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Abstract
Wediscuss general properties of discrete time quantum symmetry breaking in degenerate parametric
oscillators. Recent experiments in superconducting quantumcircuit with Josephson junction
nonlinearities give rise to new properties of strong parametric coupling and nonlinearities. Exact
analytic solutions are obtained for the steady-state of this single-mode case of subharmonic
generation.We also obtain analytic solutions for the tunneling time overwhich the time symmetry-
breaking is lost above threshold.Wefind that additional anharmonic terms found in the
superconducting case increase the tunneling rate, and can also lead to new regimes of tristability as
well as bistability. Our analytic results are confirmed by number state calculations.

1. Introduction

Quantum time symmetry breaking is awidespread phenomenon in non-equilibriumquantumoptics and
superconducting quantum circuits. For quantum clocks and lasers, time and phase are inter-related. Therefore,
quantum time symmetry breaking occurs in the electromagnetic phase. This is implicit in the use of coherent
states, which have awell-defined phase, to describe lasers [1, 2]. Number state and coherent state descriptions are
both complete descriptions in quantummechanics. However, coherent state expansions allows one to recognize
more readily that time translational symmetry is broken through an observation of the phase.

Discrete time quantum symmetry breaking takes place in intra-cavity subharmonic generation, otherwise
known as degenerate parametric oscillators [3]. For quantumoptical systems, an exact solution for the steady-
state quantumdensitymatrix [4] is known for the special case of a single-mode systemwith no detunings or
anharmonicity. From this, one can calculate quantum tunneling between time phases [5]. Schrödinger cats
might also seempossible in the steady-state [6]. However, this is not the case [7], although transient Schrödinger
cat formation is possible [7–9] for strong enough coupling. Tunneling in these systems demonstrates the
existence of long range time order, which has been confirmed in optical experiments [10] thatmeasured
extremely narrow subharmonic line-widths.

Classical spontaneous symmetry breaking is widespread in quantumoptics and relatedfields, including
pattern formationwith translational and cylindrical symmetry breaking [11], noncritical squeezingwith
rotational symmetry breaking [12], and super-solid formationwith continuous translational symmetry breaking
[13]. Similar to normal crystals which have a repeating pattern in space, systemswith quantum time symmetry
breaking repeat themselves in time. In the case of spontaneous discrete time-translation symmetry breaking
oscillation takes place at a fraction of the frequency of some periodic driving force [14]. Herewe consider the
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extent towhich intra-cavity subharmonic generation leads to discrete time symmetry breaking. This requires an
investigation of the time-scale for restoration of the original symmetry from a symmetry-broken state.

Aswell as transientmacroscopic superpositions and tunneling, subharmonic generators can also generate
space-time ordering [15]. These phenomena are often termed as time crystals [14, 16], since they combine
discrete time symmetry breakingwith spatial ordering. Time crystals have also been observed in spin systems
[17, 18] andBose–Einstein condensates [19] experimentally.

As an example of subharmonic generators, degenerate parametric oscillation has been investigated for a long
time in optics [3–5, 7, 8, 15]. These devices convert a high-frequency input opticalmode into two equal
frequencymodes, whose frequency is half of the inputmode’s, bymeans of the parametric nonlinearity. Below
threshold, they are quantum squeezed state generators. These are used to reduce quantumnoise in gravity-wave
detectors [20, 21]. Networks of above threshold parametric devices are nowbeing used as analog quantum
computers forNP-hard optimization [22, 23].

Themost general case of singlemode degenerate parametric oscillation involves arbitrary detunings,
nonlinear losses and anharmonic nonlinearities in the fundamentalmode. This is characteristic, for example, of
superconducting cavity experiments [24]. In these investigations, two superconductingmicrowave cavities are
coupled through a Josephson junction in a bridge transmon configuration.Mode one, also termed ‘the storage’,
holds themodewith time symmetry breaking, and is designed to haveminimal single-photon dissipation.Mode
two, ‘the readout’, is over-coupled to a transmission line, and it removes entropy from the storage.

These experiments used Josephson junctions to generate a coupling that exchanges pairs of photons in the
storagewith single photons in the readout. Single-photon dissipation for bothmodes a1 and a2 are included. In
these systems, as well as other parametric devices with smallmode volumes, there is a large anharmonic
nonlinearity, and possible detunings. These additional effects change the physics, andmodify both the steady-
state quantumbehavior and the tunneling rates compared to previous studies.

Quantum tunneling has also been studied in single-mode nonlinear photonic resonators, both theoretically
[5, 25, 26] and experimentally [27]. In ourmore general case there are several parameters to control the
tunneling rates, whichwere not included in previouswork.We study themean-field solutions in detail,
demonstrating the existence of a universal phase diagramwithmonostable, bistable and tristable phases.
Including quantum fluctuations, we obtain the full quantumdistribution in all cases, and focus on the limiting
case of pure quantum tunneling at themidpoint of the hysteresis curve in the bistable region. This is themost
long-lived tunneling region.We show that in this regime there is an exponentially long tunneling time at large
driving. It is this case where quantum time symmetry breaking has the longest lifetime before the discrete
symmetry is restored.

Wefirst obtain the exact steady-state solution expressed in formof a complex potential function. The regime
where damping exceeds coupling at the single-photon level is studied in detail.Wefind that quantum tunneling
occurs in this parameter region, slowly equilibrating a systemwith discrete time-symmetry breaking to the
steady-state. The tunneling time is obtained analytically within a novel, complex potential-barrier
approximation in the complex P-representation, valid at large photon number. The results agree with those
numerically obtained in the number-state basis for relatively small photon number. This opens theway to
studying quantum tunneling inmulti-mode non-equilibrium systems, as in the coherent Isingmachine [22, 23].

The paper is organized as follows. In section 2we introduce theHamiltonian of the two-mode quantum
circuit system. Taking the driving, damping and nonlinearities into account, themaster equation for the time
evolution of the system is derived.We use the generalized P-representation to obtain a conditional Fokker–
Planck equation, and then employ adiabatic elimination of the strongly damped pumpmode to obtain a simpler
one-mode Fokker–Planck equation. In section 3 themean-field limit is analyzed, showing the existence of
stable, bistable and tristable phases.

The quantum steady-state and quantum tunneling are studied in section 4, demonstrating that a novel
complexmanifoldmethod can be used to calculate tunneling rates. In section 5, agreement between the analytic
results and numerical calculations using number states is obtained. Finally, section 6 gives an outlook and our
conclusions, with proofs of the complex tunneling ratemethod given in an appendix.

2. Time-evolution of the system

2.1. GeneralmodelHamiltonian
Quantumoptical and quantum circuit physics are closely related. The principal difference is that quantum
circuits operate atmuch lower temperatures, and atmicrowave rather than optical frequencies. To treat both
cases, we consider a generalmodel for nonlinear interactions and damping of two coupled bosonicmodes of an
open system.We include driving, damping and both coherent and dissipative nonlinearities in the degenerate
parametric oscillator.
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We suppose that †a a,k k are the kthmode annihilation and creation operators ofmodes at two different
frequenciesωk in coupled resonant cavities. There is an overall quantumHamiltonian given by

å å=
= =

( )( )H H , 2.1
n k

k
n

1

6

1

2

where = å ( )H Hk n k
n is theHamiltonian for the kthmode, with driving, damping, and nonlinear termsWe

define = å( ) ( )H Hn
k k

n as the sumovermodes for the nth type of interaction. The detailed structure of these
terms is as follows:
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Here Ĝk are the external reservoir coupling operators with reservoirHamiltoniansHk
R, and k are the envelope

amplitudes of external coherent drivingfields at angular frequency kω for the kthmode. The nonlinear
parameters areκ for subharmonic generation andχ for anharmonicity.We suppose w w w 2 22 1 , so the
system can be externally driven simultaneously at fundamental and subharmonic frequencies, althoughwe
include detunings as well.

Inmany typical experiments [24], the inputs are in the higher frequencymode, a2. Thus, the subharmonic
driving field is zero for such experiments.Wewill keep this term in the generalHamiltonian and exact solutions,
for completeness, but set it to zero in the tunneling calculations below.

2.2.Master equation
The systemHamiltonianHrev is defined as the reversible part of theHamiltonianwithout reservoir couplings, so
that:

å=
=

( )( )H H . 2.3
n

n
rev

3

6

The rotating frame systemHamiltonianHS is obtained by subtracting the driving frequency termsThis is used
to give a picture such that only slowly varying behavior is retained in the state equation, while the operators
evolve at their respective driving frequencies. Therefore, we define an interaction picture such that:

= w-( ) ( ) ( )† †a t a 0 e , 2.4k k
k ti

and evolve the densitymatrix using the subtractedHamiltonian,HSR. Fromnowonwe let = ( )† †a a 0k k , and
define:

å w= - ( )†H H k a a . 2.5
k

k k
SR

rev

This transformation has the effect of changing themode frequencies in theHamiltonian to relative detunings, so
that w w w D = - kk k k . The resultingmaster equation [28, 29] for the quantumdensitymatrix ρ, on tracing
over all the reservoirs in theMarkovian approximation, is:


år r g r= - +

>
˙ [ ] [ ] ( )( ) ( )H

j

i
,

1
. 2.6

k j
k

j
k

jSR
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Here g( )
k

j are the linear and nonlinear amplitude relaxation rates for j-boson relaxation in the kthmode, and ( )nk
j

are the corresponding thermal occupations of the reservoirs. These are w= -[ ( ) ]( )n j k T1 exp 1k
j

k B , where
jωk is the resonant frequency of the kthmode reservoir for the j-photon damping process, and k, j=1, 2.Note
that either resonantmode could have single-photon and/or two-photon losses [30], but for simplicity we only
include nonlinear losses for k=1.Higher order decoherence is also possible [31], but not treated here.

We set =ˆ ˆO ak
j to describe general j-photon damping in the kthmode, giving the themaster equation super-

operator for decoherence as

 r r r r r= - - +[ ] ˆ ˆ ˆ ˆ ˆ ˆ [[ ˆ ] ˆ ] ( )( ) † † † ( ) †
O O O O O O n O O2 2 , , . 2.7k

j
k

j

Wewill put = =( ) ( )n n 0k2
1 2 , for simplicity, since these reservoirs have at least twice the frequency of the

fundamental reservoirs, andwill have lower thermal occupations, whichwe neglect. The energy relaxation rate
in eachmode for single-particle decay is g( )2 k

1 . In the exact solutions presented in later sections, we also assume
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that =( )n 01
1 . This allows us to investigate the important exact quantum tunneling solutions in the low-

temperature limit, althoughfinite temperature effects in the fundamental reservoirs are included in the next
section for completeness.We include thermal occupation for single-photon processes at this stage, to showhow
this alters the resulting equations in high temperature cases where such effects are important.

2.3. Fokker–Planck equation
Wenow introduce the generalized P-representation developed in the [32]. This expands the quantumdensity
matrix in terms of a complete operator basis ^ a aL +( ), , and a P-representation a a+( )P , so that:

ò ò a a a a a ar m= L+ + +ˆ ( ) ( ) ˆ ( ) ( )Pd , , , . 2.8

The operator basis uses off-diagonal coherent state projection operators, and has the form,
* *a a a a a aL = ñá á ñ+ + +ˆ ( ) ∣ ∣ ∣, , where añ∣ is a two-mode coherent state. This includes a normalizing factor

so that the P-distribution integrates to unity. The integrationmeasures dμ can be chosen as either a volume
measure on a full eight-dimensional complex space over the combined vector a aa = + ( ), , or as a contour
integral on a complexmanifold, which is explained in detail below. The advantage of this approach is that the
resulting Fokker–Planck equation is exact without truncation. This is not the case, for example, with theWigner
representation. In the quantum-dominated regimewith a strongly damped high-frequencymode, we show that
there is an exact solution for the equilibrium steady-state of the resulting single-mode Fokker–Planck equation.

All normally ordered quantum correlation functions aremoments of the distribution, since:

ò ò a a a am a aá ¼ ñ = ¼+ + +( ) ( )[ ] ( )†a a Pd , , . 2.9j k j k

Using standard operator identities, the resulting Fokker–Planck equation has the form that:
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wherewe introduce the notation that ( )
k
n is a differential operator acting on the P-function. The derivative

operators are: a a¶ º ¶ ¶ ¶ º ¶ ¶+ +,k k k k , and the individual terms involved that correspond to each
Hamiltonian coupling are:
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Here h.c. denotes a term generated from the hermitian conjugate operator identities, inwhich coefficients
are conjugated, and a a +

k k . Due to the freedom tomake phase rotations in defining themode operators, we
can define  k,2 to be real parameters without loss of generality.

By combining terms, we obtain the following Fokker–Planck equation, where m = ¼ ¶ = ¶ ¶a a+


( )1, 4, , ,
and an Einstein summation convention is used to sumover repeated indices:
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In this form it is convenient to introduce complex single particle decay rates γk and two-particle decay rates
g1, so that these parameters can be combined into complex rate terms:

g g g c= + D = + ( )( ) ( )gi , i . 2.13k k k
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2

With these definitions, the combined deterministic or drift term becomes:
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The corresponding combined diffusion coefficient is then:

a = ⎡
⎣⎢
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, 2.151

where the individualmode diffusion sub-matrices are:
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while gG º ( ) ( )n21 1
1

1
1 is the thermal noise coefficient.

2.4. Stochastic equations
If allmodes have strong enough damping, so that all boundary terms vanish in the Fokker–Planck equation,
there is a corresponding stochastic equation for the positive P-representation [32], which can bewritten in a
combined vector form as:

a
a a z= +
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d
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, 2.17

where theGaussian noise term ζ has a vanishingmean, and the only nonzero correlations are:
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The corresponding combined stochastic coefficient is then:
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In the next section, wewill focus on the steady-state solutions in the zero temperature limit, in order to
understand the steady-state properties ofmaximal quantum coherence. Although these stochastic equations are
useful when the damping rates of bothmodes are large compared to the nonlinearities, they have no known
analytic solutions. In addition, these stochastic equations can have boundary terms at strong coupling, leading to
instabilities. For this reason, we turn next to a hybridmethod. This allows us to derive a solution for the complex
P-representation of the subharmonicmode, which allows us to analytically calculate the tunneling rate.

2.5.Hybrid representation
Wewill consider the case where the second harmonicmode is strongly damped, and the first harmonicmode is
not, as inmany experiments. This will be treated in a hybridmeasure, where the second harmonicmode is
treated stochastically, while the first harmonic is expanded on a complexmanifold. In this case, we extend
methods used previously through defining a conditional P2 distribution for the second harmonicmode that
depends on the amplitude of the firstmode, so that:

ò ò a ar a a a a a= L +    ˆ ( ) ( ∣ ) ˆ ( ) ( )P Pd d , . 2.211 1 1 2 2 2 1

Since this a2 mode is strongly damped, it can be readily solved on the relevant short time-scales. This is
equivalent to a standard characteristic function solution of a first order partial differential equation:

a g a ka= - -˙ ( )2. 2.222 2 2 2 1
2

In the limit of g g( ) ( )
2
1

1
1 , the second harmonicmode is rapidly damped to a deterministic solution


a
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g

=
- ( )( ) 2

. 2.23a
2

2 1
2

2

There is a similar equation for a+
2 , whichmeans that in the adiabatic limit

a a d a a= -   ( ∣ ) ( ) ( )( )P . 2.24a
2 2 1 2 2

For simplicity, we assume that in this strong damping limit the corresponding detuningΔ2 is negligible, and
therefore γ2 is treated as a real parameter. The details of adiabatic elimination in the full quantum theory are
treated in the next section.
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2.6.Quantumadiabatic elimination
Wewill treat the quantum effects in the adiabatic limit, but with quantumnoise included.Wenow introduce a
reduced P-representation obtained by tracing over the second-harmonicmode, so that r r=ˆ ( ˆ )Tr1 2 . If we

expand the quantumdensitymatrix in terms of a single-mode operator basis aL
ˆ ( )1 , and a single-mode

P-representation a( )P , where a a=
 

1, one then obtains:

ò òr m a a a= L  ˆ ( ) ( ) ˆ ( ) ( )Pd . 2.251 1 1

The operator basis uses coherent state projection operators, as before, butwith a simpler form,
* *a a a a aL º ñá á ñ+ +ˆ ( ) ∣ ∣ ∣1 . All normally ordered single-mode quantum correlation functions aremoments

of the distribution, since:

ò ò m a a a aá ¼ ñ = ¼+ ( ) ( )[ ] ( )†a a Pd . 2.261

With this approach, the elimination of theα2 amplitude results in a single-mode Fokker–Planck equation
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Here γ≡γ1 and the combined effective nonlinear loss is:
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This leads to a combined nonlinear coefficient g, where:
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with  k gº 2 2. Physically,  a¯ ( ), togetherwith its conjugate, * a+¯ ( ), are inputfields that include depletion.
The notation hc indicates hermitian conjugate terms obtained by the replacement of a a +, and the
conjugation of all complex parameters. In the present case thatΔ2=0, we have a real γ2 and a real  , but g is still
generally complex because of the nonzero anharmonic nonlinearity.

It is simpler for the detailed analysis of this problem to use dimensionless parameters, whichwe define as
follows:


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Wealso introduce a relative phase, = =q ∣ ∣g g nei . This gives a Fokker–Planck equation in amore
universal form, as:
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Physically, time is scaled relative to the two-photon driving rate, while c is a complex dimensionless single-
photon loss and detuning. The important scaling parameter n is the photon number at which saturation of the
mode occupation occurs due to the nonlinear losses.

2.7. EquivalentHamiltonian
After adiabatically eliminating the second harmonicmode [4, 24], we obtained a new Fokker–Planck equation,
as described above. This corresponds exactly to the dynamics for the fundamental quantum systemwith a≡a1,
governed by the adiabaticHamiltonian
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
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togetherwith a single-photon loss g g=( ) ( )1
1
1 and an effective two-photon loss γ(2)which is defined above.

Themaster equation of the densitymatrix ρ1 that is equivalent to the new Fokker–Planck equation given
above is then obtained as


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r r r
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wherewe have used a zero-temperature limit. Similar systems have been studied beforewhere quantum
squeezing and bifurcation have been found [33–36], but herewe focus on the issue of quantum tunneling.

Equation (2.34) can be solved numerically using a number-state expansion provided the photon number is
not too large. However, to gainmore insight from analytic results, it is also possible to use the P-representation
directly, given the single-mode Fokker–Planck equation (2.27). In the following sections, wewill employ both
methods.

3.Meanfield theory predictions

Before carrying out the full quantum theory calculations, we obtain the predictions ofmean field theory for the
degenerate parametric oscillator, where the system is described by the equation (2.17) butwithout fluctuations.
The resulting deterministic equations are a good approximationwhen the systemhas negligible quantum and
thermal noise. Since the noise terms are generated by nonlinearities, this implies that the nonlinearity at the
single photon level ismuch smaller than the damping. From the dimensionless Fokker–Planck equation,
equation (2.32), themean-field limit corresponds to  ¥n .

Earlier work on themeanfield theory in single-mode driven systems included a degenerate parametric
oscillator without anharmonicity (i.e.χ=0) [3], and a purely anharmonic systemwithout parametric terms
[37]. The steady state solutions for the deterministic equationswere found and their stability was studied by
considering the behavior of small perturbations around these steady state solutions. This work showed that the
subharmonicmode has a steady state with zeromean amplitudewhen the pump amplitude is below a certain
critical value. Above this critical value, the zeromean subharmonicmode amplitude is no longer a stable steady
state solution. Rather, themode has a bistable solutionwhere the two steady states have an equal amplitude but
with a phase difference ofπ.We now show that the situationwhen there is both anharmonic and detuning terms
added ismore complex than this.

3.1.Meanfield dynamics
In themean field case, one sets *a a=+

k k , and treats the dynamical equation of

a a= ( ) ( )A
t

d

d
, 3.1

where the drift terms are

* *


a

g a a a ka a

g a ka
=

- - +

- -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )A

g

2
. 3.2

1 1 1 1 1 1
2

1 2

2 2 2 1
2

Here the single photon damping rates γ1 and γ2 are generally complex. For g g( ) ( )
2
1

1
1 , one can adiabatically

eliminating themodeα2, just as in the Fokker–Planck approach of equation (2.23).
Next, we set  = 01 in themean field calculation, to correspond to the bistable situation ofmost interest

here. Themean-field equation for themode amplitudeα is then

*a g a a a= - + +˙ [ ∣ ∣ ] ( )g . 3.32

To simplify this, we introduce the dimensionless parameters of (2.31), which normalize the damping by the
driving. These equations can also be obtained directly from the scaled Fokker–Planck equation (2.32). On
scaling, the second-order derivative terms can be neglected in themean-field limit of n?1, leading to the
mean-field dynamical equations:

*
b
t

b b b
¶
¶

= - -q[( ) ] ( )ce 1 . 3.4i 2
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3.2.Mean-field stationary states
To obtain themean-field stationary values, we set *b b= =˙ ˙ 0, so that

*

*

b b b
b b

= +
= +

[∣ ∣ ]
∣∣ ∣ ∣ ( )

c

c . 3.5

2

2 2

This has the solutionsβ=0, together with the solutions of the quadratic

* b b- + + + =∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )c c c1 0. 3.62 2 4

The quadratic has two roots for the intra-cavity intensity:

b = -  P∣ ∣ ( ) ( ) ( )R c c , 3.72

where:

P º -( ) ( ) ( )Ic c1 . 3.82

Since this is an intensity, a negative solution or complex solution is not possible. A real solution clearly requires
∣ ( )∣I c 1. After calculating the corresponding amplitude in each case of a non-negative intensity, wefind that

there are in general three types of stationary solutions, whichwe classify below.
Eachmay be stable or unstable, as we see in the next subsection.

(i) Vacuum solutions. These haveβ(1)=0, which is always a stationary solution.

(ii) Positive branch solutions. Taking the upper sign in the intensity equation (3.7), this has a positive solution
either if *= + <( ) ( )R c c c 2 0 and ∣ ( )∣I c 1, or else if there is a large enough driving field so that

<∣ ∣c 1 . The corresponding amplitude is:

b =  - P + -( ) ( ∣ ∣ ) ( )( ) c c c c1 2 . 3.92 2 2

This is the only possible solution in themean-field limit, if one has no detunings.We show in the next
section that this corresponds to a stationary point(4.17) of the quantumP-representation distribution.

(iii) Negative branch solutions. Next, investigating the lower sign case of 3.7, this has a positive solution if both
<( )R c 0, and there is a small enough driving field so that > >∣ ∣ ∣ ( )∣Ic c1 , with a resulting amplitude of:

b =  + P + -( ) ( ∣ ∣ ) ( )( ) c c c c1 2 . 3.103 2 2

Sincewe are considering the case ofΔ2=0 , we have the equation:


g g c

=
+ D( )

∣ ∣
( )

( ) ( )
R c

g
. 3.11

2
1
1

1

Thus <( )R c 0 is possible if we take c g gD < - ( ) ( )
1

2
1
1 . This can occurwith an anharmonic term at large

detunings, even if g c( )
1
1 as required for themean-field limit. Aswe see below, this occurs as an unstable

branch in degenerate parametric oscillation. This is analogous to the bistable intensity found in an
anharmonic cavity [37] driven at the fundamental. In this case the cavity is driven at its second harmonic.

3.3.Mean-field stability properties
Weare interested in the stability of these steady states. To obtain this, we calculate the linearized equations for
small perturbations, which reads

* * * *t
db
db

b b
b b

db
db

=
- - -

- - -

q q

q q- -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

[ ∣ ∣ ] [( )]
[( )] [ ∣ ∣ ]

( )c

c

d

d

e 2 e 1

e 1 e 2
. 3.12

i 2 i 2

i 2 i 2

The corresponding eigenvaluesλ±are

l b b b b= - +  + - + + -q q
 [ [ ∣ ∣ ]] ( [ [ ∣ ∣ ]]) ∣ ∣ ∣ ∣ ∣ ∣ ( )R Rc c ce 2 e 2 2 1 . 3.13i 2 i 2 2 2 2 2 2

Weobtain stability if all eigenvalues are negative, so that there are two conditions for stability:

b + >q( ) [ [ ∣ ∣ ]] ( )Ra ce 2 0, 3.14i 2

and:

b b+ - - >( )∣ ∣ ∣ ∣ ∣ ∣ ( )b c2 1 0. 3.152 2 2 2

Wenow analyze the different types of solution:
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Type 1 solutions. Forβ(1)=0 the stability condition (a) implies that:

g
= >q[ ]

∣ ∣
( )

( )
R c

g
e 0, 3.16i 1

1

which is always true, and also from condition (b) that the drivingfield is below threshold, i.e.

>∣ ∣ ( )c 1. 3.17

Thus, the vacuum solution is stable below threshold and unstable above threshold.
Type 2 solutions. Theβ(2) solutions can occur for either sign of ( )R c .

• Firstly, consider the case of >( )R c 0. For the above threshold case, condition (a) implies that

*P - >q[ ( ( ) )] ( )R c ce 2 0, 3.18i

which is always true in the region of <∣ ∣c 1where the solution is valid. Condition (b) takes the formof

P - P >[ ( ) ( )] ( ) ( )Rc c c 0, 3.19

which is equivalent to <∣ ∣c 1. Thus the solution is stable when > <( ) ∣ ∣R c c0, 1.

• Next, consider the case of <( )R c 0.We find that both of the stability conditions are always true, provided the
solution exists, which is for ∣ ( )∣I c 1 .

Type 3 solutions.Theβ(3) solutions only occur for <( )R c 0. Condition (a) implies that, for stability,

*- - P >q[ [ ( )]] ( )R c ce 2 0. 3.20i

Condition (b) implies that

P + P >[ ( ) ( )] ( ) ( )Rc c c 0, 3.21

which is only satisfied if <∣ ∣c 1. Since the solution is valid only if >∣ ∣c 1, the type 3 solution is never stable.

3.4. Phase-diagram anddiscrete time symmetry breaking
Wehave found three types of stationary solutions. Their behavior changes depending on the complex parameter
c. This gives a definite phase-diagram, as shown in figure 1, with one phase for <∣ ∣c 1, and two phases
for >∣ ∣c 1.

(I) In the region of >( )R c 0 we find only one stationary point, the β(1) stable vacuum solution, with >∣ ∣c 1.
This phase also extends to <( )R c 0, inwhich case there is an additional constraint.We find a unique stable
vacuum solution only if < <∣ ( )∣ ∣ ∣I c c1 .

(II) There are three stationary points when <∣ ∣c 1, for either sign of ( )R c . In this phase the β(1) vacuum
solution exists but is unstable, while there are a pair ofβ(2) stable above threshold solutions. This is an
example of bistability.

Figure 1.The phase diagram formean-field stability. The unique stable vacuum solution can be observed in region (I). In region (II)
above threshold, there is bistability. Region (III) is where one can observe tristability.

9
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(III) For <( )R c 0, and < <∣ ( )∣ ∣ ∣I c c1 , there are five stationary points with β(1) stable, β(2) stable, and β(3)

unstable. This is an example of tristability.

In summary, the vacuum steady stateβ=0 is stable only at a drivingfield below threshold, of  g< ∣ ∣, or
k g g< ∣ ∣2 2 , and the bistable states occur at large driving field, when k g g> ∣ ∣2 2 . There is also a tristable regime

below threshold inwhich the vacuum state is stable, but there are stable solutions offinite amplitude aswell.
Otherwise, the real part of the eigenvaluewill be positive, whichmeans that the solutions become unstable in the
corresponding parameter region.

Hence, in general there can be up tofive stationary solutions. The nonvanishing solutions correspond to an
output electromagnetic field of

wµ  -( ( )) ( )E t tsin , 3.221

where t1 is a time-origin that depends on the details of the input and output coupling.
The stableβ(2) solutions exist in either bistable (phase II) or tristable (phase III) regimes. These solutions

always come in pairs, whose two solutions differ by a time translation, since:

w w p
w

- - = - -
= -

( ( )) ( ( ) )
( ( )) ( )

t t t t
t t

sin sin
sin . 3.23

1 1

2

Here t2=t1+π/ω, which defines a second discrete time origin. Thus, the system can relax to a steady-state
that corresponds to either time origin. This is called spontaneous discrete time symmetry breaking.However,
this behavior is only possible if these are stable solutions.

These results imply that in themean-field limit, the above-threshold steady-state solutions have a
spontaneous discrete time-translation symmetry-breaking. However, so far we have ignored quantum
fluctuations, whichwe turn to next.

4.Quantum steady-state and tunneling

In themean field picture, once the subharmonicmode reaches a stable state, no further dynamics will be
observed. This picture is not accurate oncefluctuations are taken into account. In the presence of either classical
(thermal noise) [38, 39] or quantum fluctuations [7], a steady state can reach the other steady state of the
multistable solutions predicted bymeanfield theory. Beyondmeanfield theory, where damping and noise is
included, the degenerate parametric oscillator obeys amaster equation, where the steady state solutions and the
switching rate between these states are obtained either by solving the corresponding Fokker–Planck equation
[5, 40, 41] or solving for the zero eigenvalue and its eigenvector of the super-operator dictating the time
evolution in amaster equation, expanded over a basis representation such as the Fock state basis[26, 27, 41–43].

Hence, we now turn to the full quantumbehavior of this system. This allows us to derive the full steady-state
quantum statistics, and to demonstrate that spontaneous symmetry breaking has an exponentially long lifetime
at large photon number.We note that, unlike themean-field solutions, these full quantum solutions require the
inclusion of off-diagonal coherent projectors, which increase the phase-space dimensionality compared to the
classical,mean-field behavior.

4.1. Steady-state quantum solutions
In the zero temperature case, the steady-state solution of the scaled Fokker–Planck equation (2.32) can be readily
found by using themethod of potential equations [44–47]

b b= -F
 

( ) [ ( )] ( )P N exp , 4.11

whereN is a normalization constant andΦ satisfies

* *

b
b

b b b

b
b

b b b

- ¶F
¶

= - - - -

- ¶F
¶

= - - - -

+

+

+
+ +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( ) ( ) ( )

n
c

n
d

n
c

n
d

1

2

1
1 ,

1

2

1
1 . 4.2

2
2

2
2

These differential equations can be obtained by inserting the form(4.1) into the Fokker–Planck equation (2.32)
and setting∂P1/∂τ=0.

It is simplest to proceed by introducing a shifted c parameter:

= -˜ ( )c c
n

1
, 4.3
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where c̃ c in the classical limit of  ¥n . Including quantumnoise, the exact steady-state solution is defined
by the potential:

b b b b
b
b

F = - + - +
+
-

++
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ˜ ( ) ( )n c dln 1 ln

1

1
h.c. , 4.42

so that in the scaled coherent space:

* * * *b b b b b b b= + - + -+ - + + + - +


( ) [( ) ( ) ( ) ( ) ( )] ( )˜ ˜ ˜ ˜P N 1 1 1 1 exp 2 . 4.5S
c d c d c d c d n

This gives the exact zero-temperature solution for the steady-state of the densitymatrix, provided it is
accompanied by a choice of contours that leads to a solution that is bounded, whichwe treat in detail in the next
subsection.While formally similar to previous solutions, we note that all the parameters here can have complex
values, which is necessary when treating the physics of recent quantum circuit experiments.

In the tunneling calculation below, we assume that the resonant drivingfield is only added onmode a2 so
that  = 01 andΔ2=0, which is the situation in recent experiments [24]. In this case, the exact steady-state
potential is:

b b b bF = - + - ++( ) [ ˜ ( ) ] ( )n c ln 1 h.c. , 4.62

and the probability distribution is:

*b b b b b= - - + +


( ) [( ) ( ) ( )] ( )˜ ˜P N 1 1 exp 2 . 4.7S
c c n2 2

The solution above is a time-symmetricmixed state, which includes an equal probability of observing either
of the two possible output amplitudes.We nowwish to calculate the rate at which the system can switch from
one phase to the other, i.e. the rate at which time symmetry is restored once it is broken by an observation of one
or the other of the two possible output amplitudes.

For simplicity in this discussion of tunneling, wewill assume >(˜)R c 0 and in the phase (II) bistable region.
We get potential solutions vanishing on boundaries when >(˜)R c 0, as shown in this work. In the case that

<(˜)R c 0, the potential diverges on the boundaries. Thismeans that the physics of tunnelingmay be very
different, and requires a different type ofmanifold for its treatment, whichwe analyze elsewhere.

To this end, we discuss the physical interpretation of the parameter region >(˜)R c 0.We note that
g= -˜ ( ) ( )c g gn , g g= + D( ) i1

1
1 and g c= +( )g i2 . As a result, we have

 

g g g c c

g c

g c g

g c
=

- - - D

+
-

- D

+
˜ ( ) ( )

( ) ( )
( )

( ) ( ) ( )

( )

( ) ( )

( )
c i . 4.8

2
1
1 2

1

2 2 2

1
1 2

1

2 2 2

Thuswewill have g g g c c- - - D >( ) ( )( ) ( ) ( ) 02
1
1 2

1 in the region of >(˜)R c 0, whichmeans that typically

one has g g>( ) ( )
1
1 2 , although there is also a nonlinear couplingχ and a detuningΔ1 which can change this

relationship.We see that in the case that the detuningΔ1 is negligible, the linear damping rate is larger than the
nonlinear couplingwhen >(˜)R c 0.

4.2. Tunneling regimewith >(˜)R c 0
Geometrically, we can regard the quantumdynamics as occurring via a distribution function defined on a two-
dimensionalmanifold embedded in a four-dimensional complex space. In this paper, we focus on the
tunneling-dominated regime of >(˜)R c 0, i.e. the region of large single-photon loss and small nonlinear
coupling, so that the potential function vanishes at the boundaries of a probability domain defined by square
boundaries atβ=±1 orβ+=±1. Themanifoldmust also includes the vacuum state atβ=β+=0, which is
the starting point of any dynamical experiment.

We expect tunneling betweenminima of the potential as in earlier work [5, 41]. However, in this earlier
work, the parameters were real and therewas no anharmonicity. In the present case, the probability domain that
includes theseminima is no longer necessarily a planewith real values ofβ,β+.We now analyze the locations of
theseminima in the four dimensional space of coherent amplitudes.

Tofind the stable points, wewill solve two equations analogous to themean-field stationarity conditions, but
generalized to four dimensions:

*

b
b

b
b

b
b

b
b

F º
¶F
¶

= - +
-

=

F º
¶F
¶

= - +
-

=

+

+

+

+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

˜

˜ ( )

n
c

n
c

2
2

1
0,

2
2

1
0. 4.9

1 2

2 2
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Ifβ andβ+ are nonzero real numbers, we see that−2β+ is real, but in general b b-˜ ( )c2 1 2 is complex, so the
equations (4.9) cannot be satisfied. Thismeans that there is generally at least one complex number inβ andβ+

for nontrivial solutions of the stationary points of the potential.
The potential function(4.6) could be complex because bc̃ , andβ+ are complex numbers. The stationary

points obtained by equations (4.9) are divided into three types: the origin solution (β=β+=0), the classical
solutions ( *b b=+ ) and the nonclassical solutions ( *b b= -+ ). For all three types of solution, the potential
functions(4.6) are always real. Thismeans that we can study the stationary points in their neighborhoods tofind
whether they are localminima,maxima, or saddle points. In each case, we assume that required relations define
a locally planar surface in a neighborhood of the solution, in order to define the derivatives.

4.3. Local stationary points
Asmentioned above, wefind three types of solutions on solving equations (4.9). It is common to use theHessian
matrix to determinewhether the roots are localminima,maxima, or saddle points [48]. TheHessianmatrix is
defined by the second derivatives of the potential function:

=
F F
F F

⎡
⎣⎢

⎤
⎦⎥ ( )M , 4.1011 12

21 22

where

*

b
b

b b
b

b

b b

F º
¶ F
¶

=
+

-
F º

¶ F
¶

=
+

-

F º
¶ F

¶ ¶
= - = F

+

+

+

+

˜ ( )
( )

˜ ( )
( )

( )

cn c n

n

2 1

1
,

2 1

1
,

2 . 4.11

11

2

2

2

2 2 22

2

2

2

2 2

12

2

21

If theHessianmatrix is positive definite at a stationary point b

, b

is an isolated localminimumof the potential

function bF


( ). For a 2×2matrix, positive definite is equivalent to a positive determinant >∣ ∣M 0 and a
positive trace >( )MTr 0. Similarly, theHessianmatrix is negative definite at a stationary point when it is an
isolated localmaximum,which is equivalent to a positive determinant >∣ ∣M 0 and a negative trace

<( )MTr 0. At a saddle point, theHessianmatrix has both positive and negative eigenvalues, which leads to a
negative determinant <∣ ∣M 0 [48, 49].

Thefirst type of solution is at the origin,β=β+=0. The potential is simply F º F =( )( ) 0, 0 0o , and in
this case, the second derivatives are

*

b
b

b
b

F =
+

-
=

F =
+

-
=

F =-

b

b

=

+

+ =+

˜( )
( )

˜

˜( )
( )

˜

( )

( )

( )

( )

c
cn

c
c n

n

2 1

1
2 ,

2 1

1
2 ,

2 . 4.12

o

o

o

11

2

2 2 0

22

2

2 2 0

12

Therefore, theHessianmatrix determinant is obtained as

=
F F

F F
= -∣ ∣ (∣˜∣ ) ( )( )

( ) ( )

( ) ( )M n c4 1 . 4.13o
o o

o o
11 12

21 22

2 2

If <∣˜∣c 1, we have <∣ ∣( )M 0o , whichmeans that the origin point is a saddle point. This is generally stable below
threshold, and unstable above threshold, as expected from the previousmean-field analysis.

Aswewill see in the following, otherminima aswell as the quantum tunneling only occurwhen <∣˜∣c 1,
whichmeans that thisfirst type of solution plays the role of a saddle point in understanding quantum tunneling.
In subharmonic generators, the bistable solutions only take place above threshold. In our calculations, bistable
solutions are obtained as doubleminima in themanifold, occurring in the parameter region of <∣˜∣c 1. It is also
possible to have tristability, as explained in themean-field section.

4.4. Classical stable points
The second type of stable point is *b b j= = - ¹+ ( )r exp i 0. These conditionswould correspond to a
coherent state projector, sowe term them classical stable points, and they closelymatch the corresponding stable
mean-field solutions for n?1. For simplicity, we assume that we have a bistable or phase II situation, rather
than themore complex tristable phase III situation.
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In this case equations (4.9) can be transformed into

=
-

j
j

j
- ˜ ( )r

cr

r
e

e

1 e
, 4.14i

i

2 2i

and therefore

= -j- ˜ ( )r ce . 4.152 2i

Because r is real, we have

j = - =  - - >( ) (˜) (˜) (˜) ( )I I Rc r c csin 2 , 1 0. 4.162 2

Taking the positive sign to obtain the bistable region, the condition r2>0 is equivalent to <∣˜∣c 1. Thismeans
that b= <∣ ∣r 12 2 as well.We note that for small values of n, the exact phase boundaries aremodified due to the
fact that ¹ ˜c c. In fact it is better to regard this as a somewhat fuzzy criterion at small n, since quantum
fluctuations tend to broaden these phase distinctions.

Labelling these stationary points as b b +( ) ( ),c c , wefinally get

* *

b
b

=  + - - P
=  + - - P+

[ (˜ ∣˜∣ ) ˜ (˜)]
[ (˜ ∣˜∣ ) ˜ (˜)] ( )

( )

( )
c c c c

c c c c

1 2 ,

1 2 . 4.17

c

c

2 2 1 2

2 2 1 2

Herewe have setP = -(˜) (˜)Ic c1 2 as in themean-field analysis, whileβ( c) andβ( c)+ are generally complex.
These solutions correspond to themean-field solutions above threshold obtained previously, except that nowwe
use the quantumnoisemodified value of the coupling c̃ , rather than itsmean-field value. If c̃ is a real number,
the results will reduce to b b =  -  -+( ) ( ˜ ˜ )( ) ( ) c c, 1 , 1c c , which corresponds to the first line of equation
(4.7) in [41]with m s m a b= = =˜n g c n, ,2

0 , with no anharmonic term.
In this classical stationary point case, the second derivatives are

*

* *

F =
+ - - P

- P

F =
+ - - P

+ P

F =-

˜
˜ ∣˜∣ ˜ (˜)
[ (˜) (˜)]

˜
˜ ∣˜∣ ˜ (˜)
[ (˜) (˜)]

( )

( )

( )

( )

I

I

n

c

c c c c

c c

n

c

c c c c

c c

n

4 2
,

4 2
,

2 . 4.18

c

c

c

11

2 2

2

22

2 2

2

12

Hence, the determinant ofHessianmatrix is obtained

= P P -∣ ∣
∣˜∣

(˜)[ (˜) (˜)] ( )( ) RM
n

c
c c c

16
. 4.19c

2

2

Weexpect that the classical stable points are only validwith the condition <∣˜∣c 1. It is directly checked that
>∣ ∣( )M 0c and the real part F >[ ]( )Re 0c

11 .We note that *F = F( ) ( )c c
11 22 , which leads to >[ ]( )MTr 0c . Thus, these

stable points areminima in the quantumpotential, that is, they are local attractors. As the bistable states only
occur above threshold, the condition <∣˜∣c 1 corresponds to the threshold value in degenerate parametric
oscillators.

4.5. Complex phase-spacemanifold
As introduced at the beginning of the section 4.2 and in earlier work [5, 41], in order to study quantum tunneling
analytically, we need tofind a two-dimensionalmanifold embedded in a four-dimensional complex space. The
potential function defined on thismanifold vanishes at the boundariesβ=±1 orβ+=±1. Themanifoldmust
also include the vacuum state atβ=β+=0, as well as the classical stable points(4.17), so that quantum
tunneling can take place. In order to define them as local saddle points orminima, we assume that on the
manifold there is a locally planar surface in a neighborhood of the solutions.

Given these considerations, we define a curved surface through the stable points, b b= j∣ ∣( ) ( )ec ci ,
parameterized as:

b j b j= + = -+( ( )) ( ( )) ( )x y1 i tan , 1 i tan . 4.20

For large x, ywewant to include the real boundaries such that b b=  = +1, 1, are on themanifold.
Therefore, we canmodify this as:

b j p p
b j p p

= +
= -+

( ) ( ) ( )
( ) ( ) ( ) ( )

x x x y

y y x y

i tan cos 2 cos 2 ,

i tan cos 2 cos 2 . 4.21

p p

p p

In the limit of p 0 this gives the correct behavior of the requiredmanifold, as a tilted planewhich is cutoff at
the edges to give the squaremanifold with vanishing boundaries.

Thismanifold is plotted in the figure 2, for p=0.01.One could alsomodify the cutoff function to give
different behavior in the classical and quantumdirections, butwe onlywish to consider the simplest case here.
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On thismanifold(4.21), we show the potential bF


( ) (4.6) infigure 3.We can obtain the localminima and
the saddle point from the real part of the potential infigures 3(a) and (b). In the neighborhood of these points,
figures 3(c) and (d) show that Im(Φ)=0. Thus it is valid to define localminima and a saddle point just as with
real potentials.

We also show that quantum tunnelingwill take place between these classicalminima through the saddle
point in the appendix, wherewe generalized the potential-barrier approximation to complex cases and derived
the tunneling time for a complex Fokker–Planck equation.

4.6.Quantum stable points
There is another possible stationary value of the potential, which is for *b b= - + . These would correspond to a
superposition of distinct coherent states, which is a uniquely quantum effect, sowe term themquantum stable
points. By labelling these points asβ( q) andβ( q)+, wefinally obtain

Figure 2.Themanifoldwherewe define our Fokker–Planck equation and the potential. Themanifold has been parameterized(4.21).
Because it is embedded in a 4D space, we can only plot themanifoldwith one dimension omitted. Figure (a) shows themanifoldwith
real variables (x, y, Im(β))where the imaginary part ofβ+ is omitted, and figure (b) shows (x, y, Im(β+))where the imaginary part ofβ
is omitted. In thesefigures, = +c̃ i0.33 0.17 , n=3 and p=0.01.

Figure 3.The potential bF


( ) (4.6) on themanifold(4.21). Figure (a) shows the real part of bF


( )with the parameterized variables (x,
y), and figure (b) shows the related contourfigure of bF


[ ( )]Re . Figure (c) shows the image part of bF


( )with (x, y), and thefigure (d)

shows the related contourfigure of bF


[ ( )]Im . In these figures, = + =c̃ i n0.33 0.17 , 3 and p=0.01.
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* *

b
b

=  + - + P
= + - + P+ 

[ (˜ ∣˜∣ ) ˜ (˜)]
[ (˜ ∣˜∣ ) ˜ (˜)] ( )

( )

( )
c c c c

c c c c

1 2 ,

1 2 , 4.22

q

q

2 2 1 2

2 2 1 2

with <∣˜∣c 1, i.e. above threshold. If c is a real number, the results reduce to
b b =  + ++ ( ) ( ˜ ˜ )( ) ( ) c c, 1 , 1q q , which corresponds to the second line of equation (4.7) in [41], where
there is no anharmonic term.

In this case, the second derivatives are

*

* *

F =
+ - + P

+ P

F =
+ - + P

- P

F =-

˜
˜ ∣˜∣ ˜ (˜)
[ (˜) (˜)]

˜
˜ ∣˜∣ ˜ (˜)
[ (˜) (˜)]

( )

( )

( )

( )

I

I

n

c

c c c c

c c

n

c

c c c c

c c

n

4 2
,

4 2
,

2 . 4.23

q

q

q

11

2 2

2

22

2 2

2

12

Hence, theHessian determinant is

= P P +∣ ∣
∣˜∣

(˜)[ (˜) (˜)] ( )( ) RM
n

c
c c c

16
. 4.24q

2

2

Considering that <∣˜∣c 1, it is easily checked that >∣ ∣( )M 0q and F >[ ]( )Re 0q
11 . Because F( )q

22 is the complex
conjugate of F( )q

11 , the trace ofHessianmatrix is then positive: >[ ]( )MTr 0q . Thus, these stable points are also
expected to beminima of the potential.

We note that b >∣ ∣( ) 1q since <∣˜∣c 1, so these are farther from the origin than the classicalminima, and in
fact outside the boundaries of the stablemanifold considered here. Therefore, tunneling occurs between the
stable classicalminima through the saddle point at the origin. This type of quantum stable point becomes
important for extremely strong coupling, andwill be treated in detail elsewhere.

4.7. Tunneling rate
In order to calculate the tunneling rate between the classicalminima through the saddle point at the origin, we
use a transformation to define variables b b= +( ) ( )u v F, , where the classicalminimal points are placed on the
axis of u.With these new variables, the diffusion coefficient is a constant. This simplifies the calculation of the
tunneling time via the potential-barrier approximation [5, 41, 50, 51], which is generalized for complex cases in
appendix.

Here we consider the transformation introduced in appendix, and combine equations (A.2) and (A.5) to
give:

b b
b b

= +
= -

q f q f

q f q f

- - - - +

- - - - + ( )
u

v

e e sin e e sin ,

e e sin e e sin . 4.25

i 2 i 1 i 2 i 1

i 2 i 1 i 2 i 1

The inverse transformation of equation (4.25) is

b b= ¡ = ¡+
+

-[ ] [ ] ( )sin , sin , 4.26

with the notation that

f

f

¡ º
+

¡ º
-

q f q f

q f q f

+

+ -

-

- + - -
( )

( ) ( )

( ) ( )

u v

u v

e e

2 cos 2
,

e e

2 cos 2
. 4.27

i 2 i 2

i 2 i 2

As explained in the appendix, f y q= - 2 with b = y- ( ) rsin ec1 i . Here = =q ∣ ∣g g nei has been
introduced in the section 2.6. In the following, wewill express the classical stable pointsβ( c)with the newly
introduced variables u and v. Thenwe can study the tunneling rate for our systemby applying the analytic
tunneling time result(A.27) obtained in the appendix.

Considering themanifold (4.21)where our potential is defined on, the variables (u, v) can be parameterized
directly

j p p
j p p

= +

+ -

q f

q f

- -

- -

[ ( ) ( ) ( )]
[ ( ) ( ) ( )] ( )

u x x x y

y y x y

e e sin i tan cos 2 cos 2

e e sin i tan cos 2 cos 2 , 4.28

p p

p p

i 2 i 1

i 2 i 1

j p p
j p p

= +

- -

q f

q f

- - -

-

[ ( ) ( ) ( )]
[ ( ) ( ) ( )] ( )

v x x x y

y y x y

e e sin i tan cos 2 cos 2

e e sin i tan cos 2 cos 2 , 4.29

p p

p p

i 2 i 1

i 2 i 1

with p 0. It is straightforward tofind that for thef defined in the appendix, the classicalminimal points will
be placed on the axis of u, i.e. v=0. In this case, the Fokker–Planck equation (2.32) is transformed to
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*

*

t

f f

¶
¶

= -
¶
¶

¡ ¡ + ¡ ¡

- ¡ - ¡

-
¶
¶

¡ ¡ - ¡ ¡

- ¡ + ¡ +
¶
¶

+
¶
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q f q f

q f q f

q f q f

q f q f

+
+ -

- +
- +

+
+

- +
-

-
+ -

- -
- +

-
+

- -
-

⎫⎬⎭

{ [ ( ) ( ) ( ) ( )

¯ ( ) ¯ ( )]

[ ( ) ( ) ( ) ( )

¯ ( ) ¯ ( )] ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

P

u

c c

v

c c
u n v n

P

e cos sin e cos sin

e tan e tan

e cos sin e cos sin

e tan e tan
cos 2 cos 2

. 4.30

i 2 i 2

i 2 i 2

i 2 i 2

i 2 i 2
2

2

2

2

Herewe have introduce another shifted coupling constant which interpolates between themen-field coupling
and the one used to analyze theβmanifold:

º +¯ ˜ ( )c c
n

1

2
, 4.31

which effectively defines the relevant region of the phase diagram. Thus the diffusion coefficients are all constant
and equal, whichmeans that we can use the potential-barrier approximation [5, 41, 50, 51], generalized in
appendix, to obtain the tunneling rate.

We can obtain the Jacobean in the formof

f
= = - ¡ ¡

b b

b b

¶
¶

¶
¶

¶
¶

¶
¶

+ -+ + [ ] [ ] ( )J
1

2 cos 2
cos cos . 4.32u v

u v

Using the relations b b¢ = +( ) ( )P u v JP, ,ss ss and ¢ = ¢ -F( ) ( ( ))P u v N u v, exp ,ss , the potential is given by

*F = - ¡ ¡ + ¡ + ¡+ - + -( ) [ [ ] [ ] ¯ { [ ]} ¯ { [ ]}] ( )u v n c c, 2 sin sin ln cos ln cos . 4.332 2

Theminimal points of the potential in the u and v variables are foundwhere the gradient of the potential is zero.
Thuswefind that the classicalminimal points are located at f= ( ) ( )( ) ( )u v r, 2 cos 2 , 0c c , where

º = + - - Py - - [ (¯ ∣¯∣ ) ¯ (¯)] ( )r B c c c ce sin sin 1 2 , 4.34i 1 1 2 2 1 2

withf=ψ−θ/2 and hence

* * *= = + - - Py- - - [ (¯ ∣¯∣ ) ¯ (¯)] ( )r B c c c ce sin sin 1 2 . 4.35i 1 1 2 2 1 2

From themanifold(4.21) and the transformation(4.25), wewillfind that the line of v=0with real u is on this
manifold, wherewewill have *¡ = ¡+ -. Hence the potential(4.33) is proved to be real. In themeanwhile, the
classicalminimal points and the saddle point at the origin are all on this line. Considering

t
¶
¶

+  =


· ( )P
J 0, 4.361

the current

J can be obtained easily via the Fokker–Planck equation (4.30). It is directly checked that the current

through this line Ju is real. This shows that quantum tunnelingmostly occurs through this line. Further analysis
is given in the appendix.

The second derivatives on this line are always real as well, given that

*

*

f
q f

q f q f

f
q f

q f q f

F = + ¡ ¡ - ¡ ¡

+
+
¡

+
- +

¡

F = - ¡ ¡ + ¡ ¡

+
-
¡

+
- -

¡

+ - + -

+ -

+ - + -

+ -

⎤
⎦⎥

⎤
⎦⎥

( )
[ ( ) ( ) ( ) ( ) ( )

¯ [ ( )]
( )

¯ [ ( )]
( )

( )
[ ( ) ( ) ( ) ( ) ( )

¯ [ ( )]
( )

¯ [ ( )]
( )

( )

n

c c

n

c c

cos 2
cos 2 sin sin cos cos

exp i 2

2 cos

exp i 2

2 cos
,

cos 2
cos 2 sin sin cos cos

exp i 2

2 cos

exp i 2

2 cos
. 4.37

uu

vv

2

2 2

2

2 2

Therefore, the potentials of the saddle points and the classicalminimal points are

* *

F =
F =- + - + -[ ∣ ∣ ¯ ( ) ¯ ( )] ( )

( )

( ) n B c B c B

0,

2 ln 1 ln 1 . 4.38

o

c 2 2 2
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The related second derivatives are therefore
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,
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1
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The tunneling time for a symmetric bistable potential in two dimensions is calculated using an extension of the
Kramersmethod developed by Landauer and Swanson [50, 51], which is called the potential-barrier
approximation [5, 41] and generalized for complex cases in appendix.

In the appendix, we have obtained the analytic formation of the tunneling time as shown in equation (A.27).
Since the potential and the related second derivatives have been calculated in equations (4.38) and (4.39), the
analytic result of the tunneling time is:

p
f

=
-F

F F F
F - F

⎡
⎣⎢

⎤
⎦⎥∣ ∣

( ) ( )
( )

( ) ( ) ( )
( ) ( )T

g

2

cos 2
exp , 4.40vv

o

uu
o

uu
c

vv
c

o c

1
2

which can be expressed in terms of our parameters as:

* *

*

*

*

*

* *


p f

q f

q f

= + - + -
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-

+ + -

´
-

+
-

- + +

´ + + ´ - -
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q f q f

q f q f q f q f
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4 cos 2
exp 2 ln 1 ln 1

e
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2 2 cos 2

2 e e 2 e e . 4.41

2 2 2

i 2

2

i 2

2
2

1 2

i 2

2

i 2

2
2

1 2

i 2 i 2 1 2 i 2 i 2 1 2

Herewe have used the relation *- - =( )( ) ∣¯∣B B c1 12 2 2, which can be checked via equations (4.34) and(4.35).
If we set θ=f=0 and *=¯ ¯c c , whichmeans all the parameters are real, the tunneling time(4.41) can be
simplified to give


p

=
+
-

- +
¯

( ¯)
{ [ ¯ ¯ (¯)]} ( )T

c

c
n c c c

1

1
exp 2 1 ln . 4.42

This simplified form agrees with equation (4.22) of [41], with parameters are defined as m s m= =¯ ¯n g c,2

and g=g2γ1. Thus, in the situationwhere all the parameters are real numbers, without anharmonic terms or
detunings, the tunneling time(4.41) reduces to previous results [5, 41].

5.Number-state calculations

The tunneling time can also be obtained by solving themaster equation (2.34)numerically in the number-state
basis. In this basis themaster equation reduces to an infinitematrix equation.Nevertheless, as any physical
systemhas afinite energy, a suitable energy cutoff will reduce the system to afinitematrix equation.While this
method is only numerically feasible for small photon number, it allows us to check the accuracy of the
approximate analytic calculation given above.

5.1. Number-state basis expansions
Wefirst expand the density operator ρ in terms of its number-statematrix elements ρkl, which are defined by

r r= á ñ∣ ∣ ( )k l . 5.1kl
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Thus, the time evolution is given by

r r= ( )
t

i
t

j
d

d

d

d
. 5.2ij

Then themaster equation (2.34)under number-state basis becomes

r r= ( )
t

T
d

d
. 5.3ij ij

kl
kl

Herewe have used the Einstein summation convention on identical indices. AndTij
kl is a four-dimensional

transitionmatrix describing the rate of transition from the state ρkl to the state ρij, which is in the formof

*
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d d d d
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i j
k l

i j
k l

i j
k l

;
2;

;
; 2

;
; 2

;
2;

;
; 2

;
2; 2

1
1

;
1; 1

Herewe have used the assumptionΔ2=0 so that  is real, and

d =
= =⎧⎨⎩ ( )i k j l1 if and ,

0 otherwise.
5.5i j

k l
;
;

The behavior of the system can be characterized in terms of the eigenvalues and eigenvectors of the transition
matrixTij

kl. For instance, the eigenvector corresponding to the zero eigenvalue is exactly the steady state of the
system. Thefirst negative eigenvalue is related to the quantum tunneling rate [41].

In order tomake thematrix finite, we set a photon number cutoffN so that 0�i, j, k, l�N. This
approximation is valid if the high-photon-number states that are ignored play no significant role in determining

the evolution of the system. The four-dimensionalmatrixTij
kl can be reduced to a two-dimensional one a

b
¯
¯

T with
this truncation that
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, 5.6
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5.7
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where

a b= + + + = + + +¯ ( ) ¯ ( ) ( )N i j N k l1 1, 1 1. 5.8

Here da
b
¯
¯
is a Kronecker delta, and a b¯ ¯, are in the range of [1, (N+1)2]. Note that the transitionmatrix is not

Hermitian because of the single- and two-photon decay process.
We label the kth eigenvalue by òk and its corresponding eigenvector by rā

( )k so that



år r=a a( ) ( ) ( )¯ ¯

( )t A texp . 5.9
k

k k
k

0

Here the coefficientsAk define the initial state.We order the indices k by the size of the real part of the
eigenvalues, so that   +( ) ( )R Rk k 1 . ò0 is the stable eigenvalue (ò0=0) and rā

( )0 is the stable state. ò1 is the
tunneling eigenvalue so the tunneling time is obtained [41]


= - ( )T

2
. 5.10N

1

5.2. Tunneling time calculations and comparisons
Wewill compare the tunneling times obtained fromusing the P-representation(4.41)with those obtained using
a number-state expansion(5.10). By changing the parameters g g( ) ( ), ,1

1 2 andΔ1, the results for the tunneling

time are shown in thefigure 4.Here we have noted that parameter c̃ consists of g g c( ) ( ), ,1
1 2 ,Δ1 and  as shown
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in equation (4.8), and n consists of γ(2),χ and  shown in equation (2.31). The parameters has been chosen to
satisfy >(˜)R c 0, with large single-photon loss and small nonlinear couplings, and <∣˜∣c 1, above threshold.

Since there is a potential barrier between theminima, quantum tunneling is a slow effect. Hence, we use
g( )( )Tln 1

1 to compare the results in the limit of large tunneling timeT. It is expected that the analytic potential-
barrier approximationwill bemost reliable for large tunneling times.We showbelow that, as expected, the
analytic results agree exceptionally well with numerical results for large tunneling times, which is the limit of
most interest for understanding spontaneously broken symmetry.

Figures 4(a) and (b) show that damping speeds up quantum tunneling. Figure 4(c) shows that an increased
drivingwill increase the tunneling time, since the parameter  is proportional to the driving 2. The change in
tunneling timewith the detuningΔ1 is shown infigure 4(d), where the largest tunneling time occurs at
Δ1=−0.2 kHz because of the nonzero nonlinearityχ.With large detuningΔ1, the tunneling timewill be
reduced as shown in thefigure 4(d). It is also clear in thefigure 4(c) that the potential-barrier approximation fails
when the quantum tunneling becomes too fast, as expected for this approach.

The behaviors of tunneling time changingwith driving can be understood from the analytic equations. At
large driving  , the parameter n increases while ¯nc remains unchanged. From the formation of the classical
stable points(4.17), it is directly checked that the stable pointsmove away from each other in this case. In
addition, the potential barrier becomes larger according to equations (4.38). Therefore, the quantum tunneling
is suppressedwhenwe increase the driving  considering the analytic result(4.41)
provides ~ F - F( )( ) ( )T exp o c .

A similar analysis can be applied on the results offigure 4(a) and (b) aswell.When the dampings g( )
1
1 and γ(2)

become larger, wefind that the positions of the stable points(4.17) only change slightly, but the potential
barrier(4.38)will greatly decrease. Thus, increasing the dampings γ1

(1) and γ(2) speed up quantum tunneling.
The dependence of the tunneling rate changing on the nonlinearitiesχ andκ are shown infigure 5. From the

formations(4.8) and (4.31), c̃ and c̄ will be real if c g g= D( ) ( )2
1 1

1 considering there is always a nonzero

damping g( )
1
1 in realistic systems. In the case ofD = 01 , wewill haveχ=0when c̄ is real. This is the case shown

Figure 4.Comparisons of the tunneling time obtained by P-representation(4.41) (blue lines) and those by number-state
expansion(5.10) (red circles) changingwith g( )

1
1 (a), γ(2) (b),  (c), andΔ1 (d), respectively. In thefigure (a), other parameters are

Δ1=0, γ(2)=1 kHz,χ=0.1 kHz,  = 10 kHz, and n=9.95. In the figure (b), γ=2 kHz,χ=0.1 kHz,  = 10 kHz. In the
figure (c), γ=2 kHz, γ(2)=1 kHz,χ=0.1 kHz. And in thefigure (d), g =( ) 1.5 kHz1

1 , γ(2)=0.8 kHz,χ=0.1 kHz,  = 10 kHz,
and n=12.40.We note that g g g= - = + D˜ ( ) ( ) ( )c g gn , i1

1
1, = ∣ ∣n g , and g c= +( )g i2 , so the parameters c̃ and nwill

changewith g( )
1
1 (a), g ( )2 (b),  (c) andΔ1 (d). In all the figures, the number-state expansion results are obtainedwith a particle

number cut-offN=70, after the adiabatic elimination.
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infigure 5(a), whereχ=0 corresponds to the largest tunneling time. This shows that the nonlinear couplingχ
will decrease the tunneling time. This result is consistent with the previous ones in similar by simpler
systems [26, 27].

This behavior can also be obtained from the analytic result for the tunneling time(4.41). Considering the
definitions g= - =¯ ( ) ( ) ∣ ∣c g gn n g2 2 , and g c= +( )g i2 , it is directly checked that c̄ and nwill decrease
if the nonlinearityχ becomes larger. Then from the results of the potential for the saddle point and the classical
stable points(4.38), we see that the difference of the potentials becomes smaller. Hence, the nonlinearityχwill
reduce the potential barrier height and thus speed up the tunneling.

The effects of the nonlinearityκ aremore complicated thanχ as shown infigure 5(b), whichwere not
treated in previous study on single-mode nonlinear resonators [26, 27]. Herewe show thatκwill increase the
tunneling timewhen it is small, and decrease the tunneling time once it is large enough. This can be understood
by considering that  kµ and g kµ( )2 2 if g( )

1
2 is negligible. Thuswhenκ is small, the effect of  dominates,

whichwill increase the tunneling time.Whenκ is large enough so that the effect of γ(2) becomesmore
important, the quantum tunnelingwill then be sped up.

We also note that the analytical results are not expected to agree verywell with the numerical results with
large nonlinearitiesχ andκ if other parameters arefixed. This is because the dimensionless driving field is
smaller, which also decreases the potential barrier height, and therefore reduces the validity of the analytic
approximations used for tunneling calculations. Essentially, in this limit there is no real tunneling, and the
broken time-translation symmetry is rapidly restored.

6. Conclusion

In this paper, we have studied general quantum subharmonic generationwith additional detunings and
anharmonicity, which has been experimental achieved [24] in superconductingmicrowave cavities.With
driving, damping and nonlinearity considered, we obtained the steady-state solution of the Fokker–Planck
equation using the adiabatic approximation and the zero-temperature limit, in order to understand pure
quantum tunneling effects. Because of the nonlinearity, a complex parameter c̃ has been introduced. Thismeans
that the potential of the steady state is in general complex, which is different from the previously studied
quantumoptical subharmonic generation systemswhere the potentials were always real.

Quantum tunneling has been studied in this non-equilibrium system. This is related to quantum time
symmetry breaking, as it defines themaximum time that a spontaneously broken time phase can exist before
randomly switching to a different discrete time phase. By studying themanifold of the steady-state potential, we
find that quantum tunnelingwill occur in the parameter region of >(˜)R c 0 and <∣˜∣c 1, i.e. the region of large
single-photon loss, small nonlinear couplings and above threshold. The tunneling time has been obtained
analytically using the potential-barrier approximation. In the expected domain of applicability of large
tunneling time, the results agree with numerical calculations using a number-state basis.

These results show that the anharmonicityχwill enhances quantum tunneling rates compared to previous
cases with no anharmonic term. Thismay have practical applications for escaping a localminimum in quantum
neural networks [22, 23], where the global potentialminimum is the desired computational solution.

Figure 5.Comparisons of the tunneling times obtained using the P-representation(4.41) (blue lines) and those using the number-
state expansion(5.10) (red circles) changingwith the anharmonic nonlinearityχ (a) and the parametric nonlinearityκ (b). Infigure
(a), the other parameters are γ=1.5 kHz, γ(2)=0.5 kHz,  = 8 kHz. In figure (b), γ=1.5 kHz, γ1

(2)=0.1 kHz, γ2=20 kHz,
χ=0.1 kHz,  = 40 kHz2 . Because g= -˜ ( ) ( )c g gn , g g g c g k g c= + D = + = + +( )( ) ( ) ( )gi , i 2 i1

1
1

2
1
2 2

2 , = ∣ ∣n g and
 k g= 2 2, the parameters c̃ and nwill changewith theχ (a) andκ (b). In bothfigures, number-state expansion results are obtained
with a particle number cut-offN=100, after adiabatic elimination.
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Appendix. Tunneling rate for complex Fokker–Planck equations

Previous research on tunneling rates [5, 41, 50, 51] has treated real potentials. For our system, we obtain a
complex potential barrier and a complex Fokker–Planck equation. Thus, wemust generalize the potential-
barrier approximation [50, 51] to treat such complex Fokker–Planck cases.

Without loss of generality, wewill study the complex Fokker–Planck equation

t z
z z

z
¶
¶

=
¶
¶

+
¶
¶

+q +
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )P

A
n

Pe ,
1

2
h.c. . A.1i

2

2

The notation h.c. has the samemeaning aswe introduced in section 2.6.Our Fokker–Planck equation (2.32) can
bewritten in this formwith the transformation

z b z b= =- + - + ( )sin , sin . A.21 1

Themanifoldwe are concernedwith(4.21) is then transformed into:

z j p p
z j p p

= +
= -

-

+ -

[ ( ) ( ) ( )]
[ ( ) ( ) ( )] ( )
x x x y

y y x y

sin i tan cos 2 cos 2 ,

sin i tan cos 2 cos 2 , A.3

p p

p p

1

1

with the classical stationary points b b=  j∣ ∣( ) ( )ec ci transformed into z =  y( ) rec i . Thismanifold gives the
correct behavior in the limit of p 0, as introduced in the section 4.5. The steady-state solution can be
expressed by a potentialΦ, which satisfies

*
z

z z
z

z z
¶F
¶

=
¶F
¶

=+
+

+( ) ( ) ( )A A2 , , 2 , . A.4

Thus the potential z zF +( ), is in general complex for complex variables z z+( ), . In the situationwhere
*z z=+ , it is directly checked that the potential z zF +( ), is real. The stationary points can be calculated by

using thefirst derivatives, which are divided into three groups: the origin solution (z z= =+ 0), the classical
solutions ( *z z=+ ) and the nonclassical solutions ( *z z= -+ ). Herewe are interested in the quantum
tunneling between the classical stationary points through the origin.

Given the classical stationary points z = y( ) rec i , wewill introduce the transformation

z z
z z

= +
= -

q f q f

q f q f

- - +

- - + ( )
u

v

e e e e ,

e e e e , A.5

i 2 i i 2 i

i 2 i i 2 i

where f y q= - 2. Then the inverse transformation takes the form

z
f

z
f

=
+

=
-

q
f f

q
f f

-

+ -
-

( )

( )
( )

u v

u v

e
e e

cos 2
,

e
e e

cos 2
. A.6

i 2
i i

i 2
i i

In this case, the Fokker–Planck equation is transformed to

t
f f¶

¶
=

¶
¶

+ +
¶
¶

- +
¶
¶

+
¶
¶

q f q f+ -
⎧⎨⎩

⎫⎬⎭[ ( ) ] [ ( ) ] ( ) ( )

( )

( ) ( )P

u
A u v

v
A u v

u n v n
Pe , h.c. e , h.c.

cos 2 cos 2
.

A.7

i 2 i 2
2

2

2

2

The notation h.c. indicates hermitian conjugate terms obtained by the replacement of   -u u v v, and the
conjugation of all complex parameters. Considered themanifold(A.3), it is directly checked that v is real on this
manifold except on the boundaries, while u is in general complex. But for the situation of ζ=ζ+, we have v=0
with u is real. All the points on the line of v=0with real u have real potentialΦ(u, v) aswell as the real second
derivativesΦuu andΦvv, which is proved in the section 4.7. The classical stationary points and the origin solution
are all located on the line of v=0with real u.We suppose that the classical stationary points are localminima
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and the origin is the saddle point, as we have in section 4.3. As discussed in [51], the quantum tunnelingwill take
place through the direction of u because of the symmetry. In the following, wewill reproduce the analysis of [51]
so that the potential-barrier approximation can be generalized for the complex potential cases.

As introduced in [51], the currentflow from a localminimumof the potential, located at negative u and
labelled asC1, to the anotherminimum, located at positive u and labelled asC2, has the form

r r= - F -  ( )j D D . A.8

Here ρ is the density andD is the diffusion coefficient.We have taken the zero-temperature limit as we did in the
main text. The equilibrium casewith Boltzmann distribution

r µ -F( ) ( )exp , A.9

leads to j=0. Thuswe set

r h= -F( ) ( )exp , A.10

in the non-equilibrium case, then the variation of η indicates the extent of the deviation from equilibrium and
theflow(A.8) becomes

h= -  -F( ) ( ) ( )j D exp . A.11

In the following, we assume thatD is constant in the neighborhood of the saddle point, which is exactly true in
our situationwhere f= ( )D ncos 2 . To obtain themagnitude of current(A.11), this assumption requires a
relatively large value of∇ηnear the saddle point, where -F( )exp is small, andmuch smaller values of h near
theminima, where F( )exp has larger values. Therefore themajor departures from equilibrium take place only in
the neighborhood of the saddle point.

For our case where the two potentialminima are at the same value, [51] has shown that at the symmetry
plane, j is perpendicular to the symmetry plane, and j has the same direction throughout the neighborhood of
the saddle points. Herewewill use the same assumptionwhere u has been proved to be this direction. Then
equation (A.11) tells us that η is only a function of u in the neighborhood of the saddle point. Therefore, we can
integrate equation (A.11)

òh = - F ¢ ¢( ) [ ( )] ( )u
j

D
u uexp d . A.12

u
u

0

In the saddle-point neighborhood, the potentialΦ depends quadratically on the spatial coordinates

x x

F = F + F + F

= F - + ( )

( ) ( ) ( )
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u v

u v

1

2

1

2
1

2

1

2
, A.13

o
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u
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v
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2 2

2 2

where the second derivatives x x= -F = F( ) ( ) ( ) ( ),u
o

uu
o

v
o

vv
o are both positive due to themanifold of the saddle-point

neighborhood. Thuswe have

òh
x x

= - F -
¢

+ ¢-
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( )
( )( )

( ) ( )

u D j
u v

uexp
2 2

d . A.14
u

u
o u

o
v
o

1

0

2 2

The continuity of current,  =· j 0, requires that ju be independent of u. Considering that η is only dependent
on u in the neighborhood of the saddle point, the factor x[ ]( )j vexp 2u v

o 2 is thus a constant. The only remaining

variable is x- ¢[ ( ) ]( ) uexp 2u
o 2 . The integrand is then large only at the saddle point u=0, and diminishes rapidly.

Therefore, at a relatively short distance away from the saddle point, η(u) approaches a constant limiting value: a
positive value in theminimumC1 and a negative value in theminimumC2.

Next, wewill evaluate the population differenceΔ, which is equal to twice the population of the classical
minimumC1

ò

ò

h

h
x x

D = -F

= -F -
+⎛

⎝
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⎞
⎠
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( ) ( )

( ) ( ) ( )( )
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C u v
u v

2 d d exp

2 exp d d exp
2

. A.15
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v
c

1
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1

1

Herewe have used an expansion appropriate to theminimumC1

x xF = F + F + F = F + + ( )( ) ( ) ( ) ( ) ( ) ( )u v u v
1

2

1

2

1

2

1

2
, A.16c

uu
c

vv
c c

u
c

v
c2 2 2 2

where x x= F = F( ) ( ) ( ) ( ),u
c

uu
c

v
c

vv
c are both positive second derivatives due to themanifold of the neighborhood of

theminimal point. Thenwewill get the difference
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In order to obtain the tunneling time, we need to evaluate the total current J crossing the saddle point as well.
Since η is only dependent on u in the neighborhood of the saddle point, the equation (A.11) is equivalent to

h
= -

¶
¶

-F⎜ ⎟⎛
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⎞
⎠ ( ) ( )j D
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exp . A.18u

In the symmetry plane containing the saddle point (u= 0), wewill then obtain
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Integrating over v gives the total current
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The dimensionless tunneling time is then obtained as
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Nowwe need to evaluate h h¶ ¶ =( ) ( )C u u1 0. From the equation (A.12), wewill get
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where ju is the current density at the saddle point, which takes the form via equation (A.11)
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Thenwe have
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Thus, we get
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The tunneling time in dimensionless units then takes the form
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Noting that we have rescaled the time as t = t in section 2.6 and = ∣ ∣n g , the dimensional tunneling time of
our system is therefore

p
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whichwas used to obtain the analytic expression for the tunneling time in(4.41).
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