found a luminosityde-
pendence of clustering of the form (cf. Eqn. 10),

b/b∗ = 0.85 + 0.15(L/L∗) (25)

which gives an estimate for the bias of the survey galaxies,bs =
1.06b∗ (usingL = 1.4L∗), whereb∗ is the bias ofL∗ galaxies. If
this bias relation holds on the scales considered in this paper then
β will be increased by the same factor of 1.06,

β(L∗, zs) = 0.52 ± 0.09 (26)

and evolvingβ in a ‘constant galaxy clustering’ model (Lahav et
al. 2002) then,

β(L∗, z = 0) = 0.47 ± 0.08, (27)

which we choose as a fiducial point to allow comparisons with
other surveys with different effective luminosities and redshifts. La-
hav et al. (2002) obtained,β(L∗, z = 0) = 0.50 ± 0.06, in their
combined 2dFGRS and CMB analysis, completely consistent with
the our result.

1 The bias parameter measured by Lahav et al. (2002) depends onτ , the
optical depth of reionisation, asb ∝ exp(−τ). The plotted results do not
include this effect, which could be significant, and this is discussed further
in Section 8.3.

Figure 24. Constraints onΩm and b - Solid lines: Best-fit and1σ error
contours onβ from this work, evolved to the present day (see Section 8.1).
Dashed lines:1σ and2σ error contours from Lahav et al. (2002). Dotted
lines:1σ constraints fromWMAP(Spergel et al. 2003).

8.3 Comparisons

Percival et al. (2002) combined the 2dFGRS power spectrum with
the pre-WMAPCMB data, assuming a flat cosmology and found
Ωm(z = 0) = 0.31 ± 0.06. These measurements ofΩm are also
consistent with a different estimation from the 2dFGRS and CMB
(Efstathiou et al. 2002) and from combining the 2dFGRS with cos-
mic shear measurements (Brown et al. 2003).

Also plotted in Figure 24 is the recent result from the analy-
sis of theWMAPsatellite data. Spergel et al. (2003) foundΩm =
0.29 ± 0.07 usingWMAPdata alone, although there are degenera-
cies with other parameters. It is clear that this is completely consis-
tent with the other plotted contours. Spergel et al. (2003) also found
that the epoch of reionisation,τ = 0.17, which would reduce the
value ofb found by Lahav et al. (2002) by about16%, still in good
agreement with the results in this paper.

9 SUMMARY

In this paper we have measured the correlation function, andvari-
ous related quantities using 2dFGRS galaxies. Our main results are
summarised as follows:

(i) The spherical average ofξ(σ, π) gives the redshift-space cor-
relation function,ξ(s), from which we measure the redshift space
clustering length,s0 = 6.82 ± 0.28 h−1Mpc. At large and small
scalesξ(s) drops below a power law as expected, for instance, in
theΛCDM model.

(ii) The projection ofξ(σ, π) along theπ axis gives an estimate
of the real-space correlation function,ξ(r), which on scales0.1 <
r < 12 h−1Mpc can be fit by a power-law(r/r0)

−γr with r0 =
5.05 ± 0.26 h−1Mpc, γr = 1.67 ± 0.03. At large scales,ξ(r)
drops below a power-law as expected, for instance, in theΛCDM
model.
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(iii) The ratio of real and redshift-space correlation functions on
scales of8 − 30 h−1Mpc reflects systematic infall velocities and
leads to an estimate ofβ = 0.45 ± 0.14. The quadrupole moment
of ξ(σ, π) on large scales givesβ = 0.47+0.19

−0.16 .
(iv) Comparing the projections ofξ(σ, π) along theπ and σ

axes gives an estimate of the distribution of random pairwise pe-
culiar velocities,f(v). We find that large-scale infall velocities af-
fect the measurement of the distribution significantly and cannot be
neglected. Usingβ = 0.49, we find thatf(v) is well fit by an expo-
nential with pairwise velocity dispersion,a = 570 ± 25 km s−1,
at smallσ.

(v) A multi-parameter fit toξ(σ, π) simultaneously constrains
the shape and amplitude ofξ(r) and both the velocity distortion
effects parameterized byβ anda. We findβ = 0.49 ± 0.09 and
a = 506 ± 52 km s−1, using the Hubble Volumeξ(r) as input to
the model. These results apply to galaxies with effective luminosity,
L ≈ 1.4L∗ and at an effective redshift,zs ≈ 0.15. We also find
that the best fit values ofβ anda are strongly correlated.

(vi) We evolve our value for the infall parameter to the present
day and critical luminosity and findβ(L = L∗, z = 0) = 0.47 ±
0.08. Our derived constraints onΩm and b are consistent with a
range of other recent analyses.

Our results show that the clustering of 2dFGRS galaxies as a
whole is well matched by a low densityΛCDM simulation with
a non-linear local bias scheme based on the smoothed dark-matter
density field. Nevertheless, there are features of the galaxy distri-
bution which require more sophisticated models, for example the
distribution of pairwise velocities and the dependence of galaxy
clustering on luminosity or spectral type. The methods presented
have also been used on sub-samples of the 2dFGRS, split by their
spectral type (Madgwick et al. 2003).
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APPENDIX A: COHERENT INFALL EQUATIONS

Kaiser (1987) pointed out that the coherent infall velocities take a
simple form in Fourier space,

Ps(k) = (1 + βµ2
k)2Pr(k). (A1)

Hamilton (1992) completed the translation of these resultsinto real
space,

ξ′(σ, π) = [1 + β(∂/∂z)2(∇2)−1]2ξ(r), (A2)

which reduces to

ξ′(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (A3)

where in general,

ξ0(s) =

(

1 +
2β

3
+

β2

5

)

ξ(r), (A4)

ξ2(s) =

(

4β

3
+

4β2

7

)

[ξ(r) − ξ(r)], (A5)

ξ4(s) =
8β2

35

[

ξ(r) +
5

2
ξ(r) − 7

2
ξ(r)

]

, (A6)

and

ξ(r) =
3

r3

∫ r

0

ξ(r′)r′2dr′, (A7)

ξ(r) =
5

r5

∫ r

0

ξ(r′)r′4dr′. (A8)

In the case of a power law form forξ(r) these equations reduce to
the form shown in Eqns. 12 to 14. In the case of non-power law
forms for the real-space correlation function these integrals must
be performed numerically.

This paper has been typeset from a TEX/ LATEX file prepared by the
author.
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