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Abstract 

Cloud computing is a novel market-oriented computing paradigm which can manage 

various IT resources and provide virtual scalable IT services under its openness and 

virtualisation features. Hence, cloud customers can save huge capital investments in 

their own infrastructure by deploying or utilising these IT services through cloud. 

Due to this outsourcing, it is a natural concern for cloud customers about how to 

protect their privacy because they do not have much control inside cloud. Without 

related privacy protection, customers may lose the confidence in and desire to take 

cloud computing into practice eventually. Therefore, as one of the most important 

issues for both academia and industry in cloud computing, cloud privacy protection 

is a joint research frontier for both cloud computing and privacy protection. For 

instance, due to the openness and virtualisation features, various malicious service 

providers may exist in cloud environments out of cloud customers’ control. 

Meanwhile, these customers are quite hard to distinguish these malicious ones for 

the same reason. As a result, some of these malicious service providers can collect 

these customers’ service data, such as service requests or communication logs, and 

then deduce their privacy without authorisation or permission. Therefore, certain 

technical actions should be taken to protect their privacy automatically at client side. 

That is the cloud privacy protection at client side which is one essential aspect of the 

entire cloud privacy protection.  

In this regard, as a promising cloud privacy protection approach at client side, 

noise obfuscation can protect customer privacy without service providers. For 

example, it injects noise service requests into real service requests. As a result, 

malicious service providers are hard to distinguish which are real ones so that related 

customer privacy can be protected in general. Actually, in this thesis, noise 

obfuscation has to investigate how to withstand various privacy risks and concerns 
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in opaque and complex cloud environments. That is to make the noise obfuscation 

approach effective and functional in cloud computing. Besides, the pay-as-you-go 

style of cloud computing makes the cost of noise obfuscation as a key privacy 

concern about the efficiency of privacy protection. Generally speaking, to apply the 

noise obfuscation approach for privacy protection in cloud computing, based on 

existing noise obfuscations, we need to improve noise obfuscation in both the 

effectiveness and efficiency of privacy protection to match the opaque and complex 

cloud environments.  

By now, current noise obfuscations are preliminary and isolated for cloud 

privacy protection. In other words, they are inadequate to consider these various 

privacy risks and concerns in the opaque and complex cloud computing. In this 

regard, to promote noise obfuscation and improve cloud privacy protection, this 

thesis proposes a novel noise obfuscation model for cloud privacy protection and a 

series of novel strategies for effective and efficient noise obfuscation in cloud 

computing. By investigating the limitations of conventional noise obfuscation 

related research on these privacy risks and concerns, this novel model can provide a 

systematic and comprehensive support for privacy protection at client side to 

improve the cloud privacy protection. In this novel model, there are three major 

components: noise pre-processing component – to process customers’ requirements 

on noise obfuscation; noise generation component – to generate noise data 

effectively and efficiently; and noise utilisation component – to utilise noise 

obfuscation into opaque and complex cloud environments. Based on these 

components, we propose a suite of innovative strategies to deal with several serious 

privacy risks and concerns systemically and comprehensively during noise 

obfuscation functions for cloud privacy protection. Simulation comparisons and 

quantitative evaluations are presented to demonstrate that our novel model and 

innovative strategies can significantly improve the noise obfuscation approach in 

both effectiveness and efficiency of cloud privacy protection.  

Specifically, in the noise pre-processing component, a novel privacy-leakage-

tolerance based noise enhancing strategy is proposed to bridge customers’ privacy 

requirements and noise obfuscations. With this strategy, the customer-set privacy-

leakage-tolerance can enhance noise obfuscation by controlling the noise set’s 
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creation, and improve the efficiency of noise obfuscation. In the noise generation 

component, to deal with the probability fluctuation privacy risk, a novel time-series 

pattern based noise generation strategy is presented to conceal fluctuations of 

occurrence probabilities by time-series patterns’ generation and forecasting. 

Similarly, to deal with the association analysis privacy risk, a novel association 

probability based noise generation strategy is proposed to conceal association 

probabilities under the association probability model for noise obfuscation. In the 

noise utilisation component, noise utilisation focuses on multiple cloud services 

scenarios based on the former two components which focus on single cloud service 

scenarios. Furthermore, in the ethical multiple services case, a novel correlation 

based noise injection strategy is designed to combine ethical cloud services together 

to improve the effectiveness of cloud privacy protection on noise obfuscation. 

Likewise, in the unethical multiple services case, a novel common set based noise 

cooperation strategy is created to withstand the privacy risk that unethical cloud 

services could share customer private information and break existing noise 

obfuscations. Briefly, to protect cloud customer privacy systematically and 

comprehensively, various novel strategies are invented for concealing customer 

privacy effectively and efficiently under various privacy risks and concerns in 

opaque and complex cloud environments.  

The major contribution of this research is that we propose a novel noise 

obfuscation model for improving cloud privacy protection by systematically and 

comprehensively withstanding privacy risks and concerns in opaque and complex 

cloud environments. Specifically, a suite of novel strategies including noise pre-

processing strategies, noise generation strategies and noise utilisation strategies, 

have been designed and developed. Corresponding comparisons and quantitative 

evaluations have shown that these innovative strategies can obtain great 

improvements on the effectiveness or efficiency of privacy protection on noise 

obfuscation. In summary, by deploying our innovative model and its novel strategies, 

noise obfuscation can better support cloud privacy protection effectively and 

efficiently.  
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Chapter 1  

Introduction 

This thesis focuses on the privacy issue in the cloud. This is an extremely important 

issue for customers to deploy applications and utilise IT services in cloud computing. 

The goal of the novel research reported in this thesis is that cloud customers can 

improve the privacy protection performance and establish confidence for cloud 

computing in business markets. Generally speaking, as a promising privacy 

protection approach at client side, noise obfuscation for privacy protection in cloud 

computing consisting of noise pre-processing strategies, noise generation strategies, 

noise utilisation strategies and the noise obfuscation model is designed and 

developed. Experimental evaluation demonstrates that our work can help to enhance 

privacy protection effectively in cloud computing, meanwhile related noise cost can 

be reduced significantly or controlled reasonably in the pay-as-you-go cloud 

environments in terms of efficiency.  

This chapter introduces the background and key issues of this research. It is 

organised as follows. Section 1.1 gives a brief introduction to privacy protection in 

cloud computing. Section 1.2 discusses some privacy challenges in cloud computing, 

and outlines  the research in this thesis—noise obfuscation. Finally, Section 1.3 

presents an overview for the remainder of this thesis. 

1.1  Introduction to Privacy Protection in Cloud Computing 

Cloud computing is a novel concept for IT services [70]. In brief, it is described as a 

promising framework for delivering IT services based on distributed system and 
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service computing [63]. IT resources, like computing, storage and communication, 

can be collected, packed and distributed in business markets to be provided to cloud 

customers with a pay-as-you-go fashion in IT infrastructure [2, 70]. It means that 

these customers can save huge capital investments and maintenance consumptions 

on their own hardware and software [63]. In this regard, both academia and industry 

have paid significant attentions to cloud computing which is viewed as a promising 

platform to control the current increasing cost on IT infrastructure and related 

concerns about energy consumption.  

From the nature and basic concepts of cloud computing, it is clear that the 

important openness and virtualisation features of cloud environments require more 

attentions on privacy protection to provide a safe and secure business model and 

environment to all related roles in the cloud [79]. For example, cloud customers 

could upload and deploy their data and applications in the cloud, or access and 

utilise cloud services with related service agreements. In other words, all customers’ 

data and service processes are in these virtualised and open cloud environments 

physically. Without related privacy protection, the ‘unsafe’ cloud environments can 

destroy the confidence for cloud computing from users, enterprises and governments 

[22, 62]. As a result, in this case, the cloud’s main advantage—cost-saving would be 

quite hard to persuade cloud potential customers and supporters to take it into 

practice [97]. That is why privacy protection in cloud computing is chosen as the 

main topic of this thesis to support cloud’s development in both views of academia 

and industry. In this thesis, as a promising computing architecture, cloud computing 

requires privacy protection to investigate and deal with all actual and potential 

privacy risks and concerns which are brought by cloud computing, or existing ones 

depraved by cloud computing [75].  

Based on the significance of privacy protection in cloud computing [53], we can 

discuss this topic in some dimensions to provide a general picture about cloud 

privacy protection. The first one is the time dimension: On one hand, privacy 

protection is a ‘old’ problem which exists quite a long time [8]. And there are some 

common mathematical basis to be utilised consistently [71, 1]. Hence, privacy 

protection in cloud computing cannot be investigated without existing privacy 

protection issues and work [62]. On the other hand, cloud privacy protection is a 

quite challenging problem in current academia and industry. Cloud computing 
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promises itself as a novel service paradigm to reorganise existing IT infrastructure 

elements [2]. In this open and virtualised environment, privacy protection requires 

necessary modifications in views of customers, engineers and managers, 

comprehensively. Hence, novel strategies or approaches have to be invented to 

enhance privacy protection in cloud computing and support the current fast 

development of cloud computing [62, 82]. Therefore, due to the ‘old’ and ‘novel’ 

features, privacy protection in cloud computing means broad and variable privacy 

challenges for both researchers and engineers from the perspective of time 

dimension. 

The other dimension is the space dimension, or the location view. Based on 

Internet and high-speed communications, cloud computing provides powerful, green 

and smart IT services to remote customers or terminals [47]. Hence, privacy 

protection in cloud computing has to consider the disparity of real locations of 

services or customers. For example, one cloud storage service provider in one 

country and one cloud computing service provider in another country may cooperate 

to fulfil a cloud service process to a cloud customer in the third country, and privacy 

protection in cloud computing should analyse related risks and deploy corresponding 

approaches to pursue reasonable privacy protection and obey different regulations 

and policies in these countries. In this regard, United States [19] and European 

Union [37] have different views in privacy laws. Besides, not only the real locations, 

the ‘virtualised’ locations in virtualised cloud environments also require privacy 

protection approaches to keep data and processes safe in terms of complex cloud 

service processes. For example, these different cloud service providers may have 

different privacy policies to protect their customers’ privacy, or even some of them 

do not consider this. In other words, cloud privacy protection has to coordinate to 

pursue a systemic and comprehensive protection. Hence, privacy protection in cloud 

computing requires effective and efficient approaches to be analysed and utilised in 

every location, regardless real or virtualised. It is another aspect of the broad and 

variable privacy challenges in cloud computing, from the perspective of space 

dimension. 

Generally speaking, privacy protection in cloud computing is a complicated 

topic for customers, engineers and managers in cloud environments, with various 

privacy approaches to withstand broad privacy challenges. In this thesis, we focus 
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on one specific privacy protection approach—noise obfuscation, and utilise it for 

privacy protection in cloud computing to support cloud’s current and future 

blossoming promoting. In the next section, we will introduce the noise obfuscation 

approach based on the privacy challenge analysis in cloud computing. 

1.2  Privacy Challenges in Cloud Computing 

Due to the openness and virtualisation features, privacy protection in cloud 

computing has to consider and withstand various privacy risks and concerns to keep 

privacy secure and safe. In this section, we discuss some serious privacy challenges 

in cloud computing, and introduce the noise obfuscation for privacy protection as 

the key topic of this thesis.  

1.2.1 Some Key Privacy Challenges in Cloud Computing 

As discussed before, cloud privacy protection is a crucial issue to promote cloud 

computing into practice. Hence, some key privacy challenges should be emphasised 

and highlighted:  

1) Privacy distribution under data isolation in cloud platforms [85]: it is obvious 

that data isolation in cloud computing is quite important for privacy protection. For 

example, one malicious attacker can deploy his/her applications in a public cloud 

platform which is utilised by many other customers in the meantime, and he/she may 

use some malicious codes or strategies to access other customers’ applications or 

data without authorisation, because current cloud platform managements may 

distribute more than one customer to use one same physical machine or storage disk. 

And data isolation focuses on dealing with this. For cloud service providers, it is a 

powerful tool to manage their platforms and provide healthy, safe and attractive 

cloud services for their customers with cloud privacy protection. Besides, data 

isolation is quite complex in terms of different cloud data, applications and service 

levels in cloud platforms systematically. Therefore, it is a serious and important 

issue in cloud privacy protection. 

2) Privacy distribution under specific polices: as we discussed before, privacy 

protection has to consider related laws and regulations [28]. But in different 
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countries, these policies on privacy could be quite different. Hence, to follow these 

different policies, privacy distribution is a serious topic to be considered in cloud 

computing. For instance, building multiple data centres in different countries is a 

reasonable solution for a multinational cloud enterprise to improve its service 

performance in different countries. Private information and data in these data centres 

have to consider the synchronous strategies and policies to match different laws and 

regulations in terms of data secureness, backup, authorisation, access control, data 

duplication and destruction, and so on. Without this, cloud enterprises may fall into 

law troubles and lose opportunity to be promoted in the blossoming stage of cloud 

computing. Hence, privacy distribution in cloud computing is a much more serious 

and complex challenge than ever before, from the perspective of privacy protection.  

3) Privacy protection at client side [73, 42]: it is clear that cloud computing is a 

virtualised service environment. Hence, for cloud customers, it is quite hard to 

distinguish ‘malicious’ service providers in cloud environments. Besides, to obtain a 

powerful, green and smart cloud service performance, cloud service providers could 

cooperate to fulfil a cloud service. This makes cloud customers even harder to 

monitor and protect their private information during these complicated cloud service 

processes. Hence, it is a serious threat to customer privacy in the view of cloud 

computing. They may lose their confidence in cloud computing under some extreme 

conditions. In this regard, these cloud customers need to be equipped with some 

technical actions on their own to protect their privacy without the support from 

service providers. That is privacy protection at client side. Under this topic, this 

thesis focuses on the noise obfuscation for privacy protection in cloud computing, 

which will be introduced next. 

1.2.2 Noise Obfuscation for Cloud Privacy Protection  

Based on the former discussions, under the key privacy challenge—privacy 

protection at client side, we introduce the noise obfuscation approach for privacy 

protection in cloud computing in this subsection. Let us start with a motivating 

example: 

One customer, who often travels to one city in Australia, say ‘Sydney’, and 

checks the weather report regularly from a weather service in cloud environments 
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before departure. The frequent appearance of service requests about the weather 

report for ‘Sydney’ can reveal the privacy that the customer usually goes to 

‘Sydney’. But if a system aids the customer to inject other requests like ‘Perth’ or 

‘Darwin’ into the ‘Sydney’ queue, the service provider cannot distinguish which 

ones are real and which ones are ‘noise’ as it just sees a similar style of service 

request. These requests prevent from revealing the location privacy of the customer. 

In such cases, the privacy can be protected by noise obfuscation in general. That is a 

basic idea of noise obfuscation for cloud privacy protection. And we will use this 

example frequently to illustrate noise obfuscation details in the following chapters. 

We discuss noise obfuscation in common cloud environments in this thesis as the 

motivating example, and it is obvious that this approach can be utilised in some 

other application areas, such as military systems. In those cases, some specific 

requirements can take noise obfuscation into different considerations and criteria, 

which could be viewed as a specialised process of noise obfuscation for cloud 

privacy protection. 

In brief, a large number of unknown and malicious service providers may exist 

in open and virtualised cloud environments. Such service providers may collect 

service information from customers to analyse and deduce customers’ privacy 

without their permission. For service providers, it is a common phenomenon to 

collect their customers’ information, like service requests. From large to small firms, 

they often use them to analyse customers’ behaviour, habits, and other private 

information [81]. Most ethical ones have adequate self-control to use the 

information by following certain policies and regulations, but some others may 

abuse this in unethical ways, especially in open and virtualised environments like 

cloud computing. Because the openness and virtualisation features make customers 

hard to distinguish and verify service providers and service processes, it is a serious 

privacy risk for cloud customers. 

Existing major privacy protection mechanisms and approaches have not 

considered this situation thoroughly, hence cannot aid customers to withstand such 

type of privacy risks in cloud computing. Therefore, customers should be protected 

by taking certain technical actions for their privacy automatically at client side 

without participation of service providers. Noise obfuscation is an effective and 

promising approach in this regard. The key advantage is that this approach does not 
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need cooperation or assistance from service providers. Besides, compared to other 

privacy protection approaches at client side, noise obfuscation offers a better 

practicality in terms of the effectiveness and efficiency which will be discussed in 

Chapter 2. Hence, we investigate noise obfuscation in this thesis to improve the 

privacy protection in cloud computing.  

Besides, in this thesis about the noise obfuscation for privacy protection in cloud 

computing, we focus on common customers’ privacy without specific data structures 

or types. For instance, these service requests from customers to service providers 

may have some private information to fulfil service processes. And this information 

could be individual data items, like the location information in the motivating 

example. For other private data with complex data structures, noise obfuscation can 

be modified based on this thesis, according to data structure and knowledge 

representation on customer privacy. 

In brief, in this thesis, we focus on how to use noise obfuscation effectively and 

efficiently to protect privacy in cloud computing. Hence, we firstly present a novel 

noise obfuscation model for privacy protection in cloud computing to execute the 

whole procedure of the noise obfuscation function for cloud privacy protection 

systematically and comprehensively, which gives a general description of the 

following steps. Then, in the noise pre-processing step of this model, a novel noise 

pre-processing strategy uses privacy-leakage-tolerance to link customers’ privacy 

requirements and noise obfuscation functions together to guide noise obfuscation. 

After that, in the step of noise generation of this model, we propose two novel noise 

generation strategies to deal with two serious privacy risks—probability fluctuation 

and association analysis, respectively. Besides, these noise pre-processing and 

generation strategies are adequate to be executed sequentially as the single noise 

obfuscation process in the scenario of single service, without further noise utilisation 

strategies. Lastly, in the noise utilisation step which is a necessary step of this model 

to match the scenario of multiple services, we present two novel noise utilisation 

strategies to utilise these single noise obfuscation processes with noise pre-

processing and noise generation in the cases of ethical multiple services and 

unethical multiple services. That is the main process of our novel noise obfuscation 

for privacy protection in cloud computing. In short, this thesis improves the noise 

obfuscation approach significantly and utilises it in cloud privacy protection by our 
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novel noise obfuscation model with a suite of novel strategies. We will introduce 

these steps in the following chapters one by one in detail. 

1.3  Overview of This Thesis 

In this thesis, the main topic is to systematically and comprehensively discuss noise 

obfuscation for privacy protection in cloud computing. Due to the nature of privacy 

protection, different risks and concerns in cloud privacy protection have to be 

discussed, and different strategies need to be designed and presented accordingly. 

And the effectiveness and efficiency of privacy protection on noise obfuscation can 

be improved in cloud computing. The thesis structure is depicted in Figure 1-1. 

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 5
Noise Generation by 
Time-series Pattern

Chapter 6
Noise Generation by 

Association Probability 

Chapter 7
Noise Utilisation for 

Ethical Multiple 
Services

Chapter 4
Noise Pre-processing by Privacy-

leakage-tolerance

Chapter 3
Noise Obfuscation Model for Privacy 

Protection in Cloud Computing

Chapter 9
Conclusions and Future Work

Chapter 8
Noise Utilisation for 
Unethical Multiple 

Services

General 
Model

Noise Pre-
Processing Strategy

Noise Generation 
Strategies

Noise Utilisation 
Strategies

 
Figure 1-1 Thesis Structure 
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In Chapter 2, we introduce the related work to this research. We start from 

introducing privacy protection at service side, especially existing well-researched 

privacy approaches which can be utilised in cloud computing. Then, we introduce 

some representative work about privacy protection at client side to discuss the noise 

obfuscation approach for privacy protection in cloud computing, and point out the 

significance and practicality of noise obfuscation. At last, we introduce some other 

work about time-series analysis, association analysis, trust model, and so on which 

are important foundations for our work in different views.  

In Chapter 3, we firstly demonstrate our novel noise obfuscation model for 

privacy protection in cloud computing. In this chapter, we focus on this noise 

obfuscation model to abstract and organise noise pre-processing strategies, noise 

generation strategies and noise utilisation strategies which will be introduced in 

detail in the following chapters, and provide a common procedure of noise 

obfuscation in cloud computing including: the noise pre-processing component, the 

noise generation component and the noise utilisation component. In one word, this 

model is the general framework of the noise obfuscation approach for privacy 

protection in cloud computing in this thesis. Before we present this model in this 

chapter, we discuss the relationship between noise obfuscation and other privacy 

protection approaches in cloud computing, and point out noise obfuscation 

approach’s position and significance for privacy protection in cloud computing. By 

the way, in this model, the noise pre-processing component and noise generation 

component focus on single service in cloud privacy protection, and the noise 

utilisation component focuses on multiple services in cloud privacy protection based 

on the previous two components. 

In Chapter 4, we develop noise pre-processing for single service by privacy-

leakage-tolerance as the first step of our novel noise obfuscation model—the noise 

pre-processing component. In this chapter, we use a customer-set boundary to 

require and manage the noise obfuscation function in terms of cloud privacy 

protection. Under this privacy concern, the customer-set boundary—the privacy-

leakage-tolerance can link customers’ privacy requirements and noise obfuscation 

functions to pursue a better privacy protection performance. Hence, we present a 

novel privacy-leakage-tolerance based noise enhancing strategy as the noise pre-

processing strategy in the noise pre-processing component.  
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In Chapter 5, we start to introduce the noise generation for single service as the 

second step of our novel noise obfuscation model—the noise generation component. 

In this chapter, we propose a novel time-series pattern based noise generation 

strategy. To withstand the privacy risk about fluctuations of occurrence probabilities, 

this strategy utilises time-series patterns to abstract past fluctuations of occurrence 

probabilities in service data and forecasts future fluctuations of occurrence 

probabilities. After that, the noise data generated by this strategy can conceal these 

future fluctuations effectively and obtain a better effectiveness of privacy protection 

on noise obfuscation in terms of probabilities’ fluctuations.  

In Chapter 6, we further discuss the noise generation for single service in terms 

of another privacy risk: Some privacy attackers may focus on association relations 

and probabilities among service data as the privacy they wanted, which have not 

been considered by existing noise obfuscations. In this chapter, we propose a novel 

association probability based noise generation strategy to operate the noise 

generation process in terms of association probabilities. This strategy investigates 

this association analysis risk, and generates noise data by concealing association 

probabilities. Under this chapter (Chapter 6) and the pervious chapter (Chapter 5), 

the noise generation component in the noise obfuscation model can be operated.  

In Chapter 7, we start with investigating noise utilisation for ethical multiple 

services as a part of the last step of our novel noise obfuscation model—the noise 

utilisation component. In this chapter, we focus on noise utilisation to deal with the 

privacy concern about ethical multiple services and present a novel correlation based 

noise injection strategy. In this strategy, the correlation model and the noise 

injection architecture are utilised to cooperate single noise obfuscation processes 

together to improve the effectiveness of privacy protection in terms of noise 

utilisation. The single noise obfuscation process is operated by the previous noise 

pre-processing component and noise generation component, which will be 

introduced in detail in Chapter 3.  

In Chapter 8, we further investigate noise utilisation for unethical multiple 

services in terms of the privacy risk: it is possible that these unethical multiple 

services share customers’ private data and break noise obfuscation. To deal with this 

privacy risk, we present a novel common set based noise cooperation strategy. In 

this strategy, the common set creation model is presented to provide the solution to 
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utilise single noise obfuscation processes. Generally speaking, the effectiveness of 

privacy protection on noise obfuscation can be improved by this strategy in the case 

of unethical multiple services in terms of noise utilisation. Under this chapter 

(Chapter 8) and the previous chapter (Chapter 7), the noise utilisation component in 

the novel noise obfuscation model can be operated. 

Finally, in Chapter 9, we summarise our new model and strategies presented in 

this thesis, major contributions of this research, and consequent further research 

work.  
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Chapter 2 

Literature Review 

This chapter reviews the existing privacy protection work related to noise 

obfuscation for cloud privacy protection in this thesis. This chapter is organised as 

follows: Section 2.1 gives a general introduction of current privacy protection at 

service side. Section 2.2 reviews the privacy protection at client side including the 

noise obfuscation approach. Section 2.3 reviews other supporting work related to 

our novel noise obfuscation model, such as time-series analysis, association analysis 

and so on.  

2.1  Privacy Protection at Service Side 

In this section, we introduce the current work about privacy protection at service 

side. Generally speaking, privacy protection at service side is the dominating and 

mature research parts in cloud privacy protection. Under this topic, on one hand, 

novel and interesting ideas in cloud privacy protection have been presented 

continuously with the speedy development of cloud computing; on the other hand, 

existing mature privacy protection approaches are under revision and modification 

to match new cloud environments. Therefore, in this section, we will introduce some 

representative privacy protection approaches and issues at service side to support a 

whole picture of cloud privacy protection. 

In brief, many and more researchers are starting to produce and/or have 

produced remarkable research on privacy protection related to cloud environments. 
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Some of them focus on a whole consideration on privacy protection: such as Huang 

et al. [94] discuss privacy protection in the value-added context-aware cloud. 

Similarly, Simoens et al. [57] present a biometric encryption system in privacy 

protection of biometric search area. And Neisse et al. [74] investigate trust and 

promote data security in cloud environments. Some of them focus on novel and 

interesting ideas, such as Itani et al. [89] discuss the “privacy as a service” idea to 

push cloud privacy protection into practice. 

Privacy-Preserving Data Mining (PPDM) reveals a kind of privacy leakage in 

the minutiae [71]. To protect customers’ privacy, Evfimievski et al. [4] use a 

randomisation operator to investigate and discuss the process of association rule 

mining. Besides, differential privacy [58] is to cope with this searching privacy 

preserving situation, particularly due to large scale and uneven distributions in 

structural data. 

Similarly, Privacy-Preserving Data Publish (PPDP) has a wide utilised field in 

data publish of service web [12, 13]. In general, a SuLQ framework [10] considers 

privacy-aware statistical databases by improving the bounds on noise required for 

privacy. In the case with considering a trade-off between privacy and utility [86], 

PPDP has been enhanced to match the pay-as-you-go style of cloud computing.  

Different from PPDM and PPDP, Privacy-preserving Information Retrieval 

(PIR) utilises another approach to protect privacy, which mainly prevents database 

operators from knowing users’ interested records. Chor et al. [14] have a conclusion 

that, to get a perfect protection, a user has to query all the entries in database when 

dealing with a single server framework. Besides, Beimel et al. [5] and Goldberg et 

al. [46] apply information theories to take PIR in practice.  

Proxy and anonymity network to protect customers’ privacy have been widely 

discussed. The major goal is to keep anonymity or “invisibility” in a complex or 

“dangerous” network condition. For example, onion routing [24] and its successor 

TOR [29] provide a kind of sophisticated privacy protection scenarios, making it 

difficult for attackers to trace the customer via network traffic analysis. In social 

networks [9] and encrypted communications [78], anonymous network can protect 

privacy by identity anonymity. Besides, a hierarchical identity-based cryptography 

[59] can achieve mutual authentication in hybrid clouds, which can be viewed as an 

important basis to deploy anonymous network in cloud environments.  
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MapReduce [51] is a popular programming platform in cloud environments. 

Privacy protection in MapReduce has been considered to deal with some privacy 

risks: Word search could be enhanced by privacy-preserving in cloud computing 

[33], and access control [48] is another important topic for privacy protection in 

MapReduce. The hybrid approach [56] can promote cloud data-intensive instances 

to be more practical in terms of the combination of private cloud and public cloud. 

Besides, other cloud application platforms, like Hadoop, can be enhanced by privacy 

protection in terms of fixing system flaws, too [44, 45, 66]. 

Different to cloud programming platforms, in cloud management platforms, 

privacy protection focuses on some mature cloud environments [36, 66]. For 

example, in Amazon Elastic Compute Cloud (EC2) [31], Bugiel et al. [83] present 

one type of image attack which focuses on extracting sensitive information caused 

by unaware users, which needs more attentions in terms of privacy protection.  

In the area of Virtual Machine (VM) which is a key supporting component of 

cloud computing, privacy protection is necessary to be considered. At a high level, 

an in-VM measuring framework [68] for increasing VM’s security & privacy in 

cloud computing has been discussed to collect different VMs sources together based 

on trust mechanisms. Besides, identity management [85] and cost on privacy 

protection [17] can be viewed as important issues to influence the VM’s privacy 

protection. At a low level, one approach [3] has been investigated to obtain a strong 

isolated computing to keep information secure based on specific hardware. Similarly, 

one kind of hypervisor attack surface enabling guest VMs can threat privacy in 

cloud computing, and be addressed by a strict user model [49].  

As analysed in Section 1.2, various malicious service providers may exist in 

cloud environments. Some of them may record customers’ service requests and 

collectively deduce customers’ private information. Therefore, customers’ privacy 

needs to be protected without service providers. This is the scenario that we focused 

on in this thesis. 

Briefly, PPDM is not an ideal choice to address the scenario because it is out of 

customers’ control, hence not suitable for protecting customers’ privacy focused by 

this thesis. PIR and PPDP mainly work at service provider side, hence have the 

similar problem. Proxy and anonymity network need service provider’s cooperation 

to enable such access, and have to face a possibility that cannot enable this access in 
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complex cloud environments. Other privacy protections in cloud computing, about 

MapReduce, cloud management platforms and VMs, focus on cloud management 

and cannot match this scenario well, like other privacy protection approaches at 

service side. Hence, in this thesis, we need to investigate privacy protection at client 

side in cloud computing which will be introduced in the next section. 

2.2  Privacy Protection at Client Side 

In the preceding section, privacy protection approaches at service side have been 

introduced in terms of cloud computing and pointed out their unsuitability for the 

privacy protection scenario in this thesis. Hence, in this section, we introduce 

representative privacy protection approaches at client side to match the scenario. 

As introduced before, at cloud client side, privacy protection considers how to 

use or deploy cloud services safely depending on clients own. Hence, based on this 

semi-honest condition, some instructive approaches and ideas have been discussed, 

including some qualitative methods [27]. This kind of approaches is a promising 

research area in cloud privacy protection to give cloud customers confidence in 

terms of cloud client side. 

Secure computation starts to combine a bunch of nodes mistrusted each other to 

complete a task together by cryptography [7]. Based on the theoretical analysis [8], 

the optimisation on the efficiency has been discussed [38], especially in some 

specific situations [60, 67]. From the perspective of cloud privacy protection, it is a 

promising approach to build a privacy protection system at client side in cloud 

computing. But by now, a significant efficiency improvement is necessary for secure 

computation to be practical in cloud computing [38, 95].  

Similar to secure computation, homomorphic encryption extends the usage of 

encryption and decryption in the view of outsourcing in cloud computing [20]. And 

some papers try to take it into practice [21], such as in the view of efficiency [64]. 

Besides, [69] uses bilinear aggregate signature and public key based homomorphic 

authenticator to improve practicality. Generally speaking, with the improvement on 

efficiency and versatility, these cryptography approaches can protect privacy 

effectively at client side in cloud environments [20, 72].  
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In brief, cryptograph approaches for cloud privacy protection, including secure 

computation and homomorphic encryption, have to face a common efficiency 

problem to be utilised practically in cloud computing, although they have a strong 

mathematical basis. Specifically, these cryptograph approaches require adequate 

computing capability at client side to execute related computing processes, and this 

‘fat’ client in cloud computing is a violation of the basic idea of cloud computing, 

where cloud customers should transfer major tasks in cloud environments and keep 

clients ‘thin’. Without this, the cost-saving of cloud would be impaired for these 

cryptograph approaches. Besides, these cryptograph approaches need supports from 

service providers to execute these related encryption and decryption processes, and 

this does not match the privacy protection scenario in this thesis very well.  

By keeping a light-weight style of client side, noise obfuscation is another 

widely adopted approach for protecting private information at client side. It is clear 

that noise obfuscation can be utilised by cloud customers to keep their privacy safe 

on their own without support from cloud service providers. For example, Ardagna et 

al. [18] discuss the location privacy protection in a mobile environment, and present 

a solution based on different obfuscation operators. By a similar mechanism [54], 

private information can be analysed deeply for privacy protection. Besides, Perron et 

al. [35] investigate noise utilisation in wireless conditions as a type of data security 

in the communication area. Especially, noise insertion builds on the ground of 

information theory to conceal the characters of information [50]. Ye et al. [77] 

investigate noise injection in privacy-aware searching by formulating noise injection 

problem as a mutual information minimisation problem. And a common model is 

presented in terms of obfuscation-based private web search [34]. Zhang et al. [42] 

present a historical probability based noise generation strategy to improve the 

efficiency of privacy protection and obtain a promising cost-saving for privacy 

protection in cloud environments. And a trust based noise injection strategy is 

presented to discuss influences of complex relations in cloud computing on noise 

obfuscation schemes [41]. In short, compared to cryptograph approaches, noise 

obfuscation presents another promising approach to protect privacy at client side: 

obfuscating private information by noise information, instead of covering it directly. 

In summary, privacy protection at client side has attracted more attentions in 

cloud environment than ever before. As an important approach in this area, noise 



 

17 

 

obfuscation is envisaged to perform well to enhance cloud privacy protection at 

client side, and support a comprehensive privacy protection in cloud computing. 

This is the major focus of this thesis. As discussed before, noise obfuscation has to 

face various privacy risks and concerns in cloud computing. Hence, we will present 

a general noise obfuscation model in Chapter 3 and corresponding related strategies 

to address them in Chapters 4, 5, 6, 7 and 8. 

2.3  Other Supporting Work for Noise Obfuscation  

In this section, we introduce some other supporting work for noise obfuscation, 

including operating model in distributed systems, trust and privacy risk evaluation, 

time-series analysis, association analysis and intersection attack. For our novel noise 

obfuscation model, these areas are important references to support some parts of it. 

Hence, they are necessary to be discussed in the literature review. 

Operating model in distributed systems is a useful tool to describe different 

functions in distributed systems. For instance, Yang et al. [98] utilise grid and peer-

to-peer technologies to model workflow systems by Swinburne Decentralised 

Workflow for Grid (SwinDeW-G) [84]. Similarly, Liu et al. [93] present a peer-to-

peer based cloud workflow system to operate instance intensive cloud workflow 

applications. Besides, comparable ideas can be utilised in different areas to organise 

complex processes in distributed environments [87, 61]. In this thesis, we consider 

an general operating model for noise obfuscation in cloud computing—the novel 

noise obfuscation model for privacy protection in cloud computing, and use this 

model to organise all noise obfuscation processes, components and strategies in this 

thesis to be an entirety for privacy protection in cloud computing. We will discuss it 

in Chapter 3 in detail. 

About trust and privacy risk evaluation in cloud, Neisse et al. [74] start to 

investigate trust in cloud environments to promote data security. Besides, the 

interoperability in cloud computing could be enhanced by trust based on 

heterogeneous domains and trust recommendation [90]. Accountability [76] is also 

an important aspect considered by trust and privacy risk evaluation in cloud 

computing. In brief, trust and privacy risk evaluation in cloud computing can make 
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cloud services and customers perform better in these opaque environments in 

different views. We will consider it as a reference in Chapters 4 and 7 in detail. In 

Chapter 4, to aid cloud customers to guide noise obfuscation, we utilise privacy risk 

evaluation to support the noise pre-processing by privacy-leakage-tolerance. And in 

Chapter 7, to incorporate single noise obfuscation processes among ethical cloud 

services, trust can be viewed as a valuable reference to present the correlation model 

to connect these services with single noise obfuscation processes in our novel 

correlation based noise injection strategy. 

About time-series analysis, an online algorithm [30] has been used for 

segmenting time series in mining time-series databases. In another area, Shi et al. 

[32] investigate the aggregation of time-series data and present a group of PSA 

algorithms to protect each source’s privacy, when the data aggregator is untrusted. 

In scientific workflow activities, Liu et al. [91] present a time-series pattern based 

algorithm to forecast duration intervals. In this thesis, to address a probability 

fluctuation privacy risk, the time-series pattern is an effective tool to forecast 

“future” occurrence probabilities based on past data probabilities in the situation 

with probability fluctuations. And that is our novel time-series pattern based noise 

generation strategy as the noise generation strategy. We will utilise the time-series 

pattern in Chapter 5 in detail. 

In the area of association analysis, [4] and [6] start to consider privacy protection 

in association rules mining, and they are useful references for our novel noise 

generation strategy in terms of association probability in this thesis. For example, 

these association probabilities of past service data can be utilised to manage noise 

generation, and be concealed to prevent service providers from revealing them by 

association rules mining. To deal with the association analysis privacy risk, we will 

utilise the association analysis by our novel association probability based noise 

generation strategy in Chapter 6 in detail. 

About intersection attacks, data publish and data mining areas are the main fields 

to be discussed for privacy protection. For example, the composition attack [80] is 

one typical intersection attack in the view of database. During these attacks, some 

multidimensional adversarial knowledge [11] can be utilised to quantify the breach 

of private information and improve algorithms to sanitise data with external 

knowledge. Specifically, Malin et al. [15] investigate this problem in the situation of 
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inferring genotype from clinical phenotype. Briefly, the malicious intersection 

private data analysis is a significant privacy risk and we have to consider it in the 

unethical multiple services case in terms of noise utilisation in our noise obfuscation 

model. To address the unethical multiple services case, we will utilise it as a key 

reference of our novel common set based noise cooperation strategy in Chapter 8 in 

detail. 

In summary, these supporting issues can be utilised in our research. They are 

valuable references to be investigated to support the main topic of this thesis—noise 

obfuscation for systematically and comprehensively supporting cloud privacy 

protection.  

2.4  Summary 

In this chapter, the literature for the recent studies related to the privacy protection in 

cloud computing has been analysed. Firstly, we introduced and discussed current 

successful privacy protection approaches at service side, and pointed out these 

approaches can not deal with all privacy protection scenarios addressed in cloud 

computing, especially the one in this thesis. Then, we introduced existing privacy 

protection approaches at client side, and indicated that the noise obfuscation 

approach is a suitable approach to deal with the scenario in this thesis. Meanwhile, 

based on some other supporting approaches including operating model in distributed 

systems, trust and privacy risk evaluation, time-series analysis, association analysis 

and intersection attack, for cloud privacy protection we can develop novel and 

promising noise obfuscation model and strategies for protecting privacy in cloud 

computing as detailed in the subsequent chapters. 
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Chapter 3 

Noise Obfuscation Model for Privacy 
Protection in Cloud Computing 

As introduced before, this thesis focuses on the noise obfuscation approach for 

privacy protection in cloud computing. Therefore, in this chapter, we present a novel 

general model of noise obfuscation function for privacy protection in cloud 

computing—the noise obfuscation model. This novel noise obfuscation model is to 

abstract the whole novel noise obfuscation philosophy to enhance privacy protection 

in cloud computing. Based on the model in this chapter, the technical details about 

noise obfuscation including noise pre-processing strategies, noise generation 

strategies and noise utilisation strategies, will be described in the subsequent 

chapters. In one word, the novel noise obfuscation model in this chapter is the 

foundation of this entire thesis. 

This chapter is organised as follows. Section 3.1 introduces an overview of 

privacy protection in cloud computing. Section 3.2 presents the novel noise 

obfuscation model for privacy protection in cloud computing. Section 3.3 introduces 

the design of the first component in this model, i.e. noise pre-processing. Section 3.4 

introduces the design of the second component, i.e. noise generation. Section 3.5 

introduces the design of the last component, i.e. noise utilisation. Section 3.6 

introduces our SwinCloud cloud computing infrastructure briefly as the simulation 

environment. Finally, Section 3.7 summarises this chapter.  



 

21 

 

3.1  Privacy Protection Overview in Cloud Computing 

As discussed before, noise obfuscation is one kind of cloud privacy protection 

approaches. Hence, an overview about privacy protection in cloud computing 

expresses a comprehensive picture of cloud privacy protection to underline noise 

obfuscation as a novel and promising approach, which was partly discussed in our 

former work [40].  

Firstly, the cloud architecture [75] has been discussed before, as depicted in 

Figure 3-1. And there are various levels in this architecture.  

 
Based on this architecture, cloud service levels can be presented in the view of 

cloud customers, as shown in Figure 3-2.  

 
In Figure 3-2, from the perspective of cloud customers, it is a suitable view to 

classify privacy protection approaches in cloud environments by cloud service levels. 

Under these levels, various cloud privacy protection approaches can be organised to 

describe the overview. 

Besides, similar to security in cloud computing [65], as the two main roles in 

cloud environments, cloud customers and cloud services providers have to 

 
 

Figure 3-2 Cloud Service Levels in the view of Cloud Customers 
 

 

Figure 3-1 Cloud Architecture 
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investigate privacy protection in cloud service processes among them. Hence, as 

discussed in Chapter 2, we classified cloud privacy protection into client side and 

service side.  

Accordingly, in Figure 3-3, we can draw an overview of cloud privacy 

protection, similar to other systematic analysis in different areas [52, 25].  

 
In Figure 3-3, based on these roles—cloud customers and cloud service 

providers, we can divide cloud service levels into two parts: cloud client side and 

cloud service side, respectively. Hence, two kinds of privacy protection approaches 

can be discussed: privacy protection approaches at cloud service side, and privacy 

protection approaches at cloud client side. As introduced before, at cloud client side, 

this thesis focuses on noise obfuscation which is located in the box on the left—

privacy protection in cloud client interface level.  

In this thesis, privacy protection considers how to use cloud services safely 

dependent on clients own. Hence, based on this semi-honest condition, some 

instructive approaches and ideas have been discussed, including some qualitative 

methods [27]. In Chapter 2, we introduced some current representative privacy 

protection work at client side. They are secure computation, homomorphic 

encryption and noise obfuscation. As discussed in Chapter 2, compared to noise 

obfuscation, secure computation and homomorphic encryption have to face the low 

efficiency problem which can limit them in cloud computing.  

In summary, noise obfuscation is a key and promising approach to support 

powerful, comprehensive and efficient privacy protection in complex and 
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unpredictable cloud environments. Moreover, we will introduce our novel noise 

obfuscation model for privacy protection in cloud computing with its components in 

the following sections. 

3.2  Noise Obfuscation Model for Privacy Protection 

In the preceding section, we realised that noise obfuscation is a key and promising 

approach in cloud privacy protection. Now, we present our novel noise obfuscation 

model for privacy protection in cloud computing, and give a general picture about 

our novel noise obfuscation for privacy protection in cloud computing.  

 
In Figure 3-4, our novel noise obfuscation model for privacy protection in cloud 

computing is presented. The main process of this model is that: there are three main 

components which can be executed successively in noise obfuscation functions: 

“Noise Pre-processing”, “Noise Generation” and “Noise Utilisation”. The “Noise 

Pre-processing” component focuses on some pre-setting work in noise obfuscation 

functions, such as connecting to customers’ privacy requirements by privacy-

leakage-tolerance described in this thesis. The “Noise Generation” component is the 

core part of noise obfuscation and in charge of how to generate effective and 

efficient noise data after noise pre-processing to withstand various privacy risks. For 

 

Figure 3-4 Noise Obfuscation Model 
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example, fluctuations of occurrence probabilities can be analysed by malicious 

service providers to break existing noise obfuscation, and a novel noise generation 

strategy should be designed to conceal these fluctuations for privacy protection. The 

former two components only consider the single service scenario and are executed 

sequentially as a single noise obfuscation process in this single service scenario. 

Hence, the “Noise Utilisation” component considers how to utilise these single noise 

obfuscation processes together and connect them in the multiple services scenario. 

In other words, it has to execute the former two components in this multiple services 

scenario. For instance, when unethical multiple services may cooperate together to 

share private information and break existing noise obfuscations, to address this kind 

of privacy risks, noise utilisation has to consider how to utilise single noise 

obfuscation processes efficiently and effectively in the unethical multiple services 

case. In general, when these three components are combined together, the entire 

novel noise obfuscation functions for privacy protection in cloud computing can be 

operated and functional.  

In parallel to noise obfuscation functions, normal service functions focus on 

their operation and execution in cloud environments. On one hand, these normal 

cloud service functions are the privacy protected targets of noise obfuscation. In 

other words, theses cloud service functions decide noise obfuscation in terms of 

privacy protection, not the other way round. On the other hand, cloud computing 

architecture is the basis of these normal service functions. Hence, these normal 

cloud service functions have some typical cloud features, like openness and 

virtualisation, or all possible cloud management and service delivery. 

In this model and the thesis, we focus on noise obfuscation itself. Hence, the 

“Normal Cloud Service Functions” and the “Cloud Computing Architecture” are 

external supporting factors for noise obfuscation and out of the scope of this thesis. 

In brief, we introduce our novel noise obfuscation model for privacy protection 

in cloud computing. It combines and assembles three main components—“Noise 

Pre-processing”, “Noise Generation” and “Noise Utilisation”, and organises them to 

be an entirety to client-side protect privacy for normal cloud service functions in 

cloud environments. Besides, existing noise obfuscations [77, 42] mainly focus on 

one part of the model: noise generation.   

In the following sections, we will introduce these components one by one in 
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detail. 

3.3  Noise Pre-processing Component  

In this section, we introduce the noise pre-processing component in our noise 

obfuscation model, which is the first step of the single noise obfuscation process and 

the whole noise obfuscation function. As introduced before, this component operates 

itself as a necessary way to connect between noise obfuscation and cloud customers 

who use noise obfuscation to protect their privacy in cloud computing. In this thesis, 

we focus on privacy-leakage-tolerance as the main way to require noise obfuscation 

functions by cloud customers from the perspective of privacy protection. 

Generally speaking, privacy-leakage-tolerance can decide the noise set’s creation 

to control noise generation processes in the next step—noise generation. Specifically, 

for cloud customers, noise obfuscation has to meet some customers’ privacy 

requirements, such as a probability of privacy leakage which they can accept. That is 

privacy-leakage-tolerance. Besides, a noise set is a set of all possible noise data 

during the process of noise generation. Hence, the noise set is the key premise of 

noise generation, which will be illustrated in the following chapters. In this 

component, it is suitable to link the customers’ privacy requirements and noise 

obfuscation functions by privacy-leakage-tolerance. It can decide the creation of the 

noise set to improve the efficiency of privacy protection, due to the more accurate 

requirements than without it. That is the main idea of the noise pre-processing 

component. 

In this component, as shown in Figure 3-5, we can use the specific noise pre-

processing strategy to operate this main idea, which is the novel privacy-leakage-

tolerance based noise enhancing strategy. In this strategy, privacy-leakage-tolerance 

can be set by cloud customers firstly, and then the noise set, which includes all 

possible noise data used by the noise obfuscation function, can be decided and 

created from this privacy-leakage-tolerance by the noise set creation model. We will 

introduce this strategy in detail in Chapter 4. 
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Besides, in this figure, we can see that this component could be directed by the 

noise utilisation component to support the multiple services scenario, which will be 

introduced in Section 3.5. 

Briefly, the noise pre-processing component uses the noise pre-processing 

strategy to generate the noise set from the customer requirement on privacy 

(privacy-leakage-tolerance) to support the noise generation component. It is the first 

step of the single noise obfuscation process which is the basis of the whole noise 

obfuscation function.  

3.4  Noise Generation Component  

In the preceding section, we introduced the noise pre-processing component to 

obtain the noise set as the first step in the single noise obfuscation process. Hence, in 

this section, we can utilise the noise set in the noise generation component to 

generate efficient and effective noise data, such as service requests. For the single 

service scenario, this noise generation component and the previous noise pre-

processing component can be executed as a single noise obfuscation process. Hence, 

as discussed before, the noise generation component is the key part of the single 

 
 

Figure 3-5 Noise Pre-processing Component 
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noise obfuscation process and the whole noise obfuscation function.  

In Figure 3-6, we discuss the input and output of this noise generation 

component: the results of the noise pre-processing component—the noise set is the 

main input of this component, and the output of this component are noise data which 

can be utilised by normal service functions to protect privacy in cloud computing. In 

short, the noise generation component focuses on how to generate noise data to 

obtain efficient and effective privacy protection in the single noise obfuscation 

process, based on the noise set.  

 
In this component, we design some noise generation strategies to obtain effective 

and efficient noise generation by addressing some privacy risks. And these are two 

serious privacy risks for noise generation considered in this thesis: the probability 

fluctuation privacy risk and the association analysis privacy risk.  

The probability fluctuation privacy risk means that malicious attackers can break 

existing noise obfuscations by analysing these fluctuations of occurrence 

probabilities to obtain customer privacy. Hence, for this serious privacy risk, we 

design the novel time-series pattern based noise generation strategy. In short, this 

noise generation strategy can analyse past real service data with fluctuations of 

occurrence probabilities, and generate noise data to conceal these fluctuations by 

Noise Utilisation
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functions
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Figure 3-6 Noise Generation Component 
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time-series patterns’ creation and forecasting. We will introduce this strategy in 

detail in Chapter 5. 

The association analysis privacy risk means that these association probabilities 

among different real service data are the private information which could be found 

by malicious privacy attackers, and should be protected. Hence, we design the novel 

association probability based noise generation strategy. This strategy can analyse 

past association probabilities of real service requests, and focus on concealing these 

association probabilities by the association probability model. We will introduce this 

strategy in detail in Chapter 6. 

Generally speaking, these two privacy risks represent two main ways to break 

existing noise generation for privacy attackers: one uses external features of service 

data, such as time-series; another one uses internal features of service data, such as 

association probability. For specific noise obfuscation, these risks have to be 

analysed and addressed under specific requirements. 

Besides, just like the noise pre-processing component, in Figure 3-6, we can find 

out that this component could be directed by the noise utilisation component to 

support the multiple services scenario, too. And, in Section 3.5 about the noise 

utilisation component, we can utilise these two components together as a single 

noise obfuscation process and combine several single noise obfuscation processes to 

match the multiple services scenario.  

In summary, this noise generation component can generate effective and 

efficient noise service data, such as noise service requests, based on the noise set 

which can be obtained by the previous noise pre-processing component. And this 

component and the noise pre-processing component can make up the single noise 

obfuscation process to execute the noise obfuscation function in the single service 

scenario. This component is the core step of the single noise obfuscation process and 

the whole noise obfuscation function. 

3.5  Noise Utilisation Component  

In the preceding sections, we introduced the noise pre-processing component and the 

noise generation component for the single noise obfuscation process with different 
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strategies. Hence, in this section, we can utilise these strategies to support the noise 

utilisation component by matching privacy concerns or risks in multiple services 

scenarios. This is the noise utilisation component which is an essential part of the 

whole noise obfuscation function. 

In Figure 3-7, we show that this component analyses privacy concerns and risks 

in multiple services scenarios, and utilises several single noise obfuscation processes 

together to protect privacy in the multiple services scenario. In other words, this 

component manages the former two components to obtain efficient and effective 

privacy protection in the cloud multiple services scenario.  

 
In this component, we design some novel noise utilisation strategies to operate 

this noise utilisation function. These strategies focus on noise utilisation processes 

during normal cloud service functions. Hence, these are two different cases for noise 

utilisation: the ethical multiple services case and the unethical multiple services case.  

The ethical multiple services case means that these ethical cloud services can 

cooperate together to withstand privacy attackers—other malicious service providers 

in terms of noise obfuscation. For this ethical multiple services case, we design the 

novel correlation based noise injection strategy to match the privacy concern. In 

short, this strategy can analyse correlations among different ethical cloud service 

providers by the correlation model, and pursue effective noise utilisation based on 

managing single noise obfuscation processes. We will introduce this strategy in 

detail in Chapter 7. 
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The unethical multiple services case means that cloud customers have to deal 

with unethical services which could cooperate together to break privacy protection, 

like noise obfuscation. Hence, for this unethical multiple services case, we design 

the novel common set based noise cooperation strategy. In general, this strategy can 

analyse this privacy risk, and execute the noise utilisation component by the 

common set to keep noise obfuscation effective in this case. We will introduce this 

strategy in detail in Chapter 8. 

In summary, this noise utilisation component can utilise single noise obfuscation 

processes to protect privacy in the multiple services scenario. In other words, it can 

be executed based on guiding several single noise obfuscation processes which are 

composed of noise pre-processing components and noise generation components. In 

the view of cloud privacy protection, it is a necessary step to deal with these 

multiple services scenarios for noise obfuscation. 

3.6  Simulation Environment  

Our novel noise obfuscation for privacy protection in cloud computing proposed in 

this thesis is being gradually implemented as system components in our SwinCloud 

[98, 99, 55, 92].  

The SwinCloud infrastructure is depicted in Figure 3-8.  

 
SwinCloud is a cloud computing simulation test bed. It is built on the computing 

 

Figure 3-8 SwinCloud Infrastructure 
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facilities in Swinburne University of Technology and takes advantage of the existing 

SwinGrid system. For example, the Swinburne Astrophysics Supercomputer Node 

comprises 145 nodes of Dell Power Edge 1950 nodes each with: 2 quad-core 

Clovertown processors at 2.33 GHz (each processor is 64-bit low-volt Intel Xeon 

5138), 16 GB RAM and 2 x 500 GB drives. We install VMWare [88] to offer 

unified computing and storage resources. By utilising the unified resources, we set 

up data centres that can host applications. In the data centres, Hadoop [44] is 

installed that can facilitate MapReduce [37] computing paradigm and distributed 

data management. 

Generally speaking, SwinCloud is the cloud simulation environment for our 

novel noise obfuscation for privacy protection in cloud computing. In the following 

chapters, we will use the cloud environment as the basic platform to simulate cloud 

privacy attacking and protection to illustrate our noise obfuscation, without internal 

details about this environment.   

3.7  Summary  

In this chapter, we have presented an overview about our novel noise obfuscation for 

privacy protection in cloud computing, and proposed the novel noise obfuscation 

model showing a general view of our novel noise obfuscation for privacy protection 

in cloud computing. In this model, three components discussed can be utilised to 

fulfil the whole noise obfuscation functions: noise pre-processing, noise generation 

and noise utilisation. Besides, the first two components can be executed sequentially 

as the single noise obfuscation process, and the last component can be executed 

based on this process. In each component, some strategies have been described 

briefly while the details will be presented in subsequent chapters of this thesis. We 

have also briefly introduced the SwinCloud cloud computing simulation test bed 

which serves as the simulation environment for our noise obfuscation strategies.  
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Chapter 4 

Noise Pre-Processing by Privacy-
Leakage-Tolerance  

As discussed in Chapter 3, the noise pre-processing component is the first step in the 

single noise obfuscation process and the novel noise obfuscation model. In this 

component, cloud customers could utilise noise pre-processing strategies to create 

the noise set for noise generation in the next step, based on the customer-set privacy-

leakage-tolerance. Hence, in this chapter, we introduce our novel noise pre-

processing strategy: the privacy-leakage-tolerance based noise enhancing strategy. 

By facilitating this noise pre-processing strategy, cloud customers can manage noise 

obfuscation in terms of the efficiency of privacy protection by the creation of the 

noise set. The customer-set privacy-leakage-tolerance is the key factor to create the 

noise set in noise pre-processing to connect the probability of privacy leakage and 

the noise obfuscation functions. This is the main idea of the noise pre-processing 

component in our novel noise obfuscation model. 

Briefly, under the privacy concern about the bridge between customers’ 

requirements and noise obfuscation functions, the novel privacy-leakage-tolerance 

based noise enhancing strategy can be presented as the main issue of this chapter. 

This strategy investigates the creation of the noise set by the customer-set privacy-

leakage-tolerance. Hence, the following noise generation and the whole noise 

obfuscation function can be more accurate for privacy protection in the pay-as-you-

go fashion for cloud computing. Besides, the comparison results demonstrate that 

our strategy can enhance noise obfuscation performance in terms of the efficiency of 
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privacy protection.  

This chapter is organised as follows. Section 4.1 presents the background of the 

strategy. Then, Section 4.2 proposes the Privacy-leakage-Tolerance based Noise 

Injection Model (PTNIM). Section 4.3 presents the novel Privacy-leakage-Tolerance 

based Noise set Creation Model (PTNCM). Section 4.4 proposes our novel Privacy-

leakage-Tolerance based Noise Enhancing Strategy (PTNES) for privacy protection 

in cloud computing. Section 4.5 discusses simulation and evaluation to illustrate this 

strategy. Finally, Section 4.6 summarises the chapter.  

4.1 Background of the Strategy 

Generally speaking, privacy protection is critical as one of the most concerned issues 

in cloud computing [70, 79, 22, 62]. Based on data obfuscation [23], noise 

obfuscation is an effective approach for cloud privacy protection. To fulfil different 

requirements on noise obfuscation, different kinds of noise strategies have been 

presented [77, 42, 43]. But currently, existing noise obfuscations do not consider and 

investigate the impact from a customer-defined privacy-leakage-tolerance in terms 

of noise pre-processing.  

Actually, it is a natural concern that a cloud customer evaluates the privacy 

leakage risk with some boundaries or tolerances before he/she uses services in cloud 

environments, no matter automatically or not. Hence, for cloud customers, these 

customer-defined boundaries or tolerances on the probability of privacy leakage are 

important issues to evaluate and manage noise obfuscation processes in terms of 

privacy protection. In other words, these specific privacy-leakage-tolerances can 

give cloud customers specific choices on noise obfuscation in terms of noise pre-

processing. For instance, a cloud service provider may have a low ‘privacy risk’ for 

a customer, which means that the cloud customer or the client may ‘give’ the service 

provider a high privacy-leakage-tolerance. And it is an evaluation by this customer. 

Noise obfuscation could use this tolerance to guide the specific noise obfuscation 

process by controlling the volume of noise data utilised. Hence, the customer or 

noise obfuscation could reduce the volume of noise data injected into real ones in 

noise obfuscation processes under this boundary or tolerance. And he/she can obtain 
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a lower cost on noise data with a reasonable effectiveness of privacy protection 

based on this tolerance. In a word, for a service provider with a ‘high’ privacy-

leakage-tolerance, less (or ever no) noise data need to be utilised by noise 

obfuscation in terms of noise pre-processing; and for a service provider with a ‘low’ 

privacy-leakage-tolerance, more noise data should be utilised by noise obfuscation 

in terms of noise pre-processing. 

But existing noise obfuscations do not consider this so far. As a result, they have 

to utilise a large number of noise data to obtain a reasonable level of privacy 

protection without a specific privacy-leakage-tolerance, which means a higher cost 

on noise data in cloud environments.  

To address this, considering existing noise obfuscations [42, 43], a noise set is a 

key issue to generate noise data, and connect a privacy-leakage-tolerance to a 

specific single noise obfuscation process. It includes all possible noise data which 

could be utilised in noise obfuscation, such as in noise service requests, based on the 

customer-set privacy-leakage-tolerance. At service side, malicious service providers 

cannot distinguish which requests are real ones based on this set. Hence, the size of 

this noise set can describe the intensity of noise obfuscation to some extents. It 

means cost-saving at customers’ wishes. That is the main idea of this strategy. 

Hence, we propose our novel Privacy-leakage-Tolerance based Noise Enhancing 

Strategy (PTNES) for privacy protection in cloud computing. Based on existing 

noise generation strategies, we firstly analyse the privacy-leakage-tolerance from 

cloud customer as the customer-set privacy risk boundary. Then, we present a novel 

privacy-leakage-tolerance based noise set creation model to describe this noise set’s 

creation process. Finally, we present our novel PTNES as the noise pre-processing 

strategy to improve the efficiency of privacy protection in the noise pre-processing 

component. 

Based on the previous weather forecast service example described in Section 

1.2.2, we can take a motivating example to describe this strategy. One customer, 

who often travels to one city in Australia, like ‘Sydney’, checks the weather report 

regularly from a weather forecast service in cloud environments before departure. 

The regular appearance of service requests about the weather report for ‘Sydney’ 

can reveal the privacy that the customer usually goes to ‘Sydney’. But if a system 

aids the customer by injecting other requests like ‘Melbourne’, ‘Perth’ or ‘Darwin’ 
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into the ‘Sydney’ queue, the service provider cannot distinguish which ones are real 

and which ones are ‘noise’ as it just sees a similar style of service request. These 

requests should be responded and would not reveal the location privacy of the 

customer. In such cases, the privacy can be protected by noise obfuscation in general. 

Considering the privacy-leakage-tolerance in this strategy, if the customer has a high 

privacy-leakage-tolerance for the service provider, the customer may only need a 

small request set, like one set with two options: ‘Sydney’ and ‘Melbourne’ to 

conceal this privacy from the service provider. In other words, the high tolerance can 

give the service provider some ‘trust’ from the customer in terms of noise 

obfuscation. Therefore, ‘Perth’, ‘Darwin’ and so on are ‘useless’ for enhancing the 

effectiveness of privacy protection but incur some extra unnecessary cost. Hence, 

reducing this unnecessary cost based on the privacy-leakage-tolerance is the main 

motivation of this strategy. 

In the following sections, firstly, we plan to introduce the Privacy-leakage-

Tolerance based Noise Injection Model (PTNIM) to support our novel PTNES. 

Secondly, the creation of the noise set is introduced, and the novel Privacy-leakage-

Tolerance based Noise set Creation Model (PTNCM) can summarise it. Thirdly, our 

novel PTNES is presented. Lastly, some simulation evaluations can illustrate this 

strategy from the perspective of privacy protection.  

4.2  PTNIM: Privacy-Leakage-Tolerance based Noise Injection 
Model 

In this section, we introduce the Privacy-leakage-Tolerance based Noise Injection 

Model (PTNIM) to support PTNES. As introduced before, PTNES is a noise pre-

processing strategy in the noise pre-processing component of our novel noise 

obfuscation model. And the noise injection model is necessary to execute these 

noise obfuscation processes. From [77, 41, 42, 43], different noise injection models 

are built for different noise obfuscation strategies, respectively. Accordingly, we 

present PTNIM in Figure 4-1 based on the former work. 
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Denotations in Figure 4-1 are listed as follows:  

RQ : queue of customer’s real service requests which are to be protected. 

NQ : queue of noise service requests which are to be injected into RQ . 

SQ : queue of final service requests composing of RQ and NQ .  

Q : a set of all service requests, and }q,......,q,......,q,q{Q ni21= .  Every service 

request in RQ , NQ  and SQ  is from this set. Hence, in the view of service providers, 

service requests in the queue of final service requests SQ  could be from real 

requests RQ or noise requests NQ .  

ε : probability for injecting NQ  into RQ , and ]1,0[∈ε . We call it noise injection 

intensity. 

The overall working process of the model is to inject NQ into RQ  based on ε so 

that we can get SQ . We need to utilise past RQ and SQ to generate NQ by ‘noise 

generation strategy’ and then apply them into noise obfuscation. As a part of noise 

pre-processing, ‘privacy-leakage-tolerance’ guides ‘noise generation strategy’ by the 

creation of noise set, and we would detail these processes in the following sections. 

Besides, noise injection intensity ε is an important parameter from ‘noise generation 

strategy’.  

With this PTNIM, we can present the novel Privacy-leakage-Tolerance based 

Noise set Creation Model (PTNCM) in the next subsection to support our novel 

PTNES. 
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Figure 4-1 PTNIM: Privacy-leakage-Tolerance based Noise Injection Model 
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4.3  PTNCM: Privacy-Leakage-Tolerance based Noise Set Creation 
Model 

In this section, we present the key part of our novel PTNES—Privacy-leakage-

Tolerance based Noise set Creation Model (PTNCM). This model can be presented 

in two aspects. Firstly, the privacy leakage risk evaluation under noise obfuscation 

can be analysed to compare with the privacy-leakage-tolerance. Then, the Privacy-

leakage-Tolerance based Noise set Creation Algorithm (PTNCA) can be proposed to 

describe the creation procedure based on the previous subsection. 

4.3.1  Privacy Leakage Risk Evaluation 

In this subsection, we investigate the evaluation problem of privacy leakage risk 

under noise obfuscation. Based on existing noise obfuscation work [77, 42, 43], to 

evaluate the privacy leakage risk under noise obfuscation, we discuss the original set 

of all service requests: 

}q,......,q,......,q,q{Q ni21=                         Formula 4-1 

Based on this set, we can present a map ii dq:f → to obtain data items id in 

service requests iq . In the example of Section 1.2.2, this city information, like 

‘Sydney’ and ‘Melbourne’ can be viewed as data items id  from service requests 

iq in the weather service process. Because these data items are potential private 

information for cloud customers, it is clear that in this strategy, this map is an 

injective map as well as a surjective map. Thus, it is a bijective map. We can get:  

)q(fd],n,1[i ii =∈∀                               Formula 4-2 

And the original noise set is: 

 }d,......,d,......,d,d{D ni21=                          Formula 4-3 

Besides, the final noise set is a part of the original noise set:  
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}d,......,d,......,d,d{D mi21N =                         Formula 4-4 

where  0mn ≥≥ . 

In a noise set, there may be one or more items as real private data that should be 

protected as customer privacy. In other words, the data item(s) should be concealed 

by other noise data items in the noise set with similar occurrence probabilities. 

Hence, we have: 

yxm +=                                        Formula 4-5 

The number of the private data item(s) is x , and the number of other noise data 

item(s) is y . Hence, we can evaluate the privacy leakage risk under noise 

obfuscation with x and y . And the set of these private data items is xD , the set of 

other noise data items is yD . Accordingly, we have the join of these two sets: 

yxN DDD ∪=                                    Formula 4-6 

In ND , malicious service providers could find out the real private data items 

with a probability, and we can set this probability as the privacy leakage risk. In this 

probability, ‘unethical’ service providers cannot get extra information from other 

sources to increase the probability to guess the real private ones. Hence, we can list 

all possible conditions of real private data items’ leakage and combine them to 

obtain the Real Privacy Leakage Risk under noise obfuscation (PLRR) which is: 
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In formula 4-7, we should consider that malicious service providers may guess 

parts of real private ones under noise obfuscation, instead of all real ones. Hence, the 

corresponding risk can be reduced. In this formula, the first item in the polynomial 

formula means the probability of that one real private data item can be revealed by 

service providers; the second one means the probability of that two real private data 

items can be revealed; and so on. In each item, the exhaustive method can be utilised 

to list all possible cases under one specific number of real private data item. In other 

words, we consider that ‘unethical’ service providers may guess parts of real private 
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ones based on noise obfuscation. Hence, we can utilise formula 4-7 to evaluate the 

privacy leakage risk. 

4.3.2 PTNCA: Privacy-leakage-Tolerance based Noise Set Creation 
Algorithm 

From formula 4-7, we get the real privacy leakage risk or the probability of privacy 

leakage in terms of noise pre-processing. Hence, in this subsection, we introduce the 

creation process of the noise set by privacy-leakage-tolerance.  

As introduced before, for cloud customers, the requirement for the privacy 

leakage probability is necessary to guide service processes by cloud customers. This 

is the Customer-defined Privacy-Leakage-Tolerance (PLTC), and it is obvious that: 

RC PLRPLT ≥                                      Formula 4-8 

From formulas 4-7 and 4-8, we can get: 
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                       Formula 4-9 

Based on that the domain of y is ],0[ +∞ , it is clear that the more items we 

have in the noise set, the lower privacy risk we can obtain. So:  

)1y,x(plr)y,x(plr +>                        Formula 4-10 

Besides, formula 4-7 can be monotonically decreased with y increasing. Hence, 

to satisfy the privacy requirement introduced before, we can get y : 

)PLT(plry C
1−≥                              Formula 4-11 

In formula 4-11, we can use the inverse function to get y . According to this 

formula, this inverse function is monotonic too. So, we can use stepwise refinement 

to implement it. Besides, x is fixed under a specific privacy protection condition, 

and we can omit it in this formula. Hence, the minimum of y is: 

)PLT(plry C
1

min
−=                              Formula 4-12 
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Based on miny , we can consider how to obtain ND . 

As discussed before, ND can express the effectiveness of privacy protection, and 

the cost of privacy protection on noise obfuscation can be decided by ND , too. To get 

a low cost on noise obfuscation with the same effectiveness of privacy protection, 

we have to consider how to create ND  based on miny . 

For each data item id from D , if it is chosen as one in ND , the specific noise cost 

on this data item should be decided by specific noise generation strategies. The total 

cost is: 

∑
∈

=
Ni Dd

iN )q,Strategy(Cost)D,Strategy(Cost         Formula 4-13 

With a fixed minyy = , to get the lower )D,Strategy(Cost N , we investigate the 

original noise set: }d,......,d,......,d,d{D ni21= , and its sorted set yx DDD ′+=′ . 

yD′ is from xDD − with being sorted by cost evaluation. Hence, yD can be created 

by the lowest miny  data item(s) in yD′ . That is the main idea of PTNCA described in 

Algorithm 4-1. 

In Algorithm 4-1, ‘Cost evaluation’ can evaluate every possible data item 

in yD from the perspective of noise cost. In formula 4-13, the independence among 

data items in the noise set is an important issue to evaluate the cost on every data 

item in the noise set.  

‘Set creation’ creates yD  based on sorted yD′ and miny . The first miny  data items 

of yD′  make up yD  and the noise set yxN DDD ∪= . Hence, a noise request set can 

be mapped from ND : 

)D(fQ N
1

N
−=                                 Formula 4-14 

In general, based on the privacy leakage risk evaluation and PTNCA, PTNCM 

can be built to support PTNES for privacy protection in cloud computing by 

controlling ND  and NQ .  
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4.4  PTNES: Privacy-Leakage-Tolerance based Noise Enhancing 
Strategy 

Based on the previous sections, we now present our novel Privacy-leakage-

Tolerance based Noise Enhancing Strategy (PTNES) for privacy protection in cloud 

computing in Algorithm 4-2. 

In Algorithm 4-2, we present our novel Privacy-leakage-Tolerance based Noise 

Enhancing Strategy (PTNES). Based on PTNCA and PTNCM, PTNES investigates 

the privacy leakage risk evaluation and the privacy-leakage-tolerance under noise 

obfuscation in the noise pre-processing component.  

Cost evaluation 

xD

dDDd x ∀−∈ ,
}d{Dx ∪

yxy DDD,D ′∪=′′

xx DDd}),d{D(Cost −∈∀∪

Cost sorting

xDD −

D

miny

yxN DDD ∪=

Set creation 

 

Algorithm 4-1 PTNCA: Privacy-leakage-Tolerance based Noise set Creation 
Algorithm 
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In this algorithm, Step 1 is the beginning step to collect all request queues and 

sets as past data to support the subsequent steps. In Step 2, we get the real privacy 

leakage risk evaluation. In Step 3, we obtain the key issue of the strategy: the noise 

set ND . In this step, the size of ND  can be decided by the privacy-leakage-tolerance 

firstly. Then, based on the specific noise generation strategy, we can evaluate each 

cost on each possible other noise data item to obtain the lower cost with a fixed 

effectiveness of privacy protection on noise obfuscation. Briefly, we use 

)y,D,Strategy(PTNCAD minN =  to describe the function of this algorithm. In Step 4, 

noise service requests can be generated and utilised under PTNES enhancing. After 

this, Steps 2, 3 and 4 would be executed again as a run-time privacy protection 

mechanism until the whole noise obfuscation terminates. 

 
In general, the key part of PTNES is to build and update the noise set ND . We 

present PTNCM and PTNCA to summarise the major part of this noise pre-

Title: Privacy-leakage-tolerance based noise enhancing strategy 
Input:  the queue of real service requests is 
             the customer-defined privacy-leakage-tolerance is
             the size of real private data items in the noise set is 
Output:  the queue of final service requests is 

Step 1: Collect the original noise set 
            Collect and record the service request queue and service request set in past time:        and         ;
            Get the original noise set:                       ;   

Step 2: Evaluate the privacy leakage risk in this specific noise pre-process
             Compute the privacy leakage risk based on  the sizes of real private data items and other noise 
data items     and      by formula 4-7:                                                                           ;
                

Step 3: Create the noise set based on the privacy-leakage-tolerance 
             Get the size of other noise data items in the noise set by formula 4-12:                                       ;                                          
                                                                                     
             Generate the noise generation set by Algorithm 4-1:                                                                ;                 

Step 4: Execute one specific noise generation strategy based on the noise set
            Under one noise generation strategy, 
                     generate a noise      by the noise request set                               ;
            Inject       into       to get         for the service process;
            Update the service request queue.

            Goto Step 2.

RQ
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N
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Algorithm 4-2 PTNES: Privacy-leakage-Tolerance based Noise Enhancing 
Strategy 
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processing strategy. With ND , noise obfuscation considers the customer-defined 

privacy-leakage-tolerance to obtain a better privacy protection on noise obfuscation. 

In the next section, we will illustrate that PTNES can improve the efficiency of noise 

obfuscation on privacy protection with similar effectiveness by simulation. 

4.5  Simulation and Evaluation 

In this section, we evaluate PTNES by simulation. PTNES is a noise pre-processing 

strategy to enhance noise obfuscation, different from other specific noise generation 

and utilisation strategies. In other words, it can influence typical noise generation 

processes by creating the noise set as a necessary noise pre-processing. Hence, in the 

simulation process, the evaluation of this strategy focuses on its impact on other 

typical noise generation strategies. 

As introduced in Chapter 3, we use SwinCloud as the cloud computing 

simulation environment [93]. Specifically, in this SwinCloud environment, we use 

some nodes as customers to send service requests with specific noise obfuscation 

processes. It also evaluates the cost of noise data to evaluate the efficiency of 

privacy protection on noise obfuscation. Other nodes are utilised as service 

providers to receive service requests and evaluate the effectiveness of privacy 

protection on noise obfuscation.  

About typical noise generation strategies: the random strategy (RNGS) [77], the 

historical probability strategy (HPNGS) [42] and the time-series pattern strategy 

(TPNGS) [43] can be enhanced by PTNES in terms of noise pre-processing. We will 

describe these positive improvements on these strategies by PTNES. 

In this section, we use Noise Cost to denote the cost of noise service requests and 

express the efficiency of privacy protection on noise obfuscation in this strategy. It 

is the percentage of noise service requests in final service request queues. In other 

words, it is noise injection intensity ε . It is clear that if ε  is bigger, customers have 

to spend higher cost on noise service requests.  

From the preceding sections, the setting of PLTC as the privacy-leakage-

tolerance is very important to the simulation process of PTNES. In the simulation 

process, we discuss it in the range of [0.05, 0.5] which means representative privacy 
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leakage probabilities that customers can tolerate. If it is too high, it is meaningless 

for privacy protection, and if it is too low, unnecessary huge cost has to be paid by 

customers. Besides, x is a key issue of the privacy risk evaluation and we set it in 

the range of [1, 5] for that n is 40. If it is too high, n has to be increased to keep 

noise obfuscation being functional. 

As introduced before, for RNGS, HPNGS and TPNGS, the noise cost can be 

compared in two situations: with and without PTNES enhancing. In Figure 4-2, 

when RNGS operates, our novel PTNES can reduce Noise Cost from about 0.95 to 

0.6. It is a significant improvement on the efficiency of privacy protection on noise 

obfuscation. 

 
In Figure 4-3, when HPNGS operates, our novel PTNES can reduce Noise Cost 

from about 0.28 to 0.02. It is also a significant improvement on the efficiency of 

privacy protection on noise obfuscation. 

 

Figure 4-2 Comparison in RNGS 
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In Figure 4-4, when TPNGS operates, our novel PTNES can reduce Noise Cost 

from about 0.029 to 0.002. It is again a significant improvement on the efficiency of 

privacy protection on noise obfuscation. 

 
Hence, as a noise pre-processing strategy, PTNES can improve the efficiency of 

 
Figure 4-4 Comparison in TPNGS 

 

 
Figure 4-3 Comparison in HPNGS 
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privacy protection significantly by reducing Noise Cost. In Figure 4-2, Figure 4-3 

and Figure 4-4, with the increasing of privacy-leakage-tolerance, Noise Cost 

decreases. It is obvious that if a customer has a low privacy-leakage-tolerance 

setting, the cost on noise obfuscation can be much more than a high one. Besides, it 

is the same with another axis x in our figures: if customers plan to protect more data 

items for privacy, the cost should be more.  

In summary, the simulation evaluation demonstrated that our novel Privacy-

leakage-Tolerance based Noise Enhancing Strategy (PTNES) could reduce noise 

cost under existing noise generation strategies significantly for improving the 

efficiency of privacy protection on noise obfuscation in terms of noise pre-

processing.  

4.6  Summary  

Noise pre-processing is the first main component of our novel noise obfuscation 

model for privacy protection in cloud computing. It focuses on customer’s privacy 

requirements on noise obfuscation in terms of privacy protection. In this regard, the 

privacy-leakage-tolerance can be utilised to link noise obfuscation functions and 

cloud customers’ privacy requirements by the noise set’ creation. Therefore, in the 

noise pre-processing component of our novel noise obfuscation model, the noise 

pre-processing strategy in this chapter can be presented to enhance noise obfuscation 

for cloud privacy protection in terms of noise pre-processing.  

In this chapter, as the main issue of the noise pre-processing component, we 

presented the novel Privacy-leakage-Tolerance based Noise Enhancing Strategy 

(PTNES) as a noise pre-processing strategy to enhance noise obfuscation. 

Specifically, based on the boundary probability of privacy leakage which cloud 

customers can accept or tolerate, the noise set can be created to guide noise 

generation processes and pursue better efficiency of privacy protection on noise 

obfuscation. Hence, we proposed this novel noise pre-processing strategy to create 

the noise set based on the privacy-leakage-tolerance and guide noise generation 

processes in this regard. The simulation experiments conducted in the SwinCloud 

environment demonstrated that our novel strategy (PTNES) is capable of improving 
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the efficiency of privacy protection on noise obfuscation in terms of noise pre-

processing. Therefore, overall noise cost for noise obfuscation can be reduced. In 

brief, the noise pre-processing strategy can receive privacy requirements from cloud 

customers, and transfer these requirements to noise generation in terms of noise pre-

processing, in one single noise obfuscation process. As a result, noise obfuscation’s 

cost can be reduced and controlled in accordance with customers’ requirements. 

In future, the privacy-leakage-tolerance can be further investigated to improve 

the adaptation of this noise pre-processing strategy for other types of customers’ 

requirements, such as the ratio between the privacy-leakage-tolerance and the cost 

on noise obfuscation. That is a trade-off for cloud customers to manage noise 

obfuscation by considering the effectiveness of privacy protection and the cost on 

noise obfuscation.  
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Chapter 5 

Noise Generation by Time-series 
Pattern 

As a core component of our novel noise obfuscation model for privacy protection in 

cloud computing, the noise generation component is the second step of this model, 

and is actually a critical part of the single noise obfuscation process and the whole 

noise obfuscation function. Briefly, it receives the noise set from the noise pre-

processing component, and generates noise data effectively and efficiently to operate 

the single noise obfuscation process and the whole noise obfuscation function. 

Hence, we can propose some noise generation strategies to execute noise generation 

functions in this component. Besides, as the kernel function of noise obfuscation, the 

effectiveness of privacy protection is the crucial standard to be considered in this 

component. As introduced in Chapter 1 and Section 3.4, there are two different 

novel noise generation strategies to make sure the effectiveness of privacy protection 

under two different serious privacy risks: probability fluctuation and association 

analysis, respectively. Besides, in the pay-as-you-go cloud environments, the 

customers’ requirements on cost-saving need noise obfuscation to consider the 

efficiency of privacy protection. Hence, in noise generation, our novel noise 

generation strategies focus on keeping privacy safe to withstand these types of 

privacy risks, while keeping a reasonable noise data cost in noise obfuscation. 

Briefly, this chapter presents one novel noise generation strategy to withstand 

this privacy risk about probability fluctuation. As introduced in Section 3.4, this 

privacy risk expresses one main way to break noise generation for privacy attacker: 

using external features of service data, compared to using internal features of service 
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data in Chapter 6. In this strategy, we abstract fluctuations of probabilities from past 

service data by modelling time-series patterns, and utilise these patterns to forecast 

future fluctuations. Hence, noise generation processes can utilise these forecasted 

results to conceal these fluctuations and address this privacy risk introduced before. 

Based on that, our novel Time-series Pattern based Noise Generation Strategy 

(TPNGS) for privacy protection in cloud computing can be presented to operate this 

function.  

In this chapter, Section 5.1 introduces the background of this strategy. Section 

5.2 presents the time-series pattern based noise injection model to support TPNGS. 

Section 5.3 discusses the novel Time-series Pattern based Forecasting algorithm 

(TPF) for noise generation. Section 5.4 investigates the time-series pattern based 

noise generation. Section 5.5 proposes our novel TPNGS. Section 5.6 provides the 

simulation evaluation to illustrate TPNGS. Finally, Section 5.7 summaries this 

chapter. 

This chapter is mainly based on our work presented in [43]. 

5.1  Background of the Strategy  

In this chapter, we propose a novel Time-series Pattern based Noise Generation 

Strategy (TPNGS). In brief, this strategy focuses on fluctuations of occurrence 

probabilities which could jeopardise the existing noise generation strategies, such as 

HPNGS [42]. In this strategy, time-series patterns can be utilised to forecast these 

fluctuations and guide noise generation processes. Hence, under this strategy, noise 

generation can improve the effectiveness of privacy protection on noise obfuscation 

in cloud computing to withstand these fluctuations. 

Currently, a Historical Probability based Noise Generation Strategy (HPNGS) has 

been proposed to reduce the cost of noise obfuscation in a pay-as-you-go cloud 

environment [42]. Compared to the conventional random noise generation [77], 

HPNGS generates noise requests based on their previous probabilities: if one request 

has a high occurrence probability of real service requests, it will be generated as 

noise requests with a low probability. Hence, all requests including noise ones and 

real ones could still reach about the same occurrence probabilities, but with fewer 
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noise requests. For the pay-as-you-go style of cloud computing, few noise requests 

generated mean less cost.  

In reality, due to the dynamic of cloud environment, occurrence probabilities of 

real service requests may have some fluctuations at some time intervals of the entire 

time period. For the purpose of privacy protection, we need to make all these 

occurrence probabilities be similar at any time intervals to conceal these fluctuations. 

It means that customers’ privacy can be protected under these fluctuations. However, 

the existing strategy (HPNGS) has not taken these fluctuations into account because 

it utilises past probabilities as a whole to generate noise requests without considering 

time intervals. In other words, HPNGS can reach about the same probabilities in the 

entire time period, but may be not the case at every time interval, which can form the 

entire time period, due to these probability fluctuations. As a result, final service 

requests, including real ones and noise ones, may have some significant probability 

fluctuations. Then, service providers could still be able to deduce customer private 

information from these fluctuations at those time intervals. This is a serious privacy 

risk. Besides, random noise generation [77] does not consider this privacy risk either.  

To address this problem, we develop our novel Time-series Pattern based Noise 

Generation Strategy (TPNGS) for privacy protection in cloud computing. In this 

strategy, we analyse all past probabilities, and deduce time-series patterns by time-

series segmentation. Based on these past time-series patterns, we analyse current 

probabilities of real requests and forecast “future” probabilities of real requests with 

pattern matching. At last, this strategy can generate time-series pattern based noise 

requests to protect customer privacy. These noise requests can make final requests to 

reach the goal that all occurrence probabilities of final requests are kept about the 

same, even at time intervals with probabilities’ fluctuations.  

Let us take the cloud weather report as the motivating example, again. As 

introduced in Section 1.2.2, customer privacy about location information in service 

requests can be protected in general by existing noise obfuscations. But in reality, 

given the privacy risk in this strategy, the customer could go to ‘Sydney’ in this 

month and ‘Perth’ in the next month. Hence, these probabilities of requests may 

have some fluctuations: ‘Sydney’ is high in this month and low in the next month; 

‘Perth’ is low in this month and high in the next month. In the view of the entire 

service period, both occurrence probabilities may be about the same already. But the 
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itinerary of this customer still can be discovered by some unethical services: the 

person will go to ‘Sydney’ in this month and ‘Perth’ in the next month. As a result, 

these fluctuations are quite hard to be concealed by existing noise obfuscations. To 

address this, the updated goal of privacy protection in this strategy is to keep 

occurrence probabilities of final requests to be about the same at every time interval, 

instead of only in the entire time period. We can forecast these fluctuations by time-

series patterns and generate noise service requests to achieve this goal. That is the 

main motivation of our novel TPNGS in this chapter. 

Considering the privacy risk in this chapter, time-series pattern is an effective tool 

to forecast ‘future’ occurrence probabilities based on past probabilities in the 

situation with probability fluctuations. We can analyse and deduce several time-series 

patterns from all past probabilities. Then, jointly with current occurrence 

probabilities, we can forecast persuasive ‘future’ real request probabilities to guide 

noise generation. And the probability fluctuations can be foreseen and addressed.  

In the following sections, firstly, we detail the noise injection model to support 

TPNGS. Secondly, we present the novel Time-series Pattern based Forecasting 

algorithm (TPF) for noise obfuscation to support TPNGS in terms of dealing with 

occurrence probabilities’ fluctuations. Thirdly, we present the novel TPNGS. Finally, 

some simulation evaluations can illustrate this strategy from the perspective of 

privacy protection. 

5.2  Time-series Pattern based Noise Injection Model 

In this section, we introduce the time-series pattern based noise injection model to 

support TPNGS. Our time-series pattern based noise injection model is modified 

from [42] to fulfil our time-series pattern idea as shown in Figure 5-1.  
Denotations in this section are listed in Figure 4-1: RQ , NQ , SQ and ε . And Q  is 

a set of all service requests in this chapter: }q,......,q,......,q,q{Q ni21= . 

The overall working process of the model is to inject NQ into RQ  based on ε  so 

that we can get SQ . The model can be described as follows. Suppose iq  is an item of 

Q  and )t)(qQ(P iR = , )t)(qQ(P iN = and )t)(qQ(P iS = are probabilities of iq in 
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RQ , NQ  and SQ  at time t respectively. 

 
As introduced before, to protect customers’ privacy, we need to achieve the state 

that for i∀ , all )1t)(qQ(P iS += are about the same. Therefore, if we forecast that 

)1t)(qQ(P iR +=  has a high value by this strategy, then iq  will not be taken as 

noise at time t+1, so that )1t)(qQ(P iN += will have a smaller value, and vice 

versa. This is the general process of generating noise requests based on time-series 

patterns of real requests.  

In the next section, based on this time-series pattern based noise injection model, 

we can present the novel time-series pattern based forecasting algorithm for noise 

obfuscation to support TPNGS.   

5.3  Time-series Pattern based Forecasting Algorithm for Noise 
Obfuscation  

In this section, we present the novel Time-series Pattern based Forecasting algorithm 

(TPF) for noise generation which is the key part of our novel TPNGS. Firstly, we 

introduce an algorithm for Time-series Segmenting and Pattern Generation (TSPG). 

Then, based on these patterns, we introduce an algorithm for Pattern Matching and 

Forecasting (PMF). At last, to support our TPNGS strategy, the TPF algorithm is 

presented. 

Similar to other data in time-series pattern based forecasting algorithms [30, 91, 

32], occurrence probabilities have the characteristic of changing with time. That is 

QR
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Figure 5-1 Time-series pattern based noise injection model 
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the common precondition of time-series pattern based algorithms. In this chapter, 

past occurrence probabilities are composed of various occurrence probabilities of 

various service requests, and each of them can be treated as an independent time-

series pattern based forecasting process. Therefore, in one time-series pattern based 

forecasting process, we execute both TSPG and PMF algorithms to derive several 

forecasting results. Then, we combine these processes together and integrate these 

forecasting results. This is the main procedure of the novel TPF algorithm for noise 

generation. 

5.3.1 TSPG: Time-series Segmenting and Pattern Generation Algorithm 

Here we introduce the first part of time-series pattern based forecasting—the TSPG 

algorithm based on [91].  

At first, TSPG divides past occurrence probabilities and gets some time segments. 

Then, it checks the validation of them and generates time-series patterns. We utilise 

the bottom-up and top-down approaches to move windows in time-series to make 

sure that the variance of one segment is close to, but not more than a pre-set 

parameter as a maximum boundary of variance. After that, we split the time-series 

queue into several time segments. Lastly, we validate and set them as patterns by a 

pre-set parameter: Min_pattern_length which means the minimum boundary of a 

validated pattern’s length. The input of TSPG is the past occurrence probabilities of 

real requests: ],0[],,1[),)(( TtnktqQP kR ∈∈= , and the output is a group of time 

segments— ],0[],[ mjjPatterns ∈ . The function of the TSPG algorithm can be 

viewed as ])T,0[t],n,1[k),t)(qQ(P(TSPG]m,0[j],j[Patterns kR ∈∈==∈ . 

Besides, each validated pattern has an attribute—nextvalue which is the first value of 

the next pattern or time segment after this pattern in the whole queue. It is a key 

attribute for forecasting in PMF described next. 

5.3.2 PMF: Pattern Matching and Forecasting Algorithm 

Here, we introduce the second part of time-series pattern based forecasting—the 

PMF algorithm based on [91], too. 

In brief, PMF utilises time-series patterns, resulted from TSPG, to match current 
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probabilities. If we find a matched pattern, its forecasting attribute—nextvalue can 

play a key role to forecast ‘future’ probabilities. Min(abs(Patterns.mean-CP.mean)) 

denotes a function which returns one pattern with a minimum absolute difference of 

means between it and CP which denotes the current probabilities queue. This is the 

main part of PMF to find out the suitable pattern to match the current probabilities 

queue, and we utilise the means of probabilities at patterns to evaluate this. Hence, 

the function of this algorithm is )],,0[],[(, CPmjjPatternsPMFFRMP ∈= : i.e., one 

input is the patterns we have got: ],0[],[ mjjPatterns ∈ , another input is the current 

probabilities queue: CP; one output is the matched pattern: MP, another output is the 

forecasting result: FR. Our forecasting result FR is a probability which denotes the 

future occurrence possibility of one real service request, and it is decided by the 

matched pattern MP.  

In the real process of pattern matching, the PMF algorithm takes the mean of 

current probabilities queue CP as the default value. If we cannot find out a suitable 

pattern, the mean is used as the forecasting result FR to guide noise generation. 

5.3.3  TPF: Time-series Pattern based Forecasting Algorithm 

Here, we present the novel TPF algorithm for noise generation. In Algorithm 5-1, we 

detail the novel Time-series Pattern based Forecasting algorithm (TPF) for noise 

generation based on the TSPG algorithm which can be applied as a function named 

TSPG(), and the PMF algorithm which can be applied as a function named PMF(). 

We operate them for various probabilities of service requests and derive various 

forecasting results. After that, we need to normalise these forecasting results. It is 

apparent that for a certain time interval, the sum of probabilities of all service 

requests is 1. Besides, we denote L for the length of current probabilities queue. In 

this chapter, we set it to be equal to Min_pattern_length for the balance between 

effectiveness and efficiency of forecasting. 
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 In the TPF algorithm, we first utilise the Time-series Segmenting and Pattern 

Generation algorithm (TSPG) and the Pattern Matching and Forecasting algorithm 

(PMF) to execute time-series patterns based forecasting processes which are divided 

from an entire probabilities forecasting process. In each single process for each 

service request, we deduce time-series patterns by segmenting on past probabilities, 

and utilise these patterns to match the current probabilities to forecast probabilities at 

the next time interval. Then, we combine these results from these processes. At last, 

we normalise them to integrate one group of ‘future’ probabilities of real requests for 

noise generation. Compared to [91], the TPF algorithm puts a lot of efforts into the 

utilisation of forecasting results and their normalisation for noise generation which 

are novel.  

5.4  Time-series Pattern based Noise Generation 

In this section, we introduce the two key issues of the noise generation strategy—

noise generation probabilities and noise injection intensity. In the process of noise 

generation, noise generation probabilities determine which kinds of noise requests 

should be generated and the noise injection intensity decides how many noise 

requests should be generated. 

Title:   Time-series pattern based forecasting algorithm for noise generation
Input:     All past occurrence probabilities
                The length of current probabilities queue L
Output:  One group of future probabilities 

    For ( i = 1; i ≤ n ; i++ )                                    //Execute forecasting process
            Patterns[i]  = TSPG(                                      );
            FR[i][t] = PMF( Patterns[i],                                           );
    End
    For (i = 1; i ≤ n; i++ )                                      //Sum forecasted results
            FRS = FRS + FR[i];
    End
    For (i = 1; i ≤ n; i++ )                                      //Normalise forecasted results
                                     = FR[i] / FRS;
    End

],1[],,0[),)(( nkTttqQP kR ∈∈=

],1[),1)(( nkTqQP kR ∈+=

)1)(( += TqQP iR

],0[),)(( TttqQP iR ∈=
],[),)(( TLTttqQP iR −∈=

 

Algorithm 5-1 TPF: Time-series Pattern based Forecasting algorithm 
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5.4.1 Noise Generation Probabilities  

Based on  [42], we present the noise generation probabilities in this strategy. We add 

parameter time t to denote the time attribute in noise generation processes. Hence, we 

have noise generation probabilities in TPNGS: 

 
1)(

))(()())((,
−×
=−

==∀
tMn

tqQPtMtqQPi iR
iN

                 Formula 5-1 

In formula 5-1, )(tM  is that for every i, the largest ))(( tqQP iR =  at time t.  

)})((,{)( tqQPiMAXtM iR =∀=                       Formula 5-2 

 Based on formulas 5-1 and 5-2, we can get ))(( tqQP iR =  which is an important 

part of noise generation probabilities. 

]),1[),)((())((, tttqQPTPFAttqQPi iRiR ∈′′==∆+=∀    Formula 5-3 

 In formula 5-3, ()TPFA  denotes the function of the TPF algorithm in Algorithm 

5-1. Hence, formula 5-3 is a key part of TPNGS: we use past requests’ probabilities 

to forecast future requests’ probabilities to aid noise generation by time-series 

patterns. We set 1=∆t . Then, we have formula 5-4 below: 

])1t,1[t),t)(qQ(P(TPFA)t)(qQ(P,i iRiR −∈′′===∀   Formula 5-4 

 Combining formulas 5-1, 5-2 and 5-4, we can get the final noise generation 

probabilities in TPNGS by formula 5-5: 

1])}1t,1[t),t)(qQ(P(TPFA,j{MAXn
])1t,1[t),t)(qQ(P(TPFA])}1t,1[t),t)(qQ(P(TPFA,j{MAX

)t)(qQ(P,i
jR

iRjR
iN −−∈′′=∀×

−∈′′=−−∈′′=∀
==∀

 
1)}1t,j(TPFA,j{MAXn

)1t,i(TPFA)}1t,j(TPFA,j{MAX
−−∀×

−−−∀
=

                               
Formula 5-5 

5.4.2 Noise Injection Intensity  

To reach the goal of privacy protection discussed before, we try to get final 

“indistinguishable” probabilities: 
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n
tqQPti iS

1))((,, ==∀∀                             Formula 5-6 

Based on the noise injection model in Section 5.3, we have the following 

probabilities: 

))(())(()1())((, tqQPtqQPtqQPi iNiRiS =+=−==∀ εε     Formula 5-7 

Combining formulas 5-6 and 5-7, we can derive noise injection intensityε to 

reach the goal for privacy protection: 

 
)(

11)(
tMn

t
×

−=ε                                  Formula 5-8 

To realise formula 5-8, we have formula 5-9. 

])}1,1[),)((,({
11)(

−∈′′=∀×
−=

tttqQPiTPFAMAXn
t

iR

ε   Formula
 
5-9 

Formulas 5-5 and 5-9 enables the whole strategy to reach its goal, i.e. formula 5-

6.  

Compared to existing noise generation strategies, like HPNGS or random 

generation, TPNGS enhances the outcome of privacy protection 

from nqQPi iS 1)(, ==∀  to formula 5-6. As a result, it can address the serious 

privacy risk identified before. Besides, it is clear that the goal of TPNGS, i.e. 

realisation of formula 5-6, is a sufficient condition of the goal of existing strategies: 

nqQPi iS 1)(, ==∀ . Hence, if the occurrence probabilities are about the same at 

every time interval, these probabilities will be about the same in the overall time 

period. 

5.5  Time-series Pattern based Noise Generation Strategy 

In this section, based on the former sections, we present our novel Time-series 

Pattern based Noise Generation Strategy—TPNGS. 

In Algorithm 5-2, we can find out that the major improvement of TPNGS is to use 
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])1,1[),)(((, −∈′′=∀ tttqQPTPFAi iR  as forecasting results in Step 1. As stated 

earlier, the TPF algorithm is the time-series pattern forecasting algorithm for noise 

generation which utilises time-series patterns to summarise past probabilities and 

forecast ‘future’ probabilities. In this strategy, we use the TPF algorithm in the first 

step to forecast, and utilise the results of the TPF algorithm in later steps (Step 2 and 

Step 3)—computing noise generation probabilities and noise injection intensity. It is 

obvious that this strategy performs better in the privacy protection situation with 

fluctuations of probabilities than existing strategies, like HPNGS or random 

generation. In Step 4, noise injection processes have been executed. Besides, under 

an extreme condition without fluctuations, it is clear that TPNGS and HPNGS could 

perform similarly in noise generation, for there is no need to forecast. 

 
 In the next section, we will evaluate TPNGS with other strategies. 

Title: Time-series pattern based noise generation strategy 
Input:      is the queue of real service requests
Output:       is the queue of final service requests

Step 1: Collect past probabilities and utilise TPF algorithm
            Collect and record all occurrence probabilities in past time:                                                

            Utilise TPF algorithm to forecast by formula 5-10:                                                                             
   

Step 2: Compute noise generation probabilities
            Generate noise generation probabilities by formula 5-5:
                                                                                                                  
                                                                                                                                                                   
      
Step 3: Compute noise injection intensity
            Obtain noise injection intensity by formula 5-9:

            So, we have the queue of noise requests:

Step 4: Execute noise injection process
            Generate a noise N by                              ;
            Inject N  into       on the probability of      to get        ;
            Update past probabilities                                             .

RQ
SQ

]),([ εiNN qQPQ =

]),([ εiNN qQPQ =
RQ  ε  SQ

1)}1,(,{
)1,()}1,(,{))((,

−−∀×
−−−∀

==∀
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])}1,1[),)(((,{
11)(

−∈′′=∀×
−=
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t
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]1,1[),)((, −∈′′=∀ tttqQPi iR

],1[),)((, tttqQPi iR ∈′′=∀
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Algorithm 5-2 TPNGS: Time-series Pattern based Noise Generation Strategy 
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5.6  Simulation and Evaluation 

In this section, we evaluate TPNGS by simulation. Generally speaking, TPNGS 

focuses on noise generation functions to deal with fluctuations of occurrence 

probability by time-series patterns and improve the effectiveness of privacy 

protection on noise obfuscation.  

Just like other strategies in this thesis, we use SwinCloud as the cloud computing 

simulation environment [93]. And the aim of this simulation is to simulate TPNGS in 

order to demonstrate that TPNGS can improve the effectiveness of privacy protection 

significantly, compared to other existing representative noise generation strategies, 

like HPNGS and random generation.  

Besides, how to deal with distributed denial-of-service (DDoS) attacks has 

become a very serious issue concerned by servers. In this chapter even in this whole 

thesis, we omit the possibility of our noise being viewed as DDoS attacks. In fact, 

the number of our noise is much less than a common DDoS attack which normally 

has millions of requests [26].   

The simulation process is to compute and compare the privacy protection 

effectiveness of TPNGS with that of HPNGS. In this process, we choose HPNGS to 

compare with TPNGS. In the end of this section, we demonstrate the comparison 

between HPNGS, TPNGS and random generation. Before the simulation, we generate 

a service queue as the real service queue from a set with a size of 10 randomly.  

We set a function: ),(),( tStrategyVARtStrategyEPP = to express the 

effectiveness of privacy protection to compare two strategies. As discussed before, 

the variance of these probabilities of final requests is a suitable tool to evaluate the 

effectiveness of privacy protection. ),( tStrategyVAR means that the variance of all 

occurrence probabilities of requests in SQ  is under Strategy at time t. A low variance 

of all probabilities denotes that all occurrence probabilities of final requests are about 

the same, and malicious service providers cannot find out real ones as addressed 

before. Therefore, the less ),( tStrategyEPP , the better effectiveness of privacy 

protection that can be achieved.  

In the worst case for TPNGS executing, i.e. one request is one pattern, pattern 

generation is pre-computing. Hence, in noise generation processes, TPNGS only 
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needs to traverse all patterns or requests to get the matched one, and this time cost 

would not influence noise generation processes significantly, compared to other 

existing typical strategies.  

In this section, we derive ),( tHPNGSEPP  and ),( tTPNGSEPP which denote the 

effectiveness of privacy protection with these two noise generation strategies at time 

t, respectively. They are depicted in Figure 5-2. They change by t from 0 to 5000. In 

Figure 5-2, the horizontal coordinate is time t. The vertical coordinate is EPP 
reflecting the privacy protection effectiveness. If EPP is lower, the privacy protection 

effectiveness is better. We can find out that with time t passing, both 

),( tHPNGSEPP  and ),( tTPNGSEPP  keep a similar pattern of fluctuating in 

specific zones. ),( tHPNGSEPP  fluctuates mainly between 0.00004 and 0.0001 

while ),( tTPNGSEPP fluctuates between 0.00001 and 0.00004. Therefore, in 

general, ),( tTPNGSEPP is about 1/3 of ),( tHPNGSEPP  from the figure. Therefore, 

we can conclude that our novel TPNGS significantly improves the effectiveness of 

privacy protection than existing HPNGS. 

 
 Besides, in Figure 5-3, we can find out that in the whole simulation process, 

noise injection intensities of TPNGS are smaller than those of HPNGS. They 

fluctuate in the levels of 0.45 and 0.7, respectively. As introduced before, noise 

injection intensity is the probability of noise requests in final requests. Due to the 

pay-as-you-go style in cloud computing, the number of noise requests means the 

 

Figure 5-2 Comparison between HPNGS and TPNGS 
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cost of noise requests. Hence, TPNGS can save the cost of noise generation than that 

of existing HPNGS and improve the efficiency of privacy protection on noise 

obfuscation. Besides, TPNGS uses small sliding windows to analyse time-series 

data, not like HPNGS which uses whole queues to be a sliding window. For one 

specific time interval, noise obfuscation only considers and obfuscates a piece of 

data, not the entire one. That is why TPNGS could get lower cost on noise 

generation than HPNGS. 

 
  In summary, our novel Time-series Pattern based Noise Generation Strategy 

(TPNGS) can make a significant improvement on the effectiveness of privacy 

protection with a decreased noise service cost in comparison to the Historical 

Probability based Noise Generation Strategy (HPNGS), in terms of the probability 

fluctuation privacy risk. 

About the random noise generation [77], the effectiveness and efficiency of 

privacy protection have been discussed in [42]. Hence, it is obvious that TPNGS can 

improve both effectiveness and efficiency of privacy protection from HPNGS which 

mainly improve the efficiency of privacy protection from the random noise 

generation. Therefore, TPNGS improves the effectiveness and efficiency of privacy 

protection from exiting representative noise generation strategies, in terms of the 

probability fluctuation privacy risk. 

 

Figure 5-3 Comparison on noise injection intensity 
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5.7  Summary 

In this chapter, we investigated the noise generation component in terms of the 

probability fluctuation privacy risk. As the core function of noise obfuscation, noise 

generation can be promoted from the perspective of various privacy risks. In this 

chapter, we focused on one type of them— the probability fluctuation privacy risk. 

In this regard, we presented our novel Time-series Pattern based Noise Generation 

Strategy (TPNGS) to withstand this privacy risk and improve the effectiveness of 

privacy protection on noise obfuscation in cloud computing. In this strategy, we can 

utilise time-series patterns in past occurrence probabilities to forecast occurrence 

probabilities and fluctuations. Hence, these fluctuations of occurrence probabilities 

can be concealed by these novel noise service requests generated by TPNGS. Briefly, 

TPNGS can improve the effectiveness of privacy protection on noise obfuscation in 

cloud computing under the probability fluctuation privacy risk, and keep the cost-

saving feature in pay-as-you-go cloud environments. And based on the simulation 

experiments, we demonstrated that our novel strategy could significantly improve 

the effectiveness of privacy protection on noise obfuscation to withstand the 

probability fluctuation privacy risk. 

This chapter presents one aspect of the thesis about noise generation which 

focuses on how to improve the effectiveness of privacy protection to withstand the 

probability fluctuation privacy risk, compared to the next chapter—how to improve 

the effectiveness of privacy protection to withstand the association analysis privacy 

risk. In other words, as discussed in Section 3.4, these privacy risks represent two 

main ways to break noise generation for privacy attackers respectively: using 

external features of service data, such as time-series in this chapter and using 

internal features of service data, such as association probability in the next chapter. 

Besides, the noise pre-processing component introduced in Chapter 4 can provide a 

noise set to the noise generation strategy in this chapter as a pre-process discussed in 

Chapter 3. 

In the next chapter, we will discuss noise generation in another part—to address 

the association analysis privacy risk. Hence, the noise generation component in our 

novel noise obfuscation model can be completed and executed to fulfil this key 

function of the single noise obfuscation process and the whole noise obfuscation 
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function for cloud privacy protection. 

In future, based on the exiting work, we will investigate how to improve the 

strategy for time-series patterns based forecasting to conceal private information, 

such as dynamic time-series patterns to replace the static ones used in this chapter 

and pursue more efficient noise generation.  
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Chapter 6 

Noise Generation by Association 
Probability  

After Chapter 5, i.e. noise generation for single service by time-series pattern, 

another kind of noise generation is investigated by this chapter. That is the noise 

generation for single service by association probability. Specifically, as a key step in 

our novel noise obfuscation model, noise generation is to generate noise data to 

conceal real private information. Some noise generation strategies can abstract these 

functions and be utilised for cloud privacy protection to withstand privacy risks. As 

introduced in Chapter 3, this chapter focuses on one kind of privacy risk—

association analysis, and presents one novel noise generation strategy to deal with it. 

As discussed in Section 3.4, this privacy risk expresses another main way to break 

noise generation for privacy attacker: using internal features of service data, 

compared to using external features of service data in Chapter 5. Association 

probabilities generally express internal mutual relations among service data, such as 

dependency among service requests, and may attract some privacy attackers’ 

interests. For instance, the dependency among service requests can express unique 

behaviour patterns or identities as customer privacy. Hence, some customers’ 

privacy can be revealed by malicious service providers through these association 

probabilities. That is the association analysis privacy risk we have to face in this 

chapter. As introduced in Chapter 3, this chapter works on how to improve the 

effectiveness of privacy protection on noise obfuscation to withstand the association 

analysis risk.  

In this chapter, we present a novel noise generation strategy based on past 
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association probabilities to pursue about the same association probabilities of 

various service data, such as service requests. That is our novel Association 

Probability based Noise Generation Strategy (APNGS) for privacy protection in 

cloud computing. To conceal these association probabilities of service requests, 

APNGS generates noise requests to pursue about the same association probabilities 

of final service requests which are made up of customers’ real service requests and 

these noise service requests. Besides, to analyse these association probabilities, a 

novel association probability model is necessary to be presented as the core of this 

chapter, which will be introduced in the following sections. 

This chapter is organised as follows. Section 6.1 discusses the background of 

this strategy. Section 6.2 presents the association probability based noise injection 

model to support our novel APNGS. Section 6.3 presents the novel association 

probability model for noise generation as a key part of our novel APNGS. Section 

6.4 discusses the association probability based noise generation processes. Based on 

these previous sections, Section 6.5 proposes our novel Association Probability 

based Noise Generation Strategy (APNGS) for privacy protection in cloud 

computing. Section 6.6 addresses the simulation and evaluation about APNGS to 

demonstrate that this strategy can improve the effectiveness of privacy protection 

significantly to withstand the association probability risk. Finally, Section 6.7 

summarises this chapter.  

This chapter is mainly based on our work presented in [39].   

6.1  Background of the Strategy  

Currently, noise obfuscation primarily utilises noise service data to conceal 

occurrence probabilities of real service data. For example, when occurrence 

probabilities of final requests are about the same, service providers cannot 

distinguish which ones are real ones with high confidence, except having other extra 

information sources. In other words, the goal of existing noise obfuscation on 

privacy protection is that the variance of all occurrence probabilities is as small as 

possible.  

But in reality, privacy is of different variety. In cloud environments, there could 
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be various kinds of sensitive information which can be deduced from service data as 

customer privacy except occurrence probabilities, such as association rules among 

‘real’ service requests. If two requests are associated by association rules: after one 

request sent by one customer, then the other has a high probability to be sent 

sequentially. It could be a distinctive behaviour pattern of this customer. When 

malicious service providers find these rules, customers’ behaviour patterns or their 

identities can be revealed as privacy leakage. Hence, it is a serious privacy risk.  

Let us take the cloud weather service as the motivating example again. One 

customer, who often travels to some cities in Australia, like ‘Sydney’, ‘Melbourne’ 

and ‘Brisbane’, and checks the weather forecasting report regularly from a weather 

service in cloud environments before departure. The frequent appearance of service 

requests about the weather report for ‘Sydney’ can reveal the privacy that the 

customer usually goes to ‘Sydney’. But if a system aids the customer to inject other 

requests like ‘Perth’ or ‘Darwin’ into the ‘Sydney’ queue, the service provider 

cannot distinguish which ones are real and which ones are ‘noise’. Hence, privacy 

can be protected by noise obfuscation in general. Considering the privacy risk in this 

chapter, the customer may go to ‘Sydney’ and ‘Melbourne’ sequentially as a travel 

routine which could be viewed as customer privacy. Consequently, these association 

probabilities of requests may express this routine as private information: ‘Sydney’ 

and ‘Melbourne’ could be sent together with a high association probability in real 

service requests. And from the perspective of occurrence probabilities, their 

occurrence probabilities may be about the same, and privacy has been protected 

already by existing noise generation strategies. But the travel routine of this 

customer can still be discovered by some unethical service providers: the person has 

a behaviour pattern that he will go to ‘Sydney’ and ‘Melbourne’ sequentially. This 

information may reveal the customer’s identity. However, existing representative 

noise obfuscations do not consider this issue. To address this, the updated goal of 

noise obfuscation in this chapter is to keep association probabilities of final service 

requests about the same, instead of occurrence probabilities only. That is the main 

motivation of this chapter.  

To some extents, it is a challenge for noise generation to enrich its intension in 

privacy protection. For ‘malicious’ service providers, to get this private information 

in this serious risk addressed above, association probabilities among service requests 
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are necessary for association rules mining. In other words, concealing association 

probabilities is another kind of noise obfuscation goal we considered in this chapter. 

Similar to the occurrence probabilities goal mentioned before, the main goal of noise 

obfuscation in this chapter is that the variance of all association probabilities among 

service requests is as small as possible. Hence, to address this privacy risk 

introduced before, we need to analyse association probabilities of past real service 

requests, and generate noise service requests which can conceal association rules by 

making association probabilities be about the same. These novel noise service 

requests can protect customers’ privacy in this chapter under the association 

probability privacy risk.  

In this chapter, we present our novel Association Probability based Noise 

Generation Strategy (APNGS) for privacy protection in cloud computing. In this 

strategy, we analyse all historical real service requests, and induce association 

probabilities from these service data. Based on these association probabilities, we 

analyse current association probabilities of real requests and generate association 

probability based noise requests to protect customers’ privacy. These noise requests 

can reach the goal that association probabilities of final service requests can be kept 

about the same. Therefore, the effectiveness of privacy protection on noise 

obfuscation can be improved from the perspective of association probability. In the 

following sections, we will introduce this strategy in detail step by step. 

6.2  Association Probability based Noise Injection Model  

In this section, we introduce the association probability based noise injection model 

to support APNGS. This noise injection model is based on other existing 

representative noise injection models [77, 42, 43] with modifications to support 

APNGS as depicted in Figure 6-1.  

Denotations in this section were listed in Figure 4-1: RQ , NQ , SQ and ε . And Q  

is a set of all service requests in this chapter: }q,......,q,......,q,q{Q ni21= . 

‘Association probabilities’: they are the basis of our noise generation strategy 

and guide noise generation processes. That is the main improvement of this model. 

‘Noise generation’: its function is to generate NQ . We use ‘association 
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probabilities’ and ‘counter’ to compute noise generation probabilities in APNGS.  

 
The overall working process of the model is to inject NQ into RQ based onε , and 

SQ  is the result. The model can be described as follows: the customer generates a 

real service request queue RQ to be sent. The noise service request queue NQ is 

generated by APNGS. To obtain SQ , a switch function is: the next service request in 

SQ comes from NQ  on the probability of ε , and from RQ  on the probability of 

ε−1 . Suppose iq is an item of Q  and )t)(qQ(P iR = , )t)(qQ(P iN =  and 

)t)(qQ(P iS = are occurrence probabilities of iq in RQ , NQ and SQ  at time t, 

respectively. That is the basis of association probabilities which will be discussed in 

the next section.  

6.3  Association Probability Model for Noise Generation  

In this section, we introduce the novel association probability model for noise 

generation. In brief, we plan to investigate how to obtain association probabilities 

from service request queues in this model.  

From the association probability based noise injection model in the preceding 

section, the queue RQ can decide association probabilities which are private 

information. Hence, to define association probabilities based on request queues, we 

have formula 6-1: 

)( RAP QfAP =                                   Formula 6-1 

QR

QN

QSε
Noise 

generation
Association 
probabilities

Counter 

Noise generation Noise injection (utilisation )

 
Figure 6-1 Association probability based noise injection model 
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In formula 6-1, AP denotes association probabilities, and it is an n×n matrix. 

Each item in this matrix AP[i,j] is the association probability between iq and jq .  

Based on request queues, sliding window is the key and widely used approach to 

analyse information in a data stream or queue [16]. In this strategy, considering that 

sliding windows are not the central area for noise generation, we use a minimised 

and fixed sliding window to generate association probabilities. As a basic form of 

sliding windows, the minimised and fixed sliding window can aid to analyse data 

streams in terms of basic features. To obtain a suitable and common analysis in 

terms of noise obfuscation, we utilise the minimised and fixed sliding window in 

this model. Accordingly, we obtain formula 6-2 as the association probability model 

for noise generation: 

1
)(],[

,

−
=

t
QConjiAP R

ji

                               Formula 6-2 

In formula 6-2, )(,
R

ji QCon is the number of events that iq and jq are sent together 

in RQ . Under minimised and fixed sliding windows, this event is that jq is 

immediately next to iq  as a consequential relation in RQ . And we use time length t-

1 as the denominator to normalise the formula. 

In this model, sliding windows are fixed and minimised to obtain a common 

discussion. In some specific privacy protection situations, sliding windows can be 

dynamic to withstand some specific privacy risks, such as side channel knowledge 

on it, or particular timestamps in request queues. In other words, sliding window is 

the changing key in noise generation to protect privacy in cloud environments. And 

as a basic form, fixed and minimised sliding windows can be easily modified to 

match those specific noise obfuscations. 

Hence, we can define association probabilities by consequential relations among 

service requests in request queues. For instance, according to these sliding windows, 

if request ‘A’ is always the next one of request ‘B’ in request queues, we can say 

that the consequential relation frequency between these two requests is high, and 

that is a high association probability which could reveal an association rule as 

customer private information. Besides, to concealing these association probabilities 
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at service side, we should consider these association probabilities at client side in 

advance. Accordingly, we can accumulate all past service requests and their 

consequential relation frequencies for deciding these association probabilities to aid 

noise obfuscation.  

In brief, this novel association probability model for noise obfuscation is the key 

for APNGS and supports the following sections by defining association probabilities 

as customer privacy. Hence, based on this model, we analyse the association 

probability based noise generation processes to support APNGS. 

6.4  Association Probability based Noise Generation  

In this section, we discuss the two key issues in association probability based noise 

generation—noise generation probabilities and noise injection intensity, similar to 

other noise generation strategies [42, 43]. Supposed noise generation probabilities 

are ],1[),)(( nitqQP iN ∈∀=  which means that for Qqi ∈∀ , probabilities of NQ  

being iq  at time t, respectively, we can generate noise requests according to these 

probabilities. Noise injection intensity is ε  as introduced earlier. 

6.4.1 Noise Generation Probabilities 

In HPNGS [42], noise generation probabilities are: 

1
)(

)(,
−×
=−

==∀
Mn

qQPM
qQPi iR

iN                         Formula 6-3 

From formula 6-3, in )(, iR qQPi =∀ , the highest one is 

}),({ iqQPMAXM iR ∀== , which is historical and accumulative data from 

past RQ in practice as depicted in Figure 6-1, just like )( iR qQP = , and n is the 

number of iq .  

Besides, from Section 6.1 and [42], existing representative strategies have the 

same noise generation goal:  

nqQPi iS 1)(, ==∀                              Formula 6-4 
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In noise generation processes, we use noise generation goal to express privacy 

protection goal for its consistency, as discussed in Section 6.1. Hence, based on the 

novel association probability model defined in formula 6-2, we get the noise 

generation goal in APNGS: 

ntqQtqQPjitQPtji jSiSS 1)])((|)1)([(),,1,(,,, ==+==+∀  Formula 6-5 

In formula 6-5, the noise generation goal is a family of conditional probabilities 

to express the probability of SQ  being iq at time t+1, on the precondition of SQ  being 

jq at previous time t. Besides, we have ],1[, nji ∈  and ],1[ Tt ∈ , and T  is the time 

length of the overall process. 

To realise formula 6-5, we can utilise ‘new’ noise generation probabilities in 

formula 6-6 based on formulas 6-5 and 6-3:   

1),(
),,,(),()])((|)1)([(

−×
−

==+=
jtMn

jitQPjtMtqQtqQP R
jSiN

    
Formula 6-6 

In formula 6-6, we have two components:  ),,,( jitQP R  and ),( jtM . And we 

have formulas 6-7 and 6-8 to illustrate them: 

)])((|)1)([(),,1,( tqQtqQPjitQP jSiRR =+==+            Formula 6-7  

})],)((|)1)([({),1( itqQtqQPMAXjtM jSiR ∀=+==+        Formula 6-8 

In formula 6-7, ),,1,( jitQP R +  is a family of conditional probabilities to 

express the probability of RQ being iq  at time t+1, on the precondition of SQ  being 

jq at time t. 

In formula 6-8, ),1( jtM +  is the highest value, for every i , in a family of 

conditional probabilities to express the probability of RQ being iq  at time t+1, on the 

precondition of SQ  being jq at previous time t. It is clear that formula 6-7 is the 

basis of formula 6-8. Hence, we only need to focus on formula 6-7 for association 

probabilities among service requests introduced before. 

In APNGS, to obtain formula 6-7, we design a process based on formula 6-2: this 
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is an accumulative process in noise obfuscation processes. A 3-dimension 

matrix ),,( tjiMatrix  has three parameters: t is time parameter, i is from 

)1)(( += tqQ iR  which means an event that the ith  request in the set Q  will appear in 

RQ  at time t+1, and j is from ))(( tqQ jS =  which means an event that the jth  

request in the set Q  appears in SQ  at time t. Hence, the matrix ),,( tjiMatrix  means 

all past association relations among service requests iq  and jq  at time t. At a specific 

time, a 2-dimension array C[i][j] can replace ),,( tjiMatrix . We should collect all 

requests from time 1 to time t, and obtain accumulative C[i][j]. Hence, 

SUMtjiMatrixjitQP R ),,(),,,( = . SUM is the number of all association relations 

among past requests, and SUM = n-1. This is the implementation of association 

probability model in this strategy. 

We will utilise this process in the next subsection to compute the noise injection 

intensity, too.  

6.4.2 Noise Injection Intensity 

According to the association probability based noise injection model defined in 

Section 6.2, to operate noise obfuscation, ε is a necessary parameter.  

Hence, based on Section 6.2 and [42], we can get the relation among SQ , NQ  

and RQ :  

)j,i,t,Q(P)j,i,t,Q(P)1()j,i,t,Q(P NRS ×+×−= εε         Formula 6-9  

There are three components in formula 6-9: )j,i,t,Q(P N  , )j,i,t,Q(P R  and 

)j,i,t,Q(P S . And we have formulas 6-10, 6-7 and 6-5 introduced before to illustrate 

them: 

)])((|)1)([(),,1,(,,, tqQtqQPjitQPtji jSiNN =+==+∀   Formula 6-10 

In formula 6-9, it is clear that the conditional probability of SQ  being iq  at time 

t+1 on the precondition of SQ being jq at previous time t, is decided by the 
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conditional probability of RQ being iq  at time t+1 on the precondition of SQ  being 

jq at previous time t , the conditional probability of NQ  being iq  at time t+1 on the 

precondition of  SQ  being jq at previous time t, and ε . 

Hence, we can get ε  based on formula 6-9:  

),,,(),,,(
),,,(),,,(

jitQPjitQP
jitQPjitQP

RN

RS

−
−

=ε                        Formula 6-11 

In formula 6-11, we have to consider time parameter t, and update ε  to )t(ε . 

Besides, we use formulas 6-5 and 6-4 to simplify formula 6-11:  
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Formula 6-12 

At last, we get the noise injection intensity by formula 6-13:  

),1(
11)1(

jtMn
t

+×
−=+ε

                       
Formula 6-13 

Based on noise generation probabilities—formula 6-6 and noise injection 

intensity—formula 6-13, we can investigate APNGS to reach formula 6-5. 

Compared to existing representative strategies, APNGS updates the goal of noise 

generation from formula 6-4
 
to formula 6-5. It can address the serious risk identified 

before. In the next section, we will present APNGS in detail.  

6.5  Association Probability based Noise Generation Strategy 

In this section, we present our novel APNGS based on the previous sections. In 

Algorithm 6-1, we utilise n×n+1 counters to record the matrix and the sum of 

association relations among requests in Step 1. From formula 6-6, we can generate 

noise generation probabilities by the former matrix in Step 2. About noise injection 

intensity, formula 6-13 can obtain it in Step 3. At last, we can get noise requests 

from noise generation probabilities, and utilise them by the noise injection intensity 
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in Step 4. 

 
In summary, we can find out that the major improvement between APNGS and 

existing representative noise generation strategies is the noise generation goal 

updating: replacing nqQPi iS 1)(, ==∀  by njitQPtji S 1),,,(,,, =∀ . Based on that, 

APNGS can perform better in privacy protection situations considering association 

probabilities than existing representative noise generation strategies, as 

demonstrated in the next section.  

Title: Association probability based noise generation strategy 
Input:      is the queue of real service requests
Output:       is the queue of final service requests

Step 1: Collect data and compute association probabilities
            Initialise n*n+1 counters: C[1][1],……,C[1][n]…. 
..C[n][1],…...C[n][n], S to record numbers of associations among 
each service data item and the sum;
            Receive service data from all past       and update the 
correspondent counter C[i][j]++ and the sum S++;
            Compute previous association probabilities :  
                                                                                                        

Step 2: Compute noise generation probabilities
            Generate noise generation probabilities from formula 6-6:

                                                          
 by                          and                                                           ;        

Step 3: Compute noise injection intensity
            Compute formula 6-13:                                                   to 
get the noise injection intensity;
            We have noise requests queue 
                                                                                         ;

Step 4: Noise injection process
            Generate a noise N by:                                                                              

            Inject N into       on the probability of      to get         ;
            Update                              with counters.

            Goto Step 2.
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Algorithm 6-1 APNGS: Association Probability based Noise Generation 

Strategy 
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6.6  Simulation and Evaluation  

In this section, we perform an experimental simulation in our cloud simulation 

system—SwinCloud [93] introduced in Section 3.6. The aim is to simulate APNGS 

in order to demonstrate that APNGS can improve the effectiveness of privacy 

protection significantly than existing representative noise generation strategies in 

terms of association probabilities, like HPNGS [42], TPNGS [43] and random 

generation [77]. In this section, we compare APNGS and HPNGS in the simulation 

process, and make further discussions on other representative strategies in result 

analysis, because these other strategies can be represented by HPNGS for their 

similar privacy protection goals—concealing occurrence probabilities.  

Before the simulation, we generate a service queue as the real service queue from 

a set with a size of 10 randomly to operate two strategies and it is impossible to 

design a special experimental sample to facilitate APNGS on purpose. We use a 

function: ),(_ tStrategyAssVar to express the main effectiveness of privacy 

protection on noise obfuscation. As discussed before, the variance of association 

probabilities among service requests is a suitable standard to evaluate the 

effectiveness of privacy protection on noise obfuscation from the perspective of 

association probability, and ),(_ tStrategyAssVar  means that the variance of 

association probabilities in SQ under Strategy  protected at time t. Hence, it is 

obvious that the less ),(_ tStrategyAssVar , the better effectiveness of privacy 

protection on noise obfuscation in terms of association probability with Strategy  

operating at time t. Besides, we also use ),( tStrategyVar  to denote the variance of 

occurrence probabilities in SQ  with Strategy  operating at time t. It denotes the 

effectiveness of privacy protection on noise obfuscation in terms of occurrence 

probability as another aspect of the effectiveness of privacy protection. 

Based on the simulation process, we derive ),(_ tHPNGSAssVar and 

),(_ tAPNGSAssVar which denote the main effectiveness of privacy protection 

under two strategies in this chapter, respectively. They are depicted in Figure 6-2. 

In Figure 6-2, the horizontal coordinate is time t, and t has a range of [1, 6001]; 

the vertical coordinate is the main effectiveness of privacy protection AssVar _ in 
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this chapter. As introduced before, if AssVar _ is lower, the effectiveness of privacy 

protection is better, hence customers privacy is better kept. We can find out the 

overall trend being: with time passing, ),(_ tHPNGSAssVar  and 

),(_ tAPNGSAssVar  both keep on decreasing. Obviously, ),(_ tHPNGSAssVar  is 
always higher than ),(_ tAPNGSAssVar . In Figure 6-2, ),(_ tAPNGSAssVar is 

about ¼ to ½ of ),(_ tHPNGSAssVar . Hence, we have the conclusion: APNGS 

achieves a significant improvement on the effectiveness of privacy protection on 

noise obfuscation over HPNGS, from the perspective of association probability. 

 
Besides, we need the variance of occurrence probabilities: ),( tStrategyVar to 

evaluate another aspect of privacy protection effectiveness. In Figure 6-3, we find 

out that )t,APNGS(Var can keep within a low level of about 2.00e-05, and is lower 

than )t,HPNGS(Var  which has a level of about 3.00e-05. Therefore, we have a 

conclusion that APNGS has a better effectiveness of privacy protection on noise 

obfuscation in terms of occurrence probability than HPNGS, though HPNGS is 

already a suitable one [42]. That is because association probabilities consider more 

details of data queues than occurrence probabilities to keep the service requests 

balance.  

 

Figure 6-2 Effectiveness comparison on association probability between 

HPNGS and APNGS 
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At last, the cost of privacy protection on noise obfuscation should also be 

considered. In cloud, noise service requests consume resources and customers need 

to pay for resources consumed. We can use the noise injection intensity to evaluate 

the cost on noise.  

 
In Figure 6-4, we can find out that ε of APNGS is about 1.5 times more than 

 

Figure 6-4 Comparison on noise injection intensity between HPNGS and 

APNGS 

 

 

Figure 6-3 Effectiveness comparison on occurrence probability between 

HPNGS and APNGS 
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ε of HPNGS at the beginning, and then the disparity decreases to about 1 time with 

time passing. It means that APNGS costs more than HPNGS. In other words, to 

obtain a better effectiveness of privacy protection in cloud computing, customers 

need to pay more, in terms of association probability or occurrence probability. It is 

a trade-off depending on customers’ demands. 

About other representative noise generation strategies, such as random 

generation [77] and TPNGS [43], APNGS also performs well: HPNGS has already 

improved the efficiency of privacy protection on noise obfuscation from random 

generation with similar effectiveness. TPNGS focuses on fluctuations in occurrence 

probabilities and addresses them with time-series pattern forecasting, and 

association probabilities are not incorporated.   

In summary, APNGS can significantly improve the effectiveness of privacy 

protection on noise obfuscation in terms of association probability over existing 

representative strategies, with a good effectiveness of privacy protection on noise 

obfuscation in terms of occurrence probability, at a reasonable extra cost. 

6.7  Summary 

In this chapter, we presented our novel Association Probability based Noise 

Generation Strategy (APNGS) for privacy protection in cloud computing. Based on 

existing typical noise generation strategies, association probabilities can be utilised 

in noise generation processes to conceal them as private information. For instance, 

these association probabilities could be the dependencies among service requests in 

real service request queues, which can express the unique behaviour patterns or 

identities as customer privacy. As a result, these association relations or rules should 

be concealed and protected as customer privacy by this strategy in cloud computing. 

In this strategy, we presented the novel association probability model for noise 

generation to analyse and abstract association probabilities. After that, noise 

generation can be executed based on this model and pursue the goal of noise 

obfuscation in this aspect of noise generation—similar association probabilities of 

final service data. Based on the simulation experiments, we demonstrated that our 

novel strategy could significantly improve the effectiveness of privacy protection on 
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noise obfuscation to withstand the association analysis privacy risk.  

In Chapter 5 and this chapter, we introduced our work on the noise generation 

component of our novel noise obfuscation model. In general, we improved existing 

noise generations to withstand two serious privacy risks—probability fluctuation 

and association probability. As introduced in Section 3.4, these two privacy risks 

can represent two main ways to break noise generation for privacy attackers: 

external and internal features of service data. Accordingly, we presented two novel 

representative noise generation strategies respectively. Hence, under these noise 

generation strategies, the noise generation component can be executed as the key 

part of the single noise obfuscation process and the whole noise obfuscation function. 

Besides, the noise pre-processing component introduced in Chapter 4 can provide 

the noise set to the noise generation strategies in this chapter and Chapter 5 as a pre-

process discussed in Chapter 3. Furthermore, our novel noise obfuscation model 

presented in Chapter 3 can be operated by the single noise obfuscation process in the 

single service scenario, and in the multiple services scenario, this model can be 

enhanced by the noise utilisation component based on the single noise obfuscation 

process, which will be introduced in the following chapters.  

In future, some further discussions on association probabilities can be 

investigated to obtain more dynamic and precise privacy strategies, such as in the 

association model, the direct consequential relation can be replaced by some indirect 

relations.   
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Chapter 7 

Noise Utilisation for Ethical Multiple 
Services 

In this chapter, we start to discuss the noise utilisation component of our novel noise 

obfuscation model. As introduced before, the noise utilisation component is the last 

step of the whole noise obfuscation function. After noise pre-processing and noise 

generation, we have effective and efficient noise data in the single service scenario 

for privacy protection in cloud computing. Hence, in noise utilisation, we can 

discuss how to use these noise data and single noise obfuscation processes for the 

multiple services scenario for privacy protection in cloud computing. In this chapter 

and the next one, we will discuss these noise utilisations.  

As discussed before, noise utilisation in this thesis focuses on the multiple 

services scenario. In the scenario of single service, noise utilisation is 

straightforward to be considered: noise injection models in former strategies can 

clearly express these noise utilisation processes. But in the multiple services 

scenario, we cannot utilise noise data directly according to these former noise 

injection models, due to complex and opaque environments among multiple services 

in cloud computing. That is why we have to investigate the noise utilisation 

component in terms of multiple services scenario. Specifically, we can consider two 

kinds of cases on multiple services: ethical multiple services and unethical multiple 

services.  

In this chapter, we focus on the ethical multiple services case. In this case, some 

ethical multiple services can aid cloud customers to protect privacy from other 

malicious service providers. Briefly, ethical cloud services could facilitate noise 
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obfuscation to pursue a more effective privacy protection in cloud computing. Hence, 

under this privacy concern, we present a novel Correlation based Noise Injection 

Strategy (CNIS) to combine these ethical services together to execute the whole 

noise obfuscation function. The noise injection architecture is the supporting 

environment for the noise injection strategy. In this architecture, we can discuss the 

correlation model and the single service process with noise obfuscation. After that, 

CNIS can be operated based on effectively linking single service processes with 

single noise obfuscation processes together by correlation. The effectiveness of 

privacy protection on noise obfuscation can be improved by this novel CNIS in the 

ethical multiple services case in terms of noise utilisation. In this chapter, this noise 

injection strategy is the noise utilisation strategy to fulfil the noise utilisation 

component of our novel noise obfuscation model in the ethical multiple services 

case.   

This chapter is organised as follows. Section 7.1 addresses the background of 

this strategy. Section 7.2 describes the noise injection architecture in cloud 

computing. Section 7.3 presents our novel Correlation based Noise Injection 

Strategy (CNIS) for privacy protection in cloud computing. Section 7.4 demonstrates 

the evaluation results to illustrate the advantage of CNIS. Finally, Section 7.5 

summarises this chapter.   

This chapter is mainly based on our work presented in [41]. 

7.1  Background of the Strategy  

Generally speaking, in cloud computing, to protect customer privacy, noise 

obfuscation belongs to these measures which can aid customers to protect privacy at 

client side. As the main idea of the whole thesis, it can inject noise service requests 

into real customers’ service requests so that service providers are hard to distinguish 

which requests are real ones.  

But currently, existing noise obfuscations focus on noise utilisation for a single 

service process. Actually, customers’ service requests may need more than one 

service provider to answer them. It is a cooperative service process with various 

service providers. For instance, in cloud environments, the style of inter-clouds with 
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public clouds and privacy clouds is easily accepted for its flexibility on the balance 

of privacy protection and usability [59]. Especially in inter-cloud environments, a 

cooperative service process could bring several service providers from different 

clouds together, and the complexity of privacy protection increases with more and 

more service providers’ taking part in the process due to the spread of privacy. As a 

result, we need to protect customers’ privacy during the entire cooperative service 

process, which can be addressed as a noise utilisation problem in noise obfuscation. 

By the way, we use “customers” to denote real people who have privacy to be 

protected in cloud computing, and “clients” to denote virtualised clients which 

communicate with service providers in cloud. Hence, a “client” is a network 

terminal which applies noise obfuscation strategies to protect the privacy of the 

“customer” that utilises the “client” to get services in cloud computing. It is the 

computer which a “customer” uses.  

To address the noise injection (utilisation) problem introduced above, we can 

investigate a noise injection architecture for entire cooperative service processes in 

cloud computing. And it specialises in various single service processes with noise 

obfuscation in cloud computing based on correlation. They are basic supporting 

functions to fulfil the architecture. Based on these, we present our novel Correlation 

based Noise Injection Strategy (CNIS) for privacy protection in cloud computing, 

and it protects customers’ privacy during the entire process of services’ cooperation. 

In this strategy, we use noise service requests to protect customers’ privacy in a 

cooperative service process by not only clients, but also other service providers. The 

correlation model is the bridge to connect clients and services together for the noise 

injection architecture. The noise injection architecture is used to describe 

cooperative service processes, and it provides a supporting environment for this 

novel CNIS. Hence, this strategy protects customers’ privacy during entire 

cooperative service processes and addresses the noise utilisation concern in the 

ethical multiple services cases.  

Besides, as presented in Chapter 3, the single noise obfuscation process 

composes of the noise pre-processing component and the noise generation 

component. In this chapter, this process is the ‘noise obfuscation’ in the single 

service process which is the basis of the noise injection architecture. Under our 

novel CNIS in this chapter, we can connect single service processes with single 
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noise obfuscation processes together, to execute noise obfuscation in the ethical 

multiple services case for privacy protection in cloud computing. 

Based on the above, this strategy requires ethical service providers to protect 

customer privacy by cooperating with clients. Service providers could have the 

motivation to keep customers’ privacy safe during the services between themselves 

and other service providers by noise obfuscation. For instance, service requests sent 

by this service could also leak customer privacy, just like customers’ classification 

and/or distribution of information. This could be a weapon for its business 

competitors. To address this, service providers could protect their customers’ 

privacy by facilitating this CNIS. Hence, this CNIS is feasible to be applied in 

practice. 

 
Let us take a travel planning service as the motivating example. In Figure 7-1, a 

client sends a service request to a travel planning service, and this service sends its 

service requests to other services to get travel information, such as flight service and 

hotel service. These services answer service requests back to the travel planning 

service which analyses all information from the answers to provide one or several 

travel plans and responds back to the client. It can be viewed as a cooperative 

 

Figure 7-1 A cooperative service process on cloud 
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service process with ethical multiple services. Obviously, some customers’ privacy 

may be leaked by some potential ‘immoral’ services in the travel planning process 

which needs several different services to respond, such as location information and 

travel itinerary. It can be associated with one customer’s identity from other public 

information to break the customer’s identity privacy protection. Hence, the risk of 

privacy is serious. This is the motivation of this chapter. 

In brief, this novel CNIS for privacy protection in cloud computing focuses on 

privacy protection in cooperative service processes, and utilises our correlation 

model to guide noise generation and injection (utilisation) during entire cooperative 

service processes. Therefore, customers’ privacy can be protected in this ethical 

multiple services case. 

7.2  Noise Injection Architecture in Cloud Computing  

To present our novel CNIS, we need to present our noise injection architecture for 

the strategy. To introduce the noise injection architecture, firstly, we need the 

correlation model between services to connect all single service processes with noise 

obfuscation. Moreover, in this section, we firstly introduce our correlation model 

between ethical multiple services. Then, we describe the single service process with 

noise obfuscation. At last, we present our noise injection architecture.  

7.2.1 Correlation Model between Services 

Correlation model is a basis in this chapter. It is based on other mature trust model 

work [96, 74] with modifications. We need to utilise the model to link ethical 

multiple service providers.  

Correlation between Services: In this chapter, we use the ‘correlation’ between 

two service roles: a service request initiator and a service request respondent in the 

view of single service process. A service request initiator could be a client or a 

service, and a service request respondent is solely a service. We will describe these 

service roles in detail in the following sections. Now we introduce the correlation. 

Correlation: as a major part of correlation model, Correlation is a 8-tuple 

(P,Q,T,D,t,v,p,n) which asserts the relation between entity P and entity Q, where: 
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• P and Q are the subset of the set ( Ω ) of all the entities in cloud 

computing. In this chapter, P and Q always have different role attributes.   

• T is the set of {direct, recommended, derived} to denote different 

correlation types. In this strategy, we only consider the type of “direct”. 

Because we plan to use the correlation to guide noise obfuscation, and 

other two types have to influence noise obfuscation by the type of 

“direct”. For noise obfuscation, the type of “direct” is adequate. 

• D is the set of domains of {<dn, dt >} where dn denotes the name of the 

domain; dt is the type of the domain and =∈DNdt {intra, inter} 

denoting that the correlation is intra-domain or inter-domain, respectively. 

We will detail these in the following subsection. 

• t is the time constraint when the relation is thought to be valid. 

• v is the evaluation on this correlation.  

• p is the number of positive experiences associated with this correlation. 

• n is the number of negative experiences associated with this correlation. 

Correlation’s Domains: after defining the correlation model, we can explain 

domain D of correlation now. In Section 7.3, domain D will play an important role 

in our novel CNIS. 

In complex service processes, there are three members: clients, direct services 

and indirect services. In Figure 7-2, direct services are services which receive 

service requests from clients, and have to accept some cooperation from other 

services to answer clients’ service requests. Indirect services are services that are out 

of clients’ “views”. In general, clients only send service requests to direct services, 

and direct services may ask other direct services or indirect services to accomplish 

the function of service process. These indirect services are invisible to clients. There 

are three kinds of single service processes between them: “client-direct”, “direct-

indirect” and “direct-direct”.  

In this chapter, we have an assumption that an indirect service is the last step of a 

cooperative service process, and it does not send service requests to other indirect 

services to obtain cooperation. That is because the “indirect-indirect” cannot be 

enhanced by noise obfuscation functions in clients’ views. Hence, we do not have 

“indirect-indirect” single service processes. 
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Now, we can consider three domains of correlation. There are “clients” domain, 

“direct services” domain, and “indirect services” domain. They come from three 

members in cooperative service processes, respectively. Hence, we can discuss these 

correlation domains from the perspective of single service process. 

The correlation between a client and a direct service: As a client, direct services 

are the only kind of services which can “see” and send its service requests to. The 

correlation from a client to a direct service is a sectional correlation from the client 

to the direct service excluding all other services belonging cooperative service 

processes in complex cloud environments. And this correlation has a domain type 

with an inter-domain, and the domain of this correlation is <clients, inter>. As a 

direct service, the correlation from a direct service to a client is located at service 

side which is beyond the scope of this strategy.  

The correlation between a direct service and an indirect service: As a direct 

service, indirect services are all cooperative resources. The correlation from a direct 

service to an indirect service has a value for distributing tasks to the indirect service 

in complex cloud environments. And this correlation has a domain type with an 

inter-domain, and the domain of this correlation is <direct, inter>. As an indirect 

service, the correlation from an indirect service to a direct service is also located at 

service side which is beyond the scope of this strategy, too.  

The correlation between one direct service and another direct service: As one 

direct service, other direct services are cooperative resources. When this direct 

service needs some help, it may send some requests to other direct services. As a 

request initiator, the correlation is a sectional correlation to all other services which 

Clients Direct 
services

Indirect 
services

Clients domain Direct services domain Indirect services domain
 

Figure 7-2 Cooperative service processes with clients, direct services and 
indirect services 
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take part in this service process, too. And this correlation has a domain type with an 

intra-domain, and the domain of this correlation is <direct, intra>.  

In summary, we presented our correlation model between services based on 

other mature research work and emphasised domain types of correlations which can 

be utilised to manage noise generation strategies and noise injections presented in 

Section 7.3. They are essential issues of our novel CNIS. 

7.2.2 Single Service Process with Noise Obfuscation 

In the view of single service process in cloud computing for noise obfuscation, two 

service roles in a cooperative service process can be classified: service request 

initiator and service request respondent. To introduce them, we utilise a single 

service process to represent one step of an entire cooperative service process with 

only these two members and single service process. We use this process to cover 

different domains and clouds in terms of correlation.  

Service request initiator plays a main role in this strategy. It guides the noise 

service requests’ generation and injection by the correlation model. Service request 

respondent plays another role in the process. In this strategy, it just receives and 

responds service requests from the perspective of a service request initiator. 

 
In Figure 7-3, it depicts a single service process between a service request 

initiator and a service request respondent. From the perspective of a service request 

respondent, the process is very simple and just operates between itself and a service 

request initiator. The service request initiator protects privacy by noise injection 

Service request 
initiator

Service request 
respondent

Noise injection 
(utilisation)

Single service 
process 

Single noise 
obfuscation 

process 

Correlation model

 
Figure 7-3 Single service process with noise obfuscation 
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which is invisible to its partner (the service request respondent). The single service 

process is a combination of the dual service roles with noise injection, and a process 

to execute these two service roles. Hence, we utilise single service processes to 

model entire cooperative service processes. 

About “single noise obfuscation process” and “correlation model”, they are 

important issues to support single service processes under our novel CNIS in this 

chapter. By the way, this “single noise obfuscation process” is the “single noise 

obfuscation process” discussed before, composed of the noise pre-processing 

component and the noise generation component of our novel noise obfuscation 

model presented in Chapter 3.  

In the next subsection, we will use single service processes with noise 

obfuscation to present the noise injection architecture which is the supporting 

environment for our novel CNIS.  

7.2.3 Noise Injection Architecture  

In Section 7.2.1 and 7.2.2 above, we introduced the correlation model between 

services and the single service process with noise obfuscation which are parts of the 

noise injection architecture. In this subsection, we present our noise injection 

architecture to support our novel CNIS. In Figure 7-4, we have three domains in this 

architecture: clients domain, direct domain and indirect domain. The clients and 

direct domains are visible to customers, and our novel CNIS is deployed in these two 

domains to protect customers’ privacy. Indirect domain is invisible to customers.  

From the virtualisation perspective, we have three layers in the entire 

architecture: the role layer, the service layer and the deployment layer which 

correspond to the role environment, the service environment and the cloud 

deploying environment, respectively.  

What we focus on is the grey parts in the role layer. Based on single service 

processes with service request initiators and service request respondents, noise 

injections have been highlighted as essential parts in these single service processes 

with noise obfuscation. To generate noises to protect privacy, we need some single 

noise obfuscation processes which have been highlighted to be operated before noise 

injections. Besides, these processes can be executed by the correlation model as 
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highlighted, too. In the next section, our novel CNIS will be proposed accordingly. 

 

7.3   Novel Noise Injection Strategy   

In the preceding section, the noise injection architecture in cloud computing was 

presented as a supporting environment to our noise injection strategy. In this section, 

we propose our novel Correlation based Noise Injection Strategy (CNIS) for privacy 

protection in cloud computing. Our novel CNIS plays its role in single service 

processes with noise obfuscation which are the grey parts of noise injection 

architecture depicted in Figure 7-4. Every single service process with noise 

obfuscation in this architecture utilises CNIS to manage noise generation to protect 

privacy. 
Correlation based Noise Injection Strategy : CNIS 
Input: Service request queue: QR, 

           Initial correlations: CR={cr1,cr2,……,cri,……,crm},            Risk of privacy: d, 
           Quality evaluation of this single-service process: e. 

 
 

Figure 7-4 Noise injection architecture 
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Output: Final service request queue QS  
              

Updated correlations: CR={cr1,cr2,……,cri,……,crm}, 

Step 1: Evaluating 
correlation 

 

Input: Correlations between services CR;  
           Dual service roles in this noise injection: p and q  
Output: v denotes the correlation value between p and q in the range of [0, 1] 
From Section 7.2.1, we have correlations: CR={cr1,cr2,……,cri,……,crm}, where 
cri=(Pi,Qi,Ti,Di,ti,vi,pi,ni). 
Check all ci in cri, remove all cri with unavailable cri. 
Check all i which can satisfy conditions: Pi==p and Qi==q. 
If i does not exist, Dijkstra shortest path algorithm is used to find out an array of 
correlations, and a newly derived cr will be inserted into CR. Then this step will 
be re-executed. 
If  i exists, if i is unique, v=vi.  
                  if i is not unique, v=vj (where ∈j dataset of i and Tj==”direct”) 

Step 2: Evaluating 
risk of privacy in this 
single service 
process with noise 
obfuscation 

Input: cri denotes the correlation in a single-service process,  
          ∈d {serious, moderate, minor} which denotes initial level of privacy risk 
from customer’s judgements. 

Output: ∈′d {serious, moderate, minor} which denotes final level of privacy risk.  
Check Di from cri. 
If (Di ==<clients, inter>), dd =′ . 
If (Di ==<direct, intra>), dd =′ . 
If (Di ==<direct, inter>), if ( ==d “minor”), d ′= “moderate”. 
                                         if ( =!d “minor”), dd =′ . 

Step 3: Settling down 
noise injection 
intensity, and 
generating  noise for 
injecting into service 
request queue QR 

 

Input:  QR, d ′ , v  

Output: QS, with QN denoted by iqQP iN ∀= ),(  and ε denotes noise injection 
intensity 
3.1 Settle down the noise generation strategy.  
If ( ==′d  “minor”), go to Step 3.2, “minor” noise generation strategy to be 
applied. 
If ( ==′d  “moderate”), go to Step 3.3, “moderate” noise generation strategy to be 
applied. 
If ( ==′d  “serious”), go to Step 3.4, “serious” noise generation strategy to be 
applied. 
These three strategies will be introduced next, respectively.  
3.2 The “minor” noise generation strategy 
We generate noise QN by noise generation probabilities, such as : 

n
qQP iN

1)( == ,  

and noise injection intensity, such as: 
v−= 1ε  

Go to Step 3.5.  
3.3 The “moderate” noise generation strategy  
We generate noise QN by noise generation probabilities, such as : 

∑ =−=
=−=

==

i
iRiR

iRiR
iN )qQ(P)}qQ(P{Max*n

)qQ(P)}qQ(P{Max
)qQ(P

,  

and noise injection intensity, such as : 

)}qQ(P{Max*n

)qQ(P)}qQ(P{Max*n
)v1(2

iR

i
iRiR

=

=−=
−=′

∑
ε and the final }v1,{Max −′= εε . 

Go to Step 3.5. 
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3.4 The “serious” noise generation strategy 
We generate noise QN by noise generation probabilities, such as: 
 

∑ =−=
=−=

==

i
iSiS

iSiS
iN qQPqQPMaxn

qQPqQPMaxqQP
)()}({*

)()}({)(
, 

and noise injection intensity, such as: 

]})([{*

])([]})([{*
)1(2)(

iS

i
iSiS

qtQPMaxn

qtQPqtQPMaxn
vt

=

=−=
−=

∑
ε

  and the final }v1),t({Max −= εε which 

changes with time t.  
Go to Step 3.5. 
3.5 Noise injection  
We get the noise N from QN, and inject it into QS on the probability of ε, hence we 
can get QS. In this step, we execute this noise injection process. 

Step 4: Evaluating 
quality of this single 
service process, and 
updating correlation 
in correlation model 
about this single 
service process 

Input: e denotes quality evaluation of this single service process.  

Output: Updated cri 

4.1 Get a feedback e to denote the quality of the service  

      In this step, we collect feedback e from a service request initiator.  
4.2 Update pi and ni in cri 

      If(e≥vi), pi=pi+1 

      If(e<vi), ni=ni+1 

4.3 Update vi in cri 

      vi=vi+e×(pi-ni) 

In this noise injection strategy, we choose three noise generation strategies to 

execute noise generation. The three noise generation strategies have different 

customers’ privacy. Independent to noise generation strategies we presented in the 

previous chapters, these three noise generation strategies only express some 

common noise generation processes to support noise utilisation processes in this 

strategy. There are three types of noise generation strategies in terms of correlation 

and private information. In other words, noise generation strategies presented in 

Chapter 5 and Chapter 6 can be modified in these types as needed. 

We set three kinds of customers’ privacy: ∈pl {direct privacy, probability 

distribution, interaction frequency}. The first one denotes that original service 

requests without any analysis and induction. The second one denotes that this kind 

of privacy can be induced from the occurrence probabilities of original service 

requests, such as in HPNGS [42], TPNGS (Chapter 5) and APNGS (Chapter 6). The 

last one denotes that the interaction frequency of original service requests can induce 

this kind of privacy.  

Hence, it is easy to understand that each strategy sets one kind of privacy as its 
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goal of noise privacy protection: the goal of the “minor” noise generation strategy is 

to conceal the pl= “direct privacy”; the goal of the “moderate” noise generation 

strategy is to conceal the pl= “probability distribution”; and the goal of the “serious” 

noise generation strategy is to conceal the pl= “interaction frequency”.  

About ε’s generation in these three strategies, when the risk of privacy rises, it 

changes from v−=1ε , }1,{ vMax −′= εε  to }1),({ vtMax −= εε  by increasing step by 

step. It means that if the risk of privacy increases, the noise injection intensity 

increases as well with noise generation strategies changing accordingly. 

In this noise injection strategy, we have an initial level of privacy risk d which is 

decided by customers, and do some amendments for the final level of privacy risk in 

our strategy. Similarly, we use customers’ quality evaluation to operate the updating 

function of correlation in Step 4. Correlations can be adapted, and the updating 

function realises this for improving the adaptability of the correlation model. 

In summary, our novel CNIS for privacy protection in cloud computing is 

established on the correlation model and the single service process with noise 

obfuscation. It operates on the noise injection architecture with several single service 

processes and dual service roles, and protects customers’ privacy during entire 

cooperative service processes in the cloud ethical multiple services case. In the 

following section, we will illustrate that our novel CNIS can protect privacy better 

than the existing Single Noise Injection Strategy (SNIS).  

7.4  Simulation and Evaluation  

In this section, we introduce an experimental simulation in our SwinCloud, like 

previous strategies in this thesis. And the simulation executes an instance about a 

cooperative service process. The aim is to simulate and demonstrate that our novel 

strategy improves the effectiveness of privacy protection on noise obfuscation 

significantly. Hence, we set several nodes to represent two service roles—service 

request initiator and service request respondent, respectively. The former one firstly 

generates or forwards real service request queues where every request is from a 

request set with 50 items. Then, they generate noise service request queues to inject 

into real request queues. The latter one receives the final service request queues and 
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analyses the effectiveness of privacy protection on noise obfuscation. Some nodes 

represent dual roles as the intermediate steps of cooperative service processes. That 

is the main idea of the simulation process. In this process, we set the cooperative 

service process with all Services as a linear structure depicted in Figure 7-5. 

 
In Figure 7-5, Client1 (it can also be viewed as Service0)  sends service requests 

to Service1 with noise obfuscation, then Service1 operates this information and sends 

to the next service—Service2 with noise protection too, and the same steps are 

repeated until Service9 which is the last service to accomplish the client’s service 

requests.  

Except the last service, all services and the client can inject noise to protect 

privacy. In the simulation process, we make a comparison between our novel 

Correlation based Noise Injection Strategy (CNIS) and the existing Single Noise 

Injection Strategy (SNIS). To evaluate the effectiveness of privacy protection in this 

chapter, we set ri(CNIS) and ri(SNIS) from ∏=
i i

i
i v

r
ε  which denotes the risk of 

privacy under the protection of one noise injection strategy at step i. εi is the noise 

injection intensity at the service step between Servicei-1 and Servicei. vi is the 

correlation value between Servicei-1  and Servicei. It is obvious that a lower ri means 

a better effectiveness of privacy protection on noise obfuscation at step i. 

About SNIS, we utilise it to represent various existing noise obfuscations in the 

view of noise injection. They all focus on noise generation and one single service 

process with single noise obfuscation process, regardless noise utilisation in the 

ethical multiple services case. In other words, it can be described by a range of 

independent single noise obfuscation processes without noise utilisation functions 

for multiple services scenarios. 

1Client
)( 0Service 2Service 3Service 4Service

5Service6Service7Service9Service 8Service

1Service

 
Figure 7-5 Linear service structure 
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Based on the simulation process described before, we have ri(CNIS) and 

ri(SNIS). They are depicted in Figure 7-6. And they change by the step of service 

process i. 

 
In Figure 7-6, the horizontal coordinate is the step (i) in the service process. The 

vertical coordinate is the risk of privacy ( ∏=
i i

i
i v

r
ε ). If the risk of privacy ri is 

lower, the effectiveness of privacy protection is better, and vice versa.  

Obviously, ri(CNIS) and ri(SNIS) have a same start, but later on they are 

extremely different. The former keeps the risk of privacy in a zone of moderate 

fluctuation and the latter increases rapidly. With the increasing of i, the disparity 

between ri(CNIS) and ri(SNIS) becomes more and more, and our strategy— CNIS is 

more and more effective. At Service1, these two privacy risks are the same. At 

Service5, the disparity of two privacy risks is 614.301 times. At Service9, the 

disparity of two privacy risks is as high as 156128.55 times. Therefore, our strategy 

can improve the effectiveness of privacy protection on noise obfuscation 

significantly and keep the risk of privacy low, especially in complex cooperative 

service processes. 

 

Figure 7-6 Comparison between ri(CNIS) and ri(SNIS) 
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As a client, it could know the single service process with noise obfuscation with 

Service1 instead of this entire service process as discussed in Section 7.1. That is 

why CNIS and SNIS start at a same level of privacy protection. However, with other 

services joining the service process, SNIS could expose the disadvantage and have a 

much worse effectiveness of privacy protection, due to neglecting the entire 

cooperative service process.  

In summary, we can conclude that our novel CNIS could decrease the risk of 

privacy significantly than existing noise obfuscations in cooperative service 

processes in cloud computing. In other words, in noise utilisation processes, we can 

improve the effectiveness of privacy protection on noise obfuscation significantly by 

this strategy for the ethical multiple services case. 

7.5  Summary 

In this chapter, we presented our novel Correlation based Noise Injection Strategy 

(CNIS) for privacy protection in cloud computing. In this strategy, we introduced the 

noise injection architecture in cloud computing which was based on the single 

service process with noise obfuscation and the correlation model. Hence, customers’ 

privacy can be considered and protected at every step of entire cooperative service 

processes by this strategy. In one word, the key work in this chapter is to extend 

single noise obfuscation processes to cooperative noise obfuscation processes in the 

ethical multiple services case for privacy protection in cloud computing.  

As introduced before, the noise injection strategy described in this chapter 

considers the noise utilisation function for the ethical multiple services case. As a 

noise utilisation strategy, this strategy focuses on how to utilise the single noise 

obfuscation process effectively including noise generation and noise pre-processing. 

Besides, the ethical multiple service case can promote noise utilisation by 

correlation. In this case, it is obvious that the effectiveness of privacy protection on 

noise obfuscation can be improved in terms of noise utilisation, which has been 

demonstrated by the simulation evaluation. In the next chapter, we will discuss 

another multiple services case—the unethical multiple services case. 

In future, we will improve our work on the correlation model. For example, the 
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correlation model can be modified by considering quantified correlations to replace 

the qualified correlations in this chapter now. In other words, it would not have three 

discrete levels of noise utilisation, but a continuous range of noise utilisation.  
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Chapter 8  

Noise Utilisation for Unethical Multiple 
Services  

As discussed before, we mainly consider the noise utilisation in the multiple services 

scenario in Chapter 7 and this chapter. In Chapter 7, we presented our novel 

correlation based noise injection strategy to discuss how to utilise noise data and 

single noise obfuscation processes for the ethical multiple services case. In this 

chapter, we discuss the noise utilisation function for the unethical multiple services 

case. Briefly, in this chapter, noise obfuscation and noise utilisation have to consider 

these potential cooperation relations among unethical or malicious services for noise 

obfuscation in cloud computing. Under this privacy risk, the noise utilisation 

function and strategy should focus on managing single noise obfuscation processes 

to deal with the malicious cooperation of unethical multiple services. In other words, 

when these unethical services cooperate and share information about customer 

privacy, noise obfuscation has to improve itself to withstand this serious privacy risk 

in terms of noise utilisation.  

To address this privacy risk, we present a novel Common Set based Noise 

Cooperation Strategy (CSNCS) as the noise utilisation strategy to withstand the 

unethical multiple services case in the noise utilisation component of our novel noise 

obfuscation model. In this strategy, the common set is the key basis to guide and 

utilise single noise obfuscation processes together to be effective by creation of the 

noise set(s). Based on the common set, different single noise obfuscation processes 

can be cooperated and utilised together to withstand this unethical multiple services 

case in terms of noise utilisation. That is the noise cooperation process which is 
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executed by this novel noise cooperation strategy. In this chapter, we can complete 

the noise utilisation component of our novel noise obfuscation model by this 

strategy. 

This chapter is organised as follows. Section 8.1 introduces the background of 

this strategy. Section 8.2 presents the noise cooperation model to discuss the 

unethical multiple services case. Section 8.3 describes the common set creation 

model for noise obfuscation to be the key issue of the novel noise utilisation strategy. 

Section 8.4 proposes our novel Common Set based Noise Cooperation Strategy 

(CSNCS) for privacy protection in cloud computing. Section 8.5 demonstrates this 

noise cooperation strategy by simulation and evaluation. Finally, Section 8.6 

summaries this chapter. 

8.1  Background of the Strategy  

For noise obfuscation, multiple services scenarios are necessary to be considered in 

the noise utilisation component. After we discussed the ethical multiple services 

case in Chapter 7, we investigate the unethical multiple services case as a privacy 

challenge now, which means malicious services could combine together to break 

existing noise obfuscations and obtain customer privacy.  

In cloud computing, it is possible that one customer utilises different service 

processes at the same time. For each service process, there could be a single noise 

obfuscation process to protect privacy by concealing real requests’ probabilities for 

each service provider. Besides, due to the openness and virtualisation features in 

cloud environments, it is hard for customers to find out which services may be 

unethical and cooperate to share their service data about the customer to deduce 

some more private information. Hence, this service-cooperation could give unethical 

services a chance to break existing noise obfuscations together.  

Specifically, existing noise obfuscations utilise noise service requests to conceal 

real ones from a set of service data. But during data sharing in the unethical multiple 

services case, the overlapped part from several service data sets from different 

service providers could be found by unethical services. This part could aid these 

services to omit many ‘useless’ noise service data which are not in the intersection 
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of these sets. Hence, the effectiveness of privacy protection on noise obfuscation is 

considerably lower than customers expected. Besides, these ‘useless’ noise service 

data mean a ‘useless’ cost for customers in the pay-as-you-go style of cloud 

environments. Obviously, existing noise obfuscations have not considered this risk 

before. Hence, this privacy risk could damage the confidence of customers to cloud 

computing in terms of noise obfuscation eventually.  

Besides, this privacy risk is quite similar to intersection attacks [15, 11, 80]. 

They both have to withstand one kind of private data leakage by information 

combination and fusion. But in this chapter, this privacy risk is based on the noise 

obfuscation approach, not in the field of data publishing or mining like intersection 

attacks. This is a difference in the area of application. Besides, the privacy risk in 

this chapter is considered from the perspective of cloud customers, which is totally 

different with intersection attacks in the view of service providers. 

To address this privacy risk, we develop our novel Common Set based Noise 

Cooperation Strategy (CSNCS) for cloud privacy protection in the unethical multiple 

services case. We firstly analyse the overlapped part of all service request sets from 

single service processes with single noise obfuscation processes. Then, based on the 

overlapped part, we consider a common set for noise utilisation to manage and 

utilise each single noise obfuscation process. Hence, creating the common set is the 

key task in this strategy. To obtain this set, we investigate the creation procedure of 

the common set from the overlapped part of every request set. Besides, we 

investigate the updating process of this common set in the process of noise 

utilisation under unethical multiple services in cloud computing, as a dynamic 

function. Based on that, we lastly present our novel noise cooperation strategy—

CSNCS to execute the noise utilisation function in the unethical multiple services 

case.  

Besides, compared to the common set discussed in this chapter, the noise set 

discussed in Chapter 4 about the noise pre-processing component can be viewed as a 

similar set for noise generation. But in Chapter 4, the noise set can be discussed in 

terms of noise pre-processing to connect customers’ requirements and noise 

obfuscation in a single noise obfuscation process. In this chapter, this common set is 

discussed from several former noise sets in several single noise obfuscation 

processes, and means a key issue to protect privacy by noise obfuscation in multiple 
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services scenarios. In other words, in the unethical multiple services case with noise 

pre-processing, this noise cooperation strategy will be executed on the noise sets 

after noise pre-processing strategies in terms of the noise set(s). 

Let us take the cloud weather report as the motivating example, again. As 

introduced in Section 1.2.2, customer privacy about location information in service 

requests can be protected in general by existing noise obfuscation. But in reality, 

he/she may also use one traffic service with the weather service as a multiple 

services scenario. To protect his/her privacy, as the noise utilisation function, two 

single noise obfuscation processes can be executed with specific noise generation 

strategies: the weather forecasting service may receive “Sydney”, “Melbourne” and 

“Perth” service requests with about the same probabilities, and the traffic service 

could receive “Sydney”, “Melbourne” and “Brisbane” service requests with about 

the same probabilities, too. Each of them can not distinguish which one is the real 

city the customer will go and privacy can be protected. But in the unethical multiple 

services case, the two service providers may share these service sets out of the view 

of customers for the virtualisation feature. It is clear that “Sydney” and “Melbourne” 

are the overlapped part of the two “city” sets. And other service requests about 

“Perth” and “Brisbane” can be omitted in the customer privacy analysis process by 

some malicious service providers. These malicious service providers only have to 

find the real city–“Sydney” from a narrowed intersection set: “Sydney” and 

“Melbourne”. It is a serious privacy risk for noise obfuscation. Besides, these noise 

service requests about “Perth” and “Brisbane” are ‘useless’ for privacy protection in 

this situation, and it is a significant waste in cloud computing. To address this 

privacy risk, the “narrowed” set: “Sydney” and “Melbourne” is the common set 

which we should focus on in terms of the effectiveness of privacy protection on 

noise obfuscation. By creating this set on purpose, we can manage the whole noise 

obfuscation function to be functional in the unethical multiple services case. That is 

the main motivation of this chapter.  

In this chapter, firstly, we plan to introduce the noise cooperation model to 

support CSNCS. Then, the creation of the common set is described. Lastly, we 

present our novel Common Set based Noise Cooperation Strategy (CSNCS) to 

realise the above noise utilisation process and complete the whole noise obfuscation 

function for unethical multiple service case to protect privacy in cloud computing. 
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8.2  Noise Cooperation Model 

In brief, the noise cooperation model is an abstract model to describe the noise 

utilisation process in the unethical multiple services case.  

As introduced before, there are several services in the noise utilisation in this 

chapter. Based on denotations introduced before in Figure 4-1, we can update these 

RQ , NQ , SQ ,Q  and ε to R
iQ , N

iQ , S
iQ , iQ and iε . Hence, for a customer, there are 

n service providers which the customer would use and communicate with. They 

are: nServiceServiceService ,......, 21 . For one specific iService , there is a set of service 

requests from the customer: },......,,{ 21
i
ni

iii qqqQ = . It means that all service requests 

are from this set. The ni means the number of service requests in this set. Besides, 

we have a common privacy set: },......,,{ 21 mdddD = , and there are m different data 

items. It is the union of every set: },......,,{ 21
i
ni

iii dddD = which means these 

corresponding datasets from different sets of service requests: iQ . Hence, 

 nDDDD ∪∪∪= ......21                          Formula 8-1  

We use a map to connect iQ  and iD : ii
i DQf >−: . It is obvious that if  is an 

injective map, and a surjective map, too. Thus, it is a bijective map, and their norms 

are: 

niDQ ii ==                                    Formula 8-2  

To simplify the map, we can define if  as:  

],1[),( nijqfd i
ji

i
j ∈∀=                               Formula 8-3  

Furthermore, the intersection of all iD  is:  

nDDDD ∩∩∩=′ ......21                            Formula 8-4  

As discussed before, the intersection of all iD is an expression of the 

effectiveness of privacy protection under the privacy risk in this chapter. We can 
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increase D′  to get a better effectiveness of privacy protection with an increment on 

noise service request cost. Hence, it is a trade-off between the effectiveness and cost. 

About the cost, we define the cost set about every particular service request: 

},......,,{ 21 nsssS =  where is means the unit cost of one service request with iService . 

Compared to real service requests, the cost of noise service requests which are 

generated by noise obfuscation is the issue we focused on in this chapter. Besides, 

corresponding iService , noise injection intensity iε and the number of real service 

requests numri can form the overall noise request cost for every service process: 

 ],1[,
1

ninumrsCost
i i

i
ii ∈∀

−
××=∑ ε

ε                     Formula 8-5  

Just like in other chapters in this thesis, noise injection intensity iε  means the 

percentage of noise service requests in all service requests when final service 

requests have about the same probabilities. Hence, noise injection intensity iε  is:   

),( iR
i

i StrategyQNGS=ε                               Formula 8-6  

In formula 8-6, R
iQ  is the queue of real service requests to iService , and 

()NGS expresses the abstract process of noise obfuscation under one single noise 

obfuscation process with one specific noise generation Strategyi to get noise 

injection intensity iε .  

From D′ to D , a number epp is utilised to describe the effectiveness of privacy 

protection on noise obfuscation in this chapter: 

DeppD ≤≤′                                      Formula 8-7  

Corresponding to epp, a set eD is the goal that our noise cooperation strategy 

wants to obtain: eppDe = , and  

DDD e ⊆⊆′                                        Formula 8-8 

Based on the above discussions, we present the noise cooperation model in 
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Figure 8-1 to support our novel CSNCS. In the left part of this figure, the customer 

uses n different services in cloud computing, and there are n single noise obfuscation 

processes to protect these service processes. But in cloud environments, the “Service 

cooperation and information sharing” could exist and damage noise obfuscation in 

terms of privacy protection. Hence, in the right part of this figure, a brief description 

about service requests and sets is proposed, summarised from the left part of the 

figure. The “Common” set eD and “Noise generation request sets” i
eQ  describe the 

whole process.  

 
Hence, it is obvious that in the service cooperation situation—the unethical 

multiple services case, the common set eD  is one key issue for noise utilisation to 

cooperate single noise obfuscation processes with noise generation strategies. And 

we will discuss how to create it in the next section.  

8.3  Common Set Creation Model for Noise Obfuscation  

In this section, we present the key part of our novel CSNCS—the Common Set 

Creation Model (CSCM). Firstly, some analysis on the creation process of common 

set is necessary to present the whole model. Then, the Common Set Creation 

Algorithm (CSCA) is proposed to describe one single creation procedure of the 

common set. At last, with initial creation and run-time updating situations, the 

Common Set Creation Model (CSCM) is presented to build and maintain the 

 
 

Figure 8-1 Noise cooperation model under service cooperation 
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common set. 

8.3.1 Problem Analysis  

From the preceding section, we have the target of CSCM: to find a suitable eD which 

conforms to formula 8-5. Hence,   

},
1

{},{ e
i i

i
iie DnumrsMinDCostMin ∀

−
××=∀ ∑ ε

ε             Formula 8-9 

Besides, We have eD  as the common set: pluse DDD +′= where plusD is a part of 

eD . Accordingly,  

DDDplus ′−≤≤Φ                                   Formula 8-10  

In other words, plusD is the target of CSCM. Besides, to get the lowest Cost , 

every possible eD or plusD should be computed and compared. Thus, there are 

DD
DD

eC ′−
′−  kinds of possible eD or plusD  that should be tested. And 

 C
eppmmepp

mmCC Depp
Dm

DD
DD

e =
−′−
′−

== ′−
′−

′−
′− )!()!(

)!(           Formula 8-11  

The computational complexity of this problem is ))(( εtnCO ×× where ( )εt  

means that the time computational complexity of the noise injection intensity 

computing process which depends on different noise generation strategies in single 

noise obfuscation processes. To get the common set with a lowest cost, we need to 

compare all the costs of every possible eD  or plusD . Therefore, in the following 

subsection, we try to decrease this computational complexity. 

8.3.2 CSCA: Common Set Creation Algorithm 

How to obtain eD ? An intuitive approach is to evaluate every data item in plusD and 

sorting them by the cost on noise service requests. Hence, under eppDe = , 
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common set eD  is the union dataset of D′  and the previous mepp ′−  data items in 

sorted plusD . 

For single noise obfuscation processes, there are n different noise request sets, 

one of them, say i
eQ corresponds the ith  service process. As introduced before, 

eD could be separated to D′ and plusD . Thus,  

i
plus

i
plusii

i
e QQDfDfQ +′=+′= −− )()( 11                  Formula 8-12  

In formula 8-12, iQ′ is the basic part of i
eQ from the perspective of noise 

generation. As discussed before, the real private information must be in iQ′ , and is 

impossible to be in i
plusQ . Based on iQ′ , all noise generation strategies in single 

noise obfuscation processes pursue a common noise obfuscation goal—all requests 

have about the same probabilities. If a new data item Dds ∈  is added in eD , every 

possible i
plusQ has new requests )(1

si df −  to be added in. And every noise generation 

strategy should make these new requests to be about the same probabilities in iQ′ . 

Consequently, it is easy to understand that the order of new requests injection in 
i
plusQ  has no influence on the final statement of service requests at service side. 

Hence, every single noise cost on every data item in plusD  is decided by D′ , and they 

have no influence on each other. 

Hence, based on the above analysis, we can present CSCA in Algorithm 8-1. 

This algorithm generates eD  from D  and mepp ′− . There are three components 

operated step by step in the algorithm: “cost evaluation”, “cost sorting” and “set 

generation”. The former one “cost evaluation” is the key issue in this algorithm. As 

introduced before, to compute the noise request cost based on eD , the specific noise 

generation strategy should be considered for different strategies that have different 

noise injection intensities from formulas 8-5 and 8-6.  

In “cost sorting”, a sorting algorithm can be utilised for every data item in XORD , 

based on the noise request cost XORDddDCost ∈∀+′ }),{(  which is the result of “cost 

evaluation”. 
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In “set generation”, plusD can be generated from ‘cost-sorted’ XORD′ under 

mepp ′−  which is a parameter from customers. Besides, the cost of every single 

service request ],1[, nisi ∈∀  is fixed. Hence, the cost should be settled down before 

service utilisation in the view of customers in cloud customers. 

 
Based on the above analysis, the computational complexity of CSCA 

is ))(tn)mm((O ε××′− . Compared to formula 8-11 and the previous time 

computational complexity: ))(( εtnCO ××  in Section 8.3.1, it is a significant 

decreasing.  

In the next subsection, we present CSCM based on CSCA.  

Cost evaluation 

D′

dDd XOR ∀∈ ,

}{dD +′

XORD′

XORDddDCost ∈∀+′ }),{(

Cost sorting

XORD

XORDDD +′=

mepp ′−

pluse DDD +′=

Set generation 

 

Algorithm 8-1 CSCA: Common Set Creation Algorithm 
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8.3.3 CSCM: Common Set Creation Model 

In this subsection, we can present CSCM. Briefly, CSCM builds based on CSCA, and 

investigates common set eD  in the initial creation and the run-time updating. 

In the initial creation process of common set eD , from formulas 8-5 and 8-6, past 

service request queues and sets can be utilised to compute and obtain initial common 

set eD . In Algorithm 8-1, these past requests can decide the initial eD to support 

CSNCS. It is the beginning of CSCM execution.  

 

In the run-time updating process of common set eD , from same formulas 8-5 and 

8-6, run-time service request queues and sets are necessary to maintain a 

reasonable eD . In Algorithm 8-1, it is obvious that these run-time service request 

queues can impact all noise injection intensities in single noise obfuscation 

processes in the step of “Cost evaluation”. Besides, these run-time service request 

sets may vary from past service request sets at the beginning. Hence, based on CSCA, 

the run-time updating on the common noise set is an important part of CSCM. 

In Figure 8-2, CSCM builds based on CSCA. Both in processes of the initial 

creation and run-time updating, CSCA is the critical part to obtain common set eD . In 

general, CSCM presents the complete view for the creation of common set eD , and 

takes CSCA into practice to be the kernel of CSNCS for withstanding the unethical 

multiple services risk on noise obfuscation in cloud computing.  

Past service request 
queues and sets

CSCA: Common 
set creation  
algorithm

Run-time service request 
queues and sets

Run-time common noise 
generation set

Initial common noise 
generation set

Single noise 
obfuscation 
process 1

Single noise 
obfuscation 
process 2

Single noise 
obfuscation 
process n

……………...

CSCM: Common set creation model

 
Figure 8-2 CSCM: Common Set Creation Model 
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8.4  Noise Cooperation Strategy 

Based on preceding sections, we present the noise utilisation strategy in the 

unethical multiple services case—our novel Common Set based Noise Cooperation 

Strategy (CSNCS) for privacy protection in cloud computing in Algorithm 8-2. 

Based on CSCA and CSCM, CSNCS investigates the unethical multiple services 

privacy risk in terms of noise utilisation.  

 

Title: Common Set based Noise Cooperation Strategy 
Input:  the queues of real service requests for every service process are 

Output:  the queues of final service requests for every service process are 

Step 1: Collect all initial service request sets from every service process
            Collect all service request queues from every service process in past time: 
                                                                  ;
            Get the initial service request sets from these service requests queues:
                                                         ;   

Step 2: Compute the initial common noise set based on all noise generation strategies 
                  in single noise obfuscation processes
             Compute all noise injection intensities based on noise generation strategies 
in single noise obfuscation processes:                             by formula 8-5:                                                 ;
             Generate the initial common noise set based on the initial service request sets 
from these service requests queues from Algorithm 8-1:                                                                                                        
                                                                                                                                       
Step 3: Compute all initial noise request sets for noise generation strategies 
                    in single noise obfuscation processes 
            Compute all initial noise request sets for noise generation strategies
 in single noise obfuscation processes by formula 8-12:                                                                        
                  

Step 4: Execute all noise generation strategies in single noise obfuscation processes
            For every noise generation strategy, generate a noise      by the noise request set        ;
            Inject       into       on the probability of      to get         for every service process;
            Update service request queues for every service process.

Step 5: Compute the updated noise set based on the run-time service request sets 
            Collect and record all run-time service request queues:   
                                                                        ;
            Get the run-time service request sets from these service requests queues:
                                                              ;
            Compute all run-time noise injection intensities based on noise generation strategies: 
                                                  ;            
            Generate the updated common noise set by Algorithm 8-1:
                                                                   and

Step 6: Compute all updated noise request sets for noise generation strategies
                  in single noise obfuscation processes
             Compute all updated noise request sets by formula 8-12: 
                                                                                                ;

             Goto Step 4.
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 Algorithm 8-2 CSNCS: Common Set based Noise Cooperation Strategy 
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In this algorithm, Step 1 is the beginning step to collect all request queues and 

sets as past data to support the execution of CSCA in Step 2. Then, in Step 3, the 

result of Step 2—common set eD  supports every single noise obfuscation process. 

After that, all noise generation strategies in these single noise obfuscation processes 

are executed and final service request queues are expressed to service providers, 

based on the noise request sets. In Step 4, noise service requests generated by noise 

generation strategies are the tool to obtain final service request queues as results of 

noise obfuscation on privacy protection. Step 5 is the updating step to common set 

eD  like Step 2 and Step 3. The only difference is service request queues changed 

from initial data to run-time data. Based on common set eD , all updated noise 

request sets are computed in Step 6. After this, Step 4 is executed again as a run-

time privacy protection mechanism until the whole noise obfuscation function 

terminates. 

As introduced in Chapter 3, the noise generation component is the central part of 

single noise obfuscation process. Hence, noise generation strategies are the main 

concern to support our novel noise utilisation strategy in this chapter. And a noise 

pre-processing strategy can be executed with a noise generation strategy as pre-

processing. That is why we did not discuss noise pre-processing in this noise 

utilisation strategy, although we mentioned the single noise obfuscation process 

which includes both the noise pre-processing component and the noise generation 

component. 

In summary, the key part of CSNCS is the building and updating of common 

set eD . We present CSCM and CSCA to summarise the major part of this. With 

common set eD , customers can withstand the unethical multiple services risk. In the 

next section, we will illustrate that CSNCS improves the effectiveness of privacy 

protection on noise obfuscation with the efficiency promotion by simulation. 

8.5  Simulation and Evaluation  

In this section, we investigate and evaluate CSNCS by simulation. CSNCS executes 

and utilises single noise obfuscation processes by common set eD . As a result, in the 
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simulation process, the evaluation of this strategy focuses on its influence on these 

single noise obfuscation processes in all aspects, especially on noise generation 

strategies. Three kinds of noise generation strategies have been utilised to operate 

these noise obfuscation processes based on [77, 42, 43], including Chapter 5 and 

Chapter 6. 

Similar to preceding chapters, we use SwinCloud [93] as the simulation 

environments to evaluate CSNCS. We use one node as a customer to send service 

requests and apply noise obfuscation. And other ten nodes in this cloud environment 

are utilised as ten services from 1Service to 10Service to receive service requests. 

These service processes between the customer and each service operate single noise 

obfuscation processes with noise generation strategies to protect customer privacy. 

Besides, the last service 10Service  plays the role of executing the unethical multiple 

services privacy risk in this chapter. Other nine services send their request sets to 

this service, and the effectiveness of CSNCS on privacy protection can be obtained 

by 10Service . 

We use Obfuscation Level to denote the effectiveness of privacy protection on 

noise obfuscation in this chapter. It is the size of noise request set. In other words, it 

means that after noise obfuscation, how many possible requests have about the same 

probabilities. It is clear that if the Obfuscation Level is high, unethical services have 

to obtain the real service request from a big set. That means they have a low 

possibility to get the real one, and the effectiveness of privacy protection is high. 

From Section 8.3, the setting of mepp ′− is very important to the simulation process 

of CSNCS. In this process, we set it as the mean of all obfuscation levels from all 

single noise obfuscation processes at that time.  

Firstly, we investigate the unethical multiple services privacy risk in this chapter. 

In Figure 8-3, ten services operate ten single noise obfuscation processes with noise 

generation strategies to protect privacy. These ten dash lines denote ten different 

obfuscation level of each single noise obfuscation process. Depended on different 

service processes, these ten dash lines increase gradually. The only solid line depicts 

the obfuscation level of the whole privacy protection under this unethical multiple 

services risk. Obviously, the solid line is lower than every dash line. Hence, the 

unethical multiple services privacy risk can decrease the effectiveness of privacy 
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protection on noise obfuscation significantly.   

 
Secondly, the improvement on the effectiveness of noise obfuscation on privacy 

protection is the major evaluation part of CSNCS. Under this unethical multiple 

services risk, the effectiveness of privacy protection can decrease significantly. To 

address this, CSNCS can be operated as a noise utilisation strategy to utilise single 

noise obfuscation processes with noise generation strategies, and aid them to 

withstand this risk. Hence, to evaluate our strategy, we compare two situations: one 

is noise obfuscation functions’ operation without CSNCS; another is the same noise 

obfuscation functions’ operation with CSNCS. In Figures 8-4 and 8-5, we compare 

these two from the perspective of effectiveness of privacy protection and the cost on 

noise requests, respectively. 

In Figure 8-4, we can find out that CSNCS can improve the effectiveness of 

privacy protection on noise obfuscation significantly, compared to non-CSNCS. 

With time passing, CSNCS can utilise noise obfuscation to get a larger and larger 

dominance in the effectiveness of privacy protection. At the beginning of the 

simulation, both of obfuscation levels are the same. From time 1000 to 5000, the 

obfuscation level of our CSNCS is about 3 times than noise obfuscations without 

CSNCS. Hence, the improvement on privacy protection is significant.  

 
 

Figure 8-3 Serious privacy risk under the unethical multiple services 
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Finally, we compare the cost on noise service requests between noise 

obfuscation processes with and without our novel CSNCS. The cost on real service 

request cannot be modified by noise obfuscation. In noise obfuscation, the only 

thing that can be controlled is reducing noise service requests. Thus, the volume of 

noise requests denotes this cost.  

 
In Figure 8-5, we can find out that CSNCS does not increase the cost on noise 

service requests, compared to noise obfuscations without CSNCS. The cost of noise 

obfuscations with CSNCS is lower than the cost of noise obfuscations without 

CSNCS, and the percentage of CSNCS’s cost on non-CSNCS’s cost fluctuates in the 

 

Figure 8-5 Cost comparison 

 

 

Figure 8-4 Obfuscation level comparison 

 

Cost 

Time 



 

113 

 

range from 1/3 to 4/5. Because CSNCS guides all noise generation request sets of 

every single noise obfuscation process with noise generation strategies, and these 

single noise obfuscation processes become more targeted than before by omitting 

‘useless’ noise requests.  

In summary, from the simulation process above, the unethical multiple services 

privacy risk impacts noise obfuscation notably. And our novel CSNCS can withstand 

this risk: as a noise utilisation strategy, CSNCS can improve the effectiveness of 

privacy protection on noise obfuscation significantly in the unethical multiple 

services case, based on single noise obfuscation processes with noise generation 

strategies. Besides, CSNCS can decrease the cost on noise requests considerably, too.  

8.6  Summary 

In this chapter, we presented our novel Common Set based Noise Cooperation 

Strategy (CSNCS) for privacy protection in cloud computing as a noise utilisation 

strategy to be executed in the unethical multiple services case. As introduced in 

Chapter 3, the noise utilisation function is the last step of the whole noise 

obfuscation function for privacy protection in cloud computing. In this step, the 

multiple services scenario is focused. In the previous single service scenario, noise 

pre-processing and noise generation can be utilised to fulfil noise obfuscation 

functions, and their results—noise data can be utilised directly to execute the whole 

noise obfuscation function. But in multiple services scenarios, some new privacy 

concerns and risks may threat these noise pre-processing and noise generation 

functions. In other words, only single noise obfuscation processes (noise pre-

processing strategies and noise generation strategies) cannot deal with these privacy 

concerns and risks in the multiple services scenarios. That is why we discuss noise 

utilisation in Chapters 7 and 8.  

The noise utilisation component considers multiple services in terms of their 

relations, and guides single noise obfuscation processes together to address these 

privacy concerns and risks in multiple services scenarios. On one hand, in Chapter 7, 

we investigated the ethical multiple services case where noise utilisation focuses on 

the cooperation of ethical services. A novel correlation based noise injection strategy 
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was presented to utilise single noise obfuscation processes under this case. On the 

other hand, in this chapter, we discussed the unethical multiple services case where 

noise utilisation has to consider the cooperation of unethical services which may 

jeopardise whole noise obfuscation functions. That is the main goal of this chapter.  

Briefly, in this chapter, we developed a novel Common Set based Noise 

Cooperation Strategy (CSNCS) for privacy protection in cloud computing. In this 

strategy, we considered noise generation requests sets from every single noise 

obfuscation process, and presented the common set to combine and manage them. 

Based on this common set’s efficient creation, this strategy was presented to guide 

and modify every noise generation set in single noise obfuscation processes. Hence, 

no matter whether all service providers are unethical and deduce customer’s privacy 

together or not, this strategy can protect customer privacy by concealing real service 

requests in a reasonable number of noise ones. The simulation evaluation 

demonstrated that our strategy could cope with this unethical multiple services 

privacy risk discussed before, i.e. significantly improve the effectiveness of cloud 

privacy protection on noise obfuscation in the unethical multiple services case. 

Besides, the efficiency of privacy protection can be improved by our strategy, too. 

In future, based on CSNCS, we plan to further investigate how to protect 

customer privacy in the scenario where these unethical service providers may 

collaborate with each other to deduce customer privacy under some complex “trust” 

relations.    
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Chapter 9  

Conclusions and Future Work 

The technical details for our novel noise obfuscation for privacy protection in cloud 

computing have all been addressed in previous chapters. In this chapter, we present 

an overview of the whole thesis. This chapter is organised as follows. Section 9.1 

summarises the content of the whole thesis. Section 9.2 outlines the main 

contributions of this thesis. Finally, Section 9.3 points out the future work.  

9.1  Summary of This Thesis 

The research objective described in this thesis is to investigate the novel noise 

obfuscation model for privacy protection in cloud computing, including noise pre-

processing component, noise generation component and noise utilisation component. 

Accordingly, different noise pre-processing strategies, noise generation strategies 

and noise utilisation strategies have been discussed to obtain an effective and 

efficient privacy protection on noise obfuscation in cloud computing. The thesis was 

organised as follows: 

 

• Chapter 1 introduced some key privacy challenges in cloud computing. 

Moreover, the noise obfuscation approach for privacy protection in cloud 

computing was discussed to be the main topic of this thesis in this chapter. 

Chapter 1 also described the structure of this thesis.  
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• Chapter 2 overviewed general related work on cloud privacy protection. 

Specifically, this chapter classified current work into service side and client side. 

In this thesis, we emphasised cloud privacy protection at client side due to the 

openness and virtualisation features of cloud computing. In this regard, the noise 

obfuscation approach can be investigated as a promising tool to give customers 

and enterprises confidence in cloud computing by protecting privacy 

automatically at client side. Besides, some other supporting work, including 

time-series analysis, association analysis and so on, was introduced to support 

these technical strategies presented in succeeding chapters. 

 

• Chapter 3 presented the overview of our novel noise obfuscation for privacy 

protection in cloud computing—our novel noise obfuscation model. This noise 

obfuscation model abstracts our novel noise obfuscation approach by 

withstanding different types of privacy risks and concerns in different steps of 

noise obfuscation. Hence, in order to give noise obfuscation a comprehensive 

consideration for cloud computing, our model is composed of three main 

components including noise pre-processing component, noise generation 

component and noise utilisation component, which were further illustrated in 

separate chapters. 

 

The main technical details of the noise obfuscation model were presented 

separately in three parts, including noise pre-processing component (consisting 

of Chapter 4), noise generation component (consisting of Chapter 5 and Chapter 

6) and noise utilisation component (consisting of Chapter 7 and Chapter 8).  

 

• Chapter 4 presented a novel privacy-leakage-tolerance based noise enhancing 

strategy for privacy protection in cloud computing as a noise pre-processing 

strategy to execute the noise pre-processing component. Specifically, in the 

noise pre-processing component, the noise pre-processing strategy was proposed 

based on a customer-set privacy-leakage-tolerance to deal with the concern 

about linking customers’ privacy requirements and noise obfuscations. Briefly, 

this strategy can improve the efficiency of cloud privacy protection on noise 



 

117 

 

obfuscation in terms of noise pre-processing, which was demonstrated by the 

simulation evaluation.   

 

• Chapter 5 presented a novel time-series pattern based noise generation strategy 

to execute the noise generation component. As a serious privacy risk, these 

fluctuations of occurrence probabilities can threat existing noise generations to 

break noise obfuscation in terms of privacy protection. Hence, this strategy 

abstracts time-series patterns from past service data to model these fluctuations. 

Then, based on these time-series patterns, future occurrence probabilities can be 

generated by current occurrence probabilities, and these fluctuations can be 

forecasted. After this, the noise generation strategy executes the noise generation 

process to conceal these fluctuations. Hence, malicious service providers are 

hard to break noise obfuscation by these fluctuations. Besides, we demonstrated 

that this novel strategy improved the effectiveness of cloud privacy protection on 

noise obfuscation in terms of probability fluctuation by the simulation evaluation.  

 

• Chapter 6 presented a novel association probability based noise generation 

strategy to execute the noise generation component, too. For noise generation, 

association probabilities of service data can be viewed as the private information, 

and malicious service providers try to break noise obfuscation to obtain it. To 

withstand this privacy risk, association probabilities among past service data 

should be analysed and concealed in noise generation processes. Accordingly, to 

conceal these association probabilities, this novel noise generation function can 

generate noise data effectively by the association probability model. Briefly, this 

novel association probability based noise generation strategy can improve the 

effectiveness of cloud privacy protection on noise obfuscation in terms of 

association probability, which was demonstrated by the simulation evaluation.  

 

Besides, in Chapters 5 and 6, these two serious privacy risks can represent two 

main ways to break noise generation for privacy attackers: using external and 

internal features of service data. Noise obfuscation has to analyse these risks as 

needed to protect privacy under specific conditions.  
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• Chapter 7 presented a novel correlation based noise injection strategy as the 

noise utilisation strategy for the ethical multiple services case. As a privacy 

concern, ethical multiple services can cooperate together with noise obfuscation 

to enhance privacy protection on cloud. Based on the correlation model and 

noise injection architecture in cloud computing, the novel correlation based 

noise injection strategy can be operated to link single noise generation processes 

together, including noise pre-processing and noise generation, to give customer 

privacy a comprehensive privacy protection. The simulation experiments 

demonstrated that this strategy improved the effectiveness of cloud privacy 

protection on noise obfuscation for the ethical multiple services case in terms of 

noise utilisation.  

 

• Chapter 8 presented a novel common set based noise cooperation strategy as the 

noise utilisation strategy for the unethical multiple services case. Considering 

that unethical multiple services may cooperate together to break existing noise 

obfuscations, we discussed the noise cooperation model to analyse this privacy 

risk for noise obfuscation in the unethical multiple services case. Then, we 

presented the common set creation model for noise obfuscation as the key issue 

of this noise utilisation strategy. Furthermore, the novel common set based noise 

cooperation strategy was proposed to address this unethical multiple services 

risk in terms of noise utilisation. The experimental results demonstrated that this 

strategy improved the effectiveness of cloud privacy protection on noise 

obfuscation for the unethical multiple services case in terms of noise utilisation.  

 
In summary, based on all chapters, we can conclude that with the research results 

in this thesis, our novel noise obfuscation, as one promising privacy protection 

approach, can improve effectiveness of privacy protection in cloud computing with 

reasonable efficiency in pay-as-you-go cloud computing. 

9.2  Contributions of This Thesis 

The significance of this research is that we have designed a novel and 

comprehensive noise obfuscation model which provides effective and efficient 
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privacy protection in cloud computing. Specifically, as a promising privacy 

protection approach, our model addresses some limitations in existing noise 

obfuscation strategies and/or methods. The detailed analysis is conducted for each 

component of our noise obfuscation model, including noise pre-processing 

component, noise generation component and noise utilisation component. Based on 

the analysis, a series of novel strategies in these components’ functions, such as 

noise pre-processing strategies, noise generation strategies and noise utilisation 

strategies, have been proposed and developed. Corresponding comparisons and 

quantitative evaluations have shown that these innovative strategies obtain great 

performances in the effectiveness of privacy protection on noise obfuscation in 

cloud computing. That means the novel noise obfuscation model can be utilised as 

an effective tool to protect privacy in cloud computing. Besides, in the context of 

cloud economy, any resources consumed must be paid. As a privacy protection 

approach in cloud computing, the cost of noise data is a key issue to be considered. 

All of these strategies have taken the efficiency of privacy protection on noise 

obfuscation as their internal parts into consideration. Therefore, the research in this 

thesis will eventually improve overall effectiveness and efficiency of privacy 

protection on noise obfuscation in cloud computing. In other words, by deploying 

our innovative model and strategies, noise obfuscation for privacy protection will be 

able to better support open and virtualised cloud environments, from the perspective 

of both effectiveness and efficiency. 

In particular, the major contributions of this thesis are: 

 

1) A novel noise obfuscation model for privacy protection in cloud computing  

In cloud environments, a comprehensive consideration on a privacy protection 

approach is necessary for noise obfuscation executed. This thesis has proposed a 

novel noise obfuscation model with the whole procedure for noise obfuscation. At 

each step of the procedure in the model, this thesis has discussed the basic functions, 

and analysed the privacy risks and concerns in existing noise obfuscations. At the 

first step—noise pre-processing component, the thesis firstly gives cloud customers, 

who are the users of noise obfuscation for privacy protection, the capability to 

propose privacy-leakage-tolerance as the privacy requirement to guide noise 

obfuscation functions. These customers propose privacy protection standards, but do 
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not control specific noise obfuscation processes directly. At the second step—noise 

generation component, as a core function of the whole noise obfuscation function, 

the thesis has significantly improved noise obfuscation to address some serious 

privacy risks on existing noise obfuscations in terms of noise generation, such as the 

probability fluctuation privacy risk and the association analysis privacy risk. Besides, 

the previous two components can combine together to be a single noise obfuscation 

process which focuses on the noise obfuscation approach in the single service 

scenario. At the last step—the noise utilisation component, based on managing these 

previous single noise obfuscation processes, the thesis has firstly analysed how to 

effectively utilise the noise obfuscation approach in the multiple services scenario, 

regardless the ethical or unethical case.   

 

2) A novel noise pre-processing strategy by the privacy-leakage-tolerance  

Based on the problem analysis of conventional noise obfuscation, a novel noise 

pre-processing strategy has been proposed to manage noise obfuscation by 

customer-set requirements on privacy protection—privacy-leakage-tolerance in the 

single service scenario. The theoretical investigation and experimental results have 

shown that this noise pre-processing strategy can build a suitable bridge between 

cloud customers and noise obfuscation functions, and improve the efficiency of 

privacy protection on noise obfuscation by decreasing useless noise data items 

before noise generation, with a reasonable effectiveness.  

 

3) A novel noise generation strategy for probability fluctuations’ concealing  

To withstand the serious privacy risk on occurrence probabilities’ fluctuations, a 

novel time-series pattern based noise generation strategy has been presented in this 

thesis. By analysing how the fluctuations can break existing noise obfuscations and 

obtain customer privacy, time-series patterns can be used to abstract past occurrence 

probabilities’ changing, especially these fluctuations. Hence, these time-series 

patterns can help to forecast future fluctuations and guide noise generation to 

conceal these fluctuations. The effectiveness of privacy protection on noise 

obfuscation can be improved significantly in terms of noise generation with a 

reasonable cost under this serious privacy risk, which has been demonstrated by the 

simulation evaluation.   
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4) A novel noise generation strategy for association information’s concealing  

To deal with the privacy risk about the association analysis on past service data, 

a novel association probability based noise generation strategy has been presented in 

this thesis. In this strategy, the novel association probability model has been 

presented to describe the private information among service data, and guide noise 

generation to conceal these association probabilities. Afterwards, based on noise 

data generated by this strategy with the association probability model, the 

association probabilities privacy risk can be addressed. The experimental results 

illustrated that this strategy can improve the effectiveness of privacy protection on 

noise obfuscation in terms of noise generation, under this association analysis 

privacy risk. 

 

5) A novel noise utilisation strategy in the ethical multiple services case  

To consider how to utilise noise obfuscation effectively in the ethical multiple 

services case, a novel correlation based noise injection strategy has been presented 

to address this privacy concern. Based on the noise injection architecture in cloud 

computing, we linked different single noise obfuscation processes together to pursue 

a comprehensive consideration on privacy protection in the ethical multiple cloud 

services case. Therefore, the novel noise injection strategy can realise this 

consideration and utilise single noise obfuscation processes to be more effective in 

the ethical multiple services case. The experimental results expressed that our 

strategy can significantly improve the effectiveness of privacy protection on noise 

obfuscation in the ethical multiple services case in terms of noise utilisation.  

 

6) A novel noise utilisation strategy in the unethical multiple services case 

In the unethical multiple services case, to withstand the privacy risk under 

unethical services’ sharing information to break existing noise obfuscations, a novel 

common set based noise cooperation strategy has been presented. Specifically, we 

designed a noise cooperation model to abstract the privacy risk. Based on this model, 

the noise utilisation strategy can be proposed to utilise single noise obfuscation 

processes to withstand this privacy risk by the common set. The simulation 

evaluation has shown that this strategy can improve the effectiveness of privacy 
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protection on noise obfuscation in the unethical multiple services case in terms of 

noise utilisation.  

9.3  Future Work 

This thesis has proposed a novel noise obfuscation model for privacy protection in 

cloud computing. The future work will focus on how to further improve the overall 

effectiveness and efficiency of privacy protection for this model with different types 

of strategies. Specifically, there are five aspects which can be further investigated in 

future: 

 

1) Noise pre-processing strategy: our privacy-leakage-tolerance based noise 

enhancing strategy focuses on building bridges between customers’ requirements 

and noise obfuscations by the privacy-leakage-tolerance. In future, we will 

investigate the adaptation of this noise pre-processing strategy for other types of 

customers’ requirements, not only the privacy-leakage-tolerance in Chapter 4, 

such as the ratio between the privacy-leakage-tolerance and the cost on privacy 

protection by noise obfuscation. 

 

2) Noise generation strategy for probability fluctuations’ concealing: under the 

time-series pattern based probability forecasting algorithm, our time-series 

pattern based noise generation strategy can significantly improve the 

effectiveness of privacy protection on noise obfuscation to withstand 

fluctuations of occurrence probabilities. In future, based on the existing static 

creation of time series patterns in Chapter 5, the dynamic creation of time-series 

patterns will be investigated to further improve the adaptability of noise 

generation.  

 

3) Noise generation strategy for association probabilities’ concealing: our 

association probability based noise generation strategy considered the 

association probability model to withstand some privacy attackers who were 

interested in these association analysis’s results. In future, the association 
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probability model can be improved to describe some complex association rules 

as customer privacy, not only the direct consequential relation in Chapter 6, but 

also some indirect relations. Hence, these association probabilities will denote 

more types of private information to be protected by noise obfuscation.  

  

4) Noise utilisation strategy for ethical multiple services case: in the noise 

utilisation component, the correlation based noise injection strategy has been 

presented to link several single noise obfuscation processes together to pursue a 

better effectiveness of privacy protection. In future, the correlation model can be 

further modified by considering quantified correlations to replace the qualified 

correlations in Chapter 7. 

 

5) Noise utilisation strategy for unethical multiple services case: in the noise 

utilisation component, the common set based noise cooperation strategy has 

been proposed to withstand unethical services which cooperate together to share 

information and break noise obfuscation. In future, we plan to further investigate 

how to protect customer privacy in the scenario where these unethical service 

providers may share customers’ requests sets with each other partially under 

some complex “trust” relations, compared to the scenario that these unethical 

service providers share all request sets together in Chapter 8. 
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