
An Adaptive Approach to Controlling

Parameters of Evolutionary Algorithms

Aldeida Aleti

Submitted in fullment of the requirements for the degree of

Doctor of Philosophy

Swinburne University of Technology

2012

abstract

The majority of stochastic optimisation methods such as Simulated Annealing (SA),

Evolutionary Algorithms (EA), Ant Colony Optimisation (ACO) and Estimation of

Distribution Algorithms (EDA) have a range of adjustable parameters like learning

rates, crossover probabilities, pheromone evaporation rates and weighting factors.

Poor algorithm parameterisation hinders the discovery of good solutions. The pa-

rameter values required for optimal algorithm performance are known to be problem-

specific, often even specific to the problem instance at hand. Practitioners often

apply stochastic methods with parameter values chosen on the basis of few tun-

ing iterations, in which various parameter settings are explored in an attempt to

fine-tune the algorithm to their particular problem. Depending on the number of

parameters and their plausible value ranges, investigative trials for parameter opti-

misations can themselves be attempts to solve a combinatorially complex problem.

Moreover, it has also been established that some of the parameter values ought to

vary during the search process for best algorithm performance.

Acknowledging these facts, many researchers have shifted their focus to param-

eter control methods, where parameter values are optimised based on algorithm

performance. This thesis presents an adaptive parameter control method which re-

defines parameter values repeatedly based on a separate optimisation process that

receives its feedback from the primary optimisation algorithm. The feedback is used

for a projection of the value performing well in the future. The method uses an eval-

uation of the recent performance of previously applied parameter values and predicts

how likely each of the parameter values is to produce optimal outcomes in the next

i

cycle of the algorithm. The parameter values are sampled from intervals which are

adapted dynamically, a method which has proven particularly effective and outper-

forms all existing adaptive parameter controls significantly. To test the applicability

of the approach to a real-world problem, the adaptive parameter control method is

applied to a case-study from the automotive industry.

ii

Acknowledgements

I dedicate this work to my family, Torgeir, Meli, Ari, Riza, Eva & Trond.

I am deeply grateful to my two supervisors Dr. Irene Moser and Dr. Lars

Grunske, whom I was lucky to have as my mentors. I would also like to thank

Indika Meedeniya, Dr. Antony Tang, and Dr. Sanaz Mostaghim for their valuable

advice and help and my friends Nargiza, Tharindu and Iman for their support.

iii

iv

Declaration

This thesis contains no material which has been accepted for the award of any other

degree or diploma, except where due reference is made. To the best of my knowledge,

this thesis contains no material previously published or written by another person

except where due reference is made in the text of the thesis.

Melbourne, July 23, 2012

Aldeida Aleti

v

vi

Publications

Parts of the material in this thesis have previously appeared in the following publi-

cations:

Chapter 4

] A. Aleti, ”Quality Assessment of Multiobjective Optimisation Algorithms in

Component Deployment”, in the Doctoral Symposium, European Software En-

gineering Conference (ESEC) and the ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering (FSE), pp. 39-40, ACM Digital Libraries, 2009.

] A. Aleti, L. Grunske, I. Meedeniya, I. Moser, ”Let the ants deploy your software

- An ACO based deployment optimisation strategy”, in the 24th IEEE/ACM

International Conference on Automated Software Engineering (ASE) pp. 505 -

509, IEEE Digital Libraries, 2009.

Chapter 5

] A. Aleti and I. Meedeniya, ”Component Deployment Optimisation with Bayesian

Learning” , in Component Based Software Engineering (CBSE), pp. 11-20,

ACM Digital Libraries, 2011.

Chapter 6

] A. Aleti and I. Moser, ”Predictive Parameter Control”, in Genetic and Evo-

lutionary Computation Conference (GECCO), pp 561-568, ACM Digital Li-

braries, 2011.

Chapter 7

] A. Aleti, I. Moser and S. Mostaghim, ”Adaptive Range Parameter Control”, In

vii

IEEE World Congress on Computational Intelligence (WCCI), to appear, 2012.

Chapter 8

] I. Meedeniya, A. Aleti, and L. Grunske, ”Architecture-Driven Reliability Opti-

mization with Uncertain Model Parameters”, in Journal of Systems and Soft-

ware (JSS), 2012, to appear.

] I. Meedeniya, A. Aleti, I. Avazpour and A. Amin, ”Robust ArcheOpterix: Ar-

chitecture Optimization of Embedded Systems under Uncertainty”, Interna-

tional Workshop on Software Engineering for Embedded Systems (SEES), In-

ternational Conference on Software Engineering (ICSE), to appear, 2012.

] I. Meedeniya, B. Zimmerova, A. Aleti and L. Grunske, ”Architecture Driven

Reliability and Energy Optimization for Complex Embedded Systems”, in Qual-

ity of Software Architectures (QoSA), Lecture Notes in Computer Science, Vol.

6093, pp. 52-67, Springer, 2010.

] A. Aleti, Stefan Bjornander, L. Grunske, and I. Meedeniya, ”Acheopterix: An

extendable tool for architecture optimisation of aadl models”, in Model-based

Methodologies for Pervasive and Embedded Software (MOMPES), pp. 61-71,

ACM and IEEE Digital Libraries, 2009.

] I. Meedeniya, A. Aleti and B. Zimmerova, ”Redundancy Allocation in Au-

tomotive Systems using Multiobjective Optimisation”, in the Symposium on

Automotive/Avionics Systems Engineering (SAASE), 2009.

] I. Meedeniya, I. Moser, A. Aleti and L. Grunske, ”Software Architecture Eval-

uation under Uncertainty”, in Quality of Software Architectures (QoSA), pp.

85-94, ACM, 2011.

] I. Meedeniya, B. Buhnova, A. Aleti and L. Grunske, ”Reliability-Driven De-

ployment Optimization for Embedded Systems”, in Journal of Systems and

Software (JSS), 84(5), pp. 835-846, 2011.

viii

Contents

I Introduction, Background and Methodology 1

1 Introduction 3

2 Background 11

2.1 Introduction . 11

2.2 Optimisation . 12

2.3 Evolutionary Algorithms . 14

2.3.1 Genetic Algorithm . 16

2.3.2 Evolution Strategies . 17

2.3.3 Genetic Programming . 19

2.3.4 Evolutionary Programming 19

2.4 Methods for Configuring Parameters of Evolutionary Algorithms . . . 20

2.4.1 Parameter Tuning . 20

2.4.2 Parameter Control . 24

2.5 Parameters to Configure . 39

2.5.1 Population Size . 40

2.5.2 Selection Procedure . 44

2.5.3 Variation Procedure . 47

2.5.4 Replacement Procedure . 50

2.5.5 Number of Offspring . 51

2.6 Summary . 52

ix

3 Methodology 55

3.1 Introduction . 55

3.2 Research Problems . 56

3.2.1 Feedback Collection Strategy 59

3.2.2 Parameter Effect Assessment Strategy 60

3.2.3 Parameter Quality Attribution Strategy 62

3.2.4 Parameter Value Selection Strategy 63

3.3 Research Method . 65

3.3.1 Experimental Settings . 66

3.3.2 Benchmark Problems . 67

3.3.3 Benchmark Methods . 73

3.3.4 Comparative Measures . 74

II Contribution 77

4 Feedback Collection Strategy 81

4.1 Introduction . 81

4.2 Performance Aspects in Multiobjective Optimisation 83

4.3 Multiobjective Performance Metrics 85

4.3.1 Binary Hypervolume Indicator 89

4.3.2 Binary Epsilon Indicator . 91

4.3.3 Example . 91

4.4 Validation . 95

4.4.1 Experimental Settings . 95

4.4.2 Results . 97

4.5 Summary . 98

x

5 Parameter Effect Assessment Strategy 99

5.1 Introduction . 99

5.2 Bayesian Effect Assessment Strategy 101

5.3 Example . 107

5.4 Analysis of the Threshold Value . 110

5.4.1 Experimental Settings . 110

5.4.2 Results . 111

5.5 Validation . 114

5.5.1 Benchmark Effect Assessment Strategy 114

5.5.2 Experimental Settings . 115

5.5.3 Results . 116

5.6 Summary . 118

6 Parameter Quality Attribution Strategy 119

6.1 Introduction . 119

6.2 Predictive Quality Attribution . 122

6.2.1 Linear Regression . 123

6.2.2 Simple Moving Average . 126

6.2.3 Exponentially-Weighted Moving Average 127

6.2.4 Autoregressive Integrated Moving Average 128

6.3 Characteristics of the Parameter Effects 131

6.3.1 Experimental Settings . 132

6.3.2 Statistical Analysis . 133

6.3.3 Results . 137

6.4 Analysis of the Predictive Quality Attribution Methods 143

6.4.1 Experimental Settings . 143

6.4.2 Results . 144

xi

6.5 Validation . 147

6.5.1 Benchmark Parameter Quality Attribution Strategies 147

6.5.2 Experimental Settings . 148

6.5.3 Results . 149

6.6 Summary . 156

7 Parameter Value Selection Strategy 157

7.1 Introduction . 157

7.2 Adaptive Range Parameter Selection 160

7.3 Validation . 166

7.3.1 Benchmark Parameter Value Selection Strategies 166

7.3.2 Experimental Settings . 174

7.3.3 Results . 175

7.4 Summary . 183

III Practical Validation 185

8 Architecture Optimisation in Embedded Systems 187

8.1 Introduction . 187

8.2 Architecture Design and Optimisation 190

8.2.1 Redundancy Allocation Optimisation 192

8.2.2 Component Deployment Optimisation 194

8.3 ArcheOpterix . 197

8.4 Case-Study: Automotive Embedded Systems 198

8.4.1 Hardware Architecture . 199

8.4.2 Software Architecture . 200

8.4.3 Configuration of the Case-study 202

8.4.4 Redundancy Allocation Optimisation 204

xii

8.4.5 Component Deployment Optimisation 209

8.4.6 Results of the Optimisation Process 214

8.5 Summary . 220

IV Conclusions and Future Work 221

9 Conclusions 223

10 Future Work 229

V Appendix 231

xiii

xiv

List of Figures

2.1 Compass. 35

3.1 Steps of Evolutionary Algorithms. 57

3.2 Example of schemas defining the RRP function. 69

4.1 Properties of nondominated sets. 83

4.2 Coverage measure. 88

4.3 The binary hypervolume indicator . 90

4.4 The binary epsilon indicator . 91

4.5 Example of binary hypervolume and binary epsilon indicators. 92

4.6 Example of binary hypervolume and binary epsilon indicators. 93

4.7 Example of binary hypervolume and binary epsilon indicators. 93

5.1 Parallel algorithm instances. 101

5.2 An example of a Bayesian Belief Network. 103

5.3 A Bayesian Belief Network for parameter effect assessment. 104

5.4 Annotated Bayesian Belief Network. 105

5.5 Algorithm instances with parameter values selected from different

intervals. 107

5.6 Successful algorithm instances. 108

5.7 Boxplots of the parameter effect assessment strategies. 117

xv

6.1 Performance improvement of the EA using different forecasting tech-

niques . 145

6.2 Boxplots of parameter quality attribution schemes for controlling pop-

ulation size . 150

6.3 Boxplots of parameter quality attribution schemes for controlling EA

parameters. 153

7.1 Initial division of parameter ranges. 161

7.2 Success rates of parameter ranges. 161

7.3 Dividing parameter ranges based on success rates. 161

7.4 New success rates. 162

7.5 Merging parameter ranges. 162

7.6 Boxplots of parameter value selection schemes for QAP, RR and mQAP.176

7.7 Boxplots of parameter value selection schemes for the multiobjective

Quadratic Assignment Problem . 177

7.8 Change of parameter ranges for the optimisation of the Royal Road

Problem and the multiobjective Quadratic Assignment Problem with

an EA that uses ARPS during 20 iteration. 180

7.9 Change of parameter ranges for the optimisation of the Quadratic

Assignment Problem. 181

8.1 Software elements and interactions. 190

8.2 Software elements and interactions. 191

8.3 Hardware elements and communication network. 191

8.4 Redundancy Allocation Problem. 193

8.5 Component Deployment Problem. 195

8.6 ArcheOpterix framework. 197

8.7 The hardware architecture. 199

xvi

8.8 The software architecture of the Brake-by-wire system. 201

8.9 The software architecture of Brake-by-wire system. 210

xvii

xviii

List of Tables

3.1 Hollands default Royal Road problem setting 71

4.1 Performance metrics. 86

4.2 The means, standard deviations (SD) and the Kolmogorov-Smirnov

test values of the 30 runs of each problem instance using different

feedback collection strategies. 97

5.1 Performance of algorithm instances. 108

5.2 Frequencies of parameter values. 108

5.3 Frequencies of parameter values in the successful and unsuccessful

instances. 108

5.4 The conditional probabilities of parameter values. 109

5.5 Means and standard deviations of the optimisation schemes using

different threshold values for BEA. 112

5.6 Kolmogorov-Smirnov test for comparing the optimisation schemes us-

ing different threshold values for BEA. 112

5.7 Kolmogorov-Smirnov test for the comparison of parameter effect as-

sessment schemes. 118

6.1 Ranges/values of parameters. 132

6.2 Assumptions of the forecasting models. 137

6.3 Characteristics of the success rates of different algorithm parameters

with two ranges/values. 138

xix

6.4 Recommendation for using forecasting models to predict the success

rates of different parameter values chosen from different ranges. . . . 141

6.5 The means and standard deviations for the 30 runs of each problem

instance using different parameter quality attribution schemes: Aver-

age Quality Attribution (AQA), Extreme Quality Attribution (EQA)

and Predictive Quality Attribution (PQA). 151

6.6 The Kolmogorov-Smirnov test values for the 30 runs of each problem

instance using different parameter quality attribution schemes: Aver-

age Quality Attribution (AQA), Extreme Quality Attribution (EQA)

and Predictive Quality Attribution (PQA). 152

6.7 The means and standard deviations for the 30 runs of each problem

instance using different parameter quality attribution schemes: Aver-

age Quality Attribution (AQA), Extreme Quality Attribution (EQA)

and Predictive Quality Attribution (PQA). 154

6.8 The Kolmogorov-Smirnov test values for the 30 runs of each problem

instance using different parameter quality attribution schemes: Aver-

age Quality Attribution (AQA), Extreme Quality Attribution (EQA)

and Predictive Quality Attribution (PQA). 155

7.1 Hyper-parameters of benchmark parameter control methods. 174

7.2 The means and standard deviations of the 30 runs of each problem

instance using different parameter value selection schemes. 178

7.3 The Kolmogorov-Smirnov test values of the 30 runs of each problem

instance using different parameter value selection schemes. 179

8.1 Properties of the hardware elements. 200

8.2 Properties of the software elements. 203

8.3 Values of hardware nodes for the BBW system. 204

xx

8.4 Values of communication links for the BBW system. 204

8.5 Values of software components for BBW system. 205

8.6 Values of interactions between components in the BBW system. . . . 205

8.7 Values of collocation restrictions between components in the BBW

system. 206

8.8 Ranges of parameters. 215

8.9 Tuned parameter values. 215

8.10 Redundancy Solutions. 216

8.11 Deployment Solutions. 217

8.12 The results of the case-study . 218

10.1 Linearity test of mutation rate [0.001, 0.249] 233

10.2 Linearity test of mutation rate [0.25, 0.49] 234

10.3 Linearity test of crossover rate [0.6, 0.79] 234

10.4 Linearity test of crossover rate [0.8, 0.99] 235

10.5 Linearity test of population size [20, 60] 235

10.6 Linearity test of population size [61, 100] 236

10.7 Linearity test of mating pool size [0.1, 0.39] 236

10.8 Linearity test of mating pool size [0.4, 0.69] 237

10.9 Linearity test of single-point mutation operator. 237

10.10 Linearity test of uniform mutation operator. 238

10.11 Linearity test of single-point crossover operator. 238

10.12 Linearity test of uniform crossover operator. 239

10.13 Kolmogorov-Smirnov test of mutation rate [0.001, 0.249] 239

10.14 Kolmogorov-Smirnov test of mutation rate [0.25, 0.49] 240

10.15 Kolmogorov-Smirnov test of crossover rate [0.6, 0.79] 240

10.16 Kolmogorov-Smirnov test of crossover rate [0.8, 0.99] 241

xxi

10.17 Kolmogorov-Smirnov test of population size [20, 60] 241

10.18 Kolmogorov-Smirnov test of population size [61, 100] 242

10.19 Kolmogorov-Smirnov test of mating pool size [0.1, 0.39] 242

10.20 Kolmogorov-Smirnov test of mating pool size [0.4, 0.69] 243

10.21 Kolmogorov-Smirnov test of single-point mutation operator. 243

10.22 Kolmogorov-Smirnov test of uniform mutation operator. 244

10.23 Kolmogorov-Smirnov test of single-point crossover operator. 244

10.24 Kolmogorov-Smirnov test of uniform crossover operator. 245

10.25 Durbin-Watson test of mutation rate [0.001, 0.249] 245

10.26 Durbin-Watson test of mutation rate [0.25, 0.49] 246

10.27 Durbin-Watson test of crossover rate [0.6, 0.79] 246

10.28 Durbin-Watson test of crossover rate [0.8, 0.99] 247

10.29 Durbin-Watson test of population size [20, 60] 247

10.30 Durbin-Watson test of population size [61, 100] 248

10.31 Durbin-Watson test of mating pool size [0.1, 0.39] 248

10.32 Durbin-Watson test of mating pool size [0.4, 0.69] 249

10.33 Durbin-Watson test of single-point mutation operator. 249

10.34 Durbin-Watson test of uniform mutation operator. 250

10.35 Durbin-Watson test of single-point crossover operator. 250

10.36 Durbin-Watson test of uniform crossover operator. 251

10.37 Breusch-Pagan test of mutation rate [0.001, 0.249] 251

10.38 Breusch-Pagan test of mutation rate [0.25, 0.49] 252

10.39 Breusch-Pagan test of crossover rate [0.6, 0.79] 252

10.40 Breusch-Pagan test of crossover rate [0.8, 0.99] 253

10.41 Breusch-Pagan test of population size [20, 60] 253

10.42 Breusch-Pagan test of population size [61, 100] 254

10.43 Breusch-Pagan test of mating pool size [0.1, 0.39] 254

xxii

10.44 Breusch-Pagan test of mating pool size [0.4, 0.69] 255

10.45 Breusch-Pagan test of single-point mutation operator. 255

10.46 Breusch-Pagan test of uniform mutation operator. 256

10.47 Breusch-Pagan test of single-point crossover operator. 256

10.48 Breusch-Pagan test of uniform crossover operator. 257

10.49 KPSS test of mutation rate [0.001, 0.249] 257

10.50 KPSS test of mutation rate [0.25, 0.49] 258

10.51 KPSS test of crossover rate [0.6, 0.79] 258

10.52 KPSS test of crossover rate [0.8, 0.99] 259

10.53 KPSS test of population size [20, 60] 259

10.54 KPSS test of population size [61, 100] 260

10.55 KPSS test of mating pool size [0.1, 0.39] 260

10.56 KPSS test of mating pool size [0.4, 0.69] 261

10.57 KPSS test of single-point mutation operator. 261

10.58 KPSS test of uniform mutation operator. 262

10.59 KPSS test of single-point crossover operator. 262

10.60 KPSS test of uniform crossover operator. 263

10.61 Linearity test of the mutation rate [0.001, 0.1249] 265

10.62 Linearity test of the mutation rate [0.125, 0.249] 266

10.63 Linearity test of the mutation rate [0.25, 0.3749] 266

10.64 Linearity test of the mutation rate [0.375, 0.49] 267

10.65 Linearity test of the crossover rate [0.6, 0.69] 267

10.66 Linearity test of the crossover rate [0.7, 0.79] 268

10.67 Linearity test of the crossover rate [0.8, 0.89] 268

10.68 Linearity test of the crossover rate [0.9, 0.99] 269

10.69 Linearity test of the population size [20, 40] 269

10.70 Linearity test of the population size [41, 60] 270

xxiii

10.71 Linearity test of the population size [61, 80] 270

10.72 Linearity test of the population size [81, 100] 271

10.73 Linearity test of the mating pool size [0.1, 0.249] 271

10.74 Linearity test of the mating pool size [0.25, 0.39] 272

10.75 Linearity test of the mating pool size [0.4, 0.549] 272

10.76 Linearity test of the mating pool size [0.55, 0.69] 273

10.77 Kolmogorov-Smirnov test of the mutation rate [0.001, 0.1249] 273

10.78 Kolmogorov-Smirnov test of the mutation rate [0.125, 0.249] 274

10.79 Kolmogorov-Smirnov test of the mutation rate [0.25, 0.3749] 274

10.80 Kolmogorov-Smirnov test of the mutation rate [0.375, 0.49] 275

10.81 Kolmogorov-Smirnov test of the crossover rate [0.6, 0.69] 275

10.82 Kolmogorov-Smirnov test of the crossover rate [0.7, 0.79] 276

10.83 Kolmogorov-Smirnov test of the crossover rate [0.8, 0.89] 276

10.84 Kolmogorov-Smirnov test of the crossover rate [0.9, 0.99] 277

10.85 Kolmogorov-Smirnov test of the population size [20, 40] 277

10.86 Kolmogorov-Smirnov test of the population size [41, 60] 278

10.87 Kolmogorov-Smirnov test of the population size [61, 80] 278

10.88 Kolmogorov-Smirnov test of the population size [81, 100] 279

10.89 Kolmogorov-Smirnov test of the mating pool size [0.1, 0.249] 279

10.90 Kolmogorov-Smirnov test of the mating pool size [0.25, 0.39] 280

10.91 Kolmogorov-Smirnov test of the mating pool size [0.4, 0.549] 280

10.92 Kolmogorov-Smirnov test of the mating pool size [0.55, 0.69] 281

10.93 Durbin-Watson test of the mutation rate [0.001, 0.1249] 281

10.94 Durbin-Watson test of the mutation rate [0.125, 0.249] 282

10.95 Durbin-Watson test of the mutation rate [0.25, 0.3749] 282

10.96 Durbin-Watson test of the mutation rate [0.375, 0.49] 283

10.97 Durbin-Watson test of the crossover rate [0.6, 0.69] 283

xxiv

10.98 Durbin-Watson test of the crossover rate [0.7, 0.79] 284

10.99 Durbin-Watson test of the crossover rate [0.8, 0.89] 284

10.100 Durbin-Watson test of the crossover rate [0.9, 0.99] 285

10.101 Durbin-Watson test of the population size [20, 40] 285

10.102 Durbin-Watson test of the population size [41, 60] 286

10.103 Durbin-Watson test of the population size [61, 80] 286

10.104 Durbin-Watson test of the population size [81, 100] 287

10.105 Durbin-Watson test of the mating pool size [0.1, 0.249] 287

10.106 Durbin-Watson test of the mating pool size [0.25, 0.39] 288

10.107 Durbin-Watson test of the mating pool size [0.4, 0.549] 288

10.108 Durbin-Watson test of the mating pool size [0.55, 0.69] 289

10.109 Breusch-Pagan test of the mutation rate [0.001, 0.1249] 289

10.110 Breusch-Pagan test of the mutation rate [0.125, 0.249] 290

10.111 Breusch-Pagan test of the mutation rate [0.25, 0.3749] 290

10.112 Breusch-Pagan test of the mutation rate [0.375, 0.49] 291

10.113 Breusch-Pagan test of the crossover rate [0.6, 0.69] 291

10.114 Breusch-Pagan test of the crossover rate [0.7, 0.79] 292

10.115 Breusch-Pagan test of the crossover rate [0.8, 0.89] 292

10.116 Breusch-Pagan test of the crossover rate [0.9, 0.99] 293

10.117 Breusch-Pagan test of the population size [20, 40] 293

10.118 Breusch-Pagan test of the population size [41, 60] 294

10.119 Breusch-Pagan test of the population size [61, 80] 294

10.120 Breusch-Pagan test of the population size [81, 100] 295

10.121 Breusch-Pagan test of the mating pool size [0.1, 0.249] 295

10.122 Breusch-Pagan test of the mating pool size [0.25, 0.39] 296

10.123 Breusch-Pagan test of the mating pool size [0.4, 0.549] 296

10.124 Breusch-Pagan test of the mating pool size [0.55, 0.69] 297

xxv

10.125 KPSS test of the mutation rate [0.001, 0.1249] 297

10.126 KPSS test of the mutation rate [0.125, 0.249] 298

10.127 KPSS test of the mutation rate [0.25, 0.3749] 298

10.128 KPSS test of the mutation rate [0.375, 0.49] 299

10.129 KPSS test of the crossover rate [0.6, 0.69] 299

10.130 KPSS test of the crossover rate [0.7, 0.79] 300

10.131 KPSS test of the crossover rate [0.8, 0.89] 300

10.132 KPSS test of the crossover rate [0.9, 0.99] 301

10.133 KPSS test of the population size [20, 40] 301

10.134 KPSS test of the population size [41, 60] 302

10.135 KPSS test of the population size [61, 80] 302

10.136 KPSS test of the population size [81, 100] 303

10.137 KPSS test of the mating pool size [0.1, 0.249] 303

10.138 KPSS test of the mating pool size [0.25, 0.39] 304

10.139 KPSS test of the mating pool size [0.4, 0.549] 304

10.140 KPSS test of the mating pool size [0.55, 0.69] 305

xxvi

List of Algorithms

1 Evolutionary Algorithm . 15

2 Bayesian Effect Assessment Strategy 106

3 Finding best and worst performing ranges. 163

4 Adjusting parameter ranges. 164

5 Fitness proportionate selection. 164

6 Probability Matching (PM). 168

7 Adaptive Pursuit (AP). 171

8 Dynamic Multi-Armed Bandit (DMAB). 172

xxvii

xxviii

List of Acronyms

\ FCS: Feedback Collection Strategy

\ BEA: Bayesian Effect Assessment

\ QAS: Quality Attribution Strategy

\ PQA: Predictive Quality Attribution

\ ARPS: Adaptive Range Parameter Selection

\ PM: Probability Matching

\ AP: Adaptive Pursuit

\ DMAB: Dynamic Multi-Armed Bandits

\ EA: Evolutionary Algorithm

\ EDA: Estimation of Distribution Algorithms

\ ES: Evolutionary Strategies

\ GA: Genetic Algorithm

\ GP: Genetic Programming

\ MQAP: Multiobjective Quadratic Assignment Problem

\ RR: Royal Road problem

\ QAP: Quadratic Assignment Problem

\ RAP: Redundancy Allocation Problem

\ CDP: Component Deployment Problem

xxix

xxx

Part I

Introduction, Background and

Methodology

1

Chapter 1

Introduction

Due to their general applicability, stochastic optimisers such as Evolutionary Al-

gorithms (EAs) are popular among scientists and engineers facing difficult opti-

misation problems. Stochastic algorithms are not expected to deliver the optimal

solutions, but to provide good approximate results where exact approaches cannot

be devised and optimal solutions are hard to find. Usually, these algorithms make

no assumptions about the nature of optimisation problem, therefore they are also

called black-box optimisation methods.

Stochastic optimisation algorithms are often used to solve combinatorial optimi-

sation problems, where an exhaustive search of the search space is not feasible in

polynomial time. A combinatorial optimisation problem can be defined as choosing

the best solutions from all possible combinations of n different variables. The pos-

sible solutions may include all trees of n nodes or all possible Hamilton cycles of a

complete graph with n nodes. Moreover, the objective functions are often computa-

tionally expensive and non-linear. Listing all possible solutions in order to find the

best candidates is a non-deterministic polynomial-time hard (NP-hard) problem, i.e.

solvable in polynomial time by a non-deterministic Turing machine.

Evolutionary Algorithms (EAs) have shown good performance in solving hard

optimisation problems. They maintain a population of solutions which is evolved

with the help of the genetic operators: mutation, crossover, often called recombina-

3

tion, selection and replacement. The mutation and crossover operators are employed

to produce new solutions using candidate solutions from the population. The mu-

tation operator creates a new solution by performing a random or guided change in

one of the members of the current population, whereas the crossover operator is used

to combine features of existing solutions. The selection operator is used to select

the solutions that will undergo the variation procedure, which is composed of the

mutation and crossover operators. Finally, the replacement operator is employed to

decide which solutions should survive to the next iteration. These operators and

other elements of an EA that are involved in the process of variation and selection,

such as the probabilities of applying these operators, the population size, the number

of offspring produced, are the algorithm parameters.

Formerly, EAs were seen as robust algorithms that exhibit approximately similar

performance over a wide range of problems [66]. Hence, the use of these algorithms

has increased over the years, especially in the Software Engineering domain [62, 97,

119]. The architecture design optimisation of embedded systems [21, 50, 62, 147,

193, 119] is one of the fields of the Software Engineering where the application of EAs

has become almost a necessity. Architecture design entails making a multitude of

decisions regarding the prospective system. Numerous stakeholders are interested in

certain quality attributes of the system, which are dependent on the decisions made

on the architecture [62, 97, 119], such as the allocation of the software architecture to

the hardware resources [129, 4, 147] and the selection of the redundancy levels for the

safety-critical components [73, 127]. The quality attributes are often in conflict with

each other and solutions which are optimal according to all quality attributes may

not exist. As embedded systems get larger and more complex, the task of finding

high-quality architectures becomes unmanageable for a system engineer. The use

of EAs in architecture optimisation helps not only make better decisions, but also

reduce the time required for the decision.

4

In recent years, it has been acknowledged that the robustness of Evolutionary

Algorithms is mostly due to the numerous parameters that these algorithms have [66,

48, 135, 13], which make the optimisation procedure flexible and efficient for any kind

of problem, regardless of the search space difficulty. The settings of the parameter

values, greatly affect the performance of the algorithm [135, 13, 115, 49].

Unfortunately, practitioners usually have little expertise in the Artificial Intelli-

gence field, and they require guidance in the application of stochastic methods to

their particular problems. Even after many years of research into EAs and other

stochastic approaches, there are no straightforward parametrisation guidelines for

interdisciplinary users of these methods. For instance, general guidelines regarding

the crossover rate recommend using a value equal to 0.6 [39], 0.95 [69], or any value

in the range [0.75, 0.95] [160]. Similarly, DeJong [39] recommends a mutation rate

equal to 0.001, whereas Grefenstette [69] argues that the mutation rate should be

less than 0.05.

The reason for these conflicting guidelines, is the fact that different parameter

values may be optimal for different problems. Mitchell [137] noted that it is unlikely

that general principles about EA parameter configurations can be formulated, and

Eiben and Smit [49] argued that setting EA parameters is an optimisation problem

in itself. As a consequence, practitioners tend to choose parameter values based on

few trials in which various parameter settings are explored in an attempt to fine-tune

an EA to a particular problem. A conceptual framework for tuning EA parameters

and an insightful analysis of state-of-the-art tuning methods is presented by Eiben

and Smit [49].

However, it has been empirically and theoretically demonstrated that different

parameter settings are required not only for different problem instances but also

for different optimisation stages of that instance [13, 9, 179, 174, 77, 29, 180]. For

instance, the ‘optimal’ values of mutation rate in an Evolutionary Algorithm were

5

studied in a set of different benchmark problems [29], where it was shown that

these values depend on the state of the search space and any fixed mutation rate

produced sub-optimal results. Similar works have proposed a time-dependency of

certain algorithm parameters, such as the mutation rate [77, 38, 15], the crossover

rate [38] and the population size [13, 115].

In essence, tuning parameter values before the optimisation process does not

guarantee an optimal performance of the EA. This problem has been tackled by

many researchers in the optimisation community [13, 45, 66, 55, 174, 43, 154, 134, 77,

9, 179, 28], who proposed to set the parameter values of an EA during the run, known

as parameter control [45, 66, 55, 33, 37, 82, 84, 94, 114, 163, 183]. The intuitive

motivation comes from the way the optimisation process unfolds from a more diffused

global search, requiring parameter values responsible for the exploration of the search

space, to a more focused local optimisation process, requiring parameter values

which help with the convergence of the algorithm.

Different parameter control techniques exist in the literature. Following the clas-

sification by Eiben et al. [45], methods for controlling parameters of an EA perform

this task in three different ways: deterministically, self-adaptively or adaptively.

Deterministic parameter control can be regarded as a variation of parameter

tuning, in which several parameter settings are chosen based on preliminary experi-

ments [133], to alleviate the performance problems of parameters that are invariate

throughout the optimisation process. These changes are based on time, i.e. new

values are assigned after every predetermined number of iterations. One example is

decreasing the mutation rate every w iterations [57]. The problem then lies in devis-

ing such a schedule, i.e. in finding the ideal value for w. This schedule depends on

the total number of iterations that the optimisation algorithm will take to converge,

an information that usually is not possible to know before the run.

Another way of tackling this issue is using an optimisation procedure composed

6

of two levels; the top optimisation level evolves the parameters of a second level.

Rechenberg [154] presents one of the first examples of this approach, by using a

‘nested’ Evolution Strategy (ES), where an ES is used to evolve the parameters

of a lower-level ES. This is an example of self-adaptive parameter control. The

choice of the parameter values of the top level EA still remains open. Other self-

adaptive parameter control methods integrate the search for optimal parameters

into the optimisation process itself - usually by encoding parameter settings into

the genotype of the solution to evolve [13, 15, 53, 40]. Extending the solution size

to include the parameter space obviously increases the search space and makes the

search process more time-consuming [45].

In adaptive parameter control [181, 56, 33, 37, 82, 84, 94, 114, 163, 183], proper-

ties of an EA run (such as the quality of the solutions produced) are monitored and

the change in the properties is used as a signal to change parameter values. The

update mechanism to control the parameter values is decided by the user, rather

than being part of the evolutionary cycle.

Usually, an adaptive parameter control mechanism performs four main steps: (i)

it measures the change in the properties of the optimisation algorithm (feedback col-

lection), such as the quality of the solutions produced, (ii) it employs the feedback

from the search to infer the effect of parameter values on the successful performance

of the optimisation process (parameter effect assessment), such as producing solu-

tions with quality above a certain threshold (iii) it approximates the overall quality

of parameter values to use in the next iteration (parameter quality attribution),

and (iv) it adjusts the values of the parameters according to the estimated quality

(parameter value selection). This thesis investigates each of these four steps and

introduces effective ways of controlling parameter values in an adaptive way.

Current research in feedback collection mechanisms for parameter control meth-

ods focuses only on singleobjective optimisation, in which the relevant property that

7

indicates the performance of the algorithm is the change in fitness of the best so-

lution. Measuring the performance of multiobjective optimisation algorithms is not

as straightforward, since the output is a set of solutions which constitute a trade-off

between the fitness functions, hence the selection of a feedback collection mechanism

remains a challenge. With the aim of selecting an appropriate feedback collection

mechanism to guide the control of parameter values in multiobjective optimisation,

we investigate state-of-the-art multiobjective performance metrics. The analysis of

the different multiobjective performance metrics is presented in Chapter 4 and the

results of the comparison of different feedback collection strategies are discussed in

Section 4.4.

Approximating the cause of the successful performance of a stochastic algorithm

is challenging, since stochastic methods generally produce different results for the

same parameter values [43], and the performance of the algorithm may be affected by

more than one parameter value. In order to deal with the noise of stochastic systems,

such as Evolutionary Algorithms, we propose a new probabilistic parameter effect

assessment strategy, which is based on Bayesian Belief Networks. The Bayesian

Effect Assessment (BEA) strategy is described in Chapter 5 and the validation of

the the approach is presented in Section 5.5.

State-of-the-art parameter quality attribution methods derive parameter quality

from recent performance, such as result quality in preceding iteration(s) (time t−1).

One might argue that these approaches are ‘one step behind’, in that they propose

the use of the parameter value which is optimal for the previous iteration. Ideally,

we would use a setting optimised for the beginning iteration (time t). It follows that

an ideal parameter quality attribution strategy would attempt to predict successful

parameter values for time t based on previous performance.

The current work explores the hypothesis that using time series prediction to

forecast the success of parameter values based on previous quality improves the

8

choice of parameters, and as a result improves the performance of the algorithm.

To this end, suitable forecasting techniques are explored, with the goal of achiev-

ing adequate predictions of the quality of parameter values. Different forecasting

techniques, and the analysis of the assumptions they make regarding the time-series

data are discussed in Chapter 6. An empirical evaluation of the proposed Predictive

Quality Attribution Strategy (PQA) is presented in Section 6.5.

The parameter value selection strategies employed in current state-of-the-art pa-

rameter control methods use predefined parameter ranges to sample the continuous

values from or defined discretised choices. The quality feedback and therefore the

probability of use in the next iteration is allocated to these ranges, not the actually

sampled values. As the ranges are fixed, they remain sub-optimal throughout the

optimisation process. Defining narrow ranges leads to more accuracy but increased

combinatorial complexity. Leaving ranges wider entails a sampling inaccuracy as

the actually sampled value may be far from the value whose success the range’s

usage probability is attributable to. Ideally, the ranges should be optimised by the

parameter control process.

With the goal of handling parameter value ranges efficiently, we investigate the

use of adaptive value ranges which dynamically change during the optimisation

process. The proposed parameter value selection strategy is described in Chapter 7

and is validated in Section 7.3.

In essence, the goal of this thesis is to build an efficient optimisation framework

which eliminates the requirement of tuning the parameters to a specific problem and

that finds better solutions than state-of-the-art optimisation frameworks. Efficiency

in this case refers to the following attributes for the optimisation approach:

1. Achieves good solutions with respect to the objectives being optimised com-

pared to state-of-the-art parameter control methods.

9

2. Requires minimal effort in configuring the optimisation algorithm.

3. Is robust with respect to different problems being optimised: i.e. the perfor-

mance of the algorithm is independent of the problem and problem instance.

With these goals in mind, the contributions of this thesis are empirically vali-

dated by using a case study from the automotive domain and a set of experiments

designed to compare the proposed strategies with state-of-the-art parameter control

approaches. The case study and the application of the adaptive parameter control

for Evolutionary Algorithms are described in Chapter 8. The methodology used in

this thesis is described in Chapter 3. The results and the analysis of the experi-

ment on a set of benchmark optimisation problems are presented in each chapter.

The conclusions of this work are presented in Chapter 9. A further discussion on

the overall approach and possible ideas and directions about the future work are

presented in Chapter 10.

10

Chapter 2

Background

2.1 Introduction

This chapter presents a general background on Evolutionary Algorithms (EA), the

different parameters and methods for configuring EA parameters. First, we give

a brief introduction to singleobjective and multiobjective optimisation, followed by

a more in-depth description of how optimisation is performed in different classes

of Evolutionary Algorithms (Genetic Algorithm, Evolution Strategies, Genetic Pro-

gramming, Evolutionary Programming) and the strategy parameters that are used

in each of the different algorithm classes.

Next, we present a review of state-of-the-art methods in configuring parameters

of Evolutionary Algorithm, which are categorised as parameter tuning and param-

eter control. We analyse conflicting views in the matter of parameter tuning and

parameter control and define the scope of the work presented in this thesis. Fi-

nally, we describe how various EA parameters have been configured using the three

parameter control techniques - deterministic, self-adaptive and adaptive parameter

control.

11

2.2 Optimisation

The goal of optimisation is to find the optimal solution(s) s∗ among a set of solutions

S = {s1, s2, ..., sn}, according to the objective function f(s), which describes the

quality of each solution in S. The objective function f : S → Y with Y ⊂ R is

a mathematical function, or algorithm for which an optimal value is sought. The

domain S is the Cartesian product of domains of possible variables and the range Y

of the objective function is a subset of the real numbers R. S is the problem space,

also called the search space, and Y is the objective space, or fitness space.

In many real world applications, the optimisation problem has more than one

objective to optimise, and often these objectives are conflicting with each other.

Multiobjective optimisation deals with conflicting objectives by optimising them

simultaneously. Formally, a multiobjective optimisation problem is described as

follows:

Optimise : F (s) = [f1(s), f2(s), ..., fo(s)] (2.1)

where s is a solution to be evaluated, fi for i = 1, 2, ...o are functions quantifying

the quality of the candidate with respect to o objectives (being optimised).

Often, there is a set of conditions that the candidate solutions must satisfy, which

are defined as constraints. A multiobjective optimisation problem that satisfies a

set of constraints is defined as follows:

Optimise : F (s) = [f1(s), f2(s), ..., fo(s)] (2.2)

such that : Ωi(s) = 0, Γj(s) ≤ 0 i = 1, 2, ...,m, j = 1, 2, ..., g

where Ωi and Γj are the equality and inequality constraints that have to be

satisfied in order for the solution to be feasible.

12

The objective functions are often in conflict with each other and solutions which

are optimal according to all objectives may not exist. The optimal result is a group of

solutions which represent different combinations of trade-off between the objectives,

defined by dominance relations [195].

One solution s∗ dominates another solution s if the values of all objective func-

tions at s∗ are not worse than those at s, denoted as fj(s) ≺ fj(s
∗), or the value of

at least one objective function at s∗ is better than the value of the same objective

function at variable s, represented as fi(s) / fi(s
∗). The set of optimal solutions is

called Pareto-optimal after work by Pareto [148], defined as follows:

Definition 1 Pareto optimal solution:

A variable s∗ is Pareto-optimal if there exist no other s such that fi(s) ≺ fi(s
∗) for

all i = 1, ..., o and fj(s) / fj(s
∗) for at least one j.

In other words, if there exists no other feasible variable s which would be superior

in at least one objective while being no worse in all other objectives of s∗, then s∗

is said to be Pareto optimal and dominate solution s.

The Pareto-optimal sets of multiobjective problem instances are most often un-

known. Multiobjective optimisation approaches usually attempt to approximate

the Pareto set and report nondominated sets, i.e. the set of solutions which are not

dominated among the result solutions found by the algorithm.

13

2.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [81] are nature-inspired optimisation methods that

are often used for solving NP-hard optimisation problems. They can be defined as

a set of steps for quickly identifying results of high-quality in a limited amount of

time. EAs are usually used in cases where exact methods are not applicable, and

are associated with problems for which an optimal solution cannot be computed by

an exact algorithm.

EAs maintain a population of solutions that evolve by means of the genetic

operators: the variation procedure (V), which is composed of the mutation operator

(m̂) and the crossover operator (ĉ), the selection procedure (S), and the replacement

procedure (R), which may also be referred to as survivor selection procedure [49].

The objective is to search the solution space in order to optimise the quality functions

F : S → R.

The main steps of a traditional Evolutionary Algorithm are given in Algorithm 1.

The optimisation process starts with a set of solutions (S0) as initial population,

which can be randomly generated, created by applying heuristic rules (e.g. greedy

algorithm), or provided by an expert. After the initialisation, EA evolves the popula-

tion using crossover, mutation and selection operators. The crossover and mutation

operators are applied according to predefined crossover and mutation rates (ĉr, m̂r)

respectively. These operators are applied to specific solutions, which are selected

according to the selection procedures (S).

The new individuals (offspring) created by the genetic operators are added to

the population. The number of offspring generated every iteration t is denoted as

λ. The replacement procedure R selects the solutions that will survive in the next

generation and removes as many individuals as required to maintain the prescribed

population size µ.

14

Algorithm 1 Evolutionary Algorithm

1: procedure EA(F , µ, λ, R , V , S , m̂ , m̂r, ĉ, ĉr, stoppingCriteria)
2: S0 ← Random(µ)
3: t = 0
4: while stoppingCriteria 6= true do
5: for i← 1, λ do
6: Evaluate(F, si)
7: end for
8: St(parents) = S(St)
9: S ′t+1 = V(St(parents), λ, m̂, m̂r, ĉ, ĉr)

10: St+1 = R(S ′t+1)
11: t = t+ 1
12: end while
13: Return(S)
14: end procedure

Traditional EAs can be classified into four main categories: Genetic Algorithms

(GAs) which are usually used for discrete problems, Genetic Programming (GP),

which is used for executable expressions, Evolution Strategies (ES), which were de-

vised to optimise the design and analysis of experiments in flexible systems and are

used for continuous problems, and Evolutionary Programming (EP), which was con-

ceived as a model to represent adaptive processes. Implementation of Evolutionary

Algorithms can be found, that do not belong to any of the above categories, which

may have a problem-specific representation and problem-specific operators.

All EA variations use the same principles of the evolutionary process but are

adapted with different strategies. They are different in the way the solutions are

encoded, the type of selection and recombination procedure and the number of

population (parent, offspring). However, all four of them use the same framework

of first generating a random initial population which is changed over time by means

of genetic operators (variation, selection and replacement procedures). The genetic

operators and other parameters of EAs are configured in a way that they ensure the

exploration and exploitation of the search space, affecting the performance of the

EA.

15

2.3.1 Genetic Algorithm

Genetic Algorithms were first devised by Bremermann [24], and later on extended

by Holland [81]. They were initially developed to model and investigate organic

evolution and adaptation capabilities, but they received more attention in the field

of optimisation.

In general, Genetic Algorithms are well-studied and well-understood. There is a

large body of literature in the GA community regarding the role and the effects of the

population size [190, 47, 115], various crossover operators and rates [181, 15, 123],

and mutation operators and rates [15, 123].

In Genetic Algorithms, the solutions are represented as genomes, which are en-

coded using an alphabet with low cardinality, e.g. binary representation, or high car-

dinality, e.g. integer [22] or floating point [89] representation. Goldberg [66] argues

that higher order representations perform better than lower order ones. Janikow and

Michalwicz [89] performed an experimental comparison of the binary and floating

point representations. The results of the experiments showed that the floating point

representation is faster, and gives better results than the binary representation. Fur-

thermore, Davis [38] points out that problem parameters are usually numeric values,

hence it makes more sense to represent them as numbers (integer or floating point)

rather than binary strings.

The objective function determines the quality of the solution. Initially, the pop-

ulation is created by randomly generating µ solutions, which are then varied by

using the crossover and mutation operators to create λ offspring. The first Genetic

Algorithms used a single-point crossover operator, which cuts two solutions at a

randomly chosen position, and exchanges the two parts of the parents, creating two

offspring. Later versions of GAs include many other crossover operators, which of-

ten have more than one crossover point. De Jong [39] analysed different crossover

16

operators, concluding that 2-point crossover operator is the most effective one, and

that increasing this number of crossover-points reduces the performance of the al-

gorithm. A high number of crossover points may help in better exploration of the

search space, however, it can disrupt the blocks with high quality in the parents.

The mutation operator is normally used with a lower rate compared to the

crossover operator, which makes the recombination (i.e. the crossover of the so-

lutions) the primary source of variation in the population. The mutation operator

randomly changes the value of one or more elements of the genome. For instance,

in single-point mutation, only one bit is randomly changed with a given probabil-

ity. The mutation operator introduces new information into the population and is

considered a random variation. Nevertheless, it is the crossover operator that is

considered as the main factor for a thorough search of the possible solutions.

The selection procedure chooses the solutions (or parents) that undergo variation.

For example, in binary tournament selection, two solutions are picked at random as

contestants in tournaments and the solution with the highest quality is changed by

using the mutation operator. The replacement procedure selects the solutions that

survive to the next generation. It can be performed by first ranking the solutions

and selecting the best ones, or by a fitness proportionate selection, which gives each

solution a chance proportional to their fitness.

2.3.2 Evolution Strategies

Evolution Strategies (ESs) [155, 154] were initially devised to optimise the design

and analysis of experiments in flexible systems. The ES used for this purpose was

composed of two simple steps: (i) random variation of the controlled variables, and

(ii) if the quality of the system becomes better, the changes were accepted, otherwise

the system returned to the previous state. This algorithm was later called (1+1)-ES,

17

since it has only one parent (µ = 1) and one offspring (λ = 1).

Interestingly, this Evolution Strategy with two members was probably the first

example of parameter control, in which the mutation operator is adapted using the

1/5 success rule [155]. The 1/5 rule is formulated as follows:

The ratio of successful mutations to all mutations should be 1/5. For greater

ratios increase the mutation points; for smaller ratios decrease the mutation points.

Rechenberg [154] added the notion of population into Evolution Strategies, by

developing the (µ+λ)-ES, in which the population size is greater than one and more

than one offspring is produced every iteration. Both parents and offspring are used

in the replacement procedure, in which the best of µ + λ solutions survive to the

next generation.

The (µ + λ)-ES is not a widely used optimisation strategy, however, it inspired

Schwefel [166] to further enhance it by introducing the (µ, λ)-ES. The only difference

from the previous one is that only the offspring (λ) are used in the replacement

procedure, in which the best of λ survive to the next generation. The general

representation of Evolution Strategies can be defined as (µ, λ, κ)-ES, where κ is a

parameter which determines the maximum number of generations that an individual

can survive. In the case of (µ, λ)-ES, κ = 1, whereas for (µ+ λ)-ES, κ is unlimited.

Similar to Genetic Algorithms, Evolution Strategies represent solutions with a

linear data structure. ESs are usually used for numerical optimisation problems,

hence the solutions are represented as real-valued vectors. Genetic Algorithms, on

the other hand, are mostly used for discrete optimisation problems.

Evolution Strategies are based on the principle of strong causality, which states

that small variations in the solution provoke only small variations in its fitness.

Unlike Genetic Algorithms, in Evolution Strategies only the mutation operator is

used. Beyer and Schwefel [19] present a comprehensive introduction to Evolution

Strategies. One of the notable ES is the Matrix Adaptation-ES [74], which uses a

18

parameter control mechanism to adapt the mutation step-size, shape and direction.

2.3.3 Genetic Programming

The main difference between Genetic Programming (GP) and the previously dis-

cussed Evolutionary Algorithms is the representation of solutions, in which each

individual encodes an executable program. Traditionally the genotype is a tree

structure, which can be evaluated in a recursive manner. The leaves of the tree

represent the operands, whereas the other nodes represent the operators. Due to

its applicability with programming languages that are represented as trees, GP is

usually used to optimise programs written in Lisp and other functional program-

ming languages. The variation occurs by means of crossover and mutation operators

similar to GAs.

2.3.4 Evolutionary Programming

Evolutionary Programming (EP) did not start as an optimisation strategy. It was

initially conceived as a model to represent adaptive processes, such as finite state

automata for machine learning problems [60]. More recently, it was used as an op-

timisation algorithm after being adapted by Fogel [59]. Despite being developed

independently from each other, some researchers argue that Evolutionary Program-

ming is based on Genetic Algorithms and Evolution Strategies, and often consider it

as a special case of ES. Evolutionary Programming does not use a crossover operator.

19

2.4 Methods for Configuring Parameters of Evo-

lutionary Algorithms

Following the classification introduced by Eiben et al. [45] methods for configuring

parameters in Evolutionary Algorithms (EAs) fall into one of two main categories:

parameter tuning and parameter control. Methods that fit in the first category

find the near-optimal parameter configuration prior to the optimisation process,

whereas the second category contains methods that start the optimisation process

with a suboptimal parameter configuration and adapt (optimise) their values during

the search process.

2.4.1 Parameter Tuning

In optimisation, approximate methods such as EAs are often used because of a

lack of knowledge about the fitness landscapes of the problem at hand. However,

successful applications are dependent on the usage of suitable parameter values.

For previously unknown solutions, only general guidelines regarding the parameter

settings are usually available [42]. As a consequence, practitioners tend to choose

parameter values based on few trials in which various parameter settings are explored

in an attempt to fine-tune an EA to a particular problem. As the number of training

instances is usually limited, parameter quality estimates can be orders of magnitude

too optimistic, which may lead to strongly impaired performance.

In more rigorous approaches, ANOVA or Design of Experiments have been used

for parameter tuning [20, 192, 17, 144]. This can lead to a combinatorial explosion

of parameter value combinations and requires extensive computation. For instance,

the tuning of 5 parameters which can take 4 different values requires 45 = 1024

different experimental designs. Considering the stochastic nature of the optimisation

20

algorithms, each experimental design has to be run more than once to get more

reliable results.

A different method which requires less computations is the use of a racing tech-

nique proposed by Yuan and Gallagher [192] and Birattari et al. [20]. A conspicuous

example of this technique is the F-Race algorithm [20]. F-Race uses a statistical test

to discard poorly performing parameter values from the tuning process. First the

parameter values are discretised into different ranges. At the beginning parameter

values are sampled from all ranges. The method uses Friedman two-way analysis of

variance by ranks test to discard ranges that perform significantly worse than the

best range. Despite being computationally less expensive than using ANOVA or

Design of Experiments, F-Race still requires a large number of runs. This is due to

the initial runs that have to be performed for each initial parameter configuration

before starting the discarding technique.

To solve this problem, Balaprakash et al. [16] proposed an improvement of the F-

Race technique by sampling from the whole set of configurations instead of individual

parameter ranges. If available, a-priori knowledge about the search space can be

incorporated into the tuning technique. This method is called Random Sampling

Design F-Race (RSD/F-Race). By discretising the parameter values into ranges,

the possible number of parameter range combinations becomes less than the possible

number of parameter value combinations. Nevertheless, a large number of runs is

required to assess all of them, since stochastic algorithms, and especially EAs have

many parameters which have to be tuned. Another problem is the decision regarding

the number of ranges. If parameter values are discretised into narrow ranges, the

number of possible configurations increases, increasing the combinatorial complexity

of the search. Defining wider ranges reduces the number of experimental runs, but

reduces the sampling accuracy.

Since exploring EA parameters is generally very time consuming and computa-

21

tionally expensive, De Jong [42] suggested that these parameter explorations should

be carried out in a more general offline setting. The goal is to find EA parameter

configurations that are optimal for a class of problems, and then use these con-

figurations in practice whenever such a problem arises [42]. The author focused

mainly in Genetic Algorithms with single-point crossover and bit mutation as ge-

netic operators. Using a set of test functions, well performing parameter values were

experimentally determined as follows:

\ population size: 50

\ crossover rate: 0.6

\ mutation rate: 0.001

\ selection strategy: elitism

However, these parameter values may not have the same performance with other

problems which are different from the test functions used by De Jong. Grefen-

stette [70] studied the same algorithm parameters as De Jong, in two different ex-

perimental settings for the evaluation of the best parameter configurations: the

offline performance of the algorithms, which reports the best parameter setting, and

the online performance which considers the average performance of the system over

the iterations. For the same class of problems as the ones used by De Jong [42], the

following parameter settings produced the best performance:

\ population size: 30 (online), 80 (offline)

\ crossover rate: 0.95 (online), 0.45 (offline)

\ mutation rate of 0.01(online), 0.01 (offline)

\ selection strategy: elitism (online), pure replacement (offline)

Both De Jong [42] and Grefenstette [70] attempted, with conflicting results, to

find the optimal parameter settings that would suit a wide range of optimisation

22

problems. The task to build a database of well performing parameter values for every

possible problem or problem class would require an enormous effort and amount of

time, and it might not even be possible.

Some other common parameter settings for the crossover rate, which were ob-

tained by using a Genetic Algorithm are as follows: ĉr = 0.6 [39], ĉr = 0.95 [69],

ĉr ∈ [0.75, 0.95] [160].

Clearly, recommended values in the literature for the crossover rate and other

parameter values vary from each other. This may confuse practitioners when they

have to choose an appropriate value for their problem. One common agreement on

the crossover rate is that its values should not be too low, and values which are

below 0.6 are not used very often.

An insightful survey and classification of tuning methods is presented by Eiben

and Smit [49]. Parameter tuning methods are categorized into sampling meth-

ods [141, 63], iterative sampling methods [141, 1], model-based methods [51, 92],

iterative model-based methods [35, 17], screening methods [164, 156, 80, 98], it-

erative screening methods [16], meta Evolutionary Algorithms [131, 69], enhanced

meta Evolutionary Algorithms [144, 143, 172] and multiobjective meta Evolutionary

Algorithms [173].

Parameter tuning is important when comparing different optimisation algorithms.

However, one aspect that is not considered by parameter tuning approaches is the

fact that the optimisation process evolves in a dynamic way from a more diffuse

global search, which requires parameter values suited for the exploration of the

fitness landscape, to a more focused local optimisation process, which requires pa-

rameter values which help with the convergence of the algorithm. Hence, different

algorithm configurations are optimal at different search-stages, a fact that has been

demonstrated in an empirical and theoretical way by many researchers [9, 179, 174,

77].

23

In summary, parameter tuning has been criticised as inadequate for the following

reasons:

\ Parameters are not independent and must be explored systematically in combi-

nation. This is practically impossible due to the large number of combinations.

\ Parameter tuning is time-consuming.

\ It has been demonstrated that different values of parameters can be optimal at

different stages of the search [9, 179, 174, 77]

As a result, instead of tuning the parameters before the run of the optimisation

algorithm, methods for controlling them during the run were devised, referred to as

parameter control.

2.4.2 Parameter Control

Parameter control addresses the requirement of finding optimal parameter config-

urations as the search proceeds. More specifically, it describes a process where

trials start with initially suboptimal parameter values which are improved during

the run-time of the algorithm.

Formally, given a set {υ1, ..., υn} of n algorithm parameters, where each parame-

ter υi has {υi1, ..., υim} values that can be discrete numbers or intervals of continuous

numbers, parameter control has the task of deriving the optimal next value υij to op-

timise the influence of υi on the performance of the algorithm. As an example, when

the mutation rate υ1 is dynamically adjusted by considering 4 intervals (m = 4), υ12

stands for a mutation rate sampled from the second interval. In the discrete case of

optimising the type of mutation operator υ2, υ22 stands for the second operator.

Different parameter control methods exist in the literature, which have been re-

viewed and classified in different ways [45, 174, 6, 37, 183, 174]. Following the clas-

sification proposed by Eiben et al. [45], parameter control methods can be grouped

24

into three categories: deterministic parameter control, self-adaptive parameter con-

trol and adaptive parameter control.

Deterministic parameter control

The parameter values are changed according to deterministic rules which are set a

priori in a fashion similar to those used in simulating annealing. Usually the rules

are based on time, i.e. a new rule is used every predetermined number of iterations,

and no feedback from the search is used. One example is decreasing the mutation

rate every w iterations, which was introduced by Fogarty [57]. The author observed

a considerable improvement in the performance of the algorithm when compared to

static settings. This improvement was achieved for an initial population where all

the solutions were composed of zero bits. Similarly, Davis [38] advocates the use of

a time-varying schedule for operator rates.

Hesser and Männer [77] theoretically calculated an optimal schedule for changing

the mutation rate, which is as follows:

m̂r =

√
α

β

exp(−γt
2

)

µ
√
L

(2.3)

where α, β and γ are constants, µ is the population size and t is the iteration

number or time-step. This deterministic schedule increases the mutation rate expo-

nentially in proportion to the time-step. In other words, the mutation rate has a

small value at the beginning of the optimisation process and increases over time.

Instead of using time, Bäck [11] presents a deterministic parameter control

method which decreases the mutation rate using the distance to the optimal so-

lution. The mutation rate is calculated as follows:

m̂r ≈
1

2(f(s)− f(s∗))− L (2.4)

25

where f(s) is the fitness of the current best solution, and f(s∗) is the fitness of the

optimal solution.

Bäck and Schuetz [15] improved this deterministic parameter control method

by setting a minimum mutation rate value equal to 1
L

if a maximum number of

evaluations is achieved. This schedule starts with a mutation rate equal to 0.5.

Deterministic parameter control is difficult to accomplish since it is not obvious

how to predict the number of iterations the EA will take to converge, and set a pa-

rameter control schedule accordingly. Deterministic parameter control faces similar

difficulties as parameter tuning, as the parameter adaptation mechanism has to be

defined a priori and does not take any notion of the actual progress of the search.

One might argue that predefining intervals in the optimisation process and preas-

signing different parameter settings to each interval is likely to lead to suboptimal

values for some problems or instances. For example, parameter reassignment inter-

vals will ideally be shorter when optimising smaller problems, as the search progress

will be faster when the problem complexity is lower.

Self-adaptive parameter control

In self-adaptive approaches [11, 53, 40, 104, 12], the parameters to be adapted are

encoded in the individuals and evolved simultaneously with the traits of the solution

to the problems. Individuals that have a high fitness will survive and propagate

these successful parameter values which are assumed to be the reason for the good

performance. An insightful review of self-adaptive methods is provided by Bäck [12].

Self-adaptive parameter control is acknowledged as one of the most effective

approaches to adapting the parameters of EAs, especially when performing contin-

uous parameter optimisation [43]. They were first applied to Evolution Strategies,

which are the algorithms that commonly use self-adaptation. The investigation of

the relationship between the number of crossover positions in a chromosome pair

26

and the population [158] is one of the earliest approaches in this area. The study

shows that increasing the number of crossover points increases the scope of the ex-

ploration of the search space. Furthermore, the importance of the adaptation of

the relationship between the population and the selection pressure is stressed, and

recommendations regarding the self-adaptation of the crossover rates are provided.

Another self-adaptive parameter control applied to Evolution Strategies is the adap-

tation of the mutation step size by Rechenberg [154]. Two exemplary self-adaptive

approaches in Evolution Strategies are the Covariance Matrix Self-adaptation Evo-

lution Strategy (CMSA-ES) by Kramer [103] and Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) by Hansen and Ostermeier [74]. Both methods are

based on the covariance computation of the differences in fitness of the best solution

and the parent solution.

A notable self-adaptive parameter control method for Genetic Algorithms is the

work of Bäck [11], in which the operator rates were adapted. This work was extended

to include the population size [13] which was adjusted with an adaptive parameter

control method. The self-adaptive method controls the mutation rate between 0.001

and 0.25, which is encoded in the genotype of each solution. The adaptation process

starts with random values for the mutation rate of each individual within the prede-

fined range [0.001,0.25]. At every iteration, first the bits that encode the mutation

rate are mutated. Next, the new value of the mutation rate is employed to change

the bits that encode the solutions.

Bäck et al. [13] adjusted the crossover rate in the range [0.0,1.0], by encoding

the values at the end of the solutions representation, similar to the mutation rate.

Initially, all crossover rates were initialised by generating random numbers in the

range [0.0,1.0]. Tournament selection was employed to select the parent solutions

to use in the variation procedure. A random number r was generated, which was

compared with the solutions crossover rate. If r was lower than the crossover rate,

27

then the parent solution was selected for the crossover procedure, otherwise it was

uniformly mutated. In essence, the study showed that the algorithm with dynamic

parameter values performed better than static ones. However, the authors hypothe-

sise that the main reason of the out-performance is the adaptation of the population

size [13].

The adaptation of the mutation rate in a steady state Genetic Algorithm was

introduced by Smith and Fogarty [174], in which the authors demonstrate that using

a self-adaptive method outperforms fixed mutation rates suggested by other authors.

Since self-adaptive methods encode parameter values into the solution represen-

tation, they are generally used to adjust parameters that are applied to individual

solutions, i.e. ‘local’ parameters, such as mutation operator, or crossover operator.

Their use for adapting ‘global’ parameters, i.e. parameters that affect the whole

population of solutions, such as population size, and selection procedure, is lim-

ited. One of the few approaches that employs a self-adaptive strategy to control

a parameter that affects the whole population is the work presented by Eiben and

Schut [48]. They investigate the self-adaptation of the selection procedure, in which

the tournament size K is decomposed into ‘local’ parameters that are self-adapted

and employed to establish the ‘global’ parameter K.

The Self-Adaptive Genetic Algorithm (SAGA) presented by Hinterding et al. [78]

is similar to the approach of Eiben and Schut [48] in terms of controlling ‘lo-

cal’ (individual-level) and ‘global’ (population-level) parameters by combining self-

adaptive and adaptive parameter control. The mutation rate, i.e. the ‘local’ param-

eter, was encoded in each gene. Gaussian noise with a standard deviation equal to

0.013 was applied to change the mutation rate, which was used to mutate the rest

of the genome in which it was encoded.

Similar to the approach presented by Eiben and Schut [48], Hinterding et al. [78]

introduced an adaptive method to adjust the population size. Three different pop-

28

ulation sizes were maintained during the optimisation process, with initial values

of 50,100, and 150. During the adaptation process, the population size was varied

in the range [10,1000], based on two main rules. If the fitnesses of two populations

became equal, the size of one of the populations was decreased and the size of the

other population was increased. This rule is based on the assumption that the sizes

of the populations are too similar if the fitnesses converge. The second rule considers

the case when the fitnesses are very different, in which the population with the best

fitness was used to adjust the sizes of the other two populations.

Nadi and Khader [142] propose a different approach called parameterless GA,

which also belongs to the class of self-adaptive parameter control methods. A vector

of probabilities is kept for each solution, where each probability represents the oc-

currence of the respective element on that solution. The probability of each element

changes according to the effect of that element on the quality of that solution.

Instead of encoding the parameter values into the solution, Weinberg [187] and

Mercer and Samson [131] use a meta-EA, where a second EA optimises the param-

eters of the EA used to optimise the original problem. The meta-EA approach was

also used by Fogel et al. [58] to adapt the mutation rate in Evolutionary Program-

ming (EP). The proposed approach was robust and outperformed static parameter

settings. However, the parameter values of the meta-EA are still subject to optimi-

sation.

In brief, self-adaptive parameter control methods alleviate the use of stochastic

optimisation algorithms by reducing or eliminating the number of parameters that

are required to be set by practitioners. However, one inherent problem faced in

self-adaptive parameter control methods is that they increase the size of the search

space and the complexity of the optimisation problem, since the EA has to find

parameter values which facilitate the effective transmission of the genome informa-

tion in addition to searching for good solutions to the problem. Another drawback

29

of self-adaptive control in EAs is the relative slowness of adaptation [45]. It takes

time before the optimal value is found [45]. Rudolph [159] explored the theoretical

underpinnings of the self-adaptation of the mutation distribution finding that this

method gets caught by non-global optima with positive probability even under an

infinite time horizon.

Adaptive parameter control

Adaptive parameter control describes the application of separate meta-optimisation

methods which collect feedback from the optimisation process to evaluate the effect

of parameter value choices and adjust the parameter values over the iterations. The

feedback collection mechanism usually involves reporting the result quality.

Generally, adaptive parameter control methods keep a vector of probabilities for

each parameter value υij, denoted as P = {p(υ11), p(υ12), ..., p(υ1m1), ..., p(υnmn)},

which represents the selection probability for each parameter value, and a vec-

tor of the estimate of the overall quality of parameter values, denoted as Q =

{q(υ11), q(υ12), ..., q(υ1m1), ..., q(υnmn)}. Whenever a parameter value is used, its

current quality estimate q(υij) is updated.

At each time step, the jth value of the ith parameter is selected with probability

p(υij). Its effect on the performance of the algorithm is denoted as e(υij). The vector

of all parameter effects is equal to E = {e(υ11), e(υ12), ..., e(υ1m1), ..., e(υnmn)}. The

main goal of adaptive parameter control strategies is to adapt the vector of proba-

bilities P such that the expected value of the cumulative effect E[E] =
∑n

i=1 e(υij)

is maximised.

The field of adaptive parameter control has been researched widely [74, 56, 181].

An insightful overview and classification of different parameter control methods is

given by Eiben et al. [45]. An empirical analysis of adaptive parameter control

methods is presented by Fialho et al. [56].

30

One of the earliest works in this area is the adaptive technique by Davis [38, 37]

which rewards the crossover rates that create better solutions. More specifically, the

effect of the parameter values on the performance of the algorithm is estimated as

the fitness difference between a created solution and its parent(s). As a result, well

performing parameter values are more likely to be selected in the next iteration.

Giger, Keller and Ermanni [65] use the best fitness frequency as a feedback collec-

tion mechanism to approximate the effect of parameter values on the performance of

the algorithm. The solutions are initially divided into classes according to their fit-

ness value. Each class contains solutions with fitness values between [fmin, fmin + ε],

where ε is the range size of the fitness class. The fitness classes are employed to

compute the best fitness frequency (bff). Every iteration t the bfft(si) for each

solution si is calculated as follows:

bfft(si) =





1 if |f(si)− fbest| ≤ εfbest

0 otherwise

where f(si) is the fitness of a solution si, fbest is the fitness of the best solution in the

population and ε is the width of the fitness class in which solution si belongs. The

total bfft of the current population is calculated as the average of the best fitness

values of all solutions, given by Equation 2.5.

bfft =
1

N

µ∑

i

bfft(si) (2.5)

A low value of the bff measure indicates that the fitness of the solutions are

very similar. This may mean that the search has stagnated into a local or global

optimum, or that the fitness space is flat. On the other hand, a high bff value

indicates that the fitness landscape is characterised with steep uni-modal or multi-

modal peak(s), in which it is very likely to improve the quality of the solutions

31

as the search progresses. The best fitness frequency is employed to calculate the

adaptation rate for parameter values δ as follows:

δ =





− δmax

th
(bff − th) if bff ≤ th

δmax

th
(bff − th) otherwise

where δmax and the threshold value th control the proportion between exploration

and exploitation of parameter values.

A rank proportional mutation is introduced in the study of Sewell et al. [167]

and an extension of this work was proposed by Cervantes and Stephens [29]. The

algorithm [29] uses equal value intervals for the mutation rate to sample from in the

range [m̂r(min), m̂r(max)]. Next, the population is ranked according to the fitness

function, and the mutation rate is selected according to these ranks, as shown in

Equation 2.6. The better the solution is, the lower the rank.

m̂r(s) = m̂r(min) + (m̂r(max)− m̂r(min)) · rank(s)− 1

µ− 1
(2.6)

where m̂r(s) is the mutation rate applied to solution s, rank(s) is the rank of

solution s and µ is the size of the population. The worse an individual’s rank is,

the higher is the effects on future values of the mutation rate used to produce that

individual. As a result, the genes of low-fitness individuals have a lower probability

of being propagated to the next iteration, since they become more likely to mutate

as their viability decreases.

A similar approach is taken by Srinivas and Patnaik [177], who calculate the

effect of the variation operators (mutation rate and crossover rate) based on the

maximum fitness fmax and the average fitness f of the population. The crossover

rate ĉr and mutation rate m̂r are computed as follows:

32

ĉr =
k1(fmax −∆f(sĉr))

fmax − f
, m̂r =

k2(fmax −∆f(sm̂r))

fmax − f
(2.7)

where k1 and k2 are two constants selected in the range [0.0, 1.0] and ∆f(sĉr)

∆f(sm̂r) are the fitness gain of solutions created by applying cr and mr compared

to their parents. The operator rates calculated by Equation 5.5 are inversely pro-

portional to the difference between the maximum fitness and the average fitness of

the population. The operator rates are increased if the difference between the max-

imum fitness in the population and the fitness of the solution created by applying

the operator rate (fmax − f) is low, i.e. lower values of operator rates are applied

to high fitness solutions, and higher values of operator rates are used to change low

fitness solutions. A low difference means that the fitnesses of the solutions are too

similar, hence the operator rates are increased to introduce more diversity in the

population.

Other approaches adapt multiple parameters simultaneously [94, 112, 5]. Jul-

strom [94] controls the mutation and crossover rates, by adapting the ratio between

them based on the relative performance. Crossover and mutation operators are used

individually to create different solutions, and the reward is given to each of them

according to the fitness difference between the created solution and their parent(s).

Similarly, Lis and Lis [112] control three different parameters simultaneously:

mutation rate, crossover rate and population size. Each of the parameters could

have three possible values, which were applied to parallel algorithm instances. The

populations of the parallel instances were compared with each other after a certain

number of iterations. The parameter values that created the population with the

best fitness were used more frequently in the next iterations.

A self-adaptive mutation rate a self-adaptive crossover rate, and an adaptive pop-

33

ulation size were investigated by Bäck et al. [13]. The study showed that adapting

the population size significantly improves the performance of the algorithm. The au-

thors argue that the population size should not be constant during the optimisation

process.

Usually, adaptive parameter control methods [112, 94, 177, 38, 37] use the fitness

improvement as an indication of the effect of parameter values on the performance

of the algorithm. Compass [125] uses also a diversity measure to reward parameter

values. Diversity refers to the Hamming distance in the genotype of the solutions,

which computes the number of genes in which the corresponding values are different.

The overall proposed feedback collection strategy uses the weighted sum of the fitness

improvement and the diversity of the offspring.

Compass calculates a vector
→
o t (sυij) = (∆dt(sυij),∆ft(sυij)) for every parame-

ter, where ∆dt(sυij) is the diversity change in solution s caused by parameter value

υij at iteration t, and ∆ft(sυij) is the fitness change. Compass selects a vector
→
c

that has an angle θ defined in the interval [0, π
2
], which represents the desired balance

between fitness and diversity. If θ has a value closer to zero, more importance is

given to the diversity of the solutions, hence favouring exploration, whereas if θ has

a value closer to π
2

the exploitation of good solutions becomes more important.

Figure 2.1 depicts an example of Compass, in which
→
o t (sυi1) and

→
o t (sυi2)

represent the performance of the algorithm when parameter values υi1 and υi2 are

applied. Vector c represents the desired trade-off between diversity and fitness,

which determines the parameter value for the next iteration.

Parameter θ has to be specified by the user, who has to know how to define the

compromise between obtaining good results and maintaining the diversity of the

solutions. The problem is that finding the appropriate value for θ requires insight

into the given problem instance, and therefore it may not be practicable. Compass

was further improved into a different method by Maturana et al. [124], using Pareto

34

θ

∆d

∆f

−→c−→o t(sυi1)
−→o t(sυi2)

Figure 2.1: Compass.

dominance [148], which enables a trade-off between the fitness and diversity of the

solutions and does not require the use of θ.

A different diversity measure is introduced by Giger et al. [65], which estimates

the distribution of the solutions in the search space, calculated as the Euclidean

distance of a solution sυij to the best solution so far sbest, given in Equation 2.8.

euct(sυij) =

√√√√
g∑

r=1

sυij(r) (2.8)

where t is the current time-step (iteration), g is the number of genes of the

genotype and sυij(r) represents the rth gene in solution sυij . The authors suggest

the use of weighting factor w for each gene as follows:

eucwt (sυij) =

√√√√
g∑

r=1

wrsυij(r) (2.9)

The diversity measure for parameter value υij at iteration t is as follows:

dt(sυij) =





0 if f(sυij) ≤ f(sbest)

(1 + euct(sυij)/euct(max))−1 otherwise

where euct(max) is the maximum euclidean distance between the best solution

and all solutions. In essence, a balance between the best fitness frequency and the

35

diversity of the solutions is sought.

Most of the adaptive parameter control methods found in the literature [33, 37,

82, 84, 94, 114, 163, 183, 65] belong to the class of probability matching techniques,

which update the probability vector P such that the probability of applying parame-

ter value υij is proportional to the quality of that parameter value, i.e. the proportion

of the estimated quality q(υij) to the sum of all quality estimates
∑n

s=1 q(υis).

For instance, Corne et al. [33] introduce an adaptive method to control mutation

rate in an Evolution Strategy application, in which the selection probability for each

parameter value is proportional to their usage frequency and the fitness distance

correlation of the solutions created by employing that parameter value.

Igel and Kreutz [84] use only the fitness gain of the created solution (f(sυij)) -

with respect to the fitness its parent (f(s)) or the fitness of the best solution so far

(f(sbest)) - as an indication of the quality of a parameter value q(υij). The selection

probability for each parameter value at time step t is calculated as follows:

pt(υij) =





w∑m
r=1 qt(υir)

∑t−1
r=t−τ qr(υij) + (1− w)pt−1(υij) if

∑m
r=1 q(υis) > 0

w
m

+ (1− w)pt−1(υij) otherwise

where m is the number of possible values for parameter υi, τ is the time window

considered to approximate the quality of a parameter value and w ∈ (0, 1] is the

weight given to each parameter value. For w equal to 1 and τ equal to 1 the algorithm

is similar to the one proposed by Hong, Wan and Chen [82].

Igel and Kreutz [84] introduce a minimum selection probability pmin for each

parameter value, to ensure that under-performing parameter values do not disappear

during the optimisation, since they may be beneficial in the later stages of the search.

The selection probability for each parameter value is calculated using Equation 2.10.

36

p′t(υij) = pmin + (1−mpmin)
pt(υij)∑m
r=1 pt(υir)

(2.10)

Dividing the selection probability by the sum of selection probabilities of all

possible parameter values normalises the values in the interval [0,1].

Probability matching techniques [33, 37, 82, 84, 94, 114, 163, 183, 65] have been

criticised for the fact that the probability values resulting from the reward alloca-

tions poorly reflect the relative differences in algorithm performance. Values with

vastly superior performance may only be differentiated by a marginal increase of the

probability of being chosen in the next step.

Adaptive Pursuit (AP) [181] is a different parameter control strategy, which

rewards the best performing parameter values j∗ by increasing their selection prob-

ability by pmax as shown in Equation 2.11.

pt(υij) =





pt−1(υij) + β(pmax − pt−1(υij)) if j = j∗

pt−1(υij) + β(pmin − pt−1(υij)) otherwise
(2.11)

where pmax = 1 − (m − 1)pmin and m is the number of parameter values. The

Adaptive Pursuit parameter control is a greedier strategy compared to Probability

Matching. Increasing the selection probabilities of the best parameter values ensures

an appropriate difference in probabilities depending on experienced performance.

Even though every parameter value is selected from time to time, in practice the

Adaptive Pursuit algorithm would have to wait for a number of iterations before

realising that some new parameter value has become the best one. To address this

problem, the Dynamic Multi-Armed Bandit (DMAB) [56] was introduced, which

completely recalculates the probabilities when a change in the effects distribution is

detected by using a change detection test, in this case the statistical Page-Hinkley

(PH) test. The PH test checks whether the quality of the parameter values has

37

changed. When a change is detected, the algorithm is restarted. As a result, DMAB

can quickly identify the new best parameter value without being slowed down by

old information.

38

2.5 Parameters to Configure

The first decision made by an EA expert that affects the performance of the al-

gorithm is the problem representation, which is a distinguishing feature not only

between different problems, but also between different classes of Evolutionary Al-

gorithms. The main difference lies in the data structures used to represent the

solutions. For example, Genetic Algorithms (GA) have a linear data structure with

a fixed length over time. In Evolution Strategies (ES), the data structure does not

have to be fixed over time. In Evolutionary Programming (EP) and Genetic Pro-

gramming (GP) the data structures are in the form of finite state machines and

parse trees, which are not linear and change their size and shape over time.

The choice of the representation of the problem clearly affects the performance of

the algorithm [43]. This parameter is not easy to dynamically configure during the

run of the algorithm [43]. ‘Delta Coding Algorithm’ [122] and ‘Adaptive Represen-

tation Genetic Optimizer Technique’ (ARGOT) [168] are two of the few attempts

to adapt the representation of the problem online, by modifying the encoding of

the function parameters. The motivation behind the ‘Delta Coding Algorithm’ is to

ensure the trade-off between the fitness and the diversity of the solutions, whereas

ARGOT adapts the representation based only on the fitness of the solutions.

Once the choice regarding the representation of the problem has been made, a

number of different algorithm parameters have to be adjusted, such as:

\ Population size (µ).

\ Offspring number (λ).

\ Selection procedure (S).

\ Replacement procedure (R).

\ Variation procedure (V):

39

] Mutation operator (m̂),

] Mutation rate (m̂r),

] Crossover operator (ĉ),

] Crossover rate (ĉr).

A comprehensive overview of the research in various parameters of Evolutionary

Algorithms is presented by Eiben and Schut [48]. The study shows that the major-

ity of the approaches were concerned with the variation procedure (approximately

46% of the publications). The second most researched topic was the population of

Evolutionary Algorithms (approximately 29% of the studies). A high level descrip-

tion and background of the parameters of an EA that have an essential effect on

the performance of the algorithm, and therefore necessitate careful configuration, is

given in the next sections.

2.5.1 Population Size

Setting the population size in an EA is a difficult task. It has been argued that

problems with different size and difficulty require different population sizes [116].

When the problem at hand is simple and unimodal, the ideal population size (µ) is

relatively small, since not much diversity is required during the optimisation process.

In this situation, the algorithm converges easily by performing a local search. One

might argue that if the problem is unimodal, selecting an EA to optimise it is not a

good solution. However, it is often not possible to know beforehand how the problem

looks like.

On the other hand, when the problem is multimodal (has more than one opti-

mum), or when solving a multiobjective optimisation problem, the population has

to be large enough to explore all the important regions of the landscape and increase

the chance of discovering the optimal set of solutions. Setting the population size is

40

a non-trivial task, since different problems have different ideal population sizes [115].

When there is no information about the problem and its modality, setting the pop-

ulation size before the optimisation process may lead to the optimisation algorithm

performing sub-optimally. Lobo [115] shows that controlling the population size

during the optimisation process can be beneficial in certain problems. A similar

view is presented by Bäck et al. [13], who demonstrate that varying the population

size significantly improves the performance of the algorithm [13].

De Jong [43] asserts that by increasing the population size, the chance of any

EA finding the best solutions for any type of problem increases. His experiments

show that the average performance of an Evolutionary System (m,n = 1) increases

when the population size is increased. Moreover, De Jong demonstrates that during

the initial iterations of the optimisation process, the performance of the algorithm is

highly influenced by a bigger population size, while this effect decreases over time.

De Jong [43] states that this results can be generalized to any type of traditional

EA, and suggests that the population should start with a large value and decrease

during the later iterations.

Other studies [175, 47, 7, 115, 78] of the same nature have focused on the ef-

ficiency of controlling the population size during the run of the optimisation algo-

rithm. An insightful review of methods for setting the population size in GAs is

provided by Lobo and Lima [116], The authors also provide recommendations for

further research on the adaptation of the population size, such as testing the results

on problems with known requirements for appropriate population settings.

Arabas, Michalewicz and Mulawka [7] proposed a Genetic Algorithm with Vary-

ing Population Size (GAVaPs), which assigns a lifetime to each solution when it

is created. The lifetime variable is reduced every iteration until it becomes zero.

As a result, the solution is removed from the population. The fitness of the solu-

tions is used to control the lifetime for each individual (lt(si)), determined using (i)

41

proportional allocation (ltp), which is a fitness proportionate allocation, (ii) linear

allocation (ltl), which considers the fitness of the solution f(si) in comparison with

the best and the worst fitness in the population f(sbest), f(sworst), and (iii) bilinear

allocation (ltb), which makes a trade off between proportional and linear allocation.

Considering a maximisation problem, the lifetime of an individual si is calculated

as follows:

ltp(si) = arg min ((ltmin +
(ltmax − ltmin)f(si)

2f
), ltmax) (2.12)

ltl(si) =ltmin +
(ltmax − ltmin)(f(si)− fworst)

f(sbest)− fworst

ltb(si) =





ltmin + (ltmax−ltmin)(f(si)−f(sworst))

2(f−f(sworst))
if f ≥ f(si)

ltmin+ltmax

2
+ (ltmax−ltmin)(f(si)−f)

2(f(sbest)−f)
otherwise

where ltmax and ltmin are the maximum and minimum possible lifetime, which

have to be decided before the optimisation process, and f is the average fitness of

the population. The experimental studies presented by Arabas, Michalewicz and

Mulawka [7] show that the linear strategy has the best performance but is the most

computationally expensive. The bilinear allocation, on the other hand, is the least

computationally expensive methods, however the performance is the worst. The

authors argue that the proportional strategy has a moderate performance and cost.

Adaptive Population size Genetic Algorithm (APGA) [13] was introduced by

Bäck, Eiben and Van der Vaart, which is and extension of the Genetic Algorithm

with Varying Population Size (GAVaPs) [7]. The main differences between the two

algorithms is that APGA considers a steady-state Genetic Algorithm and no lifetime

is specified for the best solution.

42

Hinterding et al. [78] employs an adaptive mechanism to control the population

size in a Genetic Algorithm (GA) with three sub-populations (50, 100 and 200

solutions), which are optimised in parallel. After a certain number of function

evaluations, the fitness of the sub-populations is assessed and the size of the sub-

populations is changed according to the feedback received. A lower bound of 10 and

an upper bound of 1000 is maintained during the iterations.

Eiben, Marchiori and Valkó [47] introduce the Population Resizing and Fitness

Improvement Genetic Algorithm (PRoFIGA), in which the population size is ad-

justed according to the improvement of the best fitness in the population. The

population grows if the best fitness in the population increases or if the best fit-

ness does not change for a specific number of iterations. If the best fitness in the

population f(sbest) increases, the population size increases with a growth rate ∆µ

computed as:

∆µ = α(evalmax − evalt)
ft(sbest)− ft−1(sbest)

f1(sbest)
(2.13)

where α is a parameter selected from the interval (0,1), evalmax and evalt are the

maximum number of fitness evaluations and the current evaluation number (time

step t), ft(sbest), ft−1(sbest) and f1(sbest) denote the current (time step t), the previous

(time step t− 1) and the initial best fitness values (time step 1). If the best fitness

value does not improve in a certain number of evaluations, the authors propose to

increase the population size by a factor y. If neither of the above situations occur,

the population size is decreased. The main idea behind this approach is to use large

population sizes for the exploration and small population sizes for the exploitation

of the search space. The experimental study shows that adapting the population

size is beneficial for the performance of the algorithm. Nevertheless, there is general

agreement about the difficulty of adjusting the population size, since it interacts in

43

complex ways with other parameters of an EA, such as the selection and replacement

procedures.

2.5.2 Selection Procedure

The selection procedure (S) is performed when deciding on the parents which will

be used to produce the offspring. The greedier the selection strategy is (i.e. the

higher the demand on the quality of the solutions), the faster the algorithm con-

verges. However, the chance of finding the optimal solution(s) may decrease, since

the population is more likely to get stuck in local optima. Thus, the selection pro-

cedure should allow for the exploration of the search space, especially during the

initial iterations, while focusing on the best solutions during the last iterations. This

suggests that an adaptation of the selection strategy would improve the performance

of the algorithm.

Two aspects of selection procedure are important for the adaptation process: the

type of selection procedure and the parameters of the selection procedure. Interest-

ingly, none of them is commonly adapted at run-time. Most of the adaptive methods

for the selection procedure use the Boltzmann selection strategy [14], which uses a

cooling mechanism similar to Simulated Annealing to modify the selection pressure.

Bäck [10] provides a characterisation of the selection mechanisms. Goldberg and

Deb [67] compared different selection mechanisms in genetic algorithms, and found

that proportionate selection is significantly slower then other selection mechanisms.

Linear ranking and binary tournament selection (a type of tournament selection

where only two solutions are picked at a time) showed similar performance. Vajda,

Eiben and Hordijk [184] compared various selection mechanisms. The study shows

that using parameter control for the selection mechanism produces better results

than using a constant value. The authors argue that the selection mechanism is

44

problem dependant, however, the self-adaptive tournament selection out-performed

other methods in the majority of the problems.

Proportional selection

Proportional selection was first introduced by Holland [81]. The selection probability

of each solution si, i ∈ µ is based on probabilities assigned to individuals based on

their fitness (f(si)) as follows:

S(si) =
f(si)∑µ
j=1 f(sj)

(2.14)

The selection probability of each solution is directly proportional to its fitness

and indirectly proportional to the sum of the fitnesses of all solutions. The higher

the fitness of a solutions, the more probable it is for it to be selected.

Tournament selection

Tournament selection is a mechanism where solutions are picked at random as con-

testants in tournaments and the solution with the highest quality among the other

members of the tournament is the winner (either to generate the next offspring,

or as a survivor of the next generation). The tournament size provides a natural

parameter for the adaptation process. A deterministic rule is presented by Vajda,

Eiben and Hordijk [184] to adapt the tournament size k defined as follows:

kt =





t(p2−p1)
1000

+ p1 if t ∈ [0, 1000]

p2 otherwise

where p1 and p2 are parameters that have to be set before the optimisation process.

This deterministic rule linearly increases or decreases the tournament size from p1 to

p2 for the initial 1000 iterations and keeps it constant for the rest of the optimisation.

45

Linear ranking

Linear ranking was first introduced by Grefenstette and Baker [70]. The solutions are

ranked according to the fitness value, and the probability of selection is determined

by Equation 2.15.

S(si) =
η+ − (η+ − η−) · i−1

µ−1

µ
(2.15)

where µ is the number of solutions, η+ and η− are the maximum and minimum

expected values respectively, fulfilling the constraints 1 ≤ η+ ≤ 2 and η− = 2− η+.

These two values are used to determine the slope of the linear function. η+ can be

adapted in the interval [1,2].

Boltzmann selection

Vajda, Eiben and Hordijk [184] introduce a Boltzmann selection mechanism with a

Riemann-Zeta annealing schedule (BSR), which calculates the probability of select-

ing a solution S(si) as follows:

St(si) =
eγtf(si)∑µ
j=1 e

γtf(sj)
, γt = γ0

t∑

k=1

1

kα
(2.16)

where e is the Blotzmann distribution [118], and γ0 and α are parameters that

have to be set before the optimisation. The annealing temperature γt is is an example

of a deterministic parameter control, in which the selection pressure depends on time.

Fuzzy tournament selection

A Fuzzy Tournament Selection (FTS) was introduced by Vajda, Eiben and Hordijk [184],

which is based on the adaptive method presented by Herrera and Lozano [76]. The

approach adjusts the tournament size k as follows:

46

kt = (α + 0.5)kt−1 (2.17)

where α is the modification parameter computed by employing the fuzzy rules

that are based on the genotypic and the phenotypic diversity of the population.

2.5.3 Variation Procedure

The majority of the work in adaptive optimisation considers the variation procedure

(V) as a parameter to control. Evolutionary Algorithms build the next solutions by

using two different variation procedures: the mutation operator, which uses a single

parent, and the crossover operator, which is carried out using two or more parents.

Mutation and crossover operators make a random variation in one or more solutions

in the current population to generate new solutions, without knowing if this change

is going to produce better or worse candidate solutions. The replacement procedure

is in charge of accepting or not the changes made and determining the solutions that

survive to the next generation.

Both operators change the current population by either introducing new informa-

tion (mutation operator), or by recombining the existing information (crossover op-

erator). Setting these two parameters greatly affects the way the search progresses,

by fine-tuning the balance between exploration and exploitation of the search space.

Mutation operator

The tuning and control of the mutation rate is one of the most researched topics [15,

123, 48, 78, 9, 5]. For instance, there are several recommendations in the literature

about well-performing mutation rates. However, the recommended values are for

specific problems, and the mutation rate values often vary from work to work. For

example, De Jong [39] recommends a mutation rate of 0.001, whereas for the same

47

problems Schaffer et al. [160] found that the mutation rate should be in the range

[0.005, 0.01].

Bremermann et al. [23] propose that the mutation rate should depend on the

length of the string (i.e. the number of elements in the genotype) and should be

equal to 1
L

where L is the length. Smith and Fogarty [174] compared this mutation

rate with different fixed mutation rates, demonstrating that the mutation rate equal

to 1
L

outperformed other values.

One of the first works in the adaptation of the mutation operator is the 1/5th rule

of Rechenberg [154], which controls the mutation step size of Evolution Strategies

(ESs). The majority of parameter control methods focus on controlling the muta-

tion rate [5, 9]. Often, the mutation rate has been controlled in conjuction with

the crossover rate [5]. An innovative way to control multiple parameter is the work

introduced by Bäck [9], where the interaction of mutation rate and the selection

mechanism are studied and controlled with a self-adaptive Genetic Algorithm. Sim-

ilarly, Hinterding et al. [78] uses a self-adaptive mechanism to control the mutation

rate and an adaptive mechanism to control the population size.

Apart from the mutation size and mutation rate, one can control the type of

mutation operator used. Different types of mutation operators exist, such as single-

point mutation, transposition mutation, and uniform mutation. Single-point mu-

tation is the random change of a single element in one of the solutions from the

population to produce a new candidate solution. Transposition mutation on the

other hand randomly exchanges the values of two elements in a solution to produce

a new solution. In this case information is only exchanged and no new information

is introduced. Finally, uniform mutation considers all the elements of the solutions

for a random change according to a probability defined by a mutation rate (m̂r).

Uniform mutation changes more than one element of the solution, introducing more

new information than single-point mutation.

48

Crossover operator

This parameter has been extensively investigated in the context of adaptive param-

eter control [181, 15, 123]. The work of Davis [38] is one of the first attempts to

control different crossover operators (ĉi), with the respective crossover rates (ĉr(ĉi))

in the application of a Genetic Algorithm. At every iteration, several crossover rates

are applied simultaneously to create the new offspring. The effect of each crossover

operator is approximated using the difference in fitness gain of the offspring with

respect to the best solution in the population, called local delta and denoted as di.

The rate of each the crossover operator is calculated as:

ĉrt(ĉi) = 0.85ĉrt(ĉi) + di (2.18)

where t is the current iteration and 0.85 is the weight given to the value of the

crossover rate from the previous iteration.

The crossover operator and its rate have also been controlled using self-adaptive

parameter control mechanisms. Schaffer and Morishima [161] introduced a self-

adaptive method for controlling the position in a solution where the crossover occurs,

called punctuated crossover, which performed better than a single-point crossover

operator [161].

Spears [176] uses a self-adaptive mechanism to control the type of crossover

operator. An additional bit is added at the end of the solution representation, which

is used to decide if a two-point or uniform crossover operator is to be used. The

increased performance of the optimisation algorithm is attributed to the diversity

of the variation operators, which leads to a better exploration of the search space.

Crossover rate has also been controlled in combination with other parameters

such as mutation rate [5]. Another interesting multiple parameter control mechanism

is offered by Lis and Lis [113]. The mutation rate, the crossover rate and the

49

population size of a parallel GA are controlled in an adaptive way. This approach

uses predefined possible values that the parameters can have, and based on the

performance of the algorithm, the successful parameter values are used for the next

iteration.

Apart from the crossover rate, it is possible to control the type of crossover

operator. Some options include single-point crossover and uniform crossover. Single-

point crossover splits two parent solutions into two by choosing a random point

and mixes the information from the parents to create two new solutions. Uniform

crossover swaps the assignments between solutions. Unlike single-point crossover,

the uniform crossover enables the parent chromosomes to contribute to the gene

level rather than the segment level, by mixing ratio between two parents.

The two variation procedures, mutation and crossover operators, usually make

a random variation in one or more solutions in the current population to generate

new solutions, without knowing if this change is going to produce better or worse

candidate solutions. The replacement procedure is in charge of accepting or not the

changes made and determining the solutions that survive to the next generation.

2.5.4 Replacement Procedure

The two variation operators, mutation and crossover operators, which are described

in Section 2.5.3, usually make a random variation in one or more solutions in the

current population to generate new solutions, without knowing if this change is

going to produce better or worse candidate solutions. The replacement procedure is

in charge of accepting or not the changes made and determining the solutions that

survive to the next generation.

The adaptation of the replacement procedure has not received as much attention

as the variation operators. One of the earliest works on the effect of the replacement

50

procedure is the comparison of two replacement procedures by Grefenstette [69],

pure replacement, in which the offspring substitute the current population and elitist

replacement, where the best solutions survive to the next generation. The results of

the experiments show that elitism improves the performance of the algorithm.

It has also been proven that the replacement procedure affects the diversity

of the population [7], which can cause a premature convergence of the algorithm.

Arabas, Michalewicz and Mulawka [7] argue that the balance between population

diversity and ‘replacement pressure’ should be maintained, since population diver-

sity is strongly related to the ‘replacement pressure’ - a high replacement pressure

decreases the diversity of the solutions and vice versa. To address this problem,

a Genetic Algorithm with Varying Population Size (GAVaPS) [7] was introduced,

which adjusts the population size and diversity based on the fitness and the lifetime

of the solutions calculated in Equation 2.12.

2.5.5 Number of Offspring

De Jong [43] argues that changing the number of offspring (λ) during the optimi-

sation process affects the performance of the algorithm. The author performed a

set of experiments using a fixed population size, in which the number of offspring

was decreased over time. The results showed that in a multimodal problem a higher

number of offspring results in a lower performance of the algorithm. The number of

offspring and the population size seem to have opposite effects in the performance

of the algorithm. One might ask if it is reasonable to control them individually;

this question has yet to be answered. Jansen and De Jong [90] demonstrate in their

study that the number of offspring is a difficult parameter to control.

51

2.6 Summary

The review of the methods concerned with setting EA parameters [33, 78, 113, 15,

123, 48, 43] shows that the way the EA parameters are configured affects the per-

formance of the algorithm. Furthermore, empirical and theoretical evidence shows

that optimal algorithm configurations are different not only for different problems

and problem instances, but also for different stages of the optimisation process of

the same problem instance [13, 9, 179, 174, 77].

Acknowledging these facts, a plethora of studies proposed adjusting algorithm

parameters during the optimisation process: by changing parameter values according

to a predefined schedule [57, 15], by encoding parameter choices into the represen-

tation of the solutions [13, 142, 154, 174, 131, 158], or by using feedback from the

search [33, 37, 82, 84, 94, 114, 163, 183, 74, 56, 181].

Self-adaptive parameter control integrates the search for optimal parameters

into the optimisation process itself - usually by encoding parameter settings into

the genotype of the solution to evolve. Extending the solution size to include the

parameter space obviously increases the search space and makes the search process

more time-consuming. Moreover, by encoding parameter values into the solution

representation, the search for optimal parameter values may be subject to premature

convergence, i.e. convergence towards a suboptimal solution, which is a common

problem faced by the search for optimal solutions [29, 132]. Based on an empirical

investigation of parameter control methods, Tuson and Ross [183] suggest that for

the parameter adaptation to occur in a reliable way, the adaptation mechanism

should be separated from the main algorithm, i.e. the parameters should not be

encoded into the representation.

Adaptive parameter control algorithms adjust parameter values in an informed

way, based on the effect they have in the performance of the algorithm. Adaptive

52

strategies have successfully been employed to control various algorithm parameters,

such as the type of crossover operator and its rate [5, 13, 181, 15, 123], the type of

mutation operator and its rate [13, 15, 123, 48, 78, 9, 5], as well as the population

size [13, 175, 47, 7, 115, 78]. A big advantage of adaptive parameter control algo-

rithms when compared with self-adaptive methods is that they do not increase the

search space. Furthermore, there is no co-evolution between solution space and pa-

rameter space, which removes the possibility that the search for optimal parameter

values is subject to the problems associated with the search for optimal solutions,

such as the premature convergence of the algorithm.

53

54

Chapter 3

Methodology

3.1 Introduction

In the previous chapter, we presented some implementations of Evolutionary Algo-

rithms (EAs), various algorithm parameters and methods used to configure these

parameters. The importance of configuring Evolutionary Algorithms is discussed

throughout the different sections of the Chapter 2, and the summary of the related

work (Section 2.6) highlighted the effect of parameter values on the performance

of Evolutionary Algorithms and the crucial reasons for adjusting parameter values

during the optimisation process.

Thus far, methods for configuring Evolutionary Algorithms have been discussed

at a high level and with a wide focus. This chapter presents a more confined review

of the literature, with the aim of determining the gaps in current research and

defining the scope of the work presented in this thesis. This leads to the discussion

of the methodological aspect of the research conducted in this thesis: the research

problems, the research objectives, the research questions, and the research method

used to address the research objectives and validate the solutions proposed to solve

the research problems.

55

3.2 Research Problems

The high-level focus of this thesis is parameter configuration of Evolutionary Algo-

rithms. Section 2.4 described and compared two different methods used to configure

parameter values: parameter tuning which configures parameter values before the

optimisation process, and parameter control, which dynamically adjusts parameter

values during the run of the optimisation algorithm. Parameter control is more effec-

tive than parameter tuning, since different algorithm configurations may be optimal

at different stages of the search [9, 179, 174, 77]. Hence, the focus of this thesis is

in the adaptation of parameter values during the optimisation process.

Parameter control methods are classified into three groups as described in Sec-

tion 2.4: deterministic, self-adaptive and adaptive. Deterministic parameter control

changes parameter values based on a predefined schedule composed of intervals with

preassigned parameter values, e.g. decreasing mutation rate by a certain amount

every iteration. Using a predefined schedule is likely to lead to suboptimal values

for some problems or instances, since smaller problems may require shorter intervals

for the schedule, as the search progress will be faster when the problem complexity

is lower. Alternatively, the search for optimal parameters can be integrated into

the optimisation process itself - usually by encoding parameter settings into the

genotype of the solution to evolve [15, 53, 40], i.e. self-adaptive parameter control.

Extending the solution size to include the parameter space obviously increases the

search space and makes the search process more time-consuming [45].

The approach proposed in this thesis falls into the category of adaptive parameter

control, in which feedback from the optimisation process is collected and employed

to evaluate the effect of parameter value choices and adjust the parameter values

over the iterations. Adaptive parameter control does not use a predefined schedule

and does not extend the solution size, which makes it a more effective way for

56

controlling parameter values during the optimisation process. The main steps of the

whole optimisation process using adaptive parameter control are shown in Figure 3.1.

These steps are shared among all existing Evolutionary Algorithms that use adaptive

parameter control.

Evaluate
solution(s)

Initial
solution(s)

Stopping
criterion

True Final
solution(s)

False

Collect feedback

Assess the effect
of parameter values

Select next
parameter values

Attribute quality
to parameter values

Figure 3.1: The main steps of optimisation with Evolutionary Algorithms using
adaptive parameter control.

The optimisation process starts with a set of solutions (initial population) which

can be randomly generated, created using expert knowledge, or constructed using

some heuristic, such as a greedy algorithm. This population is evolved in iterations

until a stopping criterion is achieved. The new generations of solutions are created

with the help of four genetic operators: the crossover operator, the mutation op-

erator,the selection operator and the replacement operator. The genetic operators,

57

and other elements of an Evolutionary Algorithms that are involved in the optimi-

sation process, such as the probabilities of applying the genetic operators, the size

of the population, the number of new solutions produced every iteration, etc. are

the parameters of the algorithm which can be adapted by the parameter control

method.

Every iteration, the solutions created are evaluated using the fitness function(s).

The output from the evaluation process provides valuable information for the adap-

tive parameter control methods, since it can be used to asses the effect of the param-

eter values on the performance of the optimisation algorithm. This information is

processed by the feedback collection strategy, which measures certain properties of

an optimisation run, such as the fitness and the diversity of the solutions. The feed-

back collection mechanism records the change in these properties as the performance

of the algorithm.

The feedback from the search is used by the parameter value effect assessment

strategy to approximate the cause of the change in the properties of the solutions

during the optimisation process. Parameter control methods utilise the approxi-

mated effect for a projection of the parameter values performing well to the next

iterations, based on certain rules, such as the average effect in the last n iterations,

instantaneous effect, the total usage frequency of parameter values, etc. This set

of rules composes the parameter quality attribution strategy. The quality values

assigned to the algorithm parameters are used to select the next parameter values,

which are employed to create the next generation of solution(s). The selection mech-

anism configures the components of an Evolutionary Algorithm (variation, selection

and replacement operators). The main challenge faced at this step is the trade-off

that has to be made between the choice of current best configuration(s) and the

search for new good settings.

The overall approach to adaptive parameter control consists of the four steps

58

shown by the highlighted boxes in Figure 3.1, namely the feedback collection strat-

egy, the parameter effect assessment strategy, the parameter quality attribution

strategy, and the parameter selection strategy. All four steps are executed automat-

ically during the optimisation process. This thesis makes a contribution to each of

the four steps of parameter control. In the next sections, we determine the gaps in

each of the four steps of adaptive parameter control which leads to four research

problems addressed in this thesis.

3.2.1 Feedback Collection Strategy

The feedback collection strategy is a distinguishing feature of adaptive parameter

control, since other parameter control methods either do not consider any feedback

from the search (deterministic parameter control) or the feedback is implicit (self-

adaptive parameter control). The feedback is a measure of certain properties of

an Evolutionary Algorithm (EA), which are an indication of the algorithm’s per-

formance. It has been shown by previous research [66, 43] that the performance

of EAs is affected by algorithm parameters, which determine the search strategy.

Hence, the change in algorithm properties, i.e. the change in the performance of an

EA, can be used as an indication for understanding if the EA parameters are being

successful.

The decision regarding the quality of the parameter values depends on the infor-

mation provided by the feedback collection strategy, which makes it a very important

step of adaptive parameter control. However, deciding on what performance prop-

erties of an optimisation algorithm to use as a feedback is a critical task. This is

particularly challenging in multiobjective optimisation, since the output of multi-

objective runs is usually a set of nondominated solutions, which make a trade-off

between the fitness functions. The main challenge regarding the feedback collection

59

mechanism in multiobjective optimisation is assigning a single value to this set of

solutions to represents the overall performance of the algorithm. Known parameter

control methods use feedback collection mechanisms appropriate only for singleob-

jective optimisation [56, 181, 37], in which the relevant property is the change in

fitness of a single best solution. These feedback collection mechanisms are not ap-

propriate to be applied in parameter control for multiobjective optimisation. This

problem leads to the following research question:

\ What is an effective feedback collection strategy to use in adaptive

parameter control for multiobjective Evolutionary Algorithms?

To answer this question, we first analyse performance aspects that should be

considered in multiobjective optimisation. We employ these performance aspects

to investigate metrics for measuring the performance of multiobjective optimisation

algorithms, and perform an experimental evaluation of the feedback collection strat-

egy using recommended performance metrics. The problem and recommendations

regarding the multiobjective feedback collection strategy are described in Chapter 4.

3.2.2 Parameter Effect Assessment Strategy

Parameter values often have a different effect at different stages of the search [9,

179, 174, 77]. The information about the performance of the optimisation algorithm

measured at every iteration can be used to determine if the parameter values have

a positive effect in that iteration. This process is performed by the parameter effect

assessment strategy, which derives the effect of parameter values based on the output

from the feedback collection strategy. The aim is to determine successful parameter

values, i.e. parameter values that have a positive effect on the performance of the

optimisation algorithm.

The main difference of available parameter effect assessment methods is how they

60

define the ‘success’ of parameter values. The majority of the methods calculate the

effect of parameter values using directly the improvement in the performance of the

algorithm, measured as the quality difference of the generated solutions with respect

to their parents [183, 191, 79, 85, 83], the overall best solution [37, 114, 65], or a

specified quantile (e.g. the median) [94, 95]. Whitacre et al. [189] instead considers

outlier solutions as an indication of the success of parameter values used to generate

them. An outlier in this approach is a solution with a quality which is statistically

different from that of other solutions.

In essence, parameter effect assessment strategies found in the literature assume

that the improvement in the quality of the solutions, or the quality of the outliers,

is directly related to the use of certain parameter values. For instance, if a mutation

rate of 0.01 produces a solution which improves the quality of its parent by ∆q, the

quality improvement ∆q is considered as the effect of this mutation rate. If more

than one solution is created, the sum or average of the quality improvement of all

solutions is assigned as the overall effect.

However, the performance of Evolutionary Algorithms is affected by more than

one parameter value, hence using the performance of the algorithm directly as an

indication of parameter success may be misleading. Moreover, Evolutionary Al-

gorithms are stochastic systems, which may produce different results for the same

parameter values [43]. This randomness should be taken care of by the parame-

ter effect assessment strategy. To address this problem, the research question is

formulated as follows:

• What is an effective method for assessing the stochastic effect of EA

parameters?

We propose a probabilistic approach to measure the effect of parameter values,

which is conditional on the usage of the parameter values and the successful perfor-

61

mance of the algorithm instances. The performance of an instance is successful if

it is above a certain threshold. We define a success measure to represent the effect

of parameter values, calculated as the number of successful instances that use a

parameter value divided by the total number of instances that use that parameter

value. This research problem, the proposed solution and the validation are discussed

in Chapter 5.

3.2.3 Parameter Quality Attribution Strategy

The parameter effect assessment strategy described in Section 3.2.2 determines the

effect of parameter values at every iteration, i.e. classifies each parameter value as

a successful or unsuccessful choice for the current iteration. The effect of parameter

values in the current iteration is used to make decisions about the parameter values

to use in the next iteration. However, the effect of parameter values may not be the

same for the next iteration, since different parameter values are optimal for different

stages of the search [9, 179, 174, 77].

To make a better judgement on what would be a successful parameter value for

the next iteration(s), current adaptive parameter control methods define a quality

measure, which is calculated based on predefined rules that use the effect measured

in the previous iterations. The quality of parameter values is calculated either as

the average effect [83, 85] or as the best effect in the last W iterations [55]. In

essence, notable parameter quality attribution mechanisms calculate the quality of

parameter values from past performance (time t − 1). One might argue that the

quality of parameter values calculated by these methods represents their effect in

the previous iterations. Ideally, one would use a prediction of the effect for time t

based on previous performance. Acknowledging this fact, we formulate the following

research question:

62

\ What is an effective parameter quality attribution method for pro-

jecting successful parameter values to the next iteration of the opti-

misation process?

To answer this question we use a Predictive Quality Assessment (PQA) strategy

that combines a measure of past performance with time series prediction to calculate

the quality of parameter values. We investigate various forecasting techniques to

use for time series prediction and provide recommendations on the adequacy of

these methods in forecasting the quality of different parameter types. Furthermore,

PQA is compared to two notable parameter quality attribution strategies - Average

Quality Attribution (AQA) and Extreme Quality Attribution (EQA) - to understand

if using Predictive Quality Attribution improves the performance of the algorithm.

A detailed discussion of Predictive Quality Attribution and the validation of the

approach are given in Chapter 6.

3.2.4 Parameter Value Selection Strategy

The final stage of adaptive parameter control is the selection of parameter values

to use in the next iteration. The selection is based on the trade-off between using

parameter values with high quality and exploring new parameter values. When

controlling parameters with discrete values such as the type of mutation operator,

the possible choices are not too many (e.g. single-point, uniform or transposition

mutation operator), hence their exploration is attainable. In the case of real-valued

parameter assignments, such as the mutation rate and the crossover rate, the possible

values are too many to explore during the optimisation run.

Generally, parameter value selection strategies [182, 181, 56] optimise parameter

values by choosing from predefined values or ranges. The quality feedback and

therefore the probability of use in the next iteration is allocated to these ranges, not

63

the actually sampled values. Normally, parameter ranges are fixed and not optimised

by the optimisation process. As a result, the number and the size of the ranges has to

be decided by the user, who has to compromise either on the accuracy of the intervals

or the low number of computations, i.e. low search complexity. More specifically, if

narrow parameter ranges are selected, the accuracy in attributing to that interval

the quality achieved by values sampled from that interval is higher. However, there

are more intervals to sample from, which may lead to a non-exploration of some of

the ranges or a slow identification of the ones performing well. If wider ranges are

selected, the sampling inaccuracy increases since the actually sampled value may

be far from the value whose success the range’s usage probability is attributable to.

Hence, the initial discretisation may lead to values which are suboptimal for some

problems or their instances [9]. It follows that an ideal parameter value selection

strategy would adapt parameter ranges during optimisation process. The research

question is defined as follows:

\ What is an effective method for configuring real-valued parameters

during the optimisation process?

To address this problem we introduce the Adaptive Range Parameter Selection

strategy (ARPS). ARPS dynamically changes the ranges of parameter values during

the optimisation process based on their quality. Successful ranges are divided into

smaller ranges to increase their selection probability and the accuracy of the param-

eter quality attribution strategy, whereas unsuccessful parameter value ranges are

merged to decrease the selection probably. The Adaptive Range Parameter Selection

strategy (ARPS) and the validation of the approach are presented in Chapter 7.

64

3.3 Research Method

This thesis introduces a new adaptive parameter control method which automati-

cally adjusts parameter values of Evolutionary Algorithms during the optimisation

process. The main objective is related to the ultimate goal of optimisation, i.e. an-

swering the question of which method gives fast and high-quality solutions. More

specifically, the objective is to build a parameter control method that improves

choices of parameter values, which result in better algorithm performance.

To evaluate the proposed contributions of the thesis we design a set of experi-

ments. The design of experiment describes the steps performed in order to run a

set of test runs under controlled conditions to examine the performance of the EA

when using Adaptive Parameter Control (APC). An experiment consists of solving

a series of problem instances, some of which are well-studied benchmark problems,

whereas others are obtained by using a problem generator. All problems are solved

by an EA whose parameters are controlled by different adaptive parameter control

approaches. Selected performance measures are used to report and compare the

results from all methods. In general, performing an experimental comparison be-

tween algorithms, in particular, between Evolutionary Algorithms that use different

parameter control methods implies a number of methodological questions:

• What are the experimental settings?

• Which benchmark problems and problem instances are used?

• Which benchmark parameter control methods are used?

• Which comparative measures are employed?

The design of experiments is based on the research objectives, which help in

identifying the questions to ask, the hypothesis to test, the tests to run, the factors

to explore, and the measures to use.

65

3.3.1 Experimental Settings

The validation of the approach is based on the statistical design of the experiments.

Optimisation trials are treated as experiments with many degrees of freedom. In

the first step of the design of an experiment we determine the design factors, which

are the elements that can be changed during the experiment. These design factors

or variables can be either problem-specific or algorithm-specific.

Problem-specific factors are the objective function(s), the problem instances,

the constraints, etc. The problem-specific design factors are not changed during the

experiments. The algorithm-specific factors are the parameters that are controlled

during the optimisation process and the values of the parameters that are tuned

before the run of the algorithm. The design of parameter control methods consists

of the configuration of the hyperparameters, which have to be determined before the

algorithm is executed. Both problem-specific and algorithm-specific design factors

are determined before each experiment.

Evolutionary Algorithms are not expected to deliver exact and repeatable re-

sults, but to provide good approximate solutions where exact approaches cannot

be devised. Hence, results concerning the performance of approximate algorithms

such as EAs, are usually reported as mean values over repeated trials. To obtain

a fair comparison, the generally accepted approach is to allow the same number

of function evaluations for each trial [152]. Therefore, for the current comparison,

all algorithms trials were repeated 30 times for each optimisation scheme. These

values were decided after running the algorithm once for every problem and choos-

ing the value where the quality of the solutions seemed to not improve any more.

Nevertheless there are indications that all algorithms still make small but steady

improvements after these numbers of evaluations.

66

3.3.2 Benchmark Problems

According to Lin et al. [153], differences in performance among approximate al-

gorithms are more likely to be detected statistically if all algorithmic approaches

solve the same problem instances. Along this line, four problems were chosen: the

generally accepted Royal Road Problem (RRP), the Quadratic Assessment Prob-

lem (QAP), and the multiobjective Quadratic Assignment Problem (mQAP) which

were especially designed for testing EAs. The problems were chosen due to their

dissimilarity, which enables a more informed judgement as to the portability of the

approach when applied to an EA. Moreover, all four problems are NP-hard, which

makes them difficult to be solved by an exact algorithm and justifies the use of EAs

to optimise them.

The problems we have selected can be categorized into two main groups: reposi-

tory (benchmark) problems and randomly generated problems. The repository prob-

lems are the Quadratic Assignment Problem (QAP), the multiobjective Quadratic

Assignment Problem (mQAP) and the Royal Road problem. For the Quadratic

Assignment Problem (QAP) we have used problem instances published at http:

//www.seas.upenn.edu/qaplib/inst.html.

The multiobjective Quadratic Assignment Problem (mQAP) [99], which is de-

scribed in Section 3.3.2, is a well-known problem and instances of considerable diffi-

culty have been made available as benchmarks at http://dbkgroup.org/knowles/

mQAP/. Four different problem instances are used in the experiments: one uniform

triobjective instance of dimension n=30 (KC30-3fl-3uni), two triobjective problems

of dimension n=30 (KC30-3fl-2rl and KC30-3fl-3rl) and a biobjective problem of

dimension n=20 (KC30-2fl-5rl). The four problems are NP-hard, and their Pareto

fronts are not known.

MQAP and QAP as assignment problems map N tasks to M resources. Hence

67

the solution representation for both problems is a simple array which describes the

numbered locations and the values of the array represent the items. The problems

are optimised using an Evolutionary Algorithm with string-based representation and

customised crossover and mutation operators with their respective probabilities of

being applied. Multipoint crossover swaps the assignments between solutions. The

mutation operator changes the assigned item of a single location. As we are solving

the MQAP and QAP, singularity of item occurrence is mandatory and the solutions

are validated after the operators have been applied.

The Royal Road problem is optimised using an EA with string-based representa-

tion and multipoint crossover. The component deployment problem is multiobjective

in nature and requires a more specialised approach. One notable multiobjective EA

implementations is Deb’s [41]. Its distinctive feature is nondominated sorting, which

filters the population into layers of nondominated fronts and ranks the solutions ac-

cording to the level of front they are a member of. These EA implementations use

customised crossover and mutation operators with their respective probabilities of

being applied.

The advantage in using published problem instances relies on the fact that they

have already been investigated by other researchers and their characteristics are

well-known. However, we also use a problem generator, which can be downloaded

from http://mercury.it.swin.edu.au/g_archeopterix/. The problem genera-

tor produces problems by taking as input problem specific parameters. This is an

advantage, since the problem specific parameters can be used to tune the difficulty of

the problem, which help in offering insight into how specific components of param-

eter control methods deal with different problem difficulties and provide knowledge

on the reasons for the performance of the different parameter control methods.

68

The Royal Road Problem

The Royal Road functions are parametrized landscapes, first introduced by Mitchell,

Forrest, and Holland [93]. They are especially devised to demonstrate that there ex-

ist problems which are easier to solve using a Genetic Algorithm than a hill climber.

The function of the form F : {0, 1}l → R is used to define a search task in

which one wants to locate strings that produce high fitness values. The string is

composed of 2k non-overlapping contiguous sections each of length b + g, where b

is known as the block and g is known as the gap. These sections form the first-

level schemata, composed of short, low-order, highly fit schemas, which are called

the building blocks. A schema si is a combination of ones, zeros and the special

character ’*’ which is interpreted as ’do not care’. Lower-level schemas are used to

form intermediate-level higher-fitness schemas, which in turn are combined to create

even higher-fitness schemas.

A set of schemas which define the Royal Road Fitness function RRF are depicted

in Figure 3.2. The set of schemas is denoted as S = {s1, s2, ...s9}. Each si is assigned

a specific coefficient ci which is used in the fitness calculation.

s1 = [11111111∗∗] c1 = 8
s2 = [∗∗∗∗∗∗∗∗11111111∗∗] c1 = 8
s3 = [∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗] c1 = 8
s4 = [∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗] c1 = 8
s5 = [∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗] c1 = 8
s6 = [∗∗11111111∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗] c1 = 8
s7 = [∗∗11111111∗∗∗∗∗∗∗∗] c1 = 8
s8 = [∗∗11111111] c1 = 8
soptimal = [11]

Figure 3.2: Example of schemas defining the RRP function.

The schemas in Figure 3.2 are created by breaking up the optimal string soptimal

into eight building blocks. Strings are represented by using the same alphabet as

schemas (0,1,*) where 0 and 1 are called defined bits, and * means ’don’t care’. For

69

example, the pattern [0∗] requires that the first bit be set to 0 and the second bit

can be either 0 or 1. A bit string x is an instance of a schema s if it follows the same

pattern of that schema. For example, both [010] and [000] are instances of [0 ∗ 0].

The fitness calculation of a string x proceeds in two steps, the part calculation

and the bonus calculation. The overall fitness assigned to that string is the sum of

these two calculations.

The part calculation considers each block individually and assigns a fitness ac-

cording to the number of 1’s. The block fitnesses are later summed to form the total

fitness of the part calculation. The fitness function RRP (x) for the part calculation

of a string x is defined as:

RRP (x) =
∑

i

ciδi(x) (3.1)

where

δi(x) =





1 if x ∈ si

0 otherwise

For example, if x = 11111111 ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗11111111, i.e. it corresponds to exactly two schemas,

RRP (x) = 16.

In Holland’s Royal Road function the fitness of each block is based entirely on

the number of 1 bits it contains. The aim is to reward bits equal to 1 up to m∗

consecutive bits. For each bit equal to 1 the block’s fitness is rewarded by v. For

example, a block with three 1′s has a fitness of 3 ∗ v. If a block contains more than

m∗ 1’s, but less than b 1’s, it receives −v for each 1 over the limit. Finally, if a block

has only 1’s and no 0’s, it is considered to be complete. This block receives nothing

from the part calculation and will be rewarded in the bonus calculation.

70

Table 3.1: Hollands default Royal Road problem setting

Variable Value

k 4

b 8

g 7

m∗ 4

v 0.02

u∗ 1.0

u 0.3

The aim of the bonus calculation is to reward complete blocks and some combi-

nations of complete blocks. Holland gives rewards for attaining a certain level. At

the lowest level, rewards are given for complete blocks. If such a block exists, it

receives a fitness equal to u∗. Any additional complete blocks receive a fitness of u.

In general, a Royal Road function is defined by the variables used in the part

and bonus calculation (e.g. v, b, g, etc). The values used by Holland, which are also

used in our experiments, are depicted in Figure 3.1.

The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was first introduced by Koopmans and

Beckmann [101], who used this mathematical model to solve the problem of assigning

economical activities to resources. In QAP, n facilities have to be allocated to n

locations, such that the total cost is minimised and every resource has only one

economical activity. The total cost is calculated as the flow between the facilities

multiplied by the costs for placing the facilities at their respective locations. QAP

is considered to be a very challenging combinatorial optimisation problem. More

formally, the problem is modelled with two n×n, representing the cost and the flow.

The aim is to assign n utilities to n locations with minimal cost. The candidate

71

assignments are evaluated according to equation 3.2.

C =
n∑

ij

Bij · uij +
∑

ij,k,l

Cij,k,l · uik · ujl (3.2)

where

• n is the number of facilities and locations.

• Bik is the cost of assigning utility i to location k

• Cij,k,l is the cost of the flow between neighbouring utilities (given utility i is

assigned to location k and utility j is assigned to location l

• uik is 1 if utility i is assigned to location k, 0 otherwise

QAP does not allow for multiple assignments to the same location, hence so-

lutions are subject to the following constraints: The assignments are subject to

constraints regarding the

n∑

j=1

uij =1, i = {1, 2, ..., n} (3.3)

n∑

i=1

uij =1, j = {1, 2, ..., n} (3.4)

uij ∈ {0, 1}, i, j = {1, 2, ..., n} (3.5)

The Multiobjective Quadratic Assignment Problem

MQAP is the multiobjective version of the Quadratic Assignment Problem (QAP).

MQAP is a difficult problem, where even relatively small problem instances (of di-

mension n=20) cannot be solved to optimality. The aim in mQAP is to assign n

utilities to n locations with minimal cost, which is similar to singleobjective QAP.

However, in mQAP, we are concerned with the flow of more than one type of item.

72

For instance, in a hospital layout problem, different aspects have to be considered,

such as minimising the travel distance of the doctors to patient, of the patients to

their rooms, of hospital visitors to the patients, and of pharmaceuticals or other

equipments from storage rooms to operation or patient rooms. Similar to QAP, the

overall cost of assigning all facilities to locations is evaluated according to Equa-

tion 3.6.

Cs =
n∑

ij

Bij · uij +
∑

ij,k,l

Cij,k,l · uik · ujl (3.6)

The mQAP is formulated as:

minimise :
→
C= [C1, C2, ..., Cm] (3.7)

where m is the number of objectives to be minimised.

This problem and its fitness landscapes have been carefully investigated by

Knowles and Corne [99] and a set of benchmark problems are published at http:

//dbkgroup.org/knowles/mQAP/.

3.3.3 Benchmark Methods

The main goal of the thesis is to build a parameter control method that improves

choices of parameter values, which result in better algorithm performance. To de-

termine if the goal is achieved, we compare the approaches introduced in this thesis

with state-of-the-art methods. For each of the four contributions, we have selected

distinguished benchmark methods against which we compare the achieved results.

Benchmark methods are described in the validation section of each contribution

chapter.

73

3.3.4 Comparative Measures

In order to compare two or more Evolutionary Algorithms, suitable performance

measures have to be identified. If the optimal solutions of the problems considered

are known, a Success Measure (SM) can be defined as finding the optimal solu-

tions(s). SM can be used to define a performance measure as the percentage of runs

terminating with success [46].

The class of problems we consider are mostly NP-hard, and often the optimal

solutions are not known. In this case, SM is not appropriate. The performance of

algorithms when solving problems where the optimal solution(s) are not known can

be assessed by using the computation time (CPU time) required to achieve results

of certain quality. This measure is not very accurate, since it depends on different

factors, such as the programmer’s abilities, the hardware used, the operating sys-

tem, compiler, etc. If the algorithms are implemented by different programmers,

the comparison using the computation time is ill-suited since more experienced pro-

grammers are capable of implementing programs which execute faster. Using the

computation time may give different results if the same experiment is executed in

different computers, due to the hardware, operating system, compiler, etc.

Other more effective ways to evaluate Evolutionary Algorithms are the quality of

the final solutions in a predefined number of function evaluations, called the Mean

of Solutions Quality (MSQ) or the number of function evaluations used to achieve a

certain quality, called the Average number of Evaluations to a Solution (AES) [46].

The AES can give a fair comparison of the algorithms if the each function evaluation

takes the same amount of computation time, and that they consume most of the

time of the algorithm run. The Average number of Evaluations to a Solution can

be misleading if this is not the case.

We use the MSQ and allow for all our experiment a fixed number of function eval-

74

uations. This measure considers the stochastic nature of Evolutionary Algorithms,

which leads to different results for different runs, by expressing the performance

measure as the mean of the final quality of the solutions over a number of indepen-

dent runs. Altogether 30 independent runs are performed per EA and test problem

in order to restrict the influence of random effects. A different initial population is

randomly created each time, and for each test problem all EAs operate on the same

30 initial populations. The MFQ can always be used to measure the performance

of stochastic optimisers, since it does not require the optimal solutions. In order to

check for a statistical difference in the outperformance of the optimisation schemes,

results are validated using the Kolmogorov-Smirnov (KS) non-parametric test [149].

75

76

Part II

Contribution

77

Overview

This thesis makes four main contributions related to each of the four steps of adaptive

parameter control: the feedback strategy, the effect assessment strategy, the quality

assessment strategy and the parameter selection strategy.

First, we investigate different performance metrics for reporting the feedback in

multiobjective optimisation problems and provide recommendations on successful

strategies.

The second contribution is related to the estimation of the stochastic effect of

parameter values on the performance of the optimisation algorithm. We propose a

Bayesian model which approximates the relationship between the parameter values

and the algorithm’s performance probabilistically. This probabilistic relationship

represents the effect of parameter values on the successful performance of the algo-

rithm.

The third contribution is in the estimation of the overall quality of the parameter

values. The effect of parameter values measured in the past iterations is used to

predict their quality for the next iteration. The quality of parameter values is

employed to select the parameter values to use in the next iteration choices, in

which parameter values with a high quality are more likely to be selected.

The final contribution is related to the selection of parameter values when adapt-

ing real-valued parameters, for which the discretisation of the value intervals into

ranges is required. We propose a new parameter selection strategy which adapts

ranges of real-valued parameters during the optimisation process.

79

In essence, in this thesis we propose four strategies for performing each of the

steps in adaptive parameter control: a Multiobjective Feedback Collection (MFC)

strategy, presented in Chapter 4, a Bayesian Effect Assessment (BEA) strategy,

described in Chapter 5, a Predictive Quality Attribution strategy (PQA), given in

Chapter 6 and an Adaptive Range Parameter Selection strategy (ARPS), described

in Chapter 7.

80

Chapter 4

Feedback Collection Strategy

4.1 Introduction

Adaptive parameter control derives the probabilities of parameter values to choose

for the next iteration from the algorithm’s performance, which is part of the feedback

collection strategy. The main aspect of the performance of an optimisation algo-

rithm is the current fitness of the solution(s), where the aim is to minimise/maximise

its value. This is usually the way performance is measured in a singleobjective al-

gorithm, in which the solution with the best fitness value (smallest value in minimi-

sation problems and largest value in maximisation problems) is reported for each

run of the algorithm. Hence, noting the achieved fitness as a measure of the perfor-

mance of a singleobjective algorithm is agreeable. In a multiobjective problem, and

in the absence of a preference for certain objectives, the optimisation process pro-

duces a set of nondominated solutions, which make a trade-off between the fitness

functions. Measuring the performance of a multiobjective algorithm is not straight-

forward, since the output of the algorithm is more than one value. The success of

measuring the performance of a multiobjective optimisation algorithm relies on the

ability to express the quality of multiple data points with a single value to use as a

feedback for the adaptive parameter control method.

State-of-the-art adaptive parameter control methods typically consider singleob-

81

jective optimisation problems and use the fitness of the solutions (f(s)) as an indi-

cation of the performance of the algorithm [47, 56, 181, 37, 38, 94, 84, 7]. In typical

approaches the fitness is employed directly, i.e. a high fitness indicates a good per-

formance of the algorithm. These feedback collection collection mechanisms are not

suitable to use in adaptive parameter control for multiobjective optimisation algo-

rithms, which usually produce more than one solution as output. Recommendations

regarding appropriate feedback collection mechanisms to use in adaptive parameter

control for multiobjective optimisation are not available. Acknowledging these facts,

in this chapter, we investigate the following research question:

\ What is an effective feedback collection strategy to use in adaptive

parameter control for multiobjective optimisation?

With the aim of selecting an adequate performance metric for the feedback col-

lection strategy to use in adaptive parameter control for multiobjective Evolutionary

Algorithms, we discuss different performance aspects in multiobjective optimisation.

These performance aspects are employed to examine state-of-the-art performance

metrics for multiobjective optimisation algorithms and to provide recommendations

for successful strategies to use in multiobjective feedback estimation. This step is a

precondition for the following main contribution chapters, which employ the infor-

mation from the feedback collection strategy to decide on the successful applications

of parameter values and adjust them accordingly.

82

4.2 Performance Aspects in Multiobjective Opti-

misation

In singleobjective optimisation, the output of an optimisation run is a single solu-

tion, which has the best objective value (i.e. fitness of the solution). Hence, the

performance of the algorithm can be directly assessed by using the achieved fitness

of the best solution, which pertains to the quality of that solution. In multiobjec-

tive optimisation, the output of the optimisation process is the set of nondominated

solutions that guarantee a trade-off among the objective values. As a result, mul-

tiple data points should be used to calculate the performance of a multiobjective

optimisation algorithm. In this section, we discuss the quality aspects of nondomi-

nated solutions that should be considered when measuring the performance of the

algorithm.

Zitzler et al. [195] suggest that a performance metric for multiobjective optimisa-

tion algorithms should consider three aspects: (i) the distance of the nondominated

solutions to the Pareto front, (ii) the distribution of the nondominated solutions,

and (iii) the extent of the obtained nondominated front.

f2

f1
Pareto-optimal front
S∗
1 S∗

2 S∗
3

Figure 4.1: Properties of nondominated sets.

83

The first criterion pertains to the fitness of a nondominated set. The closer the

nondominated solutions to the Pareto front, the better they are. The other two

properties measure how the solutions are distributed, which describes the diversity

of the solutions. An even distribution of the solutions and a large coverage of the

Pareto front is desirable.

Consider the outcome of three hypothetical optimisation algorithms in a max-

imisation problem and the Pareto-optimal front depicted in Figure 4.1. The three

nondominated sets differ from each other with respect to three performance aspects.

The nondominated set S∗2 has a more uniform distribution of the solutions than the

other nondominated sets, the nondominated set S∗3 has a smaller distance to the

Pareto-optimal front, i.e. has a better fitness, whereas the nondominated set S∗1 has

a larger extent, i.e. has a better coverage property.

In essence, the key question when selecting a performance metric for multiob-

jective optimisation is how to summarize the nondominated solutions with a single

value. The underlying idea is to quantify the quality of nondominated solutions,

which describes the performance of the optimisation algorithm. We investigate

state-of-the-art performance metric for multiobjective optimisation with respect to

the performance properties described in this section. The goal is to select an ap-

propriate performance measure that quantifies the change in the properties of non-

dominated fronts and accurately guides the parameter control strategy.

84

4.3 Multiobjective Performance Metrics

Performance metrics for multiobjective optimisation have been widely studied in

the optimisation community. A review of state-of-the-art performance metrics for

multiobjective optimisation is depicted in Table 4.1. The majority of performance

metrics assign a nondominated set a value which represents a certain property, such

as diversity or fitness. They are usually referred to as unary measures, since they

consider only one set of solutions. Binary metrics, such as binary hypervolume

indicator [197, 198] and the binary epsilon indicator [198] can be used to assign

property measures to pairs of nondominated sets.

Unary measures assess the performance of multiobjective optimisation algo-

rithms by using the fitness of the nondominated solutions only, the diversity of the

results exclusively or both fitness and diversity. In terms of the diversity property,

unary metrics calculate the total number of solutions in a nondominated set (front

occupation indicator [185]), the spread of the solutions (front spread indicator [194])

or the relative distance between solutions (spacing indicator [165]). However, the di-

versity property alone is not very useful if the fitness of the solutions is unkown. The

solutions in the nondominated set may have a high diversity, however the ultimate

goal of optimisation is to find solutions that have a good fitness as well.

Unary fitness metrics found in the literature measure the distance of the nondom-

inated solutions to the Pareto-optimal front, such as the proximity indicator [185]

and the generation distance [8]. The optimal solutions often are not known, espe-

cially when solving previously unknown NP-hard problems. This is particularly true

when using parameter control techniques to adapt algorithm parameters during the

optimisation of problems which most probably have not been optimised beforehand,

and whose Pareto-optimal front is not known. Hence, performance measures which

calculate the quality of nondominated sets with respect to the Pareto-optimal front

85

Table 4.1: Performance metrics for multiobjective optimisation algorithms.

Metric Property Description Comment

Cluster [109] Diversity Numbers of clusters in
solution space represent
diversity.

Unary measure. Very
sensitive to the param-
eters.

Binary Hy-
pervolume
[197]

Diversity,
fitness

Measures the size of the
dominated area in the
objective space.

Unary/binary measure.

Spacing [165] Diversity Measures the range
variance of neighbour-
ing solutions in the
nondominated set.

Unary measure. Fails if
all the solutions are lo-
cated in the same point.

Chi-square-
like devia-
tion [178]

Diversity Divides the whole non-
dominated region into
sub-regions.

Unary measure. Fails
in multiobjective opti-
misation and is sensitive
to the division.

∆ [41] Diversity Measures Euclidean dis-
tances between solu-
tions and two additional
extreme solutions.

Unary measure. Re-
quires some prior
knowledge of the
Pareto front.

Front
Spread [194]

Diversity Indicates the size of
the objective space cov-
ered by an approxima-
tion set.

Unary measure. Does
not consider the number
of points.

Front Occu-
pation [185]

Fitness Indicates the number of
points available in the
nondominated set.

Unary measure. Does
not measure how far
these points are from
each other.

Generation
Distance [8]

Fitness Euclidean distance of
the nondominated so-
lutions to the Pareto
front.

Binary measure. Re-
quires prior knowledge
of the Pareto Front.

Proximity
[185]

Fitness, di-
versity

Measures the coverage
of the Pareto front.

Binary measure. Re-
quires some prior
knowledge of the
Pareto Front.

Average best
weight combi-
nation [52]

Fitness Measures the desirable
properties of a set using
user preferences.

Unary measure. Non-
convex points of a set
are not considered.

Binary Ep-
silon

Fitness. Measures the minimum
factor between two non-
dominated solutions

Binary measure. Works
only for comparing non-
dominated solutions.

86

are a poor choice, in particular when used as a feedback collection mechanism in

adaptive parameter control methods.

Other unary metrics employ user preferences to evaluate the quality of nondom-

inated points. One example is the average best weight combination [52]. The user

specifies a goal and feasibility vector (g, c) ∈ G, where G is the set of all prefer-

ence vectors. Each goal value gi specifies a user preference for the value of fitness

function fi and ci specifies the limit beyond which solutions are of no interest. In

a minimisation problem, the quality of a nondominated point s∗i is calculated using

the goal vector as follows:

q(s∗i) =





∑k
j wj=1fj(s

∗
i) if fj(s

∗
i) ≤ gj

∑k
j=1wjgjmax(cj, gj) gj ≤ fj(s

∗
i) ≤ cj

∑k
j=1w

2
jgjmax(cj, gj) otherwise

where wj represents the weight for objective function fj. This metric does not

require the Pareto-optimal front to calculate the fitness of the solutions. However,

the average best weight combination requires that the user defines the goal and

feasibility vector, which is different for every problem and objective functions being

optimised. This limits the applicability of the metric to problems in which a goal

and feasibility vector does not exist or cannot be generated. Furthermore, in order

to use this method as a feedback collection strategy in parameter control the goal

and feasibility vector has to be defined for every iteration, which is impractical.

Despite the variety of performance metrics in the literature, the majority of these

methods do not indicate how well a multiobjective optimisation algorithm performs

with respect to both diversity and fitness properties. The proximity indicator [185]

is one of the few examples of performance metrics that measure both fitness and

diversity of nondominated solutions. However, this metric assumes that the Pareto-

87

optimal front is known or can be generated.

Zitzler et al. [196] investigated different unary and binary performance metrics for

multiobjective optimisation. The goal of the study was to understand if it is possible

to conclude from a performance metric that a nondominated set is undoubtedly

better than another nondominated set, and to what extent that metric helps in

making precise statements about how much better it is. The study concludes that

there exist no unary performance metric capable of achieving this and their use

is discouraged. In essence, the authors argue that binary performance metrics are

superior to unary ones.

One of the recommended metrics is the coverage measure [197], which is a binary

performance metric usually used for comparison and interpretation of results from

different runs or algorithms. The coverage measure calculates the number of solu-

tions in a results set that are dominated by the other results set, and reports it as

a percentage. In the maximisation problem shown in Figure 4.2, the coverage mea-

sures for nondominated sets S∗1 and S∗2 are C(S∗1 , S
∗
2) = 0.75 and C(S∗2 , S

∗
1) = 0.25

respectively.

f1

f2
S∗
1 S∗

2

Figure 4.2: Coverage measure.

Despite being an accurate metric in measuring if a nondominated set is better

88

then another one [196] coverage measure does not calculate how much better are

the solutions.

Two other metrics recommended by this study are the binary hypervolume in-

dicator [197, 198] and the binary epsilon indicator [198]. Both metrics are capable

of detecting whether a nondominated set is better than another nondominated set.

The binary hypervolume indicator and the binary epsilon indicator provide addi-

tional information about how much better a nondominated set is compared to the

other. Instead of using the Pareto-optimal front as a reference set to measure the

quality of nondominated solutions, both metrics assign quality measures to pairs of

nondominated sets, hence the term binary. In the case of binary epsilon indicator,

quality refers to the fitness of the solutions, whereas for the binary hypervolume

indicator quality is measured as the diversity and the fitness of the solutions. The

binary hypervolume indicator considers the dominated area (volume or hyperspace)

in the objective space as a measure of the quality of the nondominated set. The

epsilon indicator calculates the smallest value that is needed to add to the objective

values of all solutions in one nondominated set, such that it dominates the other

nondominated set. These two metrics are described in more details in the next

sections.

4.3.1 Binary Hypervolume Indicator

The binary hypervolume indicator (ĥ) [197, 198] uses the dominated part of the

objective hyperspace to measure the difference between two nondominated solutions

with respect to diversity and fitness. It was first devised by Zitzler and Thiele [197],

defined as the hypervolume in the objective space that is dominated by one of the

nondominated sets but not by the other, e.g. Figure 4.3.

Formally, the hypervolume indicator can be defined by using volumes of poly-

89

f1

f2

ĥ

S∗
1 S∗

2

Figure 4.3: The binary hypervolume indicator is the area (volume or hyperspace)
between two nondominated sets. It is measured as the difference of the hypervolume
values of the two sets.

topes [197]. Let F = {f1, f2, ..., fo} be the set of objective functions, and S∗ =

{s∗1, s∗2, ...s∗n} be the set of nondominated solutions. For each axis in the objective

space F and for each nondominated solution s∗i there exists a hyperplane perpendic-

ular to the axis and passing through the point (f1(xi), f2(xi), ..., fo(xi)). A polytope

pi is formed by the intersection of the hyperplanes that arise out of s∗i along with

the axes. The hypervolume indicator ĥ(S∗) calculates the area, volume or hyper-

space enclosed by the union of the polytopes p1, p2, ..., pn. For instance, in the

two-dimensional case, i.e. when optimising two objectives functions f1 and f2, each

polytope pi represents a rectangle defined by the origin (0.0) and the data point

(f1(s
∗
i), f2(s

∗
i)).

The binary hypervolume indicator has shown to be very sensitive to small im-

provements of the nondominated solutions [198]. For instance, if a nondominated set

dominates another nondominated set, the binary hypervolume indicator will reflect

this difference of the quality of the two nondominated solutions [198].

90

4.3.2 Binary Epsilon Indicator

The binary epsilon indicator (ε) [198] calculates the difference by which one non-

dominated set of solutions is worse than another nondominated set with respect to

all objective functions. More specifically, the value of ε is equal to the smallest value

that is needed to add to each objective value of the solutions in one nondominated

set, such that it dominates all solutions in the other nondominated set. An example

of the ε-indicator in a maximisation problem is shown in Figure 4.4.

f2

f1S∗
1 S∗

2

−−︸︷︷︸
ε

Figure 4.4: The binary epsilon indicator is the smallest value that is needed to add
to the objective values of one nondominated set, such that it dominates all points
in the other nondominated set.

Formally, in a maximisation problem, given two sets of nondominated solutions

S∗1 and S∗2 , the objective vector F (S∗1) is said to ε-dominate the objective vector

F (S∗2), denoted as S∗1�εS∗2 , if and only if ∀f ∈ F, s∗1 ∈ S∗1 , s∗2 ∈ S∗2 : ε+f(s∗1) ≥ f(s∗2).

4.3.3 Example

To illustrate the difference between these two metrics consider the results from a

maximisation problem shown in Figure 4.5, in which both the binary hypervolume

and the binary epsilon indicators are employed to measure the change in the quality

91

of the solutions after an optimisation run. Figure 4.5a and 4.5b depict the same

nondominated solutions, where S∗1 is the initial nondominated set and S∗2 is the

output of the optimisation process, i.e. the optimised nondominated solutions.

f2

f1

1

2

3

4

5

6

7

S∗
1 S∗

2

1 2 3 4 5 6 70

−−︸︷︷︸
ε=1

(a) Binary epsilon.

f2

f1

ĥ = 8.25

S∗
1 S∗

2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

(b) Binary hypervolume.

Figure 4.5: Example of binary hypervolume and binary epsilon indicators.

The quality improvement is measured using the binary epsilon indicator, graph-

ically shown in Figure 4.5a and the binary hypervolume indicator depicted in Fig-

ure 4.5b. The binary hypervolume indicator, represented by the shaded area in

Figure 4.5b, is equal to 8.25, and the binary epsilon indicator, represented by the

biggest difference among the objective values of the two nondominated sets in Fig-

ure 4.5a, is equal to 1.

Figure 4.6 shows a different scenario. The nondominated set S∗1 is similar to the

one showed in Figure 4.5, whereas the nondominated set S∗3 is similar to S∗2 , but

has one solution (the solution highlighted with a circle) which is better in quality,

i.e. both fitness values are bigger. The binary hypervolume indicator in this case

is equal to 9.75 and the binary epsilon indicator is 2. Comparing the two examples

in Figure 4.5 and 4.6, it can be observed that by improving the fitness of a single

solutions the binary epsilon indicator value doubled, i.e. the binary hypervolume

value of the nondominated set in Figure 4.6b is 100% more than the binary hyper-

92

f2

f1
S∗
1 S∗

3

1

1 2 3 4 5 6 7

2

3

4

5

6

7

−−−−︸ ︷︷ ︸
ε=2

0

(a) Binary epsilon.

f2

f1

1

2

3

4

5

6

7

ĥ = 9.75

S∗
1 S∗

3

1 2 3 4 5 6 70

(b) Binary hypervolume.

Figure 4.6: Example of binary hypervolume and binary epsilon indicators.

volume value of the nondominated set in Figure 4.5. The value of the binary epsilon

indicator, on the other hand, increased by only 18%.

Lets consider a third scenario depicted in Figure 4.7, in which the circled solutions

in the nondominated set S∗4 are better in quality compared to the solutions of the

nondominated set S∗3 .

f2

f1
S∗
1 S∗

4

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

−−−−︸ ︷︷ ︸
ε=2

(a) Binary epsilon.

f2

f1
S∗
1 S∗

4

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

ĥ = 16.36

(b) Binary hypervolume.

Figure 4.7: Example of binary hypervolume and binary epsilon indicators.

In this example, the binary hypervolume indicator is equal to 16.36, i.e. approx-

imately 68% better than the original value in the example shown in Figure 4.6. The

binary epsilon indicator instead is the same as the original value (ε = 2) despite the

93

fact that three solutions in S∗4 have better quality.

This example shows that the binary hypervolume indicator is more sensitive to

the diversity of the solutions compared to the binary epsilon indicator. On the other

hand, the binary epsilon indicator is more sensitive to improvements in the quality of

the solutions. In summary, the binary hypervolume indicator measures both fitness

and diversity of nondominated sets, whereas the binary epsilon indicator is affected

more by the fitness property.

94

4.4 Validation

Both binary hypervolume indicator and binary epsilon indicator are possible choices

for the multiobjective feedback collection strategy. In this section, we investigate

the use of these two metrics as a feedback collection mechanism for parameter con-

trol in multiobjective optimisation. The main objective is to select an appropriate

feedback collection strategy that improves the search for high-quality solutions. We

employ the binary hypervolume indicator and the binary epsilon indicator as feed-

back collection mechanisms for parameter control, and compare the outcomes of

the optimisation runs using these feedback collection strategies. In essence, in this

section, we aim at finding an answer to the following research question:

\ What is an effective feedback collection strategy to use in adaptive

parameter control for multiobjective Evolutionary Algorithms?

To compare the results we use dominance ranking, proposed by Knowles et

al. [100]. Dominance ranking is based on ranking the nondominated sets by means of

the dominance relation described in Section 2.2. In essence, each nondominated set

generated by one optimisation scheme is assigned a rank representing the number

of nondominated sets generated from the other optimisation scheme that are not

dominated by it. The lower the rank, the better the nondominated set. A non-

parametric statistical test is used to verify if the rank distributions for the two

optimisation schemes are significantly different or not.

4.4.1 Experimental Settings

Both performance assessment methods (binary hypervolume indicator and binary

epsilon indicator) are used as a feedback collection mechanism during parameter

control in a multiobjective Evolutionary Algorithm. We use a quality-proportionate

selection mechanism to select the parameter values for the next iteration. Quality-

95

proportionate selection assigns each parameter value a selection probability pro-

portional to their quality. For the purpose of this experiment, the quality of the

parameter values is equal to the performance of the algorithm instance measured by

the two performance assessment methods.

The crossover and mutation operators and their rates are probably the most

conspicuous control parameters to optimise in stochastic optimisation [13]. Hence,

for the benefit of these experiments the crossover and mutation rates were varied.

For the crossover and mutation rates we use different value intervals to sample

from. Preliminary trials have shown that a cardinality of two intervals or levels with

ranges of {[0.6, 0.799], [0.8, 1.0]} produced the best results among several cardinal-

ities with even spreads between 0.2 and 1 for crossover rate, and two intervals of

{[0.0010, 0.25], [0.2505, 0.5]} for mutation rate.

We use six instances of the multiobjective Quadratic Assignment Problem ob-

tained from the database of benchmark problems published at http://dbkgroup.

org/knowles/mQAP/: a uniform biobjective instance of dimension n=20 (KC20-

2fl-3uni), a uniform triobjective instance of dimension n=30 (KC30-3fl-2uni), two

triobjective real instances of dimension n=30 (KC30-3fl-2rl and KC30-3fl-3rl), two

biobjective real problem of dimension n=10 (KC10-2fl-5rl) and n=20 (KC20-2fl-5rl).

All problems are NP-hard, and their Pareto fronts are not known.

The solution representation of the Quadratic Assignment problem is an array

which describes the numbered locations and the values of the array represent the

items. The problem is optimised using an Evolutionary Algorithm with string-

based representation and customised crossover and mutation operators with their

respective probabilities of being applied. Multipoint crossover swaps the assignments

between solutions. The mutation operator changes the assigned item of a single

location.

Every optimisation instance is granted 30000 function evaluations. To obtain a

96

fair comparison among the different effect assessment schemes we repeat each run

30 times, and report the results as boxplots. Furthermore, to check for a statistical

difference of the results, the different effect assessment schemes of the optimisation

methods are validated using the Kolmogorov-Smirnov (KS) nonparametric test [149].

4.4.2 Results

The means and standard deviations of the dominance rankings of the 30 repeated

trials are reported in Table 4.2. The means show a significant difference between

the result groups of the binary ĥ indicator and the binary ε indicator.

Table 4.2: The means, standard deviations (SD) and the Kolmogorov-Smirnov test
values of the 30 runs of each problem instance using different feedback collection
strategies.

Mean SD KS test

Problem ĥ ε ĥ ε d p

KC10-2fl-1rl 3.233 4.600 0.12 0.30 0.3667 0.026

KC10-2fl-5rl 3.667 4.967 0.66 0.44 0.4333 0.005

KC20-2fl-5rl 5.000 6.300 0.50 0.09 0.3529 0.021

KC20-2fl-3uni 13.41 18.45 0.60 0.22 0.3793 0.022

KC30-3fl-2rl 2.667 4.500 0.88 0.30 0.3333 0.047

KC30-3fl-2uni 5.500 8.900 0.95 0.73 0.4000 0.011

The results show that means of the binary hypervolume indicator are above

the respective values of the binary epsilon indicator. The least benefit the binary

hypervolume indicator provides for the triobjective problem instance KC30-3fl-2rl.

This is an inherent feature of the binary hypervolume indicator, whose accuracy

decreases with the increase of the number of the objectives.

The results of a statistical analysis, depicted in Table 4.2, clearly show a signifi-

cant difference between the result groups of the binary hypervolume indicator and

the binary epsilon indicator.

97

All KS tests, used for establishing differences between independent datasets un-

der the assumption that they are not normally distributed, result in a confirmation

of the null hypothesis with a minimum d-value of 0.3333 at a 95% confidence level.

Hence we conclude that the superior performance of the feedback collection mecha-

nism using the binary hypervolume indicator is statistically significant.

4.5 Summary

In this chapter we investigated different feedback collection mechanisms for mul-

tiobjective Evolutionary Algorithms and performed an empirical evaluation of two

recommended metrics: the binary hypervolume indicator and the binary epsilon

indicator. When employed by the feedback collection mechanism, the binary hy-

pervolume indicator produced better results quality compared to the binary epsilon

indicator.

The calculation of binary hypervolume indicator becomes computationally ex-

pensive with the number of objectives. Previous works recommend that binary

hypervolume indicator should be used with problems that have less than four ob-

jectives. The binary epsilon indicator, on the other hand, is easy to calculate. In

the next chapters, we employ the binary hypervolume indicator as a feedback col-

lection mechanism in adaptive parameter control for multiobjective Evolutionary

Algorithms.

98

Chapter 5

Parameter Effect Assessment

Strategy

5.1 Introduction

The performance of the optimisation algorithm, measured as described in Chap-

ter 4, is used as evidence to approximate the effect of parameter values. This step

determines the relationship between the solution space and the parameter space.

The most common way of assessing the effect of parameters is by using the im-

provement in specific properties of the generated solutions with respect to a reference

solution sref . This reference point can be either the parents of the generated solu-

tions [94, 183, 191, 79, 85, 83, 84, 56, 177], the best solution so far [37, 114, 65, 47],

or a specified quantile, e.g. the median [94, 95]. For example, if a mutation rate 0.01

is applied to create a solution s′ from its parent s, the effect of the mutation rate

on the performance of the algorithm is equal to the fitness gain ∆f = f(s′)− f(s).

In the approach of Srinivas and Patnaik [177], the operator rates are inversely

proportional to the difference between the maximum fitness and the average fitness

of the population. A low difference is associated with solutions with similar fitness,

hence the operator rates are increased to introduce more diversity in the population.

As a result, lower values of operator rates are applied to high-fitness solutions, and

99

higher values of operator rates are used to change low-fitness solutions.

In essence, state-of-the-art parameter effect assessment methods associate spe-

cific properties of an EA with particular parameters, and vary the parameter settings

according to the changes in these properties. However, Evolutionary Algorithms are

stochastic systems, which may produce different results quality for the same param-

eter values [43]. Moreover, the performance of the algorithm can be affected by more

than one parameter value. Hence using the performance improvement reported by

the feedback strategy directly as an indication of the effect of parameter values may

be misleading. The uncertainty regarding the real cause of the algorithm perfor-

mance improvement and the stochastic nature of the EAs should be taken care of

by the parameter effect assessment strategy, which leads us to the following research

question:

• What is an effective method for assessing the stochastic effect of EA

parameters?

To accommodate the stochastic nature of EAs we employ statistical tools which

approximate the effect of parameter values based on conditional probabilities. We

model the relationship between the performance of the algorithm and parameter

values as a Bayesian Belief Network, and define a probabilistic effect measure called

Bayesian Effect Assessment (BEA). Instead of using the performance improvement

of the EA directly, the Bayesian Effect Assessment Strategy is conditional on the

usage of the parameter values, as a result calculating their relative effect on the

performance of the optimisation algorithm. The same parameter values are applied

to more than one solution and a success measure is defined, which counts the number

of times a parameter value was used and the number of times the solutions using this

value were successful. Success is defined as producing solutions with feedback above

a certain threshold. The threshold value covers the uncertainty of EA outcomes.

100

5.2 Bayesian Effect Assessment Strategy

In our approach, the optimisation process is carried out in X = {x1, x2, ..., xk}, k

parallel algorithm instances. Each algorithm instance evolves independently and

every iteration reports to an algorithm manager, which coordinates all algorithm

instances. At the start of the optimisation process, the algorithm manager randomly

assigns each instance different parameter values. However, the same parameter value

can be assigned to more than one instance. Figure 5.1 illustrates this process for n

parameters ({υ1, ..., υn}).

x1 x2 x3 xk

Evolutionary Algorithm

⇓ ⇓ ⇓ ⇓
∆M(x1) ∆M(x2) ∆M(x3) ∆M(xk)

{υ1, υ2, ..., υn} {υ1, υ2, ..., υn} {υ1, υ2, ..., υn} {υ1, υ2, ..., υn}

Figure 5.1: Assessing the effect of parameters with parallel instances of the optimi-
sation algorithm

Each algorithm instance has the same number of solutions, in the range [1, µ],

which can also be subject to optimisation. During every iteration, new solutions are

created in each algorithm instance by using the parameter values assigned to them.

At the end of each iteration, the algorithm instances report the performance that

was achieved during that iteration to the algorithm manager.

We denote the set of performance metrics used to measure the performance of an

Evolutionary Algorithm as M = {m1,m2, ...,mp}. At each iteration, the achieved

performance for each algorithm instance is measured by calculating the improvement

in the properties of the current solutions, measured by these metrics, with respect

to the properties of the solutions in the previous iteration, as shown in Equation 5.1.

101

∆M(xi) =M(xti)−M(xt−1i) (5.1)

We denote the effect of parameter values on this performance change as e. This

performance difference determines if the parameter value was successful, denoted as

e+, or unsuccessful, denoted as e = e−. Success is defined as producing solutions

with performance values above a certain threshold th. Given an algorithm instance

xi, the effect of parameter values used in that instance is calculated as:

e(xi) =





e+ if ∆M(xi) > th

e− otherwise

In other words, if the change in the performance metric of an algorithm instance

in the last iteration, i.e. the difference between current (time t) M(xti) and the

value of the performance metric at the previous iterationM(xt−1i) is above th, that

instance is deemed successful (e(xi) = e+), which also means that the parameter

values used to produce the solutions are considered successful.

The value of the threshold th determines the greediness of the algorithm. For

smaller values of th (e.g. 5% of the best solutions) the focus of parameter control

is narrowed to the absolute best-performing parameter values. Larger values of

th (e.g. 50% of the best solutions) allow a better exploration of parameter values

with a moderate performance. The effect of this hyperparameter is investigated in

Section 5.4.

The successful or unsuccessful performance of a parallel instance xi can be af-

fected by different factors. First, Evolutionary Algorithms have more than one

parameter that can affect their performances, which makes it difficult to reward

specific parameters according to their merits. Second, Evolutionary Algorithms are

stochastic solvers, which return different results for the same parameter settings.

102

An ideal parameter effect assessment strategy would consider these two kinds of

uncertainties. Hence, we propose to use Bayesian Belief Network (BBN) [44] as a

probabilistic parameter effect assessment strategy.

BBNs measure cause-effect relationships between variables in a probabilistic way.

They are considered to be effective tools in modelling systems which do not have

complete information about the variables and the available data is stochastic or not

completely available.

BBNs are represented as directed acyclic graphs (DAGs) which have probability

labels for each node as a representation of the probabilistic knowledge. The graph is

defined as a triplet (V, L, P) [44]. V = (v1, v2, ...vn) is a set of n variables represented

by nodes of the DAG. We think of each variable as an event which consists of a finite

set of mutually exclusive states. It is also possible to represent continuous variables,

representing a numerical value such as crossover probability, by discretising them

into a number of intervals.

L is the set of links that denote the causal relationship among the variables V ,

modelled as directed arcs between nodes of the DAG. The directed links between

variables represent dependence relationships. A link from a variable v1 to variable

v2 indicates that v2 depends on the parent node v1, which is denoted as π(v2). It

can also be explained as a causal relationship where v1 is the cause of the event v2.

The lack of a link between two nodes means that the nodes are not dependent on

each other. This relationship is represented graphically in Figure 5.2.

v1

v2

Figure 5.2: An example of a Bayesian Belief Network.

103

We use BBNs to model the relationship between algorithm parameters and their

effect on the performance of the algorithm. The effect on the algorithm is repre-

sented by a child node with the name e, which takes two values: e+ for a successful

effect and e− for an unsuccessful effect. The child node e has many parent nodes

which represent the algorithm parameters denoted as {υ1, υ2, ..., υn}, as shown in

Figure 5.3. Each node υi can take different values, which we denote similarly to

parameter values (ranges) as {υi1, ..., υimi
}.

υ2

e

υ1 υn

Figure 5.3: A BBN modelling the relationship between algorithm parameters and
the performance of the algorithm.

Each of the parent nodes υi is annotated with probabilities p(υij), as shown

in Figure 5.4. These represent the prior probabilities, which can be calculated as

classical probabilities, to represent the probability that a certain parameter value

will occur, or as Bayesian probabilities, to represent a belief that a certain parameter

value will be used. In the first iteration, we assign equal prior probabilities to each

value of the parameters, calculated as:

p(υij) =
1

mi

(5.2)

where mi is the total number of values or intervals of parameter υi. This repre-

sents our belief in how frequently a certain parameter value should be used. These

prior probabilities are used to select the parameter values to assign to the algorithm

instances in the first iteration.

The probability that the child node e attains a certain value, in our case e+ or

104

e−, depends on the probabilities of the parent nodes, i.e. the probabilities of the

parameter values. This relationship is measured as a conditional probability, i.e. the

probability of an event occurring given that another event has already happened,

defined as: P = {p(e | π(e)) | π(e) ∈ V }, where π(e) are the parents of node v.

υ2

e

υ1 υn

p(e+|υ11)
p(e+|υ12)

p(e+|υ1m1
)

p(e+|υ21)
p(e+|υ22)

p(e+|υ2m2
)

p(e+|υn1)
p(e+|υn2)

p(e+|υnmn
)

p(υ11)
p(υ12)

p(υ1m1
)

p(υ21)
p(υ22)

p(υ2m2
)

p(υn1)
p(υn2)

p(υnmn
)

Figure 5.4: A Bayesian Belief Network annotated with conditional probabilities
employed by the parameter effect assessment strategy.

To calculate the conditional probabilities, every iteration, we establish the num-

ber of times the value has been used, denoted as n(υij) and the number of times

the value led to a success n(υij ∧ e+) (the number of successful instances that use

that parameter value). Then we calculate the conditional probabilities for each pa-

rameter value by using Equation 5.3. These conditional probabilities represent the

success rate of each parameter value in the current iteration.

p(e+|υij) =
n(υij ∧ e+)

n(υij)
(5.3)

where n(υij ∧e+) is the successful attempts that use υij and n(υij) is the number

of times υij was used. The conditional probabilities of all parameter values υij, i ∈

105

n, j ∈ m describe the likelihood of the causes of the successful performance of

the algorithm instances. Conditional probabilities, are calculated for all parameter

values resulting in the annotated graph shown in Figure 5.4.

The initial structure of the BBN and the conditional probabilities are learnt

based on the data from the k parallel optimisation instances. Algorithm 2 shows

the steps of the process.

Algorithm 2 Bayesian Effect Assessment Strategy

1: procedure EAS
2: for all parameter υi, i ∈ n do
3: for all algorithm instance xs, s ∈ k do
4: for all parameter value υij, j ∈ m do
5: if υij is used in xs then
6: n(υij) = n(υij) + 1
7: if ∆M(xs) > th then
8: n(υij ∧ e+) = n(υij ∧ e+) + 1
9: end if

10: end if
11: end for
12: end for
13: end for
14: for all υi, i ∈ n do
15: for all υij, j ∈ m do

16: p(e+|υij) =
n(υij∧e+)

n(υij)

17: end for
18: end for
19: end procedure

This probabilistic effect assessment strategy calculates the relative success rate

of each parameter value with respect to other parameter values. As a result, the

calculated conditional probabilities deal with the uncertainties that arise from the

stochastic nature of Evolutionary Algorithms by measuring the effect of parameters

probabilistically, instead of using directly the performance difference, as other state-

of-the-art methods.

106

5.3 Example

We illustrate the parameter effect assessment procedure described in Algorithm 2

with an artificial data set, which has three categorical variables: two controlled

parameters (υ1, υ2), each of them having two intervals: υ11, υ12 and υ21, υ22 respec-

tively, and the performance increase of the algorithm e, which can take two different

values: e+ and e−. As mentioned in Section 5, when the performance of the algo-

rithm is above a certain threshold, we consider that instance successful, denoted as

e = e+, otherwise it is deemed unsuccessful, denoted as e = e−.

Suppose that we have 10 parallel algorithm instances, denoted as {x1, x2, ...x10}.

Each instance uses parameter values for the two controlled parameters (υ1 and υ2)

selected from different intervals as shown in Figure 5.5. The dots symbolically

represent the solution sets of the instances.

x1

Evolutionary Algorithm

{υ11, υ22}

x2

{υ12, υ22}

x3

{υ12, υ21}

x4

{υ12, υ21}

x5

{υ12, υ21}

x6

{υ11, υ22}

x7

{υ11, υ21}

x8

{υ12, υ22}

x9

{υ12, υ21}

x10

{υ11, υ21}

Figure 5.5: Algorithm instances with parameter values selected from different inter-
vals.

After running the EA with the different instances, the performance of each in-

stance is assessed separately. Suppose that instances {x1, x2, x7, x10} are deemed

successful as shown in Figure 5.6

The same results are written in a table format as depicted in Table 5.1.

Using the data in Table 5.1, we calculate the frequency of each parameter value

in the 10 instances. Results are shown in Table 5.2.

107

x1

Evolutionary Algorithm

{υ11, υ22}

x2

{υ12, υ22}

x3

{υ12, υ21}

x4

{υ12, υ21}

x5

{υ12, υ21}

x6

{υ11, υ22}

x7

{υ11, υ21}

x8

{υ12, υ22}

x9

{υ12, υ21}

x10

{υ11, υ21}

e = e+ e = e+

e = e+

e = e− e = e− e = e−

e = e− e = e− e = e− e = e+

Figure 5.6: Successful algorithm instances.

Table 5.1: Performance of algorithm instances with different values for parameters
υ1 and υ2.

Instance x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

υ1 υ11 υ12 υ12 υ12 υ12 υ11 υ11 υ12 υ12 υ11

υ2 υ22 υ22 υ21 υ21 υ21 υ22 υ21 υ22 υ21 υ21

e e+ e+ e− e− e− e− e+ e− e− e+

Table 5.2: Frequencies of parameter values.

n(υ11) = 4

n(υ12) = 6

n(υ21) = 6

n(υ22) = 4

The next step involves calculating the frequency of each parameter value in the

successful and unsuccessful instances. Results are shown in Table 5.3.

Table 5.3: Frequencies of parameter values in the successful and unsuccessful in-
stances.

n(υ11 ∧ e+) = 3 n(υ11 ∧ e−) = 1

n(υ12 ∧ e+) = 1 n(υ12 ∧ e−) = 5

n(υ22 ∧ e+) = 2 n(υ21 ∧ e−) = 4

n(υ21 ∧ e+) = 2 n(υ22 ∧ e−) = 2

108

Looking at the frequencies of parameter values in the successful algorithm in-

stances, one may think that parameter values υ21 and υ22 have had the same effect

in the successful performance of the algorithm since they all have equal numbers

in the successful class. However, these numbers do not consider the times these

parameter values were unsuccessful. The conditional probabilities calculated in the

final step of the parameter effect assessment strategy using Equation 5.3 incorporate

this information. Results are shown in Table 5.4.

Table 5.4: The conditional probabilities of parameter values.

p(e+|υ11) = 3/4 p(e−|υ11) = 1/4

p(e+|υ12) = 1/6 p(e−|υ12) = 5/6

p(e+|υ21) = 1/3 p(e−|υ21) = 4/6

p(e+|υ22) = 1/2 p(e−|υ22) = 2/4

The data in Table 5.4 shows that although parameter values υ22, υ21 have the

same frequency in the successful algorithm instances, they do not have the same

success rates, i.e. their effect on the successful performance of the algorithm is not

the same.

Similarly, the conditional probabilities help in deriving conclusions about the

causes of the successful or unsuccessful performance of the algorithm instances. For

example, the success rate of parameter value υ11 is p(e+|υ11) = 3/4, which is higher

than p(e+|υ12) = 1/6. This means that parameter value υ11 has a higher probability

of being the cause of the successful performance of the algorithm instances compared

to υ12.

109

5.4 Analysis of the Threshold Value

The Bayesian Effect Assessment strategy described in Section 5.2 uses a threshold

value th to classify the algorithm instances into groups of high- and low-quality and

determine if a parameter value has been successful. The value of th determines the

greediness of the parameter effect assessment strategy. For instance, classifying only

the 10% best performing algorithm instances successful (a threshold value equal to

the 10th percentile), results in a fast convergence to the best parameter values. A

larger value of th (e.g. the 30th percentile) allows the exploration of parameter

values with a moderate performance. In this section, we investigate how this hyper-

parameter effects the performance of the optimisation algorithm.

5.4.1 Experimental Settings

To examine the effect of the threshold on the performance of the optimisation algo-

rithm we test four different values: 10th percentile, 20th percentile, the average and

the median performance gain. For the benefit of these experiments, the crossover

and mutation rates were varied. For the crossover and mutation rates we use differ-

ent value intervals to sample from, with a cardinality of two intervals with ranges

of {[0.6, 0.799], [0.8, 1.0]} and two intervals of {[0.0010, 0.25], [0.2505, 0.5]} for the

mutation rate.

For the optimisation process, we use problem instances of the Quadratic As-

signment Problem (TAI30B, STE36B), the multiobjective Quadratic Assignment

Problem (KC30-3fl-1rl, KC30-3fl-2rl), and the Royal Road Problem. For the multi-

objective Quadratic Assignment Problem instances we record the final hypervolume

indicator value as a performance indicator. Different QAP instances have different

scales of the fitness values. To make the results comparable, we normalise the fitness

function as follows:

110

fnorm(s) =
fmax − f(s)

fmax − fmin
(5.4)

where fmax is the maximum value and fmin is the minimum value that the fitness

function f can take. Since QAP is a minimisation problem, the normalisation of

the results converts it into a maximisation problem. Hence, the normalised fitness

of the results increases over time.

The solution representation of the Quadratic Assignment problem is an array

which describes the numbered locations and the values of the array represent the

items. The problem is optimised using an Evolutionary Algorithm with string-

based representation and customised crossover and mutation operators with their

respective probabilities of being applied. Multipoint crossover swaps the assignments

between solutions. The mutation operator changes the assigned item of a single

location.

5.4.2 Results

The means and standard deviations of the 30 runs for each threshold value are listed

in Table 5.5, which clearly show a significant difference between the result groups

of the method using the median and the methods using the average, 10th, and 20th

percentiles. The mean performance of the method using the median as a threshold

value is consistently above the means of the other methods for all problems.

As the threshold value using the median performance gain consistently outper-

forms the three other threshold values, we employ the Kolmogorov-Smirnov (KS)

non-parametric test [149] to check for a statistical difference. The 30 hypervolume

indicators and normalised fitness values of the repeated trials for each of the problem

instances were submitted to the KS analysis.

The median performance gain was compared to the other three threshold values,

111

Table 5.5: The means and the standard deviations of the optimisation schemes using
different threshold values for the Bayesian Effect Assessment (BEA) strategy.

Mean

Problem 10% 20% Average Median

Royal Road 7.10E-03 7.07E-03 7.06E-03 7.35E-03

TAI30B 0.5145 0.5120 0.5170 0.5354

STE36B 0.7860 0.8302 0.8277 0.8558

KC30-3fl-1rl 0.1425 0.1428 0.1441 0.1464

KC30-3fl-2rl 0.6004 0.6003 0.6009 0.6072

Standard Deviation

Problem 10% 20% Average Median

Royal Road 1.360E-03 1.372E-03 1.381E-03 1.442E-03

TAI30B 1.541E-02 1.323E-02 1.463E-02 2.608E-02

STE36B 6.790E-03 3.140E-02 3.383E-02 6.696E-03

KC30-3fl-1rl 3.936E-03 3.809E-03 3.727E-03 2.809E-03

KC30-3fl-2rl 3.903E-03 7.831E-03 6.768E-03 6.554E-03

Table 5.6: The Kolmogorov-Smirnov test for comparing the 30 runs of the optimi-
sation schemes using different threshold values for the Bayesian Effect Assessment
(BEA) strategy.

Median vs. 10% Median vs. 20% Median vs. Average

Problem d p d p d p

Royal Road 0.4333 0.005 0.4667 0.002 0.4667 0.002

TAI30B 0.5000 0.023 0.5625 0.007 0.5000 0.023

STE36B 1.0000 0.000 0.5000 0.023 0.5625 0.007

KC30-3fl-1rl 0.4891 0.014 0.5625 0.003 0.4375 0.037

KC30-3fl-2rl 0.5375 0.013 0.4917 0.030 0.6167 0.003

112

with a null hypothesis of no difference between the performances (Median vs. 10%,

Median vs. 20% and Median vs. Average). The KS tests resulted in a rejection of

the null hypothesis with a minimum d-value of 0.4375 at a 95% confidence level (see

Table 5.6). Hence, we conclude that the superior performance of the Evolutionary

Algorithm using the median as a threshold value is statistically significant.

These results indicate that using the median as a threshold value for the Bayesian

Effect Assessment (BEA) strategy produces better results quality and is more robust

than using the other threshold values. Hence, we employ the median performance

gain as a threshold value in the experiments presented in the rest of the thesis.

113

5.5 Validation

The Bayesian Effect Assessment Strategy (BEA) introduced in Section 5.2 measures

the effect of parameter values based on a success measure instead of using the

quality gain of the generated solutions directly. We investigate if the application of

the Bayesian Effect Assessment Strategy (BEA) to parameter control improves the

choice of the parameters and if its use results in better algorithm performance. We

compare results quality achieved by using BEA with a method that uses directly

the quality gain of the solutions. In essence, the research question investigated in

this section is the following:

• What is an effective method for assessing the stochastic effect of EA

parameters?

5.5.1 Benchmark Effect Assessment Strategy

As a benchmark parameter effect assessment strategy we employ the approach of

Srinivas and Patnaik (SP) [177], which calculates the effect of the variation operators

(mutation rate and crossover rate) based on the maximum fitness fmax and the

average fitness f of the population. The crossover rate ĉr and mutation rate m̂r are

computed as follows:

ĉr =
k1(fmax −∆f(sĉr))

fmax − f
, m̂r =

k2(fmax −∆f(sĉr))

fmax − f
(5.5)

where k1 and k2 are two constants selected in the range [0.0, 1.0] and ∆f(sĉr) is

the fitness gain of solutions compared to their parents. The operator rates calculated

by Equation 5.5 are inversely proportional to the difference between the maximum

fitness and the average fitness of the population. A low difference means that the

114

fitnesses of the solutions are too similar, hence the operator rates are increased to

introduce more diversity in the population. Furthermore, the operator rates are

increased if the difference between the maximum fitness in the population and the

fitness of the solution created by applying the operator rate (fmax − f) is low, i.e.

lower values of operator rates are applied to high fitness solutions, and higher values

of operator rates are used to change low fitness solutions.

5.5.2 Experimental Settings

Bayesian Affect Assessment (BEA) is compared to the parameter effect assessment

strategy introduced by Srinivas and Patnaik (SP), in which the reference points

are the maximum and the average fitness of the solutions. For the benefit of these

experiments, the crossover and mutation rates were varied. For the crossover and

mutation rates we use different value intervals to sample from, with a cardinal-

ity of two intervals with ranges of {[0.6, 0.799], [0.8, 1.0]} for crossover rate and

{[0.0010, 0.25], [0.2505, 0.5]} for mutation rate.

For the optimisation process, we use problem instances from the Quadratic As-

signment Problem (BUR26A, BUR26B and BUR26E) the multiobjective Quadratic

Assignment Problem (KC30-3fl-3uni, KC20-2fl-5rl, KC30-3fl-2rl and KC30-3fl-3rl),

and the Royal Road Problem. Every instance is granted 90000 function evalua-

tions. To obtain a fair comparison among the different parameter effect assessment

schemes we repeat each run 30 times, and report the results as boxplots.

Furthermore, to check for a statistical difference of the results, the different pa-

rameter effect assessment schemes of the optimisation methods are validated using

the Kolmogorov-Smirnov (KS) non-parametric test [149]. For each parameter effect

assessment scheme, we record the final hypervolume indicator value for the multi-

objective problem instances and the normalised fitness (Equation 5.4) value for the

115

singleobjective problems, and compare the achieved results.

5.5.3 Results

The 30 results of the repeated trials are presented as boxplots in Figure 5.7. The

empirical results are not normally distributed, but the mean and 25th percentile of

the Bayesian Effect Assessment (BEA) method are consistently above the respective

values of the benchmark.

The means and standard deviations of the two parameter effect assessment

schemes are listed in Table 5.7. The mean performance of the Bayesian Effect

Assessment (BEA) strategy is consistently above the average of the benchmark pa-

rameter effect assessment method (SP) which uses the fitness gain with respect to

the best and average fitnesses.

To understand if the obtained difference is not due to chance, the results of the

optimisation methods with the two parameter effect assessment schemes are vali-

dated using the Kolmogorov-Smirnov (KS) non-parametric test [149], which checks

for a statistical significance in the outperformance. The 30 values of the fitness func-

tions and hypervolume indicators of the repeated trials for each problem instance

were submitted to the KS analysis and results are shown in Table 5.7. BEA was

compared to the approach of Srinivas and Patnaik (SP), with a null hypothesis of

no difference between the performances.

All KS tests, used for establishing differences between independent datasets un-

der the assumption that they are not normally distributed, result in a rejection of

the null hypothesis with a minimum d-value of 0.3448 at a 95% confidence level.

Hence we conclude that the superior performance of the Bayesian Effect Assessment

method is statistically significant.

116

 0.266

 0.2662

 0.2664

 0.2666

 0.2668

 0.267

 0.2672

 0.2674

 0.2676

 0.2678

SP BEA

N
or

m
al

is
ed

 f
itn

es
s

(a) BUR26A

 0.487

 0.4872

 0.4874

 0.4876

 0.4878

 0.488

 0.4882

 0.4884

 0.4886

SP BEA

N
or

m
al

is
ed

 f
itn

es
s

(b) BUR26B

 0.2664

 0.2666

 0.2668

 0.267

 0.2672

 0.2674

 0.2676

 0.2678

SP BEA

N
or

m
al

is
ed

 f
itn

es
s

(c) BUR26E

 0.005

 0.0055

 0.006

 0.0065

 0.007

SP BEA

N
or

m
al

is
ed

 f
itn

es
s

(d) Royal Road

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

SP BEA

H
yp

er
vo

lu
m

e

(e) KC30-3fl-3uni

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

SP BEA

H
yp

er
vo

lu
m

e

(f) KC20-2fl-5rl

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

SP BEA

H
yp

er
vo

lu
m

e

(g) KC30-3fl-2rl

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

SP BEA

H
yp

er
vo

lu
m

e

(h) KC30-3fl-3rl

Figure 5.7: Boxplots of the 30 trials of the two parameter effect assessment schemes.

117

Table 5.7: The means, standard deviations and Kolmogorov-Smirnov test values of
fitness functions for the 30 runs using different parameter effect assessment schemes.

Mean Standard Deviation KS test

Problem BEA SP BEA SP d p

Royal Road 6.15E-03 5.97E-03 5.478E-04 3.616E-04 0.3448 0.048

BUR26A 0.2669 0.2666 4.794E-04 3.998E-04 0.4381 0.006

BUR26B 0.4881 0.4876 4.409E-04 3.673E-04 0.5517 0.000

BUR26E 0.2672 0.2670 4.474E-04 2.491E-04 0.4828 0.001

KC20-2fl-5rl 0.9687 0.9619 1.315E-02 1.053E-02 0.3793 0.022

KC30-3fl-2rl 0.9488 0.9339 1.484E-02 1.639E-02 0.5517 0.000

KC30-3fl-3rl 0.8893 0.8702 2.385E-02 1.453E-02 0.4483 0.004

KC30-3fl-3uni 0.5505 0.4852 8.653E-02 5.921E-02 0.3793 0.022

5.6 Summary

This chapter presented a Bayesian Effect Assessment (BEA) strategy which mea-

sures the effect of parameter values based on conditional probabilities (success rates).

Unlike state-of-the-art adaptive parameter control methods, in which the improve-

ment of the quality of the solutions reported by the feedback strategy is considered

as the effect of parameter values, BEA attempts to infer the cause of the improve-

ment and to what extent the change in the quality of the solutions is affected by the

parameter values. We performed a set of experiments on the Royal Road Problem,

the Quadratic Assignment Problem and the multiobjective Quadratic Assignment

Problem, in which Bayesian Effect Assessment produced better algorithm perfor-

mance compared to using directly the performance improvement of the EA reported

by the feedback strategy.

118

Chapter 6

Parameter Quality Attribution

Strategy

6.1 Introduction

The previous chapter derived the effect of parameter values based on the performance

of the optimisation algorithm. The effect, assessed at every iteration, provides new

information regarding the quality of the parameter values, the estimation of which

constitutes the Parameter Quality Attribution Strategy. The recorded effect of

parameter values is the input to the quality estimation rule, which updates its

internal state with the newly assessed effect for a projection of the performance of

the value in the future. The estimated quality of the parameter values is employed

to make an ‘educated guess’ about the probability of the parameter values producing

high quality results in the next iteration.

State-of-the-art parameter quality attribution methods use a predefined time

window W (the W last iterations) to approximate the quality of parameter values

for the preceding iteration t − 1. Igel et al. [85] use this time window (adaptation

cycle) to estimate the quality of parameter values as the average effect on algo-

rithm performance. Fialho et al. [55, 54, 56] use an Extreme value-based Quality

Attribution (EQA) strategy, which employs the maximum effect in W iterations to

119

approximate the quality of parameter values in the preceding iteration t−1. The Ex-

treme value-based Quality Attribution strategy uses a normalisation scheme, which

divides parameter effects by the best effect achieved so far by any parameter value.

An Extreme value-based Quality Attribution strategy is also presented by Whitacre

et al. [189], in which statistical tests are employed to detect outliers, i.e. parameter

values that produce exceptionally good solutions. A parameter value is considered

an outlier if it produces a solution which is statistically not expected in the popu-

lation. The parameter effect assessment strategy calculates the probability that a

solution is an outlier. The sum of all outlier probabilities of the solutions produced

by a parameter value represents its quality. The main idea is to reward parameter

values that generate solutions which are rare but very fit compared to the other

members of the population. Other parameter values that generate frequent solu-

tions with small improvements are not regarded as important and thus they are not

used in the next iteration.

In general, adaptive parameter control methods [33, 85, 55, 189] use the derived

parameter quality from recent or past performance, i.e. qt−1(υij), to select the

parameter values to use in the next iteration (time t). This is accomplished by

considering the average (AQA) or the extreme (EQA) effects of parameter values in

the preceding W iteration(s). One might argue that these approaches are ‘one step

behind’, in that they represent the parameter value which is optimal for the previous

iteration (time t − 1). Ideally, we would use a setting optimised for the beginning

iteration (time t). It follows that an ideal parameter control method would attempt

to predict successful parameter values for time t based on previous performance.

Acknowledging this fact, we investigate the following research question:

\ What is an effective parameter quality attribution method for pro-

jecting successful parameter values to the next iteration of the opti-

misation process?

120

Given the problem with deriving parameter values based on very recent, but

indeed past, performance, we use a method of Predictive Quality Attribution (PQA)

that combines a measure of past performance with time series prediction to predict

the performance of parameter values. PQA records the effect (success rates) of

every parameter value for each iteration. Instead of applying the effect in the last

iteration(s), i.e. time t − 1, directly as the quality for the parameter values, PQA

applies time series prediction as a method of forecasting the quality (time t) to be

applied in the parameter control strategy. We investigate if using Predictive Quality

Attribution (PQA) improves the algorithm performance, by comparing the results

with two state-of-the-art quality attribution strategies: Average Quality Attribution

(AQA) and Extreme Quality Attribution (EQA).

121

6.2 Predictive Quality Attribution

Predictive Quality Attribution (PQA) applies forecasting techniques to predict the

quality of parameter values to be applied in the parameter control strategy. The

effect of parameter values (success rates) is recorded for each iteration. The time

series data for a single parameter value υij is recorded as shown in Equation 6.1:

p1(e
+|υij), p2(e+|υij), ..., pt−1(e+|υij) (6.1)

where t − 1 is the current iteration and ps(e
+|υij) is the effect (success) of the

parameter value υij at iteration s, which is calculated using Equation 5.3.

The success history of each parameter value/range, given by the time series in

Equation 6.1, is used to forecast the success rate of that parameter value/range

for the next iterations. Forecasting necessitates the use of analytical methods to

predict the future values of a system, i.e. the success rates of parameter values given

the evidence from the behaviour of this system in the past. In Predictive Quality

Attribution, this process requires the identification of the relationship between future

(predicted) success rates of parameter values and the past success rates.

Forecasting methods abound in the literature, ranging from simple regression

analysis to more complex and sophisticated techniques such as Autoregressive Mov-

ing Average models. The forecasting techniques we explore are Linear Regression

(LR), Simple Moving Average (SMA), Exponentially-Weighted Moving Average

(EWMA), and Autoregressive Moving Average (ARIMA).

Linear Regression (LR) fits a linear equation to the observed data. This model

works on the assumption that the success rates have a linear relationship with time.

LR is one of the simplest forecasting models, yet it is a powerful model, provided

that the data conforms to the assumptions that this model makes. If the time-series

is not linear, other models such as Simple Moving Average (SMA), Exponentially

122

Weighted Moving Average (EWMA) or Autoregressive Integrated Moving Average

(ARIMA) can be used to forecast the next parameter values.

The purpose of employing a Simple Moving Average model is to measure trends

by smoothing the data using the mean of the success rates. As a result, the trend

in the data is extrapolated into a forecast. The assumption is that prior trend

movements will continue. EWMA on the other hand focuses mostly on recent success

rates and captures shorter trends in the data. As a result, an EWMA is expected

to reduce any lags in the simple moving average such that the fitting line is closer

to the real values of the success rates compared to a simple moving average. One

of the disadvantages of EWMA is that it is prone to sudden changes in the success

rates, which means that it may easily be affected by noise. In order to deal with this

problem, one could increase the length of the moving average term or switch from an

EWMA to an SMA. The ARIMA model is a combination of moving average models

and a special case of the linear regression models. The ARIMA model arguably

is more powerful the LR, SMA and EWMA, however, because of its power and

flexibility, ARIMA is a complex technique.

Using a more complex model may not necessarily lead to better results, since all

models make assumptions and have their limitations. Hence, different forecasting

methods are explored and the accuracy level in the forecast of each one using the

time series data obtained from the optimisation process is measured. We check the

assumptions made by each forecasting technique (e.g. linearity and normality of

errors) to make a judgement of the suitability of the model.

6.2.1 Linear Regression

The linear regression model is one of the simplest forecasting models used. Linear

regression builds a linear mathematical model of past observation that can be used

123

to forecast future values of a discrete time-series. This model makes an assumption

about the linearity of the data and normality of the errors distribution.

The assumption of the errors of linear models being normally distributed is often

justified by using the central limit theorem, which states that the sum of a sufficiently

large number of independent random variables (from any kind of distributions) is

normally distributed. If the success rates of parameter values occur randomly and

somewhat independently, the variations in the data can be expected to be approx-

imately normal in distribution. This assumption facilitates the calculation of the

coefficient, by minimising the mean squared error, which is easy to calculate.

Regression models are based on the idea of the regression to the mean, i.e. if the

time step is x standard deviations from the mean, the model predicts that the next

value of the success rate of a parameter value will be r · x standard deviations from

the mean of the time series, where r is the correlation coefficient between time and

success rates. This is an indication of the extent to which the linear model can be

used to predict the deviation of the success rate of a parameter value p(e+|υij) from

the mean when the deviation of time t from the mean is known.

In essence, the correlation coefficient measures how strongly the success rate of a

parameter value and time are related to each other in a linear way, by using a scale

of −1 to +1. The correlation coefficient is positive if both variables vary on the same

side of the respective means, i.e. the success rate increases with time, and negative

if the vary on opposite sides of their means. If the success rate varies independently

of the number of iterations, the correlation coefficient is equal to zero.

Before computing the correlation coefficient, the current success rate and time-

step are standardised by expressing them in units of standard deviations from their

own mean. The standardised success rate Pt−1(e+|υij) of parameter value υij at

time-step t− 1 is calculated using the time-series in Equation 6.1 as follows:

124

Pt−1(e+|υij) =
pt−1(e

+|υij)− pt−1(e+|υij)
σ(pt−1(e+|υij))

(6.2)

where pt−1(e
+|υij) is the mean of the success rates in the last t − 1 iterations

and σ(pt−1(e
+|υij)) is its standard deviation at time t − 1. The standardised time

is calculated in Equation 6.3.

τ =
t− t
σ(t)

(6.3)

The correlation coefficient r is equal to the average of the product of the stan-

dardized success rate and time calculated as follows:

r = P(e+|υij) · τ (6.4)

=
τ1P1(e

+|υij) + τ2P2(e
+|υij) + ...+ τt−1Pt−1(e+|υij)
t− 1

where t− 1 is the total number of observations. The linear model for predicting

p̂t(e
+|υij) from t is equal to:

p̂t(e
+|υij)− pt(e+|υij)
σpt(e+|υij)

= r · t− t
σt

(6.5)

This equation is usually expressed with constant terms as follows:

p̂t(e
+|υij) = a+ bt (6.6)

where:

b = r
σpt(e

+|υij)
σt

(6.7)

a = pt(e
+|υij)− b(t) (6.8)

125

where a and b are the two coefficients of the linear equation used for predicting

the next success rates. They depend only on the mean and standard deviations of

p(e+|υij) and t, and the correlation coefficient of the two variables. The best fit

of the model is calculated by minimising the mean squared error (ε2) calculated in

Equation 6.9.

ε2 =
1

t

t∑

s=1

(ps(e
+|υij)− p̂s(e+|υij)) (6.9)

6.2.2 Simple Moving Average

Due to the stochastic nature of approximate optimisation methods, the performance

of the algorithm can display random variation with time. Therefore, a smoothing

method is used to cancel, or at least reduce, the effect due to random variation.

Averaging and Exponential Smoothing Models, such as the Simple Moving Average

(SMA) model reduce the noise in the data. These models make an assumption on

the local stationarity of the time series and expect a slow-varying mean. This is

because these models calculate a moving, i.e. local, average, which smoothes out

the spikes in the original time series and use this average to predict the next value of

the time series. As a result, a smoothed model of the original time series is produced.

A simple moving average model uses equal weights for all the data points in the

time series as follows:

p̂t(e
+|υij) =

pt−1(e
+|υij) + pt−2(e

+|υij) + ...+ pt−k(e
+|υij)

k
(6.10)

where k is the ‘width’ of the moving average and denotes the number of observa-

tions used to compute the average. The forecast p̂t(e
+|υij) is equal to the average of

the last k data points in the time series, and is centred at t− k+1
2

. This means that

the forecast will tend to lag behind turning points in the data by k+1
2

time steps.

126

For example, if the size of the window is equal to 3, the forecasts will take 3 time

steps to approach the real observations.

The value of k has to be adjusted in order to fit the model to the time series. If k

is close to 1, the model is equivalent to a random walk. If k is sufficiently large, the

model becomes equivalent to the mean model, which considers the mean of all data

point in the time series. Similar to linear regression, the best fit of the model (i.e.

appropriate value for k) is obtained by minimizing the forecast errors on average.

6.2.3 Exponentially-Weighted Moving Average

In the linear regression and simple moving average models described in the previous

sections, the past observations are weighted equally. Intuitively, older data should

have less weight than recent.

Exponentially-Weighted Moving Average is a particular type of smoothing tech-

nique which gives exponentially decreasing weights to past observations, i.e. feed-

back taken from the current iteration is given more importance in forecasting the

next parameter values than the earlier observations. The forecast of the future effect

of parameter values is derived from the weighted sum of all observations.

Mathematically, the Exponentially-Weighted Moving Average is the convolution

of the data points with an exponentially smoothing weighting function defined as:

p̂t(e
+|υij) =αpt−1(e

+|υij) + α(1− α)pt−2(e
+|υij)

+α(1− α)2pt−3(e
+|υij) + ...+ α(1− α)k+1pt−(k+1)(e

+|υij) (6.11)

where α is the smoothing factor in the range (0,1). From Equation 6.11, it can be

observed that the exponents of the data series decrease exponentially, approaching

zero but never reaching it. The smoothing factor α controls the closeness of the

127

interpolated value to the most recent observation.

Large values of α reduce the level of smoothing. To determine the value of α

we use the least-squares method, for which the mean of squared errors, given in

Equation 6.9, is minimised. Alternatively, α may be expressed in terms of t time

steps, calculated as:

α =
2

t+ 1
(6.12)

For example, if we have 19 data points, α will be equal to 0.1. The half-life

of the weights (the interval over which the weights decrease by a factor of two) is

approximately N/2.8854 (within 1% if N > 5).

6.2.4 Autoregressive Integrated Moving Average

Autoregressive Integrated Moving Average (ARIMA) models are the general class

of models for forecasting time series. The moving average models described in the

previous sections are all special cases of the ARIMA models. In general ARIMA

models are appropriate when the time series data shows a stable trend with time

and does not have many outliers. ARIMA can perform better than exponential

smoothing techniques, however it requires a certain number of observations, and

the correlation between past observations should be stable. The ARIMA model is

composed of three parts, which are calculated individually: the Integrated (I) part,

the Autoregressive part (AR) and the Moving Average part (MA).

The integrated part I(d) is used if the data shows evidence of non-stationarity,

i.e. the time series is not stable with time and exhibits some trend, and d is the

number of non-seasonal differences. The stationarity of the time series is measured

using the stationarity in mean and variance. The first step in the identification of

an appropriate ARIMA model starts by identifying the value for d, i.e. the order(s)

128

of differencing needed to make the time series stationary, which can be one of the

followings:

• If there is a constant trend, i.e. zero mean, d = 0.

• For a linear trend, i.e. linear growth behaviour, d = 1.

• Otherwise, if the trend is quadratic, i.e. quadratic growth behaviour, d = 2.

The process of differencing subtracts each observation at time t from the the

observation at time t− 1. For d = 0, this transformation is performed only once to

the time series, which is also referred to as ‘first differencing’. As a result, the trend

of a linear growth behaviour is eliminated. At this point, we have fitted a random

walk model, which predicts the first difference of the time series to be constant.

When this process is repeated, the time series is ‘second differenced’ and so on.

The AR(p) model is used to describe the correlation between the current value

of the time series and p past values. The order p of the AR model describes the

number of lags (past values) included in the model prediction, i.e. the number of

the autoregressive terms. For instance, when applied to our application, AR(1)

means that the prediction of the success rate p̂t(e
+|υij) at time t is correlated with

the immediately preceding value, i.e. pt−1(e
+|υij) in the time series. This can be

written as:

p̂t(e
+|υij) = φ1pt−1(e

+|υij) + εt (6.13)

where φ1 is the first-lag (lag 1) autoregressive parameter, and εt is the error,

which is assumed to be random and normally distributed. If the estimated value

of parameter φ1 is 0.25, the current value of the time series is related to 25% of its

value 1 time-step ago. The current success rate pt(e
+|υij) in the time series can be

related to more than one past value. For instance:

129

p̂t(e
+|υij) = φ1pt−1(e

+|υij) + φ2pt−2(e
+|υij) + εt (6.14)

In this case, the success rate of the parameter value υij at time t is related to two

immediately past success rates, pt−1(e
+|υij) and pt−2(e

+|υij), by considering also the

random error εt.

The Moving Average (MA(q)) part of the ARIMA model considers the time

series as an unevenly weighted moving average of random errors εt, capturing the

deviation of the current success rate as a finite weighted sum of q previous deviations

of the success rates, plus a random error, i.e. the current success rate of parameter

values is related only to the errors that happened in the past lags, rather than to the

preceding success rates as in the AR model. As an example, the first order MA(1)

means that the error of the current value is directly correlated with the error of the

immediate past observation given by Equation 6.15.

p̂t(e
+|υij) = εt − θ1εt−1 (6.15)

where εt, εt−1 are the errors (or residuals) at times t and t− 1, and θ1 is the first

order moving average coefficient. Similar to the AR model, the MA model can be

extended to a higher order model in order to include more than just the error of the

immediate past observation.

130

6.3 Characteristics of the Parameter Effects

Each of the forecasting models described in Section 6.2 makes assumptions about

the data, such as linearity and normality of the distribution of errors. In this sec-

tion, we check whether the assumptions about the time series data hold to make a

judgement of the suitability of the models. The time series represents the effect of

parameter values during the optimisation process. The effect of the parameter values

is calculated using Equation 5.3. The data examination is performed by employing

statistical tests.

There are four principal assumptions which justify the use of linear regression

models for purposes of prediction: linearity of the relationship between dependent and

independent variables, normality of the error distribution, independence of the errors

(no serial correlation), and homoscedasticity, which refers to the constant variance

independent of time, of the errors (i) versus time and (ii) versus the predictions.

Simple Moving Average and Exponentially-Weighted Moving Average are not

sensitive to normality assumptions. However, in order for SMA and EWMA to

be appropriate models, two assumptions are made. First, both EWMA and SMA

assume that the time series is stationary, which means that the mean and standard

deviation of the time series do not change with time. Furthermore, both models

assume that the variance around the mean remains constant with time, i.e. the

model assumes homoscedasticity of the time series.

In order to achieve best results using the ARIMA approach, five assumptions

have to be met. The first is the generally accepted threshold of 50 data points. This

is a significant obstacle for the parameter control method, since it implies that the

model will start giving appropriate results only after 50 iterations. The other four

assumptions of ARIMA models are homoscedasticity, stationarity, independence and

normality of residuals.

131

6.3.1 Experimental Settings

For the purpose of this analysis we test six parameters: mutation rate, crossover rate,

mutation operator, crossover operator, population size and mating pool size. For

the mutation rate, crossover rate, population size and mating pool size we perform

the experiments twice: with a cardinality of two ranges and with a cardinally of four

ranges with an even spread within a predefined interval. The aim of using different

cardinalities is to investigate if using ranges with different size results in different

statistical properties.

Table 6.1: Ranges/values of parameters.

Parameter Ranges/values

Mutation rate - 2 ranges [0.001,0.249], [0.25,0.49]

Mutation rate - 4 ranges [0.001,0.1249], [0.125,0.249], [0.25,0.3749], [0.375,0.49]

Crossover rate - 2 ranges [0.6,0.79], [0.8,0.99]

Crossover rate - 4 ranges [0.6,0.69], [0.7,0.79], [0.8,0.89], [0.9,0.99]

Population size - 2 ranges [20,60], [61,100]

Population size - 4 ranges [20,40], [41,60], [61,80], [81,100]

Mating pool size - 2 ranges [0.1,0.39], [0.4,0.69]

Mating pool size - 4 ranges [0.1,0.249], [0.25,0.39], [0.4,0.549], [0.55,0.69]

Mutation operator Single-point, Uniform

Crossover operator Single-point, Uniform

To investigate the characteristics of the data, we run ten different experiments. In

every experiment, one of the parameters is the design factor and the other parameters

are kept constant. In each experiment, every parameter range/value is applied to 10

different instances which run in parallel. Every instance is granted 15000 function

evaluations. Every 150 function evaluations the effect of the parameter ranges,

i.e. the success rate approximated by Equation 5.3, is recorded. In total, each

experiment produces 100 data points for each parameter range.

Approximate algorithms are not expected to deliver exact and repeatable results.

132

Therefore, for the current data analysis, all algorithms trials were repeated 30 times

for each parameter value.

6.3.2 Statistical Analysis

Linearity

In order to justify the use of the linear regression model described in Section 6.2.1,

we test the success rates of parameter values (calculated using Equation 5.3) for

linearity. Linearity means that the relationship between the success rates and time

is a straight line. To check for a statistical significance of the linearity of the data, we

run the optimisation algorithms 30 times for each case. After fitting a linear model

to the data, we report the p-value which indicates the significance of the regression.

A p− value < 0.05 implies that the time series is linear with all data points having

equal influence on the fitted line. The hypothesis is formulated as follows:

\ H0: The time series is linear.

\ H1: The time series is not linear.

Normality

The calculation of the confidence intervals for the model coefficients in linear re-

gression is based on the assumptions of normally distributed errors. In Predictive

Quality Attribution, normality of errors means that most of the success rates of

parameter values are expected to fall close to the regression line and very few to

fall far from the line. Since the estimation of model coefficients is based on the

minimisation of squared error, the presence of extreme data points can exert a dis-

proportionate influence on the estimates. For example, if the data contains large

outliers, the error distribution becomes skewed.

To check for the normality assumption, we use the Kolmogorov-Smirnov (KS)

133

test [64] to tests the null hypothesis that the errors of the success rates are normally

distributed. The null hypothesis is rejected if the p-value is smaller that 0.05, which

means that the data is not normally distributed. The hypothesis is formulated as

follows:

\ H0: The data follows a normal distribution

\ H1: The data does not follow a normal distribution

Independence

Linear regression models make the assumption that the error terms are independent.

One example of the violation of this assumption is autocorrelation, which occurs if

each error term in the time series is related to its immediate predecessor (εi is related

to εi−1) defined as follows:

εt = ρεt−1 + µt (6.16)

where ρ is the coefficient of the first order autocorrelation defined in the interval

[−1, 1], and the constant µt values are assumed to be independent. If ρ is equal

to zero, the errors are not correlated. The Durbin-Watson (DW) statistical test,

measures the correlation between the error terms and their immediate predecessors

as follows:

D =

∑t
i=1(εi − εi−1)2∑t

i=1 ε
2
i

(6.17)

The D statistic tests the null hypothesis that the errors from a least-squares

regression are not autocorrelated. The values of D vary in the interval [0, 4]. For

independent error terms, the value of D is expected to be close to 2. The value of

D tends to be smaller than 2 for positive autocorrelation between the terms, and

greater than 2 for negative autocorrelation.

134

\ H0: The the autocorrelation of the errors is 0.

\ H1: The autocorrelation of the errors is less than 0.

The null hypothesis is rejected if p-value is less than 0.05.

Homoscedasticity

Homoscedasticity refers to the assumption that the success rates of parameter values

exhibit a similar variance with time. If homoscedasticity is violated, it is difficult to

measure the true standard deviation of the residuals, which can result in confidence

intervals that are too wide or too narrow. In particular, if the variance of the errors

increases with time, confidence intervals for predictions will tend to be unrealistically

narrow. Heteroscedasticity may also have the effect of placing too much weight on

a small subset of the data, i.e. the subset where the error variance is the largest

when estimating coefficients.

Residuals are tested for homoscedasticity using the Breusch-Pagan test, which

regresses square residuals to independent variables. The null hypothesis for the

Breusch-Pagan test is homosedasticity. The alternate hypothesis is that the error

variance varies with a set of regressors.

\ H0: The data exhibit a similar variance with time.

\ H1: The error variance varies with a set of regressors.

If the p-value is less than 0.05, the null hypothesis is rejected, which means that

the data is not homoscedastic.

Stationarity

A stationary time series fluctuates around a constant long-term mean and has a

constant standard deviation independent of time. In the application of the Predictive

Quality Attribution, this means that it does not matter when in time the success

135

rates are observed. If the time series is non-stationary, it can be transformed into

stationary by differencing. To check for the stationarity of the success rates of

parameter values we use the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) [108] test,

which tests the null hypothesis that the data is stationary, formulated as follows:

\ H0: The data is stationary.

\ H1: The data is not stationary.

If p-value is less than 0.05, the null hypothesis is rejected, which means that the

data is not stationary.

136

6.3.3 Results

The time series data from the optimisation process was tested against the assump-

tions of linearity, normality, independence, homoscedasticity, and stationarity using

the statistical tests described in the precious sections. The aim was to investigate

if it is conform these assumptions, which indicates the adequacy of using the fore-

casting techniques (LR, SMA, EWMA and ARIMA) to model and predict the effect

of parameter values in the future iterations. The summary of the assumptions that

each of the considered forecasting models makes about the data is sumarised in

Table 6.2.

Table 6.2: Assumptions of the forecasting models.

Linearity Normality Independence Homoscedasticity Stationarity

LR + + + + -

SMA - - - + +

EWMA - - - + +

ARIMA - + + + +

Table 6.3 summarises the results from the statistical tests. The characteristics

of the success rates of parameter values (linearity, normality, etc.) are listed based

on the assumptions of the forecasting models described in Table 6.2. The percent-

ages represent the runs among the 30 trials in which H0 was not rejected. We use

these results to derive conclusions regarding the appropriateness of using forecasting

techniques to predict the success rates of the parameter values.

The detailed results are presented in the Appendix. The linearity test results

are shown in Tables 10.1-10.12 for the experiment with two ranges/values and

in Tables 10.61-10.76 for the experiment with four ranges. The results from the

Kolmogorov-Smirnov (KS) test are shown in Tables 10.13-10.24 and Tables 10.77-

10.92. The results of the Durbin-Watson (DW) statistical test are shown in Ta-

137

bles 10.25-10.36 and Tables 10.93-10.108. The results from the Breusch-Pagan (BP)

test are shown in Tables 10.37-10.48 and Tables 10.109-10.124. Finally, the results

of the KwiatkowskiPhillipsSchmidtShin test, are shown in Tables 10.49-10.60 and

Tables 10.125-10.140.

Table 6.3: Characteristics of the success rates of six algorithm parameters with
different values or ranges. The percentages represent the confirmation of H0 among
the 30 trials.

Parameter Linear Normal Independent Homoscedastic Stationary

Mutation rate [0.0010,0.25] 97% 100% 80% 90% 97%

Mutation rate [0.2505,0.5] 100% 100% 70% 97% 100%

Mutation rate [0.001,0.124] 97% 97% 97% 90% 80%

Mutation rate [0.125,0.249] 100% 100% 100% 80% 63%

Mutation rate [0.25,0.3749] 100% 100% 97% 90% 87%

Mutation rate [0.375,0.49] 100% 90% 97% 87% 80%

Crossover rate [0.6,0.799] 100% 100% 83% 90% 93%

Crossover rate [0.8,1.0] 100% 100% 83% 97% 93%

Crossover rate [0.6,0.69] 100% 100% 93% 83% 80%

Crossover rate [0.7,0.79] 100% 100% 97% 90% 73%

Crossover rate [0.8,0.89] 100% 100% 97% 87% 80%

Crossover rate [0.9,0.99] 100% 100% 100% 83% 93%

Population size [20,60] 100% 100% 100% 53% 13%

Population size [61,100] 33% 73% 100% 77% 13%

Population size [20,40] 100% 97% 100% 40% 10%

Population size [41,60] 100% 100% 100% 40% 3%

Population size [61,80] 100% 100% 100% 57% 17%

Population size [81,100] 100% 100% 100% 53% 47%

Mating pool [0.1,0.4] 100% 100% 77% 93% 97%

Mating pool [0.41,0.7] 100% 100% 80% 87% 100%

Mating pool [0.1,0.249] 100% 100% 90% 80% 63%

Mating pool [0.25,0.39] 100% 100% 97% 83% 97%

Mating pool [0.4,0.549] 100% 100% 100% 80% 70%

Mating pool [0.55,0.69] 100% 100% 97% 80% 77%

Single-point mutation 100% 100% 70% 93% 97%

Uniform mutation 100% 100% 77% 93% 93%

Single-point crossover 100% 100% 77% 87% 93%

Uniform crossover 100% 100% 77% 97% 93%

138

In general, the time series data is linear with normally distributed errors. The

lowest number of normally distributed residuals resulted from the experiment with

the population size in the range [61,100], in which the null hypothesis was rejected in

27% of the cases. The population size in this range is also the only parameter range

that was not linear in the majority of the cases (the null hypothesis was rejected in

77% of the runs). It follows that the use of linear regression models to forecast the

success rates of the population size in this range is not appropriate.

We employed the Durbin-Watson (DW) statistical test to verify the assumption

of no correlation between the error terms of the time series (independence of the

errors). The error terms of the success rates of parameter values are independent

for the majority of the cases, with the lowest percentage for the mutation rate in

the ranges [0.2505,0.5] (70% of the runs have independent errors). Nevertheless,

this does not limit the applicability of the Linear Regression and ARIMA models to

forecast the effect of this parameter range.

The Breusch-Pagan (BP) test was used to measure the homosedasticity of the

time series data. All forecasting methods require that the time series data is ho-

moscedastic. In general, this assumption is true for the majority of the time series

data, i.e. the success rates (effects of parameter values) are highly homoscedastic for

the majority of the parameter values/ranges. The lowest percentages of homoscedas-

tic runs are in the experiments with the ranges [20,40] and [41,60] of the population

size, in which only 40% of the runs are homoscedastic (see column headlined ‘Ho-

moscedasticity’ in Table 6.3). Similar results were observed in the other ranges of

the population size, which indicate that forecasting the effect of the population size

may not be appropriate.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test verifies the null hypothesis

that the data is stationary. The assumption regarding the stationarity of the time-

series data is made by three of the forecasting models shown in Table 6.2: SMA,

139

EWMA and ARIMA. It can be observed that stationarity is a common feature in the

success rates (effects) of the single-point mutation, uniform mutation, single-point

crossover and uniform crossover operators. Similarly, in some of the ranges of the

mutation rate ([0.0010,0.25] and [0.2505,0.5]), crossover rate ([0.6,0.799], [0.8,1.0]

and [0.9,0.99]) and mating pool size ([0.1,0.4], [0.41,0.7] and [0.25,0.39]) the null

hypothesis was not rejected in more than 90% of the runs with the mating pool size

in the range [0.41,0.7] and mutation rate in the range [0.2505,0.5] being the most

stationary processes (100% of the runs are stationary).

However, the crossover rate in the range [0.7,0.79], the mutation rate in the

range [0.125,0.249] and the mating pool size in the ranges [0.1,0.249], [0.4,0.549]

and [0.55,0.69] have a moderately low number of stationary runs. Furthermore, less

than 50% of the runs in all ranges of the population size are stationary. Population

size in the range [41,60] has the lowest percentage of stationary runs, with only

3% of the runs being stationary. These results indicate that stationarity, which is a

prerequisite of SMA, EWMA and ARIMA, does not fit perfectly the time series data

we investigated. The time series can be transformed into stationary by differencing,

however that would require extra computations. Instead, Linear Regression does not

make any assumption about the stationarity of the time series (see Table 6.2), hence

may be a better choice than SMA, EWMA and ARIMA to predict the nonstationary

effect of the parameter values.

Table 6.4 shows recommendations on which models to use for forecasting the

success rates of various parameter values. The ‘+’ sign means that the time series

data of the parameter value follows all assumptions made by the forecasting model,

hence the model can be used to predict the future effect of that parameter value.

On the other hand, the ‘∼’ sign indicates that the time series data of the parameter

value partially follows the assumptions made by the forecasting model, hence the

use of the forecasting model to predict its effect is discouraged.

140

Table 6.4: Recommendation for using forecasting models to predict the success rates
of different parameter values chosen from different ranges.

Parameter LR SMA EWMA ARIMA

Mutation rate [0.0010,0.25] + + + +

Mutation rate [0.2505,0.5] + + + +

Mutation rate [0.001,0.1249] + + + +

Mutation rate [0.125,0.249] + + + +

Mutation rate [0.25,0.3749] + + + +

Mutation rate [0.375,0.49] + + + +

Crossover rate [0.6,0.799] + + + +

Crossover rate [0.8,1.0] + + + +

Crossover rate [0.6,0.69] + + + +

Crossover rate [0.7,0.79] + + + +

Crossover rate [0.8,0.89] + + + +

Crossover rate [0.9,0.99] + + + +

Population size [20,60] ∼ ∼ ∼ ∼
Population size [61,100] ∼ ∼ ∼ ∼
Population size [20,40] ∼ ∼ ∼ ∼
Population size [41,60] ∼ ∼ ∼ ∼
Population size [61,80] ∼ ∼ ∼ ∼
Population size [81,100] ∼ ∼ ∼ ∼
Mating pool size [10,40] + + + +

Mating pool size [41,70] + + + +

Mating pool size [0.1,0.249] + + + +

Mating pool size [0.25,0.39] + + + +

Mating pool size [0.4,0.549] + + + +

Mating pool size [0.55,0.69] + + + +

Single-point mutation + + + +

Uniform mutation + + + +

Single-point crossover + + + +

Uniform crossover + + + +

It can be observed that any of the forecasting techniques can be used to pre-

dict the success rates of mutation rate, crossover rate, mating pool size, mutation

operator and crossover operator. However, we found that the success rates of the

population size do not meet the assumptions of the forecasting techniques that we

investigated. As a result, none of these forecasting techniques are recommended for

141

use with this parameter. In the next sections we investigate if forecasting the effect

of the population size has a negative effect on the performance of the Evolutionary

Algorithm.

142

6.4 Analysis of the Predictive Quality Attribu-

tion Methods

In the previous section, we investigated various characteristics of the effects (success

rates) of parameter values, such as linearity, normality of the residuals, and station-

arity. The statistical tests showed that the time series data of all EA parameters,

except the population size, conform to the assumptions made by the forecasting

models. Recommendations on appropriate forecasting techniques for various pa-

rameter values were presented in Table 6.4.

In this section, we analyse the parameter quality attribution strategy using differ-

ent forecasting techniques - Linear Regression (LR), Simple Moving Average (SMA),

Exponentially Weighted Moving Average (EWMA) and Autoregressive Integrated

Moving Average (ARIMA) - to predict the success rates of parameter values. The

aim is to understand which of the forecasting models is the best choice for the

parameter quality attribution strategy.

6.4.1 Experimental Settings

For the purpose of this experiment we consider five parameters: the mutation rate,

crossover rate, mating pool size, crossover operator, and mutation operator. The

parameter values or ranges used in this experiment are similar to the ones used in

the previous section, given in Table 6.1. Population size is not controlled based on

the outcome of the statistical tests, which showed that the effects of this parameter

do not conform to the assumptions made by the forecasting models.

We perform 30 runs for each of the optimisation schemes using different parame-

ter quality attribution strategies and record the results for 9000 function evaluations.

The results are presented as the mean of 30 runs over 55 iteration.

143

We employ the optimisation schemes to solve the Quadratic Assignment Problem

(BUR26E), the multiobjective Quadratic Assignment Problem (KC30-3fl-2rl) and

the Royal Road Problem. The problem instances are downloaded from the online

repository of benchmark problems at http://www.seas.upenn.edu/qaplib/. Dif-

ferent QAP instances have different scales of the fitness values. To make the results

comparable, we normalise the fitness function as follows:

fnorm(s) =
fmax − f(s)

fmax − fmin
(6.18)

where fmax is the maximum value and fmin is the minimum value that the fitness

function f can take. Since QAP is a minimisation problem, the normalisation of

the results converts it into a maximisation problem. Hence the normalised fitness

of the results increases over time.

6.4.2 Results

The mean hypervolume growths of the 30 runs of the Evolutionary Algorithm us-

ing different forecasting techniques as parameter quality attribution strategy are

presented in Figure 6.1. In the optimisation of QAP, mQAP and the Royal Road

problem, the Evolutionary Algorithm using Linear Regression (LR) as a quality at-

tribution strategy produced better results quality than the three other forecasting

methods, especially in the initial iterations. The difference between the performances

of the parameter quality attribution strategies becomes smaller as the optimisation

progresses. However, Linear Regression consistently outperforms SMA, EWMA and

ARIMA in all iterations.

The optimisation scheme using Autoregressive Moving Average (ARIMA) as

a quality attribution scheme does not perform very well in the initial iterations,

especially in the experiments with the Royal Road problem. This is an inherent

144

 0.21

 0.215

 0.22

 0.225

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0 10 20 30 40 50

N
or

m
al

is
ed

 f
itn

es
s

Iteration

LR
SMA

EWMA
ARIMA

(a) BUR26E

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0 10 20 30 40 50

N
or

m
al

is
ed

 f
itn

es
s

Iteration

LR
SMA

EWMA
ARIMA

(b) KC30-3fl-2rl

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0 10 20 30 40 50

N
or

m
al

is
ed

 f
itn

es
s

Iteration

LR
SMA

EWMA
ARIMA

(c) Royal Road

Figure 6.1: Performance improvement of the EA using different forecasting tech-
niques to solve the Quadratic Assignment Problem BUR26E, the multiobjective
Quadratic Assignment Problem KC30-3fl-2rl, and the Royal Road problem.

145

problem of ARIMA, which requires more data points than the other forecasting

techniques to forecast the next values accurately. The parameter quality attribution

strategy using ARIMA archives good results towards the end of the optimisation

process.

In summary, the optimisation scheme using Linear Regression (LR) to predict the

effect of the parameter values performed better than SMA, EWMA and ARIMA.

Linear Regression is one of the simplest forecasting models, yet it is a powerful

model, provided that the data conforms to the assumptions that this model makes.

All parameter ranges that we used in this experiment meet the assumptions made

by the Linear Regression.

On the other hand, certain ranges of mutation rate, crossover rate and mating

pool size meet the stationarity assumption, which is a prerequisite of SMA, EWMA

and ARIMA (see Table 6.3), only in a moderate number of runs. As a result, these

models may not fit the time series data we are controlling perfectly. This explains

the poor performance of SMA, EWMA and ARIMA models when compared with

Linear Regression. Hence, in the rest of the thesis, we use Linear Regression to

predict the effect of EA parameter values/ranges.

146

6.5 Validation

The Predictive Quality Attribution (PQA) strategy approximates the quality of

parameter values by combining past performance with time series prediction. PQA

records the success rates of every parameter value for each iteration and uses a

forecasting technique to predict the success rate for the next iteration. The research

question addressed in this section is formulated as follows:

\ What is an effective parameter quality attribution method for pro-

jecting successful parameter values to the next iteration of the opti-

misation process?

To answer this research question we investigate if using the Predictive Quality

Attribution is more beneficial than using the average or extreme quality attribution

schemes.

6.5.1 Benchmark Parameter Quality Attribution Strategies

We compare the proposed parameter quality attribution strategy to two notable

quality attribution strategies. The first method is the Average Quality Attribution

(AQA), proposed by Igel et al. [85], which uses time window (adaptation cycle) W

to approximate the quality of parameter values as the average effect on algorithm

performance. The Average Quality Attribution (AQA) is given in Equation 6.19.

qt−1(υij) =
1

N
υij
W (S)

t−1∑

s=t−W−1

es(υij) (6.19)

where es(υij) is the effect of parameter value υij, assessed as the fitness difference

between the solution produced by applying parameter value υij and its parent. The

sum of the effect values of υij in the last W iterations (i.e.
∑t−1

s=t−W−1 es(υij)) is di-

vided by the total number of solutions created using that parameter value (N
υij
W (S))

147

normalising the quality of υij.

The second approach is the Extreme value-based Quality Attribution (EQA)

strategy, proposed by Fialho et al. [55, 54, 56]. EQA employs the maximum effect

in W iterations to approximate the quality of parameter values in the preceding

iteration t− 1 as follows:

qt−1(υij) = arg maxs=t−W−1,...,t
es(υij)

e(υi∗)
(6.20)

where the effect es(υij) of parameter value υij at each time-step s is measured as

the difference in fitness of the offspring created by using parameter value υij and its

parent(s). The extreme value-based quality attribution strategy uses a normalisation

scheme, which divides parameter effects by the best effect e(υi∗) achieved so far by

any parameter value.

6.5.2 Experimental Settings

The Predictive Quality Attribution (PQA), Average Quality Attribution (AQA) and

Extreme Quality Attribution (EQA) strategies are used to control parameters of an

Evolutionary Algorithm, which is employed to optimise the Royal Road Problem,

described in Section 3.3.2, four instances of the Quadratic Assignment Problem

(CHR20A, BUR26E, TAI30A, and STE36B), described in Section 3.3.2 and three

instances of the multiobjective Quadratic Assignment Problem (KC10-2fl-5rl, KC30-

3fl-1rl, and KC30-3fl-2rl), described in Section 3.3.2.

For the benefit of this experiment we control the mutation rate, the crossover

rate, the mutation operator, the crossover operator, the population size and the

mating pool size with values/ranges depicted in Table 6.1.

The experimental study in Section 6.3 demonstrated that the effect of the pop-

ulation size during the optimisation time-steps does not adhere the assumptions

148

made by the forecasting techniques. Hence, we conduct two sets of experiment:

in the first experiment we control only the population size, whereas in the second

experiment we control the mutation rate, the crossover rate, the mutation operator,

the crossover operator, and the mating pool size. The aim of the first experiment is

to understand if using PQA to approximate the effect of the population size has a

negative effect on the performance of the algorithms, since this parameter does not

meet the assumptions made by the forecasting models. The second set of experi-

ments is performed to examine the performance of the PQA when used to predict

the quality of parameter values which conform to the assumptions of the forecasting

techniques.

Every instance is granted 90000 function evaluations. To obtain a fair comparison

among the parameter quality attribution schemes, we repeat each run 30 times, and

report the results as boxplots. To check for a statistical difference of the results, the

parameter quality attribution schemes of the optimisation methods are validated

using the Kolmogorov-Smirnov (KS) non-parametric test [149]. The final solutions

of each optimisation scheme are recorded and the results are compared by using the

normalised fitness for the singleobjective problems and the hypervolume indicator

(described in Section 3.3.4) for the multiobjective problem.

6.5.3 Results

In the first experiment, only the population size was controlled using three parameter

quality attribution schemes: AQA, EQA, and PQA. Figure 6.2 depicts the results

of the 30 runs for each problem instance and parameter quality attribution scheme.

The Predictive Quality Attribution (PQA) is slightly outperformed by the Extreme

Quality Attribution (EQA) strategy in some of the problems. These results indicate

that using forecasting techniques to predict the quality of the population choices for

149

 0.456

 0.458

 0.46

 0.462

 0.464

 0.466

 0.468

 0.47

 0.472

 0.474

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(a) CHR20A

 0.24575

 0.2458

 0.24585

 0.2459

 0.24595

 0.246

 0.24605

 0.2461

 0.24615

 0.2462

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(b) BUR26E

 0.488

 0.49

 0.492

 0.494

 0.496

 0.498

 0.5

 0.502

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(c) TAI30B

 0.786

 0.788

 0.79

 0.792

 0.794

 0.796

 0.798

 0.8

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(d) STE36B

0.00651

0.00652

0.00653

0.00654

0.00655

0.00656

0.00657

0.00658

0.00659

0.00660

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(e) Royal Road

0.80646

0.80647

0.80648

0.80649

0.80650

0.80651

0.80652

0.80653

0.80654

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(f) KC10-2fl-5rl

 0.185

 0.19

 0.195

 0.2

 0.205

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(g) KC30-3fl-1rl

 0.565

 0.57

 0.575

 0.58

 0.585

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(h) KC30-3fl-2rl

Figure 6.2: Performance improvement of the EA using different parameter quality
attribution strategies for controlling population size to solve the QAP, the mQAP
and the Royal Road problem

150

the future iterations may not always be beneficial.

Table 6.5: The means and standard deviations for the 30 runs of each problem
instance using different parameter quality attribution schemes: Average Quality
Attribution (AQA), Extreme Quality Attribution (EQA) and Predictive Quality
Attribution (PQA).

Mean Standard Deviation

Problem AQA EQA PQA AQA EQA PQA

CHR20A 0.4660 0.4669 0.4651 4.85E-03 3.51E-03 4.26E-03

BUR26E 0.2460 0.2461 0.2459 8.92E-05 6.88E-05 1.31E-04

TAI30A 0.4977 0.4982 0.4962 3.57E-03 3.23E-03 5.94E-03

STE36B 0.7934 0.8164 0.7945 3.29E-03 4.22E-02 3.64E-03

Royal Road 6.56E-03 6.57E-03 6.56E-03 2.14E-05 2.27E-05 1.82E-05

KC10-2fl-5rl 0.8065 0.8065 0.8065 2.74E-05 3.30E-06 2.74E-05

KC30-3fl-1rl 0.1936 0.1993 0.1974 5.68E-03 4.53E-03 6.74E-03

KC30-3fl-2rl 0.5754 0.5785 0.5745 4.92E-03 4.14E-03 3.67E-03

The means and standard deviations of the three parameter quality attribution

schemes are shown in Table 6.5. It can be observed that the mean performance

of the Predictive Quality Attribution (PQA) is usually not higher then the other

two parameter quality attribution schemes. To check for a statistical significance

of the difference in the performances of the parameter quality attribution schemes

we submitted the results from the 30 runs to the Kolmogorov-Smirnov (KS) non-

parametric test [149], with the null hypothesis that there is no significant difference

between the result sets.

The null hypothesis was not rejected in any of the KS tests (see Table 6.6), which

means that the superior performances of the Average Quality Attribution (AQA)

and Extreme Quality Attribution (EQA) methods compared to the Predictive Qual-

ity Attribution (PQA) strategy are not statistically significant.

This indicates that using PQA to forecast the effect of teh population size does

not have a negative effect in the performance of the algorithm, despite the fact that

151

Table 6.6: The Kolmogorov-Smirnov test values for the 30 runs of each problem
instance using different parameter quality attribution schemes: Average Quality
Attribution (AQA), Extreme Quality Attribution (EQA) and Predictive Quality
Attribution (PQA).

PQA vs. AQA PQA vs. EQA

Problem d p d p

CHR20A 0.2000 0.537 0.2667 0.200

BUR26E 0.2000 0.537 0.3000 0.109

TAI30A 0.3750 0.162 0.3750 0.162

STE36B 0.2500 0.633 0.3750 0.162

Royal Road 0.2667 0.200 0.2667 0.200

KC10-2fl-5rl 0.3750 0.162 0.3750 0.162

KC30-3fl-1rl 0.3500 0.121 0.3542 0.113

KC30-3fl-2rl 0.2000 0.890 0.4000 0.136

this parameter does not meet the assumptions made by the forecasting models. As

a result, we expect that when new EA parameters are controlled, prediction can be

used without a negative effect in the performance of the algorithm.

In the second experiment, the mutation rate, crossover rate, mating pool size,

mutation operator and crossover operator were controlled. The 30 results of the

repeated trials are presented as boxplots in Figure 6.3. The empirical results are

not normally distributed, but the mean and 25th percentile of the Predictive Qual-

ity Attribution (PQA) method are consistently above the respective values of the

benchmarks.

The means and standard deviations are listed in Table 6.7, which show a sig-

nificant difference between the result groups of AQA, EQA and PQA. The mean

performance of PQA is consistently above the averages of the benchmarks. The

performance of EQA is worse than the other two parameter quality attribution

strategies, which is quite the opposite from what the results from the experiment

with the population size showed.

152

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(a) CHR20A

 0.236

 0.238

 0.24

 0.242

 0.244

 0.246

 0.248

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(b) BUR26E

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(c) TAI30A

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(d) STE36B

 0.006

 0.0061

 0.0062

 0.0063

 0.0064

 0.0065

 0.0066

AQA EQA PQA

N
or

m
al

is
ed

 f
itn

es
s

(e) Royal Road

 0.804

 0.8045

 0.805

 0.8055

 0.806

 0.8065

 0.807

 0.8075

 0.808

AQA EQA PQA

H
yp

er
vo

lu
m

e

(f) KC10-2fl-5rl

 0.19

 0.195

 0.2

 0.205

AQA EQA PQA

H
yp

er
vo

lu
m

e

(g) KC30-3fl-1rl

 0.505

 0.51

 0.515

 0.52

 0.525

 0.53

AQA EQA PQA

H
yp

er
vo

lu
m

e

(h) KC30-3fl-2rl

Figure 6.3: Boxplots of the 30 trials of the three different parameter quality attribu-
tion schemes used with an Evolutionary Algorithm optimising the QAP, the mQAP
and the Royal Road problem.

153

Table 6.7: The means and standard deviations for the 30 runs of each problem
instance using different parameter quality attribution schemes: Average Quality
Attribution (AQA), Extreme Quality Attribution (EQA) and Predictive Quality
Attribution (PQA).

Mean Standard Deviation

Problem AQA EQA PQA AQA EQA PQA

CHR20A 0.4909 0.4845 0.4972 1.627E-02 1.306E-02 1.920E-02

BUR26E 0.2416 0.2395 0.2422 2.049E-03 1.893E-03 2.365E-03

TAI30A 0.4909 0.4845 0.4982 1.627E-02 1.306E-02 1.870E-02

STE36B 0.7978 0.7984 0.8308 7.823E-03 9.038E-03 8.704E-03

Royal Road 0.0064 0.0063 0.0072 1.537E-04 6.3723E-03 1.473E-03

KC10-2fl-5rl 0.8062 0.8061 0.8067 1.040E-03 8.284E-04 9.555E-04

KC30-3fl-1rl 0.1984 0.1961 0.1995 3.255E-03 3.974E-03 3.806E-03

KC30-3fl-2rl 0.5199 0.5175 0.5223 7.312E-03 5.439E-03 4.821E-03

The gap between result qualities widens in favour of PQA as the problem diffi-

culty increases. The smallest instances of the QAP (CHR20A) and mQAP (KC10-

2fl-5rl) can be assumed to be the least challenging, and there the results are not

as clearly in favour of Predictive Quality Assignment. The Royal Road problem

and the larger instances of QAP (STE36B) and mQAP (KC30-3fl-1rl,KC10-2fl-5rl)

are clearly solved to better quality using PQA, as they are more complex than the

smaller problem instances.

To check for a statistical significance of the results we used the Kolmogorov-

Smirnov (KS) non-parametric test [149]. PQA was compared with AQA and EQA

with a null hypothesis of no difference between the performances. The 30 values

of the hypervolume indicators of the repeated trials for each problem instance were

submitted to the KS analysis [149] and results are shown in Tables 6.8. All KS

tests, used for establishing differences between independent datasets under the as-

sumption that they are not normally distributed, result in a rejection of the null

hypothesis with a minimum d-value of 0.2333 at a 95% confidence level. Hence

154

Table 6.8: The Kolmogorov-Smirnov test values for the 30 runs of each problem
instance using different parameter quality attribution schemes: Average Quality
Attribution (AQA), Extreme Quality Attribution (EQA) and Predictive Quality
Attribution (PQA).

PQA vs. AQA PQA vs. EQA

Problem d p d p

CHR20A 0.2333 0.042 0.3333 0.045

BUR26E 0.3000 0.048 0.3000 0.049

TAI30A 0.3294 0.046 0.3517 0.039

STE36B 0.9667 0.000 0.9667 0.000

Royal Road 0.6333 0.000 0.7333 0.000

KC10-2fl-5rl 0.3333 0.045 0.4000 0.011

KC30-3fl-1rl 0.2897 0.016 0.4333 0.005

KC30-3fl-2rl 0.3433 0.035 0.4333 0.005

we conclude that the superior performance of the Predictive Quality Attribution

method is statistically significant.

155

6.6 Summary

This chapter presented a new predictive method for estimating the probability of

a parameter value producing a certain level of quality in the next iterations. The

effect of parameter values were recorded at every iteration and the Predictive Quality

Attribution (PQA) strategy was employed to forecast the effect of parameter values

in the next iteration. Four forecasting techniques were investigated: the Linear

Regression (LR), the Simple Moving Average (SMA), the Exponentially-Weighted

Moving Average (EWMA), and the Autoregressive Moving Average (ARIMA).

We have examined the suitability of each forecasting technique in predicting the

effect of six EA parameters: the mutation rate, the crossover rate, the population

size, the mating pool size, the type of crossover operator and the type of mutation

operator. We have found that the population size does not conform to the assump-

tions made by the forecasting techniques, hence it may not be appropriate to predict

its effect for the future iterations. However, the results from the experiments have

shown that using the PQA strategy to control the population size does not have

a negative effect on the performance of the EA. Based on the experiments with

the population size, we argue that if EA parameters are controlled without prior

testing for statistical properties, PQA can be used without a negative effect in the

performance of the algorithm.

Despite being one of the simplest forecasting strategies, Linear Regression has

proven to be the most effective model to predict the effect of EA parameters. In

the experimental studies we have used the PQA method with Linear Regression

to adjust the mutation rate, crossover rate, mating pool size, mutation operator

and crossover operator throughout the optimisation process carried out using dif-

ferent problem instances. The trials have demonstrated that PQA outperforms the

parameter quality attribution methods currently considered most successful.

156

Chapter 7

Parameter Value Selection

Strategy

7.1 Introduction

When controlling algorithm parameters, the probability of selecting parameter val-

ues from a particular interval depends on how suitable, i.e. successful, that particu-

lar parameter value has proven in the previous iterations. In the early stages of the

search, there is no knowledge which parameter values perform well. At every step,

when evidence becomes available, the control method faces a dilemma: using the

parameter value that has the highest assigned quality or exploring new parameter

values. The trade-off that has to be made between the choice of using currently best

parameter values and exploring new settings has already been addressed by state-of-

the-art adaptive parameter control methods, which refer to it as the ’exploration vs.

exploitation dilemma’ [182, 181, 56]. The main task is to ensure the right balance

between using currently well performing parameter values and exploring unseen ones

to be adopted in the future iterations. If more priority is given to the exploitation

of good parameter settings, the strategy of the parameter control method focuses

predominately on the short-term performance of the algorithm. If it opts for the

exploration of other parameter values, the aim is to achieve long-term performance.

157

Current parameter value selection strategies handle the ’exploration vs. exploita-

tion dilemma’ in different ways. Probability Matching (PM) [182, 181] and Adaptive

Pursuit (AP) [182, 181] control the exploration of underperforming parameter val-

ues by assigning a lower threshold on the selection probabilities pmin. In PM, the

projected probability of a parameter value providing good quality results at the next

time step is based on a running average of past rewards (quality). The minimum

probability pmin is enforced on values which do not receive rewards in order to main-

tain a non-zero probability. Adaptive Pursuit (AP) [181] was conceived with the

goal of improving the performance of PM by ensuring an appropriate difference in

probabilities depending on experienced performance. AP establishes the respective

rewards for the parameter values used, but only applies the maximum reward to the

value of the best-performing algorithm instance. All other values have their proba-

bilities of future use diminished. Similar to PM, a non-zero probability is enforced

as a minimum probability pmin, which ensures the exploration of underperforming

parameter values.

Unlike PM and AP the Dynamic Multi-Armed Bandit (DMAB) [56, 123] focuses

on the usage frequency of parameter values. The selection mechanism of DMAB con-

trols the trade-off between exploitation, which favours the parameter values with

best effect on the algorithm performance, and exploration, which favours the pa-

rameter values that have not been used that frequently. The selection probability

of a parameter value is inversely proportionate to its usage frequency in the past.

Furthermore, a change detection test is employed to check whether the quality dis-

tribution of the parameter value q(υij) has changed. When a change is detected,

the empirical quality is re-initialised. As a result, DMAB identifies the new best

parameter value without being slowed down by old information.

In essence, parameter control methods found in the literature select the next

parameter values based on different rules which ensure the exploration vs. exploita-

158

tion trade-off. These rules are composed of two parts. The first part is concerned

with the exploitation of parameter values, and assigns a selection probability to

parameter values based on their quality. The second part deals with underperform-

ing or previously unused parameter values, which are assigned a minimum selection

probability (pmin) for exploration purposes.

One aspect of parameter exploration that has not been covered by current re-

search is the choice for real-valued parameter assignments, such as the mutation

rate and the crossover rate. Usually, parameter control methods [191, 78, 29, 84, 56,

182, 181] discretise the choices for parameter assignments beforehand and apply the

feedback from the algorithm to the preselected choices. Based on insights offered

by existing research [9] it is likely that the initial discretisation will provide values

which are suboptimal for some problems or their instances. Defining narrow ranges

leads to more accuracy but increased combinatorial complexity. Leaving ranges

wider entails a sampling inaccuracy as the actually sampled value may be far from

the value whose success the range’s usage probability is attributable to. Ideally, the

ranges should be optimised by the parameter control process, which leads us to the

following research question:

\ What is an effective method for configuring real-valued parameters

during the optimisation process?

To address this question, we introduce an Adaptive Range Parameter Selection

(ARPS) strategy, which explores the parameter-values space in an efficient way, by

dynamically changing the parameter intervals during the optimisation process. The

parameter control method described in this section uses an efficient way to reduce

the number of observations required to explore new values of parameters and ensures

a balanced trade-off between exploitation and exploration of parameter values. To

validate the approach, we investigate if using dynamic ranges improves the choice

of parameter values and as a result achieves better solution quality.

159

7.2 Adaptive Range Parameter Selection

Adaptive Range Parameter Selection (ARPS) adjusts parameter value ranges as the

optimisation process progresses. After each iteration, the best-performing range is

halved, whereas the worst-performing is merged with the worse-performing of its

neighbours. This technique was first conceived for the context of parallel comput-

ing [139] but has never been applied to the dynamic adjustment of parameter ranges.

Mostaghim [139, 140] uses a self-organized Invasive Parallel Optimization (SIPO)

technique to solve optimization problems in parallel. The algorithm starts with one

resource and automatically divides the optimisation task stepwise into smaller tasks

which are assigned to more resources. We extend this technique to the adaptation

of the parameter ranges of Evolutionary Algorithms.

The technique used to dynamically adapt parameter ranges is illustrated with

the help of a single parameter υi. Figure 7.1 shows how the parameter values are

initially divided into two ranges. The first range υi1 is defined by its minimum and

maximum values [υi1(min), υi1(max)], and the second range υi2 represents the set

of values that lie within [υi2(min), υi2(max)].

At the beginning of the search, both ranges have equal success rates, denoted as

the conditional probabilities p(e+|υi1) and p(e+|υi2), with e denoting the expectation

and e+ denoting a successful outcome given the usage of a value from range υij for

the parameter υi. This value is approximated as the ratio of the number of times the

usage of the value υij was successful and the number of times it was used, denoted

n(υij∧e+)

n(υij)
in the algorithmic listing 2. In Figure 7.1, an equal height of two ranges

represents the equality of the probabilities of both ranges to be selected for use in

the next iteration.

After applying the parameter values sampled from the ranges for the optimisation

process, the conditional probabilities of each interval are recalculated based on their

160

υi2υi1 p(e+|υi2)p(e+|υi1) { }
−−−−−−−︸ ︷︷ ︸
[υi1(min),υi1(max)]

−−−−−−−︸ ︷︷ ︸
[υi2(min),υi2(max)]

Figure 7.1: Parameter υi is initially divided into two equal ranges. An equal height
of two ranges represents the equality of the probabilities of both ranges to be selected
for use in the next iteration.

usage and performance in the latest iteration.

Assuming that the new conditional probabilities have the proportions shown in

Figure 7.2, the success rate of the first interval, i.e. p(e+|υi1), is greater than that

of the second interval (p(e+|υi2)).

υi2υi1

−−−−−−−︸ ︷︷ ︸
[υi1(min),υi1(max)]

−−−−−−−︸ ︷︷ ︸
[υi2(min),υi2(max)]

} p(e+|υi2){p(e+|υi1)

Figure 7.2: The new success rates of the levels of parameter υi after running the
algorithm.

The adaptive range selection strategy divides the level with the highest success

rate into two new levels, denoted as p(e+|υi11) and p(e+|υi12), as shown in Figure 7.3.

υi2
υi11

−−−−︸ ︷︷ ︸
[υi11 (min),υi11 (max)]

−−−−−−−︸ ︷︷ ︸
[υi2(min),υi2(max)]

} p(e+|υi2){p(e+|υi11) υi12

[υi12 (min),υi12 (max)]

︷ ︸︸ ︷
−−−−

p(e+|υi12)

Figure 7.3: The level with the highest success rate is divided into two.

The conditional probabilities of both new levels are equal to the conditional

probability of the level they were created from. That is:

161

p(e+|υi11) =p(e+|υi1)

p(e+|υi12) =p(e+|υi1)

As a result, the most successful interval is refined into smaller intervals, and the

selection probability of the values that lie within these ranges is increased. This

increases the exploitation of the intervals and the exploration of new values within

the intervals.

υi2υi11

−−−−︸ ︷︷ ︸
[υi11 (min),υi11 (max)]

−−−−−−−︸ ︷︷ ︸
[υi2(min),υi2(max)]

} p(e+|υi2){p(e+|υi11) υi,12

[υi12 (min),υi12 (max)]

︷ ︸︸ ︷
−−−

p(e+|υi12)

}

Figure 7.4: The new success rates adjusting the selection probabilities of the values
of parameter υi after running the algorithm.

The Adaptive Range Parameter Selection Strategy merges the worst performing

range υi12 in Figure 7.4, with the worse-performing neighbouring range. In this case,

the range υi12 has been merged with the range υi2 forming the new value range υ′i2

as shown in Figure 7.5.

υ′i2υi1

−−−−︸ ︷︷ ︸
[υi1(min),υi1(max)]

−−−−−−−−−−︸ ︷︷ ︸
[υ′

i2
(min),υ′

i2
(max)]

}p(e+|υ′i2){p(e+|υi1)

Figure 7.5: The ranges with the lowest success rates are merged to form a new range,
denoted as υ′i2.

The selection probability of the new range is set equal to the higher selection

probability of the two ranges. The values that lie within the newly formed range υ′i2

162

have a lower probability of being selected when compared to the values of the previ-

ous range υi2. As a result, the selection probability of under-performing parameter

values is decreased, however there is still a possibility that they may be selected.

In the future, if the value range υ′i2 shows a successful performance, the Adaptive

Range Parameter Selection strategy will divide it again into two different ranges.

As a result the number of the parameter ranges is regulated during the optimization

process dynamically. The algorithmic listings 3 and 4 demonstrate how the adaptive

parameter control applies the dynamic changes to the parameter ranges.

Algorithm 3 The algorithm for finding the best and worst performing ranges.

procedure BestAndWorst(υi)
2: for all parameter υi, i ∈ n do

p(υi,best) = 0.0
4: p(υi,worst) = 1.0

for all parameter value υij ∈ m do
6: p(e+|υij) = QualityAssessmentStrategy(υij)

if p(e+|υij) > p(υi,best) then
8: p(υi,best)← p(e+|υij)

υi,best ← υij
10: end if

if p(e+|υij) < p(υi,worst) then
12: p(υi,worst)← p(e+|υij)

υi,worst ← υij
14: end if

end for
16: end for

AdjustLevels(υi,best, υi,worst)
18: end procedure

Every parameter vi has a number of ranges υij. After each iteration, we inves-

tigate the parameter’s range’s success rate using the quality assessment strategy

introduced in Chapter 6. The variable p(υi,best) then holds the best ratio of all

ranges of parameter υi, and υi,best points to the best-performing range of this pa-

rameter. Analogously, p(υi,worst) stores the success rate of the worst-performing

range of parameter υi. The best range υi,best is subsequently split into υi,best1 and

163

υi,best2, both of which are assigned the raw probability value of p(υi,best). Similarly,

the worst range υi,worst is expanded to cover the worse-performing of its neighbours

υi,worst+1, and the new range is assigned the raw probability value p(υi,worst) of the

worst-performing range.

Algorithm 4 Adjusting ranges according to the best and worst performing ones.

procedure AdjustLevels(υi,best, υi,worst)
2: range← υi,best(max)− υi,best(min)

υi,best1(min)← υi,best(min)
4: υi,best1(max)← υi,best(min) + range/2

υi,best2(min)← υi,best(max)− range/2
6: υi,best2(max)← υi,best(max)

p(e+|υi,best1)← p(υi,best)
8: p(e+|υi,best2)← p(υi,best)

if p(e+|υi,worst+1) < p(e+|υi,worst−1) then
10: υi,worst+1(min) = υi,worst(min)

end if
12: if p(e+|υi,worst+1) > p(e+|υi,worst−1) then

υi,worst−1(min) = υi,worst(max)
14: end if

end procedure

Algorithm 5 Fitness proportionate selection.

1: procedure FitnessProportionateSelection(p(υi1), ..., p(υim))
2: sumCP = 0.0
3: for all j ← 1, m do
4: sumCP+ = p(υij)
5: cumulativeij = sumCP
6: end for
7: number = Random([0, sumCP])
8: for all j ← 1, m do
9: if number < cumulativeij then

10: return j
11: end if
12: end for
13: end procedure

Adaptive parameters are set for an iteration at a time, sampling the respective

values probabilistically from the distribution obtained from the parameter value se-

164

lection strategy. A fitness-proportionate selection mechanism is applied to choose

the next parameter configurations, described in the algorithm listing 5. The pre-

dicted selection probabilities are used to associate a probability of selection with

each parameter configuration. This is achieved by dividing the predicted success

rate of every parameter value by the total success rates of all other values of that

parameter, thereby normalising them to 1. Then a random selection is made.

While candidate parameter values with a higher success rate will be less likely

to be eliminated, there remains a probability that they may be. With this kind

of fitness proportionate selection there is a chance that some weaker solutions may

survive the selection process; this is an advantage, as though a parameter value may

be not as successful, it may include some component which could prove useful in

the following stages of the search.

165

7.3 Validation

The Adaptive Range Parameter Selection (ARPS) strategy described in this thesis

adjusts the range sizes of continuous parameter values as the optimisation process

progresses. Notable parameter value selection strategies such as Probability Match-

ing (PM) [181], Adaptive Pursuit (AP) [181] and Dynamic Multi-Armed Bandit

(DMAB) [56] use static ranges or specific values. In this section we investigate if us-

ing dynamic ranges improves the choice of parameter values and as a result achieves

better solution quality. This motivates the following research question:

\ What is an effective method for configuring real-valued parameters

during the optimisation process?

To answer the research question posed in this chapter, we have performed a set

of experiments in which Adaptive Range Parameter Selection (ARPS) is compared

with three parameter value selection strategies: Probability Matching (PM) [181],

Adaptive Pursuit (AP) [181] and Dynamic Multi-Armed Bandit (DMAB) [56].

7.3.1 Benchmark Parameter Value Selection Strategies

The main characteristic that distinguishes different adaptive parameter value selec-

tion methods is how they explore the parameter space, i.e. how they calculate the

probability vector P = {p(υ11), p(υ12), ..., p(υ1m1), ..., p(υnmn)} over time.

Vector P represents the selection probability for each parameter value, estimated

based on the parameter qualities Q = {q(υ11), q(υ12), ..., q(υ1m1), ..., q(υnmn)}. The

quality of a parameter value is approximated from the effect of the parameter values

on the performance of the algorithm. The vector of all parameter effects is denoted

as E = {e(υ11), e(υ12), ..., e(υ1m1), ..., e(υnmn)}. The main goal of adaptive parameter

control strategies is to adapt the vector of probabilities P such that the expected

value of the cumulative effect E[E] =
∑n

i=1 e(υij) is maximised.

166

Probability Matching

Probability Matching (PM) [181] uses reinforcement learning to project the proba-

bility of a parameter value performing well based on the previous performance of an

algorithm that used this value. The projected probability of a value providing good

quality results at the next time step is based on a running average of past rewards.

Rewards are allocated on the basis of the outcome of the optimisation process the

parameter value was used in.

In essence, PM updates the probability vector P such that the probability of

applying parameter value υij is proportional to the quality of that parameter value,

i.e. the proportion of the estimated quality qt(υij) to the sum of all quality estimates
∑n

s=1 qt(υis).

The quality estimate q(υij) is updated using an additive relaxation mechanism

with adaptation rate α, (0 < α ≤ 1). When α increases, more weight is given to

the current quality. The update rule for the quality of parameters is as follows:

qt(υij) = qt−1(υij) + α(et−1(υij)− qt−1(υij)) (7.1)

The selection probability for each parameter is the estimated as follows:

pt(υij) =
qt(υij)∑n
s=1 qt(υis)

(7.2)

This selection strategy may lead to the loss of some parameter values, since pa-

rameter values will no longer be selected when their quality q(υij) becomes zero.

This property is unwelcome, since the optimisation process is a non-stationary en-

vironment, which means that the parameter value may become valuable again in

the future stages. To remedy this problem, i.e. ensure that parameter values do

not get lost, Thierens [181] enforced a minimum selection probability pmin for every

167

parameter value. The new equation for selection probabilities is as follows:

pt(υij) = pmin + (1− n ∗ pmin)
qt(υij)∑n
s=1 qt(υis)

(7.3)

where pmin is a minimum probability enforced on values which do not receive

rewards in order to maintain a non-zero probability. The general motivation of a

minimum value is the assumption that parameter values which do not perform well

at present might be optimal in the future.

If a parameter does not perform well, its reward is not updated. As a result,

the quality estimate of this parameter converges to zero, which in turn makes the

selection probability of that parameter equal to pmin. On the other hand, if only one

parameter receives a reward for a long time, the selection probability of this param-

eter will be pmin + 1− npmin, which is equal to the maximum selection probability

pmax. The main steps of Probability Matching method are described in Algorithm 6.

Algorithm 6 Probability Matching (PM).

1: procedure PM(P,Q, n, pmin, α)
2: for i← 1, n do
3: for j ← 1, m do
4: p(υij) = 1

m

5: q(υij) = 1.0
6: end for
7: end for
8: while finalCriterion == False do
9: for i← 1, n do

10: j = FitnessProportionateSelection(p(υi1), ..., p(υim))
11: e(υij) = CalculateEffect(υij)
12: q(υij) = q(υij) + α(e(υij)− q(υij))
13: p(υij) = pmin + (1− n ∗ pmin)

q(υij)∑n
s=1 q(υis)

14: end for
15: end while
16: end procedure

PM has been criticised for the fact that the probability values resulting from the

reward allocations poorly reflect the relative differences in algorithm performance

168

when using the values due to the relaxation mechanism described by Equation 7.1.

Values with vastly superior performance may only be differentiated by a marginal

increase of the probability of being chosen in the next step.

Adaptive Pursuit

Adaptive Pursuit (AP) [181] was conceived with the goal of improving the perfor-

mance of PM by ensuring an appropriate difference in probabilities depending on

experienced performance. After an iteration of the optimisation process, AP estab-

lishes the respective rewards for the parameter values used, but only applies the

maximum reward to the value of the best-performing algorithm instance. All other

values have their probabilities of future use diminished. A non-zero probability is en-

forced as a minimum probability. The best parameter value of the current iteration

is estimated as follows:

j∗ = arg maxj=1,...,m q(υij) (7.4)

where q(υij) is approximated in the same way as for PM using Equation 7.1.

The selection probability of the next parameter values is obtained as follows:

pt(υij) =





(1− β)pt−1(υij) + β if j = j∗

(1− β)pt−1(υij) otherwise
(7.5)

where β is the learning rate, which controls the greediness of the ‘winner-take-all’

strategy. If a parameter value is continuously the best-performing one, its selection

probability will converge to one, whereas the probabilities of the other parameter

values will converge to zero. This is not suitable for non-stationary environments,

such as Evolutionary Algorithms, where the effect of the parameter values changes

over time. In order not to lose underperforming parameter values, the selection rule

169

in Equation 7.6 is modified with a minimum and maximum selection probability as

follows:

pt(υij) =





pt−1(υij) + β(pmax − pt−1(υij)) if j = j∗

pt−1(υij) + β(pmin − pt−1(υij)) otherwise
(7.6)

under the constraint:

pmax = 1− (m− 1)pmin (7.7)

where m is the total number of parameter values. This constraint ensures that

the sum of the probabilities of all parameter values is equal to 1. In order to ensure

this constraint, pmin should be less than 1
m

. A recommended value [181] for pmin is

1
2m

, which ensures that the best parameter value is selected half the time, while the

other half is allocated to all other parameter values.

Similar to the PM parameter value selection strategy, in the AP approach, every

parameter is selected proportionally to the probability vector P , and the quality

vector Q is updated accordingly. The main steps of the Adaptive Pursuit parameter

adaptation strategy are described in Algorithm 7.

Dynamic Multi-Armed Bandit

The Dynamic Multi-Armed Bandit (DMAB) [56, 123], similar to AP and PM, aims

at finding an optimal parameter value selection strategy which maximises a cumula-

tive effect along time. DMAB, in the same way as other methods, keeps an empirical

quality q(υij) with every parameter value, based on the effect the parameter value

has on the performance of the algorithm. Unlike other methods, DMAB records the

number of times a parameter is employed, denoted as n(υij), which is used in the

calculation of the best parameter as follows:

170

Algorithm 7 Adaptive Pursuit (AP).

1: procedure AP(P,Q, pmin, α, β)
2: pmax = 1− (n− 1)pmin
3: for i← 1, n do
4: for j ← 1, m do
5: p(υij) = 1

m

6: q(υij) = 1.0
7: end for
8: end for
9: while finalCriterion == False do

10: j = FitnessProportionateSelection(p(υi1), ..., p(υim))
11: e(υij) = CalculateEffect(υij)
12: q(υij) = q(υij) + α(e(υij)− q(υij))
13: j∗ = arg maxs=1...n q(υis)
14: p(υij∗) = p(υij∗) + β(pmax − p(υij∗))
15: for s← 1, m do
16: if s 6= j∗ then
17: p(υis) = p(υis) + β(pmin − p(υis))
18: end if
19: end for
20: end while
21: end procedure

arg maxj=1,...,m

(
q(υij) + C

√
2log

∑m
s n(υis)

n(υij)

)
(7.8)

where C is a hyperparameter, which serves as a scaling factor. This selection

mechanism is called the Upper Confidence Bound (UCB) and controls the trade-off

between exploitation (the left term in Equation 7.8), which favours the parameter

values with best effect on the algorithm performance, and exploration (the right

term in Equation 7.8), which favours the parameter values that have not been used

that frequently.

The parameter value selection strategy in Equation 7.8 considers a static en-

vironment (the unknown effect probability of any parameter is fixed along time),

whereas the optimisation process is intrinsically dynamic (the quality of any opera-

tor is bound to vary along evolution). Even though every operator is selected from

171

Algorithm 8 Dynamic Multi-Armed Bandit (DMAB).

1: procedure DMAB(P,Q,N,C, γ)
2: for i← 1, n do
3: for j ← 1, m do
4: p(υij) = 1

m
5: q(υij) = 1.0
6: n(υij) = 0
7: m̂(υij) = 0.0
8: M(υij) = 0.0
9: end for

10: end for
11: while finalCriterion == False do
12: for i← 1, n do
13: for j ← 1, m do
14: if n(υij) == 0 then
15: s =FitnessProportionateSelection(p(υi1), ..., p(υim))
16: n(υis)+ = 1
17: e(υis) =CalculateEffect(υis)

18: q(υis) =
(
(n(υis)−1)q(υis)+e(υis)

n(υis)

)

19: m̂(υis) = m(υis) + (e(υis)− q(υis) + δ)

20: M(υis) = arg maxk=1,...,t

(
|m̂(υij)

k|
)

21: if M(υij)− |m̂(υis)| > γ then
22: Restart(DMAB(n,C, γ))
23: end if
24: else

25: j∗ = arg maxj=1,...,m

(
q(υij) + C

√
2log

∑m
s n(υis)

n(υij)

)

26: n(υij∗)+ = 1
27: e(υij∗) =CalculateEffect(υij∗)

28: q(υij∗) =
(
(n(υij∗)−1)q(υij∗)+e(υij∗)

n(υij∗)

)

29: m(υij∗) = m(υij∗) + (e(υij∗)− q(υij∗) + δ)
30: M(υij∗) = arg maxk=1,...,t

(
|m̂(υij∗)k|

)

31: if M(υij∗)− |m̂(υij∗)| > γ then
32: Restart(DMAB(P,Q,N,C, γ))
33: end if
34: end if
35: end for
36: end for
37: end while
38: end procedure

172

time to time, in practice UCB would wait too long before realising that some new

parameter value has become the best-performing. To address this limitation, DMAB

completely recalculates the probabilities when a change in the effects distribution is

detected using a change detection test, in this case the statistical Page-Hinkley (PH)

test. The PH test checks whether the quality distribution of the parameter value

has changed. When a change is detected, the algorithm is restarted, i.e. the em-

pirical quality q(υij) and confidence intervals are re-initialised. As a result, DMAB

can quickly identify the new best parameter value without being slowed down by

old information. Formally, the DMAB calculates the average reward over the last

time steps for each parameter value, which is equal to the quality of that parameter

value estimated as follows:

q(υij) =
((n(υij)− 1)q(υij) + e(υij)

n(υij)

)
(7.9)

Then it obtains the difference between the instant and the average effect, by

incorporating a tolerance factor δ:

m̂(υij) = m̂(υij) + (e(υij)− q(υij) + δ) (7.10)

Next it calculates the maximum value of m(υij) in the past iterations as:

M(υij) = arg maxk=1,...,t

(
|m̂(υkij)|

)
(7.11)

Finally, the PH test is triggered when the difference between the maximum value

M(υij) in the past and its current value |m̂(υij)| is greater than some user-defined

threshold γ.

The PH test is thus parametrized by γ, which controls the sensitivity of the test

to false alarms, and δ, which enforces the robustness of the test in slowly varying

173

environments. Following guidelines from the original work [55], δ is kept fixed to

0.15. The main steps of the algorithm for the Dynamic Multi-Armed Bandit are

shown in Algorithm 8.

7.3.2 Experimental Settings

The Adaptive Range Parameter Selection Strategy is compared with three suc-

cessful algorithms representative of adaptive parameter value selection strategies:

Probability Matching (PM) [181], Adaptive Pursuit (AP) [181] and Dynamic Multi-

Armed Bandit (DMAB) [56]. A general description of these methods is given in

Section 3.3.3. A comprehensive description and comparison of the three adaptive

methods is given by Fialho et al. [56].

All adaptive algorithms involve hyper-parameters, which have to be tuned de-

pending on the optimisation problem at hand. This defines another optimisation

problem, which can become computationally expensive if we attempt an exhaustive

exploration of the search space. We used recommendations from Thierens [181], Fi-

alho et al. [56] and DaCosta et al. [36] when tuning the values of hyper-parameters

for the adaptive algorithms, which are depicted in Table 7.1.

Table 7.1: Hyper-parameters of the three adaptive methods: Dynamic Multi-Armed
Bandit (DMAB), Adaptive Pursuit (AP) and Probability Matching (PM).

Benchmark Hyperparameter Value Description

DMAB ς 0.5 scaling factor

DMAB γ 100 PH threshold

AP,PM pmin 0.1 minimum selection probability

AP,PM α 0.8 adaptation rate

AP,PM β 0.8 adaptation rate

The four optimisation schemes are used to optimise ten problem instances which

174

vary in size and difficulty: four instances of the multiobjective Quadratic Assignment

Problem (KC30-3fl-3uni, KC20-2fl-5rl, KC30-3fl-2rl and KC30-3fl-3rl), the Royal

Road problem and five instances of the Quadratic Assignment Problem (BUR26A,

BUR26B, BUR26E, TAI30B and STE36B). The RR function is being used here as a

benchmark to match the Genetic Algorithm, whose parameters are being optimised

for the experimental results presented. It has also been used by Fialho, Schoenauer

and Sebag [56], whose results are being used for the comparison.

We perform 30 trials for each problem and optimisation scheme. The final solu-

tions of each optimisation scheme are recorded and the results are compared using

the normalised fitness for the singleobjective problems and the hypervolume in-

dicator, described in Section 3.3.4, for the multiobjective problems. We use the

Kolmogorov-Smirnov (KS) nonparametric test [149] to check for the statistical sig-

nificance of the final results.

For the benefit of these experiments, only the crossover and mutation rates

were varied. For the crossover and mutation rates we use different value inter-

vals to sample from, with a cardinality of two intervals or levels with ranges of

{[0.6, 0.799], [0.8, 1.0]} produced the best results among several cardinalities with

even spreads between 0.6 and 1 for the crossover rate, and two intervals with ranges

of {[0.001, 0.25], [0.2505, 0.5]} between 0.001 and 0.5 for the mutation rate.

7.3.3 Results

The 30 results of the repeated trials are presented as boxplots in Figure 7.6 and 7.7

for the Quadratic Assignment Problem (QAP), the Royal Road problem (RR) and

the multiobjective Quadratic Assignment Problem (mQAP). The empirical results

are not normally distributed, but the mean and 25th percentile of ARPS are con-

sistently above the respective values of the benchmark approaches.

175

 0.265

 0.2655

 0.266

 0.2665

 0.267

 0.2675

 0.268

PM AP DMAB ARPS

N
or

m
al

is
ed

 f
itn

es
s

(a) BUR26A

 0.486

 0.4865

 0.487

 0.4875

 0.488

 0.4885

 0.489

PM AP DMAB ARPS

N
or

m
al

is
ed

 f
itn

es
s

(b) BUR26B

 0.2655

 0.266

 0.2665

 0.267

 0.2675

 0.268

PM AP DMAB ARPS

N
or

m
al

is
ed

 f
itn

es
s

(c) BUR26E

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

PM AP DMAB ARPS

N
or

m
al

is
ed

 f
itn

es
s

(d) TAI30B

 0.75

 0.755

 0.76

 0.765

 0.77

 0.775

 0.78

 0.785

 0.79

PM AP DMAB ARPS

N
or

m
al

is
ed

 f
itn

es
s

(e) STE36B

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0.011

PM AP DMAB ARPS

N
or

m
al

is
ed

 f
itn

es
s

(f) Royal Road

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

PM AP DMAB ARPS

H
yp

er
vo

lu
m

e

(g) KC20-2fl-5rl

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

PM AP DMAB ARPS

H
yp

er
vo

lu
m

e

(h) KC30-3fl-3uni

Figure 7.6: Boxplots of the 30 trials of the four different parameter value selection
schemes used with an Evolutionary Algorithm optimising the QAP, RR and mQAP.

176

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

PM AP DMAB ARPS

H
yp

er
vo

lu
m

e

(a) KC30-3fl-2rl

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

PM AP DMAB ARPS

H
yp

er
vo

lu
m

e

(b) KC30-3fl-3rl

Figure 7.7: Boxplots of the 30 trials of the four different parameter value selec-
tion schemes used with an Evolutionary Algorithm optimising the multiobjective
Quadratic Assignment Problem.

The means and standard deviations are listed in Table 7.2, which clearly show a

significant difference between the result groups of ARPS and the benchmarks. The

mean performance of ARPS is consistently above the averages of the benchmark

approaches. The standard deviation of ARPS is relatively high in the singleobjective

Quadratic Assignment Problem, but lower than the respective values of the other

parameter value selection strategies in the multiobjective Quadratic Assignment

Problem instances.

The gap between result qualities widens in favour of ARPS as the problem dif-

ficulty increases. The biobjective mQAP of dimension n=20 (KC20-2fl-5rl) can be

assumed to be the least challenging, and there the results are not as clearly in favour

of ARPS. The triobjective mQAP instances of dimension n=30 (KC30-3fl-2rl and

KC30-3fl-3rl) are clearly solved to better quality using ARPS, as they are more

complex than the smaller mQAP instances.

As our method consistently outperforms the three other parameter value selec-

tion schemes, we employ the Kolmogorov-Smirnov (KS) non-parametric test [149]

to check for a statistical difference. The 30 hypervolume indicators of the repeated

trials for each of the problem instances were submitted to the KS analysis. ARPS

177

Table 7.2: The means and standard deviations of the 30 runs of each problem
instance using different parameter value selection schemes.

Mean

Problem AP PM DMAB ARPS

Royal Road 0.0086 0.0085 0.0093 0.0096

BUR26A 0.2666 0.2666 0.2666 0.2672

BUR26B 0.4876 0.4876 0.4865 0.4882

BUR26E 0.2670 0.2669 0.2664 0.2674

TAI30B 0.5294 0.5384 0.5407 0.5483

STE36B 0.7704 0.7704 0.7730 0.7773

KC20-2fl-5rl 0.9641 0.9665 0.9684 0.9768

KC30-3fl-2rl 0.9364 0.9339 0.9360 0.9720

KC30-3fl-3rl 0.9429 0.9417 0.9251 0.9530

KC30-3fl-3uni 0.7253 0.7284 0.6468 0.7553

Standard deviation

Problem AP PM DMAB ARPS

Royal Road 1.985E-03 8.5381E-03 1.835E-03 1.702E-03

BUR26A 3.998E-04 3.398E-04 4.410E-04 1.032E-03

BUR26B 3.673E-04 3.401E-04 3.564E-04 6.286E-04

BUR26E 2.491E-04 3.189E-04 4.233E-04 6.325E-04

TAI30B 1.272E-02 1.233E-02 1.178E-02 1.423E-02

STE36B 9.796E-03 7.578E-03 7.938E-03 9.659E-03

KC20-2fl-5rl 1.190E-02 1.561E-02 1.124E-02 1.123E-02

KC30-3fl-2rl 1.759E-02 1.639E-02 1.516E-02 7.423E-03

KC30-3fl-3rl 1.268E-02 1.198E-02 2.062E-02 1.127E-02

KC30-3fl-3uni 5.110E-02 4.552E-02 5.751E-02 4.500E-02

was compared to the other three parameter value selection schemes, with a null hy-

pothesis of an insignificant difference between the performances (ARPS vs. DMAB,

ARPS vs. AP and ARPS vs. PM). The results of the tests are shown in Table 7.3.

All KS tests, used for establishing that there is no difference between independent

datasets under the assumption that they are not normally distributed, result in a

178

rejection of the null hypothesis with a minimum d-value of 0.3000 at a 95% confidence

level. Hence we conclude that the superior performance of ARPS is statistically

significant.

Table 7.3: The Kolmogorov-Smirnov test values of the 30 runs of each problem
instance using different parameter value selection schemes.

ARPS vs. DMAB ARPS vs. AP ARPS vs. PM

Problem d p d p d p

Royal Road 0.4483 0.004 0.4138 0.009 0.4138 0.009

BUR26A 0.6207 0.000 0.8621 0.000 0.6539 0.000

BUR26B 0.6552 0.000 0.9310 0.000 0.6552 0.000

BUR26E 0.6552 0.000 0.7586 0.000 0.6552 0.000

TAI30B 0.3667 0.026 0.4000 0.011 0.3667 0.026

STE36B 0.4000 0.011 0.3000 0.049 0.4667 0.002

KC20-2fl-5rl 0.3640 0.036 0.4406 0.006 0.3963 0.050

KC30-3fl-2rl 0.8966 0.000 0.8966 0.000 0.5310 0.000

KC30-3fl-3rl 0.6897 0.000 0.3793 0.022 0.4828 0.001

KC30-3fl-3uni 0.6897 0.000 0.3631 0.043 0.3308 0.040

The difference in performance seems more pronounced in the trials using the

Royal Road problem, the Quadratic Assignment Problem and the bigger instances

of the multiobjective Quadratic Assignment problem (KC30-3fl-2rl, KC30-3fl-3rl).

The least benefit ARPS provides for the smallest instance of the multiobjective

Quadratic Assignment problem (KC20-2fl-5rl). This is an ‘easier’ instance to solve,

hence the algorithm performance can be expected to be more robust to parameter

settings. Nonetheless, the Kolmogorov-Smirnov test (Table 4.2) finds a significantly

superior performance of ARPS compared to other parameter value selection methods

on all ten problems.

In ARPS, the change in the ranges of the intervals of crossover and mutation

rates during 20 iterations is depicted in Figures 7.8-7.9. At the beginning of the

optimisation process, all intervals are equal. The selection of the parameter values

179

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ut

at
io

n
ra

te

Iterations

(a) Mutation rate (Royal Road).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cr
os

so
ve

r
ra

te

Iterations

(b) Crossover rate (Royal Road).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ut

at
io

n
ra

te

Iterations

(c) Mutation rate (KC20-2fl-5rl).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cr
os

so
ve

r
ra

te

Iterations

(d) Crossover rate (KC20-2fl-5rl).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ut

at
io

n
ra

te

Iterations

(e) Mutation rate(KC30-3fl-3uni).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cr
os

so
ve

r
ra

te

Iterations

(f) Crossover rate (KC30-3fl-3uni).

Figure 7.8: Change of parameter ranges for the optimisation of the Royal Road
Problem and the multiobjective Quadratic Assignment Problem with an EA that
uses ARPS during 20 iteration.

180

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ut

at
io

n
ra

te

Iterations

(a) Mutation rate (BUR26A).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cr
os

so
ve

r
ra

te

Iterations

(b) Crossover rate (BUR26A).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ut

at
io

n
ra

te

Iterations

(c) Mutation rate (BUR26B).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cr
os

so
ve

r
ra

te

Iterations

(d) Crossover rate (BUR26B).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ut

at
io

n
ra

te

Iterations

(e) Mutation rate (BUR26E).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cr
os

so
ve

r
ra

te

Iterations

(f) Crossover rate (BUR26E).

Figure 7.9: Change of parameter ranges for the optimisation of the Quadratic As-
signment Problem with an EA that uses ARPS during 20 iteration.

181

is based on the assigned probabilities. The bigger the interval becomes, the smaller

is the chance of the values in that interval to be selected. Accordingly, the most

successful values for each iteration are to be placed in the smallest interval. We

can clearly see that the behaviour of the adaptive range parameter value selection

is different for different problems and different parameters.

From the bar diagrams we can see that the smaller of the multiobjective Quadratic

Assignment Problem instances (KC20-2fl-5rl) depicted in Figure 7.8c and 7.8d are

best optimised with a very small mutation rate throughout the process, whereas the

RR problem (Figure 7.8a and 7.8b) seems to require slightly higher mutation rates

(approx. 0.2) at the start but toward the end of the process the level ranges are not

as focussed. A different observation can be made regarding the optimal mutation

rates for the QAP instances (Figure 7.9); there, the most successful mutation rates

are clearly very low at the end of the optimisation process.

The levels of crossover rate develop quite differently compared to mutation rate.

Higher rates are often more successful towards the end of the optimisation process

which runs somewhat contrary to popular opinion that crossover rates should de-

crease towards the end of the optimisation process so as not to disturb solutions

with high quality. For some problems, both crossover rates from the upper third

and from the lower third of the overall range seem beneficial at the same time. The

mutation/crossover range analysis shows that high-performing ranges are sometimes

absorbed (merged) into very large intervals, making it difficult for the algorithm to

re-establish small, promising areas within the range. There may be a potential for

further optimisation of the range adaptation in this respect.

182

7.4 Summary

In this chapter we presented a new parameter value selection strategy called Adap-

tive Range Parameter Selection (ARPS). ARPS, different from state-of-the-art pa-

rameter value selection strategies, uses dynamic ranges for parameter values which

are adjusted as the optimisation process progresses. The method rewards best-

performing parameter ranges by dividing them into two new ranges and assigning

each of them the same selection probability as the parent range. As a result, the

selection probability of all values within that range is doubled. On the other hand,

the worst performing range is merged with one of the neighbouring ranges, reducing

its selection probability, but not discarding it.

According to our knowledge, the best-performing approaches with the same func-

tionality are AP, PM and DMAB. The new approach clearly outperforms the other

parameter control methods. As the problem difficulty increases, so does the differ-

ence in result quality produced by ARPS compared to the benchmark approaches.

The mutation/crossover range analysis shows that high-performing ranges are some-

times absorbed (merged) into very large intervals, making it difficult for the algo-

rithm to re-establish small, promising areas within the range. There may be a

potential for further optimisation of the range adaptation in this respect.

183

184

Part III

Practical Validation

185

Chapter 8

Architecture Optimisation in

Embedded Systems

8.1 Introduction

Embedded software plays a significant role in performing a variety of tasks in au-

tomotive, avionic, medical, defence, railway, and telecommunication systems [146,

150]. The design and development of today’s embedded systems is a complex task,

involving several decisions regarding the architecture of the system. Examples of

architecture-level decisions include the deployment of software components to hard-

ware platform and allocating redundancies for software and hardware elements. The

decisions made during architecture design have significant implications for the qual-

ity of the final system [62, 97, 119]. For instance, the decision of running two compo-

nents which implement safety-critical functions on the same hardware resource may

lead to a violation of safety requirements due to common cause failures, i.e. both

components will fail because of the same cause. Usually, this scenario is avoided.

Another example is the allocation of redundant components, which is a widely used

method for the reliability improvement. Last but not least, selecting the suitable

components to perform specific tasks can affect system quality attributes, such as

performance, reliability, and security. Due to the life- and mission-critical nature

187

of the majority of these systems, quality attributes such as availability, reliability,

performance, safety and security are very important.

The ever-increasing complexity of software systems introduces a big challenge

for systems engineers, who have to choose from a growing number of design options

resulting in a design space that is beyond the human capabilities of understand-

ing, making the architecture design problem a challenging task [146, 150, 73]. The

requirement for automating the task of architecture design in embedded systems

has been recognised by previous research [25, 150, 21, 119, 34], and a plethora

of architecture optimisation approaches have been developed, such as Evolution-

ary Algorithms (EA) [97, 193, 119, 147]. To handle the complexity of the task,

the optimisation approaches limit the variability of architectural decisions, optimis-

ing the architecture from a particular point of view, such as component deploy-

ment optimisation [126, 86, 18, 50, 62, 97, 193, 119, 147] and redundancy alloca-

tion optimisation [111, 193, 107, 106, 127]. The use of Evolutionary Algorithms

for the architecture optimisation of embedded systems has steadily grown over the

years [21, 50, 62, 147, 193, 119], proving that EAs can successfully be applied to

solving complex combinatorial problem spaces [188]. It has also been observed that

EAs are robust algorithms, producing result qualities with low deviation [157].

The main reasons why Evolutionary Algorithms are often applied in the Software

Engineering domain is their ability to solve any complex problem if it is configured

in the appropriate way. However, this is not an easy task due to the large num-

ber of parameter values and combinations that have to be configured. This task

becomes even more difficult because of the non-linear ways EA parameters inter-

act [43]. Exploring all the parameter configurations is very time consuming and

computationally expensive [43]. It follows that finding the right EA configuration

for a specific problem is an optimisation problem in its own that practitioners have

to face.

188

The requirement for configuring optimisation algorithms in the Software Engi-

neering domain is only one example of practitioners having to do experts’ tasks. This

requirement extends beyond the Software Engineering domain, however we use the

architecture optimisation problem to test the applicability of the proposed optimi-

sation approach to a real world application. We apply the Evolutionary Algorithm

with the Adaptive Parameter Control (APC) to two optimisation problems in archi-

tecture design and use a case-study from the automotive industry to demonstrate

the results.

189

8.2 Architecture Design and Optimisation

The architecture of an embedded system represents a model or an abstraction of

the real elements of the system and their properties, such as software components,

hardware units, interactions of software components, and communications between

hardware units. Formally, we define the software elements as a set of software

components, denoted as C = {c1, c2, ..., cn}, where n ∈ N. The software components

are considered as black boxes [91], i.e. not modifiable and with unknown internal

structure, but with a description of externally visible parameters. The software

components interact to implement a set of services, which define the functional

units accessed by the user of the system. Figure 8.1 depicts an example of four

components and their interactions.

c1

c2

c3

c4

Figure 8.1: Software elements and interactions.

Each service is initiated in one software component (with a given probability),

and during its execution uses many other components (possibly shared with other

services), connected via communication links. For each service, the links are assigned

with a transition probability. This view follows the Kubat model [105], who expresses

the software architecture as a Discrete-Time Markov Chain (DTMC), where vertices

represent the execution of software components, and arcs enumerate the probability

of transferring the execution flow to the next component. The DTMC model is

used to calculate specific quality attributes of the system. The model depicted in

Figure 8.2 is constructed by using the software elements shown in Figure 8.1.

The hardware architecture is composed of a distributed set of hardware hosts,

denoted as H = {h1, h2, ..., hm}, where m ∈ N, with different capacities of memory,

190

s 1

2

3

41.0

0.3

0.7 0.5

0.5

Figure 8.2: Software elements and interactions.

processing power, access to sensors and other peripherals. The hardware hosts

are connected via network links denoted as N = {n1, n2, ...ns}. An example of

three hardware hosts and the network that is used for communication is depicted in

Figure 8.3.

n1

h1 h2 h3

Figure 8.3: Hardware elements and communication network.

Given the set of architectural elements, a series of decisions have to be taken in

order to obtain the final architecture of the embedded system, such as how to deploy

the software components to the hardware resources called Component Deployment

Problem (CDP), and how to assign redundancy levels to safety-critical components,

called the Redundancy Allocation Problem (RAP). Current research [62, 97, 119]

shows that these decisions have significant implications for the likelihood that the

system achieves the desired quality attributes. In general, quality attributes are

non-functional characteristics of a system, the combination of which constitutes the

overall quality of the system as defined by the IEEE 1061 standard [88]. Examples

of quality attributes are reliability, safety, availability, cost, energy consumption and

performance. For every design decision, several quality attributes are considered,

which due to their conflicting nature, are optimised simultaneously.

191

8.2.1 Redundancy Allocation Optimisation

Component redundancy allocation is a widely used reliability improvement technique

for dependable embedded systems [73, 127]. The Redundancy Allocation Problem

(RAP) has shown to be NP-hard [30], hence most of the approaches in the literature

use stochastic algorithms to optimise this problem.

Coit et al. [31] solve the Redundancy Allocation Problem (RAP) by using func-

tionally similar components such that if one component fails, the redundant part

performs the required functionality without a system failure. The optimisation

problem is defined as the minimisation of cost while satisfying a user defined system

reliability level, which is handled as a constraint. The problem is optimised by using

a Genetic Algorithm. Kulturel-Konak et al. [106] use a Tabu Search with a penalty

function for infeasible solutions, which allows the exploration of infeasible regions.

Ant Colony Optimisation (ACO) is another optimisation technique used to solve the

redundancy allocation problem by Liang et al. [110], who employ an elitist strategy

to preserve good solutions and a mutation operator to search in unexplored areas of

the search space. The enhanced ACO performs better compared to an ACO without

the mutation operator and the elitism.

All the mentioned approaches model the redundancy allocation problem as a sin-

gleobjective problem, which minimises cost while satisfying the predefined reliability

criteria. In contrast, Grunske [71] addressed the redundancy allocation problem as a

multiobjective problem to optimise reliability and minimise weight. We follow a sim-

ilar approach, since the allocation of redundancy levels affects conflicting objectives,

which have to be optimised simultaneously.

For the redundancy allocation, we use the hot spare design topology, in which

all component redundancies are active at the same time, mimicking the execution

of the original component. With the NMR extension the system employs a decision

192

mechanism in the form of majority voting when multiple replicas deliver their results

to the entry gate of a component. In this configuration, each component with its

parallel replicas is regarded as a subsystem.

Formally, an architecture alternative for the redundancy allocation problem is

denoted as ra. The set of all redundancy allocation candidates ra is denoted as

RA = {ra | ra : C → NRA}, where NRA = {n | 0 ≤ n ≤ nMax, n ∈ N0} delimits the

redundancy level of a component. Note that, since C and N are finite, RA is also

finite. A visual representation of an architecture alternative for the Redundancy

Allocation Problem is depicted in Figure 8.4.

c12

c22

c3

c42

c11

c13

c21
c41

Figure 8.4: Redundancy Allocation Problem.

The redundancy allocation problem is optimised by using an EA with a spe-

cialised solution encoding which maps a redundancy level to each software compo-

nent. This problem has many quality-related aspects and is therefore modelled as a

multiobjective problem.

Solution representation

In order to apply an Evolutionary Algorithm to RAP, each solution is encoded as

rai = [rai(c1), rai(c2), ..., rai(cn)], where rai(cj) represents the redundancy level for

component cj in the architecture alternative rai.

Genetic operators

The crossover and mutation operators are used to find new architecture alterna-

tives for RAP. The crossover operator creates two new solutions ra′i, ra
′
j ∈ R from

193

two parents rai = [rai(c1), rai(c2), ..., rai(cn)] and raj = [raj(c1), raj(c2), ..., raj(cn)]

coming from existing population by recombining the redundancy levels, i.e. for

a randomly selected index k: ra′i = [rai(c1), ..., rai(ck−1), raj(ck), ..., raj(cn)] and

ra′j =[raj(c1), ..., raj(ck−1), rai(ck), ..., raj(cn)].

Similarly, a single-point mutation produces a new solution ra′i from existing rai

by switching the redundancy levels of two software components, i.e. for randomly

selected k, l: ra′i = [raj(c1), ..., raj(cl), ..., raj(ck), ..., raj(cn)] while the original is

rai=[rai(c1), ..., raj(ck), ..., raj(cl), ..., raj(cn)].

8.2.2 Component Deployment Optimisation

The Component Deployment Problem (CDP) refers to the allocation of software

components to the hardware nodes, and the assignment of inter-component com-

munications to network links. The way the components are deployed affects many

aspects of the final system, such as the processing speed of the software components,

how much hardware is used or the reliability of the execution of different function-

alities [129, 4, 147, 136, 126, 120, 169, 62], which constitute the quality attributes of

the system. Some of the methods focus on the satisfaction of the constraints or user

requirements [96, 27, 121], others aim at finding optimal deployments or at least

candidates that are near-optimal [126, 169, 62, 145, 21], often in combination with

the given constraints [136, 126, 62, 21, 117]. In our approach, conflicting quality at-

tributes are considered which are optimised simultaneously. Moreover, constraints

are checked for satisfaction in every generated solution.

From an optimisation perspective, the component deployment problem is sim-

ilar to the generalized Quadratic Assignment Problem (gQAP), where there is no

restriction that one location can accommodate only a single equipment. Formally,

the component deployment problem is defined as D = {d | d : C → H}, where D

194

is the set of all functions assigning components to hardware resources. One possi-

ble solution for the component deployment problem of the software and hardware

architectures introduced in the previous section is depicted in Figure 8.5.

n1

h1 h2 h3

c2,1 c2,2 c4,2c4,1c1,1 c1,2
c1,3 c3

Figure 8.5: Component Deployment Problem.

Solution representation

The component deployment problem uses an EA with a specialised solution en-

coding which maps software components to hardware resources. Each architecture

alternative of the component deployment problem is encoded for the optimisation

process as di = [di(c1), di(c2), ..., di(cn)], where di(cj) represents the hardware host

used to deploy component cj in the deployment alternative di.

Genetic operators

The genetic operators are applied to this representation of the solutions in order to

generate new architecture alternatives. The crossover operator combines the alloca-

tion lists of two solutions. Formally, crossover creates two new solutions d′i, d
′
j ∈ D

from two parents di = [di(c1), di(c2), ..., di(cn)] and dj = [di(c1), di(c2), ..., di(cn)]

coming from existing population by recombining the allocation of components,

i.e. for a random k: d′i = [di(c1), di(c2), ..., di(ck−1), dj(ck), ..., dj(cn)] and d′j =

[dj(c1), dj(c2), ..., dj(ck−1), di(ck), ..., di(cn)].

The mutation operator exchanges the host allocations of two randomly cho-

sen components. Formally, mutation produces a new solution d′i from existing

di by switching the mapping of two components, i.e. for randomly selected k, l:

195

d′i = [di(c1), di(c2), ..., di(ck)..., di(cl), ..., di(cn)] while the original solution is di =

[di(c1), di(c2), ..., di(cl)..., di(ck), ..., di(cn)]. The problem definition does not allow

for duplications, and a repair operation follows the crossover/mutation move.

196

8.3 ArcheOpterix

To solve the architecture design problem in embedded systems we have implemented

an open source framework called ArcheOpterix [3] (http://mercury.it.swin.edu.

au/g_archeopterix/). ArcheOpterix is a generic platform for modelling, evaluating

and optimising embedded systems. The main modules of ArcheOpterix are shown in

Figure 8.6. The current implementation supports several quality attributes (service

reliability [129, 130], response time [127], data communication overhead [3, 4, 5],

cost [127], data transmission reliability [3, 4, 5], energy consumption [128], and

scheduling length [138]), different optimisation algorithms (Non-dominated Sorting

Genetic Algorithm-II [41] and Pareto-Ant Colony Optimisation [4]) and various

parameter control mechanisms (Probability Matching (PM) [181], Adaptive Pursuit

(AP) [181] and Dynamic Multi-Armed Bandit (DMAB) [56], Predictive Parameter

Control [5], etc.).

Archeopterix

Architecture Design

Component deployment

Redundancy allocation

Objectives

Scheduling

Reliability

Scheduling

Cost

......

Optimisation

EA

ACO

Local search

Parameter Control

Adaptive Pursuit

...

Constraints

Coallocation

Localisation

Memory

...

Probability Matching

ARPS
...

* * * * *
Adaptive Pursuit

Figure 8.6: ArcheOpterix framework.

The architecture design decisions supported in ArcheOpterix are component

deployment, redundancy allocation, etc. Problem-specific constraints are imple-

mented to check for the feasibility of produced solutions, such as localisation con-

straint [129, 3, 4, 138, 5], collocation [129, 3, 4, 138], memory [129, 3, 4, 138, 5], and

redundancy levels [127, 128]. ArcheOpterix supports distributed processing in grid

and cloud platforms and parallel optimisation algorithms.

197

8.4 Case-Study: Automotive Embedded Systems

Today more than 80% of innovations in a car come from software systems. Soft-

ware adds distinguishing features to car models and allows hardware to be reused.

With the increase of the number of functions performed by software, the automo-

tive embedded systems are becoming more complex with many design options to

choose from. For instance, a simple power train control application has 3488 possi-

ble component realisations by instantiating different algorithms and their variants.

A typical car consists of around 80 electronic fittings. Simple ‘yes, no’ decisions for

each function yield approximately 280 variants to be ordered and produced for a car.

Thus there is a large amount of variants that should be handled technically [26], a

task that can take years for the system designer.

Both the software and the hardware architecture form the embedded architecture

of an automotive system, the design of which involves a variety of manual and

automatic decisions. Component deployment and redundancy allocation are two

important design decisions that can be automated. The way the architecture of

automotive systems is designed affects different quality attributes of the system [62,

96, 119], such as safety, security, availability, reliability, maintainability, performance

and temporal correctness [72, 151], which often are conflicting with each other.

Given the conflicting quality attributes and the design options which grow ex-

ponentially with the number of components, the design space extends beyond the

human capabilities of understanding. To deal with the complexity of today’s au-

tomotive systems, automatic methods are required, which can support engineers in

exploring the design space and finding good solutions; a problem that has already

been recognised by the industry [25, 151]. We demonstrate the application of the

proposed adaptive parameter control for Evolutionary Algorithms to the design of

an automotive embedded system.

198

8.4.1 Hardware Architecture

In the automotive industry, an existing hardware topology is usually used, be-

cause car models remain the same through parts of their lifetimes. The hardware is

used to run software components which form the basis of the increasingly sophisti-

cated functionality of contemporary cars. The hardware model of an automotive em-

bedded system is composed of a distributed set of Electronic Control Units (ECUs),

which have different capacities of memory, processing power, access to sensors, etc.

Automotive embedded systems closely interact with the physical environment, typ-

ically via sensors and actuators. All the hardware modules (ECUs, sensors, actu-

ators) are connected through communication buses, which are shared among the

hardware units, such as Ethernet, CAN, or FlexRay. The hardware modules and

the communication buses, as depicted in Figure 8.7, form the hardware architecture

of an automotive system.

CAN BUS

ECU1 ECU2 ECU3

ECU4

ECU6

ECU7

Temperature sensor

Wheel speed sensor

Caliper position sensor

LIN BUS

Caliper actuator

Parking brake actuator

ECU5

ECU8

DRIVER CAN

Pedal position sensor

Brake force sensor

Parking brake sensor

Brake pedal actuator

ECU9

Figure 8.7: The hardware architecture.

199

Many types of buses can be present, having different characteristics of data

rates and reliability. For example, for the Brake-by-wire (BBW) system a highly

reliable bus is used due to the safety-critical nature of this system, whereas a less

reliable bus may be sufficient for multi-media streaming. Each ECU has access to

different sensors and actuators, which impose localisation constraints for the software

components. In other words, software components that read from a specific sensor

or write to a particular actuator, have to be deployed to an ECU that has access to

the sensor or actuator.

The hardware elements are annotated with different properties required for the

calculation of the quality attributes. The communication among the hardware hosts

is achieved by the network links, which have different characteristics of data rates,

reliability, etc. Figure 8.7 depicts three different network links: a LIN bus, a Driver

CAN and a CAN bus. A description of the properties of hardware units and network

links are depicted in Table 8.1.

Table 8.1: Properties of the hardware elements.

Annotation Definition Description

ps(hi) H → N Processing speed of the host (MIPS).

mh(hi) H → N Memory capacity of host hi.

λ N → R Failure rate of the network link.

bw N → N the bandwidth of a network link.

tt N → N the transfer time for a link per execution.

8.4.2 Software Architecture

The software layer of an automotive embedded system consists of a high number of

lightweight components, representing the logical blocks of system functionality (typ-

ically in a low-level programming language). This forms the software architecture

200

of the system. Automotive software has very diverse functionality, ranging from en-

tertainment software to safety-critical, real-time control software. We illustrate the

software architecture of an automotive system by using the Brake-by-wire (BBW)

service, which is a real-time system that performs safety-critical tasks.

Brake-By-Wire

1:Temperature
Sensor

2:Calliper
Position
Sensor

9:Parking
Brake
Sensor

3:Parking
Brake
Actuator

4:Calliper
Control
Unit

6:Central
Brake
Control

5:Calliper
Clamp
Actuator

8:Wheel
Spin
Detector

7:Wheel
Speed
Sensor

10:Brake
Pedal
Control

11:Pedal
Position
Sensor

12:Brake
Force
Sensor

13:Brake
Feedback
Actuator

Figure 8.8: The software architecture of the Brake-by-wire system.

BBW technology is a recent innovation in the automotive industry, which re-

places the traditional mechanical and hydraulic control systems with electronic con-

trol systems. A diagram of the BBW software model is shown in Figure 8.8, where

each box represents a software component and the connections among them corre-

spond to the interactions. The direction of the arrows shows the sequence of the

execution of the components.

A BBW pedal is usually equipped with several sensors which provide information

201

about the driver’s brake request. The Pedal Position Sensor (PPS) and the Brake

Force Sensor (BFS) measure the force applied by the driver to the brakes and the

current position of the brakes. Upon measurement of the driver’s brake request,

the brake demand is sent to the Brake Pedal Control (BPC) via the communication

network. The BPC transfers the brake request to the Central Brake Control (CBC),

which generates four independent brake commands and sends them to the Calliper

Control Unit (CCU) in each wheel. These commands are usually in the form of

four clamp forces that are generated between each of the four brake discs and their

corresponding brake pads. Each CCU includes a Calliper Clamp Actuator (CCA)

to clamp the brake pad toward the braking disc and a Parking Brake Actuator. The

CCU also processes additional inputs from several sensors, such as the Temperature

Sensor (TS) and the Calliper Position Sensor, which regulate the brake command

execution.

There are also different sensors and a controller to tune the actual brake force to

the desired clamp force received from the Central Brake Control (CBC), such as the

Parking Brake Sensor (PBS) and the Wheel Speed Sensor (WSS). After the brake

request has been applied, a message is generated by the Brake Feedback Actuator

(BFA) which notifies the driver. A description of the properties of software elements

is given in Table 8.2.

8.4.3 Configuration of the Case-study

The property of the hardware and software elements described in Tables 8.1 and 8.2

are configured using values from a real world applications of an automotive embed-

ded system. The case-study was built with inputs from the Australian Automotive

Industry via the cooperate research centre (AutoCRC), and Volvo Sweden. The

configuration of the hardware and software architecture are given in Tables 8.3-8.7.

202

Table 8.2: Properties of the software elements.

Annotation Definition Description

ext(ci) : C → N Estimated time taken for a single execution
of component ci.

q0(ci) C → R Mean execution initialisation probability for
component ci.

mc(ci) C → N Memory size required to run component ci.

λ(ci) C × C → R Failure rate of component ci.

cost(ci) C → N The price associated with a single compo-
nent; specified in ($)s.

p(cj, ci) C × C → R Transition probability from component cj to
component ci.

es(cj, ci) C × C → N Message (event) size transferred from com-
ponent cj to component ci.

cf(ci, cj) C × C → R Communication frequency between compo-
nents ci and cj.

lr(ci, hj) C ×H → {0, 1} Localisation restrictions. The restriction
lr(ci, hj) = 1 if component ci has to be
deployed to hardware host hj, otherwise
lr(ci, hj) is equal to 0.

cr(ci, cj) C × C → {0, 1} Collocation restrictions. Restriction cr = 1 if
ci has to be deployed in the same hardware
unit as cj, and cr = 0 if there is no such
restriction.

The software architecture is deployed to the hardware architecture described in

Section 8.4.1, to realise the BBW system. This process involves two main design

steps which are optimised individually, described in the following sections. First

a redundancy level is decided for each component. Then the software components

and their redundancies are allocated to the ECUs. In each step, different quality

attributes are optimised.

203

Table 8.3: Values of hardware nodes for the BBW system.

Host mh ps fr lr

ECU1 512 4 0.000400 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1

ECU2 1024 6 0.000400 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1

ECU3 512 2 0.000020 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1

ECU4 1024 2 0.000100 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0

ECU5 510 11 0.000800 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0

ECU6 1024 11 0.000200 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0

ECU7 1024 8 0.000060 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0

ECU8 1024 7 0.000040 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

ECU9 1024 8 0.000800 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

Table 8.4: Values of communication links for the BBW system.

Link fr bw tt r

Lin bus 3.00E-05 128 10 0.9

Driver CAN 1.20E-04 64 2 0.8

CAN bus 4.00E-05 64 4 0.8

8.4.4 Redundancy Allocation Optimisation

Redundancy Allocation (RA) determines the number of redundancies that have to

be implemented for each software components. RA is one of the well-known sys-

tem reliability improvement techniques [110, 32, 107, 73]. Reliability is one of the

crucial aspects that should be considered when designing embedded architectures of

dependable, safety critical systems such as in the automotive domain [2]. However,

employing redundant components can have a negative influence in the other quality

attributes. Employing multiple redundancies in software level adds communica-

tion and processing overhead, as well as requirements for additional hardware (e.g.

sensors). This problem has been addressed mostly in component based software ar-

204

Table 8.5: Values of software components for BBW system.

Component mc q0 ext cost

c1 Temperature Sensor (TS) 64 0.108 12 25

c2 Calliper Position Sensor (CPS) 128 0.182 10 30

c3 Parking Brake Actuator (PBA) 64 0 2 20

c4 Calliper Control Unit (CCU) 512 0 20 30

c5 Calliper Clamp Actuator (CCA) 256 0 5 40

c6 Central Brake Control (CBC) 1024 0 10 30

c7 Wheel Speed Sensor (WSS) 64 0.1 12 35

c8 Wheel Spin Detector (WSD) 128 0.2 8 20

c9 Parking Brake Sensor (PBS) 128 0.1 4 30

c10 Brake Pedal Control (BPC) 512 0 6 35

c11 Pedal Position Sensor (PPS) 64 0.13 10 30

c12 Brake Force Sensor (BFS) 128 0.18 10 35

c13 Brake Feedback Actuator (BFA) 64 0 4 25

Table 8.6: Values of interactions between components in the BBW system.

ci c0 c1 c3 c3 c5 c7 c6 c8 c9 c10 c11 c9

cj c3 c3 c2 c4 c3 c5 c7 c7 c5 c9 c9 c12

p 1 1 0.3 0.7 1 1 1 1 0.6 1 1 0.4

cl 2 2 2 2 2 1 2 1 2 1 2 2

ext 0.2 0.3 0.1 0.4 0.3 0.2 0.6 0.4 0.2 0.3 0.5 0.4

es 10 12 12 10 12 6 12 6 12 8 10 6

cf 1 1 0.3 0.7 1 1 1 1 0.6 1 1 0 .4

205

Table 8.7: Values of collocation restrictions between components in the BBW sys-
tem.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

c1 0 0 0 0 0 0 0 0 0 0 0 0 0

c2 0 0 0 0 0 0 0 0 0 0 0 0 0

c3 0 0 0 0 0 0 0 0 0 0 0 0 0

c4 0 0 0 0 0 0 0 0 0 0 0 0 0

c5 0 0 0 0 0 0 0 0 0 0 0 0 0

c6 0 0 0 0 0 0 0 0 0 0 0 0 0

c7 0 0 0 0 0 0 0 1 0 0 0 0 0

c8 0 0 0 0 0 0 1 0 0 0 0 0 0

c9 0 0 0 0 0 0 0 0 0 0 0 0 0

c10 0 0 0 0 0 0 0 0 0 0 0 0 0

c11 0 0 0 0 0 0 0 0 0 0 0 1 0

c12 0 0 0 0 0 0 0 0 0 0 1 0 0

c13 0 0 0 0 0 0 0 0 0 0 0 0 0

chitecture development, where the trade-offs between cost and reliability were inves-

tigated. Apart from the cost, when redundancy is employed in automotive systems,

additional overheads incur into the response time. Response time is also a critical

and important aspect of automotive systems, not only in safety critical sub-systems

but also in user interaction sub-systems, such as the navigation system [2]. Hence,

to quantify the quality of a single redundancy allocation architecture ra, we define

three objective functions F : RA → R2, where F (ra) = (rt(ra), r(ra), cost(ra))

s.t. rt(ra) is the the response time of ra, defined by Equation 8.1, r(ra) denotes

the reliability (probability of failure-free operation) of ra, defined in Equation 8.7

and cost(ra) is the total cost of the system with the redundancy levels assigned to

components.

206

Response time

The response time has already been the focus of an extensive research in the embed-

ded systems [169, 61, 87, 170]. In the prediction of response time for each redundancy

allocation candidate, we use the DTMC model based approach presented in [170].

We describe the system behaviour as a Markov model with probabilities of execution

transfer between components together with probabilities of execution initialisation

at each component. The response time rt for a redundancy allocation candidate ra

is calculated as follows:

rt(ra) =
∑

i∈n

ext(ci) · exv(ci) (8.1)

where ext : C → N is the estimated time taken for a single execution of a

component, and exv : C → R quantifies the expected number of executions of

a component during the system execution. This can be computed by solving the

following equation [105]:

exv(ci) = q0(ci) +
∑

j∈\

(exv(cj) · p(cj, ci)) (8.2)

where p(cj, ci) denotes the transition probability from component cj to com-

ponent ci, and q0(ci) represents the mean execution initialisation probability for

component ci.

Reliability

We employ a well-established method of reliability estimation presented by Ku-

bat [105, 68]. In estimating the reliability of a single component, we assume that

failure of a component has an exponential distribution [171], which is characterised

by failure rate parameter λ. First, we calculate the reliability of a single component

207

ci per visit as define by Shatz et al. [171]:

r(ci) = e−λ(ci)·ext(ci) (8.3)

When the redundancy levels are employed, the reliability of a component with

its replicas connected in parallel for the architectural alternative ra is computed as:

r(ci,rep) = 1− (1− r(ci))ra(ci)+1 (8.4)

Similarly, the reliability of transferring a message from component ci to compo-

nent cj is calculated as follows:

r(ci, cj) = e−λ(ci,cj)·tt(ci,cj) (8.5)

where tt(ci, cj) is the transfer time for a link per execution λ(ci, cj) is the failure

rate in the communication:

In consideration of a redundancy allocation ra, the presence of multiple senders

increases the reliability (due to the tolerance against commission and value failures),

which is calculated as follows:

r(ci,rep, cj) = 1− (1− r(ci, cj))ra(ci)+1 (8.6)

The reliabilities of individual system elements (subsystems and links) per a sin-

gle visit are used to compute the reliability of the system execution based on the

expected number of executions [68, 105]:

r(ra) ≈
∏

i∈n

(r(ci,rep))
exv(ci) (8.7)

208

Cost

The cost of the system for each architecture alternative is evaluated as the sum of

the costs of individual components and the respective redundancies as follows:

cost(ra) =
∑

i∈n

cost(ci) · (ra(ci) + 1) (8.8)

8.4.5 Component Deployment Optimisation

Another challenge for the automotive industry remains the deployment function

which relates hardware to software. The hardware, software and the deployment

function should be a concrete realisation of the logical architecture, which describes

the interaction between the logical components. The software components run on

ECUs and communicate by bus systems. The deployment process determines the

ECU to which each software component is allocated. Generally, the same platform

can be used for different models and different products at the same time, by integrat-

ing new functionality in an iterative process [186], which makes the implementation

of new innovative functions the main focus of the automotive electronics [162]. The

decisions regarding the deployment architecture of a car affect the quality of the

final systems. For example, consider the two deployment architectures shown in

Figure 8.9.

In the first deployment architecture, frequently interacting software components

have been deployed to the same hardware resource, which result in an architecture

with a lower communication overhead compared to the second deployment architec-

ture. However, the first deployment architecture has a longer scheduling length due

to the sequential execution of the components that require information from each

other.

To quantify the quality of a single deployment architecture d, we define three

209

Figure 8.9: The software architecture of Brake-by-wire system.

objective functions F : D → R3, where F (d) = (sl(d), co(d), dtr(d) s.t. sl(d) is the

quantification of the scheduling length of d, defined by Equation 8.9, co(d) denotes

the communication overhead of d, defined in Equation 8.10 and dtr(d) denotes the

data transmission reliability defined in Equation 8.11.

Scheduling length

The scheduling length (sl) describes the average time for a hardware unit (i.e. ECU)

to complete the round-robin processing of all its assigned components. ST is given

by

210

sl(d) =
1

m
·
m∑

j=1

(∑
c∈Chj

ext(c)

ps(hj)

)
. (8.9)

where Chj is the set of components deployed to the hardware host (ECU) hj,

ext(c) is the estimated time taken for a single execution of the component c and

ps(hj) is the processing speed of ECU hj.

ECUs are assumed to have a fixed and deterministic scheduling, which is a

technology used with Time Triggered Architectures (TTA) in embedded systems

in order to maintain the predictability of internal behaviour [102, 75]. With this

scheduling strategy, when the software components are allocated to ECUs, a fixed

schedule is determined. Each component is given a specific time frame, which it

requires to complete the execution. The schedule is done in a round-robin fashion,

i.e. each component is allocated its own time frame in a circular fashion. The sum

of all the execution time slots in the ECU is called scheduling length.

Communication Overhead

In embedded systems with their constrained hardware resources, repeated transmis-

sions between software components are discouraged. The Communication Overhead

(CO) [126] objective attempts to enforce minimal data communication for a given set

of components and system parameters. As a network- and deployment-dependent

metric, the overall communication overhead of the system is used to quantify this

aspect. This metric was first formalised by Medvidovic and Malek [126].

co(d) =
n∑

i=1

n∑

j=1

cf(ci, cj) · nd(d(ci), d(cj))+

n∑

i=1

n∑

j=1

cf(ci, cj) · es(ci, cj)
bw(d(ci), d(cj)) · r(d(ci), d(cj))

(8.10)

211

where es : C × C → N is the component event size, with es(ci, cj) = 0 if ci = cj

or there is no event occurring, cf : C × C → R is the communication frequency

between ci and cj, bw : H×H → N is the network bandwidth, with bw(hi, hj) = 0 if

hi = hj or there is no network connection between hi and hj, and nd : H ×H → N

is the network delay, with nd(hi, hj) = 0 if hi = hj or there is no network connection

between hi and hj.

Data Transmission Reliability

In a deployment architecture, the communication of components that belong to the

same service and that are deployed in different ECUs is supported by the network.

Normally, they have to exchange frequent messages with each other, which makes

the reliability of the data transmission in the network a crucial quality attribute.

Data transmission reliability is especially important in a real-time embedded sys-

tem, since important decisions are taken based on the data transmitted through

the communication links. Following the definition introduced by Malek [120], data

transmission reliability is calculated as follows:

dtr(d) =
n∑

i=1

n∑

j=1

cf(ci, cj) · r(d(ci), d(cj)) (8.11)

where cf(ci, cj) is the communication frequency between components ci and cj,

and r(d(ci), d(cj)) is the reliability of the communication link between the hardware

resources where ci and cj are deployed, which is calculated by using Equation 8.5.

Constraints

Not all deployment architectures represent feasible alternatives. For instance, plac-

ing all components into a single host is not feasible due to memory constraints.

Hence the optimisation process should check if every new created solution satisfies

212

the set of constraints. The set of constraints Ω is defined independently of the

quality functions. Currently, we consider three constraints Ω = {mem, loc, colloc},

where mem is the memory constraint, loc denotes the localisation constraint and

colloc is the collocation constraint.

Memory constraint: Processing units have limited memory, which enforces a

constraint on the possible components that can be deployed in each ECU. Formally,

let d−1 : H → Ch denote the inverse relation to d ∈ D, i.e. d−1(H) = {Ch ∈ C |

d(Ch) = h}. Then the memory constraint mem : D → {true, false} is defined as

follows:

mem(d) = ∀h ∈ H :
∑

Ch∈d−1(h)

mc(Ch) ≤ mh(h) (8.12)

wheremc(Ch) is the total memory required to run the set of components deployed

to the hardware host h, and mh(h) is the available memory in host h. In other words,

this constraint does not allow any deployment solution which exceeds the available

memory in the hardware resources.

Localisation constraints: Processing units have access to different sensors and

actuators which are used by the software components. For instance, the Brake Force

Sensor (BFS) software component reads information from the respective sensor. As

a result it has to be deployed to an ECU which can communicate with that sensor

(i.e. is connected via the network or the sensor is built into it). The availability of a

specific sensor in a hardware host, restricts the allocation of the software component

that uses the sensor to that particular host. This constraint is called localisation

constraint, denoted loc : D → {true, false} and is defined as follows:

loc(d) = ∀c ∈ C : (h ∈ lr(c) ⇒ d(c) 6= h) (8.13)

where lr(c) is the list of localisation restrictions.

213

Collocation constraints: Some of the components should not be allocated in

the same ECU. For example, a software component should not be allocated in the

same ECU as its redundancies, so that if one of the ECUs fails the other one can

still perform the required task. This is called collocation constraint, denoted as

colloc : D → {true, false}, and restricts the allocation of two software components

to two different hosts. Collocation constraint is calculated as follows:

colloc(d) = ∀c ∈ C : (h ∈ cr(ci, cj) ⇒ d(ci) 6= d(cj) (8.14)

where cr(ci, cj) is the matrix of collocation restrictions.

8.4.6 Results of the Optimisation Process

The presented case-study is a comparatively small segment of the actual automo-

tive architecture optimisation problem. Despite this fact, the possible number of

candidate architectures is still too large to search with an exact algorithm, i.e.

913 ≈ 2.54 · 1012 options for the redundancy allocation problem, and even larger

for the component deployment problem. To optimise both architecture optimisa-

tion problems we employed an Evolutionary Algorithm with the adaptive parameter

control strategy proposed in this thesis which was compared to an EA with tuned

parameter values. For the purpose of this experiment we consider five parameters:

mutation rate, crossover rate, mating pool size, crossover operator, mutation oper-

ator. The ranges/values of parameters controlled in this experiment are given in

Table 8.8.

The tuning of the static parameter values was performed following recommen-

dations of Smit and Eiben [172]. We use a Sequential Parameter Optimisation

(SPO) [17], which tests each parameter combination using several runs. To de-

crease the number of tests required, we employ a racing technique, which uses a

214

Table 8.8: Ranges of parameters.

Parameter Controlled range/value

Mutation rate [0.0010,0.5]

Crossover rate [0.6,1.0]

Mating pool size [0.1,0.7]

Mutation operator Single-point, Uniform

Crossover operator Single-point, Uniform

variable number of runs depending on the performance of the parameter configu-

ration. Parameter configurations are tested against the best configuration so far,

using at least the same number of function evaluations as employed for the best

configuration. Five different design points are selected for mutation rate, crossover

rate and mating pool size from the ranges depicted in Figure 8.8. The results from

the tuning process are shown in Table 8.9.

Table 8.9: Tuned parameter values.

Parameter Component deployment Redundancy allocation

Mutation rate 0.1 0.2

Crossover rate 0.6 0.8

Population size 100 100

Mating pool size 0.6 0.6

Mutation operator Single-point Uniform

Crossover operator Single-point Uniform

The execution of the algorithm was set to 10 000 candidate evaluations, and per-

formed under on a dual-core 2.26 GHz processor computer. The algorithm took 92

seconds for the 10 000 function evaluations and generated 231 approximate solutions,

four of which are depicted in Table 8.10.

Looking at the results, we notice that the second solution (ra2) has the highest

reliability among the four. However, its cost and response time are also the highest.

215

Table 8.10: Redundancy Solutions.

Sol ra1 ra2 ra3 ra4

ra(c1) 2 2 0 0

ra(c2) 1 2 0 0

ra(c3) 2 2 0 1

ra(c4) 2 2 0 1

ra(c5) 1 2 0 0

ra(c6) 1 2 0 0

ra(c7) 1 2 0 0

ra(c8) 2 2 0 0

ra(c9) 1 2 1 0

ra(c10) 1 1 0 0

ra(c11) 1 2 0 0

ra(c12) 1 2 0 0

ra(c13) 2 2 1 0

cost 890 1120 440 435

rt(ra) 56.48 62.96 41.15 43.27

r(ra) 0.996099 0.996347 0.793488 0.920808

The first solution (ra1) is lower in cost and has a smaller response time compared

to the second solution, however its reliability is also lower. The two last solutions

(ra3 and ra4) have the lower cost and response time than the first two solutions,

but their reliability values are much lower.

Both solutions ra3 and ra4 have only two components with one redundancy

level assigned (solution ra3 has components c9 and c13, whereas solutions ra4 has

components c3 and c4). Interestingly, the reliability of the ra4 is much higher than

the respective value of ra3 (0.920808 > 0.793488). The response time and the cost

of solution ra4 are also higher than ra3, although the difference between respective

216

values is not big.

Table 8.11: Deployment Solutions.

Sol d1 d2 d3 d4

d(c1) 6 6 6 6

d(c2) 6 6 6 6

d(c3,1) 3 6 6 2

d(c3,2) 6 6 6 6

d(c4,1) 3 2 2 2

d(c4,1) 3 2 2 2

d(c5) 3 2 6 6

d(c6) 3 2 2 2

d(c7) 7 6 6 6

d(c8) 7 6 6 6

d(c9) 9 9 9 9

d(c10) 8 9 9 9

d(c11) 8 9 9 9

d(c12) 8 9 9 9

d(c13) 8 9 9 9

sl(d) 4.2186 1.95538 1.91329 1.93013

co(d) 65.2804 74.8092 94.6799 82.8092

dtr(d) 0.95569 0.95117 0.94121 0.94548

At this stage, the system designer would have to select the architecture represent-

ing the redundancy levels for all component according to their preferences. For the

purpose of this case-study, we select solution ra4 as the final software architecture

with the redundancy levels, which has to be deployed in to the hardware architec-

ture. Similar to the redundancy allocation optimisation problem, we employ the

adaptive Evolutionary Algorithm to optimise the deployment of the software archi-

217

tecture (solution ra4) to the hardware architecture (Figure 8.7). The Evolutionary

Algorithm reported eight nondominated deployment architectures after the optimi-

sation process. We show four of these deployment architectures in Figure 8.11. The

optimised deployment architectures make a trade-off among the quality attributes

of response time, communication overhead and data transmission reliability. The

system architects have to decide on which architecture to use depending on their

preferences.

Table 8.12: The means, standard deviations and Kolmogorov-Smirnov test values
of hypervolume indicators for the 30 runs of each problem instance using different
optimisation schemes.

Mean

Problem Tuned Parameter control

Redundancy allocation 0.2617 0.2619

Component deployment 0.2618 0.2620

Standard Deviation

Problem Tuned Parameter control

Redundancy allocation 9.770E-05 1.173E-04

Component deployment 1.179E-04 1.083E-04

KS test

Problem d p

Redundancy allocation 0.3284 0.049

Component deployment 0.3667 0.026

To understand the benefits of using the approach proposed in this thesis for the

architecture optimisation problem, we compared the outcomes of an Evolutionary

Algorithm using parameter control and tuned parameter values. We performed 30

runs for each optimisation scheme. The mean and standard deviation of the 30

hypervolume values for each optimisation scheme are reported in Table 8.12. The

218

Evolutionary Algorithm using the adaptive parameter control consistently outper-

forms the EA with tuned parameter values.

The different optimisation methods are validated using the Kolmogorov-Smirnov

(KS) non-parametric test [149] in order to check for a statistical difference in the

outperformance. The 30 values of the hypervolume indicators were submitted to the

KS analysis which result in a confirmation of the outperformance of the adaptive EA

with a minimum d-value of 0.3284 at a 95% confidence level. Hence we conclude that

the superior performance of the proposed Adaptive Parameter Control is statistically

significant.

219

8.5 Summary

Architecture optimisation in embedded systems is an example of optimisation prob-

lems that are faced in the industry. This chapter has demonstrated the applicability

of the adaptive parameter control for Evolutionary Algorithms in this domain. We

have presented a set of optimisation runs which have shown that using our approach

to control parameters of an Evolutionary Algorithm achieves better results quality

than using tuned parameter settings. Most importantly, the reduction in the number

of the EA parameters that have to be set by a practitioner facilitates the transfer

of EAs into industrial settings, where practitioners do not have any knowledge on

how to tune algorithm parameters.

220

Part IV

Conclusions and Future Work

221

Chapter 9

Conclusions

This thesis presented an adaptive parameter control method for adjusting param-

eters of Evolutionary Algorithms during the optimisation process. The main con-

tributions of the thesis are in the four stages of adaptive parameter control: the

feedback collection strategy, the parameter effect assessment strategy, the parame-

ter quality attribution strategy and the parameter value selection strategy.

Adaptive parameter control approaches for Evolutionary Algorithms adjust pa-

rameter values based on the algorithm’s performance, which is part of the feedback

collection strategy. While many feedback collection strategies for singleobjective op-

timisation problems have been presented in the past, there are no recommendations

in the literature regarding effective feedback collection strategies for multiobjective

problems. In multiobjective optimisation runs, and in the absence of a preference for

certain objectives, a set of nondominated solutions, which make a trade-off between

the fitness functions, are produced. The challenge faced in assessing the perfor-

mance of a multiobjective optimisation algorithm relies on the ability to express

the quality of multiple solutions with a single value to employ as feedback for the

adaptive parameter control method.

Distinguished multiobjective performance metrics were investigated in Chapter 4

and recommended metrics were applied as a feedback collection strategy in adaptive

parameter control for multiobjective EAs. An empirical evaluation of two different

223

feedback collection strategies - the binary hypervolume indicator and the binary

epsilon indicator - was performed and recommendations regarding appropriate mul-

tiobjective performance metrics for feedback collection strategies were provided. The

results from a set of experiments on multiobjective problem instances demonstrated

that using the binary hypervolume indicator as a feedback collection strategy leads

the algorithm to finding solutions of better quality compared to the binary epsilon

indicator.

The output of the feedback collection strategy was employed to approximate

the effect of parameter values on the performance of the Evolutionary Algorithm.

Due to the stochastic nature of Evolutionary Algorithms, and the presence of more

than one parameter, the approximation of parameter effects has to accommodate

the ambiguity regarding the real cause of the algorithm’s performance.

To cope with this kind of uncertainty, a probabilistic measure of the effect of pa-

rameter values, called Bayesian Effect Assessment (BEA), was introduced in Chap-

ter 5. BEA approximates the effect of each parameter value as the times a parameter

value was successful divided by the times a parameter value was used, where success

is defined as producing results with qualities above a certain threshold value. Un-

like state-of-the-art approaches, in which the performance of the EA reported by the

feedback strategy is considered as the effect of parameter values, BEA attempts to

infer the extent to which the algorithm’s performance is affected by the parameter

values. The analysis of the threshold value on different problem instances demon-

strated that using the median performance of the algorithm instances for the BEA

produces better results quality and is more robust compared to the 10th, 20th and

40th percentiles. In the experimental studies, BEA outperformed other prominent

parameter effect assessment methods in different problem instances.

To make an informed judgement on what would be a successful parameter value

for the next iteration(s), we derived the Predictive Quality Attribution (PQA) strat-

224

egy, which combines the parameter effects measured in the past with time series

prediction. As described in Chapter 6, PQA attempts to predict the effect that pa-

rameter values may have in the next iteration by using forecasting techniques. Four

forecasting techniques were investigated: the Linear Regression (LR), the Simple

Moving Average (SMA), the Exponentially-Weighted Moving Average (EWMA),

and the Autoregressive Moving Average (ARIMA).

To verify the suitability of each forecasting technique for predicting the effect

of EA parameters, statistical tests were applied to the effects of the mutation rate,

crossover rate, population size, mating pool size, crossover operator and mutation

operator. It was observed the mutation rate, crossover rate, mating pool size,

crossover operator and mutation operator followed the assumptions made by the

forecasting models, such as linearity, normality of the residuals, stationarity, ho-

mosedasticity, and independence of the residuals, hence any of these techniques can

be used to predict the success rates of these parameters.

The population size, on the other hand, did not conform to the assumptions

made by the forecasting techniques, hence it may not be appropriate to predict its

effect for the future iterations. However, the results from the experiments showed

that using the Predictive Quality Attribution strategy to control the population

size does not have a negative effect on the performance of the Evolutionary Algo-

rithm. Based on the experiments with the population size, we argue that if EA

parameters are controlled without prior testing for statistical properties, Predictive

Quality Attribution can be used without a negative effect in the performance of the

algorithm.

Despite being one of the simplest forecasting strategies, Linear Regression proved

to be the most effective model to predict the effect of Evolutionary Algorithm pa-

rameters. In the experimental studies we the Predictive Quality Attribution (PQA)

method with Linear Regression was used to adjust the mutation rate, crossover

225

rate, mating pool size, mutation operator and crossover operator throughout the

optimisation process carried out using different problem instances. The Predictive

Quality Attribution (PQA) strategy was compared to two prominent parameter

quality assessment strategies: the Average Quality Attribution (AQA) strategy and

the Extreme Quality Attribution (EQA) strategy. The trials demonstrated that

PQA outperforms the parameter quality attribution methods currently considered

most successful. Based on these results, it can be asserted that predicting the effects

of parameter values is favourable for the algorithm’s performance.

The projected parameter quality was used to select the parameter values for the

following cycle. Parameter value selection strategies are typically devised to han-

dle the balance between exploration and exploitation required to sample promising

areas of the parameter space. In real-valued parameter assignments, such as the

mutation rate and the crossover rate, choices for parameter assignments are discre-

tised beforehand and the feedback from the algorithm is applied to the preselected

choices. It has been observed that the initial discretisation of parameter values may

provide values which are suboptimal for some problems or their instances.

To address this problem, the Adaptive Range Parameter Selection (ARPS) strat-

egy, introduced in Chapter 7, adjusts the ranges of continuous parameter values as

the optimisation process progresses. The algorithm starts with two ranges for each

parameter interval. At every iteration, ARPS rewards the best-performing param-

eter ranges by dividing them into two new ranges and assigning each of them the

same selection probability as the parent range, whereas the worst performing ranges

are merged with one of the neighbouring ranges.

According to our knowledge, the best-performing approaches with equivalent

functionality are AP, PM and DMAB. The experimental studies showed that the

new approach clearly outperforms the other parameter value selection methods. The

adaptation of parameter value ranges increases the sampling accuracy, since the

226

more successful a parameter value range is, the smaller the interval becomes, which

can explain the superior performance of ARPS compared to other state-of-the-art

parameter selection strategies. Furthermore, unlike other adaptive parameter value

selection methods, ARPS does not have any hyperparameters that require tuning

before the optimisation process.

Through using ARPS, we observed that different parameter ranges were optimal

for different problems and different stages of the optimisation process. The smaller

problems were best optimised with a low mutation rate throughout the process,

whereas the more difficult problems required slightly higher mutation rates at the

start but toward the end of the process the value ranges were not as focussed.

Furthermore, the ranges of the crossover rate developed quite differently compared

to the mutation rate. Higher crossover rates were often more successful towards the

end of the optimisation process, which runs somewhat contrary to popular opinion

that crossover rates should decrease towards the end of the optimisation process so

as not to disturb solutions with high quality.

The applicability of the adaptive parameter control for configuring Evolutionary

Algorithms in a real world problem was demonstrated in Chapter 8. Two problems

from the Software Engineering domain - the component deployment problem and

the redundancy allocation problem - were introduced. The Evolutionary Algorithm

with adaptive parameter control was applied to optimising these two problems in

a case study from the automotive industry and the results were compared to the

outcome from an EA with prior tuning of its parameter. The adaptive Evolutionary

Algorithm produced results with better quality than the EA with static parameter

settings.

To conclude the adaptive parameter control strategy presented in this thesis,

within its acknowledged limitations, is an effective method for adjusting parameters

of Evolutionary Algorithms. One might argue that although parameter configura-

227

tion seems to be a very important factor of any algorithm, the parameter space is

considerably smaller than the search space of all relevant NP-hard problems and

the number of parameters is relatively small. So contrary to NP-hard optimisation

problems, where ‘solving by hand’ is entirely inappropriate, ‘choosing parameters

by hand’ is possible.

However, the use of parameter values that remain constant over the optimisation

process has been observed in previous studies to achieve suboptimal results. This

was also demonstrated by the case study in Chapter 8. Parameters of an EA can have

different optimal values at different stages of the search. Thus, when an optimisation

algorithm is tuned prior to the optimisation stage, the selected parameters at the end

of this process are not necessarily optimal. This suggests that controlling parameters

dynamically during the optimisation process is likely to lead to better outcomes.

Hence, the proposed method of adapting parameters during the optimisation process

is a more suitable option for the parameter configuration process. Furthermore, by

reducing the number of parameters that need to be set in Evolutionary Algorithms,

the transfer of these algorithms into industrial settings, where practitioners do not

have any knowledge about EA parameters, is facilitated.

228

Chapter 10

Future Work

The adaptive parameter control method introduced in this thesis used feedback from

the optimisation process to derive the effect of parameter values on the performance

of the algorithm. Two performance aspects were considered: the fitness and the

diversity of the solutions. In the future, we intend to investigate other performance

aspects of the optimisation algorithm, such as the ability of the solutions to evolve,

i.e. the ability to produce solutions with better quality, which can be used to measure

the parameter productivity.

We presented an experimental validation of the approach in which multiple pa-

rameters were controlled. The adjustment of parameter values was based on the

information about their effect on the performance of the algorithm. The experi-

ments conducted thus far are not exhaustive. There is ample opportunity for future

work and experimentation. In particular, it would be interesting to more thoroughly

investigate the use of information about possible correlations of the values of dif-

ferent parameters as well as the potential integration of such information into the

adaptive parameter control strategy.

The parameter value selection strategy introduced in Chapter 7 proved successful

in controlling continuous ranges of parameter values. The analysis showed that

high-performing ranges were sometimes absorbed (merged) into very large intervals,

making it difficult for the algorithm to re-establish small, promising areas within the

229

range. There may be a potential for further optimisation of the range adaptation

in this respect. Furthermore, the use of adaptive ranges for tuning continuous EA

parameters is another interesting area that requires investigation.

The application of the proposed method to other stochastic algorithms is a pri-

ority. We are particularly interested in using adaptive parameter control for the

on-the-fly optimisation of a cooling schedule for an implementation of Simulated

Annealing, which is always a challenging problem for practitioners, as this parame-

ter cannot rely on a predefined static value.

Finally, it is unlikely to know if any optimiser, with or without parameter control

is better than another over all problems. Trials with other problems and problem

instances will be needed to explore the capabilities of the adaptive parameter control.

230

Part V

Appendix

231

Characteristics of the Effect

of Parameter Values -

Experiments with Two

Ranges/Values

Linearity

Table 10.1: Linearity test of mutation rate in the range [0.001,0.249].

Mutation rate in the range [0.001,0.249]
Run f p Conclusion Run f p Conclusion

1 52.24 1.12e-10 Do not reject H0 16 5.05 0.02676 Do not reject H0

2 19.13 3.06e-05 Do not reject H0 17 8.14 0.00528 Do not reject H0

3 30.30 3.01e-07 Do not reject H0 18 5.97 0.01631 Do not reject H0

4 15.39 0.000162 Do not reject H0 19 13.36 0.00041 Do not reject H0

5 29.92 3.50e-07 Do not reject H0 20 23.82 4.14e-06 Do not reject H0

6 16.36 0.000104 Do not reject H0 21 14.45 0.000250 Do not reject H0

7 18.58 3.89e-05 Do not reject H0 22 25.26 2.28e-06 Do not reject H0

8 18.73 3.65e-05 Do not reject H0 23 30.67 2.60e-07 Do not reject H0

9 13.08 0.000474 Do not reject H0 24 14.34 0.000263 Do not reject H0

10 27.99 7.52e-07 Do not reject H0 25 35.63 3.90e-08 Do not reject H0

11 24.15 3.62e-06 Do not reject H0 26 13.60 0.000372 Do not reject H0

12 19.15 3.03e-05 Do not reject H0 27 26.63 1.30e-06 Do not reject H0

13 36.84 2.48e-08 Do not reject H0 28 23.87 4.05e-06 Do not reject H0

14 2.479 0.11861 Reject H0 29 27.65 8.64e-07 Do not reject H0

15 5.058 0.026767 Do not reject H0 30 11.08 0.001233 Do not reject H0

233

Table 10.2: Linearity test of mutation rate in the range [0.25,0.49].

Mutation rate in the range [0.25,0.49]
Run f p Conclusion Run f p Conclusion

1 18.2 4.61e-05 Do not reject H0 16 28.06 7.32e-07 Do not reject H0

2 17.42 6.53e-05 Do not reject H0 17 17.61 6.01e-05 Do not reject H0

3 14.90 0.000203 Do not reject H0 18 26.4 1.43e-06 Do not reject H0

4 14.87 0.000206 Do not reject H0 19 15.01 0.000194 Do not reject H0

5 7.98 0.005729 Do not reject H0 20 21.96 9.08e-06 Do not reject H0

6 14.24 0.000276 Do not reject H0 21 42.22 3.51e-09 Do not reject H0

7 23.69 4.36e-06 Do not reject H0 22 20.51 1.68e-05 Do not reject H0

8 16.77 8.72e-05 Do not reject H0 23 19.05 3.17e-05 Do not reject H0

9 16.21 0.000112 Do not reject H0 24 22.96 5.94e-06 Do not reject H0

10 18.58 3.91e-05 Do not reject H0 25 30.01 3.37e-07 Do not reject H0

11 17.78 5.54e-05 Do not reject H0 26 16.38 0.000104 Do not reject H0

12 10.73 0.001456 Do not reject H0 27 9.259 0.003014 Do not reject H0

13 8.80 0.003783 Do not reject H0 28 11.95 0.000812 Do not reject H0

14 27.15 1.05e-06 Do not reject H0 29 12.61 0.000592 Do not reject H0

15 28.06 7.32e-07 Do not reject H0 30 8.448 0.004527 Do not reject H0

Table 10.3: Linearity test of crossover rate in the range [0.6,0.79].

Crossover rate [0.6,0.79]
Run f p Conclusion Run f p Conclusion

1 16.85 8.42e-05 Do not reject H0 16 13.37 0.000415 Do not reject H0

2 53.45 7.57e-11 Do not reject H0 17 13.84 0.000332 Do not reject H0

3 14.99 0.000195 Do not reject H0 18 14.61 0.000233 Do not reject H0

4 5.86 0.017293 Do not reject H0 19 16.19 0.000113 Do not reject H0

5 16.66 9.16e-05 Do not reject H0 20 9.02 0.003384 Do not reject H0

6 16.47 9.99e-05 Do not reject H0 21 12.88 0.000520 Do not reject H0

7 30.82 2.45e-07 Do not reject H0 22 18.41 4.21e-05 Do not reject H0

8 20.37 1.79e-05 Do not reject H0 23 37.66 1.83e-08 Do not reject H0

9 7.64 0.006822 Do not reject H0 24 20.72 1.54e-05 Do not reject H0

10 22.50 7.21e-06 Do not reject H0 25 23.82 4.14e-06 Do not reject H0

11 36.78 2.54e-08 Do not reject H0 26 6.07 0.015432 Do not reject H0

12 9.92 0.002167 Do not reject H0 27 15.74 0.000139 Do not reject H0

13 16.68 9.07e-05 Do not reject H0 28 15.00 0.000194 Do not reject H0

14 13.27 0.000434 Do not reject H0 29 20.72 1.53e-05 Do not reject H0

15 13.37 0.000415 Do not reject H0 30 9.03 0.003364 Do not reject H0

234

Table 10.4: Linearity test of crossover rate in the range [0.8,0.99].

Crossover rate in the range [0.8,0.99]
Run f p Conclusion Run f p Conclusion
1 44.73 1.44e-09 Do not reject H0 16 17.81 5.48e-05 Do not reject H0

2 7.81 0.006243 Do not reject H0 17 11.30 0.001108 Do not reject H0

3 23.24 5.28e-06 Do not reject H0 18 27.62 8.75e-07 Do not reject H0

4 29.97 3.43e-07 Do not reject H0 19 11.66 0.000931 Do not reject H0

5 19.61 2.49e-05 Do not reject H0 20 36.12 3.24e-08 Do not reject H0

6 7.99 0.005708 Do not reject H0 21 38.02 1.60e-08 Do not reject H0

7 14.78 0.000215 Do not reject H0 22 27.99 7.54e-07 Do not reject H0

8 20.61 1.61e-05 Do not reject H0 23 22.82 6.29e-06 Do not reject H0

9 27.38 9.65e-07 Do not reject H0 24 14.40 0.000256 Do not reject H0

10 45.16 1.24e-09 Do not reject H0 25 24.25 3.46e-06 Do not reject H0

11 6.65 0.011409 Do not reject H0 26 31.64 1.78e-07 Do not reject H0

12 16.95 8.05e-05 Do not reject H0 27 13.86 0.000330 Do not reject H0

13 21.72 1.00e-05 Do not reject H0 28 20.25 1.88e-05 Do not reject H0

14 7.54 0.007172 Do not reject H0 29 13.70 0.000356 Do not reject H0

15 17.81 5.48e-05 Do not reject H0 30 12.39 0.000657 Do not reject H0

Table 10.5: Linearity test of population size in the range [20,60].

Population size in the range [20,60]
Run f p Conclusion Run f p Conclusion
1 169.4 5.24e-23 Do not reject H0 16 122.7 6.39e-19 Do not reject H0

2 132.3 7.97e-20 Do not reject H0 17 224.5 5.49e-27 Do not reject H0

3 88.72 2.40e-15 Do not reject H0 18 109.6 1.29e-17 Do not reject H0

4 211.8 3.89e-26 Do not reject H0 19 166.1 9.77e-23 Do not reject H0

5 182.1 5.39e-24 Do not reject H0 20 167.3 7.73e-23 Do not reject H0

6 154.8 8.21e-22 Do not reject H0 21 79.03 3.33e-14 Do not reject H0

7 122.1 7.23e-19 Do not reject H0 22 122.7 6.37e-19 Do not reject H0

8 176.3 1.50e-23 Do not reject H0 23 158.7 3.87e-22 Do not reject H0

9 124.1 4.80e-19 Do not reject H0 24 176.4 1.47e-23 Do not reject H0

10 173.5 2.46e-23 Do not reject H0 25 205.6 1.04e-25 Do not reject H0

11 88.69 2.42e-15 Do not reject H0 26 91.24 1.24e-15 Do not reject H0

12 283.4 1.53e-30 Do not reject H0 27 157.7 4.69e-22 Do not reject H0

13 107.6 2.05e-17 Do not reject H0 28 180.7 6.96e-24 Do not reject H0

14 235.7 1.03e-27 Do not reject H0 29 120.7 1.01e-18 Do not reject H0

15 122.7 6.39e-19 Do not reject H0 30 169.9 4.81e-23 Do not reject H0

235

Table 10.6: Linearity test of population size in the range [61,100].

Population size in the range [61,100]
Run f p Conclusion Run f p Conclusion
1 9.826 0.00227 Do not reject H0 16 3.922 0.05047 Reject H0

2 5.18 0.02504 Do not reject H0 17 0.143 0.70544 Reject H0

3 13.62 0.00036 Do not reject H0 18 4.392 0.03869 Do not reject H0

4 0.767 0.38309 Reject H0 19 0.519 0.47299 Reject H0

5 0.172 0.67886 Reject H0 20 0.213 0.64494 Reject H0

6 0.350 0.55505 Reject H0 21 25.63 1.96e-06 Do not reject H0

7 4.149 0.04436 Do not reject H0 22 5.673 0.019179 Do not reject H0

8 0.966 0.32799 Reject H0 23 0.298 0.58636 Reject H0

9 5.861 0.01733 Do not reject H0 24 0.939 0.33482 Reject H0

10 0.202 0.65351 Reject H0 25 0.094 0.75895 Reject H0

11 7.343 0.00795 Do not reject H0 26 0.966 0.32797 Reject H0

12 2.543 0.11401 Reject H0 27 0.096 0.75659 Reject H0

13 16.66 9.17e-05 Do not reject H0 28 1.699 0.19538 Reject H0

14 0.015 0.9011 Reject H0 29 3.766 0.055179 Reject H0

15 3.922 0.05047 Reject H0 30 0.833 0.36358 Reject H0

Table 10.7: Linearity test of mating pool size in the range [0.1,0.39].

Mating pool size in the range [0.1,0.39]
Run f p Conclusion Run f p Conclusion
1 9.54 0.002613 Do not reject H0 16 9.05 0.003337 Do not reject H0

2 12.83 0.000534 Do not reject H0 17 8.77 0.003841 Do not reject H0

3 19.35 2.78e-05 Do not reject H0 18 15.48 0.000156 Do not reject H0

4 7.33 0.007991 Do not reject H0 19 13.72 0.000351 Do not reject H0

5 21.01 1.35e-05 Do not reject H0 20 11.00 0.001279 Do not reject H0

6 33.75 7.94e-08 Do not reject H0 21 15.56 0.000150 Do not reject H0

7 9.74 0.002371 Do not reject H0 22 12.61 0.000591 Do not reject H0

8 6.75 0.010817 Do not reject H0 23 7.13 0.008868 Do not reject H0

9 4.9 0.029186 Do not reject H0 24 16.87 8.35e-05 Do not reject H0

10 13.22 0.000444 Do not reject H0 25 10.46 0.001664 Do not reject H0

11 5.132 0.025703 Do not reject H0 26 14.73 0.000220 Do not reject H0

12 13.69 0.000357 Do not reject H0 27 30.42 2.87e-07 Do not reject H0

13 11.22 0.001151 Do not reject H0 28 13.77 0.000343 Do not reject H0

14 7.28 0.008208 Do not reject H0 29 26.21 1.54e-06 Do not reject H0

15 9.05 0.003337 Do not reject H0 30 22.72 6.57e-06 Do not reject H0

236

Table 10.8: Linearity test of mating pool size in the range [0.4,0.69].

Mating pool size in the range [0.4,0.69]
Run f p Conclusion Run f p Conclusion
1 39.32 9.97e-09 Do not reject H0 16 37.05 2.29e-08 Do not reject H0

2 21.32 1.19e-05 Do not reject H0 17 40.52 6.45e-09 Do not reject H0

3 33.80 7.79e-08 Do not reject H0 18 10.14 0.001943 Do not reject H0

4 39.34 9.89e-09 Do not reject H0 19 32.36 1.35e-07 Do not reject H0

5 12.56 0.000605 Do not reject H0 20 12.18 0.000726 Do not reject H0

6 18.05 4.94e-05 Do not reject H0 21 30.92 2.36e-07 Do not reject H0

7 12.35 0.000670 Do not reject H0 22 8.96 0.003493 Do not reject H0

8 16.11 0.000117 Do not reject H0 23 24.73 2.84e-06 Do not reject H0

9 37.97 1.63e-08 Do not reject H0 24 39.62 8.92e-09 Do not reject H0

10 23.15 5.49e-06 Do not reject H0 25 29.03 4.98e-07 Do not reject H0

11 18.85 3.46e-05 Do not reject H0 26 28.11 7.17e-07 Do not reject H0

12 36.95 2.38e-08 Do not reject H0 27 23.34 5.07e-06 Do not reject H0

13 21.28 1.21e-05 Do not reject H0 28 20.09 2.02e-05 Do not reject H0

14 13.67 0.000361 Do not reject H0 29 13.62 0.000368 Do not reject H0

15 37.05 2.29e-08 Do not reject H0 30 12.76 0.000551 Do not reject H0

Table 10.9: Linearity test of single-point mutation operator.

Single-point mutation
Run f p Conclusion Run f p Conclusion
1 43.24 2.44e-09 Do not reject H0 16 15.66 0.000144 Do not reject H0

2 33.64 8.28e-08 Do not reject H0 17 12.27 0.000695 Do not reject H0

3 13.00 0.000493 Do not reject H0 18 12.61 0.000592 Do not reject H0

4 16.13 0.000116 Do not reject H0 19 4.37 0.03907 Do not reject H0

5 25.99 1.69e-06 Do not reject H0 20 10.67 0.001506 Do not reject H0

6 35.69 3.81e-08 Do not reject H0 21 24.18 3.57e-06 Do not reject H0

7 24.25 3.46e-06 Do not reject H0 22 21.47 1.11e-05 Do not reject H0

8 19.14 3.04e-05 Do not reject H0 23 19.30 2.84e-05 Do not reject H0

9 11.86 0.000844 Do not reject H0 24 27.19 1.04e-06 Do not reject H0

10 29.55 4.05e-07 Do not reject H0 25 7.06 0.009178 Do not reject H0

11 20.58 1.63e-05 Do not reject H0 26 14.32 0.000266 Do not reject H0

12 22.33 7.74e-06 Do not reject H0 27 29.07 4.90e-07 Do not reject H0

13 15.59 0.000148 Do not reject H0 28 13.09 0.000473 Do not reject H0

14 51.58 1.40e-10 Do not reject H0 29 35.20 4.57e-08 Do not reject H0

15 15.66 0.000144 Do not reject H0 30 15.72 0.000139 Do not reject H0

237

Table 10.10: Linearity test of uniform mutation operator.

Uniform mutation
Run f p Conclusion Run f p Conclusion

17.12 7.46e-05 Do not reject H0 16 14.27 0.000272 Do not reject H0

2 14.70 0.000223 Do not reject H0 17 40.44 6.65e-09 Do not reject H0

3 24.65 2.93e-06 Do not reject H0 18 38.35 1.42e-08 Do not reject H0

4 23.35 5.05e-06 Do not reject H0 19 9.93 0.002157 Do not reject H0

5 17.14 7.40e-05 Do not reject H0 20 41.58 4.41e-09 Do not reject H0

6 4.352 0.039569 Do not reject H0 21 17.72 5.72e-05 Do not reject H0

7 13.31 0.000426 Do not reject H0 22 21.71 1.00e-05 Do not reject H0

8 39.04 1.10e-08 Do not reject H0 23 13.90 0.000324 Do not reject H0

9 20.56 1.64e-05 Do not reject H0 24 28.51 6.12e-07 Do not reject H0

10 11.73 0.000901 Do not reject H0 25 14.14 0.000289 Do not reject H0

11 19.99 2.10e-05 Do not reject H0 26 29.84 3.61e-07 Do not reject H0

12 13.63 0.000366 Do not reject H0 27 12.19 0.000722 Do not reject H0

13 27.66 8.61e-07 Do not reject H0 28 27.06 1.09e-06 Do not reject H0

14 3.294 0.072612 Do not reject H0 29 8.74 0.003898 Do not reject H0

15 14.27 0.000272 Do not reject H0 30 17.69 5.78e-05 Do not reject H0

Table 10.11: Linearity test of single-point crossover operator.

Single-point crossover
Run f p Conclusion Run f p Conclusion
1 26.06 1.64e-06 Do not reject H0 16 21.61 1.05e-05 Do not reject H0

2 43.54 2.19e-09 Do not reject H0 17 24.12 3.66e-06 Do not reject H0

3 18.69 3.72e-05 Do not reject H0 18 27.96 7.62e-07 Do not reject H0

4 23.87 4.05e-06 Do not reject H0 19 9.104 0.003256 Do not reject H0

5 26.85 1.19e-06 Do not reject H0 20 30.48 2.81e-07 Do not reject H0

6 21.54 1.08e-05 Do not reject H0 21 40.05 7.63e-09 Do not reject H0

7 22.94 5.99e-06 Do not reject H0 22 7.640 0.006829 Do not reject H0

8 15.76 0.001376 Do not reject H0 23 21.46 1.12e-05 Do not reject H0

9 25.74 1.87e-06 Do not reject H0 24 11.28 0.001116 Do not reject H0

10 13.84 0.000332 Do not reject H0 25 12.90 0.000516 Do not reject H0

11 10.53 0.001608 Do not reject H0 26 10.67 0.001501 Do not reject H0

12 15.59 0.000148 Do not reject H0 27 29.93 3.49e-07 Do not reject H0

13 34.85 5.23e-08 Do not reject H0 28 17.45 6.43e-05 Do not reject H0

14 15.75 0.000138 Do not reject H0 29 16.59 9.46e-05 Do not reject H0

15 21.61 1.05e-05 Do not reject H0 30 8.281 0.004926 Do not reject H0

238

Table 10.12: Linearity test of uniform crossover operator.

Uniform crossover
Run f p Conclusion Run f p Conclusion
1 31.24 2.09e-07 Do not reject H0 16 13.11 0.000469 Do not reject H0

2 6.034 0.015803 Do not reject H0 17 21.88 9.35e-06 Do not reject H0

3 15.32 0.000168 Do not reject H0 18 23.04 5.74e-06 Do not reject H0

4 17.74 5.66e-05 Do not reject H0 19 12.24 0.000706 Do not reject H0

5 12.59 0.000598 Do not reject H0 20 13.82 0.000336 Do not reject H0

6 18.70 3.71e-05 Do not reject H0 21 14.10 0.000294 Do not reject H0

7 12.60 0.000595 Do not reject H0 22 32.52 1.27e-07 Do not reject H0

8 44.41 1.61e-09 Do not reject H0 23 20.15 1.97e-05 Do not reject H0

9 23.30 5.14e-06 Do not reject H0 24 46.13 8.89e-10 Do not reject H0

10 21.05 1.33e-05 Do not reject H0 25 8.295 0.004892 Do not reject H0

11 34.03 7.13e-08 Do not reject H0 26 20.45 1.72e-05 Do not reject H0

12 25.55 2.03e-06 Do not reject H0 27 13.03 0.000486 Do not reject H0

13 10.55 0.001591 Do not reject H0 28 18.54 3.97e-05 Do not reject H0

14 32.90 1.09e-07 Do not reject H0 29 30.91 2.37e-07 Do not reject H0

15 13.11 0.000469 Do not reject H0 30 27.13 1.06e-06 Do not reject H0

Normality

Table 10.13: Kolmogorov-Smirnov test of mutation rate in the range [0.001,0.249].

Mutation rate in the range [0.001,0.249]
Run d p Conclusion Run d p Conclusion
1 0.0648 0.7748 Do not reject H0 16 0.0546 0.9131 Do not reject H0

2 0.0567 0.8904 Do not reject H0 17 0.0559 0.8998 Do not reject H0

3 0.0738 0.627 Do not reject H0 18 0.0449 0.9834 Do not reject H0

4 0.0738 0.627 Do not reject H0 19 0.0586 0.866 Do not reject H0

5 0.0495 0.9589 Do not reject H0 20 0.0734 0.6338 Do not reject H0

6 0.1036 0.2228 Do not reject H0 21 0.0457 0.9798 Do not reject H0

7 0.0785 0.5482 Do not reject H0 22 0.0433 0.9886 Do not reject H0

8 0.0767 0.5785 Do not reject H0 23 0.0794 0.5347 Do not reject H0

9 0.0525 0.934 Do not reject H0 24 0.0452 0.982 Do not reject H0

10 0.0826 0.4835 Do not reject H0 25 0.0771 0.5718 Do not reject H0

11 0.0703 0.6847 Do not reject H0 26 0.0773 0.5683 Do not reject H0

12 0.0627 0.8082 Do not reject H0 27 0.0557 0.9015 Do not reject H0

13 0.062 0.819 Do not reject H0 28 0.0579 0.8756 Do not reject H0

14 0.1029 0.2288 Do not reject H0 29 0.0812 0.505 Do not reject H0

15 0.0729 0.641 Do not reject H0 30 0.0432 0.655 Do not reject H0

239

Table 10.14: Kolmogorov-Smirnov test of mutation rate in the range [0.25,0.49].

Mutation rate in the range [0.25,0.49]
Run d p Conclusion Run d p Conclusion
1 0.0697 0.6955 Do not reject H0 16 0.0514 0.944 Do not reject H0

2 0.103 0.2281 Do not reject H0 17 0.0556 0.9022 Do not reject H0

3 0.071 0.673 Do not reject H0 18 0.0661 0.7542 Do not reject H0

4 0.083 0.4778 Do not reject H0 19 0.0553 0.906 Do not reject H0

5 0.0889 0.3911 Do not reject H0 20 0.0697 0.6952 Do not reject H0

6 0.0643 0.7838 Do not reject H0 21 0.0652 0.7688 Do not reject H0

7 0.0615 0.8252 Do not reject H0 22 0.066 0.7565 Do not reject H0

8 0.0752 0.6028 Do not reject H0 23 0.0569 0.8877 Do not reject H0

9 0.0636 0.794 Do not reject H0 24 0.0512 0.9458 Do not reject H0

10 0.0676 0.73 Do not reject H0 25 0.0617 0.823 Do not reject H0

11 0.0587 0.8648 Do not reject H0 26 0.0462 0.9775 Do not reject H0

12 0.0638 0.7914 Do not reject H0 27 0.0834 0.4715 Do not reject H0

13 0.0637 0.7927 Do not reject H0 28 0.0678 0.727 Do not reject H0

14 0.0726 0.6472 Do not reject H0 29 0.0558 0.9 Do not reject H0

15 0.0398 0.9959 Do not reject H0 30 0.0748 0.89 Do not reject H0

Table 10.15: Kolmogorov-Smirnov test of crossover rate in the range [0.6,0.79].

Crossover rate in the range [0.6,0.79]
Run d p Conclusion Run d p Conclusion
1 0.0648 0.7748 Do not reject H0 16 0.1034 0.2245 Do not reject H0

2 0.0567 0.8904 Do not reject H0 17 0.0779 0.5587 Do not reject H0

3 0.0563 0.8942 Do not reject H0 18 0.0549 0.9102 Do not reject H0

4 0.0482 0.9673 Do not reject H0 19 0.0855 0.4405 Do not reject H0

5 0.0697 0.6955 Do not reject H0 20 0.0816 0.4996 Do not reject H0

6 0.0778 0.56 Do not reject H0 21 0.0587 0.8647 Do not reject H0

7 0.0782 0.5538 Do not reject H0 22 0.0502 0.9533 Do not reject H0

8 0.0532 0.9281 Do not reject H0 23 0.0439 0.9869 Do not reject H0

9 0.0712 0.6707 Do not reject H0 24 0.0354 0.9993 Do not reject H0

10 0.038 0.9978 Do not reject H0 25 0.0816 0.4997 Do not reject H0

11 0.0905 0.3695 Do not reject H0 26 0.0486 0.9648 Do not reject H0

12 0.0682 0.7212 Do not reject H0 27 0.068 0.7233 Do not reject H0

13 0.0866 0.4239 Do not reject H0 28 0.0532 0.9275 Do not reject H0

14 0.0628 0.8063 Do not reject H0 29 0.0483 0.9664 Do not reject H0

15 0.05 0.955 Do not reject H0 30 0.0433 0.8561 Do not reject H0

240

Table 10.16: Kolmogorov-Smirnov test of crossover rate in the range [0.8,0.99].

Crossover rate in the range [0.8,0.99]
Run d p Conclusion Run d p Conclusion
1 0.0507 0.9499 Do not reject H0 16 0.0791 0.5389 Do not reject H0

2 0.051 0.9474 Do not reject H0 17 0.0484 0.9656 Do not reject H0

3 0.0556 0.9029 Do not reject H0 18 0.1001 0.2569 Do not reject H0

4 0.0818 0.4963 Do not reject H0 19 0.0699 0.6917 Do not reject H0

5 0.0572 0.8841 Do not reject H0 20 0.0529 0.9303 Do not reject H0

6 0.079 0.5408 Do not reject H0 21 0.0564 0.8937 Do not reject H0

7 0.0912 0.3607 Do not reject H0 22 0.0419 0.9921 Do not reject H0

8 0.0577 0.878 Do not reject H0 23 0.0678 0.7263 Do not reject H0

9 0.0431 0.9893 Do not reject H0 24 0.0632 0.801 Do not reject H0

10 0.0782 0.5544 Do not reject H0 25 0.0726 0.6475 Do not reject H0

11 0.0862 0.4293 Do not reject H0 26 0.0545 0.9148 Do not reject H0

12 0.0512 0.9454 Do not reject H0 27 0.0857 0.437 Do not reject H0

13 0.0459 0.9792 Do not reject H0 28 0.079 0.5403 Do not reject H0

14 0.0581 0.8719 Do not reject H0 29 0.0559 0.8996 Do not reject H0

15 0.0537 0.9231 Do not reject H0 30 0.0339 0.8291 Do not reject H0

Table 10.17: Kolmogorov-Smirnov test of population size in the range [20,60].

Population size in the range [20,60]
Run d p Conclusion Run d p Conclusion
1 0.0462 0.9775 Do not reject H0 16 0.0579 0.8737 Do not reject H0

2 0.0699 0.6911 Do not reject H0 17 0.0491 0.9611 Do not reject H0

3 0.0420 0.9918 Do not reject H0 18 0.0550 0.9090 Do not reject H0

4 0.0614 0.8269 Do not reject H0 19 0.0532 0.9273 Do not reject H0

5 0.0663 0.7499 Do not reject H0 20 0.0554 0.9045 Do not reject H0

6 0.0684 0.7167 Do not reject H0 21 0.0516 0.9416 Do not reject H0

7 0.0915 0.3567 Do not reject H0 22 0.0611 0.8302 Do not reject H0

8 0.0617 0.8227 Do not reject H0 23 0.0446 0.9840 Do not reject H0

9 0.0672 0.7365 Do not reject H0 24 0.0619 0.8185 Do not reject H0

10 0.0758 0.5928 Do not reject H0 25 0.0742 0.6186 Do not reject H0

11 0.0376 0.9980 Do not reject H0 26 0.0657 0.7600 Do not reject H0

12 0.0331 0.9997 Do not reject H0 27 0.0461 0.9780 Do not reject H0

13 0.0551 0.9075 Do not reject H0 28 0.0635 0.7948 Do not reject H0

14 0.0445 0.9844 Do not reject H0 29 0.0628 0.8050 Do not reject H0

15 0.0579 0.8737 Do not reject H0 30 0.0470 0.9733 Do not reject H0

241

Table 10.18: Kolmogorov-Smirnov test of population size in the range [61,100].

Population size in the range [61,100]
Run d p Conclusion Run d p Conclusion
1 0.0473 0.9720 Do not reject H0 16 0.0502 0.9530 Do not reject H0

2 0.0563 0.8936 Do not reject H0 17 0.1552 0.0149 Reject H0

3 0.0615 0.8255 Do not reject H0 18 0.0947 0.3161 Do not reject H0

4 0.1182 0.1155 Do not reject H0 19 0.1379 0.0418 Reject H0

5 0.1493 0.0215 Reject H0 20 0.1598 0.0111 Reject H0

6 0.1265 0.0766 Do not reject H0 21 0.0853 0.4415 Do not reject H0

7 0.0419 0.9920 Do not reject H0 22 0.0439 0.9866 Do not reject H0

8 0.0937 0.3283 Do not reject H0 23 0.1339 0.0519 Do not reject H0

9 0.0653 0.7664 Do not reject H0 24 0.1337 0.0527 Do not reject H0

10 0.1457 0.0267 Reject H0 25 0.1619 0.0097 Reject H0

11 0.0863 0.4280 Do not reject H0 26 0.1343 0.0508 Do not reject H0

12 0.0703 0.6853 Do not reject H0 27 0.1589 0.0118 Reject H0

13 0.0595 0.8530 Do not reject H0 28 0.0998 0.2595 Do not reject H0

14 0.1870 0.0016 Reject H0 29 0.0467 0.9751 Do not reject H0

15 0.0502 0.9530 Do not reject H0 30 0.1285 0.0691 Do not reject H0

Table 10.19: Kolmogorov-Smirnov test of mating pool size in the range [0.1,0.39].

Mating pool size in the range [0.1,0.39]
Run d p Conclusion Run d p Conclusion
1 0.0608 0.8350 Do not reject H0 16 0.0487 0.9638 Do not reject H0

2 0.0741 0.6214 Do not reject H0 17 0.0394 0.9963 Do not reject H0

3 0.0832 0.4738 Do not reject H0 18 0.0693 0.7008 Do not reject H0

4 0.0487 0.9636 Do not reject H0 19 0.0548 0.9109 Do not reject H0

5 0.0338 0.9996 Do not reject H0 20 0.0655 0.7630 Do not reject H0

6 0.0538 0.9218 Do not reject H0 21 0.0435 0.9879 Do not reject H0

7 0.0804 0.5178 Do not reject H0 22 0.0601 0.8455 Do not reject H0

8 0.0580 0.8730 Do not reject H0 23 0.0480 0.9680 Do not reject H0

9 0.0581 0.8717 Do not reject H0 24 0.0796 0.5293 Do not reject H0

10 0.0706 0.6803 Do not reject H0 25 0.0728 0.6418 Do not reject H0

11 0.0847 0.4512 Do not reject H0 26 0.0454 0.9812 Do not reject H0

12 0.0971 0.2884 Do not reject H0 27 0.0829 0.4789 Do not reject H0

13 0.0460 0.9782 Do not reject H0 28 0.0966 0.2941 Do not reject H0

14 0.0533 0.9264 Do not reject H0 29 0.0579 0.8749 Do not reject H0

15 0.0487 0.9638 Do not reject H0 30 0.0892 0.3863 Do not reject H0

242

Table 10.20: Kolmogorov-Smirnov test of mating pool size in the range [0.4,0.69].

Mating pool size in the range [0.4,0.69]
Run d p Conclusion Run d p Conclusion
1 0.0572 0.8835 Do not reject H0 16 0.0951 0.3112 Do not reject H0

2 0.0382 0.9975 Do not reject H0 17 0.0513 0.9446 Do not reject H0

3 0.0424 0.9908 Do not reject H0 18 0.0470 0.9736 Do not reject H0

4 0.0506 0.9500 Do not reject H0 19 0.0543 0.9165 Do not reject H0

5 0.0636 0.7928 Do not reject H0 20 0.0639 0.7890 Do not reject H0

6 0.0719 0.6575 Do not reject H0 21 0.0774 0.5658 Do not reject H0

7 0.0860 0.4318 Do not reject H0 22 0.0801 0.5222 Do not reject H0

8 0.0748 0.6098 Do not reject H0 23 0.1102 0.1670 Do not reject H0

9 0.0488 0.9630 Do not reject H0 24 0.0496 0.9575 Do not reject H0

10 0.0387 0.9971 Do not reject H0 25 0.0566 0.8905 Do not reject H0

11 0.0581 0.8717 Do not reject H0 26 0.0569 0.8864 Do not reject H0

12 0.0395 0.9962 Do not reject H0 27 0.0761 0.5878 Do not reject H0

13 0.0830 0.4771 Do not reject H0 28 0.0453 0.9814 Do not reject H0

14 0.0529 0.9306 Do not reject H0 29 0.0665 0.7469 Do not reject H0

15 0.0951 0.3112 Do not reject H0 30 0.0564 0.8926 Do not reject H0

Table 10.21: Kolmogorov-Smirnov test of single-point mutation operator.

Single-point mutation
Run d p Conclusion Run d p Conclusion
1 0.0561 0.8967 Do not reject H0 16 0.0613 0.8280 Do not reject H0

2 0.0560 0.8980 Do not reject H0 17 0.1113 0.1590 Do not reject H0

3 0.0619 0.8188 Do not reject H0 18 0.0698 0.6924 Do not reject H0

4 0.0479 0.9686 Do not reject H0 19 0.0726 0.6465 Do not reject H0

5 0.0406 0.9946 Do not reject H0 20 0.0668 0.7425 Do not reject H0

6 0.0441 0.9860 Do not reject H0 21 0.0589 0.8612 Do not reject H0

7 0.0488 0.9630 Do not reject H0 22 0.0770 0.5726 Do not reject H0

8 0.0501 0.9541 Do not reject H0 23 0.0538 0.9209 Do not reject H0

9 0.0528 0.9316 Do not reject H0 24 0.0759 0.5903 Do not reject H0

10 0.0545 0.9146 Do not reject H0 25 0.0704 0.6830 Do not reject H0

11 0.0548 0.9111 Do not reject H0 26 0.0572 0.8834 Do not reject H0

12 0.0698 0.6931 Do not reject H0 27 0.0708 0.6767 Do not reject H0

13 0.0752 0.6026 Do not reject H0 28 0.0576 0.8782 Do not reject H0

14 0.0680 0.7227 Do not reject H0 29 0.0355 0.9992 Do not reject H0

15 0.0613 0.8280 Do not reject H0 30 0.0839 0.4636 Do not reject H0

243

Table 10.22: Kolmogorov-Smirnov test of uniform mutation operator.

Uniform mutation
Run d p Conclusion Run d p Conclusion
1 0.0857 0.4368 Do not reject H0 16 0.0503 0.9522 Do not reject H0

2 0.0521 0.9375 Do not reject H0 17 0.0707 0.6773 Do not reject H0

3 0.0402 0.9952 Do not reject H0 18 0.0416 0.9927 Do not reject H0

4 0.0689 0.7073 Do not reject H0 19 0.0720 0.6553 Do not reject H0

5 0.0556 0.9026 Do not reject H0 20 0.0496 0.9573 Do not reject H0

6 0.0691 0.7050 Do not reject H0 21 0.0702 0.6857 Do not reject H0

7 0.0721 0.6539 Do not reject H0 22 0.0496 0.9575 Do not reject H0

8 0.0557 0.9014 Do not reject H0 23 0.0596 0.8523 Do not reject H0

9 0.1058 0.2022 Do not reject H0 24 0.0582 0.8705 Do not reject H0

10 0.0545 0.9140 Do not reject H0 25 0.0707 0.6776 Do not reject H0

11 0.0414 0.9931 Do not reject H0 26 0.0608 0.8353 Do not reject H0

12 0.1122 0.1529 Do not reject H0 27 0.0719 0.6580 Do not reject H0

13 0.0628 0.8051 Do not reject H0 28 0.0575 0.8793 Do not reject H0

14 0.0834 0.4713 Do not reject H0 29 0.0466 0.9754 Do not reject H0

15 0.0503 0.9522 Do not reject H0 30 0.0553 0.9055 Do not reject H0

Table 10.23: Kolmogorov-Smirnov test of single-point crossover operator.

Single-point crossover
Run d p Conclusion Run d p Conclusion
1 0.0585 0.8671 Do not reject H0 16 0.0547 0.9122 Do not reject H0

2 0.0703 0.6850 Do not reject H0 17 0.0739 0.6249 Do not reject H0

3 0.0321 0.9998 Do not reject H0 18 0.0467 0.9749 Do not reject H0

4 0.0690 0.7067 Do not reject H0 19 0.1035 0.2230 Do not reject H0

5 0.0720 0.6566 Do not reject H0 20 0.0599 0.8475 Do not reject H0

6 0.0564 0.8928 Do not reject H0 21 0.0565 0.8920 Do not reject H0

7 0.0665 0.7481 Do not reject H0 22 0.0626 0.8081 Do not reject H0

8 0.0823 0.4875 Do not reject H0 23 0.0549 0.9097 Do not reject H0

9 0.0515 0.9427 Do not reject H0 24 0.0619 0.8196 Do not reject H0

10 0.0533 0.9264 Do not reject H0 25 0.0774 0.5655 Do not reject H0

11 0.0572 0.8829 Do not reject H0 26 0.0601 0.8450 Do not reject H0

12 0.0763 0.5844 Do not reject H0 27 0.0446 0.9841 Do not reject H0

13 0.0525 0.9335 Do not reject H0 28 0.0853 0.4427 Do not reject H0

14 0.0778 0.5585 Do not reject H0 29 0.0489 0.9620 Do not reject H0

15 0.0547 0.9122 Do not reject H0 30 0.0507 0.9490 Do not reject H0

244

Table 10.24: Kolmogorov-Smirnov test of uniform crossover operator.

Uniform crossover
Run d p Conclusion Run d p Conclusion
1 0.0794 0.5327 Do not reject H0 16 0.0555 0.9037 Do not reject H0

2 0.0733 0.6340 Do not reject H0 17 0.0674 0.7331 Do not reject H0

3 0.0425 0.9907 Do not reject H0 18 0.0494 0.9592 Do not reject H0

4 0.0462 0.9772 Do not reject H0 19 0.0480 0.9682 Do not reject H0

5 0.0451 0.9820 Do not reject H0 20 0.0553 0.9049 Do not reject H0

6 0.0445 0.9846 Do not reject H0 21 0.0518 0.9403 Do not reject H0

7 0.0673 0.7343 Do not reject H0 22 0.0712 0.6702 Do not reject H0

8 0.0470 0.9737 Do not reject H0 23 0.0385 0.9973 Do not reject H0

9 0.0627 0.8076 Do not reject H0 24 0.0613 0.8274 Do not reject H0

10 0.0663 0.7502 Do not reject H0 25 0.0696 0.6968 Do not reject H0

11 0.0686 0.7123 Do not reject H0 26 0.0337 0.9996 Do not reject H0

12 0.0664 0.7485 Do not reject H0 27 0.0648 0.7750 Do not reject H0

13 0.0432 0.9886 Do not reject H0 28 0.0662 0.7529 Do not reject H0

14 0.0452 0.9817 Do not reject H0 29 0.0649 0.7733 Do not reject H0

15 0.0555 0.9037 Do not reject H0 30 0.0901 0.3750 Do not reject H0

Independence

Table 10.25: Durbin-Watson test of mutation rate in the range [0.001,0.249].

Mutation rate in the range [0.001,0.249]
Run dw p Conclusion Run dw p Conclusion
1 1.922 0.6889 Do not reject H0 16 2.0333 0.4784 Do not reject H0

2 2.0577 0.4287 Do not reject H0 17 2.1064 0.3350 Do not reject H0

3 1.9792 0.582 Do not reject H0 18 2.1513 0.2572 Do not reject H0

4 2.3169 0.0684 Do not reject H0 19 2.3273 0.0617 Do not reject H0

5 2.2703 0.1054 Do not reject H0 20 2.1301 0.2927 Do not reject H0

6 2.2058 0.1773 Do not reject H0 21 2.3106 0.0727 Do not reject H0

7 2.2081 0.1743 Do not reject H0 22 1.964 0.6114 Do not reject H0

8 2.3095 0.0735 Do not reject H0 23 2.4884 0.0088 Reject H0

9 2.0352 0.4746 Do not reject H0 24 2.3713 0.0387 Reject H0

10 2.4107 0.0245 Reject H0 25 2.2373 0.1391 Do not reject H0

11 1.8952 0.7346 Do not reject H0 26 2.4143 0.0235 Reject H0

12 2.0502 0.4437 Do not reject H0 27 1.8163 0.8467 Do not reject H0

13 2.3629 0.0425 Reject H0 28 2.246 0.1295 Do not reject H0

14 2.1995 0.1856 Do not reject H0 29 1.9508 0.6365 Do not reject H0

15 2.4781 0.0102 Reject H0 30 2.1065 0.733 Do not reject H0

245

Table 10.26: Durbin-Watson test of mutation rate [0.25,0.49].

Mutation rate in the [0.25,0.49]
Run dw p Conclusion Run dw p Conclusion

1 1.9795 0.5815 Do not reject H0 16 2.5333 0.0045 Reject H0

2 2.1044 0.3387 Do not reject H0 17 1.9433 0.6504 Do not reject H0

3 2.2896 0.0887 Do not reject H0 18 2.3049 0.0768 Do not reject H0

4 1.9209 0.6908 Do not reject H0 19 2.3288 0.0608 Do not reject H0

5 2.3946 0.0297 Reject H0 20 2.0996 0.3476 Do not reject H0

6 2.0155 0.5104 Do not reject H0 21 2.3023 0.0787 Do not reject H0

7 2.3873 0.0323 Reject H0 22 2.3541 0.0467 Reject H0

8 2.1375 0.2801 Do not reject H0 23 2.4525 0.0145 Reject H0

9 2.6308 0.0008 Reject H0 24 2.261 0.1143 Do not reject H0

10 2.0122 0.517 Do not reject H0 25 2.6994 0.0002 Reject H0

11 2.0645 0.4152 Do not reject H0 26 1.8137 0.8497 Do not reject H0

12 2.2037 0.1800 Do not reject H0 27 2.1607 0.2423 Do not reject H0

13 1.9337 0.6679 Do not reject H0 28 2.1945 0.1924 Do not reject H0

14 2.0646 0.415 Do not reject H0 29 2.4044 0.0264 Reject H0

15 2.3705 0.0391 Reject H0 30 2.1034 0.3901 Do not reject H0

Table 10.27: Durbin-Watson test of crossover rate in the range [0.6,0.79].

Crossover rate in the range [0.6,0.79]
Run dw p Conclusion Run dw p Conclusion
1 2.277 0.0994 Do not reject H0 16 2.2178 0.1621 Do not reject H0

2 1.9583 0.6222 Do not reject H0 17 2.0295 0.4825 Do not reject H0

3 1.8781 0.7619 Do not reject H0 18 2.2184 0.1613 Do not reject H0

4 2.1583 0.2460 Do not reject H0 19 2.079 0.3868 Do not reject H0

5 2.4978 0.0077 Reject H0 20 2.3013 0.0795 Do not reject H0

6 2.2443 0.1314 Do not reject H0 21 2.1898 0.1989 Do not reject H0

7 1.7936 0.872 Do not reject H0 22 2.1002 0.3464 Do not reject H0

8 2.3236 0.0640 Do not reject H0 23 2.4647 0.0123 Reject H0

9 2.0227 0.4961 Do not reject H0 24 2.7302 0.0001 Reject H0

10 2.0111 0.5191 Do not reject H0 25 2.468 0.0117 Reject H0

11 2.0641 0.4160 Do not reject H0 26 2.2937 0.0854 Do not reject H0

12 2.268 0.1076 Do not reject H0 27 2.1461 0.2658 Do not reject H0

13 2.1054 0.3369 Do not reject H0 28 2.135 0.2843 Do not reject H0

14 2.4104 0.0246 Reject H0 29 2.1896 0.1992 Do not reject H0

15 2.2816 0.0953 Do not reject H0 30 2.102 0.421 Do not reject H0

246

Table 10.28: Durbin-Watson test of crossover rate in the range [0.8,0.99].

Crossover rate in the range [0.8,0.99]
Run dw p Conclusion Run dw p Conclusion
1 2.267 0.1085 Do not reject H0 16 2.3276 0.0615 Do not reject H0

2 2.3986 0.0283 Reject H0 17 2.3452 0.0513 Do not reject H0

3 1.9097 0.7104 Do not reject H0 18 2.1845 0.2064 Do not reject H0

4 2.3529 0.0473 Reject H0 19 2.0683 0.4077 Do not reject H0

5 2.4927 0.0083 Reject H0 20 2.2217 0.1572 Do not reject H0

6 2.1352 0.2840 Do not reject H0 21 2.3377 0.0555 Do not reject H0

7 1.9345 0.6665 Do not reject H0 22 2.2445 0.1311 Do not reject H0

8 1.9668 0.606 Do not reject H0 23 2.1119 0.325 Do not reject H0

9 2.1071 0.3338 Do not reject H0 24 2.3175 0.0680 Do not reject H0

10 2.0365 0.4719 Do not reject H0 25 2.009 0.5234 Do not reject H0

11 2.38 0.0351 Reject H0 26 2.1191 0.312 Do not reject H0

12 2.131 0.2911 Do not reject H0 27 2.0603 0.4235 Do not reject H0

13 2.2093 0.1727 Do not reject H0 28 2.4104 0.0246 Reject H0

14 2.2729 0.1030 Do not reject H0 29 2.2218 0.1571 Do not reject H0

15 2.2953 0.0841 Do not reject H0 30 2.130 0.3497 Do not reject H0

Table 10.29: Durbin-Watson test of population size in the range [20,60].

Population size in the range [20,60]
Run dw p Conclusion Run dw p Conclusion
1 1.8205 0.8416 Do not reject H0 16 2.2726 0.1033 Do not reject H0

2 2.0895 0.3666 Do not reject H0 17 1.6196 0.9782 Do not reject H0

3 2.0029 0.5355 Do not reject H0 18 1.6083 0.9811 Do not reject H0

4 1.8848 0.7514 Do not reject H0 19 1.5926 0.9845 Do not reject H0

5 2.0361 0.4726 Do not reject H0 20 1.9947 0.5516 Do not reject H0

6 1.5324 0.9932 Do not reject H0 21 1.5265 0.9938 Do not reject H0

7 2.2983 0.0817 Do not reject H0 22 1.9699 0.6000 Do not reject H0

8 2.1322 0.2890 Do not reject H0 23 1.9294 0.6756 Do not reject H0

9 1.8792 0.7602 Do not reject H0 24 1.8986 0.7290 Do not reject H0

10 1.4955 0.9961 Do not reject H0 25 2.0559 0.4323 Do not reject H0

11 1.9466 0.6442 Do not reject H0 26 2.3309 0.0595 Do not reject H0

12 1.9106 0.7088 Do not reject H0 27 2.0736 0.3971 Do not reject H0

13 1.4059 0.9991 Do not reject H0 28 1.882 0.7558 Do not reject H0

14 1.7981 0.8673 Do not reject H0 29 1.6811 0.95595 Do not reject H0

15 2.2726 0.1033 Do not reject H0 30 1.0905 1 Do not reject H0

247

Table 10.30: Durbin-Watson test of population size in the range [61,100].

Population size in the range [61,100]
Run dw p Conclusion Run dw p Conclusion
1 1.7918 0.8739 Do not reject H0 16 2.2033 0.1805 Do not reject H0

2 1.8339 0.8248 Do not reject H0 17 1.4813 0.9969 Do not reject H0

3 1.8063 0.8582 Do not reject H0 18 2.0181 0.5052 Do not reject H0

4 1.8102 0.8537 Do not reject H0 19 2.1889 0.2002 Do not reject H0

5 1.8266 0.8341 Do not reject H0 20 1.7614 0.9029 Do not reject H0

6 1.9293 0.6759 Do not reject H0 21 1.9566 0.6255 Do not reject H0

7 2.0971 0.3522 Do not reject H0 22 1.9768 0.5867 Do not reject H0

8 2.2004 0.1844 Do not reject H0 23 1.9811 0.5784 Do not reject H0

9 1.9052 0.7179 Do not reject H0 24 1.9832 0.5742 Do not reject H0

10 1.5417 0.9922 Do not reject H0 25 1.7468 0.9150 Do not reject H0

11 2.0459 0.4525 Do not reject H0 26 1.7189 0.9348 Do not reject H0

12 1.7391 0.9209 Do not reject H0 27 1.8708 0.7731 Do not reject H0

13 1.6364 0.9734 Do not reject H0 28 1.7180 0.9354 Do not reject H0

14 1.7637 0.9009 Do not reject H0 29 2.0201 0.5012 Do not reject H0

15 2.2033 0.1805 Do not reject H0 30 1.1891 1.0 Do not reject H0

Table 10.31: Durbin-Watson test of mating pool size in the range [0.1,0.39].

Mating pool size in the range [0.1,0.39]
Run dw p Conclusion Run dw p Conclusion
1 2.3354 0.0568 Do not reject H0 16 2.0756 0.3933 Do not reject H0

2 1.8966 0.7323 Do not reject H0 17 2.0332 0.4786 Do not reject H0

3 1.7529 0.9100 Do not reject H0 18 1.9406 0.6554 Do not reject H0

4 2.1685 0.2301 Do not reject H0 19 2.0223 0.4967 Do not reject H0

5 2.3997 0.0280 Reject H0 20 2.3446 0.0517 Do not reject H0

6 2.1311 0.2910 Do not reject H0 21 2.1886 0.2006 Do not reject H0

7 2.1907 0.1977 Do not reject H0 22 2.3831 0.0339 Reject H0

8 2.3286 0.0609 Do not reject H0 23 2.4491 0.0151 Reject H0

9 2.1796 0.2135 Do not reject H0 24 2.0708 0.4026 Do not reject H0

10 2.1157 0.3180 Do not reject H0 25 2.0454 0.4534 Do not reject H0

11 2.3609 0.0434 Reject H0 26 2.058 0.4281 Do not reject H0

12 2.1768 0.2176 Do not reject H0 27 1.7931 0.8725 Do not reject H0

13 2.4537 0.0142 Reject H0 28 2.0393 0.4661 Do not reject H0

14 2.5887 0.0018 Reject H0 29 2.7384 0.0001 Reject H0

15 2.0756 0.3933 Do not reject H0 30 1.8624 0.7854 Do not reject H0

248

Table 10.32: Durbin-Watson test of mating pool size in the range [0.4,0.69].

Mating pool size in the range [0.4,0.69]
Run dw p Conclusion Run dw p Conclusion
1 2.3969 0.0289 Reject H0 16 2.14 0.2758 Do not reject H0

2 2.0756 0.3933 Do not reject H0 17 2.0626 0.4189 Do not reject H0

3 2.0603 0.4235 Do not reject H0 18 2.0240 0.4934 Do not reject H0

4 2.1835 0.2079 Do not reject H0 19 2.242 0.1338 Do not reject H0

5 2.4221 0.0213 Reject H0 20 2.2978 0.0821 Do not reject H0

6 2.1411 0.2740 Do not reject H0 21 2.1646 0.2361 Do not reject H0

7 2.1877 0.2019 Do not reject H0 22 2.2617 0.1135 Do not reject H0

8 2.0864 0.3725 Do not reject H0 23 2.4625 0.0126 Reject H0

9 2.3240 0.0637 Do not reject H0 24 2.2054 0.1777 Do not reject H0

10 2.5440 0.0038 Reject H0 25 2.2341 0.1427 Do not reject H0

11 2.3598 0.0439 Reject H0 26 2.2324 0.1446 Do not reject H0

12 2.3956 0.0293 Reject H0 27 2.1007 0.3455 Do not reject H0

13 2.2264 0.1516 Do not reject H0 28 2.0423 0.46 Do not reject H0

14 2.3083 0.0743 Do not reject H0 29 2.3077 0.0748 Do not reject H0

15 2.14 0.2758 Do not reject H0 30 1.9046 0.7189 Do not reject H0

Table 10.33: Durbin-Watson test of single-point mutation operator.

Single-point mutation operator
Run dw p Conclusion Run dw p Conclusion
1 2.5002 0.0075 Reject H0 16 2.3574 0.0451 Reject H0

2 1.9763 0.5877 Do not reject H0 17 2.1747 0.2208 Do not reject H0

3 2.4367 0.0177 Reject H0 18 2.4931 0.0083 Reject H0

4 2.297 0.0827 Do not reject H0 19 1.9087 0.7119 Do not reject H0

5 2.3848 0.0333 Reject H0 20 2.1698 0.2281 Do not reject H0

6 2.0710 0.4023 Do not reject H0 21 2.4009 0.0276 Reject H0

7 2.2762 0.1001 Do not reject H0 22 2.1679 0.2310 Do not reject H0

8 2.3601 0.0438 Reject H0 23 2.0859 0.3734 Do not reject H0

9 2.2815 0.0954 Do not reject H0 24 2.1141 0.3209 Do not reject H0

10 2.2517 0.1236 Do not reject H0 25 2.1308 0.2915 Do not reject H0

11 1.9748 0.5906 Do not reject H0 26 2.2104 0.1712 Do not reject H0

12 2.1604 0.2427 Do not reject H0 27 2.3365 0.0562 Do not reject H0

13 2.0945 0.3571 Do not reject H0 28 1.7105 0.9401 Do not reject H0

14 1.8462 0.8083 Do not reject H0 29 2.0029 0.5354 Do not reject H0

15 2.3574 0.0451 Reject H0 30 2.3922 0.0305 Reject H0

249

Table 10.34: Durbin-Watson test of uniform mutation operator.

Uniform mutation operator
Run dw p Conclusion Run dw p Conclusion
1 2.1562 0.2493 Do not reject H0 16 2.3508 0.0484 Reject H0

2 2.2342 0.1425 Do not reject H0 17 2.3039 0.0775 Do not reject H0

3 2.0863 0.3726 Do not reject H0 18 2.2308 0.1464 Do not reject H0

4 2.0481 0.4480 Do not reject H0 19 2.1309 0.2912 Do not reject H0

5 2.2172 0.1627 Do not reject H0 20 2.2138 0.1669 Do not reject H0

6 2.3317 0.0590 Do not reject H0 21 2.3532 0.0472 Reject H0

7 2.3434 0.0523 Do not reject H0 22 2.2019 0.1823 Do not reject H0

8 2.1526 0.2551 Do not reject H0 23 2.0687 0.4068 Do not reject H0

9 2.3865 0.0326 Reject H0 24 2.2968 0.0829 Do not reject H0

10 2.37 0.0393 Reject H0 25 1.9931 0.5547 Do not reject H0

11 1.9043 0.7195 Do not reject H0 26 2.3034 0.0779 Do not reject H0

12 2.1993 0.1858 Do not reject H0 27 2.3407 0.0538 Do not reject H0

13 2.3611 0.0433 Reject H0 28 1.9797 0.5811 Do not reject H0

14 2.2081 0.1742 Do not reject H0 29 2.3667 0.0407 Reject H0

15 2.3508 0.0484 Reject H0 30 2.0268 0.4878 Do not reject H0

Table 10.35: Durbin-Watson test of single-point crossover operator.

Single-point crossover operator
Run dw p Conclusion Run dw p Conclusion
1 2.0695 0.4052 Do not reject H0 16 2.4373 0.0176 Reject H0

2 1.9365 0.6629 Do not reject H0 17 2.3813 0.0346 Reject H0

3 2.2308 0.1464 Do not reject H0 18 2.3369 0.0559 Do not reject H0

4 2.4873 0.0090 Reject H0 19 2.0675 0.4092 Do not reject H0

5 1.9645 0.6104 Do not reject H0 20 2.2374 0.1389 Do not reject H0

6 2.3362 0.0563 Do not reject H0 21 2.6411 0.0007 Reject H0

7 2.2094 0.1725 Do not reject H0 22 1.9928 0.5554 Do not reject H0

8 2.1009 0.3450 Do not reject H0 23 2.0201 0.5012 Do not reject H0

9 1.9808 0.5788 Do not reject H0 24 2.352 0.0478 Reject H0

10 2.2299 0.1474 Do not reject H0 25 1.9761 0.5881 Do not reject H0

11 2.3453 0.0513 Do not reject H0 26 2.0497 0.4447 Do not reject H0

12 2.2975 0.0823 Do not reject H0 27 2.1904 0.1980 Do not reject H0

13 2.1017 0.3436 Do not reject H0 28 2.3135 0.0707 Do not reject H0

14 2.4381 0.0174 Reject H0 29 1.7589 0.9051 Do not reject H0

15 2.4373 0.0176 Reject H0 30 2.1057 0.3362 Do not reject H0

250

Table 10.36: Durbin-Watson test of uniform crossover operator.

Uniform crossover operator
Run dw p Conclusion Run dw p Conclusion
1 2.2804 0.0963 Do not reject H0 16 2.4239 0.0208 Reject H0

2 2.1893 0.1996 Do not reject H0 17 2.1741 0.2216 Do not reject H0

3 2.356 0.0458 Reject H0 18 2.3265 0.0622 Do not reject H0

4 2.2508 0.1245 Do not reject H0 19 2.2098 0.1720 Do not reject H0

5 1.8401 0.8167 Do not reject H0 20 2.4727 0.0110 Reject H0

6 1.8895 0.7438 Do not reject H0 21 2.1139 0.3212 Do not reject H0

7 1.9936 0.5538 Do not reject H0 22 2.1442 0.2687 Do not reject H0

8 2.3103 0.0729 Do not reject H0 23 2.0560 0.4320 Do not reject H0

9 2.2535 0.1217 Do not reject H0 24 2.3911 0.0309 Reject H0

10 2.4607 0.0129 Reject H0 25 2.1389 0.2776 Do not reject H0

11 2.2955 0.0839 Do not reject H0 26 2.1231 0.3049 Do not reject H0

12 2.1472 0.2639 Do not reject H0 27 2.1914 0.1967 Do not reject H0

13 2.5735 0.0024 Reject H0 28 2.2458 0.1297 Do not reject H0

14 1.9969 0.5473 Do not reject H0 29 2.0441 0.4562 Do not reject H0

15 2.4239 0.0208 Reject H0 30 2.1410 0.2741 Do not reject H0

Homoscedasticity

Table 10.37: Breusch-Pagan test of mutation rate in the range [0.001,0.249].

Mutation rate in the range [0.001,0.249]
Run bp p Conclusion Run bp p Conclusion

1 0.7161 0.3974 Do not reject H0 16 0.2784 0.5977 Do not reject H0

2 8e-04 0.9777 Do not reject H0 17 0.0644 0.7997 Do not reject H0

3 0.003 0.9565 Do not reject H0 18 0.1186 0.7305 Do not reject H0

4 0.5097 0.4753 Do not reject H0 19 0.2949 0.5871 Do not reject H0

5 0.002 0.9646 Do not reject H0 20 2.1412 0.1434 Do not reject H0

6 0.5466 0.4597 Do not reject H0 21 0.4476 0.5035 Do not reject H0

7 0.9482 0.3302 Do not reject H0 22 3.1018 0.0782 Do not reject H0

8 0.705 0.4011 Do not reject H0 23 3.1795 0.0745 Do not reject H0

9 0.1291 0.7194 Do not reject H0 24 1.5713 0.21 Do not reject H0

10 0.0092 0.9236 Do not reject H0 25 1.8452 0.1743 Do not reject H0

11 9.2751 0.0023 Reject H0 26 0.601 0.4382 Do not reject H0

12 4.5713 0.0325 Reject H0 27 0.0578 0.81 Do not reject H0

13 0.2524 0.6154 Do not reject H0 28 1.9137 0.1666 Do not reject H0

14 6.3624 0.0116 Reject H0 29 1.558 0.2120 Do not reject H0

15 1.2282 0.2678 Do not reject H0 30 1.237 0.54 Do not reject H0

251

Table 10.38: Breusch-Pagan test of mutation rate in the range [0.25,0.49].

Mutation rate in the range [0.25,0.49]
Run bp p Conclusion Run bp p Conclusion

1 0.2945 0.5873 Do not reject H0 16 3.0084 0.0828 Do not reject H0

2 0.028 0.8671 Do not reject H0 17 5.6779 0.0171 Reject H0

3 2.335 0.1265 Do not reject H0 18 2.8278 0.0926 Do not reject H0

4 0.2021 0.653 Do not reject H0 19 0.19 0.663 Do not reject H0

5 0.6695 0.4132 Do not reject H0 20 0.3189 0.5723 Do not reject H0

6 0.0384 0.8446 Do not reject H0 21 0.3926 0.531 Do not reject H0

7 0.2158 0.6423 Do not reject H0 22 0.8963 0.3438 Do not reject H0

8 0.5312 0.4661 Do not reject H0 23 0.203 0.6523 Do not reject H0

9 0.2339 0.6287 Do not reject H0 24 0.0416 0.8384 Do not reject H0

10 0.0303 0.8619 Do not reject H0 25 0.2973 0.5856 Do not reject H0

11 0.1394 0.7089 Do not reject H0 26 0.4412 0.5066 Do not reject H0

12 0.4068 0.5236 Do not reject H0 27 1.37 0.2418 Do not reject H0

13 1.191 0.2751 Do not reject H0 28 0.3282 0.5667 Do not reject H0

14 0.2365 0.6268 Do not reject H0 29 1.8697 0.1715 Do not reject H0

15 0.1505 0.6981 Do not reject H0 30 1.141 0.624 Do not reject H0

Table 10.39: Breusch-Pagan test of crossover rate in the range [0.6,0.79].

Crossover rate in the range [0.6,0.79]
Run bp p Conclusion Run bp p Conclusion

1 0.1456 0.7028 Do not reject H0 16 1.0213 0.3122 Do not reject H0

2 0.0015 0.9687 Do not reject H0 17 0.697 0.4038 Do not reject H0

3 5.4211 0.0199 Reject H0 18 0.4682 0.4938 Do not reject H0

4 4.4225 0.0354 Reject H0 19 1.637 0.2007 Do not reject H0

5 0.3194 0.572 Do not reject H0 20 1.0663 0.3018 Do not reject H0

6 5.4369 0.0197 Reject H0 21 0.2984 0.5849 Do not reject H0

7 0.0128 0.91 Do not reject H0 22 1.1708 0.2792 Do not reject H0

8 0.3236 0.5695 Do not reject H0 23 0.3138 0.5753 Do not reject H0

9 0.8673 0.3517 Do not reject H0 24 0.0273 0.8688 Do not reject H0

10 0.3258 0.5682 Do not reject H0 25 0.0639 0.8004 Do not reject H0

11 0.0029 0.9569 Do not reject H0 26 0.0471 0.8282 Do not reject H0

12 0.5076 0.4762 Do not reject H0 27 0.4202 0.5168 Do not reject H0

13 0.668 0.4138 Do not reject H0 28 0.0233 0.8786 Do not reject H0

14 0.3872 0.5338 Do not reject H0 29 1.3116 0.2521 Do not reject H0

15 0.0614 0.8043 Do not reject H0 30 2.345 0.356 Do not reject H0

252

Table 10.40: Breusch-Pagan test of crossover rate in the range [0.8,0.99].

Crossover rate in the range [0.8,0.99]
Run bp p Conclusion Run bp p Conclusion
1 0.0542 0.8159 Do not reject H0 16 3.2637 0.07083 Do not reject H0

2 0.3268 0.5675 Do not reject H0 17 0.0361 0.8493 Do not reject H0

3 0.4154 0.5192 Do not reject H0 18 0.2242 0.6359 Do not reject H0

4 0.3426 0.5583 Do not reject H0 19 0.0233 0.8788 Do not reject H0

5 0.0191 0.8901 Do not reject H0 20 0.0278 0.8676 Do not reject H0

6 2.3709 0.1236 Do not reject H0 21 0.0122 0.912 Do not reject H0

7 2.1015 0.1472 Do not reject H0 22 0.4973 0.4807 Do not reject H0

8 1.7854 0.1815 Do not reject H0 23 0.6478 0.4209 Do not reject H0

9 0.9477 0.3303 Do not reject H0 24 0.0554 0.814 Do not reject H0

10 0.185 0.6671 Do not reject H0 25 1.2135 0.2706 Do not reject H0

11 1.4093 0.2352 Do not reject H0 26 1.1878 0.2758 Do not reject H0

12 3.9162 0.0478 Reject H0 27 1.0879 0.2969 Do not reject H0

13 0.8315 0.3618 Do not reject H0 28 1.0018 0.3169 Do not reject H0

14 3.1222 0.0772 Do not reject H0 29 0.8453 0.3579 Do not reject H0

15 0.0419 0.8377 Do not reject H0 30 0.481 0.4325 Do not reject H0

Table 10.41: Breusch-Pagan test of population size in the range [20,60].

Population size in the range [20,60]
Run bp p Conclusion Run bp p Conclusion
1 13.090 0.0002 Reject H0 16 10.356 0.0012 Reject H0

2 0.0989 0.7530 Do not reject H0 17 2.9409 0.0863 Do not reject H0

3 3.4772 0.0622 Do not reject H0 18 3.6097 0.0574 Do not reject H0

4 2.3964 0.1216 Do not reject H0 19 2.5269 0.1119 Do not reject H0

5 6.5948 0.0102 Reject H0 20 8.5337 0.0034 Reject H0

6 1.6781 0.1951 Do not reject H0 21 5.3809 0.0203 Reject H0

7 0.3247 0.5687 Do not reject H0 22 1.8074 0.1788 Do not reject H0

8 3.2901 0.0696 Do not reject H0 23 2.6732 0.1020 Do not reject H0

9 8.8222 0.0029 Reject H0 24 7.8227 0.0051 Reject H0

10 3.0785 0.0793 Do not reject H0 25 7.6996 0.0055 Reject H0

11 0.4228 0.5155 Do not reject H0 26 0.33747 0.5612 Do not reject H0

12 4.9534 0.0260 Reject H0 27 1.4928 0.2217 Do not reject H0

13 4.8224 0.0280 Reject H0 28 9.2236 0.0023 Reject H0

14 2.1302 0.1444 Do not reject H0 29 4.061 0.0438 Reject H0

15 10.356 0.0012 Reject H0 30 12.649 0.0003 Reject H0

253

Table 10.42: Breusch-Pagan test of population size in the range [61,100].

Population size in the range [61,100]
Run bp p Conclusion Run bp p Conclusion
1 9.612 0.0019 Reject H0 16 1.2278 0.2678 Do not reject H0

2 6.8403 0.0089 Reject H0 17 0.7396 0.3897 Do not reject H0

3 0.5887 0.4429 Do not reject H0 18 2.5679 0.1090 Do not reject H0

4 0.0377 0.8459 Do not reject H0 19 0.0935 0.7597 Do not reject H0

5 8.165 0.0042 Reject H0 20 2.5829 0.1080 Do not reject H0

6 1.7546 0.1853 Do not reject H0 21 0.2781 0.5979 Do not reject H0

7 0.1423 0.7059 Do not reject H0 22 0.6002 0.4384 Do not reject H0

8 6.4462 0.0111 Reject H0 23 0.2698 0.6034 Do not reject H0

9 0.0005 0.9807 Do not reject H0 24 0.4891 0.4843 Do not reject H0

10 5.3302 0.0209 Reject H0 25 0.406 0.0012 Reject H0

11 0.0118 0.9131 Do not reject H0 26 3.7338 0.0533 Do not reject H0

12 1.6253 0.2023 Do not reject H0 27 0.2354 0.6275 Do not reject H0

13 2.0733 0.1499 Do not reject H0 28 5.3274 0.0209 Reject H0

14 0.1458 0.7025 Do not reject H0 29 0.1261 0.7224 Do not reject H0

15 1.2278 0.2678 Do not reject H0 30 2.2908 0.1301 Do not reject H0

Table 10.43: Breusch-Pagan test of mating pool size in the range [0.1,0.39].

Mating pool size in the range [0.1,0.39]
Run bp p Conclusion Run bp p Conclusion
1 0.0064 0.936 Do not reject H0 16 1.4181 0.2337 Do not reject H0

2 0.0189 0.8905 Do not reject H0 17 2.4437 0.1180 Do not reject H0

3 0.2558 0.6129 Do not reject H0 18 0.0358 0.8498 Do not reject H0

4 0.1194 0.7296 Do not reject H0 19 0.0033 0.9536 Do not reject H0

5 1.5124 0.2187 Do not reject H0 20 4.0217 0.0449 Reject H0

6 1.1070 0.2927 Do not reject H0 21 1.8383 0.1751 Do not reject H0

7 1.8092 0.1786 Do not reject H0 22 1.8862 0.1696 Do not reject H0

8 1.7134 0.1905 Do not reject H0 23 1.3204 0.2505 Do not reject H0

9 0.1897 0.6631 Do not reject H0 24 0.4817 0.4876 Do not reject H0

10 0.0019 0.9649 Do not reject H0 25 0.0451 0.8317 Do not reject H0

11 0.4543 0.5002 Do not reject H0 26 0.4532 0.5007 Do not reject H0

12 0.0459 0.8302 Do not reject H0 27 1.2058 0.2721 Do not reject H0

13 0.2735 0.6009 Do not reject H0 28 0.8445 0.3581 Do not reject H0

14 0.4849 0.4862 Do not reject H0 29 6.9999 0.0081 Reject H0

15 1.4181 0.2337 Do not reject H0 30 1.4090 0.2352 Do not reject H0

254

Table 10.44: Breusch-Pagan test of mating pool size in the range [0.4,0.69].

Mating pool size in the range [0.4,0.69]
Run bp p Conclusion Run bp p Conclusion
1 0.0065 0.9356 Do not reject H0 16 0.6197 0.4311 Do not reject H0

2 0.0094 0.9227 Do not reject H0 17 0.4426 0.5058 Do not reject H0

3 0.3282 0.5666 Do not reject H0 18 0.0017 0.9663 Do not reject H0

4 0.0943 0.7587 Do not reject H0 19 4.4251 0.0354 Reject H0

5 0.0867 0.7684 Do not reject H0 20 2.9845 0.0840 Do not reject H0

6 2.7568 0.0968 Do not reject H0 21 0.8207 0.3649 Do not reject H0

7 1.5263 0.2166 Do not reject H0 22 0.2832 0.5945 Do not reject H0

8 0.3320 0.5644 Do not reject H0 23 4.7721 0.0289 Reject H0

9 0.0067 0.9344 Do not reject H0 24 0.9976 0.3178 Do not reject H0

10 1.7472 0.1862 Do not reject H0 25 1.6783 0.1951 Do not reject H0

11 6.5343 0.0105 Reject H0 26 3.5149 0.0608 Do not reject H0

12 0.8482 0.3570 Do not reject H0 27 0.0045 0.9461 Do not reject H0

13 5.426 0.0198 Reject H0 28 0.0079 0.9289 Do not reject H0

14 0.0208 0.8851 Do not reject H0 29 0.3733 0.5411 Do not reject H0

15 0.6197 0.4311 Do not reject H0 30 0.5890 0.4427 Do not reject H0

Table 10.45: Breusch-Pagan test of single-point mutation operator.

Single-point mutation operator
Run bp p Conclusion Run bp p Conclusion
1 0.5117 0.4743 Do not reject H0 16 0.7563 0.3844 Do not reject H0

2 0.7591 0.3836 Do not reject H0 17 1.9970 0.1576 Do not reject H0

3 2.2215 0.1361 Do not reject H0 18 0.843 0.3585 Do not reject H0

4 0.1096 0.7406 Do not reject H0 19 1.666 0.1966 Do not reject H0

5 0.0478 0.8268 Do not reject H0 20 0.7589 0.3836 Do not reject H0

6 0.0870 0.7679 Do not reject H0 21 7.4996 0.0061 Reject H0

7 0.2191 0.6396 Do not reject H0 22 4.7802 0.0287 Reject H0

8 0.8504 0.3564 Do not reject H0 23 0.0541 0.8159 Do not reject H0

9 1.2928 0.2555 Do not reject H0 24 0.2934 0.5879 Do not reject H0

10 0.0104 0.9187 Do not reject H0 25 0.4866 0.4854 Do not reject H0

11 0.2719 0.6020 Do not reject H0 26 1.9203 0.1658 Do not reject H0

12 0.0048 0.9443 Do not reject H0 27 0.5266 0.4680 Do not reject H0

13 0.0590 0.8080 Do not reject H0 28 1.0866 0.2972 Do not reject H0

14 1.5915 0.2071 Do not reject H0 29 0.0776 0.7805 Do not reject H0

15 0.7563 0.3844 Do not reject H0 30 2.8308 0.0924 Do not reject H0

255

Table 10.46: Breusch-Pagan test of uniform mutation operator.

Uniform mutation operator
Run bp p Conclusion Run bp p Conclusion
1 2.3662 0.1239 Do not reject H0 16 0.5939 0.4408 Do not reject H0

2 0.0001 0.9889 Do not reject H0 17 0.0944 0.7586 Do not reject H0

3 0.901 0.3425 Do not reject H0 18 0.0272 0.8689 Do not reject H0

4 0.4615 0.4969 Do not reject H0 19 0.3765 0.5394 Do not reject H0

5 0.0006 0.9799 Do not reject H0 20 4.1127 0.0425 Reject H0

6 0.4388 0.5077 Do not reject H0 21 1.7360 0.1876 Do not reject H0

7 0.0057 0.9393 Do not reject H0 22 0.0833 0.7728 Do not reject H0

8 2.793 0.0946 Do not reject H0 23 0.2069 0.6491 Do not reject H0

9 0.0448 0.8323 Do not reject H0 24 0.3275 0.5671 Do not reject H0

10 1.3098 0.2524 Do not reject H0 25 1.3987 0.2369 Do not reject H0

11 1.1042 0.2933 Do not reject H0 26 0.3859 0.5344 Do not reject H0

12 0.2095 0.6471 Do not reject H0 27 1.4508 0.2284 Do not reject H0

13 0.1438 0.7045 Do not reject H0 28 4.5723 0.0324 Reject H0

14 0.7593 0.3835 Do not reject H0 29 2.0851 0.1487 Do not reject H0

15 0.5939 0.4408 Do not reject H0 30 1.8479 0.1740 Do not reject H0

Table 10.47: Breusch-Pagan test of single-point crossover operator.

Single-point crossover operator
Run bp p Conclusion Run bp p Conclusion
1 1.7009 0.19217 Do not reject H0 16 0.0476 0.8271 Do not reject H0

2 1.1979 0.27373 Do not reject H0 17 0.0507 0.8218 Do not reject H0

3 0.1627 0.68665 Do not reject H0 18 0.7155 0.3976 Do not reject H0

4 1.3330 0.24827 Do not reject H0 19 0.1886 0.6640 Do not reject H0

5 0.2524 0.61539 Do not reject H0 20 3.8588 0.0494 Reject H0

6 1.6388 0.20049 Do not reject H0 21 0.0245 0.8754 Do not reject H0

7 0.1778 0.67326 Do not reject H0 22 0.3246 0.5688 Do not reject H0

8 0.0384 0.84444 Do not reject H0 23 0.7035 0.4015 Do not reject H0

9 0.0640 0.80021 Do not reject H0 24 0.5040 0.4777 Do not reject H0

10 0.3937 0.53031 Do not reject H0 25 1.1501 0.2835 Do not reject H0

11 4.7457 0.02937 Reject H0 26 1.6573 0.1979 Do not reject H0

12 0.6882 0.40676 Do not reject H0 27 0.0029 0.9567 Do not reject H0

13 0.0140 0.90573 Do not reject H0 28 3.8658 0.0492 Reject H0

14 0.2066 0.64939 Do not reject H0 29 0.8842 0.3470 Do not reject H0

15 0.0476 0.82717 Do not reject H0 30 6.152 0.0131 Reject H0

256

Table 10.48: Breusch-Pagan test of uniform crossover operator.

Uniform crossover operator
Run bp p Conclusion Run bp p Conclusion
1 0.0553 0.81406 Do not reject H0 16 0.1785 0.67264 Do not reject H0

2 0.5092 0.47546 Do not reject H0 17 1.7755 0.1827 Do not reject H0

3 0.0786 0.77911 Do not reject H0 18 1.3373 0.24751 Do not reject H0

4 6.8922 0.00865 Reject H0 19 3.4326 0.06392 Do not reject H0

5 0.0366 0.84827 Do not reject H0 20 0.7026 0.40191 Do not reject H0

6 0.4571 0.49897 Do not reject H0 21 0.4510 0.50183 Do not reject H0

7 1.2284 0.26773 Do not reject H0 22 0.5453 0.46022 Do not reject H0

8 0.3459 0.55642 Do not reject H0 23 0.0025 0.95987 Do not reject H0

9 0.0028 0.95762 Do not reject H0 24 2.1037 0.14694 Do not reject H0

10 0.8992 0.34300 Do not reject H0 25 0.0109 0.91651 Do not reject H0

11 0.0420 0.83751 Do not reject H0 26 3.4221 0.06433 Do not reject H0

12 3.2174 0.07286 Do not reject H0 27 0.6643 0.41501 Do not reject H0

13 3.4863 0.06188 Do not reject H0 28 0.7637 0.38217 Do not reject H0

14 0.1154 0.73401 Do not reject H0 29 0.9381 0.33276 Do not reject H0

15 0.1785 0.67264 Do not reject H0 30 0.0424 0.83676 Do not reject H0

Stationarity

Table 10.49: KPSS test of mutation rate in the range [0.001,0.249].

Mutation rate in the range [0.001,0.249]
Run kpss p Conclusion Run kpss p Conclusion

Mutation rate in the range [0.001,0.249]
1 0.0541 > 0.1 Do not reject H0 16 0.0396 > 0.1 Do not reject H0

2 0.0452 > 0.1 Do not reject H0 17 0.0374 > 0.1 Do not reject H0

3 0.0414 > 0.1 Do not reject H0 18 0.0453 > 0.1 Do not reject H0

4 0.0412 > 0.1 Do not reject H0 19 0.1634 0.0355 Reject H0

5 0.051 > 0.1 Do not reject H0 20 0.0955 > 0.1 Do not reject H0

6 0.0405 > 0.1 Do not reject H0 21 0.0638 > 0.1 Do not reject H0

7 0.0395 > 0.1 Do not reject H0 22 0.0408 > 0.1 Do not reject H0

8 0.0342 > 0.1 Do not reject H0 23 0.0318 > 0.1 Do not reject H0

9 0.038 > 0.1 Do not reject H0 24 0.0665 > 0.1 Do not reject H0

10 0.0199 > 0.1 Do not reject H0 25 0.0338 > 0.1 Do not reject H0

11 0.0538 > 0.1 Do not reject H0 26 0.0477 > 0.1 Do not reject H0

12 0.0548 > 0.1 Do not reject H0 27 0.1436 0.0544 Do not reject H0

13 0.0469 > 0.1 Do not reject H0 28 0.0687 > 0.1 Do not reject H0

14 0.1498 > 0.1 Do not reject H0 29 0.0669 > 0.1 Do not reject H0

15 0.0383 > 0.1 Do not reject H0 30 0.0579 > 0.1 Do not reject H0

257

Table 10.50: KPSS test of mutation rate in the range [0.25,0.49].

Run kpss p Conclusion Run kpss p Conclusion
Mutation rate in the range [0.25,0.49]

1 0.0979 > 0.1 Do not reject H0 16 0.063 > 0.1 Do not reject H0

2 0.0672 > 0.1 Do not reject H0 17 0.051 > 0.1 Do not reject H0

3 0.0762 > 0.1 Do not reject H0 18 0.0992 > 0.1 Do not reject H0

4 0.0436 > 0.1 Do not reject H0 19 0.0607 > 0.1 Do not reject H0

5 0.0301 > 0.1 Do not reject H0 20 0.0453 > 0.1 Do not reject H0

6 0.1386 0.0636 Do not reject H0 21 0.1322 0.0754 Do not reject H0

7 0.0452 > 0.1 Do not reject H0 22 0.0415 > 0.1 Do not reject H0

8 0.0258 > 0.1 Do not reject H0 23 0.0302 > 0.1 Do not reject H0

9 0.0805 > 0.1 Do not reject H0 24 0.1061 > 0.1 Do not reject H0

10 0.0422 > 0.1 Do not reject H0 25 0.0322 > 0.1 Do not reject H0

11 0.1038 > 0.1 Do not reject H0 26 0.0443 > 0.1 Do not reject H0

12 0.0373 > 0.1 Do not reject H0 27 0.0593 > 0.1 Do not reject H0

13 0.0398 > 0.1 Do not reject H0 28 0.029 > 0.1 Do not reject H0

14 0.0673 > 0.1 Do not reject H0 29 0.0287 > 0.1 Do not reject H0

15 0.0865 > 0.1 Do not reject H0 30 0.037 > 0.1 Do not reject H0

Table 10.51: KPSS test of crossover rate in the range [0.6,0.79].

Crossover rate in the range [0.6,0.79]
Run kpss p Conclusion Run kpss p Conclusion
1 0.1741 0.026 Reject H0 16 0.0743 > 0.1 Do not reject H0

2 0.0375 > 0.1 Do not reject H0 17 0.0494 > 0.1 Do not reject H0

3 0.0375 > 0.1 Do not reject H0 18 0.1129 > 0.1 Do not reject H0

4 0.0529 > 0.1 Do not reject H0 19 0.0316 > 0.1 Do not reject H0

5 0.0467 > 0.1 Do not reject H0 20 0.1617 0.0369 Reject H0

6 0.0322 > 0.1 Do not reject H0 21 0.0745 > 0.1 Do not reject H0

7 0.0459 > 0.1 Do not reject H0 22 0.0515 > 0.1 Do not reject H0

8 0.0543 > 0.1 Do not reject H0 23 0.0275 > 0.1 Do not reject H0

9 0.0855 > 0.1 Do not reject H0 24 0.0413 > 0.1 Do not reject H0

10 0.0442 > 0.1 Do not reject H0 25 0.0262 > 0.1 Do not reject H0

11 0.0769 > 0.1 Do not reject H0 26 0.049 > 0.1 Do not reject H0

12 0.0603 > 0.1 Do not reject H0 27 0.0352 > 0.1 Do not reject H0

13 0.0401 > 0.1 Do not reject H0 28 0.0447 > 0.1 Do not reject H0

14 0.0637 > 0.1 Do not reject H0 29 0.0588 > 0.1 Do not reject H0

15 0.0295 > 0.1 Do not reject H0 30 0.0348 > 0.1 Do not reject H0

258

Table 10.52: KPSS test of crossover rate in the range [0.8,0.99].

Crossover rate in the range [0.8,0.99]
Run kpss p Conclusion Run kpss p Conclusion
1 0.0637 > 0.1 Do not reject H0 16 0.0424 > 0.1 Do not reject H0

2 0.1348 0.0706 Do not reject H0 17 0.0736 > 0.1 Do not reject H0

3 0.0343 > 0.1 Do not reject H0 18 0.049 > 0.1 Do not reject H0

4 0.0332 > 0.1 Do not reject H0 19 0.0329 > 0.1 Do not reject H0

5 0.0423 > 0.1 Do not reject H0 20 0.0483 > 0.1 Do not reject H0

6 0.0688 > 0.1 Do not reject H0 21 0.046 > 0.1 Do not reject H0

7 0.0221 > 0.1 Do not reject H0 22 0.0383 > 0.1 Do not reject H0

8 0.0375 > 0.1 Do not reject H0 23 0.0428 > 0.1 Do not reject H0

9 0.0464 > 0.1 Do not reject H0 24 0.157 0.0408 Reject H0

10 0.0372 > 0.1 Do not reject H0 25 0.0189 > 0.1 Do not reject H0

11 0.0377 > 0.1 Do not reject H0 26 0.0515 > 0.1 Do not reject H0

12 0.0462 > 0.1 Do not reject H0 27 0.0786 > 0.1 Do not reject H0

13 0.0648 > 0.1 Do not reject H0 28 0.0397 > 0.1 Do not reject H0

14 0.0746 > 0.1 Do not reject H0 29 0.1793 0.0237 Reject H0

15 0.0634 > 0.1 Do not reject H0 30 0.0586 > 0.1 Do not reject H0

Table 10.53: KPSS test of population size in the range [20,60].

Population size in the range [20,60]
Run kpss p Conclusion Run kpss p Conclusion
1 0.3125 0.01 Reject H0 16 0.1583 0.0397 Reject H0

2 0.1636 0.0352 Reject H0 17 0.2241 0.01 Reject H0

3 0.3420 0.01 Reject H0 18 0.5096 0.01 Reject H0

4 0.5167 0.01 Reject H0 19 0.3007 0.01 Reject H0

5 0.1607 0.0377 Reject H0 20 0.1666 0.0327 Reject H0

6 0.3367 0.01 Reject H0 21 0.3414 0.01 Reject H0

7 0.0720 > 0.1 Do not reject H0 22 0.3053 0.01 Reject H0

8 0.2176 0.01 Reject H0 23 0.2107 0.0119 Reject H0

9 0.1058 > 0.1 Do not reject H0 24 0.2884 0.01 Reject H0

10 0.2820 0.01 Reject H0 25 0.2098 0.0123 Reject H0

11 0.1990 0.0163 Reject H0 26 0.1053 > 0.1 Do not reject H0

12 0.2092 0.0125 Reject H0 27 0.2647 0.01 Reject H0

13 0.4038 0.01 Reject H0 28 0.1438 0.0539 Do not reject H0

14 0.1619 0.0366 Reject H0 29 0.2134 0.0109 Reject H0

15 0.1583 0.0397 Reject H0 30 0.4566 0.01 Reject H0

259

Table 10.54: KPSS test of population size in the range [61,100].

Population size in the range [61,100]
Run kpss p Conclusion Run kpss p Conclusion
1 0.2021 0.0151 Reject H0 16 0.1941 0.018 Reject H0

2 0.4157 0.01 Reject H0 17 0.3148 0.01 Reject H0

3 0.1437 0.0542 Do not reject H0 18 0.2723 0.01 Reject H0

4 0.3633 0.01 Reject H0 19 0.1282 0.082 Do not reject H0

5 0.3332 0.01 Reject H0 20 0.2656 0.01 Reject H0

6 0.3105 0.01 Reject H0 21 0.2337 0.01 Reject H0

7 0.1916 0.0191 Reject H0 22 0.3399 0.01 Reject H0

8 0.3179 0.01 Reject H0 23 0.2252 0.01 Reject H0

9 0.1711 0.0290 Reject H0 24 0.2610 0.01 Reject H0

10 0.2000 0.0159 Reject H0 25 0.2975 0.01 Reject H0

11 0.0802 > 0.1 Do not reject H0 26 0.1348 0.070 Do not reject H0

12 0.2009 0.0156 Reject H0 27 0.3139 0.01 Reject H0

13 0.3477 0.01 Reject H0 28 0.2260 0.01 Reject H0

14 0.2594 0.01 Reject H0 29 0.1933 0.018 Reject H0

15 0.1941 0.0181 Reject H0 30 0.3252 0.01 Reject H0

Table 10.55: KPSS test of mating pool size in the range [0.1,0.39].

Mating pool size in the range [0.1,0.39]
Run kpss p Conclusion Run kpss p Conclusion
1 0.0599 > 0.1 Do not reject H0 16 0.0452 > 0.1 Do not reject H0

2 0.0447 > 0.1 Do not reject H0 17 0.0584 > 0.1 Do not reject H0

3 0.0442 > 0.1 Do not reject H0 18 0.0259 > 0.1 Do not reject H0

4 0.0846 > 0.1 Do not reject H0 19 0.1728 0.0276 Reject H0

5 0.0304 > 0.1 Do not reject H0 20 0.0743 > 0.1 Do not reject H0

6 0.0759 > 0.1 Do not reject H0 21 0.0222 > 0.1 Do not reject H0

7 0.0666 > 0.1 Do not reject H0 22 0.0396 > 0.1 Do not reject H0

8 0.0618 > 0.1 Do not reject H0 23 0.0306 > 0.1 Do not reject H0

9 0.0879 > 0.1 Do not reject H0 24 0.0608 > 0.1 Do not reject H0

10 0.0558 > 0.1 Do not reject H0 25 0.0312 > 0.1 Do not reject H0

11 0.0863 > 0.1 Do not reject H0 26 0.0826 > 0.1 Do not reject H0

12 0.1276 0.0839 Do not reject H0 27 0.0450 > 0.1 Do not reject H0

13 0.0411 > 0.1 Do not reject H0 28 0.0749 > 0.1 Do not reject H0

14 0.0920 > 0.1 Do not reject H0 29 0.0265 > 0.1 Do not reject H0

15 0.0452 > 0.1 Do not reject H0 30 0.0952 > 0.1 Do not reject H0

260

Table 10.56: KPSS test of mating pool size in the range [0.4,0.69].

Mating pool size in the range [0.4,0.69]
Run kpss p Conclusion Run kpss p Conclusion
1 0.0544 > 0.1 Do not reject H0 16 0.0611 > 0.1 Do not reject H0

2 0.0451 > 0.1 Do not reject H0 17 0.0432 > 0.1 Do not reject H0

3 0.0267 > 0.1 Do not reject H0 18 0.0406 > 0.1 Do not reject H0

4 0.0212 > 0.1 Do not reject H0 19 0.0352 > 0.1 Do not reject H0

5 0.0375 > 0.1 Do not reject H0 20 0.0253 > 0.1 Do not reject H0

6 0.0573 > 0.1 Do not reject H0 21 0.0235 > 0.1 Do not reject H0

7 0.0489 > 0.1 Do not reject H0 22 0.0580 > 0.1 Do not reject H0

8 0.0672 > 0.1 Do not reject H0 23 0.0332 > 0.1 Do not reject H0

9 0.0254 > 0.1 Do not reject H0 24 0.0451 > 0.1 Do not reject H0

10 0.0566 > 0.1 Do not reject H0 25 0.0778 > 0.1 Do not reject H0

11 0.0438 > 0.1 Do not reject H0 26 0.0636 > 0.1 Do not reject H0

12 0.0538 > 0.1 Do not reject H0 27 0.0236 > 0.1 Do not reject H0

13 0.0512 > 0.1 Do not reject H0 28 0.0256 > 0.1 Do not reject H0

14 0.0839 > 0.1 Do not reject H0 29 0.0185 > 0.1 Do not reject H0

15 0.0611 > 0.1 Do not reject H0 30 0.0643 > 0.1 Do not reject H0

Table 10.57: KPSS test of single-point mutation operator.

Single-point mutation operator
Run kpss p Conclusion Run kpss p Conclusion
1 0.0371 > 0.1 Do not reject H0 16 0.0254 > 0.1 Do not reject H0

2 0.0439 > 0.1 Do not reject H0 17 0.0255 > 0.1 Do not reject H0

3 0.0364 > 0.1 Do not reject H0 18 0.0707 > 0.1 Do not reject H0

4 0.0487 > 0.1 Do not reject H0 19 0.0960 > 0.1 Do not reject H0

5 0.0356 > 0.1 Do not reject H0 20 0.0378 > 0.1 Do not reject H0

6 0.0514 > 0.1 Do not reject H0 21 0.0581 > 0.1 Do not reject H0

7 0.0626 > 0.1 Do not reject H0 22 0.0299 > 0.1 Do not reject H0

8 0.0379 > 0.1 Do not reject H0 23 0.0496 > 0.1 Do not reject H0

9 0.0716 > 0.1 Do not reject H0 24 0.0463 > 0.1 Do not reject H0

10 0.0783 > 0.1 Do not reject H0 25 0.0382 > 0.1 Do not reject H0

11 0.0683 > 0.1 Do not reject H0 26 0.0571 > 0.1 Do not reject H0

12 0.0771 > 0.1 Do not reject H0 27 0.0800 > 0.1 Do not reject H0

13 0.0372 > 0.1 Do not reject H0 28 0.0294 > 0.1 Do not reject H0

14 0.2071 0.0133 Reject H0 29 0.1288 0.0817 Do not reject H0

15 0.0254 > 0.1 Do not reject H0 30 0.0486 > 0.1 Do not reject H0

261

Table 10.58: KPSS test of uniform mutation operator.

Uniform mutation operator
Run kpss p Conclusion Run kpss p Conclusion
1 0.0471 > 0.1 Do not reject H0 16 0.0369 > 0.1 Do not reject H0

2 0.0550 > 0.1 Do not reject H0 17 0.1324 0.0750 Do not reject H0

3 0.0863 > 0.1 Do not reject H0 18 0.2167 0.01 Reject H0

4 0.1620 0.0366 Reject H0 19 0.0278 > 0.1 Do not reject H0

5 0.0275 > 0.1 Do not reject H0 20 0.0305 > 0.1 Do not reject H0

6 0.0290 > 0.1 Do not reject H0 21 0.0612 > 0.1 Do not reject H0

7 0.0443 > 0.1 Do not reject H0 22 0.0800 > 0.1 Do not reject H0

8 0.0972 > 0.1 Do not reject H0 23 0.0263 > 0.1 Do not reject H0

9 0.0587 > 0.1 Do not reject H0 24 0.0556 > 0.1 Do not reject H0

10 0.0992 > 0.1 Do not reject H0 25 0.0540 > 0.1 Do not reject H0

11 0.1226 0.0931 Do not reject H0 26 0.0551 > 0.1 Do not reject H0

12 0.0538 > 0.1 Do not reject H0 27 0.0411 > 0.1 Do not reject H0

13 0.0278 > 0.1 Do not reject H0 28 0.0449 > 0.1 Do not reject H0

14 0.0517 > 0.1 Do not reject H0 29 0.0437 > 0.1 Do not reject H0

15 0.0369 > 0.1 Do not reject H0 30 0.0952 > 0.1 Do not reject H0

Table 10.59: KPSS test of single-point crossover operator.

Single-point crossover operator
Run kpss p Conclusion Run kpss p Conclusion
1 0.0471 > 0.1 Do not reject H0 16 0.0369 > 0.1 Do not reject H0

2 0.0550 > 0.1 Do not reject H0 17 0.1324 0.0750 Do not reject H0

3 0.0863 > 0.1 Do not reject H0 18 0.2167 0.01 Reject H0

4 0.1620 0.0366 Reject H0 19 0.0278 > 0.1 Do not reject H0

5 0.0275 > 0.1 Do not reject H0 20 0.0305 > 0.1 Do not reject H0

6 0.0290 > 0.1 Do not reject H0 21 0.0612 > 0.1 Do not reject H0

7 0.0443 > 0.1 Do not reject H0 22 0.0800 > 0.1 Do not reject H0

8 0.0972 > 0.1 Do not reject H0 23 0.0263 > 0.1 Do not reject H0

9 0.0587 > 0.1 Do not reject H0 24 0.0556 > 0.1 Do not reject H0

10 0.0992 > 0.1 Do not reject H0 25 0.0540 > 0.1 Do not reject H0

11 0.1226 0.0931 Do not reject H0 26 0.0551 > 0.1 Do not reject H0

12 0.0538 > 0.1 Do not reject H0 27 0.0411 > 0.1 Do not reject H0

13 0.0278 > 0.1 Do not reject H0 28 0.0449 > 0.1 Do not reject H0

14 0.0517 > 0.1 Do not reject H0 29 0.0437 > 0.1 Do not reject H0

15 0.0369 > 0.1 Do not reject H0 30 0.0952 > 0.1 Do not reject H0

262

Table 10.60: KPSS test of uniform crossover operator.

Uniform crossover operator
Run kpss p Conclusion Run kpss p Conclusion
1 0.0471 > 0.1 Do not reject H0 16 0.0369 > 0.1 Do not reject H0

2 0.0550 > 0.1 Do not reject H0 17 0.1324 0.0750 Do not reject H0

3 0.0863 > 0.1 Do not reject H0 18 0.2167 0.01 Reject H0

4 0.1620 0.0366 Reject H0 19 0.0278 > 0.1 Do not reject H0

5 0.0275 > 0.1 Do not reject H0 20 0.0305 > 0.1 Do not reject H0

6 0.0290 > 0.1 Do not reject H0 21 0.0612 > 0.1 Do not reject H0

7 0.0443 > 0.1 Do not reject H0 22 0.0800 > 0.1 Do not reject H0

8 0.0972 > 0.1 Do not reject H0 23 0.0263 > 0.1 Do not reject H0

9 0.0587 > 0.1 Do not reject H0 24 0.0556 > 0.1 Do not reject H0

10 0.0992 > 0.1 Do not reject H0 25 0.0540 > 0.1 Do not reject H0

11 0.1226 0.0931 Do not reject H0 26 0.0551 > 0.1 Do not reject H0

12 0.0538 > 0.1 Do not reject H0 27 0.0411 > 0.1 Do not reject H0

13 0.0278 > 0.1 Do not reject H0 28 0.0449 > 0.1 Do not reject H0

14 0.0517 > 0.1 Do not reject H0 29 0.0437 > 0.1 Do not reject H0

15 0.0369 > 0.1 Do not reject H0 30 0.0952 > 0.1 Do not reject H0

263

264

Characteristics of the Effect

of Parameter Values -

Experiments with Four Ranges

Linearity

Table 10.61: Linearity test of the mutation rate in the range [0.001,0.1249].

Mutation rate in the range [0.001,0.1249]
Run f p Conclusion Run f p Conclusion

1 32.846 1.12e-07 Do not reject H0 16 66.422 1.28e-12 Do not reject H0

2 80.321 2.33e-14 Do not reject H0 17 13.253 0.000438 Do not reject H0

3 38.693 1.25e-08 Do not reject H0 18 11.611 0.000955 Do not reject H0

4 69.39 5.31e-13 Do not reject H0 19 31.005 2.29e-07 Do not reject H0

5 2.2139 0.14001 Reject H0 20 25.067 2.47e-06 Do not reject H0

6 14.837 0.00021 Do not reject H0 21 140.10 1.56e-20 Do not reject H0

7 18.542 3.97e-05 Do not reject H0 22 30.601 2.68e-07 Do not reject H0

8 24.678 2.90e-06 Do not reject H0 23 53.118 8.44e-11 Do not reject H0

9 17.914 5.25e-05 Do not reject H0 24 34.739 5.46e-08 Do not reject H0

10 78.77 3.58e-14 Do not reject H0 25 15.733 0.000139 Do not reject H0

11 26.398 1.43e-06 Do not reject H0 26 77.022 5.86e-14 Do not reject H0

12 34.194 6.72e-08 Do not reject H0 27 43.198 2.48e-09 Do not reject H0

13 71.126 3.18e-13 Do not reject H0 28 27.556 8.99e-07 Do not reject H0

14 23.906 4.00e-06 Do not reject H0 29 66.002 1.46e-12 Do not reject H0

15 66.422 1.28e-12 Do not reject H0 30 22.658 6.76e-06 Do not reject H0

265

Table 10.62: Linearity test of the mutation rate in the range [0.125,0.249].

Mutation rate in the range [0.125,0.249]
Run f p Conclusion Run f p Conclusion

1 188.91 1.68e-24 Do not reject H0 16 63.696 2.94e-12 Do not reject H0

2 85.539 5.62e-15 Do not reject H0 17 243.31 3.47e-28 Do not reject H0

3 96.7 3.06e-16 Do not reject H0 18 219.34 1.21e-26 Do not reject H0

4 140.92 1.31e-20 Do not reject H0 19 124.60 4.23e-19 Do not reject H0

5 218.96 1.29e-26 Do not reject H0 20 123.61 5.27e-19 Do not reject H0

6 72.126 2.38e-13 Do not reject H0 21 73.109 1.79e-13 Do not reject H0

7 92.699 8.52e-16 Do not reject H0 22 160.86 2.59e-22 Do not reject H0

8 78.174 4.24e-14 Do not reject H0 23 86.149 4.77e-15 Do not reject H0

9 125.98 3.13e-19 Do not reject H0 24 113.39 5.36e-18 Do not reject H0

10 116.75 2.47e-18 Do not reject H0 25 222.43 7.59e-27 Do not reject H0

11 139.71 1.68e-20 Do not reject H0 26 90.811 1.39e-15 Do not reject H0

12 153.96 9.74e-22 Do not reject H0 27 87.665 3.18e-15 Do not reject H0

13 93.809 6.40e-16 Do not reject H0 28 107.78 2.01e-17 Do not reject H0

14 135.22 4.30e-20 Do not reject H0 29 148.55 2.82e-21 Do not reject H0

15 63.696 2.94e-12 Do not reject H0 30 101.80 8.58e-17 Do not reject H0

Table 10.63: Linearity test of the mutation rate in the range [0.25,0.3749].

Mutation rate in the range [0.25,0.3749]
Run f p Conclusion Run f p Conclusion

1 132.04 8.43e-20 Do not reject H0 16 53.159 8.33e-11 Do not reject H0

2 47.902 4.84e-10 Do not reject H0 17 70.133 4.26e-13 Do not reject H0

3 95.07 4.63e-16 Do not reject H0 18 82.28 1.36e-14 Do not reject H0

4 137.81 2.50e-20 Do not reject H0 19 77.717 4.82e-14 Do not reject H0

5 43.564 2.18e-09 Do not reject H0 20 32.381 1.34e-07 Do not reject H0

6 138.23 2.29e-20 Do not reject H0 21 97.052 2.80e-16 Do not reject H0

7 79.76 2.72e-14 Do not reject H0 22 84.97 6.55e-15 Do not reject H0

8 94.147 5.87e-16 Do not reject H0 23 76.557 6.68e-14 Do not reject H0

9 70.566 3.75e-13 Do not reject H0 24 66.602 1.21e-12 Do not reject H0

10 77.23 5.52e-14 Do not reject H0 25 174.75 2.00e-23 Do not reject H0

11 49.532 2.78e-10 Do not reject H0 26 117.36 2.14e-18 Do not reject H0

12 90.895 1.36e-15 Do not reject H0 27 99.44 1.54e-16 Do not reject H0

13 106.67 2.62e-17 Do not reject H0 28 74.816 1.09e-13 Do not reject H0

14 51.158 1.61e-10 Do not reject H0 29 63.636 2.99e-12 Do not reject H0

15 53.159 8.33e-11 Do not reject H0 30 156.15 6.37e-22 Do not reject H0

266

Table 10.64: Linearity test of the mutation rate [0.375,0.49].

Mutation rate in the range [0.25,0.3749]
Run f p Conclusion Run f p Conclusion

1 66.543 1.24e-12 Do not reject H0 16 131.46 9.56e-20 Do not reject H0

2 151.23 1.65e-21 Do not reject H0 17 97.335 2.61e-16 Do not reject H0

3 198.27 3.50e-25 Do not reject H0 18 155.27 7.54e-22 Do not reject H0

4 43.224 2.46e-09 Do not reject H0 19 140.91 1.31e-20 Do not reject H0

5 111.07 9.24e-18 Do not reject H0 20 151.98 1.43e-21 Do not reject H0

6 53.958 6.41e-11 Do not reject H0 21 123.68 5.20e-19 Do not reject H0

7 148.72 2.72e-21 Do not reject H0 22 98.336 2.03e-16 Do not reject H0

8 92.603 8.73e-16 Do not reject H0 23 158.23 4.27e-22 Do not reject H0

9 121.53 8.38e-19 Do not reject H0 24 69.121 5.75e-13 Do not reject H0

10 190.82 1.21e-24 Do not reject H0 25 83.9 8.75e-15 Do not reject H0

11 169.82 4.89e-23 Do not reject H0 26 101.55 9.13e-17 Do not reject H0

12 74.602 1.16e-13 Do not reject H0 27 107.35 2.23e-17 Do not reject H0

13 127.98 2.02e-19 Do not reject H0 28 94.808 4.95e-16 Do not reject H0

14 159.82 3.15e-22 Do not reject H0 29 109.69 1.27e-17 Do not reject H0

15 131.46 9.56e-20 Do not reject H0 30 57.046 2.36e-11 Do not reject H0

Table 10.65: Linearity test of the crossover rate in the range [0.6,0.69].

Crossover rate [0.6,0.69]
Run f p Conclusion Run f p Conclusion

1 97.87 2.28e-16 Do not reject H0 16 127.6 2.16e-19 Do not reject H0

2 94.54 5.31e-16 Do not reject H0 17 75.25 9.67e-14 Do not reject H0

3 92.08 1.00e-15 Do not reject H0 18 179.6 8.35e-24 Do not reject H0

4 52.67 9.76e-11 Do not reject H0 19 86.02 4.93e-15 Do not reject H0

5 82.97 1.12e-14 Do not reject H0 20 142.2 9.99e-21 Do not reject H0

6 93.23 7.43e-16 Do not reject H0 21 154.4 8.90e-22 Do not reject H0

7 119.4 1.34e-18 Do not reject H0 22 58.37 1.54e-11 Do not reject H0

8 75.37 9.36e-14 Do not reject H0 23 38.02 1.60e-08 Do not reject H0

9 100.3 1.21e-16 Do not reject H0 24 52.04 1.20e-10 Do not reject H0

10 38.32 1.43e-08 Do not reject H0 25 104.8 4.05e-17 Do not reject H0

11 73.09 1.79e-13 Do not reject H0 26 127.7 2.14e-19 Do not reject H0

12 138.9 1.99e-20 Do not reject H0 27 38.43 1.38e-08 Do not reject H0

13 70.21 4.16e-13 Do not reject H0 28 37.67 1.82e-08 Do not reject H0

14 98.36 2.01e-16 Do not reject H0 29 94.59 5.23e-16 Do not reject H0

15 127.6 2.16e-19 Do not reject H0 30 82.18 1.39e-14 Do not reject H0

267

Table 10.66: Linearity test of the crossover rate in the range [0.7,0.79].

Crossover rate [0.7,0.79]
Run f p Conclusion Run f p Conclusion

1 60.12 8.91e-12 Do not reject H0 16 66.61 1.21e-12 Do not reject H0

2 112.7 6.23e-18 Do not reject H0 17 70.06 4.35e-13 Do not reject H0

3 48.95 3.38e-10 Do not reject H0 18 60.13 8.88e-12 Do not reject H0

4 87.47 3.35e-15 Do not reject H0 19 22.66 6.74e-06 Do not reject H0

5 90.61 1.46e-15 Do not reject H0 20 158.7 3.88e-22 Do not reject H0

6 73.23 1.72e-13 Do not reject H0 21 93.17 7.53e-16 Do not reject H0

7 71.92 2.52e-13 Do not reject H0 22 42.13 3.62e-09 Do not reject H0

8 139.1 1.90e-20 Do not reject H0 23 127.4 2.29e-19 Do not reject H0

9 141.7 1.10e-20 Do not reject H0 24 143.9 7.14e-21 Do not reject H0

10 67.28 9.95e-13 Do not reject H0 25 117.0 2.29e-18 Do not reject H0

11 145.8 4.84e-21 Do not reject H0 26 105.5 3.48e-17 Do not reject H0

12 36.64 2.67e-08 Do not reject H0 27 107.8 1.97e-17 Do not reject H0

13 98.98 1.72e-16 Do not reject H0 28 82.75 1.19e-14 Do not reject H0

14 171.8 3.38e-23 Do not reject H0 29 38.46 1.36e-08 Do not reject H0

15 66.61 1.21e-12 Do not reject H0 30 130.5 1.15e-19 Do not reject H0

Table 10.67: Linearity test of the crossover rate in the range [0.8,0.89].

Crossover rate [0.8,0.89]
Run f p Conclusion Run f p Conclusion

1 61.57 5.65e-12 Do not reject H0 16 59.84 9.73e-12 Do not reject H0

2 127.4 2.26e-19 Do not reject H0 17 149.1 2.55e-21 Do not reject H0

3 57.97 1.75e-11 Do not reject H0 18 104.1 4.92e-17 Do not reject H0

4 134.7 4.72e-20 Do not reject H0 19 124.6 4.16e-19 Do not reject H0

5 105.2 3.73e-17 Do not reject H0 20 87.65 3.19e-15 Do not reject H0

6 128.5 1.80e-19 Do not reject H0 21 55.2 4.27e-11 Do not reject H0

7 93.55 6.84e-16 Do not reject H0 22 150.6 1.84e-21 Do not reject H0

8 38.25 1.47e-08 Do not reject H0 23 136.9 2.99e-20 Do not reject H0

9 144.1 6.76e-21 Do not reject H0 24 108.2 1.82e-17 Do not reject H0

10 178.3 1.05e-23 Do not reject H0 25 119.8 1.21e-18 Do not reject H0

11 23.56 4.62e-06 Do not reject H0 26 78.15 4.26e-14 Do not reject H0

12 68.37 7.18e-13 Do not reject H0 27 87.00 3.80e-15 Do not reject H0

13 142.8 8.79e-21 Do not reject H0 28 156.8 5.58e-22 Do not reject H0

14 75.56 8.85e-14 Do not reject H0 29 142.6 9.24e-21 Do not reject H0

15 59.84 9.73e-12 Do not reject H0 30 73.2 1.74e-13 Do not reject H0

268

Table 10.68: Linearity test of the crossover rate in the range [0.9,0.99].

Crossover rate in the range [0.9,0.99]
Run f p Conclusion Run f p Conclusion

1 152.9 1.18e-21 Do not reject H0 16 79.19 3.19e-14 Do not reject H0

2 40.37 6.81e-09 Do not reject H0 17 133.2 6.50e-20 Do not reject H0

3 74.29 1.27e-13 Do not reject H0 18 69.36 5.35e-13 Do not reject H0

4 90.79 1.39e-15 Do not reject H0 19 137.6 2.56e-20 Do not reject H0

5 67.74 8.65e-13 Do not reject H0 20 95.51 4.13e-16 Do not reject H0

6 33.48 8.80e-08 Do not reject H0 21 46.79 7.08e-10 Do not reject H0

7 135.0 4.42e-20 Do not reject H0 22 61.16 6.44e-12 Do not reject H0

8 135.6 3.96e-20 Do not reject H0 23 140.8 1.34e-20 Do not reject H0

9 19.18 2.99e-05 Do not reject H0 24 112.9 5.98e-18 Do not reject H0

10 80.93 1.96e-14 Do not reject H0 25 40.61 6.25e-09 Do not reject H0

11 101.5 9.08e-17 Do not reject H0 26 26.66 1.28e-06 Do not reject H0

12 71.29 3.03e-13 Do not reject H0 27 111.7 7.96e-18 Do not reject H0

13 110.0 1.18e-17 Do not reject H0 28 121.7 8.01e-19 Do not reject H0

14 56.33 2.96e-11 Do not reject H0 29 94.78 4.98e-16 Do not reject H0

15 79.19 3.19e-14 Do not reject H0 30 33.73 8.01e-08 Do not reject H0

Table 10.69: Linearity test of the population size in the range [20,40].

Population size in the range [20,40]
Run f p Conclusion Run f p Conclusion

1 67.637 8.94e-13 Do not reject H0 16 37.215 2.16e-08 Do not reject H0

2 131.97 8.56e-20 Do not reject H0 17 56.606 2.72e-11 Do not reject H0

3 83.68 9.28e-15 Do not reject H0 18 39.413 9.65e-09 Do not reject H0

4 91.44 1.18e-15 Do not reject H0 19 84.527 7.38e-15 Do not reject H0

5 31.594 1.82e-07 Do not reject H0 20 116.48 2.63e-18 Do not reject H0

6 73.723 1.50e-13 Do not reject H0 21 18.100 4.83e-05 Do not reject H0

7 65.494 1.70e-12 Do not reject H0 22 32.295 1.39e-07 Do not reject H0

8 64.965 2.00e-12 Do not reject H0 23 45.773 1.00e-09 Do not reject H0

9 68.291 7.35e-13 Do not reject H0 24 86.495 4.35e-15 Do not reject H0

10 39.449 9.53e-09 Do not reject H0 25 81.798 1.55e-14 Do not reject H0

11 40.262 7.09e-09 Do not reject H0 26 61.993 4.97e-12 Do not reject H0

12 80.124 2.46e-14 Do not reject H0 27 90.424 1.53e-15 Do not reject H0

13 71.946 2.51e-13 Do not reject H0 28 56.043 3.26e-11 Do not reject H0

14 33.617 8.37e-08 Do not reject H0 29 101.47 9.31e-17 Do not reject H0

15 37.215 2.16e-08 Do not reject H0 30 65.785 1.55e-12 Do not reject H0

269

Table 10.70: Linearity test of the population size in the range [41,60].

Population size in the range [41,60]
Run f p Conclusion Run f p Conclusion

1 21.060 1.33e-05 Do not reject H0 16 152.94 1.18e-21 Do not reject H0

2 106.10 3.01e-17 Do not reject H0 17 109.22 1.42e-17 Do not reject H0

3 101.89 8.40e-17 Do not reject H0 18 85.791 5.25e-15 Do not reject H0

4 171.47 3.62e-23 Do not reject H0 19 75.64 8.67e-14 Do not reject H0

5 145.61 5.08e-21 Do not reject H0 20 50.342 2.12e-10 Do not reject H0

6 152.52 1.28e-21 Do not reject H0 21 115.57 3.23e-18 Do not reject H0

7 90.112 1.67e-15 Do not reject H0 22 64.946 2.01e-12 Do not reject H0

8 78.617 3.74e-14 Do not reject H0 23 184.14 3.82e-24 Do not reject H0

9 151.05 1.72e-21 Do not reject H0 24 65.865 1.52e-12 Do not reject H0

10 58.629 1.42e-11 Do not reject H0 25 89.079 2.19e-15 Do not reject H0

11 132.91 7.01e-20 Do not reject H0 26 17.778 5.57e-05 Do not reject H0

12 116.54 2.59e-18 Do not reject H0 27 115.51 3.29e-18 Do not reject H0

13 75.248 9.69e-14 Do not reject H0 28 167.19 7.94e-23 Do not reject H0

14 134.16 5.37e-20 Do not reject H0 29 118.04 1.84e-18 Do not reject H0

15 152.94 1.18e-21 Do not reject H0 30 33.558 8.56e-08 Do not reject H0

Table 10.71: Linearity test of the population size in the range [61,80].

Population size in the range [61,80]
Run f p Conclusion Run f p Conclusion

1 153.70 1.02e-21 Do not reject H0 16 138.18 2.31e-20 Do not reject H0

2 65.238 1.84e-12 Do not reject H0 17 91.645 1.12e-15 Do not reject H0

3 64.725 2.15e-12 Do not reject H0 18 151.40 1.60e-21 Do not reject H0

4 58.294 1.58e-11 Do not reject H0 19 113.68 5.01e-18 Do not reject H0

5 54.059 6.20e-11 Do not reject H0 20 78.36 4.02e-14 Do not reject H0

6 81.837 1.53e-14 Do not reject H0 21 224.28 5.73e-27 Do not reject H0

7 121.48 8.48e-19 Do not reject H0 22 94.785 4.98e-16 Do not reject H0

8 137.74 2.54e-20 Do not reject H0 23 61.335 6.10e-12 Do not reject H0

9 88.013 2.90e-15 Do not reject H0 24 127.81 2.10e-19 Do not reject H0

10 69.965 4.48e-13 Do not reject H0 25 64.621 2.22e-12 Do not reject H0

11 118.80 1.54e-18 Do not reject H0 26 105.78 3.25e-17 Do not reject H0

12 72.675 2.03e-13 Do not reject H0 27 76.251 7.29e-14 Do not reject H0

13 80.422 2.26e-14 Do not reject H0 28 108.41 1.73e-17 Do not reject H0

14 57.033 2.37e-11 Do not reject H0 29 40.206 7.24e-09 Do not reject H0

15 138.18 2.31e-20 Do not reject H0 30 119.13 1.44e-18 Do not reject H0

270

Table 10.72: Linearity test of the population size in the range [81,100].

Population size in the range [81,100]
Run f p Conclusion Run f p Conclusion

1 94.763 5.01e-16 Do not reject H0 16 22.148 8.38e-06 Do not reject H0

2 47.004 6.59e-10 Do not reject H0 17 53.664 7.06e-11 Do not reject H0

3 41.406 4.70e-09 Do not reject H0 18 98.302 2.04e-16 Do not reject H0

4 69.133 5.73e-13 Do not reject H0 19 49.202 3.11e-10 Do not reject H0

5 93.06 7.76e-16 Do not reject H0 20 86.912 3.89e-15 Do not reject H0

6 19.307 2.84e-05 Do not reject H0 21 83.562 9.58e-15 Do not reject H0

7 88.114 2.82e-15 Do not reject H0 22 74.16 1.32e-13 Do not reject H0

8 84.421 7.59e-15 Do not reject H0 23 123.90 4.95e-19 Do not reject H0

9 45.564 1.08e-09 Do not reject H0 24 65.843 1.53e-12 Do not reject H0

10 89.992 1.72e-15 Do not reject H0 25 37.08 2.27e-08 Do not reject H0

11 34.859 5.22e-08 Do not reject H0 26 123.57 5.32e-19 Do not reject H0

12 31.514 1.88e-07 Do not reject H0 27 28.844 5.37e-07 Do not reject H0

13 98.914 1.75e-16 Do not reject H0 28 43.292 2.40e-09 Do not reject H0

14 49.888 2.47e-10 Do not reject H0 29 66.008 1.45e-12 Do not reject H0

15 22.148 8.38e-06 Do not reject H0 30 42.582 3.09e-09 Do not reject H0

Table 10.73: Linearity test of the mating pool size in the range [0.1,0.249].

Population size in the range [0.1,0.249]
Run f p Conclusion Run f p Conclusion

1 115.0 3.65e-18 Do not reject H0 16 148.1 3.07e-21 Do not reject H0

2 146.7 4.02e-21 Do not reject H0 17 81.31 1.77e-14 Do not reject H0

3 79.66 2.80e-14 Do not reject H0 18 46.31 8.35e-10 Do not reject H0

4 100.8 1.08e-16 Do not reject H0 19 122.4 6.87e-19 Do not reject H0

5 61.61 5.60e-12 Do not reject H0 20 135.4 4.12e-20 Do not reject H0

6 94.00 6.08e-16 Do not reject H0 21 55.05 4.49e-11 Do not reject H0

7 89.08 2.18e-15 Do not reject H0 22 12.99 0.000494 Do not reject H0

8 17.05 7.70e-05 Do not reject H0 23 12.22 0.000713 Do not reject H0

9 66.44 1.27e-12 Do not reject H0 24 116.7 2.49e-18 Do not reject H0

10 89.39 2.01e-15 Do not reject H0 25 107.4 2.20e-17 Do not reject H0

11 36.08 3.29e-08 Do not reject H0 26 34.52 5.92e-08 Do not reject H0

12 45.12 1.26e-09 Do not reject H0 27 120.8 9.78e-19 Do not reject H0

13 65.90 1.50e-12 Do not reject H0 28 54.05 6.21e-11 Do not reject H0

14 172.4 3.06e-23 Do not reject H0 29 51.59 1.39e-10 Do not reject H0

15 148.1 3.07e-21 Do not reject H0 30 50.63 1.92e-10 Do not reject H0

271

Table 10.74: Linearity test of the mating pool size in the range [0.25,0.39].

Population size in the range [0.25,0.39]
Run f p Conclusion Run f p Conclusion

1 114.61 4.0426e-18 Do not reject H0 16 84.586 7.2671e-15 Do not reject H0

2 128.09 1.9778e-19 Do not reject H0 17 127.61 2.191e-19 Do not reject H0

3 143.99 7.0475e-21 Do not reject H0 18 103.15 6.1648e-17 Do not reject H0

4 151.53 1.5671e-21 Do not reject H0 19 148.18 3.0367e-21 Do not reject H0

5 104.58 4.3487e-17 Do not reject H0 20 90.202 1.6321e-15 Do not reject H0

6 145.17 5.5487e-21 Do not reject H0 21 63.142 3.4905e-12 Do not reject H0

7 176.94 1.3548e-23 Do not reject H0 22 163.38 1.6122e-22 Do not reject H0

8 179.26 8.9867e-24 Do not reject H0 23 128.72 1.7218e-19 Do not reject H0

9 157.89 4.5607e-22 Do not reject H0 24 187.29 2.2210e-24 Do not reject H0

10 86.487 4.3611e-15 Do not reject H0 25 75.735 8.4427e-14 Do not reject H0

11 26.132 1.6010e-06 Do not reject H0 26 127.40 2.2967e-19 Do not reject H0

12 69.847 4.641e-13 Do not reject H0 27 54.596 5.2089e-11 Do not reject H0

13 101.30 9.7113e-17 Do not reject H0 28 99.968 1.3513e-16 Do not reject H0

14 87.651 3.1978e-15 Do not reject H0 29 82.028 1.4576e-14 Do not reject H0

15 84.586 7.2671e-15 Do not reject H0 30 100.24 1.2619e-16 Do not reject H0

Table 10.75: Linearity test of the mating pool size in the range [0.4,0.549].

¡¡¡¡¡¡¡ .mine
Population size in the range [0.4,0.549]

Run f p Conclusion Run f p Conclusion
1 77.046 5.82e-14 Do not reject H0 16 36.481 2.84e-08 Do not reject H0

2 118.35 1.71e-18 Do not reject H0 17 243.67 3.30e-28 Do not reject H0

3 122.60 6.60e-19 Do not reject H0 18 98.8 1.80e-16 Do not reject H0

4 111.41 8.52e-18 Do not reject H0 19 85.528 5.63e-15 Do not reject H0

5 71.627 2.75e-13 Do not reject H0 20 139.2 1.87e-20 Do not reject H0

6 72.23 2.31e-13 Do not reject H0 21 164.55 1.29e-22 Do not reject H0

7 183.71 4.12e-24 Do not reject H0 22 132.82 7.15e-20 Do not reject H0

8 183.78 4.07e-24 Do not reject H0 23 232.29 1.72e-27 Do not reject H0

9 80.157 2.44e-14 Do not reject H0 24 51.792 1.30e-10 Do not reject H0

10 101.17 1.00e-16 Do not reject H0 25 70.398 3.94e-13 Do not reject H0

11 72.43 2.18e-13 Do not reject H0 26 104.46 4.47e-17 Do not reject H0

12 84.04 8.42e-15 Do not reject H0 27 55.108 4.41e-11 Do not reject H0

13 134.12 5.43e-20 Do not reject H0 28 39.587 9.06e-09 Do not reject H0

14 20.859 1.45e-05 Do not reject H0 29 101.52 9.19e-17 Do not reject H0

15 36.481 2.84e-08 Do not reject H0 30 45.883 9.70e-10 Do not reject H0

272

Table 10.76: Linearity test of the mating pool size in the range [0.55,0.69].

Population size in the range [0.55,0.69]
Run f p Conclusion Run f p Conclusion

1 145.94 4.75e-21 Do not reject H0 16 48.015 4.66e-10 Do not reject H0

2 68.43 7.05e-13 Do not reject H0 17 75.815 8.25e-14 Do not reject H0

3 25.490 2.08e-06 Do not reject H0 18 125.56 3.43e-19 Do not reject H0

4 83.259 1.04e-14 Do not reject H0 19 33.098 1.02e-07 Do not reject H0

5 103.05 6.32e-17 Do not reject H0 20 136.89 3.03e-20 Do not reject H0

6 36.115 3.25e-08 Do not reject H0 21 93.978 6.13e-16 Do not reject H0

7 95.495 4.16e-16 Do not reject H0 22 61.761 5.34e-12 Do not reject H0

8 21.425 1.14e-05 Do not reject H0 23 77.847 4.64e-14 Do not reject H0

9 114.82 3.85e-18 Do not reject H0 24 97.939 2.24e-16 Do not reject H0

10 85.479 5.71e-15 Do not reject H0 25 126.16 3.00e-19 Do not reject H0

11 167.27 7.82e-23 Do not reject H0 26 116.18 2.81e-18 Do not reject H0

12 102.79 6.73e-17 Do not reject H0 27 69.628 4.95e-13 Do not reject H0

13 86.499 4.34e-15 Do not reject H0 28 151.83 1.47e-21 Do not reject H0

14 103.29 5.95e-17 Do not reject H0 29 109.99 1.18e-17 Do not reject H0

15 48.015 4.66e-10 Do not reject H0 30 95.291 4.38e-16 Do not reject H0

Normality

Table 10.77: Kolmogorov-Smirnov test of the mutation rate in the range
[0.001,0.1249].

Mutation rate in the range [0.001,0.1249]
Run d p Conclusion Run d p Conclusion
1 0.06819 0.72051 Do not reject H0 16 0.05466 0.91291 Do not reject H0

2 0.07145 0.66599 Do not reject H0 17 0.07574 0.59412 Do not reject H0

3 0.06446 0.78068 Do not reject H0 18 0.07480 0.60976 Do not reject H0

4 0.07112 0.67152 Do not reject H0 19 0.08879 0.39294 Do not reject H0

5 0.16413 0.00846 Reject H0 20 0.09800 0.27906 Do not reject H0

6 0.07511 0.60462 Do not reject H0 21 0.05287 0.93093 Do not reject H0

7 0.04039 0.995 Do not reject H0 22 0.05323 0.9275 Do not reject H0

8 0.05935 0.85587 Do not reject H0 23 0.05182 0.94041 Do not reject H0

9 0.07059 0.68055 Do not reject H0 24 0.08489 0.4489 Do not reject H0

10 0.03583 0.99912 Do not reject H0 25 0.07727 0.56878 Do not reject H0

11 0.04227 0.9913 Do not reject H0 26 0.04689 0.97433 Do not reject H0

12 0.06183 0.82078 Do not reject H0 27 0.04759 0.97056 Do not reject H0

13 0.06472 0.77658 Do not reject H0 28 0.06544 0.76527 Do not reject H0

14 0.08065 0.5141 Do not reject H0 29 0.04770 0.96996 Do not reject H0

15 0.05466 0.91291 Do not reject H0 30 0.06547 0.7647 Do not reject H0

273

Table 10.78: Kolmogorov-Smirnov test of the mutation rate in the range
[0.125,0.249].

Mutation rate in the range [0.125,0.249]
Run d p Conclusion Run d p Conclusion
1 0.06003 0.84657 Do not reject H0 16 0.04158 0.99283 Do not reject H0

2 0.04478 0.98366 Do not reject H0 17 0.04254 0.99064 Do not reject H0

3 0.04200 0.99192 Do not reject H0 18 0.06054 0.83941 Do not reject H0

4 0.04501 0.98278 Do not reject H0 19 0.07015 0.68794 Do not reject H0

5 0.04933 0.95971 Do not reject H0 20 0.04737 0.97178 Do not reject H0

6 0.05827 0.87014 Do not reject H0 21 0.06874 0.71133 Do not reject H0

7 0.05374 0.92251 Do not reject H0 22 0.05460 0.91354 Do not reject H0

8 0.07963 0.53047 Do not reject H0 23 0.04062 0.99463 Do not reject H0

9 0.05651 0.89204 Do not reject H0 24 0.04941 0.95919 Do not reject H0

10 0.05818 0.87128 Do not reject H0 25 0.09944 0.26356 Do not reject H0

11 0.09054 0.36926 Do not reject H0 26 0.05447 0.91496 Do not reject H0

12 0.0657 0.76112 Do not reject H0 27 0.07143 0.66634 Do not reject H0

13 0.0518 0.94066 Do not reject H0 28 0.04303 0.98933 Do not reject H0

14 0.05060 0.95046 Do not reject H0 29 0.04299 0.98945 Do not reject H0

15 0.04158 0.99283 Do not reject H0 30 0.03610 0.999 Do not reject H0

Table 10.79: Kolmogorov-Smirnov test of the mutation rate in the range
[0.25,0.3749].

Mutation rate in the range [0.25,0.3749]
Run d p Conclusion Run d p Conclusion
1 0.06034 0.84222 Do not reject H0 16 0.06180 0.82118 Do not reject H0

2 0.04265 0.99035 Do not reject H0 17 0.08206 0.49195 Do not reject H0

3 0.05305 0.9292 Do not reject H0 18 0.03631 0.9989 Do not reject H0

4 0.05776 0.87667 Do not reject H0 19 0.06365 0.79332 Do not reject H0

5 0.08003 0.52393 Do not reject H0 20 0.03997 0.99564 Do not reject H0

6 0.04450 0.98468 Do not reject H0 21 0.11844 0.11461 Do not reject H0

7 0.08829 0.39987 Do not reject H0 22 0.07674 0.57746 Do not reject H0

8 0.07165 0.66262 Do not reject H0 23 0.07660 0.57984 Do not reject H0

9 0.08438 0.45643 Do not reject H0 24 0.04755 0.9708 Do not reject H0

10 0.04446 0.98483 Do not reject H0 25 0.03981 0.99585 Do not reject H0

11 0.04867 0.96411 Do not reject H0 26 0.06684 0.7426 Do not reject H0

12 0.05186 0.94012 Do not reject H0 27 0.05262 0.93327 Do not reject H0

13 0.07759 0.56351 Do not reject H0 28 0.06284 0.80569 Do not reject H0

14 0.06985 0.69283 Do not reject H0 29 0.06792 0.72497 Do not reject H0

15 0.06180 0.82118 Do not reject H0 30 0.05649 0.89225 Do not reject H0

274

Table 10.80: Kolmogorov-Smirnov test of the mutation rate in the range [0.375,0.49].

Mutation rate in the range [0.375,0.49]
Run d p Conclusion Run d p Conclusion
1 0.05404 0.91945 Do not reject H0 16 0.04484 0.98343 Reject H0

2 0.05701 0.886 Do not reject H0 17 0.04210 0.9917 Reject H0

3 0.07265 0.64589 Do not reject H0 18 0.1003 0.25470 Do not reject H0

4 0.06072 0.83677 Do not reject H0 19 0.04950 0.95857 Reject H0

5 0.07601 0.58962 Do not reject H0 20 0.06962 0.69669 Do not reject H0

6 0.11339 0.14513 Do not reject H0 21 0.05881 0.8631 Do not reject H0

7 0.04139 0.99322 Do not reject H0 22 0.04786 0.969 Do not reject H0

8 0.05371 0.92275 Do not reject H0 23 0.05028 0.95293 Do not reject H0

9 0.07043 0.68309 Do not reject H0 24 0.10996 0.16928 Do not reject H0

10 0.03675 0.99867 Do not reject H0 25 0.05227 0.9365 Do not reject H0

11 0.05318 0.92803 Do not reject H0 26 0.05543 0.90452 Do not reject H0

12 0.09619 0.29937 Do not reject H0 27 0.07456 0.61388 Do not reject H0

13 0.04194 0.99207 Do not reject H0 28 0.08675 0.42166 Do not reject H0

14 0.06870 0.71196 Do not reject H0 29 0.05428 0.91694 Do not reject H0

15 0.04484 0.98343 Do not reject H0 30 0.06100 0.83275 Do not reject H0

Table 10.81: Kolmogorov-Smirnov test of the crossover rate in the range [0.6,0.69].

Crossover rate in the range [0.6,0.69]
Run d p Conclusion Run d p Conclusion
1 0.05069 0.94973 Do not reject H0 16 0.12268 0.09324 Do not reject H0

2 0.06959 0.69723 Do not reject H0 17 0.06202 0.818 Do not reject H0

3 0.08026 0.52029 Do not reject H0 18 0.04075 0.9944 Do not reject H0

4 0.06015 0.84484 Do not reject H0 19 0.05310 0.92872 Do not reject H0

5 0.07583 0.59264 Do not reject H0 20 0.05806 0.87291 Do not reject H0

6 0.08288 0.47929 Do not reject H0 21 0.05265 0.93304 Do not reject H0

7 0.07783 0.55959 Do not reject H0 22 0.06458 0.77884 Do not reject H0

8 0.08633 0.42769 Do not reject H0 23 0.05628 0.89472 Do not reject H0

9 0.05422 0.91756 Do not reject H0 24 0.08037 0.51849 Do not reject H0

10 0.06563 0.76214 Do not reject H0 25 0.07034 0.68462 Do not reject H0

11 0.04362 0.98761 Do not reject H0 26 0.04819 0.9671 Do not reject H0

12 0.04852 0.96502 Do not reject H0 27 0.05470 0.9125 Do not reject H0

13 0.05966 0.85158 Do not reject H0 28 0.10378 0.22088 Do not reject H0

14 0.05655 0.89158 Do not reject H0 29 0.03830 0.99756 Do not reject H0

15 0.12268 0.09324 Do not reject H0 30 0.06221 0.81519 Do not reject H0

275

Table 10.82: Kolmogorov-Smirnov test of the crossover rate in the range [0.7,0.79].

Crossover rate in the range [0.7,0.79]
Run d p Conclusion Run d p Conclusion
1 0.05730 0.8824 Do not reject H0 16 0.05206 0.93833 Do not reject H0

2 0.05992 0.84802 Do not reject H0 17 0.05575 0.90094 Do not reject H0

3 0.04940 0.9593 Do not reject H0 18 0.08470 0.45162 Do not reject H0

4 0.07571 0.59459 Do not reject H0 19 0.13325 0.05406 Do not reject H0

5 0.08539 0.44152 Do not reject H0 20 0.05642 0.89317 Do not reject H0

6 0.06465 0.77778 Do not reject H0 21 0.06891 0.70855 Do not reject H0

7 0.06153 0.8252 Do not reject H0 22 0.06210 0.81681 Do not reject H0

8 0.05659 0.8911 Do not reject H0 23 0.05845 0.86781 Do not reject H0

9 0.05751 0.8798 Do not reject H0 24 0.06260 0.80934 Do not reject H0

10 0.06866 0.71265 Do not reject H0 25 0.06903 0.7065 Do not reject H0

11 0.06812 0.7216 Do not reject H0 26 0.04800 0.9682 Do not reject H0

12 0.05907 0.85955 Do not reject H0 27 0.05439 0.91579 Do not reject H0

13 0.05573 0.90112 Do not reject H0 28 0.06770 0.72853 Do not reject H0

14 0.05396 0.9202 Do not reject H0 29 0.06132 0.82819 Do not reject H0

15 0.05206 0.93833 Do not reject H0 30 0.04210 0.9917 Do not reject H0

Table 10.83: Kolmogorov-Smirnov test of the crossover rate in the range [0.8,0.89].

Crossover rate in the range [0.8,0.89]
Run d p Conclusion Run d p Conclusion
1 0.09576 0.30431 Do not reject H0 16 0.03469 0.99948 Do not reject H0

2 0.08176 0.49659 Do not reject H0 17 0.07618 0.58673 Do not reject H0

3 0.05223 0.9368 Do not reject H0 18 0.05774 0.87696 Do not reject H0

4 0.04414 0.98593 Do not reject H0 19 0.05799 0.87374 Do not reject H0

5 0.08429 0.45785 Do not reject H0 20 0.04119 0.9936 Do not reject H0

6 0.04815 0.9673 Do not reject H0 21 0.05242 0.93514 Do not reject H0

7 0.06094 0.83367 Do not reject H0 22 0.04412 0.98598 Do not reject H0

8 0.04710 0.97322 Do not reject H0 23 0.04722 0.97257 Do not reject H0

9 0.09225 0.34705 Do not reject H0 24 0.06919 0.7039 Do not reject H0

10 0.08007 0.52338 Do not reject H0 25 0.07708 0.57186 Do not reject H0

11 0.06337 0.79753 Do not reject H0 26 0.06383 0.7906 Do not reject H0

12 0.05889 0.86205 Do not reject H0 27 0.07528 0.60178 Do not reject H0

13 0.06994 0.69138 Do not reject H0 28 0.10224 0.23539 Do not reject H0

14 0.04225 0.99134 Do not reject H0 29 0.07997 0.52499 Do not reject H0

15 0.03469 0.99948 Do not reject H0 30 0.05208 0.9382 Do not reject H0

276

Table 10.84: Kolmogorov-Smirnov test of the crossover rate in the range [0.9,0.99].

Crossover rate in the range [0.9,0.99]
Run d p Conclusion Run d p Conclusion
1 0.04397 0.9865 Do not reject H0 16 0.03440 0.99956 Do not reject H0

2 0.08160 0.49913 Do not reject H0 17 0.06001 0.84677 Do not reject H0

3 0.09953 0.26263 Do not reject H0 18 0.06070 0.83704 Do not reject H0

4 0.06757 0.73067 Do not reject H0 19 0.06780 0.72685 Do not reject H0

5 0.03335 0.99975 Do not reject H0 20 0.07079 0.67713 Do not reject H0

6 0.07316 0.63728 Do not reject H0 21 0.06531 0.76722 Do not reject H0

7 0.04879 0.96337 Do not reject H0 22 0.07474 0.61074 Do not reject H0

8 0.04891 0.96258 Do not reject H0 23 0.04197 0.99199 Do not reject H0

9 0.05973 0.85068 Do not reject H0 24 0.03552 0.99923 Do not reject H0

10 0.05440 0.91574 Do not reject H0 25 0.06603 0.75583 Do not reject H0

11 0.05703 0.88573 Do not reject H0 26 0.05861 0.8657 Do not reject H0

12 0.04130 0.9934 Do not reject H0 27 0.06319 0.80039 Do not reject H0

13 0.04967 0.95737 Do not reject H0 28 0.07285 0.64254 Do not reject H0

14 0.0633 0.79874 Do not reject H0 29 0.03970 0.996 Do not reject H0

15 0.03440 0.99956 Do not reject H0 30 0.09704 0.28966 Do not reject H0

Table 10.85: Kolmogorov-Smirnov test of the population size in the range [20,40].

Population size in the range [20,40]
Run d p Conclusion Run d p Conclusion
1 0.12180 0.09738 Do not reject H0 16 0.07002 0.6901 Do not reject H0

2 0.04482 0.9835 Do not reject H0 17 0.09535 0.30911 Do not reject H0

3 0.05161 0.94226 Do not reject H0 18 0.04774 0.96974 Do not reject H0

4 0.06423 0.78436 Do not reject H0 19 0.03851 0.99736 Do not reject H0

5 0.08858 0.39583 Do not reject H0 20 0.08427 0.45812 Do not reject H0

6 0.06224 0.81466 Do not reject H0 21 0.05920 0.85791 Do not reject H0

7 0.06549 0.76446 Do not reject H0 22 0.1136 0.14372 Do not reject H0

8 0.08852 0.39674 Do not reject H0 23 0.13860 0.04032 Reject H0

9 0.08622 0.42926 Do not reject H0 24 0.05975 0.85033 Do not reject H0

10 0.12800 0.07129 Do not reject H0 25 0.06441 0.78154 Do not reject H0

11 0.08512 0.44540 Do not reject H0 26 0.05934 0.85599 Do not reject H0

12 0.08822 0.40091 Do not reject H0 27 0.11973 0.10774 Do not reject H0

13 0.05634 0.89403 Do not reject H0 28 0.08117 0.50583 Do not reject H0

14 0.05495 0.90978 Do not reject H0 29 0.07302 0.63966 Do not reject H0

15 0.07002 0.6901 Do not reject H0 30 0.06609 0.75483 Do not reject H0

277

Table 10.86: Kolmogorov-Smirnov test of the population size in the range [41,60].

Population size in the range [41,60]
Run d p Conclusion Run d p Conclusion
1 0.08475 0.451 Do not reject H0 16 0.04787 0.96894 Do not reject H0

2 0.07311 0.63814 Do not reject H0 17 0.09799 0.27916 Do not reject H0

3 0.05609 0.89696 Do not reject H0 18 0.09099 0.36341 Do not reject H0

4 0.06060 0.83851 Do not reject H0 19 0.07147 0.66576 Do not reject H0

5 0.06753 0.73142 Do not reject H0 20 0.05400 0.91981 Do not reject H0

6 0.04592 0.97897 Do not reject H0 21 0.04413 0.98597 Do not reject H0

7 0.07456 0.61389 Do not reject H0 22 0.10110 0.24662 Do not reject H0

8 0.07083 0.67642 Do not reject H0 23 0.05284 0.93127 Do not reject H0

9 0.05676 0.889 Do not reject H0 24 0.08224 0.4892 Do not reject H0

10 0.03841 0.99746 Do not reject H0 25 0.05557 0.90292 Do not reject H0

11 0.06837 0.71745 Do not reject H0 26 0.09341 0.33255 Do not reject H0

12 0.04576 0.97969 Do not reject H0 27 0.06289 0.80485 Do not reject H0

13 0.08131 0.50372 Do not reject H0 28 0.04974 0.9569 Do not reject H0

14 0.04633 0.97706 Do not reject H0 29 0.05814 0.87188 Do not reject H0

15 0.04787 0.96894 Do not reject H0 30 0.08128 0.50416 Do not reject H0

Table 10.87: Kolmogorov-Smirnov test of the population size in the range [61,80].

Population size in the range [61,80]
Run d p Conclusion Run d p Conclusion
1 0.05275 0.93204 Do not reject H0 16 0.05749 0.88012 Do not reject H0

2 0.09787 0.28040 Do not reject H0 17 0.04522 0.98194 Do not reject H0

3 0.05448 0.91489 Do not reject H0 18 0.07373 0.62774 Do not reject H0

4 0.06216 0.81587 Do not reject H0 19 0.07970 0.52924 Do not reject H0

5 0.04485 0.98337 Do not reject H0 20 0.08565 0.43767 Do not reject H0

6 0.04104 0.99388 Do not reject H0 21 0.08552 0.43953 Do not reject H0

7 0.08237 0.48711 Do not reject H0 22 0.06419 0.78496 Do not reject H0

8 0.06556 0.76328 Do not reject H0 23 0.06415 0.78558 Do not reject H0

9 0.06608 0.75491 Do not reject H0 24 0.06402 0.78756 Do not reject H0

10 0.04713 0.97307 Do not reject H0 25 0.0701 0.68878 Do not reject H0

11 0.06066 0.83765 Do not reject H0 26 0.09470 0.31682 Do not reject H0

12 0.07221 0.6533 Do not reject H0 27 0.04631 0.97715 Do not reject H0

13 0.05011 0.95415 Do not reject H0 28 0.04808 0.96771 Do not reject H0

14 0.05864 0.86536 Do not reject H0 29 0.06884 0.70975 Do not reject H0

15 0.05749 0.88012 Do not reject H0 30 0.03565 0.99918 Do not reject H0

278

Table 10.88: Kolmogorov-Smirnov test of the population size in the range [81,100].

Population size in the range [81,100]
Run d p Conclusion Run d p Conclusion
1 0.07464 0.6125 Do not reject H0 16 0.09197 0.35072 Do not reject H0

2 0.09636 0.29739 Do not reject H0 17 0.06537 0.76625 Do not reject H0

3 0.06623 0.75254 Do not reject H0 18 0.08807 0.40303 Do not reject H0

4 0.06474 0.77628 Do not reject H0 19 0.06158 0.82436 Do not reject H0

5 0.10093 0.24828 Do not reject H0 20 0.06026 0.84337 Do not reject H0

6 0.06273 0.80735 Do not reject H0 21 0.08255 0.48427 Do not reject H0

7 0.06414 0.78578 Do not reject H0 22 0.05739 0.88137 Do not reject H0

8 0.06580 0.7595 Do not reject H0 23 0.04900 0.96195 Do not reject H0

9 0.07348 0.63197 Do not reject H0 24 0.05638 0.89357 Do not reject H0

10 0.06672 0.74458 Do not reject H0 25 0.07454 0.61407 Do not reject H0

11 0.06415 0.78562 Do not reject H0 26 0.07393 0.62443 Do not reject H0

12 0.05850 0.86717 Do not reject H0 27 0.05857 0.8662 Do not reject H0

13 0.03336 0.99975 Do not reject H0 28 0.06953 0.6982 Do not reject H0

14 0.05783 0.87581 Do not reject H0 29 0.05594 0.89872 Do not reject H0

15 0.09197 0.35072 Do not reject H0 30 0.04458 0.9844 Do not reject H0

Table 10.89: Kolmogorov-Smirnov test of the mating pool size in the range
[0.1,0.249].

Mating pool size in the range [0.1,0.249]
Run d p Conclusion Run d p Conclusion
1 0.06872 0.71176 Do not reject H0 16 0.04698 0.97383 Do not reject H0

2 0.04108 0.99382 Do not reject H0 17 0.06581 0.75932 Do not reject H0

3 0.04055 0.99475 Do not reject H0 18 0.05250 0.93439 Do not reject H0

4 0.05858 0.86617 Do not reject H0 19 0.03819 0.99765 Do not reject H0

5 0.06282 0.80601 Do not reject H0 20 0.06123 0.82944 Do not reject H0

6 0.03512 0.99936 Do not reject H0 21 0.06937 0.70094 Do not reject H0

7 0.04946 0.95884 Do not reject H0 22 0.04777 0.96953 Do not reject H0

8 0.06408 0.7866 Do not reject H0 23 0.08180 0.49595 Do not reject H0

9 0.07616 0.58718 Do not reject H0 24 0.08679 0.42105 Do not reject H0

10 0.08474 0.45115 Do not reject H0 25 0.07580 0.59304 Do not reject H0

11 0.05662 0.89076 Do not reject H0 26 0.04533 0.98148 Do not reject H0

12 0.04282 0.9899 Do not reject H0 27 0.06378 0.79131 Do not reject H0

13 0.05105 0.94693 Do not reject H0 28 0.06995 0.69125 Do not reject H0

14 0.08663 0.4234 Do not reject H0 29 0.06972 0.69512 Do not reject H0

15 0.04698 0.97383 Do not reject H0 30 0.05505 0.90877 Do not reject H0

279

Table 10.90: Kolmogorov-Smirnov test of the mating pool size in the range
[0.25,0.39].

Mating pool size in the range [0.25,0.39]
Run d p Conclusion Run d p Conclusion
1 0.05167 0.9417 Do not reject H0 16 0.09524 0.31047 Do not reject H0

2 0.0763 0.58488 Do not reject H0 17 0.04651 0.97623 Do not reject H0

3 0.04719 0.97274 Do not reject H0 18 0.06618 0.75337 Do not reject H0

4 0.03951 0.99625 Do not reject H0 19 0.04621 0.97764 Do not reject H0

5 0.06689 0.74185 Do not reject H0 20 0.06649 0.74825 Do not reject H0

6 0.05700 0.88608 Do not reject H0 21 0.05119 0.94574 Do not reject H0

7 0.07438 0.61684 Do not reject H0 22 0.07588 0.59183 Do not reject H0

8 0.05170 0.94147 Do not reject H0 23 0.05473 0.9122 Do not reject H0

9 0.04179 0.99239 Do not reject H0 24 0.05055 0.95087 Do not reject H0

10 0.05781 0.87609 Do not reject H0 25 0.06899 0.70725 Do not reject H0

11 0.06731 0.73497 Do not reject H0 26 0.04958 0.958 Do not reject H0

12 0.07998 0.52474 Do not reject H0 27 0.07219 0.65362 Do not reject H0

13 0.05730 0.88245 Do not reject H0 28 0.04440 0.98504 Do not reject H0

14 0.08458 0.45345 Do not reject H0 29 0.06604 0.75556 Do not reject H0

15 0.09524 0.31047 Do not reject H0 30 0.06649 0.74836 Do not reject H0

Table 10.91: Kolmogorov-Smirnov test of the mating pool size in the range
[0.4,0.549].

Mating pool size in the range [0.4,0.549]
Run d p Conclusion Run d p Conclusion
1 0.07439 0.61658 Do not reject H0 16 0.07667 0.57876 Do not reject H0

2 0.07788 0.55886 Do not reject H0 17 0.04778 0.96947 Do not reject H0

3 0.11871 0.11312 Do not reject H0 18 0.04240 0.99098 Do not reject H0

4 0.07710 0.57165 Do not reject H0 19 0.04105 0.99388 Do not reject H0

5 0.04603 0.97845 Do not reject H0 20 0.05191 0.9397 Do not reject H0

6 0.07456 0.61389 Do not reject H0 21 0.06671 0.74472 Do not reject H0

7 0.04010 0.99544 Do not reject H0 22 0.03670 0.9987 Do not reject H0

8 0.07910 0.53894 Do not reject H0 23 0.05398 0.92007 Do not reject H0

9 0.06623 0.75255 Do not reject H0 24 0.05569 0.9016 Do not reject H0

10 0.04441 0.985 Do not reject H0 25 0.04724 0.97247 Do not reject H0

11 0.05877 0.86361 Do not reject H0 26 0.07744 0.56598 Do not reject H0

12 0.04705 0.97347 Do not reject H0 27 0.07764 0.5627 Do not reject H0

13 0.06787 0.72568 Do not reject H0 28 0.05011 0.95419 Do not reject H0

14 0.05996 0.8475 Do not reject H0 29 0.04336 0.98838 Do not reject H0

15 0.07667 0.57876 Do not reject H0 30 0.05655 0.89161 Do not reject H0

280

Table 10.92: Kolmogorov-Smirnov test of the mating pool size in the range
[0.55,0.69].

Mating pool size in the range [0.55,0.69]
Run d p Conclusion Run d p Conclusion
1 0.08352 0.46953 Do not reject H0 16 0.09448 0.31944 Do not reject H0

2 0.03891 0.99695 Do not reject H0 17 0.04381 0.98701 Do not reject H0

3 0.07594 0.59075 Do not reject H0 18 0.06232 0.81354 Do not reject H0

4 0.05565 0.90205 Do not reject H0 19 0.05354 0.92452 Do not reject H0

5 0.05316 0.9282 Do not reject H0 20 0.06734 0.73448 Do not reject H0

6 0.06586 0.75848 Do not reject H0 21 0.09394 0.32608 Do not reject H0

7 0.05786 0.87543 Do not reject H0 22 0.11881 0.11261 Do not reject H0

8 0.10013 0.25648 Do not reject H0 23 0.11974 0.10768 Do not reject H0

9 0.05422 0.9176 Do not reject H0 24 0.05219 0.9372 Do not reject H0

10 0.06317 0.80073 Do not reject H0 25 0.06602 0.75584 Do not reject H0

11 0.05394 0.92045 Do not reject H0 26 0.04719 0.97276 Do not reject H0

12 0.06376 0.79159 Do not reject H0 27 0.04259 0.99052 Do not reject H0

13 0.08249 0.48533 Do not reject H0 28 0.04335 0.98841 Do not reject H0

14 0.07404 0.62251 Do not reject H0 29 0.08106 0.50759 Do not reject H0

15 0.09448 0.31944 Do not reject H0 30 0.08118 0.50571 Do not reject H0

Independence

Table 10.93: Durbin-Watson test of the mutation rate in the range [0.001,0.1249].

Mutation rate in the range [0.001,0.1249]
Run dw p Conclusion Run dw p Conclusion
1 1.8434 0.81218 Do not reject H0 16 1.7454 0.91608 Do not reject H0

2 1.8271 0.8334 Do not reject H0 17 2.0529 0.43836 Do not reject H0

3 1.4804 0.99695 Do not reject H0 18 1.8635 0.78383 Do not reject H0

4 2.2241 0.15434 Do not reject H0 19 1.883 0.7542 Do not reject H0

5 2.0962 0.35387 Do not reject H0 20 1.6935 0.9497 Do not reject H0

6 1.5782 0.98722 Do not reject H0 21 1.8902 0.74272 Do not reject H0

7 1.7706 0.89473 Do not reject H0 22 1.8248 0.83638 Do not reject H0

8 1.9379 0.66028 Do not reject H0 23 1.7981 0.86727 Do not reject H0

9 1.8602 0.78879 Do not reject H0 24 1.8098 0.8542 Do not reject H0

10 2.0292 0.48304 Do not reject H0 25 1.8804 0.75824 Do not reject H0

11 1.5559 0.99057 Do not reject H0 26 1.5159 0.9947 Do not reject H0

12 2.0542 0.43582 Do not reject H0 27 1.6351 0.9738 Do not reject H0

13 1.6376 0.97303 Do not reject H0 28 1.4285 0.99872 Do not reject H0

14 1.3442 0.99974 Do not reject H0 29 1.8322 0.82704 Do not reject H0

15 1.7454 0.91608 Do not reject H0 30 2.39 0.03137 Reject H0

281

Table 10.94: Durbin-Watson test of the mutation rate in the range [0.125,0.249].

Mutation rate in the range [0.125,0.249]
Run dw p Conclusion Run dw p Conclusion
1 1.5298 0.9935 Do not reject H0 16 2.3427 0.05272 Do not reject H0

2 2.024 0.49341 Do not reject H0 17 1.8461 0.8086 Do not reject H0

3 1.2541 0.99996 Do not reject H0 18 1.8894 0.74409 Do not reject H0

4 1.7768 0.88889 Do not reject H0 19 1.7502 0.91227 Do not reject H0

5 1.9435 0.65008 Do not reject H0 20 1.8487 0.80506 Do not reject H0

6 1.8119 0.85187 Do not reject H0 21 1.8788 0.76085 Do not reject H0

7 1.4693 0.99745 Do not reject H0 22 1.6184 0.9786 Do not reject H0

8 1.4467 0.99825 Do not reject H0 23 1.6510 0.96846 Do not reject H0

9 1.9292 0.67603 Do not reject H0 24 1.8095 0.85463 Do not reject H0

10 2.0074 0.52647 Do not reject H0 25 2.2596 0.11564 Do not reject H0

11 1.7409 0.91953 Do not reject H0 26 1.7791 0.88669 Do not reject H0

12 1.6675 0.96203 Do not reject H0 27 1.4382 0.99849 Do not reject H0

13 1.7379 0.92181 Do not reject H0 28 1.5281 0.99366 Do not reject H0

14 1.5915 0.98477 Do not reject H0 29 1.9528 0.63263 Do not reject H0

15 2.3427 0.05272 Do not reject H0 30 1.6799 0.9565 Do not reject H0

Table 10.95: Durbin-Watson test of the mutation rate in the range [0.25,0.3749].

Mutation rate in the range [0.25,0.3749]
Run dw p Conclusion Run dw p Conclusion
1 1.7673 0.8977 Do not reject H0 16 1.5720 0.98823 Do not reject H0

2 1.7726 0.89286 Do not reject H0 17 1.8961 0.73313 Do not reject H0

3 2.0465 0.45129 Do not reject H0 18 2.0609 0.42236 Do not reject H0

4 1.9458 0.64577 Do not reject H0 19 1.805 0.8597 Do not reject H0

5 1.4063 0.99914 Do not reject H0 20 2.1643 0.23668 Do not reject H0

6 2.3772 0.03628 Reject H0 21 1.6260 0.97653 Do not reject H0

7 2.0927 0.36055 Do not reject H0 22 1.5757 0.98764 Do not reject H0

8 2.0042 0.53279 Do not reject H0 23 2.0191 0.50317 Do not reject H0

9 1.3751 0.99952 Do not reject H0 24 1.8652 0.7814 Do not reject H0

10 2.0966 0.35323 Do not reject H0 25 1.7852 0.8807 Do not reject H0

11 1.7327 0.92553 Do not reject H0 26 2.2184 0.1612 Do not reject H0

12 2.0029 0.53542 Do not reject H0 27 2.0388 0.46709 Do not reject H0

13 1.5965 0.98375 Do not reject H0 28 2.0158 0.50977 Do not reject H0

14 1.7500 0.91242 Do not reject H0 29 2.0519 0.44045 Do not reject H0

15 1.5720 0.98823 Do not reject H0 30 1.8646 0.78235 Do not reject H0

282

Table 10.96: Durbin-Watson test of the mutation rate in the range [0.375,0.49].

Mutation rate in the range [0.375,0.49]
Run dw p Conclusion Run dw p Conclusion
1 1.8866 0.74844 Do not reject H0 16 2.1448 0.26788 Do not reject H0

2 2.0386 0.46745 Do not reject H0 17 1.8496 0.80377 Do not reject H0

3 2.2367 0.13971 Do not reject H0 18 2.2146 0.16601 Do not reject H0

4 1.7077 0.9418 Do not reject H0 19 1.7832 0.88272 Do not reject H0

5 2.0295 0.48242 Do not reject H0 20 1.9688 0.60225 Do not reject H0

6 1.7136 0.93827 Do not reject H0 21 1.8179 0.84468 Do not reject H0

7 2.2344 0.14231 Do not reject H0 22 1.9067 0.71534 Do not reject H0

8 1.9329 0.66949 Do not reject H0 23 1.8672 0.77849 Do not reject H0

9 1.9571 0.62451 Do not reject H0 24 2.0330 0.47904 Do not reject H0

10 2.1339 0.28628 Do not reject H0 25 2.4984 0.00769 Reject H0

11 1.7645 0.90024 Do not reject H0 26 2.0463 0.45163 Do not reject H0

12 2.1919 0.19598 Do not reject H0 27 1.8264 0.83428 Do not reject H0

13 2.0612 0.42172 Do not reject H0 28 2.2262 0.15189 Do not reject H0

14 1.6680 0.96181 Do not reject H0 29 1.9537 0.63103 Do not reject H0

15 2.1448 0.26788 Do not reject H0 30 1.9922 0.55653 Do not reject H0

Table 10.97: Durbin-Watson test of the crossover rate in the range [0.6,0.69].

Crossover rate in the range [0.6,0.69]
Run dw p Conclusion Run dw p Conclusion
1 2.3671 0.04063 Reject H0 16 1.8857 0.75002 Do not reject H0

2 2.2618 0.11351 Do not reject H0 17 1.8046 0.86015 Do not reject H0

3 2.1443 0.26864 Do not reject H0 18 1.5990 0.98322 Do not reject H0

4 1.9421 0.65273 Do not reject H0 19 1.8016 0.8635 Do not reject H0

5 1.6917 0.95064 Do not reject H0 20 1.8385 0.81883 Do not reject H0

6 1.4991 0.9959 Do not reject H0 21 1.8459 0.8089 Do not reject H0

7 1.8436 0.8119 Do not reject H0 22 1.9334 0.66846 Do not reject H0

8 2.0829 0.37925 Do not reject H0 23 1.6097 0.9808 Do not reject H0

9 1.8562 0.79451 Do not reject H0 24 1.9252 0.68334 Do not reject H0

10 1.6644 0.96332 Do not reject H0 25 2.1603 0.24284 Do not reject H0

11 1.7464 0.91532 Do not reject H0 26 2.3334 0.05801 Do not reject H0

12 1.9312 0.67257 Do not reject H0 27 1.7356 0.92345 Do not reject H0

13 2.0728 0.39874 Do not reject H0 28 2.5048 0.00701 Reject H0

14 1.9797 0.5812 Do not reject H0 29 1.8129 0.8507 Do not reject H0

15 1.8857 0.75002 Do not reject H0 30 1.9808 0.57895 Do not reject H0

283

Table 10.98: Durbin-Watson test of the crossover rate in the range [0.7,0.79].

Crossover rate in the range [0.7,0.79]
Run dw p Conclusion Run dw p Conclusion
1 2.1185 0.31302 Do not reject H0 16 1.9150 0.70113 Do not reject H0

2 2.1243 0.30285 Do not reject H0 17 1.5503 0.99128 Do not reject H0

3 1.8135 0.8499 Do not reject H0 18 2.3613 0.04325 Reject H0

4 1.5356 0.99293 Do not reject H0 19 2.0455 0.45324 Do not reject H0

5 1.7537 0.90942 Do not reject H0 20 1.9961 0.54882 Do not reject H0

6 1.7657 0.89916 Do not reject H0 21 1.7247 0.93106 Do not reject H0

7 1.9475 0.6427 Do not reject H0 22 1.8754 0.766 Do not reject H0

8 1.8830 0.75418 Do not reject H0 23 1.8648 0.78204 Do not reject H0

9 2.1567 0.24855 Do not reject H0 24 2.0019 0.53734 Do not reject H0

10 1.7238 0.9317 Do not reject H0 25 1.9106 0.7088 Do not reject H0

11 1.8924 0.73923 Do not reject H0 26 1.9576 0.62365 Do not reject H0

12 2.0654 0.41343 Do not reject H0 27 1.7805 0.88537 Do not reject H0

13 1.9430 0.65103 Do not reject H0 28 2.0465 0.45133 Do not reject H0

14 1.5188 0.99447 Do not reject H0 29 1.9101 0.70965 Do not reject H0

15 1.9150 0.70113 Do not reject H0 30 2.1079 0.33215 Do not reject H0

Table 10.99: Durbin-Watson test of the crossover rate in the range [0.8,0.89].

Crossover rate in the range [0.8,0.89]
Run dw p Conclusion Run dw p Conclusion
1 1.744 0.91717 Do not reject H0 16 1.8428 0.81298 Do not reject H0

2 1.7931 0.87265 Do not reject H0 17 1.6992 0.94664 Do not reject H0

3 1.7157 0.93692 Do not reject H0 18 2.0926 0.3607 Do not reject H0

4 1.8288 0.83137 Do not reject H0 19 2.1399 0.27606 Do not reject H0

5 1.7117 0.93944 Do not reject H0 20 1.7589 0.90508 Do not reject H0

6 1.8512 0.8015 Do not reject H0 21 1.5988 0.98326 Do not reject H0

7 1.4891 0.9965 Do not reject H0 22 1.8855 0.75022 Do not reject H0

8 2.0330 0.47898 Do not reject H0 23 1.8105 0.85339 Do not reject H0

9 1.7715 0.8939 Do not reject H0 24 2.0313 0.47895 Do not reject H0

10 2.4614 0.01288 Do not reject H0 25 2.2302 0.14716 Do not reject H0

11 2.2973 0.08257 Do not reject H0 26 1.6250 0.97681 Do not reject H0

12 1.9001 0.72656 Do not reject H0 27 1.9246 0.6844 Do not reject H0

13 1.4533 0.99805 Do not reject H0 28 2.0435 0.4575 Do not reject H0

14 1.9941 0.55284 Do not reject H0 29 2.4223 0.02131 Reject H0

15 1.8428 0.81298 Do not reject H0 30 1.6988 0.94688 Do not reject H0

284

Table 10.100: Durbin-Watson test of the crossover rate in the range [0.9,0.99].

Crossover rate in the range [0.9,0.99]
Run dw p Conclusion Run dw p Conclusion
1 1.9700 0.59997 Do not reject H0 16 1.9115 0.70716 Do not reject H0

2 1.7083 0.94143 Do not reject H0 17 2.2387 0.13753 Do not reject H0

3 1.7581 0.90577 Do not reject H0 18 1.7484 0.91373 Do not reject H0

4 2.1214 0.30791 Do not reject H0 19 2.0474 0.44945 Do not reject H0

5 1.7475 0.91444 Do not reject H0 20 1.4939 0.99622 Do not reject H0

6 2.0643 0.41554 Do not reject H0 21 1.8862 0.74907 Do not reject H0

7 1.4563 0.99795 Do not reject H0 22 1.9874 0.56607 Do not reject H0

8 2.2177 0.16218 Do not reject H0 23 1.9852 0.57038 Do not reject H0

9 2.1445 0.26844 Do not reject H0 24 1.9959 0.54933 Do not reject H0

10 1.5818 0.98659 Do not reject H0 25 2.1496 0.25995 Do not reject H0

11 2.2173 0.16268 Do not reject H0 26 1.8729 0.7698 Do not reject H0

12 1.7574 0.90636 Do not reject H0 27 2.0149 0.51157 Do not reject H0

13 2.1059 0.33589 Do not reject H0 28 1.9331 0.66906 Do not reject H0

14 1.7815 0.88437 Do not reject H0 29 1.7025 0.9448 Do not reject H0

15 1.9115 0.70716 Do not reject H0 30 2.017 0.50742 Do not reject H0

Table 10.101: Durbin-Watson test of the population size in the range [20,40].

Population size in the range [20,40]
Run dw p Conclusion Run dw p Conclusion
1 0.85847 1 Do not reject H0 16 1.8779 0.76215 Do not reject H0

2 1.1252 1 Do not reject H0 17 1.1544 1 Do not reject H0

3 1.1438 1 Do not reject H0 18 1.7977 0.86769 Do not reject H0

4 1.2074 0.99999 Do not reject H0 19 1.6969 0.9479 Do not reject H0

5 1.6424 0.97146 Do not reject H0 20 0.87244 1 Do not reject H0

6 0.95813 1 Do not reject H0 21 1.3376 0.99977 Do not reject H0

7 1.2443 0.99997 Do not reject H0 22 1.0582 1 Do not reject H0

8 1.0801 1 Do not reject H0 23 0.90157 1 Do not reject H0

9 1.3039 0.99989 Do not reject H0 24 1.5342 0.99307 Do not reject H0

10 0.79873 1 Do not reject H0 25 0.68786 1 Do not reject H0

11 1.2829 0.99993 Do not reject H0 26 0.9646 1 Do not reject H0

12 1.7389 0.92101 Do not reject H0 27 1.366 0.9996 Do not reject H0

13 1.2475 0.99997 Do not reject H0 28 1.3291 0.9998 Do not reject H0

14 1.0224 1 Do not reject H0 29 1.3384 0.99977 Do not reject H0

15 1.8779 0.76215 Do not reject H0 30 1.5493 0.9914 Do not reject H0

285

Table 10.102: Durbin-Watson test of the population size in the range [41,60].

Population size in the range [41,60]
Run dw p Conclusion Run dw p Conclusion
1 1.6344 0.97404 Do not reject H0 16 1.4780 0.99707 Do not reject H0

2 1.9781 0.58421 Do not reject H0 17 1.3563 0.99967 Do not reject H0

3 1.7421 0.91866 Do not reject H0 18 1.4475 0.99823 Do not reject H0

4 1.9717 0.59661 Do not reject H0 19 1.4529 0.99806 Do not reject H0

5 1.2482 0.99997 Do not reject H0 20 1.7406 0.91974 Do not reject H0

6 1.5608 0.9899 Do not reject H0 21 1.5328 0.9932 Do not reject H0

7 1.3789 0.99949 Do not reject H0 22 1.6751 0.95871 Do not reject H0

8 1.5378 0.9927 Do not reject H0 23 1.9228 0.68752 Do not reject H0

9 1.6135 0.97987 Do not reject H0 24 1.4908 0.9964 Do not reject H0

10 1.7561 0.90742 Do not reject H0 25 1.8309 0.8287 Do not reject H0

11 1.4324 0.99863 Do not reject H0 26 1.8488 0.80484 Do not reject H0

12 2.1001 0.34666 Do not reject H0 27 1.0425 1 Do not reject H0

13 2.0243 0.49281 Do not reject H0 28 1.5501 0.9913 Do not reject H0

14 1.1289 1 Do not reject H0 29 1.5320 0.99328 Do not reject H0

15 1.4780 0.99707 Do not reject H0 30 0.99795 1 Do not reject H0

Table 10.103: Durbin-Watson test of the population size in the range [61,80].

Population size in the range [61,80]
Run dw p Conclusion Run dw p Conclusion
1 1.7491 0.91315 Do not reject H0 16 1.6075 0.9813 Do not reject H0

2 1.9816 0.5774 Do not reject H0 17 1.9200 0.69253 Do not reject H0

3 1.5871 0.98561 Do not reject H0 18 1.6167 0.97906 Do not reject H0

4 1.7651 0.89969 Do not reject H0 19 1.5029 0.99566 Do not reject H0

5 2.2474 0.12809 Do not reject H0 20 1.7675 0.89752 Do not reject H0

6 1.0225 1 Do not reject H0 21 1.7781 0.88768 Do not reject H0

7 1.3709 0.99956 Do not reject H0 22 2.0097 0.52198 Do not reject H0

8 2.1183 0.31344 Do not reject H0 23 1.8574 0.7928 Do not reject H0

9 1.9758 0.5887 Do not reject H0 24 1.9234 0.6865 Do not reject H0

10 1.5924 0.9846 Do not reject H0 25 1.7226 0.93252 Do not reject H0

11 1.5084 0.99528 Do not reject H0 26 1.9927 0.55556 Do not reject H0

12 1.8653 0.78126 Do not reject H0 27 1.7116 0.93947 Do not reject H0

13 2.0959 0.35451 Do not reject H0 28 1.5832 0.98633 Do not reject H0

14 1.7694 0.89584 Do not reject H0 29 1.7937 0.87192 Do not reject H0

15 1.6075 0.9813 Do not reject H0 30 1.6745 0.95897 Do not reject H0

286

Table 10.104: Durbin-Watson test of the population size in the range [81,100].

Population size in the range [81,100]
Run dw p Conclusion Run dw p Conclusion
1 1.4040 0.99918 Do not reject H0 16 1.6143 0.97966 Do not reject H0

2 1.3409 0.99976 Do not reject H0 17 1.2464 0.99997 Do not reject H0

3 1.3725 0.99955 Do not reject H0 18 1.7035 0.94422 Do not reject H0

4 1.3586 0.99965 Do not reject H0 19 1.7344 0.92433 Do not reject H0

5 2.1047 0.33809 Do not reject H0 20 1.1552 1 Do not reject H0

6 1.1632 1 Do not reject H0 21 1.3824 0.99945 Do not reject H0

7 1.6843 0.9544 Do not reject H0 22 1.5732 0.98805 Do not reject H0

8 1.9289 0.67657 Do not reject H0 23 1.6289 0.9757 Do not reject H0

9 1.3706 0.99956 Do not reject H0 24 1.5274 0.99372 Do not reject H0

10 1.3649 0.9996 Do not reject H0 25 1.5016 0.99574 Do not reject H0

11 1.8094 0.85465 Do not reject H0 26 1.3078 0.99988 Do not reject H0

12 2.0996 0.34747 Do not reject H0 27 1.1079 1 Do not reject H0

13 1.3401 0.99976 Do not reject H0 28 1.2737 0.99994 Do not reject H0

14 1.1019 1 Do not reject H0 29 1.4984 0.99595 Do not reject H0

15 1.6143 0.97966 Do not reject H0 30 1.2362 0.99998 Do not reject H0

Table 10.105: Durbin-Watson test of the mating pool size in the range [0.1,0.249].

Mating pool size in the range [0.1,0.249]
Run dw p Conclusion Run dw p Conclusion
1 1.3818 0.99946 Do not reject H0 16 2.4908 0.00858 Reject H0

2 1.7506 0.91194 Do not reject H0 17 1.847 0.80734 Do not reject H0

3 1.8652 0.78134 Do not reject H0 18 1.7571 0.90664 Do not reject H0

4 2.0963 0.35364 Do not reject H0 19 1.7559 0.90759 Do not reject H0

5 1.7908 0.87503 Do not reject H0 20 1.6900 0.95155 Do not reject H0

6 2.0486 0.447 Do not reject H0 21 1.6787 0.95704 Do not reject H0

7 1.6654 0.96288 Do not reject H0 22 1.7455 0.91602 Do not reject H0

8 2.0952 0.35579 Do not reject H0 23 2.3767 0.03651 Reject H0

9 2.0859 0.37345 Do not reject H0 24 1.8738 0.76853 Do not reject H0

10 2.1856 0.20493 Do not reject H0 25 2.0791 0.38647 Do not reject H0

11 2.1343 0.28558 Do not reject H0 26 2.0835 0.37802 Do not reject H0

12 1.7385 0.92134 Do not reject H0 27 2.0972 0.35201 Do not reject H0

13 1.7546 0.90874 Do not reject H0 28 1.8787 0.76099 Do not reject H0

14 2.2069 0.17588 Do not reject H0 29 2.0029 0.53541 Do not reject H0

15 2.4908 0.00858 Reject H0 30 2.2356 0.14093 Do not reject H0

287

Table 10.106: Durbin-Watson test of the mating pool size in the range [0.25,0.39].

Mating pool size in the range [0.25,0.39]
Run dw p Conclusion Run dw p Conclusion
1 1.4057 0.99915 Do not reject H0 16 2.0579 0.42825 Do not reject H0

2 1.9768 0.5867 Do not reject H0 17 1.8516 0.80096 Do not reject H0

3 1.6182 0.97865 Do not reject H0 18 1.7223 0.93266 Do not reject H0

4 2.1292 0.29426 Do not reject H0 19 1.8350 0.82341 Do not reject H0

5 1.9294 0.67577 Do not reject H0 20 2.0182 0.50491 Do not reject H0

6 2.1325 0.28861 Do not reject H0 21 1.8054 0.85924 Do not reject H0

7 2.1227 0.30563 Do not reject H0 22 1.8763 0.76466 Do not reject H0

8 2.1568 0.24832 Do not reject H0 23 1.6862 0.95346 Do not reject H0

9 1.8425 0.81344 Do not reject H0 24 1.7005 0.94593 Do not reject H0

10 1.9534 0.63149 Do not reject H0 25 1.9052 0.71794 Do not reject H0

11 2.0471 0.45016 Do not reject H0 26 1.9398 0.65689 Do not reject H0

12 1.8234 0.83807 Do not reject H0 27 1.6316 0.97488 Do not reject H0

13 1.687 0.95305 Do not reject H0 28 1.9468 0.644 Do not reject H0

14 2.3027 0.07848 Do not reject H0 29 1.4701 0.99742 Do not reject H0

15 2.0579 0.42825 Do not reject H0 30 2.4752 0.01067 Reject H0

Table 10.107: Durbin-Watson test of the mating pool size in the range [0.4,0.549].

Mating pool size in the range [0.4,0.549]
Run dw p Conclusion Run dw p Conclusion
1 2.266 0.10944 Do not reject H0 16 1.4987 0.99593 Do not reject H0

2 1.9997 0.54181 Do not reject H0 17 1.5913 0.9848 Do not reject H0

3 1.9354 0.66495 Do not reject H0 18 2.0135 0.51445 Do not reject H0

4 1.8797 0.75943 Do not reject H0 19 2.0317 0.48168 Do not reject H0

5 2.0321 0.48098 Do not reject H0 20 1.8626 0.78522 Do not reject H0

6 1.9521 0.63394 Do not reject H0 21 1.7605 0.90374 Do not reject H0

7 1.9337 0.66799 Do not reject H0 22 1.9105 0.70895 Do not reject H0

8 1.6688 0.96147 Do not reject H0 23 1.8156 0.84751 Do not reject H0

9 1.9431 0.65083 Do not reject H0 24 1.9576 0.62365 Do not reject H0

10 2.1315 0.29024 Do not reject H0 25 1.7806 0.88526 Do not reject H0

11 1.8053 0.85937 Do not reject H0 26 1.9785 0.58352 Do not reject H0

12 2.1925 0.19517 Do not reject H0 27 1.6742 0.95912 Do not reject H0

13 1.9324 0.67042 Do not reject H0 28 2.0457 0.45287 Do not reject H0

14 2.2627 0.1126 Do not reject H0 29 1.9637 0.61211 Do not reject H0

15 1.4987 0.99593 Do not reject H0 30 2.2715 0.10433 Do not reject H0

288

Table 10.108: Durbin-Watson test of the mating pool size in the range [0.55,0.69].

Mating pool size in the range [0.55,0.69]
Run dw p Conclusion Run dw p Conclusion
1 1.797 0.86848 Do not reject H0 16 1.4578 0.9979 Do not reject H0

2 2.2495 0.12590 Do not reject H0 17 1.5671 0.98899 Do not reject H0

3 1.7901 0.87575 Do not reject H0 18 1.8211 0.84088 Do not reject H0

4 2.0588 0.4265 Do not reject H0 19 2.0743 0.39586 Do not reject H0

5 1.6265 0.97638 Do not reject H0 20 1.9839 0.57284 Do not reject H0

6 2.011 0.51937 Do not reject H0 21 1.9459 0.64569 Do not reject H0

7 1.7639 0.9008 Do not reject H0 22 2.1061 0.33548 Do not reject H0

8 2.0227 0.49605 Do not reject H0 23 1.7489 0.91337 Do not reject H0

9 1.8874 0.74725 Do not reject H0 24 2.1035 0.3404 Do not reject H0

10 2.5455 0.00378 Reject H0 25 1.4097 0.99909 Do not reject H0

11 2.0465 0.45119 Do not reject H0 26 1.5745 0.98783 Do not reject H0

12 1.7187 0.935 Do not reject H0 27 1.9567 0.62538 Do not reject H0

13 2.3088 0.07403 Do not reject H0 28 2.1062 0.33525 Do not reject H0

14 1.9722 0.59569 Do not reject H0 29 1.6541 0.96733 Do not reject H0

15 1.4578 0.9979 Do not reject H0 30 2.0621 0.41985 Do not reject H0

Homoscedasticity

Table 10.109: Breusch-Pagan test of the mutation rate in the range [0.001,0.1249].

Mutation rate in the range [0.001,0.1249]
Run bp p Conclusion Run bp p Conclusion
1 0.33095 0.5651 Do not reject H0 16 0.17138 0.67889 Do not reject H0

2 2.9345 0.08670 Do not reject H0 17 0.02282 0.8799 Do not reject H0

3 12.562 0.00039 Reject H0 18 1.9424 0.16340 Do not reject H0

4 0.551 0.45791 Do not reject H0 19 2.0232 0.15491 Do not reject H0

5 1.0080 0.31539 Do not reject H0 20 2.0443 0.15278 Do not reject H0

6 0.07447 0.78493 Do not reject H0 21 2.1561 0.14201 Do not reject H0

7 0.61306 0.43364 Do not reject H0 22 4.8403 0.02780 Reject H0

8 0.27768 0.59823 Do not reject H0 23 1.9151 0.1664 Do not reject H0

9 0.32785 0.56693 Do not reject H0 24 16.374 5.1e-05 Reject H0

10 2.1687 0.14084 Do not reject H0 25 3.0306 0.08170 Do not reject H0

11 0.18596 0.6663 Do not reject H0 26 0.02356 0.878 Do not reject H0

12 3.9921 0.05571 Do not reject H0 27 1.0966 0.29502 Do not reject H0

13 0.21440 0.64334 Do not reject H0 28 1.1531 0.2829 Do not reject H0

14 4.0691 0.05116 Do not reject H0 29 0.38433 0.5353 Do not reject H0

15 0.17138 0.67889 Do not reject H0 30 0.10605 0.74468 Do not reject H0

289

Table 10.110: Breusch-Pagan test of the mutation rate in the range [0.125,0.249].

Mutation rate in the range [0.125,0.249]
Run bp p Conclusion Run bp p Conclusion
1 3.4148 0.06461 Do not reject H0 16 1.9827 0.15910 Do not reject H0

2 1.7e-05 0.9967 Do not reject H0 17 0.46257 0.50642 Do not reject H0

3 4.7201 0.02981 Reject H0 18 5.0856 0.02412 Reject H0

4 2.3077 0.12873 Do not reject H0 19 0.17848 0.67268 Do not reject H0

5 0.86845 0.35138 Do not reject H0 20 0.53763 0.50342 Do not reject H0

6 1.6407 0.20022 Do not reject H0 21 3.9163 0.05078 Do not reject H0

7 3.4598 0.05070 Do not reject H0 22 0.37360 0.54105 Do not reject H0

8 1.4943 0.22155 Do not reject H0 23 0.43841 0.50789 Do not reject H0

9 6.6148 0.01011 Reject H0 24 2.0777 0.14947 Do not reject H0

10 5.7708 0.01629 Reject H0 25 2.1944 0.13852 Do not reject H0

11 0.47308 0.50158 Do not reject H0 26 0.97285 0.50934 Do not reject H0

12 3.2846 0.05045 Do not reject H0 27 3.0923 0.05307 Do not reject H0

13 3.6361 0.05654 Do not reject H0 28 5.1412 0.02336 Reject H0

14 3.6366 0.05652 Do not reject H0 29 2.4093 0.12062 Do not reject H0

15 12.927 0.00032 Reject H0 30 1.2210 0.26916 Do not reject H0

Table 10.111: Breusch-Pagan test of the mutation rate in the range [0.25,0.3749].

Mutation rate in the range [0.25,0.3749]
Run bp p Conclusion Run bp p Conclusion
1 3.1496 0.07594 Do not reject H0 16 1.2142 0.27049 Do not reject H0

2 0.11566 0.73379 Do not reject H0 17 0.02687 0.86978 Do not reject H0

3 1.0313 0.30985 Do not reject H0 18 6.0752 0.01370 Reject H0

4 0.04405 0.83375 Do not reject H0 19 3.0092 0.08279 Do not reject H0

5 1.9229 0.16554 Do not reject H0 20 2.7418 0.09775 Do not reject H0

6 1.0770 0.29936 Do not reject H0 21 2.4739 0.11575 Do not reject H0

7 1.1904 0.27525 Do not reject H0 22 0.57037 0.45011 Do not reject H0

8 6.1821 0.01290 Reject H0 23 8.1e-10 0.99998 Do not reject H0

9 7.2811 0.00696 Reject H0 24 0.51014 0.47508 Do not reject H0

10 2.7285 0.09857 Do not reject H0 25 1.9484 0.16276 Do not reject H0

11 2.8482 0.09147 Do not reject H0 26 0.46503 0.49528 Do not reject H0

12 0.26921 0.60386 Do not reject H0 27 1.9782 0.15958 Do not reject H0

13 1.9483 0.16277 Do not reject H0 28 2.3217 0.12758 Do not reject H0

14 3.1429 0.07625 Do not reject H0 29 3.9275 0.05075 Do not reject H0

15 1.2142 0.27049 Do not reject H0 30 1.2418 0.26513 Do not reject H0

290

Table 10.112: Breusch-Pagan test of the mutation rate in the range [0.375,0.49].

Mutation rate in the range [0.375,0.49]
Run bp p Conclusion Run bp p Conclusion
1 0.99712 0.31801 Do not reject H0 16 2.4284 0.11916 Do not reject H0

2 0.12803 0.72048 Do not reject H0 17 4.1032 0.05080 Do not reject H0

3 7.0107 0.00810 Reject H0 18 0.80054 0.37093 Do not reject H0

4 5.659 0.01736 Reject H0 19 7.8885 0.00497 Reject H0

5 0.00235 0.96133 Do not reject H0 20 2.8435 0.09174 Do not reject H0

6 1.1522 0.2831 Do not reject H0 21 0.22359 0.63632 Do not reject H0

7 0.49162 0.48321 Do not reject H0 22 0.26283 0.60818 Do not reject H0

8 5.2075 0.02248 Reject H0 23 2.0468 0.15253 Do not reject H0

9 3.9445 0.05002 Do not reject H0 24 1.2894 0.25616 Do not reject H0

10 2.131 0.14435 Do not reject H0 25 0.21419 0.6435 Do not reject H0

11 0.43679 0.50868 Do not reject H0 26 3.3481 0.06728 Do not reject H0

12 1.4412 0.22994 Do not reject H0 27 2.7221 0.09896 Do not reject H0

13 1.681 0.19479 Do not reject H0 28 0.46896 0.49347 Do not reject H0

14 0.3652 0.54563 Do not reject H0 29 0.36212 0.54733 Do not reject H0

15 1.2647 0.26077 Do not reject H0 30 2.2245 0.13584 Do not reject H0

Table 10.113: Breusch-Pagan test of the crossover rate in the range [0.6,0.69].

Crossover rate in the range [0.6,0.69]
Run bp p Conclusion Run bp p Conclusion
1 0.00461 0.94583 Do not reject H0 16 0.61822 0.43171 Do not reject H0

2 3.3397 0.06762 Do not reject H0 17 2.7692 0.09609 Do not reject H0

3 2.9071 0.08818 Do not reject H0 18 8.3102 0.00394 Reject H0

4 7.8554 0.00506 Reject H0 19 6.1718 0.01298 Reject H0

5 0.93391 0.33385 Do not reject H0 20 0.05567 0.81347 Do not reject H0

6 3.3007 0.06925 Do not reject H0 21 1.135 0.28671 Do not reject H0

7 0.12494 0.72374 Do not reject H0 22 6.4376 0.01117 Reject H0

8 2.7409 0.09780 Do not reject H0 23 0.95908 0.32742 Do not reject H0

9 1.3689 0.24200 Do not reject H0 24 7.3591 0.00667 Reject H0

10 1.2345 0.26653 Do not reject H0 25 3.1812 0.05087 Do not reject H0

11 0.3883 0.5332 Do not reject H0 26 0.97973 0.32227 Do not reject H0

12 0.08214 0.77441 Do not reject H0 27 0.07120 0.7896 Do not reject H0

13 2.6225 0.10536 Do not reject H0 28 0.12455 0.72415 Do not reject H0

14 2.2468 0.13389 Do not reject H0 29 1.5511 0.21297 Do not reject H0

15 0.61822 0.43171 Do not reject H0 30 3.778 0.05193 Do not reject H0

291

Table 10.114: Breusch-Pagan test of the crossover rate in the range [0.7,0.79].

Crossover rate in the range [0.7,0.79]
Run bp p Conclusion Run bp p Conclusion
1 1.2912 0.25582 Do not reject H0 16 0.00050 0.9821 Do not reject H0

2 3.0309 0.08169 Do not reject H0 17 0.74235 0.38891 Do not reject H0

3 8.9167 0.00282 Reject H0 18 3.6501 0.05606 Do not reject H0

4 0.5981 0.4393 Do not reject H0 19 0.17174 0.67857 Do not reject H0

5 2.1275 0.14468 Do not reject H0 20 2.0754 0.14969 Do not reject H0

6 3.5748 0.05866 Do not reject H0 21 0.99047 0.31963 Do not reject H0

7 0.7151 0.39775 Do not reject H0 22 1.4899 0.22223 Do not reject H0

8 5.2768 0.02161 Do not reject H0 23 3.6076 0.05183 Do not reject H0

9 1.6624 0.19727 Do not reject H0 24 0.05544 0.81385 Do not reject H0

10 3.3468 0.05696 Do not reject H0 25 0.16882 0.68117 Do not reject H0

11 0.83685 0.3603 Do not reject H0 26 1.4545 0.22781 Do not reject H0

12 1.4298 0.2318 Do not reject H0 27 0.04927 0.82433 Do not reject H0

13 1.2314 0.26714 Do not reject H0 28 7.0884 0.00775 Reject H0

14 0.0216 0.88295 Do not reject H0 29 6.7651 0.00929 Reject H0

15 0.0005 0.9821 Do not reject H0 30 3.8891 0.0567 Do not reject H0

Table 10.115: Breusch-Pagan test of the crossover rate in the range [0.8,0.89].

Crossover rate in the range [0.8,0.89]
Run bp p Conclusion Run bp p Conclusion
1 1.2838 0.2572 Do not reject H0 16 1.6636 0.19712 Do not reject H0

2 0.67711 0.41058 Do not reject H0 17 2.4668 0.11628 Do not reject H0

3 1.9104 0.16692 Do not reject H0 18 3.2012 0.05039 Do not reject H0

4 0.69136 0.4057 Do not reject H0 19 0.60476 0.43677 Do not reject H0

5 0.74351 0.38854 Do not reject H0 20 4.7185 0.02983 Do not reject H0

6 0.86622 0.352 Do not reject H0 21 8.9148 0.00282 Reject H0

7 0.02054 0.88603 Do not reject H0 22 2.1581 0.14182 Do not reject H0

8 3.7162 0.05987 Do not reject H0 23 8.7644 0.00307 Do not reject H0

9 6.2422 0.01247 Reject H0 24 2.4877 0.11474 Do not reject H0

10 0.10895 0.74134 Do not reject H0 25 2.8555 0.09106 Do not reject H0

11 1.9592 0.16160 Do not reject H0 26 0.33797 0.561 Do not reject H0

12 8.4872 0.00357 Reject H0 27 3.2845 0.05846 Do not reject H0

13 2.5447 0.11066 Do not reject H0 28 2.4143 0.12023 Do not reject H0

14 7.0029 0.00813 Reject H0 29 0.60476 0.43677 Do not reject H0

15 1.6636 0.19712 Do not reject H0 30 0.87073 0.35075 Do not reject H0

292

Table 10.116: Breusch-Pagan test of the crossover rate in the range [0.9,0.99].

Crossover rate in the range [0.9,0.99]
Run bp p Conclusion Run bp p Conclusion
1 2.3036 0.12908 Do not reject H0 16 8.015 0.00463 Reject H0

2 0.29182 0.58905 Do not reject H0 17 7.5958 0.00585 Reject H0

3 0.28122 0.5959 Do not reject H0 18 1.7266 0.18885 Do not reject H0

4 3.1161 0.05247 Do not reject H0 19 1.7054 0.19158 Do not reject H0

5 3.0036 0.08308 Do not reject H0 20 0.26785 0.60478 Do not reject H0

6 1.8998 0.16810 Do not reject H0 21 0.93363 0.33392 Do not reject H0

7 0.06227 0.80294 Do not reject H0 22 0.00012 0.9911 Do not reject H0

8 6.5796 0.01031 Reject H0 23 1.5673 0.2106 Do not reject H0

9 0.44857 0.50301 Do not reject H0 24 10.165 0.00143 Reject H0

10 1.6362 0.20085 Do not reject H0 25 2.0716 0.15006 Do not reject H0

11 3.5483 0.05960 Do not reject H0 26 1.1242 0.28901 Do not reject H0

12 2.4204 0.11976 Do not reject H0 27 1.5326 0.21573 Do not reject H0

13 2.8456 0.09162 Do not reject H0 28 3.5067 0.05894 Do not reject H0

14 3.7889 0.05864 Do not reject H0 29 0.96773 0.32525 Do not reject H0

15 8.015 0.00463 Reject H0 30 0.03033 0.86173 Do not reject H0

Table 10.117: Breusch-Pagan test of the population size in the range [20,40].

Population size in the range [20,40]
Run bp p Conclusion Run bp p Conclusion
1 17.872 2.3e-05 Reject H0 16 13.623 0.00022 Reject H0

2 6.5991 0.01020 Reject H0 17 1.3639 0.24287 Do not reject H0

3 17.785 2.4e-05 Reject H0 18 2.3354 0.12647 Do not reject H0

4 1.3291 0.24896 Do not reject H0 19 13.021 0.00030 Reject H0

5 0.46919 0.49336 Do not reject H0 20 10.549 0.00116 Reject H0

6 4.6647 0.03078 Reject H0 21 3.1957 0.07383 Do not reject H0

7 7.5714 0.00593 Reject H0 22 10.903 0.00096 Reject H0

8 0.06502 0.79872 Do not reject H0 23 11.977 0.00053 Reject H0

9 2.1037 0.14695 Do not reject H0 24 13.781 0.00020 Reject H0

10 13.013 0.00030 Reject H0 25 3.5618 0.05912 Do not reject H0

11 11.253 0.00079 Reject H0 26 0.88074 0.348 Do not reject H0

12 0.21539 0.64258 Do not reject H0 27 0.72967 0.39299 Do not reject H0

13 4.4313 0.03528 Reject H0 28 4.3007 0.03809 Reject H0

14 8.124 0.00436 Reject H0 29 6.9842 0.00822 Reject H0

15 1.0276 0.31072 Do not reject H0 30 4.7852 0.02870 Reject H0

293

Table 10.118: Breusch-Pagan test of the population size in the range [41,60].

Population size in the range [41,60]
Run bp p Conclusion Run bp p Conclusion
1 17.872 2.3e-05 Reject H0 16 13.623 0.00022 Reject H0

2 6.5991 0.01020 Reject H0 17 1.3639 0.24287 Do not reject H0

3 17.785 2.4e-05 Reject H0 18 2.3354 0.12647 Do not reject H0

4 1.3291 0.24896 Do not reject H0 19 13.021 0.00030 Reject H0

5 0.46919 0.49336 Do not reject H0 20 10.549 0.00116 Reject H0

6 4.6647 0.03078 Reject H0 21 3.1957 0.07383 Do not reject H0

7 7.5714 0.00593 Reject H0 22 10.903 0.00096 Reject H0

8 0.06502 0.79872 Do not reject H0 23 11.977 0.00053 Reject H0

9 2.1037 0.14695 Do not reject H0 24 13.781 0.00020 Reject H0

10 13.013 0.00030 Reject H0 25 3.5618 0.05912 Do not reject H0

11 11.253 0.00079 Reject H0 26 0.88074 0.348 Do not reject H0

12 0.21539 0.64258 Do not reject H0 27 0.72967 0.39299 Do not reject H0

13 4.4313 0.03528 Reject H0 28 4.3007 0.03809 Reject H0

14 8.124 0.0043682 Reject H0 29 6.9842 0.00822 Reject H0

15 3.3926 0.06548 Do not reject H0 30 13.716 0.00021 Reject H0

Table 10.119: Breusch-Pagan test of the population size in the range [61,80].

Population size in the range [61,80]
Run bp p Conclusion Run bp p Conclusion
1 4.2e-05 0.99483 Do not reject H0 16 5.7596 0.01639 Reject H0

2 1.7587 0.18479 Do not reject H0 17 10.573 0.00114 Reject H0

3 0.0012 0.97163 Do not reject H0 18 5.6065 0.01789 Reject H0

4 9.988 0.00157 Reject H0 19 0.94935 0.32989 Do not reject H0

5 2.9940 0.08357 Do not reject H0 20 5.3801 0.02036 Reject H0

6 7.1645 0.00743 Reject H0 21 1.5311 0.21595 Do not reject H0

7 4.0835 0.05030 Do not reject H0 22 0.41154 0.52119 Do not reject H0

8 4.3887 0.03617 Reject H0 23 4.2231 0.03987 Reject H0

9 6.5346 0.01058 Reject H0 24 3.9058 0.05012 Do not reject H0

10 4.0481 0.05022 Do not reject H0 25 14.533 0.00013 Reject H0

11 2.7712 0.09597 Do not reject H0 26 1.4732 0.22484 Do not reject H0

12 1.2687 0.26002 Do not reject H0 27 0.09639 0.7562 Do not reject H0

13 1.0195 0.31263 Do not reject H0 28 13.735 0.00021 Reject H0

14 1.3742 0.24110 Do not reject H0 29 4.5118 0.03366 Reject H0

15 5.7596 0.01639 Reject H0 30 3.2492 0.07145 Do not reject H0

294

Table 10.120: Breusch-Pagan test of the population size in the range [81,100].

Population size in the range [81,100]
Run bp p Conclusion Run bp p Conclusion
1 3.4257 0.06419 Do not reject H0 16 7.5629 0.00595 Reject H0

2 0.00466 0.94555 Do not reject H0 17 8.0127 0.00464 Reject H0

3 2.6391 0.10426 Do not reject H0 18 2.8465 0.09157 Do not reject H0

4 8.566 0.00342 Reject H0 19 2.4367 0.11852 Do not reject H0

5 0.28128 0.59587 Do not reject H0 20 1.8193 0.17739 Do not reject H0

6 4.1544 0.04152 Reject H0 21 3.7925 0.05148 Do not reject H0

7 0.47661 0.48996 Do not reject H0 22 2.6453 0.10386 Do not reject H0

8 6.5258 0.01063 Reject H0 23 0.81495 0.36666 Do not reject H0

9 7.4832 0.00622 Reject H0 24 7.4898 0.00620 Reject H0

10 5.4566 0.01949 Reject H0 25 0.43339 0.51033 Do not reject H0

11 0.11447 0.73511 Do not reject H0 26 2.0399 0.15321 Do not reject H0

12 0.64132 0.42323 Do not reject H0 27 1.4928 0.22178 Do not reject H0

13 7.1744 0.00739 Reject H0 28 4.9099 0.02670 Reject H0

14 9.4299 0.00213 Reject H0 29 5.885 0.01527 Reject H0

15 7.5629 0.00595 Reject H0 30 6.7616 0.00931 Reject H0

Table 10.121: Breusch-Pagan test of the mating pool size in the range [0.1,0.249].

Mating pool size in the range [0.1,0.249]
Run bp p Conclusion Run bp p Conclusion
1 0.94497 0.331 Do not reject H0 16 3.6802 0.05506 Do not reject H0

2 1.9533 0.16224 Do not reject H0 17 6.3022 0.01205 Reject H0

3 0.29747 0.58547 Do not reject H0 18 5.0454 0.02469 Reject H0

4 1.702 0.19203 Do not reject H0 19 6.8769 0.00873 Reject H0

5 3.0305 0.08171 Do not reject H0 20 0.06177 0.80372 Do not reject H0

6 3.2763 0.05161 Do not reject H0 21 0.44423 0.50509 Do not reject H0

7 1.0648 0.30212 Do not reject H0 22 1.2547 0.26266 Do not reject H0

8 0.33393 0.56336 Do not reject H0 23 1.4983 0.22093 Do not reject H0

9 1.3193 0.25071 Do not reject H0 24 0.07125 0.78951 Do not reject H0

10 2.576 0.10849 Do not reject H0 25 10.053 0.00152 Reject H0

11 2.9878 0.08389 Do not reject H0 26 3.8477 0.05768 Do not reject H0

12 5.9055 0.01509 Reject H0 27 3.4326 0.06392 Do not reject H0

13 0.37783 0.53877 Do not reject H0 28 4.2561 0.03910 Do not reject H0

14 5.1845 0.02278 Reject H0 29 1.6333 0.20125 Do not reject H0

15 3.6802 0.05506 Do not reject H0 30 3.4414 0.06358 Do not reject H0

295

Table 10.122: Breusch-Pagan test of the mating pool size in the range [0.25,0.39].

Mating pool size in the range [0.25,0.39]
Run bp p Conclusion Run bp p Conclusion
1 0.16064 0.68857 Do not reject H0 16 0.03851 0.84442 Do not reject H0

2 0.61267 0.43378 Do not reject H0 17 1.9837 0.159 Do not reject H0

3 1.7597 0.18466 Do not reject H0 18 5.7061 0.01690 Reject H0

4 2.1424 0.14328 Do not reject H0 19 8.4065 0.00373 Reject H0

5 6.9687 0.00829 Reject H0 20 0.38148 0.53681 Do not reject H0

6 4.0187 0.05041 Do not reject H0 21 1.9213 0.16572 Do not reject H0

7 2.3033 0.1291 Do not reject H0 22 6.614 0.01011 Reject H0

8 2.1495 0.14262 Do not reject H0 23 2.869 0.09030 Do not reject H0

9 2.8412 0.09187 Do not reject H0 24 1.1804 0.27727 Do not reject H0

10 3.4227 0.06430 Do not reject H0 25 0.03290 0.85605 Do not reject H0

11 1.5518 0.21287 Do not reject H0 26 1.0603 0.30315 Do not reject H0

12 2.7696 0.09606 Do not reject H0 27 0.79586 0.37233 Do not reject H0

13 4.0049 0.05054 Do not reject H0 28 5.5935 0.01802 Reject H0

14 5.9114 0.01504 Do not reject H0 29 2.0676 0.15046 Do not reject H0

15 0.03851 0.84442 Do not reject H0 30 2.8006 0.09423 Do not reject H0

Table 10.123: Breusch-Pagan test of the mating pool size in the range [0.4,0.549].

Mating pool size in the range [0.4,0.549]
Run bp p Conclusion Run bp p Conclusion
1 2.5112 0.11304 Do not reject H0 16 0.37360 0.54105 Do not reject H0

2 3.3009 0.06924 Do not reject H0 17 3.1480 0.05016 Do not reject H0

3 3.8286 0.05038 Do not reject H0 18 0.51974 0.47095 Do not reject H0

4 3.1558 0.07565 Do not reject H0 19 6.0653 0.01378 Reject H0

5 1.2924 0.25561 Do not reject H0 20 1.2846 0.25704 Do not reject H0

6 1.8737 0.17105 Do not reject H0 21 1.4404 0.23008 Do not reject H0

7 0.40191 0.5261 Do not reject H0 22 2.0777 0.14946 Do not reject H0

8 7.9917 0.00469 Reject H0 23 2.4709 0.11597 Do not reject H0

9 3.6773 0.05515 Do not reject H0 24 1.1329 0.28715 Do not reject H0

10 8.388 0.00377 Reject H0 25 1.2971 0.25475 Do not reject H0

11 0.16582 0.68386 Do not reject H0 26 3.6744 0.05525 Do not reject H0

12 6.6838 0.00972 Reject H0 27 13.804 0.00020 Reject H0

13 1.0222 0.31201 Do not reject H0 28 0.39939 0.52741 Do not reject H0

14 3.3087 0.06891 Do not reject H0 29 1.6912 0.19344 Do not reject H0

15 6.0337 0.01403 Do not reject H0 30 6.2603 0.01234 Reject H0

296

Table 10.124: Breusch-Pagan test of the mating pool size in the range [0.55,0.69].

Mating pool size in the range [0.55,0.69]
Run bp p Conclusion Run bp p Conclusion
1 0.94497 0.331 Do not reject H0 16 9.0625 0.00260 Reject H0

2 4.0079 0.05096 Do not reject H0 17 3.2826 0.07001 Do not reject H0

3 0.73228 0.39215 Do not reject H0 18 1.2178 0.26979 Do not reject H0

4 4.0048 0.05035 Do not reject H0 19 0.03222 0.85753 Do not reject H0

5 4.5011 0.03387 Reject H0 20 3.7364 0.05323 Do not reject H0

6 5.3092 0.02121 Reject H0 21 3.848 0.05080 Do not reject H0

7 0.43849 0.50785 Do not reject H0 22 0.41478 0.51955 Do not reject H0

8 4.33 0.03744 Reject H0 23 0.33627 0.56199 Do not reject H0

9 2.1024 0.14707 Do not reject H0 24 0.09525 0.7576 Do not reject H0

10 5.7217 0.01675 Reject H0 25 0.15222 0.69642 Do not reject H0

11 2.9108 0.08798 Do not reject H0 26 0.00279 0.95782 Do not reject H0

12 0.04263 0.83642 Do not reject H0 27 0.01523 0.90176 Do not reject H0

13 3.0071 0.0829 Do not reject H0 28 4.5426 0.03306 Do not reject H0

14 2.595 0.10720 Do not reject H0 29 0.40207 0.52602 Do not reject H0

15 9.0625 0.00260 Reject H0 30 3.2051 0.07341 Do not reject H0

Stationarity

Table 10.125: KPSS test of the mutation rate in the range [0.001,0.1249].

Mutation rate in the range [0.001,0.1249]
Run kpss p Conclusion Run kpss p Conclusion
1 0.16265 0.03612 Reject H0 16 0.04003 > 0.1 Do not reject H0

2 0.08724 > 0.1 Do not reject H0 17 0.02661 > 0.1 Do not reject H0

3 0.09788 > 0.1 Do not reject H0 18 0.13144 0.07697 Do not reject H0

4 0.05469 > 0.1 Do not reject H0 19 0.04268 > 0.1 Do not reject H0

5 0.04446 > 0.1 Do not reject H0 20 0.28369 0.01 Reject H0

6 0.11654 > 0.1 Do not reject H0 21 0.04845 > 0.1 Do not reject H0

7 0.07631 > 0.1 Do not reject H0 22 0.06317 > 0.1 Do not reject H0

8 0.15647 0.05027 Do not reject H0 23 0.05084 > 0.1 Do not reject H0

9 0.04593 > 0.1 Do not reject H0 24 0.06225 > 0.1 Do not reject H0

10 0.04818 > 0.1 Do not reject H0 25 0.04310 > 0.1 Do not reject H0

11 0.04571 > 0.1 Do not reject H0 26 0.15152 0.05039 Do not reject H0

12 0.02902 > 0.1 Do not reject H0 27 0.16983 0.03014 Reject H0

13 0.21138 0.01173 Reject H0 28 0.14833 0.05080 Do not reject H0

14 0.23021 0.01 Reject H0 29 0.31377 0.01 Reject H0

15 0.04003 > 0.1 Do not reject H0 30 0.02501 > 0.1 Do not reject H0

297

Table 10.126: KPSS test of the mutation rate in the range [0.125,0.249].

Mutation rate in the range [0.125,0.249]
Run kpss p Conclusion Run kpss p Conclusion
1 0.15234 0.05047 Do not reject H0 16 0.1312 0.07740 Do not reject H0

2 0.12590 0.08721 Do not reject H0 17 0.13924 0.06251 Do not reject H0

3 0.25007 0.01 Reject H0 18 0.04548 > 0.1 Do not reject H0

4 0.08747 > 0.1 Do not reject H0 19 0.15003 0.05030 Do not reject H0

5 0.21131 0.01175 Reject H0 20 0.18483 0.02168 Reject H0

6 0.18672 0.02098 Reject H0 21 0.17934 0.02374 Reject H0

7 0.33137 0.01 Reject H0 22 0.05205 > 0.1 Do not reject H0

8 0.20675 0.01346 Reject H0 23 0.07664 > 0.1 Do not reject H0

9 0.08616 > 0.1 Do not reject H0 24 0.18604 0.02123 Reject H0

10 0.05749 > 0.1 Do not reject H0 25 0.10257 > 0.1 Do not reject H0

11 0.10896 > 0.1 Do not reject H0 26 0.20818 0.01293 Reject H0

12 0.17637 0.02486 Reject H0 27 0.13447 0.07135 Do not reject H0

13 0.12405 0.09065 Do not reject H0 28 0.14415 0.05342 Do not reject H0

14 0.10322 > 0.1 Do not reject H0 29 0.21711 0.01 Reject H0

15 0.1312 0.07740 Do not reject H0 30 0.08919 > 0.1 Do not reject H0

Table 10.127: KPSS test of the mutation rate in the range [0.25,0.3749].

Mutation rate in the range [0.25,0.3749]
Run kpss p Conclusion Run kpss p Conclusion
1 0.07288 > 0.1 Do not reject H0 16 0.11866 > 0.1 Do not reject H0

2 0.08451 > 0.1 Do not reject H0 17 0.05941 > 0.1 Do not reject H0

3 0.10637 > 0.1 Do not reject H0 18 0.13056 0.05786 Do not reject H0

4 0.18965 0.01988 Reject H0 19 0.21891 0.01 Reject H0

5 0.06851 > 0.1 Do not reject H0 20 0.10131 > 0.1 Do not reject H0

6 0.05077 > 0.1 Do not reject H0 21 0.20526 0.01402 Reject H0

7 0.12550 0.08795 Do not reject H0 22 0.12394 0.09085 Do not reject H0

8 0.10337 > 0.1 Do not reject H0 23 0.35168 0.01 Do not reject H0

9 0.23276 0.01 Reject H0 24 0.09973 > 0.1 Do not reject H0

10 0.04087 > 0.1 Do not reject H0 25 0.12554 0.08788 Do not reject H0

11 0.05237 > 0.1 Do not reject H0 26 0.03901 > 0.1 Do not reject H0

12 0.10060 > 0.1 Do not reject H0 27 0.03994 > 0.1 Do not reject H0

13 0.07378 > 0.1 Do not reject H0 28 0.15151 0.05040 Do not reject H0

14 0.12661 0.08589 Do not reject H0 29 0.13577 0.06894 Do not reject H0

15 0.11866 > 0.1 Do not reject H0 30 0.07106 > 0.1 Do not reject H0

298

Table 10.128: KPSS test of the mutation rate in the range [0.375,0.49].

Mutation rate in the range [0.375,0.49]
Run kpss p Conclusion Run kpss p Conclusion
1 0.16802 0.031648 Reject H0 16 0.079227 > 0.1 Do not reject H0

2 0.13072 0.0783 Do not reject H0 17 0.24549 0.01 Reject H0

3 0.12227 0.09395 Do not reject H0 18 0.040092 > 0.1 Do not reject H0

4 0.07440 > 0.1 Do not reject H0 19 0.11682 > 0.1 Do not reject H0

5 0.34922 0.01 Reject H0 20 0.049547 > 0.1 Do not reject H0

6 0.15589 0.0503424 Do not reject H0 21 0.12188 0.09467 Do not reject H0

7 0.09730 > 0.1 Do not reject H0 22 0.15176 0.0502 Do not reject H0

8 0.14151 0.058307 Do not reject H0 23 0.20760 0.01315 Reject H0

9 0.04277 > 0.1 Do not reject H0 24 0.050193 > 0.1 Do not reject H0

10 0.18418 0.021934 Reject H0 25 0.028706 > 0.1 Do not reject H0

11 0.08939 > 0.1 Do not reject H0 26 0.14036 0.06044 Do not reject H0

12 0.12949 0.080578 Do not reject H0 27 0.15527 0.05022 Do not reject H0

13 0.21166 0.011629 Reject H0 28 0.038411 > 0.1 Do not reject H0

14 0.13796 0.064892 Do not reject H0 29 0.12029 0.09761 Do not reject H0

15 0.07922 > 0.1 Do not reject H0 30 0.087629 > 0.1 Do not reject H0

Table 10.129: KPSS test of the crossover rate in the range [0.6,0.69].

Crossover rate in the range [0.6,0.69]
Run kpss p Conclusion Run kpss p Conclusion
1 0.10964 0.05697 Do not reject H0 16 0.07534 > 0.1 Do not reject H0

2 0.05626 > 0.1 Do not reject H0 17 0.28315 0.01 Reject H0

3 0.05198 > 0.1 Do not reject H0 18 0.23634 0.01 Reject H0

4 0.10722 0.05898 Do not reject H0 19 0.1858 0.02132 Reject H0

5 0.09440 > 0.1 Do not reject H0 20 0.13713 0.06641 Do not reject H0

6 0.07109 > 0.1 Do not reject H0 21 0.13459 0.07112 Do not reject H0

7 0.04609 > 0.1 Do not reject H0 22 0.075262 > 0.1 Do not reject H0

8 0.18120 0.02305 Reject H0 23 0.19359 0.01840 Reject H0

9 0.08158 > 0.1 Do not reject H0 24 0.09824 > 0.1 Do not reject H0

10 0.20176 0.01534 Reject H0 25 0.11519 > 0.1 Do not reject H0

11 0.09605 > 0.1 Do not reject H0 26 0.080864 > 0.1 Do not reject H0

12 0.0917 > 0.1 Do not reject H0 27 0.081877 > 0.1 Do not reject H0

13 0.08025 > 0.1 Do not reject H0 28 0.10825 > 0.1 Do not reject H0

14 0.10697 > 0.1 Do not reject H0 29 0.10111 > 0.1 Do not reject H0

15 0.07534 > 0.1 Do not reject H0 30 0.036998 > 0.1 Do not reject H0

299

Table 10.130: KPSS test of the crossover rate in the range [0.7,0.79].

Crossover rate in the range [0.7,0.79]
Run kpss p Conclusion Run kpss p Conclusion
1 0.10802 0.05832 Do not reject H0 16 0.06333 > 0.1 Do not reject H0

2 0.11418 > 0.1 Do not reject H0 17 0.22928 0.01 Reject H0

3 0.19353 0.01842 Reject H0 18 0.10611 > 0.1 Do not reject H0

4 0.43711 0.01 Reject H0 19 0.22043 0.01 Reject H0

5 0.10149 0.05542 Do not reject H0 20 0.10578 > 0.1 Do not reject H0

6 0.08382 > 0.1 Do not reject H0 21 0.06789 > 0.1 Do not reject H0

7 0.19621 0.01742 Reject H0 22 0.06578 > 0.1 Do not reject H0

8 0.03942 > 0.1 Do not reject H0 23 0.24472 0.01 Reject H0

9 0.11491 > 0.1 Do not reject H0 24 0.03516 > 0.1 Do not reject H0

10 0.05882 > 0.1 Do not reject H0 25 0.06774 > 0.1 Do not reject H0

11 0.08223 > 0.1 Do not reject H0 26 0.14118 0.05893 Do not reject H0

12 0.10908 0.05743 Do not reject H0 27 0.17373 0.02689 Reject H0

13 0.10986 0.05011 Do not reject H0 28 0.07727 > 0.1 Do not reject H0

14 0.18365 0.02213 Reject H0 29 0.10298 > 0.1 Do not reject H0

15 0.06333 > 0.1 Do not reject H0 30 0.09122 > 0.1 Do not reject H0

Table 10.131: KPSS test of the crossover rate in the range [0.8,0.89].

Crossover rate in the range [0.8,0.89]
Run kpss p Conclusion Run kpss p Conclusion
1 0.14148 0.05836 Do not reject H0 16 0.05749 > 0.1 Do not reject H0

2 0.12410 0.09055 Do not reject H0 17 0.13077 0.05602 Do not reject H0

3 0.12907 0.08134 Do not reject H0 18 0.06414 > 0.1 Do not reject H0

4 0.1196 0.09889 Do not reject H0 19 0.19833 0.01662 Reject H0

5 0.07163 > 0.1 Do not reject H0 20 0.16055 0.03787 Reject H0

6 0.03990 > 0.1 Do not reject H0 21 0.12190 0.09463 Do not reject H0

7 0.09896 > 0.1 Do not reject H0 22 0.16194 0.03671 Reject H0

8 0.08315 > 0.1 Do not reject H0 23 0.16188 0.03677 Reject H0

9 0.12020 0.09777 Do not reject H0 24 0.16917 0.03069 Reject H0

10 0.10399 > 0.1 Do not reject H0 25 0.12172 0.09496 Do not reject H0

11 0.04341 > 0.1 Do not reject H0 26 0.12296 0.09266 Do not reject H0

12 0.05027 > 0.1 Do not reject H0 27 0.12866 0.08210 Do not reject H0

13 0.20166 0.01537 Reject H0 28 0.12033 0.09754 Do not reject H0

14 0.08747 > 0.1 Do not reject H0 29 0.12097 0.09634 Do not reject H0

15 0.05749 > 0.1 Do not reject H0 30 0.13894 0.06307 Do not reject H0

300

Table 10.132: KPSS test of the crossover rate in the range [0.9,0.99].

Crossover rate in the range [0.9,0.99]
Run kpss p Conclusion Run kpss p Conclusion
1 0.07922 > 0.1 Do not reject H0 16 0.02956 > 0.1 Do not reject H0

2 0.13823 0.06438 Do not reject H0 17 0.08515 > 0.1 Do not reject H0

3 0.14713 0.05072 Do not reject H0 18 0.12719 0.08482 Do not reject H0

4 0.06111 > 0.1 Do not reject H0 19 0.13002 0.07958 Do not reject H0

5 0.11268 > 0.1 Do not reject H0 20 0.08427 > 0.1 Do not reject H0

6 0.09993 > 0.1 Do not reject H0 21 0.05825 > 0.1 Do not reject H0

7 0.14552 0.05089 Do not reject H0 22 0.04363 > 0.1 Do not reject H0

8 0.10397 > 0.1 Do not reject H0 23 0.12342 0.09182 Do not reject H0

9 0.05152 > 0.1 Do not reject H0 24 0.13295 0.07416 Do not reject H0

10 0.08416 > 0.1 Do not reject H0 25 0.03553 > 0.1 Do not reject H0

11 0.21760 0.01 Reject H0 26 0.04902 > 0.1 Do not reject H0

12 0.08742 > 0.1 Do not reject H0 27 0.19796 0.01676 Reject H0

13 0.08145 > 0.1 Do not reject H0 28 0.04369 > 0.1 Do not reject H0

14 0.14319 0.05520 Do not reject H0 29 0.08917 > 0.1 Do not reject H0

15 0.02956 > 0.1 Do not reject H0 30 0.07057 > 0.1 Do not reject H0

Table 10.133: KPSS test of the population size in the range [20,40].

Population size in the range [20,40]
Run kpss p Conclusion Run kpss p Conclusion
1 0.30711 0.01 Reject H0 16 0.30209 0.01 Reject H0

2 0.39549 0.01 Reject H0 17 0.57824 0.01 Reject H0

3 0.23875 0.01 Reject H0 18 0.36562 0.01 Reject H0

4 0.15338 0.04385 Reject H0 19 0.46786 0.01 Reject H0

5 0.33213 0.01 Reject H0 20 0.44741 0.01 Reject H0

6 0.38826 0.01 Reject H0 21 0.34654 0.01 Reject H0

7 0.09869 > 0.1 Do not reject H0 22 0.53479 0.01 Reject H0

8 0.41719 0.01 Reject H0 23 0.32438 0.01 Reject H0

9 0.29629 0.01 Reject H0 24 0.4927 0.01 Reject H0

10 0.12031 0.09757 Do not reject H0 25 0.33462 0.01 Reject H0

11 0.38525 0.01 Reject H0 26 0.05351 > 0.1 Do not reject H0

12 0.22160 0.01 Reject H0 27 0.41098 0.01 Reject H0

13 0.44008 0.01 Reject H0 28 0.32131 0.01 Reject H0

14 0.33700 0.01 Reject H0 29 0.40164 0.01 Reject H0

15 0.26018 0.01 Reject H0 30 0.4663 0.01 Reject H0

301

Table 10.134: KPSS test of the population size in the range [41,60].

Population size in the range [41,60]
Run kpss p Conclusion Run kpss p Conclusion
1 0.30455 0.01 Reject H0 16 0.15020 0.04650 Reject H0

2 0.22119 0.01 Reject H0 17 0.23122 0.01 Reject H0

3 0.40016 0.01 Reject H0 18 0.24446 0.01 Reject H0

4 0.41991 0.01 Reject H0 19 0.26465 0.01 Reject H0

5 0.15633 0.04139 Reject H0 20 0.27724 0.01 Reject H0

6 0.11170 > 0.1 Do not reject H0 21 0.20618 0.01368 Reject H0

7 0.4449 0.01 Reject H0 22 0.24849 0.01 Reject H0

8 0.1842 0.02192 Reject H0 23 0.1968 0.0172 Reject H0

9 0.29323 0.01 Reject H0 24 0.20926 0.01252 Reject H0

10 0.27789 0.01 Reject H0 25 0.28091 0.01 Reject H0

11 0.19337 0.01848 Reject H0 26 0.49318 0.01 Reject H0

12 0.42723 0.01 Reject H0 27 0.2475 0.01 Reject H0

13 0.15972 0.03856 Reject H0 28 0.15443 0.04297 Reject H0

14 0.28723 0.01 Reject H0 29 0.17402 0.02665 Reject H0

15 0.24526 0.01 Reject H0 30 0.51235 0.01 Reject H0

Table 10.135: KPSS test of the population size in the range [61,80].

Population size in the range [61,80]
Run kpss p Conclusion Run kpss p Conclusion
1 0.26521 0.01 Reject H0 16 0.24856 0.01 Reject H0

2 0.08768 > 0.1 Do not reject H0 17 0.33024 0.01 Reject H0

3 0.26671 0.01 Reject H0 18 0.32051 0.01 Reject H0

4 0.28079 0.01 Reject H0 19 0.35646 0.01 Reject H0

5 0.04504 > 0.1 Do not reject H0 20 0.1729 0.02758 Reject H0

6 0.14994 0.05 Do not reject H0 21 0.34162 0.01 Reject H0

7 0.3865 0.01 Reject H0 22 0.33052 0.01 Reject H0

8 0.12418 0.09041 Do not reject H0 23 0.26031 0.01 Reject H0

9 0.32584 0.01 Reject H0 24 0.19790 0.01678 Reject H0

10 0.21565 0.01013 Reject H0 25 0.24326 0.01 Reject H0

11 0.19197 0.01901 Reject H0 26 0.44369 0.01 Reject H0

12 0.23618 0.01 Reject H0 27 0.26786 0.01 Reject H0

13 0.21779 0.01 Reject H0 28 0.14876 0.05070 Do not reject H0

14 0.24935 0.01 Reject H0 29 0.45822 0.01 Reject H0

15 0.24856 0.01 Reject H0 30 0.23207 0.01 Reject H0

302

Table 10.136: KPSS test of the population size in the range [81,100].

Population size in the range [81,100]
Run kpss p Conclusion Run kpss p Conclusion
1 0.09473 > 0.1 Do not reject H0 16 0.33264 0.01 Reject H0

2 0.07325 > 0.1 Do not reject H0 17 0.11081 > 0.1 Do not reject H0

3 0.05209 > 0.1 Do not reject H0 18 0.16165 0.03695 Reject H0

4 0.16506 0.03411 Reject H0 19 0.18540 0.02147 Reject H0

5 0.09920 > 0.1 Do not reject H0 20 0.22187 0.01 Reject H0

6 0.14336 0.05488 Do not reject H0 21 0.16693 0.03255 Reject H0

7 0.15152 0.05039 Do not reject H0 22 0.16353 0.03539 Reject H0

8 0.07268 > 0.1 Do not reject H0 23 0.35409 0.01 Reject H0

9 0.41516 0.01 Reject H0 24 0.07009 > 0.1 Do not reject H0

10 0.10895 > 0.1 Do not reject H0 25 0.09275 > 0.1 Do not reject H0

11 0.22944 0.01 Reject H0 26 0.23057 0.01 Reject H0

12 0.09439 > 0.1 Do not reject H0 27 0.07456 > 0.1 Do not reject H0

13 0.02800 > 0.1 Do not reject H0 28 0.17434 0.02638 Reject H0

14 0.24904 0.01 Reject H0 29 0.20846 0.01282 Reject H0

15 0.33264 0.01 Reject H0 30 0.15809 0.03992 Reject H0

Table 10.137: KPSS test of the mating pool size in the range [0.1,0.249].

Mating pool size in the range [0.1,0.249]
Run kpss p Conclusion Run kpss p Conclusion
1 0.18219 0.02267 Reject H0 16 0.06906 > 0.1 Do not reject H0

2 0.14344 0.05474 Do not reject H0 17 0.11387 > 0.1 Do not reject H0

3 0.10656 > 0.1 Do not reject H0 18 0.11303 > 0.1 Do not reject H0

4 0.17943 0.02371 Reject H0 19 0.1849 0.02166 Reject H0

5 0.40736 0.01 Reject H0 20 0.19804 0.01673 Reject H0

6 0.06891 > 0.1 Do not reject H0 21 0.11429 > 0.1 Do not reject H0

7 0.08714 > 0.1 Do not reject H0 22 0.05808 > 0.1 Do not reject H0

8 0.14332 0.05496 Do not reject H0 23 0.07322 > 0.1 Do not reject H0

9 0.21602 0.01 Reject H0 24 0.14610 0.05091 Do not reject H0

10 0.17306 0.02744 Reject H0 25 0.10310 > 0.1 Do not reject H0

11 0.20056 0.01578 Reject H0 26 0.20386 0.01455 Reject H0

12 0.18733 0.02075 Reject H0 27 0.08312 > 0.1 Do not reject H0

13 0.24975 0.01 Reject H0 28 0.093 > 0.1 Do not reject H0

14 0.09285 > 0.1 Do not reject H0 29 0.08282 > 0.1 Do not reject H0

15 0.06906 > 0.1 Do not reject H0 30 0.14047 0.06023 Do not reject H0

303

Table 10.138: KPSS test of the mating pool size in the range [0.25,0.39].

Mating pool size in the range [0.25,0.39]
Run kpss p Conclusion Run kpss p Conclusion
1 0.12811 0.05024 Do not reject H0 16 0.14372 0.05422 Do not reject H0

2 0.07763 > 0.1 Do not reject H0 17 0.05986 > 0.1 Do not reject H0

3 0.05558 > 0.1 Do not reject H0 18 0.10652 > 0.1 Do not reject H0

4 0.09760 > 0.1 Do not reject H0 19 0.05166 > 0.1 Do not reject H0

5 0.14169 0.05798 Do not reject H0 20 0.08567 > 0.1 Do not reject H0

6 0.09805 > 0.1 Do not reject H0 21 0.07759 > 0.1 Do not reject H0

7 0.08948 > 0.1 Do not reject H0 22 0.09420 > 0.1 Do not reject H0

8 0.05716 > 0.1 Do not reject H0 23 0.1263 0.08648 Do not reject H0

9 0.09062 > 0.1 Do not reject H0 24 0.06055 > 0.1 Do not reject H0

10 0.06688 > 0.1 Do not reject H0 25 0.05519 > 0.1 Do not reject H0

11 0.03402 > 0.1 Do not reject H0 26 0.12354 0.09158 Do not reject H0

12 0.13192 0.07608 Do not reject H0 27 0.13621 0.06813 Do not reject H0

13 0.26866 0.01 Reject H0 28 0.13338 0.07336 Do not reject H0

14 0.05937 > 0.1 Do not reject H0 29 0.12925 0.08101 Do not reject H0

15 0.14372 0.05422 Do not reject H0 30 0.03435 > 0.1 Do not reject H0

Table 10.139: KPSS test of the mating pool size in the range [0.4,0.549].

Mating pool size in the range [0.4,0.549]
Run kpss p Conclusion Run kpss p Conclusion
1 0.05436 > 0.1 Do not reject H0 16 0.21438 0.01060 Reject H0

2 0.27486 0.01 Reject H0 17 0.14849 0.05092 Do not reject H0

3 0.21100 0.01187 Reject H0 18 0.10645 > 0.1 Do not reject H0

4 0.23396 0.01 Reject H0 19 0.12496 0.08896 Do not reject H0

5 0.09685 > 0.1 Do not reject H0 20 0.07780 > 0.1 Do not reject H0

6 0.03300 > 0.1 Do not reject H0 21 0.18583 0.02131 Reject H0

7 0.05396 > 0.1 Do not reject H0 22 0.16346 0.03545 Reject H0

8 0.21034 0.01212 Reject H0 23 0.08378 > 0.1 Do not reject H0

9 0.05131 > 0.1 Do not reject H0 24 0.10665 > 0.1 Do not reject H0

10 0.12755 0.08416 Do not reject H0 25 0.07154 > 0.1 Do not reject H0

11 0.13333 0.07345 Do not reject H0 26 0.05245 > 0.1 Do not reject H0

12 0.26486 0.01 Reject H0 27 0.13887 0.06319 Do not reject H0

13 0.17062 0.02948 Reject H0 28 0.05559 > 0.1 Do not reject H0

14 0.07737 > 0.1 Do not reject H0 29 0.03566 > 0.1 Do not reject H0

15 0.21438 0.01060 Reject H0 30 0.10054 > 0.1 Do not reject H0

304

Table 10.140: KPSS test of the mating pool size in the range [0.55,0.69].

Mating pool size in the range [0.55,0.69]
Run kpss p Conclusion Run kpss p Conclusion
1 0.16135 0.03720 Reject H0 16 0.10032 > 0.1 Do not reject H0

2 0.18514 0.02157 Reject H0 17 0.11569 > 0.1 Do not reject H0

3 0.08462 > 0.1 Do not reject H0 18 0.04007 > 0.1 Do not reject H0

4 0.05979 > 0.1 Do not reject H0 19 0.13181 0.07627 Do not reject H0

5 0.08239 > 0.1 Do not reject H0 20 0.19672 0.01723 Reject H0

6 0.09574 > 0.1 Do not reject H0 21 0.14414 0.05032 Do not reject H0

7 0.08822 > 0.1 Do not reject H0 22 0.06138 > 0.1 Do not reject H0

8 0.17311 0.02741 Reject H0 23 0.17689 0.02466 Reject H0

9 0.12379 0.09113 Do not reject H0 24 0.07024 > 0.1 Do not reject H0

10 0.03703 > 0.1 Do not reject H0 25 0.11718 > 0.1 Do not reject H0

11 0.16470 0.03442 Reject H0 26 0.19053 0.01955 Reject H0

12 0.06117 > 0.1 Do not reject H0 27 0.08621 > 0.1 Do not reject H0

13 0.03682 > 0.1 Do not reject H0 28 0.12723 0.08475 Do not reject H0

14 0.12978 0.08003 Do not reject H0 29 0.10173 > 0.1 Do not reject H0

15 0.10032 > 0.1 Do not reject H0 30 0.15212 0.05049 Do not reject H0

305

306

Bibliography

[1] Belarmino Adenso-Dı́az and Manuel Laguna. Fine-tuning of algorithms us-

ing fractional experimental designs and local search. Operations Research,

54(1):99–114, 2006.

[2] Mikael Åkerholm, Johan Fredriksson, Kristian Sandström, and Ivica Crnkovic.

Quality attribute support in a component technology for vehicular software. In

Fourth Conference on Software Engineering Research and Practice in Sweden,

2004.

[3] Aldeida Aleti, Stefan Björnander, Lars Grunske, and Indika Meedeniya.

ArcheOpterix: An extendable tool for architecture optimization ofAADL

models. In Model-based Methodologies for Pervasive and Embedded Software

(MOMPES), pages 61–71. ACM and IEEE Digital Libraries, 2009.

[4] Aldeida Aleti, Lars Grunske, Indika Meedeniya, and Irene Moser. Let the ants

deploy your software - an ACO based deployment optimisation strategy. In

ASE, pages 505–509. IEEE Computer Society, 2009.

[5] Aldeida Aleti and Irene Moser. Predictive parameter control. In 13th Annual

Genetic and Evolutionary Computation Conference, GECCO 2011, Proceed-

ings, Dublin, Ireland, July 12-16, 2011, pages 561–568, 2011.

[6] Peter J. Angeline. Adaptive and self-adaptive evolutionary computations.

In Marimuthu Palaniswami and Yianni Attikiouzel, editors, Computational

307

Intelligence: A Dynamic Systems Perspective, pages 152–163. IEEE Press,

1995.

[7] Jaroslaw Arabas, Zbigniew Michalewicz, and Jan J. Mulawka. GAVaPS - A

genetic algorithm with varying population size. In International Conference

on Evolutionary Computation, pages 73–78, 1994.

[8] David A.Van Veldhuizen and Gary B. Lamont. On measuring multiobjec-

tive evolutionary algorithm performance. In Proc. of the 2000 Congress on

Evolutionary Computation, pages 204–211. IEEE Service Center, 2000.

[9] Thomas Bäck. The interaction of mutation rate, selection, and self-adaptation

within a genetic algorithm. In Parallel Problem Solving from Nature 2,PPSN-

II, pages 87–96. Elsevier, 1992.

[10] Thomas Bäck. Selective pressure in evolutionary algorithms: A characteri-

zation of selection mechanisms. In International Conference on Evolutionary

Computation, pages 57–62, 1994.

[11] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University

Press, 1996.

[12] Thomas Bäck. Introduction to the special issue: Self-adaptation. Evolutionary

Computation, 9(2):iii–iv, 2001.

[13] Thomas Bäck, Ágoston Endre Eiben, and Nikolai A. L. van der Vaart. An

empirical study on gas without parameters. In Parallel Problem Solving from

Nature – PPSN VI (6th PPSN’2000), volume 1917 of Lecture Notes in Com-

puter Science (LNCS), pages 315–324. Springer-Verlag (New York), 2000.

308

[14] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook

of Evolutionary Computation. Institute of Physics Publishing and Oxford

University Press, 1997.

[15] Thomas Bäck and Martin Schütz. Intelligent mutation rate control in canon-

ical genetic algorithms. Lecture Notes in Computer Science, 1079:158–167,

1996.

[16] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement

strategies for the F-race algorithm: Sampling design and iterative refinement.

In Hybrid Metaheuristics, 4th International Workshop, Proceedings, volume

4771 of Lecture Notes in Computer Science, pages 108–122. Springer, 2007.

[17] Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss. Sequential

parameter optimization. In IEEE Congress on Evolutionary Computation,

pages 773–780. IEEE, 2005.

[18] M. Cecilia Bastarrica, Alexander A. Shvartsman, and Steven A. Demurjian.

A binary integer programming model for optimal object distribution. In

OPODIS, pages 211–226. Hermes, 1998.

[19] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies - A compre-

hensive introduction. Natural Computing, 1(1):3–52, 2002.

[20] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A

racing algorithm for configuring metaheuristics. In GECCO 2002: Proceed-

ings of the Genetic and Evolutionary Computation Conference, pages 11–18.

Morgan Kaufmann Publishers, 2002.

309

[21] Tobias Blickle, Jürgen Teich, and Lothar Thiele. System-level synthesis using

evolutionary algorithms. Design Automation for Embedded Systems, 3(1):23–

58, 1998.

[22] Mark F. Bramlette. Initialization, mutation and selection methods in genetic

algorithms. In Proceedings of the Fourth International Conference on Genetic

Algorithms. Morgan Kaufmann Publishers, 1991.

[23] H. J. Bremermann, M. Rogson, and S. Salaff. Global properties of evolution

processes. In Natural Automata and Useful Simulations, pages 3–41, 1966.

[24] H.J. Bremermann. The evolution of intelligence. the nervous system as a model

of its environment. Technical Report 477(17), Department of Mathematics,

University of Washington, Seattle, 1958.

[25] Manfred Broy. Challenges in automotive software engineering. In International

Conference on Software Engineering (ICSE’06), pages 33–42. ACM, 2006.

[26] Ken Butts, Dave Bostic, Alongkrit Chutinan, Jeffrey Cook, Bill Milam, and

Yanxin Wang. Usage scenarios for an automated model compiler. Lecture

Notes in Computer Science, 2211:66–79, 2001.

[27] Radu Calinescu and Marta Kwiatkowska. Using quantitative analysis to im-

plement autonomic it systems. In International Conference on Software En-

gineering, ICSE, pages 100–110. IEEE, 2009.

[28] Raphaël Cerf. Critical control of a genetic algorithm. CoRR, abs/1005.3390,

2010.

[29] Jorge Cervantes and Christopher R. Stephens. Limitations of existing mu-

tation rate heuristics and how a rank GA overcomes them. IEEE Trans.

Evolutionary Computation, 13(2):369–397, 2009.

310

[30] Maw-Sheng Chern. On the computational complexity of reliability redundancy

allocation in a series system. Operations Research Letters, 11(5):309315, June

1992.

[31] David W. Coit and Alice E. Smith. Reliability optimization of series-

parallel systems using a genetic algorithm. Reliability, IEEE Transactions

on, 45(2):254 – 260, 266, June 1996.

[32] David W. Coit and Alice E. Smith. Reliability optimization of series-

parallel systems using a genetic algorithm. IEEE Transactions on Reliability,

45(2):254–260, 1996.

[33] David Corne, Martin J. Oates, and Douglas B. Kell. On fitness distributions

and expected fitness gain of mutation rates in parallel evolutionary algorithms.

In Parallel Problem Solving from Nature – PPSN VII (7th PPSN’02), volume

2439 of Lecture Notes in Computer Science (LNCS), pages 132–141. Springer-

Verlag, 2002.

[34] Vittorio Cortellessa, Fabrizio Marinelli, and Pasqualina Potena. Automated

selection of software components based on cost/reliability tradeoff. In Software

Architecture,(EWSA’06), volume 4344, pages 66–81. Springer, 2006.

[35] Steven P. Coy, Bruce L. Golden, George C. Runger, and Edward A. Wasil.

Using experimental design to find effective parameter settings for heuristics.

Journal of Heuristics, 7(1):77–97, 2001.

[36] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and Michèle Sebag. Adap-

tive operator selection with dynamic multi-armed bandits. In GECCO ’08:

Proceedings of the 10th annual conference on Genetic and evolutionary com-

putation, pages 913–920. ACM, 2008.

311

[37] Lawrence Davis. Adapting operator probabilities in genetic algorithms. In Pro-

ceedings of the Third International Conference on Genetic Algorithms, pages

70–79. Morgan Kaufman, 1989.

[38] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Rein-

gold, 1991.

[39] Kenneth A. De Jong. An analysis of the behavior of a class of genetic adaptive

systems. PhD thesis, University of Michigan, 1995.

[40] Kalyanmoy Deb and Hans-Georg Beyer. Self-adaptive genetic algorithms with

simulated binary crossover. Evolutionary Computation, 9(2):197–221, 2001.

[41] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A

fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE-Evolutionary

Computation, 6:182–197, 2002.

[42] K. A. DeJong. Analysis of Behavior of a Class of Genetic Adaptive Systems.

PhD thesis, The University of Michigan, 1975.

[43] Kenneth DeJong. Parameter setting in EAs: a 30 year perspective. In Fer-

nando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz, editors, Parame-

ter Setting in Evolutionary Algorithms, volume 54 of Studies in Computational

Intelligence, pages 1–18. Springer, 2007.

[44] Jianguo Ding, Bernd J. Krämer, Yingcai Bai, and Hansheng Chen. Backward

inference in bayesian networks for distributed systems management. Network

Systems Management, 13(4):409–427, 2005.

[45] Ágoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Param-

eter control in evolutionary algorithms. IEEE Transations on Evolutionary

Computation, 3(2):124–141, 2007.

312

[46] Ágoston Endre Eiben and M. Jelasity. A critical note on experimental research

methodology in EC. In Proceedings of the 2002 Congress on Evolutionary

Computation CEC2002, pages 582–587. IEEE Press, 2002.

[47] Ágoston Endre Eiben, E. Marchiori, and V. A. Valkó. Evolutionary algorithms

with on-the-fly population size adjustment. In Parallel Problem Solving from

Nature - PPSN VIII, volume 3242 of LNCS, pages 41–50. Springer-Verlag,

2004.

[48] Ágoston Endre Eiben and Martijn C. Schut. New ways to calibrate evolu-

tionary algorithms. In Patrick Siarry and Zbigniew Michalewicz, editors, Ad-

vances in Metaheuristics for Hard Optimization, Natural Computing Series,

pages 153–177. Springer, 2008.

[49] Ágoston Endre Eiben and Selmar K. Smit. Parameter tuning for configuring

and analyzing evolutionary algorithms. Swarm and Evolutionary Computa-

tion, 1(1):19–31, 2011.

[50] M. Eisenring, Lothar Thiele, and Eckart Zitzler. Conflicting Criteria in Em-

bedded System Design. IEEE Design and Test, 17(2):51–59, 2000.

[51] Mohammed A. El-Beltagy, Prasanth B. Nair, and Andy J. Keane. Metamod-

eling techniques for evolutionary optimization of computationally expensive

problems: Promises and limitations. In Proceedings of the Genetic and Evo-

lutionary Computation Conference, volume 1, pages 196–203. Morgan Kauf-

mann, 1999.

[52] Henrik Esbensen and Ernest S. Kuh. Design space exploration using the

genetic algorithm. In IEEE International Symposium on Circuits and Systems

(ISCAS’96), pages 500–503. IEEE, 1996.

313

[53] Raziyeh Farmani and Jonathan A. Wright. Self-adaptive fitness formulation for

constrained optimization. IEEE Trans. Evolutionary Computation, 7(5):445–

455, 2003.

[54] Álvaro Fialho, Lúıs Da Costa, Marc Schoenauer, and Michèle Sebag. Extreme

value based adaptive operator selection. In Parallel Problem Solving from

Nature (PPSN 08), 10th International Conference, Proceedings, volume 5199

of Lecture Notes in Computer Science, pages 175–184. Springer, 2008.

[55] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag. Analyz-

ing bandit-based adaptive operator selection mechanisms. Annals of Mathe-

matics and Artificial Intelligence - Special Issue on Learning and Intelligent

Optimization, 2010.

[56] Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. Analysis of adaptive

operator selection techniques on the royal road and long k-path problems.

In Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, pages 779–786. ACM, 2009.

[57] Terence C. Fogarty. Varying the probability of mutation in the genetic al-

gorithm. In Proceedings of the Third International Conference on Genetic

Algorithms, pages 104–109. Morgan Kaufman, 1989.

[58] D. B. Fogel, L. J. Fogel, and J. W. Atmar. Meta-evolutionary programming.

In R. R. Chen, editor, Proceedings of 25th Asilomar Conference on Signals,

Systems and Computers, pages 540–545, 1991.

[59] David B. Fogel. Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. IEEE Press, 1995.

314

[60] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through

Simulated Evolution. John Wiley & Sons, 1966.

[61] Johan Fredriksson, Thomas Nolte, Mikael Nolin, and Heinz Schmidt.

Contract-based reusable worst-case execution time estimate. In The Interna-

tional Conference on Embedded and Real-Time Computing Systems and Ap-

plications (RTCSA), pages 39–46, 2007.

[62] Johan Fredriksson, Kristian Sandström, and MikaelÅkerholm. Optimizing

resource usage in component-based real-time systems. In Component-Based

Software Engineering, volume 3489 of LNCS, pages 49–65. Springer, 2005.

[63] T. Yokoyama G. Taguchi. Taguchi methods: design of experiments. ASI Press,

1993.

[64] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric statis-

tical inference. CRC Press, 2003.

[65] M. Giger, D. Keller, and P. Ermanni. Aorcea - an adaptive operator rate

controlled evolutionary algorithm. Computers and Structures, 85(19-20):1547

– 1561, 2007.

[66] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[67] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection

schemes used in genetic algorithms. In Foundations of Genetic Algorithms,

pages 69–93, San Mateo, 1991. Morgan Kaufmann.

[68] Katerina Goševa-Popstojanova and Kishor S. Trivedi. Architecture-based ap-

proach to reliability assessment of software systems. Performance Evaluation,

45(2-3):179–204, 2001.

315

[69] John J. Grefenstette. Optimization of control parameters for genetic al-

gorithms. IEEE Transactions on Systems, Man, and Cybernetics, SMC-

16(1):122–128, 1986.

[70] John J. Grefenstette and James E. Baker. How genetic algorithms work: A

critical look at implicit parallelism. In Proceedings of the Third International

Conference on Genetic Algorithms (ICGA’89), pages 20–27. Morgan Kauf-

mann Publishers, Inc., 1989.

[71] Lars Grunske. Identifying ”good” architectural design alternatives with multi-

objective optimization strategies. In International Conference on Software

Engineering, ICSE, pages 849–852. ACM, 2006.

[72] Lars Grunske. Early quality prediction of component-based systems - a generic

framework. Journal of Systems and Software, 80(5):678–686, 2007.

[73] Lars Grunske, Peter A. Lindsay, Egor Bondarev, Yiannis Papadopoulos, and

David Parker. An outline of an architecture-based method for optimizing de-

pendability attributes of software-intensive systems. In Rogério de Lemos,

Cristina Gacek, and Alexander B. Romanovsky, editors, Architecting Depend-

able Systems, volume 4615 of Lecture Notes in Computer Science, pages 188–

209. Springer, 2006.

[74] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-

adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195,

2001.

[75] Günter Heiner and Thomas Thurner. Time-triggered architecture for safety-

related distributed real-time systems in transportation systems. In Interna-

tional Symposium on Fault-Tolerant Computing (FTCS’98), pages 402–407,

1998.

316

[76] Francisco Herrera and Manuel Lozano. Adaptive genetic operators based on

coevolution with fuzzy behaviors. IEEE-EC, 5:149–165, April 2001.

[77] J. Hesser and R. Manner. Towards an optimal mutation probability for genetic

algorithms. Lecture Notes in Computer Science, 496:23–32, 1991.

[78] Robert Hinterding, Zbigniew Michalewicz, and T. C. Peachey. Self-adaptive

genetic algorithm for numeric functions. Lecture Notes in Computer Science,

1141:420–429, 1996.

[79] C. W. Ho, K. H. Lee, and K. S. Leung. A genetic algorithm based on mutation

and crossover with adaptive probabilities. In Proceedings of the Congress on

Evolutionary Computation, volume 1, pages 768–775. IEEE Press, 1999.

[80] Yosef Hochberg and Ajit C. Tamhane. Multiple comparisons in a mixed model.

The American Statistician, 37(4):305–307, 1983.

[81] John H. Holland. Adaptation in Natural and Artificial Systems. The University

of Michigan Press, Ann Arbor, Michigan, 1975.

[82] Tzung-Pei Hong, Hong-Shung Wang, and Wei-Chou Chen. Simultaneously ap-

plying multiple mutation operators in genetic algorithms. Journal of Heuris-

tics, 6(4):439–455, 2000.

[83] Tzung-Pei Hong, Hong-Shung Wang, Wen-Yang Lin, and Wen-Yuan Lee. Evo-

lution of appropriate crossover and mutation operators in a genetic process.

Appl. Intell, 16(1):7–17, 2002.

[84] Christian Igel and Martin Kreutz. Operator adaptation in evolutionary com-

putation and its application to structure optimization of neural networks. Neu-

rocomputing, 55(1-2):347–361, 2003.

317

[85] Christian Igel, Stefan Wiegand, and Frauke Friedrichs. Evolutionary opti-

mization of neural systems: The use of strategy adaptation. In Trends and

Applications in Constructive Approximation, volume 151 of International Se-

ries of Numerical Mathematics, pages 103–123. Birkhäuser Basel, 2005.

[86] Shariful Islam, Robert Lindstrom, and Neeraj Suri. Dependability driven in-

tegration of mixed criticalitySW components. In International Symposium on

object/component/service-oriented Real-time distributed Computing, ISORC,

pages 485–495. IEEE Computer Society, 2006.

[87] Shariful Islam and Neeraj Suri. A multi variable optimization approach for the

design of integrated dependable real-time embedded systems. In Embedded and

Ubiquitous Computing, International Conference, Proceedings, volume 4808 of

LNCS, pages 517–530. Springer, 2007.

[88] ISO/IEC. IEEE International Standard 1471 2000 - Systems and software

engineering - Recommended practice for architectural description of software-

intensive systems, 2000.

[89] Cezary Z. Janikow and Zbigniew Michalwicz. An experimental comparison of

binary and floating point representations in genetic algorithms. In Proceedings

of the Fourth International Conference on Genetic Algorithms (ICGA’91),

pages 31–36. Morgan Kaufmann Publishers, 1991.

[90] Thomas Jansen and Kenneth De Jong. An analysis of the role of offspring

population size in EAs. In GECCO 2002: Proceedings of the Genetic and Evo-

lutionary Computation Conference, pages 238–246. Morgan Kaufmann Pub-

lishers, 2002.

[91] Arshad Jhumka, Martin Hiller, and Neeraj Suri. Component-based synthesis of

dependable embedded software. In Werner Damm and Ernst-Rüdiger Olderog,

318

editors, Proceedings of the 7th International Symposium on Formal Techniques

in Real-Time and Fault-Tolerant Systems, FTRTFT, volume 2469, pages 111–

128, 2002.

[92] Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary

computation. Soft Computing, 9(1):3–12, 2005.

[93] Terry Jones. A description of holland’s royal road function. Evolutionary

Computation, 2(4):409–415, 1994.

[94] Bryant A. Julstrom. What have you done for me lately? Adapting operator

probabilities in a steady-state genetic algorithm. In Proceedings of the Sixth

International Conference on Genetic Algorithms, pages 81–87, San Francisco,

CA, 1995. Morgan Kaufmann.

[95] Bryant A. Julstrom. Adaptive operator probabilities in a genetic algorithm

that applies three operators. In ACM Symposium on Applied Computing

(SAC), pages 233–238. ACM, 1997.

[96] Tatiana Kichkaylo, Anca-Andreea Ivan, and Vijay Karamcheti. Constrained

component deployment in wide-area networks using ai planning techniques.

In 17th International Parallel and Distributed Processing Symposium, page 3,

2003.

[97] Tatiana Kichkaylo and Vijay Karamcheti. Optimal resource-aware deploy-

ment planning for component-based distributed applications. In HPDC:High

Performance Distributed Computing, pages 150–159. IEEE Computer Society,

2004.

319

[98] Seong-Hee Kim and Barry L. Nelson. A fully sequential procedure for

indifference-zone selection in simulation. ACM Transactions on Modeling and

Computer Simulation, 11(3):251–273, July 2001.

[99] Joshua Knowles and David Corne. Instance generators and test suites for the

multiobjective quadratic assignment problem. In Evolutionary Multi-Criterion

Optimization, International Conference, EMO 2003, volume 2632, pages 295–

310. Springer. Lecture Notes in Computer Science., 2003.

[100] Joshua Knowles, Lothar Thiele, and Eckart Zitzler. A Tutorial on the Perfor-

mance Assessment of Stochastic Multiobjective Optimizers. 214, Computer

Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland, 2006.

[101] T. C. Koopmans and M. J. Beckmann. Assignment problems and the location

of economic activities. Econometrica, 25:53–76, 1957.

[102] Hermann Kopetz. Real-Time Systems. Kluwer Academic, 1997.

[103] Oliver Kramer. Evolutionary self-adaptation: a survey of operators and strat-

egy parameters. Evolutionary Intelligence, 3(2):51–65, 2010.

[104] Johannes W. Kruisselbrink, Rui Li, Edgar Reehuis, Jeroen Eggermont, and

Thomas Bäck. On the log-normal self-adaptation of the mutation rate in

binary search spaces. In 13th Annual Genetic and Evolutionary Computation

Conference, GECCO 2011, Proceeding, pages 893–900. ACM, 2011.

[105] Peter Kubat. Assessing reliability of modular software. Operations Research

Letters, 8(1):35–41, 1989.

[106] Sadan Kulturel-Konak and Alice E Smith David W Coit. Efficiently solv-

ing the redundancy allocation problem using tabu search. IIE Transactions,

35(6):515–526, 2003.

320

[107] Sadan Kulturel-Konak, David W. Coit, and Fatema Baheranwala. Pruned

pareto-optimal sets for the system redundancy allocation problem based on

multiple prioritized objectives. Journal of Heuristics, 14(4):335–357, 2008.

[108] D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, and Y. Shin. Testing the null

hypothesis of stationarity against the alternative of a unit root. Journal of

Econometrics, 54:159–178, 1992.

[109] Xuyong Li, Jinhua Zheng, and Juan Xue. A diversity metric for multi-objective

evolutionary algorithms. In ICNC’05, volume 3612 of LNCS, pages 68–73.

Springer, 2005.

[110] Yun-Chia Liang and Alice E. Smith. An ant system approach to redundancy

allocation. In Congress on Evolutionary Computation, pages 1478–1484. IEEE,

1999.

[111] Yun-Chia Liang and Alice E. Smith. An ant colony optimization algorithm for

the redundancy allocation problem (RAP). IEEE Transactions on Reliability,

53(3):417–423, 2004.

[112] J. Lis and M. Lis. Self-adapting parallel genetic algorithm with the dynamic

mutation probability, crossover rate and population size. In J. Arabas, editor,

Proceedings of the 1st Polish National Conference in Evolutionary Computa-

tion, page 324329, 1996.

[113] Joanna Lis. Parallel genetic algorithm with the dynamic control parameter. In

International Conference on Evolutionary Computation, pages 324–329, 1996.

[114] F. G. Lobo and David E. Goldberg. Decision making in a hybrid genetic

algorithm. In Proceedings of the Congress on Evolutionary Computation, pages

121–125. IEEE Press, 1997.

321

[115] Fernando G. Lobo. Idealized dynamic population sizing for uniformly scaled

problems. In 13th Annual Genetic and Evolutionary Computation Conference,

GECCO 2011, Proceedings, pages 917–924. ACM, 2011.

[116] Fernando G. Lobo and Cláudio F. Lima. A review of adaptive population

sizing schemes in genetic algorithms. In Genetic and Evolutionary Compu-

tation Conference, GECCO 2005, Workshop Proceedings, Washington DC,

USA, June 25-26, 2005, pages 228–234. ACM, 2005.

[117] Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich. Ef-

ficient symbolic multi-objective design space exploration. In ASP-DAC 2008,

pages 691–696. IEEE, 2008.

[118] Thilo Mahnig and Heinz Muhlenbein. A new adaptive boltzmann selection

schedule SDS. In Proceedings of the 2001 Congress on Evolutionary Compu-

tation CEC2001, pages 183–190. IEEE Press, 2001.

[119] S. Malek, M. Mikic-Rakic, and N. Medvidovic. A decentralized redeployment

algorithm for improving the availability of distributed systems. In Comp. Dep.,

volume 3798 of LNCS, pages 99–114. Springer, 2005.

[120] Sam Malek. A User-Centric Approach for Improving a Distributed Soft-

ware System’s Deployment Architecture. PhD thesis, Faculty of the graduate

schools, University of Southern California, 2007.

[121] Anne Martens and Heiko Koziolek. Automatic, model-based software perfor-

mance improvement for component-based software designs. In 6th Interna-

tional Workshop on Formal Engineering approaches to Software Components

and Architectures (FESCA). Elsevier, 2009.

322

[122] Keith E. Mathias and Darrell Whitley. Initial performance comparisons for the

delta coding algorithm. In International Conference on Evolutionary Compu-

tation, pages 433–438, 1994.

[123] Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer, and

Michèle Sebag. Extreme compass and dynamic multi-armed bandits for adap-

tive operator selection. In IEEE Congress on Evolutionary Computation, pages

365–372. IEEE, 2009.

[124] Jorge Maturana, Frédéric Lardeux, and Frédéric Saubion. Autonomous oper-

ator management for evolutionary algorithms. J. Heuristics, 16(6):881–909,

2010.

[125] Jorge Maturana and Frederic Saubion. A compass to guide genetic algo-

rithms. In Gunter Rudolph, Thomas Jansen, Simon M. Lucas, Carlo Poloni,

and Nicola Beume, editors, Parallel Problem Solving from Nature – (10th

PPSN’08), volume 5199 of Lecture Notes in Computer Science (LNCS), pages

256–265. Springer-Verlag, 2008.

[126] Nenad Medvidovic and Sam Malek. Software deployment architecture and

quality-of-service in pervasive environments. In Workshop on the Engineering

of Software Services for Pervasive Environements, ESSPE, pages 47–51. ACM,

2007.

[127] Indika Meedeniya, Aldeida Aleti, and Barbora Bühnova. Redundancy alloca-

tion in automotive systems using multi-objective optimisation. In Symposium

of Avionics/Automotive Systems Engineering (SAASE’09), San Diego, CA,

2009.

[128] Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske.

Architecture-Driven Reliability and Energy Optimization for Complex Em-

323

bedded Systems. In Research into Practice - Reality and Gaps, 6th Inter-

national Conference on the Quality of Software Architectures (QoSA 2010),

pages 52–67. Springer, 2010.

[129] Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske.

Reliability-Driven Deployment Optimization for Embedded Systems. Jour-

nal of Systems and Software, 2011.

[130] Indika Meedeniya, Irene Moser, Aldeida Aleti, and Lars Grunske.

Architecture-based reliability evaluation under uncertainty. In 7th Interna-

tional Conference on the Quality of Software Architectures, QoSA 2011 and

2nd International Symposium on Architecting Critical Systems, ISARCS 2011.

Boulder, CO, USA, June 20-24, 2011, Proceedings, pages 85–94. ACM, 2011.

[131] R.E. Mercer and J.R. Sampson. Adaptive search using a reproductive meta-

plan. Kybernetes, 7:215–228, 1978.

[132] Silja Meyer-Nieberg and Hans-Georg Beyer. Self-adaptation in evolutionary

algorithms. In Parameter Setting in Evolutionary Algorithms, volume 54 of

Studies in Computational Intelligence, pages 47–75. Springer, 2007.

[133] Efrn Mezura-Montes and Ana Palomeque-Ortiz. Self-adaptive and determin-

istic parameter control in differential evolution for constrained optimization.

In Efrn Mezura-Montes, editor, Constraint-Handling in Evolutionary Opti-

mization, volume 198 of Studies in Computational Intelligence, pages 95–120.

Springer Berlin / Heidelberg, 2009.

[134] Zbigniew Michalewicz and David B. Fogel. How to solve it: modern heuristics.

Springer-Verlag, 2004.

324

[135] Zbigniew Michalewicz and Martin Schmidt. Parameter control in practice.

In Fernando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz, editors,

Parameter Setting in Evolutionary Algorithms, volume 54 of Studies in Com-

putational Intelligence, pages 277–294. Springer, 2007.

[136] Marija Mikic-Rakic, Sam Malek, Nels Beckman, and Nenad Medvidovic. A

tailorable environment for assessing the quality of deployment architectures in

highly distributed settings. In Component Deployment,CD’04, volume 3083 of

LNCS, pages 1–17. Springer, 2004.

[137] Melanie Mitchell. An Introduction to Genetic Algorithms. Complex Adaptive

Systems. MIT-Press, Cambridge, 1996.

[138] James Montgomery and Irene Moser. Parallel constraint handling in a multi-

objective evolutionary algorithm for the automotive deployment problem. In

e-Science Workshops, 2010 Sixth IEEE International Conference on, pages

104 –109, 2010.

[139] Sanaz Mostaghim. Parallel multi-objective optimization using self-organized

heterogeneous resources. In Parallel and Distributed Computational Intelli-

gence, volume 269 of Studies in Computational Intelligence, pages 165–179.

Springer, 2010.

[140] Sanaz Mostaghim and Hartmut Schmeck. Self-organized parallel cooperation

for solving optimization problems. In Architecture of Computing Systems -

ARCS 2009, 22nd International Conference, volume 5455 of Lecture Notes in

Computer Science, pages 135–145. Springer, 2009.

[141] Richard Myers and Edwin R. Hancock. Empirical modelling of genetic algo-

rithms. Evolutionary Computation, 9(4):461–493, 2001.

325

[142] Farhad Nadi and Ahamad Tajudin Abdul Khader. A parameter-less genetic

algorithm with customized crossover and mutation operators. In 13th Annual

Genetic and Evolutionary Computation Conference, GECCO 2011, Proceed-

ings, pages 901–908. ACM, 2011.

[143] Volker Nannen and Ágoston Endre Eiben. A method for parameter calibration

and relevance estimation in evolutionary algorithms. In Genetic and Evolu-

tionary Computation Conference, GECCO 2006, Proceedings, pages 183–190.

ACM, 2006.

[144] Volker Nannen and Ágoston Endre Eiben. Relevance estimation and value cal-

ibration of evolutionary algorithm parameters. In Manuela M. Veloso, editor,

IJCAI’07, Proceedings of the 20th International Joint Conference on Artificial

Intelligence, pages 975–980, 2007.

[145] Mark Nicholson. Selecting a Topology for Safety-Critical Real-Time Control

Systems. PhD thesis, Department of Computer Science, University of York,

1998.

[146] Barbara Paech and Thomas Wetter. Rational quality requirements for medical

software. In 30th International Conference on Software Engineering (ICSE

2008), pages 633–638. ACM, 2008.

[147] Yiannis Papadopoulos and Christian Grante. Evolving car designs using

model-based automated safety analysis and optimisation techniques. The

Journal of Systems and Software, 76(1):77–89, 2005.

[148] Vilfredo Pareto. CoursD’Economie Politique. F. Rouge, 1896.

[149] A. N. Pettitt and M. A. Stephens. The kolmogorov-smirnov goodness-of-fit

statistic with discrete and grouped data. Technometrics, 19(2):205–210, 1977.

326

[150] Alexander Pretschner, Manfred Broy, Ingolf H. Krüger, and Thomas Stauner.

Software engineering for automotive systems: A roadmap. In FOSE ’07: 2007

Future of Software Engineering, pages 55–71. IEEE Computer Society, 2007.

[151] Alexander Pretschner, Manfred Broy, Ingolf H. Krüger, and Thomas Stauner.

Software engineering for automotive systems:Aroadmap. In International Con-

ference on Software Engineering,ISCE’07, pages 55–71, 2007.

[152] Ronald L. Rardin and Reha Uzsoy. Experimental evaluation of heuristic opti-

mization algorithms:A tutorial. Journal of Heuristics, 7(3):261–304, 2001.

[153] Ronald L. RardinBenjamin W. Lin. A short convergence proof for a class

of ant colony optimization algorithms. Management Science, 25:1258–1271,

1980.

[154] I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach

prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

[155] Ingo Rechenberg. Cybernetic solution path of an experimental problem. Tech-

nical report, Royal Air Force Establishment, 1965.

[156] Yosef Rinott. On two-stage selection procedures and related probability-

inequalities. Communications in Statistics - Theory and Methods, 7(8):799–

811, 1978.

[157] R. Rogenmoser, H. Kaeslin, and T. Blickle. Stochastic methods for transistor

size optimization of CMOS VLSI circuits. LNCS, 1141:849–869, 1996.

[158] R. S. Rosenberg. Simulation of genetic populations with biochemical properties.

PhD thesis, University of Michigan, Ann Harbor, Michigan, 1967.

[159] Günter Rudolph. Self-adaptive mutations may lead to premature convergence.

IEEE Transaction Evolutionary Computation, 5(4):410–414, 2001.

327

[160] J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and Rajarshi Das.

A study of control parameters affecting online performance of genetic algo-

rithms for function optimization. In Proceedings of the Third International

Conference on Genetic Algorithms, pages 51–60. Morgan Kaufman, 1989.

[161] J. David Schaffer and Amy Morishima. An adaptive crossover distribution

mechanism for genetic algorithms. In John J. Grefenstette, editor, Genetic

Algorithms and their Applications (ICGA’87), pages 36–40. Lawrence Erlbaum

Associates, 1987.

[162] Th. Scharnhorst, H. Heinecke, K. P. Schnelle, H. Fennel, J. Bortolazzi,

L. Lundh, P. Heitkmper, J. Leflour, J.-L. Mat, and K. Nishikawa. Autosar

challenges and achievements. In VDI Berichte Nr. 1907, pages 395–408, 2005.

[163] D. Schlierkamp-Voosen and H. Mühlenbein. Strategy adaptation by competing

subpopulations. Lecture Notes in Computer Science, 866:199–208, 1994.

[164] Bruce Schmeiser. Simulation Experiments. Mathematical-statistical frame-

work for variance reduction / Barry L. Nelson and Bruce W. Schmeiser. Pur-

due University, Department of Statistics, 1990.

[165] Jason R. Schott. FaultTolerantDesignUsingSingle andMulticriteriaGeneticAl-

gorithmOptimization. Master’s thesis, Department of Aeronautics and Astro-

nautics, Massachusetts Institute of Technology, 1995.

[166] H. P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis,

Technische Universitat Berlin, 1975.

[167] Mike Sewell, Jagath Samarab, Ranga Rodrigo, and Kenneth Mcisaac. The

rank-scaled mutation rate for genetic algorithms. International Journal of

Information Technology, 3(1):31–36, 2005.

328

[168] Craig G. Shaefer. The ARGOT strategy: Adaptive representation genetic opti-

mizer technique. In John J. Grefenstette, editor, Proceedings of the Second In-

ternational Conference on Genetic Algorithms. Lawrence Erlbaum Associates,

Publishers, 1987.

[169] Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S. Trivedi. Evaluating

performance attributes of layered software architecture. In Component-Based

Software Engineering, 8th International Symposium, CBSE, volume 3489 of

LNCS, pages 66–81. Springer, 2005.

[170] Vibhu Saujanya Sharma and Kishor S. Trivedi. Quantifying software perfor-

mance, reliability and security: An architecture-based approach. Journal of

Systems and Software, 80(4):493–509, 2007.

[171] Sol M. Shatz, Jia-Ping Wang, and Masanori Goto. Task allocation for max-

imizing reliability of distributed computer systems. IEEE Transactions on

Computers, 41(9):1156–1168, 1992.

[172] Selmar K. Smit and A. E. Eiben. Comparing parameter tuning methods for

evolutionary algorithms. In IEEE Congress on Evolutionary Computation,

pages 399–406. IEEE, 2009.

[173] Selmar K. Smit, Ágoston Endre Eiben, and Zoltán Szlávik. An MOEA-based

method to tune EA parameters on multiple objective functions. In Proceedings

of the International Conference on Evolutionary Computation, (ICEC 2010),

pages 261–268. SciTePress, 2010.

[174] Jim Smith and Terence C. Fogarty. Self adaptation of mutation rates in a

steady state genetic algorithm. In International Conference on Evolutionary

Computation, pages 318–323, 1996.

329

[175] Robert E. Smith. Adaptively resizing populations: An algorithm and anal-

ysis. In Proceedings of the Fifth International Conference on Genetic Algo-

rithms (ICGA’93), page 653, San Mateo, California, 1993. Morgan Kaufmann

Publishers.

[176] William M. Spears. Adapting crossover in evolutionary algorithms. In Evolu-

tionary Programming, pages 367–384. MIT Press, 1995.

[177] M. Srinivas and Lalit M. Patnaik. Adaptive probabilities of crossover and

mutation in genetic algorithms. IEEE Transactions on Systems, Man, and

Cybernetics, 24(4):656–667, 1994.

[178] N. Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondom-

inated sorting in genetic algorithms. EvolutionaryComputation, 2(3):221–248,

1995.

[179] Christopher R. Stephens, I. Garcia Olmedo, J. Mora Vargas, and Henri Wael-

broeck. Self-adaptation in evolving systems. Artificial Life, 4(2):183–201,

1998.

[180] Dirk Thierens. Adaptive mutation rate control schemes in genetic algorithms.

In Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,

pages 980–985. IEEE Press, 2002.

[181] Dirk Thierens. An adaptive pursuit strategy for allocating operator probabil-

ities. In Hans-Georg Beyer and Una-May O’Reilly, editors, Genetic and Evo-

lutionary Computation Conference, GECCO 2005, pages 1539–1546. ACM,

2005.

330

[182] Dirk Thierens. Adaptive strategies for operator allocation. In Parameter

Setting in Evolutionary Algorithms, volume 54 of Studies in Computational

Intelligence, pages 77–90. Springer, 2007.

[183] Andrew Tuson and Peter Ross. Adapting operator settings in genetic algo-

rithms. Evolutionary Computation, 6(2):161–184, 1998.

[184] Péter Vajda, Ágoston Endre Eiben, and Wiebe Hordijk. Parameter control

methods for selection operators in genetic algorithms. In Parallel Problem

Solving from Nature, 10th International Conference, Proceedings, volume 5199

of Lecture Notes in Computer Science, pages 620–630. Springer, 2008.

[185] David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifi-

cations, Analyses, and New Innovations. PhD thesis, Air Force Institute of

Technology, 1999.

[186] Peter Wallin, Joakim Froberg, and Jakob Axelsson. Making decisions in inte-

gration of automotive software and electronics: A method based on atam and

ahp. In SEAS ’07: Proceedings of the 4th International Workshop on Software

Engineering for Automotive Systems, page 5, 2007.

[187] R. Weinberg. Computer Simulation of a Living Cell. PhD thesis, The Univer-

sity of Michigan, 1970.

[188] James M. Whitacre. Adaptation and self-organization in evolutionary algo-

rithms. CoRR, abs/0907.0516, 2009.

[189] James M. Whitacre, Tuan Q. Pham, and Ruhul A. Sarker. Use of statis-

tical outlier detection method in adaptive evolutionary algorithms. CoRR,

abs/0907.0595, 2009.

331

[190] Darrell Whitley. The GENITOR algorithm and selection pressure: Why rank-

based allocation of reproductive trials is best. In Proceedings of the Third

International Conference on Genetic Algorithms (ICGA’89), pages 116–123,

San Mateo, California, 1989. Morgan Kaufmann Publishers, Inc.

[191] Yuk-Yin Wong, Kin-Hong Lee, Kwong-Sak Leung, and C.-W. Ho. A novel

approach in parameter adaptation and diversity maintenance for genetic algo-

rithms. Soft Computing, 7(8):506–515, 2003.

[192] Bo Yuan and Marcus Gallagher. Statistical racing techniques for improved

empirical evaluation of evolutionary algorithms. In Parallel Problem Solving

from Nature - PPSN VIII, volume 3242 of LNCS, pages 172–181. Springer-

Verlag, 2004.

[193] Ruiqing Zhao and Baoding Liu. Redundancy optimization problems with

uncertainty of combining randomness and fuzziness. European Journal of Op-

erational Research, 157(3):716–735, 2004.

[194] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimiza-

tion:Methods and Applications. PhD thesis, Swiss Federal Institute of Tech.

(ETH), 1999.

[195] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjec-

tive Evolutionary Algorithms:Empirical Results. Evolutionary Computation,

8(2):173–195, 2000.

[196] Eckart Zitzler, Marco Laumanns, Lothar Thiele, Carlos M. Fonseca, and

V.Grunert da Fonseca. Why Quality Assessment of Multiobjective Optimizers

Is Difficult. In GECCO’02, pages 666–673. Morgan Kaufmann, 2002.

332

[197] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms:A

comparative case study and the strength pareto approach. IEEE-Evolutionary

Computation, 3(4):257–271, 1999.

[198] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and

da V. G. Fonseca. Performance assessment of multiobjective optimizers: an

analysis and review. IEEE Tran. on Evolutionary Comp., 7:117–132, 2003.

333

