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Figure 3. Redshift distributionsN (z), for the 2dFGRS data (solid lines) and the normalised rancitaiogues generated using the survey luminosity function

(dashed lines) for the (a) SGP and (b) NGP.

and angular scale needed to account for the different ri¢ati
tributions. The solid line in Fidd2 shows,, and the filled circles
showw, after applying the Limber scale factors. The error bars in
Fig.[@ showw(#) from the full APM survey (Maddox, Efstathiou
& Sutherland 1996), also scaled to the magnitude limit of2HE-
GRS parent sample. On scates> 0.03° all three measurements
are consistent. On smaller scales is clearly much lower than
wp, showing that the fibre collision effect becomes significamd
cannot be neglected.

The ratio of galaxy pairs counted in the parent and redshift
samples is given byl + wy)/(1 + w:), which is shown by the
filled circles in the lower panel of Fifl 2. As discussed in et
section, we use this ratio to correct the pair counts irgthealysis.

3.3 Weighting

Each galaxy and random galaxy is given a weighting factoeddp
ing on its redshift and position on the sky. The redshift dejest
part of the weight is designed to minimize the variance orethie
timated¢ (Efstathiou 1988; Loveday et al. 1995), and is given by
1/(1 + 4mn(z:)J3(s)), wheren(z) is the density distribution and
Ja(s) = [ &(s")s"*ds’. We usen(z) from the random catalogue
to ensure that the weights vary smoothly with redshift. We firat
our results are insensitive to the precise form/gtut we derived
it using a power law¢ with so = 13.0 and~ys = 0.75 and a maxi-
mum value of/3 = 400. This corresponds to the best-fit power law
over the rang®.1 < s < 3 h™*Mpc with a cutoff at larger scales.
We also use the weighting scheme to correct for the galax-
ies that are not observed due to the fibre collisions. Eacixgal
galaxy pair is weighted by the ratio s 1+ wp)/(1 + wz)
at the relevant angular separation according to the cuotéeplin
the bottom panel of Fi§l 2. This corrects the observed paintm
what would have been counted in the parent catalogue. The ope
points in Fig[®?, which have the collision correction apglishow
that this method can correctly recover the parent catalogsialt
and hence overcome the fibre collision problem. Since théaran
catalogues do not have any close-pair constraints, onlgatexy-
galaxy pair count needs correcting in this way. We also teed
alternative approach to the fibre-collision correctiont tha used
previously in Norberg et al. (2001, 2002b) where the weigint f
each unobserved galaxy was assigned equally to its tensteare
neighbours. This produced similar results for- 0.03°, but did
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not help on smaller scales. All of our results are presensiagu
thew; weighting scheme. Hence each galaixys weighted by the
factor,

_ 1

1 +4an(z)Js(s)’
and each galaxy-galaxy paiy is given a weightv s w;w;, whereas
each galaxy-random and random-random pair is given a weight
Wi Wy .

w;

@)

3.4 Thetwo-point correlation function, (o, )

We use the estimator of Landy & Szalay (1993),

DD —2DR+ RR
£(o,m) = 5 @)
where DD is the normalised sum of weights of galaxy-galaxy
pairs with particular(o, ) separation,RR the normalised sum
of weights of random-random pairs with the same separation i
the random catalogue ardR the normalised sum of weights of
galaxy-random pairs with the same separation. To normétise
pair counts we ensure that the sum of weights of the random cat
alogue equal the sum of weights of the real galaxy catalogsie,
a function of scale. We find that other estimators (e.g. Hamil
1993) give similar results.

The N(z) distributions for the data and random catalogues
(scaled so that the area under the curve is the same as fobthe o
served data) are shown in FI3. 3. It is clear th&tz) for the ran-
dom catalogues are a reasonably smooth fiv{e) for the data.
Norberg et al. (2002a) showed that large ‘spikes’ in Mgz) are
common in the mock catalogues, and so similar features iddte
redshift distributions indicate normal structure.

The resulting estimates ¢fo, ) calculated separately for the
SGP and NGP catalogues are shown inHig. 4, along with the com-
bined result. The velocity distortions are clear at both Isarad
large scales, and the signal-to-noise ratio is in generglhigh for
o andr values less thaR0 A~ 'Mpc; itis ~ 6 in eachl h~'Mpc
bin ats = 20 h~'Mpc. At very large separatior&{, ) becomes
very close to zero, showing no evidence for features thatdog
attributed to systematic photometric errors.

We used an earlier version of the 2dFGRS catalogue to carry
out a less detailed analysis §fo, 7) (Peacock et al. 2001). The
current redshift sample has about 1.4 times as many galaxies
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Figure 4. Grey-scale plots of the 2dFGRSa, ) (in 1 h~1Mpc bins) for (a) the SGP region, (b) the NGP region and (c) thebioed data. Contours are

overlaid at¢ = 4.0, 2.0, 1.0,0.5,0.2 and0.1.

though more importantly it is more contiguous, and the exVis
photometry has improved the uniformity of the sample. Nineer
less our new results are very similar to our earlier analyEmon-
strating the robustness of our results. The current lamyapte al-
lows us to trace out to larger scales with smaller uncertainties.
Also, in our present analysis we analyse mock catalogue®-to o
tain error estimates which are more precise than the preéowor
approximation (see Sectifn¥.3).

3.5 Theredshift-space correlation function, £(s)

Averagingé (o, 7) at constan gives the redshift-space correlation
function, and our results for the NGP and SGP are plottedgt{-i

ume simulation are shown by the solid line, and it matchesléte
extremely well on scales > 4 h~'Mpc. On smaller scales, where
the algorithm for placing galaxies in the simulation hagdicontrol
over the clustering amplitude (as discussed in SeEfidnth&)e are
discrepancies of ordéi%.

The mear¢(s) determined from the mock catalogues agrees
well with the true redshift-space correlation functionrfrehe full
Hubble Volume. This provides a good check that our weighting
scheme and random catalogues have not introduced any lmases
the analysis.

3.6 Redshift-space comparisons

on both log and linear scales. The NGP and SGP measurements di Regshift-space correlation functions have been measud f

fer by abouRo betweer20 and50 h~Mpc, and we find one mock

many redshift surveys, but direct comparisons betweerereifit

whose NGP and SGP measurements disagree by this much, and sgyrveys are not straightforward because galaxy clustelépgnds

it is probably not significant. We tried shifting/* by 0.1 mag to
better fit theN (z) atz > 0.15 in the SGP, and this moved the data
points by~ 0.20 for 20 < s < 50 h~*Mpec.

The redshift-space correlation function for the combinathd
is plotted in Fig[® in the top panel. It is clear that the meadd(s)
is not at all well represented by a universal power law oncales,
but we do make an estimate of the true value of the redshéftesp
correlation lengthso, by fitting a localised power-law of the form,

- (2) "

using a least-squares fitkeg(¢) as a function ofog(s), using two
points either side of (s) = 1. This also gives a value for the local
redshift-space slopeys. The best-fit parameters for the separate
poles and combined estimates are listed in Téble 1. In thet ins
of Fig.[d we can see, at a low amplitude, ti§ét) goes negative
betweer50 < s < 90 h~'Mpc.

In the bottom panel of Fidl6 we examine the shapée (@
more carefully. The points are the data divided by a smallesca
power law fitted on scale.1 < s < 3 h~'Mpc (dashed line).
The data are remarkably close to the power-law fit for this lim
ited range of scales, and follow a smooth break towards zmro f
3 < s < 60 h~'Mpc. The measurements from the Hubble Vol-

(©)

on the spectral type and luminosity of galaxies (e.g. Guzzo e
al. 2000; Norberg et al. 2002b; Madgwick et al. 2003). Dian-
parisons can be made only between surveys that are basedien si
lar galaxy selection criteria. The 2dFGRS is selected ussegido-
total magnitudes in thg; band, and the three most similar surveys
are the Stromlo-APM survey (SAPM, Loveday et al. 1992), the
Durham UKST survey (Ratcliffe et al. 1998) and the ESO Slice
Project (ESP, Guzzo et al. 2000). The Las Campanas Redsinift S
vey (LCRS, Lin et al. 1996, Jing et al. 1998) and Sloan Digiiay
Survey (SDSS, Zehavi et al. 2002) are selected inRhH@and, but
have a very large number of galaxies, and so are also intggdet
comparisons.

The non-power-law shape @fs) makes it difficult to com-
pare different measurements ©f and~,, because the values de-
pend sensitively on the range efused in the fitting procedure. In
Fig.[(a) we compare thg(s) measurements directly for the 2dF-
GRS, SAPM, Durham UKST and ESP surveys. Our estimate of
£(s) is close to the mean of previous measurements, but the uncer-
tainties are much smaller. Although we quote uncertairttiasare
similar in size to previous measurements, we have used #tesc
between mock catalogues to estimate them, rather than tlse Po
son or boot-strap estimates that have been used before aold wh
seriously underestimate the true uncertainties.

(© 2003 RAS, MNRAS0O00, THTY
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Figureb. The redshift-space correlation function for the NGP (opein{s)
and SGP (solid points) 2dFGRS data with error bars from treeafmock
catalogue results. Inset plotted on a linear scale.
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Figure 6. Top panel: The redshift-space correlation function for ¢ben-
bined data (points) with error bars from the rms of the modklogue re-
sults. The dashed line is a small scale power law §if, € 13 A~ Mpc,
vs = 0.75) and the dot-dashed line is the best-fit to points arosgpd
(so = 6.82 h~'Mpc, vs = 1.57). Inset is on a linear scale. Bottom
panel: As above, divided by the small scale power law. Thiel ok shows
the result from the Hubble Volume simulation.
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Figure 7. Comparison of 2dFGR$(s) with (a) otherby band selected
surveys as indicated and () band selected surveys as indicated. These
results are discussed in the text.

berg et al. 2002b), we should expect tljawill be higher for red
selected surveys than a blue selected survey. This issxarisred
further in Madgwick et al. (2003).

3.7 Theprojected correlation function, =(o)

The redshift-space correlation function differs signifittg from
the real-space correlation function because of redspifts dis-
tortions (see Section 4). We can estimate the real-spacela@ion
length, ro, by first calculating the projected correlation function,
Z(o). Thisis related tg (o, 7) via the equation,

(o) =2 /(;oof(a, ) dm (4)

though in practice we set the upper limit in this integraktg.x =
70 h~'Mpc. The result is insensitive to this choice fof... >
60 h~'Mpc for our data. Since redshift space distortions move
galaxy pairs only in ther direction, and the integral represents a

Fig.[A(b) shows the 2dFGRS measurements together with the SUm of pairs over allr values,=(o) is independent of redshift-

LCRS and SDSS measurements. On scalgs4 h~'Mpc there
appears to be no significant differences between the surbeys
for s < 2 h~'Mpc the LCRS and SDSS have a higher ampli-
tude than the 2dFGRS. This difference is likely to be caused b
the different galaxy selection for the surveys, though tb&S re-
sults shown are for the Early Data Release (EDR) and haverlarg
errors than the 2dFGRS points. The 2dFGRS is selected tsjng

space distortions. It is simple to show th#(io) is directly related
to the real-space correlation function (Davis & Peebles3)98

E(o) 2 /'°° r&(r)dr
o o), (rz_az)%'

If the real-space correlation function is a power law this te

integrated analytically. We writé(r) = (r/r{ )*Vf , Where the

©)

whereas the SDSS and LCRS are selected in red bands. Since thé superscripts refer to the ‘Projected’ values, rather tinen‘in-

red (early type) galaxies are more strongly clustered thae (ate
type) galaxies (e.g. Zehavi et al. 2002; and via spectra,tior-

(© 2003 RAS, MNRASD00, THT9

verted’ values which are calculated in Secfiod 3.8 and dhby
1. With this notation we obtain,
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Figure 8. The projected correlation functions for the NGP (open ®int
and SGP (solid points) 2dFGRS data with error bars from the spread
between mock catalogue results. Inset plotted on a linede sc
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Figure 9. Top panel: The projected correlation function of the coretin
data with error bars from the rms spread between mock catalogsults.
The dashed line is the best-fit power-law fol < o < 12 h~'Mpc
(ro = 4.98, v 1.72, A = 3.97). Inset is plotted on a linear scale.
Bottom panel: The combined data divided by the power-law fit.

The parameters” andr{’ can then be estimated from the mea-
sured=(c), giving an estimate of the real-space clustering inde-
pendent of any peculiar motions.

The projected correlation functions for the NGP and SGP are
shown in Fig[B and the combined data result is shown irJFighe.
best-fit values of;” andr{ for 0.1 < o < 12 h™'Mpc are shown
in Table[1. Over this rang&(c) /o is an accurate power law, but
it steepens for > 12 h~'Mpc. This deviation from power-law
behaviour limits the scales that can be probed using thisoaph.

Table 1. Best-fit parameters t6. For sg and~ the fit to&(s) uses only
points arouncs = sg. Forrf’, v and AgL) the fit to 2(o) /o uses all
points with0.1 < o < 12 h~!Mpc. Forr/ and~/ the fit to the inverted
£(r) uses all points witl).1 < 7 < 12 h~!Mpe. In each case the errors
quoted are the rms spread in the results obtained from the saalysis
with the mock catalogues.

Parameter SGP NGP Combined
s0 (R~ Mpc) 6.924+0.36 6.724+0.41 6.82+0.28
s 1.51+0.08 1.64+0.08 1.57+0.07
réa (h~'Mpc) 5.054£0.32 4.79+0.31 4.954+0.25
~P 1.68 +0.06 1.77+0.07 1.724+0.04
INGED) 4.174+0.23  3.77+£0.28 3.99£0.16
ré (h~'Mpc) 5.094+0.35 5.084+0.28 5.05+0.26
v 1.65+0.03 1.70£0.04 1.67£0.03

3.8 Thereal-space correlation function, £(r)

It is possible to estimaté(r) by directly inverting=(c) without
making the assumption that it is a power law (Saunders, Rowan
Robinson & Lawrence 1992, hereafter S92). They recast Hgn. 5
into the form,

SR
™ T
Assuming a step function fd&E(c) = E; in bins centered ow;,

and interpolating between values,

[ 2 2
Oj+1+4/0541 —0;

O'j-l— 2 2

(d=(0)/do)

0 P ™)

1IN S =5

: : (8)
Oj+1 —0j 0% — o7

jzi
for r = o;. S92 suggest that their method is only good for scales
r < 30 h~'Mpc in the QDOT survey becausebecomes compa-
rable to the maximum scale out to which they can estirgaté/e
can test the reliability of our inversion of the 2dFGRS datang
the mock catalogues.

In Fig. 10 we show the meag(r) as determined from the
mock catalogues using the method of S92. We compare this to
the real-space correlation function determined direathnt the
Hubble Volume simulation, from which the mock catalogues ar
drawn. The agreement is excellent and shows that the method
works and that we can recover the real-space correlatioctium
out t030 A~ 'Mpec. Like S92 we find that beyond this scale the
method begins to fail and the trgér) is not recovered.

We have applied this technique to the combined 2dFGRS data
and obtain the real-space correlation function shown in [Elly
The data are plotted out to onB0 A~'Mpc due to the limi-
tations in the method described above. On small scéle$ is
well represented by a power law, and a best-fit over the range
0.1 < r < 12 h~'Mpc gives the results for{ and~} shown
in Table[d.

The points in the bottom panel of FIgJ11 show the 2dFGRS
data divided by the best-fit power law. It can be seen thatalésc
0.1 < r < 20 h~'Mpc the datet (r) is close to the best-fit power-
law but does show hints of non power-law behaviour (see atso d
cussion below).

(© 2003 RAS, MNRAS0O00, THTY
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Figure 10. The mean real-space correlation function determined fitzen t
22 mock catalogues using the method of S92. The solid lifeeisrties (r)
from the Hubble Volume and the agreement is excellent. Nweehanged
scale from previous plots.
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Figure 11. Top panel: The real-space correlation function of the com-
bined 2dFGRS using the method of S92, with error bars fromrithe
spread between mock catalogues. The dashed line is thétqestrer law

(ro = 5.05, v = 1.67). Inset is plotted on a linear scale. Bottom panel:
The data divided by the power law fit. The solid line is the dejgrted
APM result (Padilla & Baugh 2003) as discussed in the texe dbtted
line is the result from the Hubble Volume.

3.9 Real-space comparisons

In the inverteds(r) (and possibly=[c]) there is a weak excess of
clustering over the power-law fa¥ < r < 20 h~'Mpc. This
has been previously called a ‘shoulder’§n(see e.g. Ratcliffe et
al. 1998). Though the amplitude of the feature in our datatisar
low, it has been consistently seen in different surveys, @obta-
bly is a real feature. After submission of this work, Zehavak
(2003) also saw this effect in the SDSS projected corraidtioc-

(© 2003 RAS, MNRASD00, THT9

Table 2. Measurements of(r) from 2dFGRS and other surveys, with the
quoted uncertainties as published. The various authors bsed very dif-
ferent ways to estimate errors though none have includeefteets of cos-
mic variance. Since we have used the scatter between maabgats to
take account of this, our estimates are actually dominayecbbmic vari-
ance. These results are measured at different effectivindsities, red-
shifts and for different galaxy types.

Survey ro (R~ *Mpc) v,
2dFGRSP)  4.95+0.25  1.72+0.04
2dFGRS () 505+£0.26  1.67+0.03
SAPM 5140.3 1.71 £ 0.05
ESP 4.15+0.2 1.6770:00
Durham UKST 5.1+ 0.3 1.6+0.1
LCRS 506+0.12  1.86+0.03
SDSS 6.14+0.18  1.75+0.03

tion and explained the inflection point as the transitionestee-
tween a regime dominated by galaxy pairs in the same halo and
a regime dominated by pairs in separate haloes. Magliachett
Porciani (2003) have found the same effect when examining€o
lation functions of different types of 2dFGRS galaxy.

The dotted line in the bottom panel of Figd11l shows the
Hubble Volume simulation which agrees well with the data for
r > 1 h~'Mpc. On smaller scales the Hubble Volurdeshows
significant deviations from a power-law. On these scalesg#iaxy
clustering amplitude in the simulation is incorrectly mbelé since
the assignment of galaxies to particles is based on the nigtsis d
bution smoothed on a scale df h~'Mpc (as discussed in Sec-
tion[Z2). The solid line in the bottom panel of FIgl 11 is tree d
projected APM result (Padilla & Baugh 2003), scaled down by a
factor (1 + z5)“, with o = 1.7, suitable for evolution in ACDM
cosmology. There is good agreement between the 2dFGRS and
APM results which are obtained using quite different method

We have estimated, and~, by fitting to the projected cor-
relation function=(c) /o, and also by inverting&(c) /o and then
fitting to £(r). The best-fit values from the two methods are shown
in Table[1, and it is clear they lead to very similar estimates,
and~,.. This confirms that the power-law assumption in Sedfich 3.7
is a good approximation over the scales we consider.

Tablel2 listsro and~, for the 2dFGRS and other surveys es-
timated using power-law fits to the projected correlationction
=(o). As mentioned in Sectidnd.5 the SAPM, Durham UKST and
the ESP aré; selected surveys, and so should be directly compa-
rable to the 2dFGRS. The values af and~, for these surveys
all agree to within one standard deviation, excepfor the ESP,
which appears to be significantly lower. It is likely that tineoted
uncertainties for the ESP and Durham UKST parameters aerund
estimated since they did not include the effect of cosmi@nae.
Since they each sample relatively small volumes, this \eithllarge
effect. The sparse sampling strategy used in the SAPM méans t
it has a large effective volume, and so the cosmic variansmél.

As in Sectior3b, the red-selected surveys, LCRS and SDSS,
are significantly different from the other surveys. The tipancies
are most likely due to the fact that the amplitude of galaxistr-
ing depends on galaxy type, and that red-selected surveyséa
different mix of galaxy types. We can make a very rough approx
imation of the expected change §rby considering how the mean
colour difference of early and late populations changesetstive
fraction of the two populations when a magnitude limited pkm
is selected in different pass bands. Zehavi et al. (2002} thelir
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r—selected SDSS sample into 19603 early-type galaxies argl 953
late-type galaxies. The meéyn— ) colours are 0.5 and 0.9 respec-
tively. The 2dFGRS is selected usibgwhich is close tgy, and so
compared to the selection, the median depth for blue galaxies will
be larger that for red galaxies. The number of early and igtest
will roughly scale in proportion to the volumes sampled, aod
the ratio of early-to-late galaxies in the 2dFGRS will begioly

~ (19603/9532) x 10°:6(°->=0-9 — 1 18, Note that this colour
split leads to a very different ratio of early-to-late gaésxcom-
pared to the; split used by Madgwick et al. (2003). Assuming the
early and late correlation functions trace the same unierfield,
the combined correlation function will be

2
) fmass .

From the power law fits of Zehavi et al., the ratio of bias val-
ues at 1 MpC idearly /biate = 4.95. Inserting the different ratios

9)

_ ncarlybcarly + nlatcblatc
gtot —
Nearly + Nlate

4.1 Constructingthe model

Kaiser (1987) pointed out that, in the linear regime, theaceht in-
fall velocities take a simple form in Fourier space. Hammil{t992)
translated these results into real space,

&'(o,m) = o(s)Po(u) + &2(5) Pa(p) + €a(s) Pa(p)

where R(u) are Legendre polynomialg, = cos(f) and@ is the
angle betweem andr. The relations betweefy, {(r) and 3 for a
simple power-lavw¢ (r) = (r/ro)~ 7" are (Hamilton 1992),

(11)

o) = (1+ 2+ L) e 12)
e = (L+2) (225 e 13)
i) = 2 (G2 e 14)

Nearly /ate @PPropriate to the red and blue selected samples we The Appendix has more details of this derivation and gives th

find that the expected ratio &f for a red selected sample com-
pared to a blue selected sample is roughly 1.36. Scalingdke 2
GRS values ofy = 5.05 and~,, = 1.67 leads to a SDSS value
of ro = 5.95 for v, = 1.75, within 1o of the actual SDSS value.
This simple argument indicates that the observed diffaenc
between the red and blue selected surveys is consistentthéth
different population mixes expected in the surveys. Theaestr-
face brightness selection applied to the LCRS may alsodote
significant biases.

Each survey is also likely to have a different effective lumi
nosity and, as has been shown by Norberg et al. (2001), thiis wi
cause clustering measurements to differ. The relationd&iGRS
galaxies found by Norberg et al. (2001) was,

'YTT
(T—O) =0.85+0.15 (£>
ry L*

which gives, forl, = 1.4L" (see SectioR211);5 = 4.71 + 0.24,
which will allow direct comparisons with other surveys.

(10)

4 REDSHIFT-SPACE DISTORTIONS

When analysing redshift surveys it must be remembered higat t
distance to each galaxy is estimated from its redshift andtishe
true distance. Each galaxy has, superimposed on its Hulidiiem

a peculiar velocity due to the gravitational potential mldcal en-
vironment. These peculiar velocities can be in any directiod,
since this effect distorts the correlation function, it ¢enused to
measure two important parameters.

The peculiar velocities are caused by two effects. On small
scales, random motions of the galaxies within groups cause a
dial smearing known as the ‘Finger of God'’. On large scalesigr
tational instability leads to coherent infall into overdernregions

equations for the case of non-power law formg of

We use these relations to create a magdér, =) which we
then convolve with the distribution function of random pése
motions, f (v), to give the final modef (o, ) (Peebles 1980):
E(o,m) = / & (o, —v/Ho) f(v)dv (15)
and we choose to represent the random motions by an expanenti
form,

_\/ilvl) (16)

fo) = == exp( :

whereq is the pairwise peculiar velocity dispersion (often known a
o12). An exponential form for the random motions has been found
to fit the observed data better than other functional fornts (Rat-
cliffe et al. 1998; Landy 2002; see also Secfibn 6).

4.2 Model assumptions

In this model we make several assumptions. Firstly, we assam
power-law for the correlation function. The power-law appma-

tion is a good fit on scales: 20 A~ 'Mpc but is not so good at
larger scales. This limits the scales which we can probegiiiis
method. In Sectiofl7, we consider non-power-law modelsg fo),

and recalculate EqnEJ12fal14 using numerical integraks Age
pendix), allowing us to reliably use scales 20 h~!'Mpc. Sec-
ondly, we assume that the linear theory model describedeabov
holds on scalesS 8 h~*Mpc, which is almost certainly not true.
We also consider this in Section 7. Finally, we assume an-expo
nential distribution of peculiar velocities with a congtaelocity
dispersiong, (Eqn.[I$) and this is discussed and justified in Sec-
tion[d and Sectioh 4.

4.3 Mode plots

To illustrate the effect of redshift-space distortions ba g (o, 7)
plot we show four modef (o, )'s in Fig.[I2. If there were no dis-

and outflow from underdense regions. We analyse the observedtortions, then the contours shown would be circular, as éntép

redshift-space distortions by modeliggo, 7). We start with a
model of the real-space correlation functigiiy), and include the
effects of large-scale coherent infall, which is paraniegéer by

B ~ Q%5/b, whereb is the linear bias parameter. We then con-
volve this with the form of the random pairwise motions.

left panel due to the isotropy of the real-space correldtioction.

On smallo scales the random peculiar velocities cause an elonga-
tion of the contours in the direction (the bottom left panel). On
larger scales there is the flattening of the contours (tdit pgnel)

due to the coherent infall. The bottom right panel is a modéht w

(© 2003 RAS, MNRASO00, THTY
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Figure 12. Plot of model (o, 7)'s calculated as described in Sectidn 4. The
lines represent contours of constdiw, =) = 4.0, 2.0, 1.0, 0.5, 0.2 and 0.1
for different models. The top left panel represents an dodisd correlation
function @ = 0, 8 = 0), the top right panel is a model with coherent infall
added ¢ = 0, 8 = 0.4), the bottom left panel is a model with just random
pairwise velocities added:(= 500 km s~ !, 8 = 0) and the bottom right
panel has both infall and random motions added=( 500 km s~ 1, 3 =
0.4). These four models have) = 5.0 h~!Mpc and~, = 1.7.

both distortion effects included. Comparing the models (of, )
to the 2dFGRS measurements in IElg. 4 it is clear that the Hata s
the two distortion effects included in the models. In Sediowe
use the data to constrain the model directly, and deduceetiefib
model parameters.

5 ESTIMATING g

Before using the model described above to measure the pname
simultaneously, we first use methods that have been usedein pr
vious studies. This allows a direct comparison between esults
and previous work.

5.1 Ratioof ¢'s

The ratio of the redshift-space correlation functigds), to the
real-space correlation functiog(r), in the linear regime gives an
estimate of the redshift distortion parametgfsee Eqri_IR2),

() _
r) 357
Our results for the combined 2dFGRS data, using the invéoted

of £(r), are shown in Fid—3 by the solid points. The mean of the
mock catalogue results is shown by the white line, with the rm
errors shaded and the estimate from the Hubble Volume isrshow
by the solid line. The data are consistent with a constanieyvalnd
hence linear theory, on scalgs4 h~*Mpc.
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Figure 13. The ratio of¢(s) to £(r) for the 2dFGRS combined data (solid
points), and the Hubble Volume (solid line). The mean of treckncata-
logue results is also shown (white line), with the rms ertaded. The
error bars on the 2dFGRS data are from the rms spread in mealogae
results.

corresponding t@ = 0.45 £ 0.14. The maximum scale that we
can use in this analysis is determined by the uncertaintg(oh
from the Saunders et al. inversion method discussed incBEET.

5.2 Thequadrupole moment of &

We now measurg using the quadrupole moment of the correlation
function (Hamilton 1992),

30+ 267 §2(8)

T IR T IR e G
where¢, is given by,

1 "+
&) =25 [ eom P (19)

These equations assume the random peculiar velocitiesegte n
gible and hence measuring@ gives an estimate gf. The random
uncertainties in this method are small enough that we olvtdin
able estimates on scales 40 h~'Mpc, as shown by the mock
catalogues (see below), but the data are noisy beyond tbeles s

Fig. [ showsQ estimates for the combined 2dFGRS data
with the inset showing the NGP and SGP separately. The effect
the random peculiar velocities can be clearly seen at sroalés,
causingQ to be negative. The best-fit value to the combined data
for 30 — 40 h™*Mpc is Q = 0.55 + 0.18, which gives a value for
B = 0.4715:12, where the error is from the rms spread in the mock
catalogue results. The solid line represents a model @ith0.49
anda = 506 km s~ !, which matches the data well (see Section
[Z). Although asymptoting to a constant, the value(bfn the
model is still increasing at0 A~ 'Mpc. This shows that non-linear
effects do introduce a small systematic error even at thesles
though this bias is small compared to the random error.

To check whether this method can correctly deterninge
use the mock catalogues. The data points in[Ely. 15 are tha mea
values of@) from the mock catalogues, with error bars on the mean,
and the dashed line is the true valuetot= 0.47. The data points

The mock catalogues and Hubble Volume results asymptote to seem to converge on large scales to the correct valdg &tting

B = 0.47, the true value of3 in the mocks. The 2dFGRS data in
the range8 — 30 A~ 'Mpc are best-fit by a ratio of.34 + 0.13,

(© 2003 RAS, MNRASD00, THTY

to each mock catalogue in turn 80 — 40 h~'Mpc gives a mean
Q = 0.51 +0.18, corresponding t@ = 0.4370-1%. As the models
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Figure 14. TheQ factor for the combined 2dFGRS data, restricted to scales
not dominated by noise with error bars from the rms spreaddoknecata-
logue results. The two dashed lines show the expected arfisndifferent
values of3 which approximate théo errors. The solid line shows a model
with 8 = 0.49 anda = 506 km s~ (see SectiofLZl1). The inset shows
the result for the NGP (solid points) and SGP (open point&);etrror bars
are placed alternately to avoid confusion.
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Figure 15. The mearQ factor for the mock catalogues with error bars from
the rms spread in mock catalogue results. The dashed lihe isue value
of 3 = 0.47. The slight bias is caused by the random peculiar velocitses
discussed in the text.

showed, the random velocities will lead to an underestinoaié
even at0 h~'Mpc, causing the difference between the measured
and true values. This all shows that we can deterriingh a slight
bias but the error bars are large compared to the bias.

The @ estimates from the individual mock catalogues show
a high degree of correlation between points on varying scatel
so the overall uncertainty i) from averaging over all scales
30 A~ '*Mpc is not much smaller than the uncertainty from a single
point. It is this fact which makes the spread in results frdma t
mock catalogues vital in the estimation of the errors on esuit
(also see Sectidn1.3).

6 THEPECULIARVELOCITY DISTRIBUTION

To this point we have assumed that the random peculiar wgloci
distribution has an exponential form (Enl 16). This forrns haen

used by many authors in the past and has been found to fit the dat
better than other forms (e.g. Ratcliffe et al. 1998). We tiist for

the 2dFGRS data by following a method similar to that of Landy
Szalay and Broadhurst (1998, hereafter LSB98). To exthacpe-
culiar velocity distribution, we need to deconvolve theligzace
correlation function from the peculiar velocity distribn.

6.1 Themethod
We first take the 2-d Fourier transform of thé&s, ) grid to give

£(ko, k) and then take cuts along the andk, axes which we de-
note by>:(k) andIl(k) respectively, s& (k) = £(ko = k, kr =
0) andII(k) = £(ks = 0,kr = k). By the slicing-projection
theorem (see LSB98) these cuts are equivalent to the Fdrares-
forms of the real-space projections &fo, 7) onto theo and «
axes. The projection of(c, ) onto theo axis is a distortion free
measurement oE but the projection onto the axis gives us
convolved with the peculiar velocity distribution, ignog the ef-
fects of large-scale bulk flows. Since a convolution in rgsce
is a multiplication in Fourier space, the ratio B{k) to I1(k) is
the Fourier transformZ|[f(v)], of the velocity distribution that we
want to estimate. All that is left is to inverse Fourier trimmm this
ratio to obtain the peculiar velocity distributiofi(v). LSB98 cut
their dataset a2 h~'Mpc and applied a Hann smoothing win-
dow; we use all the raw data. Landy (2002, hereafter L02) tised
LSB98 method on the 100k 2dFGRS Public Release data and his
results are discussed below.

Fitting an exponential to the resultinffv) curve gives a value
for a assuming that the infall contribution to the velocity distr
tion is negligible. LSB98 and L02 claim that their method @ n
sensitive to the infall velocities. We show here that thisds the
case. The additional structure in the Fourier transfornmefeloc-
ity distribution found by LO2 is a direct consequence of thiali
velocities.

6.2 Testingthe models

To test the LSB98 method we apply the technique to our models,
described in Sectidd 4, with and withouBa= 0.4 infall factor, us-

ing various scales, and with and without a Hann window. In[Egy

we show the Fourier transform of the peculiar velocity dlstiion

and in Fig[T¥ we show the distribution function itself.

It is clear from Fig[Ib that the shape of the Fourier trans-
form at smallk is quite badly distorted by the infall velocities. This
leads to a systematic error in the actual velocity distidruas seen
in Fig.[Tq, where the measured peculiar velocity dispessam® bi-
ased low, especially in the case where a smoothing windowaand
limited range of scales are used. In particular the peakedfturier
transform is not ak = 0, and the inferred(v) goes negative for
a range of velocities (dashed lines in the lower panels offE&).
This clearly cannot be interpreted as a physical velocisyrithiu-
tion; the method infers negative values because the inputemo
&(o, ) is not consistent with the initial assumption of the method,
which is that all of the distortion ig (o, 7) is due to random pe-
culiar velocities. We conclude that both types of peculieliouity
need to be considered when making these measurements, and so
our preferred results come from directly fittingg¢o, 7).

A further complication with the real data is thAtv) may de-
pend on the pair separation (see discussion in Section Th&).
solid line in Fig I8 shows [ f (v)] for a model where varies from
500km s~ ! ate = 0to 300km s~ ! ato = 20 h~*Mpc. This is

(© 2003 RAS, MNRAS0O00, THTY
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Figure 16. The Fourier transform of the peculiar velocity distributifor
various parameters (see labels). The solid line is for a adé no
smoothing and using all scales 70 h~!'Mpc. The dashed line is for a

model cut at32 h~!Mpc and smoothed with a Hann window (like L02).

The dotted line is the Lorentzian equivalent of the inputagntial peculiar
velocity distribution (this coincides with the solid line the top panels).
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Figure 17. The peculiar velocity distribution for various models (dae
bels). The solid line is the recovered distribution for a mlodith no
smoothing and using all scales 70 A~ 'Mpc. The dashed line is the
recovered distribution for a model cut3® h»~!Mpc and smoothed with
a Hann window. The dotted line is the input exponential pacwelocity
distribution (this coincides with the solid line in the topnels).

compared to a model with = 500 km s~ (dashed line), a model
with @ = 300 km s~! (dotted line) and a model wherevaries
from 300km s~ ! ato = 0t0o 500 km s~* ato = 20 h~'Mpc
(dot-dashed line). The models with varyimgare very close to
their respective constantmodels at alk values, showing that this
method leads to an estimate &1 f(v)] determined mainly by the
value ofa at smallo.

6.3 Themock catalogues

The mean of the peculiar velocity distributions for the maeia-
logues is shown in Fifi_19. The distribution is compared taaeh
shown as the solid line, wit = 0.47 and an exponentiaf(v),
with dispersiong = 575 km s~*. The exact form of the peculiar

(© 2003 RAS, MNRASD00, THTY
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Figure 18. The Fourier transform of the peculiar velocity distributifor

a model witha = 500 km s~ ! (dashed line)g = 300 km s~! (dot-

ted line). Also shown is a model with decreasing fron500 km s—!

to 300 km s~ ! fromo = 0to o = 20 h~'Mpc (solid line) and a
model witha increasing fronB00 km s~ to 500 km s~! fromo = 0 to

o = 20 h~!Mpc (dot-dashed line)3 = 0.5 for all four models.
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Figure 19. The recovered velocity distribution for the mock catalogue
Filled points are the mean result with error bars from thetscédetween
catalogues. This is compared to a pure exponential disiibwith a =
575 km s~ (dashed line) and a model with= 575 km s~ ! and =
0.47 (solid line).

velocities in the Hubble Volume, and hence mock catalogeemt
explicitly specified and it should not be expected to conftorthis
model exactly.

6.4 The2dFGRSdata

The Fourier transform of the peculiar velocity distributifor the
combined 2dFGRS data are shown in Eid. 20 compared to a best-fi
model with3 = 0.49 & 0.05 anda = 570 + 25 km s~ *. Fig.[Z1
shows the peculiar velocity distribution itself comparedte same
model. We showed in Secti@n®.2 (with Fig] 18) that this wiaslyi
to be the value of at smallo. The distribution of random pairwise
velocities does appear to have an exponential form, withrelu-
ence. Sheth (1996) and Diaferio & Geller (1996) have showh th
an exponential peculiar velocity distribution is a resudlgoavita-
tional processes.

Ignoring the infall L02 founda = 331 km s~ !, using the
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Figure 20. The Fourier transform of the peculiar velocity distributitor
the combined 2dFGRS data (solid points) compared to a mastebdtion
with @ = 570 km s~ ! andg = 0.49 (solid line).
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Figure 21. The combined 2dFGRS peculiar velocity distribution (solid
points), compared to a pure exponential distribution wite 570 km s~
(dashed line) and a model with = 570 km s~ ! and 3 = 0.49 (solid
line). The error bars are from the scatter in mock results.

smaller, publicly available, sample of 2dFGRS galaxies.riéele
the same approximations and repeated his procedure onrgar la
sample, and finde = 370 km s~ *. Using our data grid out to
70 h~'Mpec, with no smoothing and ignoring, givesa =
457 km s~ '. We have shown that the result in LO2 is biased
low by ignoring 5 and that the infall must be properly consid-
ered in these analyses. As shown in I[Eid. 21, our data arerreaso
ably well described by an exponential model with= 0.49 and

a =570 kms™".

7 FITTINGTO THE ¢(o,7) GRID
7.1 Results

We now fit ouré (o, ) data grid to the models described in Section
@, assuming a power-law form for the real-space correldtioa-
tion. This model has four free parametessyo, v anda. The fits

to the data are done by minimising

_ 10g[1 + f]model - 10g[1 + g]data 2
E= Z (1Og[1 + 6 + 6£]data - 1Og[1 + § - 5§]data) ’ (20)

for s < 20 h™'Mpc, whered¢ is the rms of¢ from the mock
catalogues for a particular and . This is like a simpley? min-
imization, but the points are not independent. We tried aofi t
directly but found that it gave too much weight to the centeal
gions and so instead we fit tog[1 + &] so that the overall shape
of the contours has an increased influence on the fit. Thefibest-
model parameters are listed in Table 3. The errors we quetthar
rms spread in errors from fitting each mock catalogue in theesa
way.

There are two key assumptions made in the construction of
these models. Firstly, although the contours match welhalls
scales, there are good reasons to believe that our linearythe
model will not hold in the non-linear regime fer< 8 h~'Mpc.
Secondly, we have assumed the power-law modef fey and we
have seen evidence that this is not completely realistimdJson-
power law forms will also allow us to probe to larger scales.

To test whether our result is robust to these assumptions
we firstly reject the non-linear regime corresponding sto<
8 h™'"Mpc. Then, we use the shape of the Hubble Voluge)
instead of a power-law, and finally we extend the maximumescal
to s = 30 h~'Mpc. We showed in Sectiofi=3.8 that the Hub-
ble Volume shape gives a good match to the data over the range
8 < s < 30 h *Mpc (the Appendix gives the relevant equa-
tions for performing thes infall calculation without a power-law
assumption).

We find that the best-fit parameters change very little with
these changes but when using the Hubble Volgig, the quality
of the fit improves significantly. The best-fit model is congzhto
the data in FigzA2. Notice the excellent agreement on sroalés
even though they are ignored in the fitting process. The fitgsa-
rameters are listed in Taflk 3, and we adopt these results éisal
best estimates finding = 0.49 + 0.09.

If we repeat our analysis on the mock catalogues we find a
mean value of3 = 0.475 £ 0.090 (cf. the expected value of
3 = 0.47, SectioZP), showing that we can correctly deterniine
using this type of fit. When fitting the mock catalogues it meea
clear that3 and a are correlated in this fitting procedure, as we
have seen already with other methods. We use the mock caéslog
to measure the linear correlation coefficien{Press et al. 1992),
which quantifies this correlation, and find that, betwekand a,

r = 0.66. If we knew either parameter exactly, the error on the
other would be smaller than quoted.

We also tried other analytical forms for the correlationdun
tion and also different scale limits and found that some doab
tions shifted the results by 1o.

7.2 Comparison of methods

We have now estimated the real-space clustering parametieig
three different methods. In Sectibnl3.9, we saw that theeptigjn
and inversion methods gave essentially identical resaitsf and
~» Whereas using 2-d fits we get slightly higher valuesrfor

If £(r) was a perfect power-law the different methods would
give unbiased results for the parameters, but we have seen ev
dence that this assumption is not true. The methods thexgjore
different answers as a result of the different scales andjhtei
ing schemes used, as well as the vastly different treatnoérite
redshift-space distortions.

(© 2003 RAS, MNRAS0O00, THTY
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Figure 22. Contours of (o, 7) for the 2dFGRS combined data (solid lines)
and the best-fit model (see Table 3) using the Hubble Volgwng fitted to
scales8 < s < 30 h~'Mpc (dashed lines). Contour levels aretat 4.0,
2.0,1.0,0.5,0.2,0.1, 0.05 and 0.0 (thick line).

Table 3. Best-fit parameters to th§ o, 7) grids with errors from the rms
spread in mock catalogue results.

Parameter SGP NGP Combined
Power lawé(r): (0 < s < 20 h~Mpc)

B 0.53+0.06 0.48+0.08 0.5140.05
7o (h"'Mpc) 5.63+026 552+£0.29 558+0.19
Yr 1.66 £0.06 1.76 =0.07 1.72 4+ 0.05
a(kms™1) 497424 543 + 26 522 + 16
Power lawé(r): (8 < s < 20 h~Mpc)

B 0.45+0.10 0.35+0.12 0.494+0.09
ro (h~'Mpc) 6.034£0.36 6.06 £0.41 5.8040.25
Yr 1.744+0.08 1.88+0.10 1.78+0.06
a (kms™1) 457 4+ 49 451 + 51 514 + 31
Hubble Volumet (r): (8 < s < 20 h~*Mpc)

B 0.47+0.12 0.50+0.14 0.494+0.10
a (kms—1) 446 + 73 544 + 67 495 + 46
Hubble Volumet(r): (8 < s < 30 h~'Mpc)

B 048 +£0.11 0.47+£0.13 0.49+0.09
a(kms™1) 450 + 81 545 + 85 506 4 52

7.3 Previous 2dFGRSresults

It is worth contrasting our present results with those otadiin a
previous 2dFGRS analysis (Peacock et al. 2001). This wasdbas
on the data available up to the end of 2000: a total of 141402
redshifts. The chosen redshift limit was,.x = 0.25, yielding
127081 galaxies for the analysis &fo, 7). The present analysis
uses 165 659 galaxies, but to a maximum redshift of 0.2. Bscau
galaxies are given a redshift-dependent weight, this rdiffee in

(© 2003 RAS, MNRASD00, THT9Y

redshift limit has a substantial effect on the volume sachpfeor

a given area of sky, changing the redshift limit framax = 0.2

to zmax = 0.25 changes the total number of galaxies by a factor
of only 1.08, whereas the total comoving volume withif.x in-
creases by a factor of 2. Allowing for the redshift-depenaegight
used in practice, the difference in effective comoving wodufor a
given area of sky due to the variation in redshift limits hees a
factor of 1.6. Since the effective area covered by the ptedaia
is greater by a factor of65 659/(127 081/1.08) = 1.4, the total
effective comoving volume probed in the current analysia fact
15% smaller than in the 2001 analysis; this would suggestaian
errors on clustering statistics about 7% larger than presho Of
course, the lower redshift limit has several important athges:
uncertainties in the selection function in the tail of thenloos-
ity function are not an issue (see Norberg et al. 2002a); #feo
mean epoch of measurement is closet te 0. Given that the sky
coverage is now more uniform, and that the survey mask aed-sel
tion function have been studied in greater detail, the pitassults
should be much more robust.

The other main difference between the present work and that
of Peacock et al. (2001) lies in the method of analysis. The ea
lier work quantified the flattening of the contours&gtr, ) via the
quadrupole-to-monopole ratigz(s)/&o(s). This is not to be con-
fused with the quantity)(s) from Sectiof 2R, which uses an inte-
grated clustering measure instead@fs). This is inevitably more
noisy, as reflected in the error ba; = 0.17, resulting from that
method. The disadvantage of usifigs)/&o(s) directly, however,
is that the ratio depends on the true shap&(oj. In Peacock et al.
(2001), this was assumed to be known from the de-projecfian-o
gular clustering in the APM survey (Baugh & Efstathiou 1998)
the present paper we have made a detailed internal estifngte)o
and considered the effect of uncertainties in this quanfipart
from this difference, the previous method of fitting&e(s) /&0 (s)
should, in principle, give results that are similar to oult fit to
&(o, ) in SectioZIL. The key issue in both cases is the treatment
of the errors, which are estimated in a fully realistic fashin the
present paper using mock samples. The previous analysiswee
simpler methods: an empirical error ga(s)/&0(s) was deduced
from the NGP-SGP difference, and correlated data were atlow
for by estimating the true number of degrees of freedom frioen t
value ofy? for the best-fit model. This estimate was compared with
a covariance matrix built from multiple realizations o, 7) us-
ing Gaussian fields; consistent errors were obtained. Weealpp
the simple method of Peacock et al. (2001) to the current, data
keeping the assumed AP§{r), and obtained the marginalized re-
sult 3 = 0.55 & 0.075. The comparison with our best estimate of
[ = 0.4940.09 indicates that the systematic errors in the previous
analysis (from e.g. the assumgt]) were not important, but that
the previous error bars were optimistic by about 20%.

7.4 Peculiar velocities asa function of scale

There has been much discussion in the literature on whethreto
the pairwise peculiar velocity dispersiom, is a function of pro-
jected separation;. Many authors have used-body simulations

to make predictions for what might be observed. Davis etl8BF)
found that the pairwise velocity dispersion of cold dark temate-
mains approximately constant on small scales, decreasabday
20-30% on intermediate scales and is approximately conatgin

on large scales. Cen, Bahcall & Gramann (1994) found a simila
overall behaviour as did Jenkins et al. (1998) whose reatstplot-

ted in the left panel of Fig.23 as the solid line fah&@DM cosmol-
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Figure 23. The variation ofa with projected separatiow;. Left panel: 2dFGRS data compared to some analytical modelsmdicated in the legend. Right
panel: 2dFGRS data compared to other redshift surveys andated catalogues, as indicated in the legend. The 2dF@RSadd simulated catalogue results
useg to calculate the infall velocities whereas the other resasisume a functional form (see discussion in SeEfidn 7.4).

ogy. The dashed line is from Peacock & Smith (2000) who used th
halo model to predict the peculiar velocities for the galdistribu-
tion. Kauffmann et al. (1999) and Benson et al. (2000) use @i
simulations combined with semi-analytic models of galaomyfa-
tion and the galaxy predictions of Benson et al. (2000) aosveh
by the dotted line. These predictions generally assume= 0.9,

but there is evidence that could be10% lower than this (Spergel
et al. 2003) and so the pairwise velocity dispersions inspheuld
also be lower.

Observationally, Jing et al. (1998) measured the pairmise v
locity dispersion in the Las Campanas Redshift Survey anddo
no significant variation with scale. We note again that thersr
for the LCRS ignore the effects of cosmic variance and amylik
to be underestimates. Zehavi et al. (2002) used the SDSSddta
found thata decreased with scale fer > 5 h~*Mpc. These ob-
servations are plotted in the right panel of gl 23. All thebser-
vations have assumed a functional form for the infall velesi(or
‘streaming’) and not use@ directly. We have already shown that
proper consideration of the infall parameter is vital intsstud-
ies. Indeed, Zehavi et al. (2002) say that their estimates fof
o > 3 h™'Mpc depend significantly on their choice of stream-
ing model. This factor, along with a dependence oh luminosity
and galaxy type may help to explain the differences betwhen t
2dFGRS and SDSS results.

The difference in results from Sectibnlp.2 which measured th
value ofa at smallo (570 km s~'), and from using the (o, 7)
grid (506 km s~ '), which measures an average value, hints that
there may be such an dependence: @i o in the 2dFGRS data.
We test for variations im by repeating the fits described in Sec-
tion[Z1 using a globaB, o and-y, but allowinga to vary in each
o slice. The results are shown in F[g] 23, compared with the re-
sults from other surveys, and numerical simulations asudised
above. The value 6f06 km s~ * obtained from the 2-d fit for scales

> 8 h™'Mpc is close to the value & h~Mpc where most of the
signal is coming from. The value 6770 km s~ obtained from the
Fourier transform technique agrees well with the results&bfor

o < 1 h™'Mpc. The values of3, o and~, are essentially un-
changed when fitting in this way. We note again that the effett
the infall must be properly taken into account in these measu
ments. We also note that we used our linear, power-law matel o
all scales, but we have seen that this is a reasonable apmaten

on non-linear scales.

We see that the overall shape of the 2dFGRS results are fairly
consistent with, though slightly flatter than the semi-gtialpre-
dictions, but the amplitude is certainly a little differewhich could
be due to the value afs used in the models, as discussed above.
We also plot the mean of the mock catalogue results (sol&),lin
and the results of a simulated catalogue (dashed line) af ¥aal.
(2003, withos = 0.75) and these match the real data well.

8 CONSTRAINING Q2

We take the value of measured from the multi-parameter best fit
to&(o, ),

B(Ls, zs) = 0.49 £ 0.09, (21)

which is measured at the effective luminosiby, and redshiftzs,
of our survey sample. In SectifnP.1 we quoted these valugshw
are the applicable mean values when using.theveighting and
redshift cuts employed, a6, ~ 1.4L* andz, ~ 0.15. We also
note here that if we adopt &n,, = 1 geometry we find that =
0.55, within the quoted & errors.

(© 2003 RAS, MNRAS0O00, THTY
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8.1 Redshift effects
The redshift distortion parameter can be written as,

ﬂ _ f(Qm 7bQA7 Z)
wheref = dln D/dlna, and D is the linear fluctuation growth
factor anda is the expansion factor. A good approximation for
at all z, in a flat Universe, was given by Lahav et al. (1991),

and so to constraifY,, from these results we need an estimaté. of
There have been two recent papers describing such measuseme
Verde et al. (2002) measurédLs, z;) from an analysis of
the bispectrum of 2dFGRS galaxies. Their results depeodgy
on the pairwise peculiar velocity dispersian, assumed in their
analysis. They used the result of Peacock et al. (2001), winodt
a = 385 km s~!, somewhat lower than our new value of
500 km s~ . To derive(2,,, using these results would not therefore
be consistent and so a new bhispectrum analysis is in préparat
Lahav et al. (2002) combined the estimate of the 2dF power
spectrumP (k) (Percival et al. 2001), with pre¢MAPresults from
the CMB to obtain an estimate bf but this value is also dependent
onQ.,. Their likelihood contoursare reproduced in FifP4, as the
dashed lines. They also introduced a ‘constant galaxy ediinsf
model for the evolution ob with z. Following these equations we
can evolve our measuretito the present day and estimate

B(Ls, z = 0) = 0.45 + 0.08

. (22)

(24)

and these contours are shown by the solid lines in[Ely. 24s&@he
are in good agreement with, and orthogonal to, those of Latav
al. (2002).

8.2 Luminosity effects

We note that the above analysis is independent of luminasitye
examine everything at the effective luminosity of the syne;.
From the correlation functions in different volume-lindteamples
of 2dFGRS galaxies, Norberg et al. (2001) found a luminodéy
pendence of clustering of the form (cf. Egnl 10),

b/b* = 0.85+ 0.15(L/L") (25)

which gives an estimate for the bias of the survey galaxies:
1.06b" (usingL = 1.4L™), whereb” is the bias ofL* galaxies. If
this bias relation holds on the scales considered in thismpéyen
(B will be increased by the same factor of 1.06,

B(L*, zs) = 0.52 £ 0.09 (26)

and evolvings in a ‘constant galaxy clustering’ model (Lahav et
al. 2002) then,

B(L*,z = 0) = 0.47 + 0.08, 27)

which we choose as a fiducial point to allow comparisons with
other surveys with different effective luminosities andshifts. La-
hav et al. (2002) obtainedi(L*,z = 0) = 0.50 & 0.06, in their
combined 2dFGRS and CMB analysis, completely consistetfit wi
the our result.

1 The bias parameter measured by Lahav et al. (2002) dependstbe
optical depth of reionisation, d@sx exp(—7). The plotted results do not
include this effect, which could be significant, and thisigcdssed further

in Sectio8.B.
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Dashed lineslo and2c error contours from Lahav et al. (2002). Dotted
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8.3 Comparisons

Percival et al. (2002) combined the 2dFGRS power spectruim wi
the preWMAP CMB data, assuming a flat cosmology and found
Qm(z = 0) = 0.31 £ 0.06. These measurements Qf, are also
consistent with a different estimation from the 2dFGRS aiMBC
(Efstathiou et al. 2002) and from combining the 2dFGRS wit-c
mic shear measurements (Brown et al. 2003).

Also plotted in Figurd¥4 is the recent result from the analy-
sis of theWMAP satellite data. Spergel et al. (2003) foufld, =
0.29 + 0.07 usingWMAPdata alone, although there are degenera-
cies with other parameters. Itis clear that this is complatensis-
tent with the other plotted contours. Spergel et al. (2062) found
that the epoch of reionisatiom, = 0.17, which would reduce the
value ofb found by Lahav et al. (2002) by about%, still in good
agreement with the results in this paper.

9 SUMMARY

In this paper we have measured the correlation function vane
ous related quantities using 2dFGRS galaxies. Our mairitseme
summarised as follows:

(i) The spherical average 6{o, ) gives the redshift-space cor-
relation function£(s), from which we measure the redshift space
clustering lengthsy = 6.82 4= 0.28 h~'Mpc. At large and smalll
scalest(s) drops below a power law as expected, for instance, in
the ACDM model.

(i) The projection of¢(o, ) along ther axis gives an estimate
of the real-space correlation functiaf(s), which on scale$.1 <
r < 12 h~'Mpc can be fit by a power-layr /7o) =" with ro =
5.05 £ 0.26 h~'Mpc, v = 1.67 & 0.03. At large scales¢ ()
drops below a power-law as expected, for instance, iN\tG®M
model.
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(iii) The ratio of real and redshift-space correlation ftioas on
scales o8 — 30 h~'Mpc reflects systematic infall velocities and
leads to an estimate ¢f = 0.45 + 0.14. The quadrupole moment
of £(o, ) on large scales gives = 0.477912.

(iv) Comparing the projections of(o, w) along ther and o
axes gives an estimate of the distribution of random pa@wpis-
culiar velocities,f (v). We find that large-scale infall velocities af-
fect the measurement of the distribution significantly aachot be
neglected. Using = 0.49, we find thatf (v) is well fit by an expo-
nential with pairwise velocity dispersion, = 570 & 25 km s,
at smallo.

(v) A multi-parameter fit ta$(o, 7) simultaneously constrains
the shape and amplitude ¢fr) and both the velocity distortion
effects parameterized hy anda. We find 8 = 0.49 + 0.09 and
a = 506 + 52 km s~ *, using the Hubble Volumé(r) as input to
the model. These results apply to galaxies with effectivaihosity,

L =~ 1.4L" and at an effective redshift, ~ 0.15. We also find
that the best fit values ¢f anda are strongly correlated.

(vi) We evolve our value for the infall parameter to the prase
day and critical luminosity and find(L = L*,z = 0) = 047 £
0.08. Our derived constraints oft,, andb are consistent with a
range of other recent analyses.
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Our results show that the clustering of 2dFGRS galaxies as a Loveday, J., Efstathiou, G., Peterson, B.A., Maddox, 3992,
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APPENDIX A: COHERENT INFALL EQUATIONS

Kaiser (1987) pointed out that the coherent infall velestiake a
simple form in Fourier space,

Py(k) = (14 Bui)* Pr(k). (A1)
Hamilton (1992) completed the translation of these resuitsreal
space,
€'(o,m) = [L+5(8/02)*(V*) " 'T¢(r), (r2)
which reduces to
€'(0,7) = Eo(s)Po(k) + &2(5) Pa(p) + &a(s) Pa(p), (A3)
where in general,
2
o) = (143 + 5 ) <o (a4)
2
&) = (4 + 22 ) letr) - &), (1)
2 —
(6) = B [er)+ 50 - 3E0) (»6)
and
= 3 T ! / !
€)= [ enar, (A7)
z 5 " NS /
En =5 [ eoar (A8)

In the case of a power law form fg(r) these equations reduce to
the form shown in Eqng_12 {a14. In the case of non-power law
forms for the real-space correlation function these iralsgmust

be performed numerically.

This paper has been typeset fromgXmMATEX file prepared by the
author.
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