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Network-Based T-S Fuzzy Dynamic Positioning
Controller Design for Unmanned Marine Vehicles
Yu-Long Wang,Member, IEEE, Qing-Long Han,Senior Member, IEEE, Min-Rui Fei, and Chen Peng,Senior

Member, IEEE

Abstract—This paper is concerned with Takagi-Sugeno (T-S)
fuzzy dynamic positioning controller design for an unmanned
marine vehicle in network environments. Network-based T-S
fuzzy dynamic positioning system models for the unmanned ma-
rine vehicle are first established. Then stability and stabilization
criteria are derived by taking into consideration an asynchronous
difference between the normalized membership function of the
T-S fuzzy dynamic positioning system and that of the controller.
The proposed stabilization criteria can stabilize states of the
unmanned marine vehicle. The dynamic positioning performance
analysis verifies the effectiveness of the networked modelling and
the controller design.

Index Terms—Unmanned marine vehicle, dynamic positioning,
network-based control, T-S fuzzy control.

I. I NTRODUCTION

Marine vehicles have found applications in broad areas
including transportation, military operations, hydrographic,
fishing, oil and gas exploration and construction, oceanograph-
ic data collection, and scientific characterization. Sincemarine
vehicles are subject to disturbance induced by waves, wind,
and current, it is of paramount importance to study the motion
control of marine vehicles [1], [2]. There are some interesting
results available in the literature, which cover research topics
in roll stabilization [3], heading control [4], [5], containment
maneuvering [6], [7], tracking control [8], mooring control
[9], fault detection [10], model predictive control [11], and
path planning [12]. Besides the topics mentioned above,
dynamic positioning, which aims at regulating the horizontal
position and heading of marine vehicles, has also attracted
much attention in the literature [13]. For example, Kalman
filtering-based positioning and heading control of ships were
investigated in [14]. Output feedback control for a marine
dynamic positioning system was addressed in [15], [16].
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By using multiple unidirectional tugboats, robust dynamic
positioning of an unactuated surface vessel was studied in [17].
In [18], robust controller design for dynamic positioning of
ships and offshore rigs usingH∞ and mixed-µ techniques
was considered. A novel continuous robust controller for
dynamically positioned surface vessels with added mass terms
was constructed in [19]. A robust nonlinear control law for
the dynamic positioning system of ships subject to unknown
time-varying disturbance and input saturation was proposed
in [20]. Passivity-based controllers for dynamic positioning
of ships were developed in [21]. Quadratic finite-horizon
optimal controller design for T-S fuzzy-model-based dynamic
ship positioning systems was addressed in [22]. It should be
mentioned that the T-S fuzzy-control-based approach, which is
different from those in [13], [16]–[21], was adopted in [22]to
describe the dynamic positioning of a marine vehicle. Thereis
a growing interest in applying a T-S fuzzy control approach to
deal with nonlinear control systems. The main characteristic
of T-S fuzzy control lies in utilizing a linear system model to
describe the local dynamics of each fuzzy rule [22], [23]. Then
the abundant linear control methodologies can be adopted to
investigate each linear model. Since the dynamic positioning
system (DPS) of a marine vehicle is a complex nonlinear
system, how to propose an appropriate modelling and control
scheme to improve the dynamic positioning performance is
practically valuable and attractive.

This paper aims at providing good dynamic positioning
performance for an unmanned marine vehicle (UMV). The
dynamic positioning for the UMV is usually based on a
remote land-based/mother ship-based control station. The
communication between the UMV and the control station is
completed through communication networks. Thus, the UMV,
the remote land-based/mother ship-based control station,and
communication networks constitute a network-based control
system. Because of attractive advantages such as low cost in
installation and maintenance, flexibility in communication ar-
chitectures, and high reliability, network-based controlsystems
have attracted increasing attention [24]–[31], see surveypapers
[32], [33] for recent developments. Despite of advantages of
network-based control, introducing communication networks
into control systems may induce packet dropouts, delays, and
packet disordering. For the networked DPS of a UMV, how
to take sampler-to-controller and controller-to-actuator packet
dropouts, network-induced delays, and packet disorderinginto
account, and to establish network-based T-S fuzzy models
are of paramount importance and still unresolved. Answering
these questions is the first motivation of the current work.
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For a T-S fuzzy system, if a communication network is
introduced between the controlled plant and the controller,
the membership functions of the controlled plant and the
controller are not synchronous, and such a characteristic is not
considered in [34]. The asynchronous difference between the
normalized membership function of the controlled plant and
that of the controller is taken into consideration in [35], [36].
Moreover, for the T-S fuzzy-control-based DPS of a UMV, the
T-S fuzzy model is closely related to the variation scope of the
yaw angle. Then how to take into account the variation scope
of the yaw angle and the asynchronous difference between
the normalized membership function of the UMV and that
of the controller, and to derive a novel stability criterionare
practically valuable. Addressing these issues is the second
motivation of the current work.

In practical situations, the controlled plant states are not
always measurable. Thus, it is of paramount importance to s-
tudy observer-based control scheme for T-S fuzzy systems, and
some nice results are available in the literature [37]–[40]. Note
that only the sensor-to-observer network-induced delays are
considered in [37], while packet dropouts and the controller-to-
actuator network-induced delays are not considered. The work
in [38] assumed that updating instants of the control input
and the measured output are the same. In fact, if time-varying
network-induced delays are considered, such an assumption
may not be applicable. Moreover, packet dropouts are not con-
sidered in [38]. The Bernoulli stochastic process was adopted
in [39] to describe packet dropouts in the sensor-to-observer
channel and the controller-to-actuator channel with network-
induced delays being neglected. The problem of observer-
based output feedback control for T-S fuzzy systems under
decentralized event triggering communication was discussed in
[40] with packet dropouts and network-induced delays being
neglected. For the observer-based T-S fuzzy DPS of a UMV,
taking into account sampler-to-controller and controller-to-
actuator network-induced characteristics will lead to much
modelling and controller design complexity. How to solve
these issues is the third motivation of the current work.

This paper investigates the network-based modelling, sta-
bility analysis, and controller design for observer-basedT-S
fuzzy DPS of a UMV. The T-S fuzzy dynamic positioning
system model is established firstly by taking into consideration
the variation scope of the yaw angle for a marine vehicle.
Then networked T-S fuzzy models for the UMV are estab-
lished by taking into consideration sampler-to-controller and
controller-to-actuator network-induced characteristics and the
asynchronous difference between the normalized membership
function of the UMV and that of the controller. Based on these
models, the stability analysis and observer-based controller
design for the T-S fuzzy dynamic positioning systems are
presented. The proposed observer-based controller designcan
provide good system performance, which is verified by the
dynamic positioning performance analysis. The main contri-
butions of this paper are summarized as follows:
• Novel network-based T-S fuzzy dynamic positioning

system models for the UMV are established by taking in-
to consideration the variation scope of the yaw angle, and
the sampler-to-controller and controller-to-actuator network-

induced characteristics.
• Appropriate observer-based controller design schemes are

proposed to provide good dynamic positioning performance
with the negative influences of wave-induced disturbance
being reduced.

The remainder of this paper is organized as follows. Section
II establishes novel network-based T-S fuzzy models for
the UMV. Section III is concerned with stability analysis.
Observer-based controller design is presented in Section IV.
Dynamic positioning performance analysis is given in Section
V. Conclusions are drawn in Section VI.

Notation: R
n denotesn-dimensional Euclidean space.∗

denotes the entries of a matrix implied by symmetry.I and0
represent an identity matrix and a zero matrix with appropriate
dimensions, respectively. The superscripts ‘−1’ and ‘T ’ mean
that the inverse of a nonsingular matrix and the transpose of
a matrix (vector), respectively. Matrices and vectors, if not
explicitly stated, are assumed to have appropriate dimensions.

II. N ETWORK-BASED T-S FUZZY MODELLING

This section aims to establish network-based T-S fuzzy
models for the UMV. The dynamics of a marine vehicle in 6
degrees of freedom include surge, sway, heave, roll, pitch,and
yaw. For the normalized model of horizontal motion in a DPS,
motion components such as surge, sway and yaw were inves-
tigated in [1]. This paper investigates the dynamic positioning
of a marine vehicle which is equipped with thrusters. Consider
the body-fixed and earth-fixed reference frames presented
in Fig. 1, wherex, y, and z denote the longitudinal axis,
transverse axis, and normal axis, respectively;X , Y , and
Z denote earth-fixed reference frames. The origin of the
coordinates is chosen to be at the center line of the marine
vehicle.

Fig. 1. Body-fixed and earth-fixed reference frames

The body-fixed equations of motion in surge, sway, and yaw
are described as

Mν̇(t) +Nν(t) +Gϕ(t) = u(t) + ω(t) (1)

where ν(t) = [ρ(t) υ(t) r(t)]T is the body-fixed linear
and angular velocity vector withρ(t), υ(t), and r(t) de-
noting the surge velocity, sway velocity, and yaw velocity,
respectively;ϕ(t) = [x(t) y(t) ψ(t)]T is the earth-fixed
orientation vector withx(t) and y(t) denoting positions and
ψ(t) denoting the yaw angle. The control input vectoru(t) =
[u1(t) u2(t) u3(t)]

T with u1(t) andu2(t) denoting the forces
provided by main propellers aft of the marine vehicle and by
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tunnel thrusters, respectively, andu3(t) denoting the moment
in yaw provided by azimuth thrusters;ω(t) is the wave-
induced disturbance;M denotes the matrix of inertia which
is invertible withM = MT > 0; N introduces damping; the
matrix G = diag{g11, g22, g33} represents mooring forces;
and

ϕ̇(t) = Ω(ψ(t))ν(t) (2)

where

Ω(ψ(t)) =




cos(ψ(t)) −sin(ψ(t)) 0
sin(ψ(t)) cos(ψ(t)) 0

0 0 1





The starboard-port symmetry of the marine vehicle implies
thatM andN are of the following structure

M =




m11 0 0
0 m22 m23

0 m32 m33



 , N =




n11 0 0
0 n22 n23

0 n32 n33





Let

A = −M−1G =




a11 a12 a13
a21 a22 a23
a31 a32 a33



 ,

B = −M−1N =




b11 b12 b13
b21 b22 b23
b31 b32 b33



 ,

D =M−1 =



d11 d12 d13
d21 d22 d23
d31 d32 d33


 .

Then the system (1) can be expressed as

ν̇(t) = Aϕ(t) +Bν(t) +Du(t) +Dω(t) (3)

Define ξ(t) = [ξ1(t) ξ2(t) ξ3(t) ξ4(t) ξ5(t) ξ6(t)]
T =

[x(t) y(t) ψ(t) ρ(t) υ(t) r(t)]T , whereξ1(t) andξ4(t) denote
the earth-fixed position on the X-axis and the body-fixed
velocity on the x-axis, respectively;ξ2(t) andξ5(t) denote the
earth-fixed position on the Y-axis and the body-fixed velocity
on the y-axis, respectively;ξ3(t) and ξ6(t) denote the yaw
angle and yaw angular velocity, respectively. Combining (2)
and (3) together, one can obtain state equations described as
follows

ξ̇1(t) = cos(ξ3(t))ξ4(t)− sin(ξ3(t))ξ5(t)

ξ̇2(t) = sin(ξ3(t))ξ4(t) + cos(ξ3(t))ξ5(t)

ξ̇3(t) = ξ6(t)

ξ̇4(t) =a11ξ1(t) + a12ξ2(t) + a13ξ3(t) + b11ξ4(t)
+b12ξ5(t) + b13ξ6(t) + d11u1(t) + d12u2(t)
+d13u3(t) + d11ω1(t) + d12ω2(t) + d13ω3(t)

ξ̇5(t) =a21ξ1(t) + a22ξ2(t) + a23ξ3(t) + b21ξ4(t)
+b22ξ5(t) + b23ξ6(t) + d21u1(t) + d22u2(t)
+d23u3(t) + d21ω1(t) + d22ω2(t) + d23ω3(t)

ξ̇6(t) =a31ξ1(t) + a32ξ2(t) + a33ξ3(t) + b31ξ4(t)
+b32ξ5(t) + b33ξ6(t) + d31u1(t) + d32u2(t)
+d33u3(t) + d31ω1(t) + d32ω2(t) + d33ω3(t)

(4)

Without loss of generality, suppose that the yaw angle
ψ(t), which is also known asξ3(t), varies between−π

6 and
π
6 , and let θ1(t) = sin(ξ3(t)), θ2(t) = cos(ξ3(t)). Then

θ1(t) ∈ [− 1
2 ,

1
2 ], θ2(t) ∈ [

√
3
2 , 1]. The T-S fuzzy DPS can be

obtained by introducing the following rules

Plant Rulei: IF θ1(t) is Wi1 andθ2(t) is Wi2

THEN 



ξ̇(t) = Ãiξ(t) + D̃iu(t) + D̃iω(t)
z(t) =C2iξ(t) + Fiω(t)
y(t) =C1ξ(t)

(5)

where i = 1, 2, 3, and 4,θ1(t) = sin(ξ3(t)) and θ2(t) =
cos(ξ3(t)) are premise variables,Wi1 andWi2 are fuzzy sets,
z(t) and y(t) denote the controlled output and the measured
output, respectively,C2i, Fi, andC1 are known matrices with
appropriate dimensions, while

Ã1 =




0 0 0 1 − 1
2 0

0 0 0 1
2 1 0

0 0 0 0 0 1
a11 a12 a13 b11 b12 b13
a21 a22 a23 b21 b22 b23
a31 a32 a33 b31 b32 b33



,

Ã2 =




0 0 0
√
3
2 − 1

2 0

0 0 0 1
2

√
3
2 0

0 0 0 0 0 1
a11 a12 a13 b11 b12 b13
a21 a22 a23 b21 b22 b23
a31 a32 a33 b31 b32 b33



,

Ã3 =




0 0 0 1 1
2 0

0 0 0 − 1
2 1 0

0 0 0 0 0 1
a11 a12 a13 b11 b12 b13
a21 a22 a23 b21 b22 b23
a31 a32 a33 b31 b32 b33



,

Ã4 =




0 0 0
√
3
2

1
2 0

0 0 0 − 1
2

√
3
2 0

0 0 0 0 0 1
a11 a12 a13 b11 b12 b13
a21 a22 a23 b21 b22 b23
a31 a32 a33 b31 b32 b33



,

D̃1 = D̃2 = D̃3 = D̃4 = D̃ =




0 0 0
0 0 0
0 0 0
d11 d12 d13
d21 d22 d23
d31 d32 d33




Remark 1: Note that the measured outputy(t) is described
as y(t) = C1ξ(t) instead ofy(t) = C1iξ(t). In fact, when
dealing with observer-based controller design, an equality
constraintJCT

1i = CT
1iJ̄ is usually introduced withJ and

J̄ denoting unknown matrices. This equality constraint leads
to much difficulty for designing the observer-based controller.
Thus, this paper choosesC1i = C1.

From the definition of Ãi, one can conclude that
W11(θ1(t)) = W21(θ1(t)), W31(θ1(t)) = W41(θ1(t)),
W12(θ2(t)) = W32(θ2(t)), W22(θ2(t)) = W42(θ2(t)). Note
that

W11(θ1(t)) +W31(θ1(t)) = 1
1
2W11(θ1(t))− 1

2W31(θ1(t)) = θ1(t)
(6)
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Then one has

W11(θ1(t)) =W21(θ1(t)) =
1
2 + θ1(t)

W31(θ1(t)) =W41(θ1(t)) =
1
2 − θ1(t)

(7)

Similarly,

W12(θ2(t)) =W32(θ2(t)) = −3− 2
√
3 + (4 + 2

√
3)θ2(t)

W22(θ2(t)) =W42(θ2(t)) = 4 + 2
√
3− (4 + 2

√
3)θ2(t)

(8)
From (5), one can derive the following T-S fuzzy DPS




ξ̇(t) =
4∑

i=1

hi(θ(t))[Ãiξ(t) + D̃iu(t) + D̃iω(t)]

z(t) =
4∑

i=1

hi(θ(t))[C2iξ(t) + Fiω(t)]

y(t) =C1ξ(t)

(9)

where

hi(θ(t)) =
ϑi(θ(t))

4∑
j=1

ϑj(θ(t))

, ϑi(θ(t)) =Wi1(θ1(t))Wi2(θ2(t))

hi(θ(t)) ≥0,
4∑

i=1

hi(θ(t)) = 1

Remark 2: As observed from (5), a different variation scope
of the yaw angleψ(t) will lead to different Ãi. This paper
assumes that the yaw angleψ(t) varies between−π

6 and π
6 . If

a different variation scope for the yaw angleψ(t) is chosen,
the corresponding T-S fuzzy DPS is also different from (9) in
this paper.

Since communication networks are introduced between
the UMV and the observer-based controller, the premise
membership function structure of the observer may be
different from that of the fuzzy system (9). Thus, it is
of paramount importance to construct an observer-based
controller under imperfect premise matching. The rule of the
observer is given as follows

Observer Rulej: IF θ̂1(t) is Ŵj1 and θ̂2(t) is Ŵj2

THEN
{

˙̂
ξ(t) = Ãj ξ̂(t) + D̃j û(t) + Lj(ȳ(t)− ŷ(t))

ŷ(t) =C1ξ̂(t)
(10)

whereθ̂1(t) = sin(ξ̂3(t)) and θ̂2(t) = cos(ξ̂3(t)) are premise
variables,Ŵj1 and Ŵj2 are fuzzy sets,j = 1, 2, 3, and
4; ξ̂(t) is the estimated observer state,ȳ(t) is the measured
output received by the observer,Lj is the observer gain to
be designed. The global dynamics of the observer can be
described as




˙̂
ξ(t) =

4∑
j=1

φj(θ̂(t))[Ãj ξ̂(t) + D̃j û(t) + Lj(ȳ(t)− ŷ(t))]

ŷ(t) =C1ξ̂(t)
(11)

where

φj(θ̂(t)) =
ϑ̂j(θ̂(t))
4∑

s=1

ϑ̂s(θ̂(t))

, ϑ̂j(θ̂(t)) = Ŵj1(θ̂1(t))Ŵj2(θ̂2(t))

φj(θ̂(t)) ≥ 0,
4∑

j=1

φj(θ̂(t)) = 1

Note that no communication network is introduced between
the observer and the controller. It is reasonable to assume that
premise variables of the fuzzy observer and the controller are
the same. Then the observer-based fuzzy control law can be
represented as

Controller Rulel: IF θ̂1(t) is Ŵl1 and θ̂2(t) is Ŵl2

THEN
û(t) =Klξ̂(t) (12)

whereθ̂1(t) = sin(ξ̂3(t)) and θ̂2(t) = cos(ξ̂3(t)) are premise
variables,Ŵl1 and Ŵl2 are fuzzy sets,l = 1, 2, 3, and 4;
Kl is the controller gain to be determined. Then the fuzzy
controller is

û(t) =
4∑

l=1

φl(θ̂(t))Klξ̂(t) (13)

where the definition forφl(θ̂(t)) is similar to that ofφj(θ̂(t)),
here it is omitted for brevity.

In what follows, we turn to network-based modelling for
the UMV.

Throughout this paper, we consider the case that the UMV
and the remote control station are connected through com-
munication networks; there exist packet dropouts, network-
induced delays, and packet disordering; if packet disordering
occurs, the latest available data packets will be utilized by
the observer or the actuator, and disordered packets will
be dropped; the sampler is time-driven, while the observer-
based controller and the actuator are event-driven; the actuator
is chosen as the zero order hold which is connected to
the propeller and thruster system; the sampler, the observer-
based controller, and the actuator are assumed to be clock
synchronized. The networked structure for the T-S fuzzy DPS
of a UMV is presented in Fig. 2, where the UMV is the C-Stat
station keeping vessel of ASV Global in United Kingdom.

Fig. 2. Networked structure for the T-S fuzzy DPS of a UMV

Fig. 3 depicts the signal transmission for the UMV sub-
ject to sampler-to-controller and controller-to-actuator packet
dropouts, network-induced delays, and packet disordering,
where the solid lines denote successful data packet transmis-
sion, while the dashed lines and the dotted lines denote packet
dropouts and packet disordering, respectively.

As observed from Fig. 3, sampled data based on the
measured outputs at the instantstkh, tk+1h, · · · (k =
0, 1, 2, · · · ) are transmitted to the receivers successfully,
while the data sampled at the instantst̃k1h and t̃k2h are
dropped due to communication network unreliability and
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packet disordering, respectively;h denotes the length of the
sampling period;̺ −1 denotes the upper bound of consecutive
packet dropouts;τsck and τk denotes the length of sampler-
to-controller and sampler-to-actuator network-induced delays,
respectively;τcak is defined asτk − τsck ; τscm ≤ τsck ≤ τscM ,
τcam ≤ τcak ≤ τcaM , τm ≤ τk ≤ τM , whereτscm ≥ 0, τcam ≥ 0,
τm ≥ 0, andτm = τscm + τcam .

Fig. 3. Signal transmission for the UMV

Thus, fort ∈ [tkh+ τsck , tk+1h+ τsck+1), the measurement
output utilized by the observer is described as

ȳ(t) = y(tkh) (14)

For t ∈ [tkh+ τk, tk+1h+ τk+1), the control input available
to the actuator is

u(t) = û(tkh+ τsck ) (15)

Remark 3: Note that fort ∈ [tkh+ τk, tk+1h+ τk+1), the
measurement outputs available to the observer are variable.
Then one should choose an appropriate measurement output
for the observer. At the instanttkh + τk, the measurement
outputs utilized by the observer may be sampled at instants
tkh, tkh + h, · · · , tkh + ⌊ τk

h
⌋h, where⌊ τk

h
⌋ is the largest

integer smaller than or equal toτk
h

. A similar conclusion can
be drawn for the instanttk+1h+τk+1. When the control input
û(tkh+ τsck ) is received by the actuator at the instanttk + τk,
the actuator sends an acknowledgement signal to the observer-
based controller. The acknowledgement signal is assigned the
highest transmission priority and its network-induced delays
are negligible. Thus, fort ∈ [tkh + τk, tk+1h + τk+1), the
observer can choose to use the measurement outputy(tkh) as
its input.

Defined(t) = t−tkh andτ(t) = t−tkh−τsck . Then one has
d(t) ∈ [d, d̄) andτ(t) ∈ [τ , τ̄) with d = τm, d̄ = ̺h + τM ,
τ = τcam , andτ̄ = ̺h+τM−τscm . Defineξ̃(t) = ξ(t)−ξ̂(t), and
ξ̄(t) = [ξ̂T (t) ξ̃T (t)]T . The following networked T-S fuzzy
DPS can be established readily





˙̄ξ(t) =
4∑

i=1

4∑
j=1

4∑
l=1

4∑
s=1

hi(θ(t))φj(θ̂(t))φl(θ̂(t))

φs(θ̂(t− τ(t)))[Π1ijl ξ̄(t) + Π2sξ̄(t− τ(t))
+Π3j ξ̄(t− d(t)) + D̄ω(t)]

z(t) =
4∑

i=1

hi(θ(t))[C2i Ĩ ξ̄(t) + Fiω(t)]

(16)

where

Π1ijl =

[
Ãj + D̃Kl − LjC1 0

Ãi − Ãj − D̃Kl + LjC1 Ãi

]
,Π2s =

[
0 0

D̃Ks 0

]
,

Π3j =

[
LjC1 LjC1

−LjC1 −LjC1

]
, D̄ =

[
0

D̃

]
, Ĩ =

[
I I

]

Remark 4: Note thatD̃1 = D̃2 = D̃3 = D̃4 = D̃. Then
D̃i (i = 1, 2, 3, 4) is written asD̃ in (16) and the followed
expressions for brevity.

If communication networks are introduced between the
UMV and the observer-based controller, it is natural to take
into account the imperfect premise matching. However, this
will lead to increased computational complexity inevitably,
which statement is verified by the stability criterion in
Theorem 1. Without loss of generality, we turn to consider
the case of premise matching, and the rule of the observer is
described as

Observer Rulei: IF θ1(t) is Wi1 andθ2(t) is Wi2

THEN
{

˙̂
ξ(t) = Ãiξ̂(t) + D̃û(t) + Li(ȳ(t)− ŷ(t))

ŷ(t) =C1ξ̂(t)
(17)

where θ1(t), θ2(t), Wi1, andWi2 are the same as the cor-
responding items in Plant Rulei; ξ̂(t), ȳ(t), andLi are the
same as the corresponding items in (10). The global dynamics
of the observer is described as





˙̂
ξ(t) =

4∑
j=1

hj(θ(t))[Ãj ξ̂(t) + D̃û(t) + Lj(ȳ(t)− ŷ(t))]

ŷ(t) =C1ξ̂(t)

û(t) =Kξ̂(t)
(18)

where the definition ofhj(θ(t)) is similar tohi(θ(t)) in (9).
Motivated by the networked T-S fuzzy DPS in (16), one can

establish the fuzzy DPS under premise matching as follows






˙̄ξ(t) =
4∑

i=1

4∑
j=1

hi(θ(t))hj(θ(t))[Π1ij ξ̄(t)

+Π2ξ̄(t− τ(t)) + Π3j ξ̄(t− d(t)) + D̄ω(t)]

z(t) =
4∑

i=1

hi(θ(t))[C2i Ĩ ξ̄(t) + Fiω(t)]

(19)
where

Π1ij =

[
Ãj + D̃K − LjC1 0

Ãi − Ãj − D̃K + LjC1 Ãi

]
,Π2 =

[
0 0

D̃K 0

]
,

Π3j =

[
LjC1 LjC1

−LjC1 −LjC1

]
, D̄ =

[
0

D̃

]
, Ĩ =

[
I I

]

Note that sampler-to-controller and controller-to-actuator
network-induced characteristics are taken into full consider-
ation in closed-loop systems (16) and (19). If one considers
only controller-to-actuator network-induced characteristics, the
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global dynamics of the observer in (18) reduces to





˙̂
ξ(t) =

4∑
j=1

hj(θ(t))[Ãj ξ̂(t) + D̃û(t) + Lj(y(t)− ŷ(t))]

ŷ(t) =C1ξ̂(t)

û(t) =Kξ̂(t)
(20)

where hj(θ(t)) is similar to hi(θ(t)) in (9). Then the net-
worked T-S fuzzy DPS in (19) is converted to





˙̄ξ(t) =
4∑

i=1

4∑
j=1

hi(θ(t))hj(θ(t))[Π̃1ij ξ̄(t)

+Π2ξ̄(t− τ(t)) + D̄ω(t)]

z(t) =
4∑

i=1

hi(θ(t))[C2i Ĩ ξ̄(t) + Fiω(t)]

(21)

where

Π̃1ij =

[
Ãj + D̃K LjC1

Ãi − Ãj − D̃K Ãi − LjC1

]
,

Π2 =

[
0 0

D̃K 0

]
, D̄ =

[
0

D̃

]
, Ĩ =

[
I I

]

andτ(t) ∈ [τl, τ
u), whereτl = τcam , τu = ̺h+ τcaM .

Remark 5: Note that the T-S fuzzy-model-based dynamic
positioning of a marine vehicle is investigated in [22] by using
a state feedback fuzzy controller. In this paper, we consider
an observer-based output feedback fuzzy control for dynamic
positioning of a marine vehicle in network environments. As
a consequence, network-induced characteristics are takeninto
account to establish network-based models and then investi-
gate the stability analysis and controller design for networked
T-S fuzzy DPSs. The proposed modelling and observer-based
output feedback fuzzy control schemes can be extended to deal
with general T-S fuzzy systems.

III. STABILITY ANALYSIS FOR NETWORKED T-S FUZZY

DPSS

In this section, we analyse stability of network-based T-
S fuzzy DPSs (16) and (19) for the UMV. In doing so, we
construct the Lyapunov-Krasovskii functional as

V (t, ξ̄t) =

4∑

i=1

Vi(t, ξ̄t) (22)

where

V1(t, ξ̄t) =ξ̄
T (t)P ξ̄(t),

V2(t, ξ̄t) =(τ̄ − τ(t))

∫ t

t−τ(t)

˙̄ξT (s)Q1
˙̄ξ(s)ds

+ (d̄− d(t))

∫ t

t−d(t)

˙̄ξT (s)Q2
˙̄ξ(s)ds,

V3(t, ξ̄t) =

∫ t

t−τ

ξ̄T (s)R1ξ̄(s)ds+

∫ t−τ

t−τ̄

ξ̄T (s)R2ξ̄(s)ds

+

∫ t

t−d

ξ̄T (s)R3ξ̄(s)ds+

∫ t−d

t−d̄

ξ̄T (s)R4ξ̄(s)ds,

V4(t, ξ̄t) =

∫ −τ

−τ̄

∫ t

t+s

˙̄ξT (θ)S1
˙̄ξ(θ)dθds

+

∫ −d

−d̄

∫ t

t+s

˙̄ξT (θ)S2
˙̄ξ(θ)dθds

and ξ̄t = ξ̄(t+ ς) with ς ∈ [t0h+ τ0−max{τ̄ , d̄}, t0h+ τ0],
while P , Q1, Q2, R1, R2, R3, R4, S1, andS2 are symmetric
positive definite matrices of appropriate dimensions. We now
state and establish the following stability criterion for the
network-based system (16).

Theorem 1: For given scalarsτcam ≥ 0, τscm ≥ 0, τM > 0,
h > 0, ̺ > 0, γ > 0, σm ∈ [0, 1], membership functions
φm(θ̂(t− τ(t))) andφm(θ̂(t)) satisfying|φm(θ̂(t− τ(t))) −
φm(θ̂(t))| ≤ σm, and matricesLj and K of appropriate
dimensions, the network-based T-S fuzzy DPS (16) is asymp-
totically stable with anH∞ norm boundγ, if there exist
symmetric positive definite matricesP , Q1, Q2, R1, R2, R3,
R4, S1, S2, andZijl such that

Γijlm + Ξijlm + Zijl > 0 (23)

Γijjs + Ξijjs +

4∑

m=1

σm(Γijjm + Ξijjm + Zijj) < 0 (24)

Γijls + Γiljs + Ξijls + Ξiljs +
4∑

m=1
σm(Γijlm + Γiljm

+Ξijlm + Ξiljm + Zijl + Zilj) < 0, j < l
(25)

wherei, j, l, s, m = 1, 2, 3, and 4, and

Γijls =

[
Γ1,ijls Γ2

∗ Γ3

]
,

Ξijls =UT
1ijlsΘU1ijls + γ−1UT

2iU2i,

Γ1,ijls =




Γ11
ijl 0 0 0 0 Γ16

s Γ17
j

∗ Γ22 0 0 0 Γ26 0
∗ ∗ Γ33 0 0 Γ36 0
∗ ∗ ∗ Γ44 0 0 Γ47

∗ ∗ ∗ ∗ Γ55 0 Γ57

∗ ∗ ∗ ∗ ∗ Γ66 0
∗ ∗ ∗ ∗ ∗ 0 Γ77




,

Γ2 =




6Q1

τ̄
6Q2

d̄
0 0 0 0 PD̄

0 0 Ŝ1 0 0 0 0

0 0 0 Ŝ1 0 0 0

0 0 0 0 Ŝ2 0 0

0 0 0 0 0 Ŝ2 0
6Q1

τ̄
0 Ŝ1 Ŝ1 0 0 0

0 6Q2

d̄
0 0 Ŝ2 Ŝ2 0




,

Γ3 =diag{−12Q1

τ̄
, − 12Q2

d̄
, − 12S1

τ̄ − τ
,

− 12S1

τ̄ − τ
, − 12S2

d̄− d
, − 12S2

d̄− d
, − γI},
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Γ11
ijl =PΠ1ijl +ΠT

1ijlP − 4Q1

τ̄
− 4Q2

d̄
+R1 +R3,

Γ16
s =PΠ2s −

2Q1

τ̄
, Γ17

j = PΠ3j −
2Q2

d̄
,

Γ22 =R2 −R1 −
4S1

τ̄ − τ
, Γ26 = − 2S1

τ̄ − τ
,

Γ33 =−R2 −
4S1

τ̄ − τ
, Γ36 = − 2S1

τ̄ − τ
,

Γ44 =R4 −R3 −
4S2

d̄− d
, Γ47 = − 2S2

d̄− d
,

Γ55 =−R4 −
4S2

d̄− d
, Γ57 = − 2S2

d̄− d
,

Γ66 =− 4Q1

τ̄
− 8S1

τ̄ − τ
, Γ77 = −4Q2

d̄
− 8S2

d̄− d
,

Ŝ1 =
6S1

τ̄ − τ
, Ŝ2 =

6S2

d̄− d
,

U1ijls =

[
Π1ijl 0, · · · , 0︸ ︷︷ ︸

4

Π2s Π3j 0, · · · , 0︸ ︷︷ ︸
6

D̄
]
,

U2i =

[
C2iĨ 0, · · · , 0︸ ︷︷ ︸

12

Fi

]
, Ĩ =

[
I I

]
,

Θ =(τ̄ − τ )(Q1 + S1) + (d̄− d)(Q2 + S2),
(26)

while Γijlm andΞijlm are derived fromΓijls andΞijls, re-
spectively, by substituting the subscripts with m; Γijjs, Ξijjs,
Γijjm, Ξijjm , andZijj are derived fromΓijls, Ξijls, Γijlm,
Ξijlm, and Zijl, respectively, by substituting the subscript
l with j; Γiljs, Ξiljs, Γiljm, Ξiljm, and Zilj are derived
from Γijls, Ξijls, Γijlm, Ξijlm, and Zijl, respectively, by
interchanging the subscriptsj and l.

Proof: See the Appendix.�
Remark 6: Note that the assumption|φm(θ̂(t − τ(t))) −

φm(θ̂(t))| ≤ σm is introduced in the proof Theorem 1. As
discussed in [35], considering the asynchronous difference
between the normalized membership function of the controlled
plant and that of the controller will lead to less conservatism.
Thus, the stability criterion in Theorem 1 is expected to
provide good dynamic positioning performance. On the other
hand, the T-S fuzzy systems and the stability criterion in
Theorem 1 of this paper are totally different from those in
[35], the comparison between this paper and [35] is omitted.

If the networked T-S fuzzy DPS (19) under the premise
matching is considered, the following stability criterionis
followed immediately.

Theorem 2: For given scalarsτcam ≥ 0, τscm ≥ 0, τM > 0,
h > 0, ̺ > 0, γ > 0, and matricesLj and K of
appropriate dimensions, the network-based T-S fuzzy DPS (19)
is asymptotically stable with anH∞ norm boundγ, if there
exist symmetric positive definite matricesP , Q1, Q2, R1, R2,
R3, R4, S1, andS2 such that the inequalities (27) and (28)
hold for 1 ≤ i 6= j ≤ 4,

[
Γii Γ4,ii

∗ Γ5

]
< 0 (27)




Γ̄ij Γ4,ii Γ4,ij Γ4,ji

∗ 3Γ5 0 0
∗ ∗ 2Γ5 0
∗ ∗ ∗ 2Γ5


 < 0 (28)

where

Γ̄ij =
1

3
Γii +

1

2
Γij +

1

2
Γji,

Γ4,ij =
[
U3ij U3ij U3ij U3ij U2i

]
,

Γ5 =diag{−(τ̄ − τ)−1Q−1
1 , − (τ̄ − τ )−1S−1

1 ,

− (d̄− d)−1Q−1
2 , − (d̄− d)−1S−1

2 , − γI},

U3ij =

[
Π1ij 0, · · · , 0︸ ︷︷ ︸

4

Π2 Π3j 0, · · · , 0︸ ︷︷ ︸
6

D̄
]
,

U2i =

[
C2iĨ 0, · · · , 0︸ ︷︷ ︸

12

Fi

]
, Ĩ =

[
I I

]
,

while Γij is derived fromΓijls in (26) by substitutingΠ1ijl

andΠ2s with Π1ij andΠ2 in (19), respectively;Γii andΓ4,ii

are derived fromΓij and Γ4,ij , respectively, by substituting
the subscriptj with i; Γji andΓ4,ji are derived fromΓij and
Γ4,ij , respectively, by interchanging the subscriptsi andj.

Proof: By combining Theorem 2.2 in [43] and the proof of
Theorem 1 in this paper, one can derive the stability criterion
presented above. The detailed proof is omitted here for brevity.
This completes the proof.�

IV. CONTROLLER DESIGN FOR NETWORKEDT-S FUZZY

DPSS

This section is concerned with controller design for
network-based T-S fuzzy DPSs of the UMV.

We state and establish the following controller design cri-
terion for the closed-loop system (19).

Theorem 3: For given scalarsτcam ≥ 0, τscm ≥ 0, τM > 0,
h > 0, ̺ > 0, γ > 0, the network-based T-S fuzzy DPS (19)
is asymptotically stable with anH∞ norm boundγ and the
controller gainK = V T

1 J
−1, and the observer gainLj =

V T
2j J̄

−T , if there exist symmetric positive definite matricesJ ,
Q̃1, Q̃2, R̃1, R̃2, R̃3, R̃4, S̃1, and S̃2, matricesV1, V2j , and
J̄ such that [

Γ̃ii Γ̃4,ii

∗ Γ̃5

]
< 0 (29)




Γ̃com
ij Γ̃4,ii Γ̃4,ij Γ̃4,ji

∗ 3Γ̃5 0 0

∗ ∗ 2Γ̃5 0

∗ ∗ ∗ 2Γ̃5


 < 0 (30)

JCT
1 = CT

1 J̄ (31)

where

Γ̃ij =

[
Γ̃1,ij Γ̃2

∗ Γ̃3

]
,

Γ̃1,ij =




Γ̃11
ij 0 0 0 0 Γ̃16 Γ̃17

j

∗ Γ̃22 0 0 0 Γ̃26 0

∗ ∗ Γ̃33 0 0 Γ̃36 0

∗ ∗ ∗ Γ̃44 0 0 Γ̃47

∗ ∗ ∗ ∗ Γ̃55 0 Γ̃57

∗ ∗ ∗ ∗ ∗ Γ̃66 0

∗ ∗ ∗ ∗ ∗ 0 Γ̃77




,

(32)
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Γ̃2 =




6Q̃1

τ̄
6Q̃2

d̄
0 0 0 0 D̄

0 0 S̄1 0 0 0 0
0 0 0 S̄1 0 0 0
0 0 0 0 S̄2 0 0
0 0 0 0 0 S̄2 0

6Q̃1

τ̄
0 S̄1 S̄1 0 0 0

0 6Q̃2

d̄
0 0 S̄2 S̄2 0




,

Γ̃3 =diag{−12Q̃1

τ̄
, − 12Q̃2

d̄
, − 12S̃1

τ̄ − τ
,

− 12S̃1

τ̄ − τ
, − 12S̃2

d̄− d
, − 12S̃2

d̄− d
, − γI},

Γ̃11
ij =H1ij +HT

1ij −
4Q̃1

τ̄
− 4Q̃2

d̄
+ R̃1 + R̃3,

Γ̃16 =HT
2 − 2Q̃1

τ̄
, Γ̃17

j = HT
3j −

2Q̃2

d̄
,

Γ̃22 =R̃2 − R̃1 −
4S̃1

τ̄ − τ
, Γ̃26 = − 2S̃1

τ̄ − τ
,

Γ̃33 =− R̃2 −
4S̃1

τ̄ − τ
, Γ̃36 = − 2S̃1

τ̄ − τ
,

Γ̃44 =R̃4 − R̃3 −
4S̃2

d̄− d
, Γ̃47 = − 2S̃2

d̄− d
,

Γ̃55 =− R̃4 −
4S̃2

d̄− d
, Γ̃57 = − 2S̃2

d̄− d
,

Γ̃66 =− 4Q̃1

τ̄
− 8S̃1

τ̄ − τ
, Γ̃77 = −4Q̃2

d̄
− 8S̃2

d̄− d
,

S̄1 =
6S̃1

τ̄ − τ
, S̄2 =

6S̃2

d̄− d
,

Γ̃4,ij =
[
Ũ3ij Ũ3ij Ũ3ij Ũ3ij Ũ2i

]
,

Γ̃5 =diag{(τ̄ − τ )−1(Q̃1 − 2Υ), (τ̄ − τ)−1(S̃1 − 2Υ),

(d̄− d)−1(Q̃2 − 2Υ), (d̄− d)−1(S̃2 − 2Υ), − γI},

Ũ3ij =

[
HT

1ij 0, · · · , 0︸ ︷︷ ︸
4

HT
2 HT

3j 0, · · · , 0︸ ︷︷ ︸
6

D̄
]T

,

Ũ2i =

[
HT

4i 0, · · · , 0︸ ︷︷ ︸
12

Fi

]T
,

Γ̃com
ij =

1

3
Γ̃ii +

1

2
Γ̃ij +

1

2
Γ̃ji, Υ = diag{J, J},

H1ij =

[
Λ1 Λ2

0 JÃT
i

]
, H2 =

[
0 V1D̃

T

0 0

]
,

H3j =

[
CT

1 V2j −CT
1 V2j

CT
1 V2j −CT

1 V2j

]
, H4i =

[
JCT

2i

JCT
2i

]
,

Λ1 =JÃT
j + V1D̃

T − CT
1 V2j ,

Λ2 =JÃT
i − JÃT

j − V1D̃
T + CT

1 V2j ,

while Γ̃ii andΓ̃4,ii are derived from̃Γij andΓ̃4,ij , respectively,
by substituting the subscriptj with i; Γ̃ji and Γ̃4,ji are
derived fromΓ̃ij and Γ̃4,ij , respectively, by interchanging the
subscriptsi andj.

Proof: Let P = diag{P̂ , P̂}, and P̂−1 = J .
Pre- and post-multiplying both sides of (27) with

diag{P−1, · · · , P−1

︸ ︷︷ ︸
13

, I, · · · , I︸ ︷︷ ︸
6

} and its transpose,

and pre- and post-multiplying both sides of (28) with
diag{P−1, · · · , P−1

︸ ︷︷ ︸
13

, I, · · · , I︸ ︷︷ ︸
16

} and its transpose,

supposing that there exists a matrixJ̄ such thatJCT
1 = CT

1 J̄ ,
defining P−1Q1P

−1 = Q̃1, P−1Q2P
−1 = Q̃2,

P−1R1P
−1 = R̃1, P−1R2P

−1 = R̃2, P−1R3P
−1 = R̃3,

P−1R4P
−1 = R̃4, P−1S1P

−1 = S̃1, P−1S2P
−1 = S̃2,

JKT = V1, J̄LT
j = V2j , and considering that

−Q−1
1 ≤ Q̃1 − 2Υ, −Q−1

2 ≤ Q̃2 − 2Υ, −S−1
1 ≤ S̃1 − 2Υ,

−S−1
2 ≤ S̃2 − 2Υ, one can see that if (29)-(31) are satisfied,

the stability criterion in Theorem 2 is also satisfied. This
completes the proof.�

It should be mentioned that the equality constraint in (31)
induces some difficulty for numerical calculation. We turn to
eliminate the equality constraint in (31). For the matrixCT

1 of
full column rank, there always exist two orthogonal matrices
X ∈ R

6×6 andY ∈ R
3×3 such that

XCT
1 Y =

[
X1

X2

]
CT

1 Y =

[
Φ
0

]
(33)

whereX1 ∈ R
3×6, X2 ∈ R

3×6, Φ = diag{α1, α2, α3},
andα1, α2, α3 are nonzero singular values ofCT

1 . By using
Lemma 2 in [44], one can conclude that if the matrixJ can
be written as

J = XT

[
J11 0
0 J22

]
X = XT

1 J11X1 +XT
2 J22X2 (34)

whereJ11 and J22 are symmetric positive definite matrices
with appropriate dimensions, then there exists a nonsingular
matrix J̄ such thatJCT

1 = CT
1 J̄ .

Based on Theorem 3 and the statement presented above,
one can derive the following observer-based controller design
criterion.

Corollary 1: For given scalarsτcam ≥ 0, τscm ≥ 0, τM > 0,
h > 0, ̺ > 0, γ > 0, the network-based T-S fuzzy DPS
(19) is asymptotically stable with anH∞ norm boundγ and
the controller gainK = V T

1 (XT
1 J11X1 +XT

2 J22X2)
−1, and

the observer gainLj = V T
2jYΦJ−1

11 Φ−1Y T , if there exist
symmetric positive definite matricesJ11, J22, Q̃1, Q̃2, R̃1,
R̃2, R̃3, R̃4, S̃1, andS̃2, matricesV1, andV2j such that

[
Γ̃ii,J Γ̃4,ii,J

∗ Γ̃5,J

]
< 0 (35)




Γ̃com
ij,J Γ̃4,ii,J Γ̃4,ij,J Γ̃4,ji,J

∗ 3Γ̃5,J 0 0

∗ ∗ 2Γ̃5,J 0

∗ ∗ ∗ 2Γ̃5,J


 < 0 (36)

where Γ̃ii,J , Γ̃4,ii,J , Γ̃5,J , Γ̃com
ij,J , Γ̃4,ij,J , and Γ̃4,ji,J are

derived fromΓ̃ii, Γ̃4,ii, Γ̃5, Γ̃com
ij , Γ̃4,ij , andΓ̃4,ji in (29)-(30),

respectively, by substitutingJ with XT
1 J11X1 +XT

2 J22X2.
If the networked closed-loop system (21) is investigated, the

controller design criterion in Theorem 4 is followed readily.
Theorem 4: For given scalarsτcam ≥ 0, τcaM > 0, h > 0,

̺ > 0, γ > 0, the network-based T-S fuzzy DPS (21) is
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asymptotically stable with anH∞ norm boundγ and the
controller gainK = V T

1 (XT
1 J11X1 + XT

2 J22X2)
−1, and

the observer gainLj = V T
2jYΦJ−1

11 Φ−1Y T , if there exist
symmetric positive definite matricesJ11, J22, Q̃1, R̃1, R̃2,
and S̃1, matricesV1, andV2j such that

[
Γ̂ii Γ̃6,ii

∗ Γ̃7

]
< 0 (37)




Γ̂com
ij Γ̃6,ii Γ̃6,ij Γ̃6,ji

∗ 3Γ̃7 0 0

∗ ∗ 2Γ̃7 0

∗ ∗ ∗ 2Γ̃7


 < 0 (38)

where

Γ̂ij =




Γ̂11
ij 0 0 Γ̂14 Γ̂15 0 0 D̄

∗ Γ̂22 0 Γ̂24 0 Γ̂26 0 0

∗ ∗ Γ̂33 Γ̂34 0 0 Γ̂37 0

∗ ∗ ∗ Γ̂44 Γ̂45 Γ̂46 Γ̂47 0

∗ ∗ ∗ ∗ Γ̂55 0 0 0

∗ ∗ ∗ ∗ ∗ Γ̂66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ̂77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI




,

Γ̂11
ij =H5ij +HT

5ij −
4Q̃1

τu
+ R̃1, Γ̂14 = HT

2 − 2Q̃1

τu
,

Γ̂15 =
6Q̃1

τu
, Γ̂22 = R̃2 − R̃1 −

4S̃1

τu − τl
, Γ̂24 = − 2S̃1

τu − τl
,

Γ̂26 =
6S̃1

τu − τl
, Γ̂33 = −R̃2 −

4S̃1

τu − τl
, Γ̂34 = − 2S̃1

τu − τl
,

Γ̂37 =
6S̃1

τu − τl
, Γ̂44 = −4Q̃1

τu
− 8S̃1

τu − τl
, Γ̂45 =

6Q̃1

τu
,

Γ̂46 =Γ̂47 =
6S̃1

τu − τl
, Γ̂55 = −12Q̃1

τu
,

Γ̂66 =Γ̂77 = − 12S̃1

τu − τl
, Γ̃6,ij =

[
Ũ4ij Ũ4ij Ũ5i

]
,

Γ̃7 =diag{(τu − τl)
−1(Q̃1 − 2Υ),

(τu − τl)
−1(S̃1 − 2Υ), − γI},

Ũ4ij =
[
HT

5ij 0 0 HT
2 0 0 0 D̄

]T
,

Ũ5i =

[
HT

4i 0, · · · , 0︸ ︷︷ ︸
6

Fi

]T
,

Γ̂com
ij =

1

3
Γ̂ii +

1

2
Γ̂ij +

1

2
Γ̂ji, Υ = diag{J̃ , J̃},

H5ij =

[
J̃ÃT

j + V1D̃
T J̃ÃT

i − J̃ÃT
j − V1D̃

T

CT
1 V2j J̃ÃT

i − CT
1 V2j

]
,

J̃ =XT
1 J11X1 +XT

2 J22X2,

while H2 andH4i are the same as the corresponding items in
Theorem 3;Γ̂ii and Γ̃6,ii are derived from̂Γij and Γ̃6,ij , re-
spectively, by substituting the subscriptj with i; Γ̂ji andΓ̃6,ji

are derived from̂Γij and Γ̃6,ij , respectively, by interchanging
the subscriptsi andj.

Remark 7: Note that observer-based controller design,
which can stabilize states of the UMV, for network-based T-S

fuzzy DPSs (19) and (21) are investigated in Corollary 1 and
Theorem 4, respectively. The proposed design methods can be
extended to investigate the system (16), and the corresponding
result is omitted here for brevity.

V. PERFORMANCE ANALYSIS AND DISCUSSION

In this section, we show the effectiveness of the proposed
observer-based dynamic positioning controller design forthe
network-based T-S fuzzy DPS (21). In fact, the dynamic
positioning controller design scheme in Corollary 1 is also
applicable. The detailed performance analysis corresponding
to the design scheme in Corollary 1 is omitted here.

Choose the matricesM , N , andG in the system (1) as (see
[4], [22])

M =



1.0852 0 0

0 2.0575 −0.4087
0 −0.4087 0.2153


 ,

N =




0.0865 0 0

0 0.0762 0.1510
0 0.0151 0.0031



 ,

G =




0.0389 0 0

0 0.0266 0
0 0 0





Noting thatA = −M−1G, B = −M−1N , D =M−1, one
has

A =



−0.0358 0 0

0 −0.0208 0
0 −0.0394 0


 ,

B =



−0.0797 0 0

0 −0.0818 −0.1224
0 −0.2254 −0.2468


 ,

D=



0.9215 0 0

0 0.7802 1.4811
0 1.4811 7.4562




(39)

Without loss of generality, let

C21=
[
0.5 1 0 0.1 0 −0.7

]
,

C22=
[
1 0 1 2.1 −1.6 0

]
,

C23=
[
0.2 0 2 1 0 −0.8

]
,

C24=
[
−1 0 −0.7 0 1 0.6

]
,

F1 =
[
0.8 1 0.3

]
, F2 =

[
1 −1 2

]
,

F3 =
[
0.6 1 −0.5

]
, F4 =

[
1 0.9 −2

]
,

C1 =




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





(40)

For Theorem 4, letτcam = 0s, τcaM = 0.03s, h = 0.02s,
̺ = 2.

By using matrix singular value decomposition and from
(33), one has

X1 =




−0.7071 0 0 −0.7071 0 0

0 −0.7071 0 0 −0.7071 0

0 0 −0.7071 0 0 −0.7071



 ,

X2 =




−0.7071 0 0 0.7071 0 0

0 −0.7071 0 0 0.7071 0

0 0 −0.7071 0 0 0.7071



 ,

Y =



−1 0 0

0 −1 0

0 0 −1


 , Φ =



1.4142 0 0

0 1.4142 0

0 0 1.4142



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Fig. 4. The responses of the earth-fixed position on the X-axis and the
body-fixed velocity on the x-axis.
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Fig. 5. The responses of the earth-fixed position on the Y-axis and the
body-fixed velocity on the y-axis.

Suppose that the initial state of the closed-loop system (21)
is ξ̄(t) = [0.1 −0.1 0.2 −0.2 0.3 −0.3 0 0 0 0 0 0]T .
The disturbance of surge, sway and yaw motionsω1(t), ω2(t),
andω3(t) is given as





ω1(t) = 0.27F1(s)N1(t)N2(t)

ω2(t) = −0.6cos(1.6t)e−0.12t

ω3(t) = 0.58F2(s)N3(t)N4(t)

(41)

where F1(s) and F2(s) are shaping filters described by
Kω1s

s2+2ǫ1σ1s+σ2

1

and Kω2s
s2+2ǫ2σ2s+σ2

2

, respectively;Kω1 andKω2

denote the dominate wave strength coefficients withKω1 =
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Fig. 6. The responses of the yaw angle and yaw angular velocity.
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Fig. 7. The responses of state error between the UMV and the observer. (a),
(b), and (c) are corresponding tõξ1(t), ξ̃2(t), and ξ̃3(t), respectively.
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Fig. 8. The responses of state error between the UMV and the observer. (a),
(b), and (c) are corresponding tõξ4(t), ξ̃5(t), and ξ̃6(t), respectively.

0.26 andKω2 = 0.8; ǫ1 andǫ2 denote the damping coefficients
with ǫ1 = 0.2 andǫ2 = 1.7; σ1 andσ2 denote the encountering
wave frequencies withσ1 = 1.3 and σ2 = 0.9; N1(t) and
N3(t) are band-limited white noise with noise powers 2.69

0 5 10 15 20 25 30 35

(a)

-0.2

0

0.2

T
he

 o
bs

er
ve

r 
st

at
e

0 5 10 15 20 25 30 35

(b)

-0.4

-0.2

0

0.2

T
he

 o
bs

er
ve

r 
st

at
e

0 5 10 15 20 25 30 35

(c)
Time (s)

-0.5

0

0.5

T
he

 o
bs

er
ve

r 
st

at
e

Fig. 9. The responses of observer state. (a), (b), and (c) arecorresponding
to ξ̂1(t), ξ̂2(t), and ξ̂3(t), respectively.
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and 1.56, respectively; while

N2(t) =

{
1, t ∈ [0s, 6s]

0, otherwise

N4(t) =

{
1, t ∈ [0s, 5.5s]

0, otherwise
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Fig. 10. The responses of observer state. (a), (b), and (c) are corresponding
to ξ̂4(t), ξ̂5(t), and ξ̂6(t), respectively.
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Fig. 11. The responses of the control forces and moment provided by the
thruster system. (a), (b), and (c) are corresponding to the forceu1(t) provided
by main propellers, the forceu2(t) provided by tunnel thrusters, and the
momentu3(t) provided by azimuth thrusters, respectively.

The number of packet dropouts and the network-induced
delaysτk vary stochastically.

The responses of the UMV state are given in Fig. 4, Fig. 5,
and Fig. 6, from which figures one can see that the proposed
dynamic positioning scheme can guarantee satisfying perfor-
mance for the UMV. The responses of state error between
the UMV and the observer are presented in Fig. 7 and Fig.
8. In fact, the observer-based dynamic positioning controller
design scheme can provide a small state error between the
UMV and the observer, which is verified by Fig. 7 and Fig.
8. The responses of observer state are described by Fig. 9
and Fig. 10, while Fig. 11, and Fig. 12 present the responses
of the control forces and moment provided by the thruster
system, and the wave-induced disturbance, respectively. Even
if the wave-induced disturbance is imposed on the UMV, the
control cost is still acceptable. This statement is verifiedby
Fig. 11 and Fig. 12.

0 5 10 15 20 25 30 35

(a)

-0.2

0

0.2

T
he

 d
is

tu
rb

an
ce

of
 s

ur
ge

 m
ot

io
n

0 5 10 15 20 25 30 35

(b)

-1

-0.5

0

0.5

T
he

 d
is

tu
rb

an
ce

of
 s

w
ay

 m
ot

io
n

0 5 10 15 20 25 30 35

(c)
Time (s)

-1

-0.5

0

0.5

T
he

 d
is

tu
rb

an
ce

of
 y

aw
 m

ot
io

n

Fig. 12. The responses of the disturbance. (a), (b), and (c) are corresponding
to the disturbance of surge motionω1(t), the disturbance of sway motion
ω2(t), and the disturbance of yaw motionω3(t), respectively.

VI. CONCLUSIONS

The networked modelling, stability analysis, and observer-
based controller design for the T-S fuzzy dynamic positioning
system of a UMV subject to wave-induced disturbance have
been investigated. Network-based T-S fuzzy models for the
DPS have been established by making full use of the variation
scope of the yaw angle, and the sampler-to-controller and
controller-to-actuator network-induced characteristics. A novel
stability criterion has been derived by taking the asynchronous
difference between the normalized membership function of the
UMV and that of the controller into consideration. The pro-
posed observer-based controller design has been shown to be
effective in providing good dynamic positioning performance.

Future research includes network-based filtering [26], [45]
for the T-S fuzzy dynamic positioning system of a UMV in
network environments.

APPENDIX

PROOF OFTHEOREM 1

Taking the time derivative of the Lyapunov functional
V (t, ξ̄t) given in (22) along the trajectory of the system (16),
we have

V̇1(t, ξ̄t) = 2ξ̄T (t)P ˙̄ξ(t) (42)

Applying the Wirtinger-based integral inequality [41], [42],
one has

V̇2(t, ξ̄t)

= (τ̄ − τ(t)) ˙̄ξT (t)Q1
˙̄ξ(t) + (d̄− d(t)) ˙̄ξT (t)Q2

˙̄ξ(t)

−
∫ t

t−τ(t)

˙̄ξT (s)Q1
˙̄ξ(s)−

∫ t

t−d(t)

˙̄ξT (s)Q2
˙̄ξ(s)

≤ (τ̄ − τ ) ˙̄ξT (t)Q1
˙̄ξ(t) + (d̄− d) ˙̄ξT (t)Q2

˙̄ξ(t)

− 1

τ̄
ζT1 Q1ζ1 −

3

τ̄
ζT2 Q1ζ2 −

1

d̄
ζT3 Q2ζ3 −

3

d̄
ζT4 Q2ζ4

(43)
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V̇3(t, ξ̄t)

= ξ̄T (t)R1ξ̄(t) + ξ̄T (t− τ )(R2 −R1)ξ̄(t− τ )

− ξ̄T (t− τ̄ )R2ξ̄(t− τ̄ ) + ξ̄T (t)R3ξ̄(t)

+ ξ̄T (t− d)(R4 −R3)ξ̄(t− d)− ξ̄T (t− d̄)R4ξ̄(t− d̄)
(44)

Similar to the inequality in (43), we have

V̇4(t, ξ̄t)

≤ (τ̄ − τ ) ˙̄ξT (t)S1
˙̄ξ(t) + (d̄− d) ˙̄ξT (t)S2

˙̄ξ(t)

− 1

τ̄ − τ
ζT5 S1ζ5 −

3

τ̄ − τ
ζT6 S1ζ6 −

1

τ̄ − τ
ζT7 S1ζ7

− 3

τ̄ − τ
ζT8 S1ζ8 −

1

d̄− d
ζT9 S2ζ9 −

3

d̄− d
ζT10S2ζ10

− 1

d̄− d
ζT11S2ζ11 −

3

d̄− d
ζT12S2ζ12

(45)

where

ζ1 =ξ̄(t)− ξ̄(t− τ(t)),

ζ2 =ξ̄(t) + ξ̄(t− τ(t)) − 2

τ(t)

∫ t

t−τ(t)

ξ̄(s)ds,

ζ3 =ξ̄(t)− ξ̄(t− d(t)),

ζ4 =ξ̄(t) + ξ̄(t− d(t))− 2

d(t)

∫ t

t−d(t)

ξ̄(s)ds,

ζ5 =ξ̄(t− τ )− ξ̄(t− τ(t)),

ζ6 =ξ̄(t− τ ) + ξ̄(t− τ(t)) − 2

τ(t)− τ

∫ t−τ

t−τ(t)

ξ̄(s)ds,

ζ7 =ξ̄(t− τ(t)) − ξ̄(t− τ̄ ),

ζ8 =ξ̄(t− τ(t)) + ξ̄(t− τ̄ )− 2

τ̄ − τ(t)

∫ t−τ(t)

t−τ̄

ξ̄(s)ds,

ζ9 =ξ̄(t− d)− ξ̄(t− d(t)),

ζ10 =ξ̄(t− d) + ξ̄(t− d(t)) − 2

d(t)− d

∫ t−d

t−d(t)

ξ̄(s)ds,

ζ11 =ξ̄(t− d(t)) − ξ̄(t− d̄),

ζ12 =ξ̄(t− d(t)) + ξ̄(t− d̄)− 2

d̄− d(t)

∫ t−d(t)

t−d̄

ξ̄(s)ds

(46)

Define

η(t) =

[ξ̄T (t), ξ̄T (t− τ ), ξ̄T (t− τ̄ ), ξ̄T (t− d), ξ̄T (t− d̄),

ξ̄T (t− τ(t)), ξ̄T (t− d(t)),
1

τ(t)

∫ t

t−τ(t)

ξ̄T (s)ds,

1

d(t)

∫ t

t−d(t)

ξ̄T (s)ds,
1

τ(t) − τ

∫ t−τ

t−τ(t)

ξ̄T (s)ds,

1

τ̄ − τ(t)

∫ t−τ(t)

t−τ̄

ξ̄T (s)ds,
1

d(t)− d

∫ t−d

t−d(t)

ξ̄T (s)ds,

1

d̄− d(t)

∫ t−d(t)

t−d̄

ξ̄T (s)ds, ωT (t)]T .

Then we obtain the following inequality

V̇ (t, ξ̄t) + γ−1zT (t)z(t)− γωT (t)ω(t)

≤
4∑

i=1

4∑

j=1

4∑

l=1

4∑

s=1

hi(θ(t))φj(θ̂(t))φl(θ̂(t))φs(θ̂(t− τ(t)))

ηT (t)[Γijls + Ξijls]η(t)
(47)

whereΓijls andΞijls are the same as the corresponding items
in (26).

Note that the right side of the inequality (47) can be
rewritten as

∆ =
4∑

i=1

4∑

j=1

4∑

l=1

4∑

s=1

hi(θ(t))φj(θ̂(t))φl(θ̂(t))φs(θ̂(t))

ηT (t)[Γijls + Ξijls]η(t) +
4∑

i=1

4∑

j=1

4∑

l=1

4∑

s=1

hi(θ(t))

φj(θ̂(t))φl(θ̂(t))(φs(θ̂(t− τ(t))) − φs(θ̂(t)))

ηT (t)[Γijls + Ξijls + Zijl]η(t)
(48)

By assuming that|φm(θ̂(t− τ(t)))− φm(θ̂(t))| ≤ σm, one
can see that

4∑

i=1

4∑

j=1

4∑

l=1

4∑

m=1

hi(θ(t))φj(θ̂(t))φl(θ̂(t))(φm(θ̂(t− τ(t)))

− φm(θ̂(t)))ηT (t)[Γijlm + Ξijlm + Zijl]η(t)

≤
4∑

i=1

4∑

j=1

4∑

l=1

4∑

s=1

hi(θ(t))φj(θ̂(t))φl(θ̂(t))φs(θ̂(t))

ηT (t)[

4∑

m=1

σm(Γijlm + Ξijlm + Zijl)]η(t)

(49)

Thus, the∆ in (48) satisfies

∆ ≤
4∑

i=1

4∑

j=1

4∑

l=1

4∑

s=1

hi(θ(t))φj(θ̂(t))φl(θ̂(t))φs(θ̂(t))

ηT (t)[Γijls + Ξijls +

4∑

m=1

σm(Γijlm

+ Ξijlm + Zijl)]η(t)

=

4∑

i=1

4∑

j=1

4∑

s=1

hi(θ(t))φj(θ̂(t))φj(θ̂(t))φs(θ̂(t))

ηT (t)[Γijjs + Ξijjs +

4∑

m=1

σm(Γijjm

+ Ξijjm + Zijj)]η(t)

+

4∑

i=1

3∑

j=1

4∑

s=1

∑

j<l

hi(θ(t))φj(θ̂(t))φl(θ̂(t))φs(θ̂(t))

ηT (t)[Γijls + Γiljs + Ξijls + Ξiljs +

4∑

m=1

σm(Γijlm

+ Γiljm + Ξijlm + Ξiljm + Zijl + Zilj)]η(t)
(50)
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From the inequalities presented above, one can conclude
that if the inequalities in (23)-(25) are satisfied, thenV̇ (t, ξ̄t)+
γ−1zT (t)z(t) − γωT (t)ω(t) < 0. Based on the definition
for H∞ performance, one can get the stability criterion in
Theorem 1. This completes the proof.�
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