

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Lin, M., Wierman, A., Andrew, L. L. H., & Thereska, E. (2011). Online dynamic
capacity provisioning in data centers.

Originally published in Proceedings of the 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton 2011), Monticello, Illinois,

United States, 28–30 September 2011 (pp. 1159–1163). Piscataway, NJ: IEEE.

Available from: http://dx.doi.org/10.1109/Allerton.2011.6120298.

Copyright © 2011 IEEE.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://ieeexplore.ieee.org/.

Online Dynamic Capacity Provisioning in Data Centers
Minghong Lin and Adam Wierman
California Institute of Technology

Lachlan L. H. Andrew
Swinburne University of Technology

Eno Thereska
Microsoft Research

Abstract—Power consumption imposes a significant cost for
implementing cloud services, yet much of that power is used
to maintain excess service capacity during periods of low load.
In this work, we study how to avoid such waste via an on-
line dynamic capacity provisioning. We overview recent results
showing that the optimal offline algorithm for dynamic capacity
provisioning has a simple structure when viewed in reverse time,
and this structure can be exploited to develop a new ‘lazy’ online
algorithm which is 3-competitive. Additionally, we analyze the
performance of the more traditional approach of receding horizon
control and introduce a new variant with a significantly improved
worst-case performance guarantee.

I. INTRODUCTION

Energy costs represent a significant fraction of a data cen-
ter’s budget [1] and this fraction is expected to grow. Hence,
there is a growing push to improve the energy efficiency of
the data centers. A promising approach for making data centers
more energy efficient is using software to dynamically ‘right-
size’ the data center, i.e., adapt the dispatching so that during
periods of low load some servers are allowed to enter a power-
saving mode (e.g., go to sleep or shut down).

However, entering and leaving sleep mode incurs a penalty
(“switching cost”), in terms of latency, energy consumption,
or wear-and-tear. This means that decisions to sleep cannot be
made independently at different time instants. The problem
is challenging due to the lack of knowledge about future
workloads, which means that a server that is put to sleep
may soon need to be woken again. There is a significant and
growing literature on this topic [2]–[5].

This paper provides an overview of recent results providing
online algorithms to decide the provisioning at each time
instant without or with a little information of future workload.
To this end, we discuss a simple but general model that
captures the major issues of right-sizing. With this model,
we first analytically characterize the optimal offline solution
(Section III-A). We show that it exhibits a simple, ‘lazy’
structure when viewed in reverse time. Second, we discuss a
novel, practical online algorithm motivated by this structure
(Section III-B). The algorithm, named Lazy Capacity Pro-
visioning (LCP), mimics the ‘lazy’ structure of the optimal
algorithm, but proceeding forwards instead of backwards in
time. Importantly, LCP is 3-competitive, i.e., its cost is at
most 3 times that of the optimal offline solution. Third, we
analyze the traditional approach of Receding Horizon Control
(RHC). We show that RHC performs well when servers are
homogeneous; specifically, it has performance that quickly
tends toward optimality as the prediction window increases.
However, we also show that RHC can perform badly when
servers are heterogeneous, regardless of the length of the
prediction window. To address this issue, we discuss a variant
of RHC that is guaranteed to perform well in heterogeneous
settings. Specifically, under both homogeneous and heteroge-
neous settings, their competitive ratio matches that of RHC in
the homogeneous setting. Moreover, we validate our algorithm

using two real traces (Section V). We show that significant
savings are possible under a wide range of settings.

All the results described in this paper are proven and
discussed in more detail in [3] and [6].

II. MODEL

Our focus is on understanding how to dynamically provision
the (active) service capacity of a large, possibly heterogeneous
pool of servers so as to minimize the “cost” of the system,
which may include both energy and quality of service.

A. Workload model
We consider S ≥ 1 types of servers, each of which has a

different cost for serving different types of jobs, and J ≥ 1
types of jobs. We take a discrete-time model where the timeslot
length matches the timescale at which servers can enter or
leave power saving states. There is a (possibly long) time-
interval of interest t ∈ {1, . . . , T}. The mean request rate for
timeslot t is denoted by λt = (λt,j)j∈J , where λt,j is the
mean request rate (arrival rate) for type j jobs at time t. We set
λt = 0 for t < 1 and t > T , and assume that jobs are short so
that work does not carry over between slots and provisioning
can be based on the average arrival rate during a timeslot. In
the data center setting, T could be a year, a timeslot could be
10 minutes, and a job length could be on a second or less.

B. Cost model
Our goal is to provide insight into the important decision:
determining the number of active servers, xt = (xt,s)s∈S ,
where xt,s is the number of active servers of type s during
timeslot t.

We decompose the cost incurred by the system into two
components: (i) the operating cost incurred by using active
servers to serve requests in each timeslot. (ii) the switching cost
incurred by changing provisioning between timeslots. Note
that both components may include costs of energy, delay, and
even wear-and-tear.

To model the operating costs, we use a (possibly time
varying) function ft(xt, λt) for each timeslot, which represents
the cost of using xt = (xt,1, . . . , xt,S) servers to serve arriving
requests λt = (λt,1, . . . , λt,J) under the optimal dispatching of
λt over xt. Note that the optimal dispatching can be computed
easily in many cases, such as when each ft is convex in xt.
Thus, we do not explicitly consider the dispatching decision
in the following and simply assume it is performed optimally.

The switching costs are modeled by a function d(xt−1, xt),
which represents the cost of changing the number of active
servers of each type from vector xt−1 to vector xt. Let β+

and β− be vectors such that β+
s is the cost of turning a server

of type s on, and β−s is the cost of turning it off. Then, it is
natural to use

d(xt−1, xt) = β+ · (xt − xt−1)+ + β− · (xt−1 − xt)+,

where (x)+ = max(0, x) elementwise.

C. Cost optimization problem
Given the workload and cost models above, the system goal

is to choose the active number of servers xt so as to minimize
the total cost during [1, T]. We assume x0 = 0 and xT+1 = 0,
then the number of times a server is turned on in [1, T] is equal
to the number of times it is turned off in [2, T + 1]. Thus the
optimization depends on β+ and β− only through their sum
β = β+ + β−. Therefore, the optimization is

min
x1,...,xT

T∑
t=1

ft(xt, λt) + β ·
T∑
t=1

(xt − xt−1)+ (1)

subject to 0 ≤ xt ∈ RJ , x0 = 0.

Note that this optimization makes two main simplifications.
First, it does not impose integer constraints on xt. This is
acceptable since the number of servers is assumed to be
large and so rounding does not create significant inefficiency.
Second, the number of each type of server is not explicitly
bounded above. An upper bound xt ≤Mt can be imposed by
defining ft(x, ·) = ∞ for x > Mt. A constraint on the load
per server can be imposed similarly. It is this formulation of
the cost optimization that we focus on in the remainder of the
paper.

Given this optimization problem, in many cases the solution
can be found easily offline, i.e., given λt for all t. However,
our goal is to find online algorithms for this optimization, i.e.,
algorithms that determine xt using only information up to time
t+ w, where w ≥ 0 is called the “prediction window”.

In order to evaluate the performance of online algorithms we
use the standard notion of competitive ratio. The competitive
ratio of an algorithm A is defined as the maximum, taken over
all possible inputs, of cost(A)/cost(OPT), where cost(A) is
the objective function of (1) under algorithm A and OPT is
the optimal offline algorithm.

III. HOMOGENEOUS SYSTEMS

In this section, we consider the homogeneous systems (S =
1) with ft(xt, λt) convex in xt. We will first characterize the
optimal solution, and then study the online algorithms.

A. The optimal offline solution
It turns out that there is a simple characterization of the op-

timal offline solution to the data center optimization problem.
The optimal x∗τ can be viewed as ‘lazily’ staying within two
bounds going backwards in time. More formally, let us first
describe upper and lower bounds on x∗τ , denoted xUτ and xLτ ,
respectively. Let (xLτ,1, . . . , x

L
τ,τ) be the solution vector to the

following optimization problem

minimize
τ∑
t=1

ft(xt, λt) + β

τ∑
t=1

(xt − xt−1)+ (2)

subject to xt ≥ 0, x0 = 0.

Then, define xLτ = xLτ,τ . Similarly, let (xUτ,1, . . . , x
U
τ,τ) be the

solution vector to the following optimization problem

minimize
τ∑
t=1

ft(xt, λt) + β

τ∑
t=1

(xt−1 − xt)+ (3)

subject to xt ≥ 0, x0 = 0.

0 5 10 15 20 25
0

50

100

150

200

time t (hours)

nu
m

be
r

of
 s

er
ve

rs
 x

t

Optimal
bounds

(a) Offline optimal

0 5 10 15 20 25
0

50

100

150

200

time t (hours)

nu
m

be
r

of
 s

er
ve

rs
 x

t

LCP(0)
bounds

(b) LCP(0)
Fig. 1. Illustrations of (a) the offline optimal solution and (b) LCP(0) for
the first day of the MSR workload described in Section V.

Then, define xUτ = xUτ,τ .
Notice that in each case, the optimization problem includes

only times 1 ≤ t ≤ τ , and so ignores the arrival information
for t > τ . In the case of the lower bound, β cost is incurred
for each server toggled on, while in the upper bound, β cost
is incurred for each server toggled into power-saving mode.

We now characterize the optimal solution x∗τ . Define (x)ba =
max(min(x, b), a) as the projection of x into [a, b]. Then, we
have:

Theorem 1. In homogeneous system (S = 1) with ft(xt, λt)
convex in xt, the optimal solution X∗ = (x∗0, . . . , x

∗
T) of the

data center optimization problem (1) satisfies the following
backward recurrence relation

x∗τ =

{
0, τ ≥ T ;

(x∗τ+1)x
U
τ

xLτ
, τ ≤ T − 1.

Theorem 1 is proven in [3]. An example of the optimal
x∗t can be seen in Figure 1(a). Theorem 1 and Figure 1(a)
highlight that the optimal algorithm can be interpreted as
moving backwards in time, starting with x∗T = 0 and keeping
x∗τ = x∗τ+1 unless the bounds prohibit this, in which case it
makes the smallest possible change.

B. Online Algorithms
Let us first present an online algorithm, Lazy Capacity

Provisioning (LCP(w)), which is motivated by the structure
of the optimal offline solution described in Section III-A. At
time τ , LCP(w) knows only λt for t ≤ τ + w, for some
prediction window w. Like the optimal solution, it “lazily”
stays within upper and lower bounds. However, it does this
moving forwards in time instead of backwards in time.

To use the knowledge of the prediction window, Let us
define refined bounds xU,wτ and xL,wτ such that xU,wτ = xUτ+w,τ
in the solution of (3) and xL,wτ = xLτ+w,τ in that of (2). Note
that xU,0τ = xUτ and xL,0τ = xLτ . Then we are ready to define
LCP(w) using xU,wτ and xL,wτ .

Algorithm 1. Lazy Capacity Provisioning, LCP(w).
Let XLCP (w) = (xLCP (w)

0 , . . . , x
LCP (w)
T) denote the vector

of active servers under LCP(w). This vector can be calculated
using the following forward recurrence relation

xLCP (w)
τ =

{
0, τ ≤ 0;
(xLCP (w)
τ−1)x

U,w
τ

xL,wτ
, τ ≥ 1.

Figure 1(b) illustrates the behavior of LCP(0). Note its
similarity with Figure 1(a), but with the laziness in forward
time instead of reverse time.

The computational demands of LCP(w) may initially seem
prohibitive as τ grows. However, it is possible to calculate

2

xU,wτ and xL,wτ without using the full history and hence
LCP(w), remains tractable even as τ grows. Please see [3]
for the details.

Next, consider the cost incurred by LCP(w). Section V
discusses the cost in realistic settings, while in this section we
focus on worst-case bounds. We have the following theorem:

Theorem 2. In homogeneous system (S = 1) with
ft(xt, λt) convex in xt, cost(XLCP (w)) ≤ cost(X∗) +
2costswitching(X∗). Thus, LCP(w) is 3-competitive for op-
timization (1). Further, for any finite w and ε > 0 there exists
an instance such that LCP(w) attains a cost greater than 3−ε
times the optimal cost.

Theorem 2 is proven in [3]. Note that the competitive
ratio is independent of any parameters of the model, e.g., the
prediction window size w, the switching cost β, and the form
of the operating cost function ft(·). Surprisingly, this means
that even the “myopic” LCP(0) is 3-competitive. Moreover, the
fact that cost(XLCP (w)) ≤ cost(X∗) + 2costswitching(X∗)
highlights that the gap will tend to be much smaller in practice.
However, it is a little disappointing that even for large w, the
competitive ratio of LCP (w) is arbitrarily close to 3.

Next, let us study the traditional Receding Horizon Control
(RHC), which turns out to have the competitive ratio decreases
as w increases. RHC is commonly proposed for dynamic ca-
pacity provisioning [4], [5] and has a long history in the control
theory literature [7]–[9]. Informally, RHC works by, at time
τ , solving the cost optimization over the window (τ, τ + w)
given the starting state xτ−1. Formally, define Xτ (xτ−1;λ) as
the vector in (RJ)w+1 indexed by t ∈ {τ, . . . , τ + w}, which
is the solution to

min
xτ ,...,xτ+w

τ+w∑
t=τ

ft(xt, λt) + β ·
τ+w∑
t=τ

(xt − xt−1)+ (4)

subject to xt ≥ 0

Then, RHC works as follows.

Algorithm 2. Receding Horizon Control, RHC.
For all t ≤ 0, set the number of active servers to xRHC,t = 0.

At each timeslot τ ≥ 1, set the number of active servers to

xRHC,τ = Xτ
τ (xRHC,τ−1;λ)

and optimally dispatch λτ across xRHC,τ .

Note that (4) need not have a unique solution. We define
RHC to select the solution with the greatest first entry. Define
f0 the minimum cost per timeslot for an active server, then
we have the following theorem:

Theorem 3. In homogeneous system (S = 1) with ft(xt, λt)
convex in xt, RHC is (1 + β

(w+1)f0
)-competitive.

Theorem 3 is proven in [6]. It highlights that, with enough
lookahead, RHC is guaranteed to perform quite well in the
homogeneous case. However, RHC can have bad performance
if w is small and β is large.

IV. HETEROGENEOUS SYSTEMS

Unfortunately, the story is different when servers are het-
erogenous (S ≥ 2). In a heterogeneous system, xt is a vector
and it seems hard to extend LCP (w) to the heterogeneous

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time (hours)

lo
ad

(a) Hotmail

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time (hours)

lo
ad

(b) MSR
Fig. 2. Illustration of the traces used for numerical experiments.

case. Moreover, RHC may not see any improvement in the
competitive ratio as w increases. The following theorem is
proven in [6]:

Theorem 4. When there are multiple types of servers (S ≥ 2),
for all w ≥ 0 RHC is ≥ (1 + maxs(βs/f0,s))-competitive.

Further, the worst case instance used to prove Theorem
4 uses convex f , so the hardness is truly coming from the
heterogeneity and not from other factors. To addresses the
limitations of RHC in the heterogeneous setting, we propose
the following novel variant.

First consider a family of algorithms parameterized by k ∈
[1, w + 1] that recompute their provisioning periodically. For
all k = 1, . . . , w + 1, let Ωk = {i : i ≡ k mod (w + 1)} ∩
[−w,∞);

Algorithm 3. Fixed Horizon Control, version k, FHC(k).
For all t ≤ 0, set the number of active servers to x(k)

FHC,t = 0.
At each timeslot τ ∈ Ωk, for all t ∈ {τ, . . . , τ + w}, set

x
(k)
FHC,t = Xτ

t

(
x

(k)
FHC,τ−1;λ

)
using (4), and dispatch λt over x(k)

FHC,t optimally.

The above algorithm can have very poor performance. How-
ever, it gives rise to the following useful algorithm, AFHC,
which averages the decisions of the w+ 1 FHC algorithms to
ensure good performance.

Algorithm 4. Averaging Fixed Horizon Control, AFHC.
At timeslot τ ∈ Ωk, use FHC(k) to determine the provisioning
x

(k)
k,τ , . . . , x

(k)
k,τ+w, and then set xAFHC,t =

∑w+1
k=1 x

(k)
k,t/(w +

1). At time t, λt is dispatched optimally over xAFHC,t.

Intuitively, AFHC seem worse than RHC because RHC uses
the latest information to make the current decision and AFHC
make decisions in advance, thus ignoring some possibly valu-
able information. This intuition is partially true, as shown in
the following theorem (proven in [6]), which states that RHC
is not worse than AFHC for any workload in a homogeneous
system.

Theorem 5. In homogeneous system (S = 1), cost(RHC) ≤
cost(AFHC)

However, RHC can be worse than AFHC in heterogeneous
systems, even when there are only two types of servers. More-
over, the following theorem highlights that AFHC guarantees
good performance in the homogeneous and the heterogeneous
setting.

Theorem 6. If ft (αxt, αλt) = αft(xt, λt) for all α > 0, or
ft(xt, λt) is convex in xt, then AFHC is (1+maxs βs

(w+1)f0,s
)-

competitive.

3

The above theorem is also proven in [6]. The contrast
between Theorem 4 and Theorems 6 highlights the improve-
ment AFHC provides over RHC. In fact, AFHC has the
same competitive ratio in the general (possibly heterogeneous)
setting that RHC has in the homogeneous setting.

V. CASE STUDIES

In this section our goal is two-fold: First, we seek to
evaluate the cost incurred by online algorithms in the context
of realistic workloads. Second, more generally, we seek to
illustrate the cost savings that come from dynamic right-sizing
in data centers. To accomplish these goals, we experiment
using two real-world traces. We have attempted to choose
experimental settings so that the benefit of dynamic right-
sizing is conservatively estimated. For simplicity, we just show
some results for homogeneous system and LCP (w) algorithm.
More experiments can be found in [3] and [6].

A. Experimental setup

Cost benchmark: Current data centers typically do not use
dynamic right-sizing and so to provide a benchmark against
which LCP(w) is judged, we consider the cost incurred by an
optimal ‘static’ right-sizing scheme for capacity provisioning.
This chooses a constant number of servers that minimizes the
costs incurred based on full knowledge of the entire workload.
This policy is clearly not possible in practice, but it provides
a very conservative estimate of the savings from right-sizing.

Cost function: The operating costs are a weighted sum
of delay costs and energy costs with typical settings [3].
The normalized switching cost β/e0 measures the duration a
server must be powered down to outweigh the switching cost
including power, wear-and-tear and so on.

Workload information: The workloads for these experiments
are drawn from two real-world data center I/O traces [3]. The
first set of traces is from Hotmail and the second set of traces
is from MSR Cambridge. Thus, these activity traces represent
a service used by millions of users and a small service used
by hundreds of users. The traces are normalized to the peak
load, which are shown in Figure 2.

B. Impact of switching costs

One of the main worries when considering right-sizing is
the switching cost of toggling servers β. Thus, an important
question to address is: “How large must switching costs be
before the cost savings from right-sizing disappears?”

Figure 3 shows that significant gains are possible provided
β is smaller than the duration of the valleys. Given that the
energy costs, delay costs, and wear-and-tear costs are likely to
be on the order of an hour, this implies that unless the risks
associated with toggling a server are perceived to be extreme,
the benefits from dynamic right-sizing are large in the MSR
trace. Though the gains are smaller in the Hotmail case for
large β, this is because the spike of background work splits
an 8 hour valley into two short 4 hour valleys. If these tasks
were shifted or balanced across the valley, the Hotmail trace
would show better cost reduction.

min hour day
−10

−5

0

5

10

15

β / e
0

%
 c

os
t r

ed
uc

tio
n

Optimal
w=4
w=0

(a) Hotmail

min hour day

0

20

40

60

β / e
0

%
 c

os
t r

ed
uc

tio
n

Optimal
w=4
w=0

(b) MSR
Fig. 3. Impact of switching cost, against time on a logarithmic scale.

0 10 20 30 40

0

2

4

6

8

mean background load (% total)

%
 c

os
t r

ed
uc

tio
n

Optimal
w=4
w=0

(a) Hotmail

0 20 40 60 80

0

20

40

mean background load (% total)

%
 c

os
t r

ed
uc

tio
n

Optimal
w=4
w=0

(b) MSR
Fig. 4. Impact of background processes. The improvement of LCP(w) over
static provisioning as a function of the percentage of the workload that is
background tasks.

C. Impact of valley filling

A common alternative to dynamic right-sizing that is
often suggested is to run very delay-insensitive mainte-
nance/background processes during the periods of low load,
a.k.a., ‘valley filling’. Some applications have a huge amount
of such background work, e.g., search engines tuning their
ranking algorithms. If there is enough such background work,
the idea is that the valleys can be entirely filled and thus dy-
namic right-sizing is unnecessary. Thus, an important question
is: “How much background work is enough to eliminate the
cost savings from dynamic right-sizing?”

Figure 4 shows that, in fact, dynamic right-sizing provides
cost savings even when background work makes up a sig-
nificant fraction of the total load. For the Hotmail trace,
significant savings are still possible when background load
makes upwards of 10% of the total load, while for the MSR
trace this threshold becomes nearly 60%.

VI. RELATED WORK

Interest in right-sizing has been growing since [10] and
[11] appeared at the start of the decade. Early systems work
such as [11] achieved substantial savings despite ignored
switching costs in their design. Other designs have focused
on decentralized frameworks, e.g., [12] and [13]. A recent
survey is [14]. Related analytic work focusing on dynamic
right-sizing includes [15], which reallocates resources between
tasks within a data center, and [16], which considers sleep of
individual components, among others. Typically, approaches
have applied optimization using queueing theoretic models,
e.g., [17], [18], or control theoretic approaches, e.g., [19]–
[21]. A recent survey of analytic work focusing on energy
efficiency in general is [22]. Our work is differentiated from
this literature by the generality of the model considered, which
subsumes most common energy and delay cost models used by
analytic researchers, and the fact that we provide worst-case
guarantees for the cost of the algorithm, which is typically not
possible for queueing or control theoretic based algorithms.

4

VII. SUMMARY AND CONCLUDING REMARKS

This paper has discussed recent work presenting new online
algorithms for dynamic right-sizing in data centers. The algo-
rithm LCP (w) is motivated by the structure of the optimal
offline solution and guarantees cost no larger than 3 times the
optimal cost, under very general settings. We also show that the
classic Receding Horizon Control is 1 + O(1/w)-competitive
when the system is homogeneous, but when the system is
heterogeneous it can perform badly — the competitive ratio
does not improve as the size of the prediction window, w,
grows. Accordingly, we discussed a newly proposed variant of
RHC which is able to provide 1 + O(1/w)-competitive ratio
even in the heterogeneous setting.

REFERENCES

[1] J. Hamilton, “Cost of power in large-scale data centers,”
http://perspectives.mvdirona.com/, Nov. 2009.

[2] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch, “Optimality
analysis of energy-performance trade-off for server farm management,”
Performance Evaluation, no. 11, pp. 1155–1171, Nov. 2010.

[3] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in Proc. IEEE INFOCOM,
2011, pp. 1098–1106.

[4] X. Wang and M. Chen, “Cluster-level feedback power control for perfor-
mance optimization,” in IEEE Int. Symp. High Performance Computer
Architecture (HPCA), 2008, pp. 101–110.

[5] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing envi-
ronments via lookahead control,” Cluster computing, vol. 12, no. 1, pp.
1–15, Mar. 2009.

[6] M. Lin, L. Andrew, and A. Wierman, “Dynamic capacity provisioning
of heterogeneous servers,” Under Submission.

[7] W. Kwon and A. Pearson, “A modified quadratic cost problem and
feedback stabilization of a linear system,” IEEE Trans. Automatic
Control, vol. AC-22, no. 5, pp. 838–842, 1977.

[8] W. H. Kwon, A. M. Bruckstein, and T. Kailath, “Stabilizing state
feedback design via the moving horizon method.” Int. J. Contr., vol. 37,
no. 3, pp. 631–643, 1983.

[9] D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear
systems,” IEEE Trans. Automat. Contr., vol. 35, no. 7, pp. 814–824,
1990.

[10] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle, “Managing energy and server resources in hosting centers,” in
Proc. ACM Symp. Operating System Principles (SOSP), 2001, pp. 103–
116.

[11] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, “Load balancing
and unbalancing for power and performacne in cluster-based systems,”
in Proc. Compilers and Operating Systems for Low Power, 2001.

[12] B. Khargharia, S. Hariri, and M. Yousif, “Autonomic power and perfor-
mance management for computing systems,” Cluster computing, vol. 11,
no. 2, pp. 167–181, Dec. 2007.

[13] A. Kansal, J. Liu, A. Singh, , R. Nathuji, and T. Abdelzaher, “Semantic-
less coordination of power management and application performance,”
in ACM SIGOPS, 2010, pp. 66–70.

[14] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A taxonomy and
survey of energy-efficient data centers and cloud computing systems,”
Univ. of Melbourne, Tech. Rep. CLOUDS-TR-2010-3, 2010.

[15] C. G. Plaxton, Y. Sun, M. Tiwari, , and H. Vin, “Reconfigurable resource
scheduling,” in ACM SPAA, 2006.

[16] S. Irani, R. Gupta, and S. Shukla, “Competitive analysis of dynamic
power management strategies for systems with multiple power savings
states,” in Proc. Design, Automation, and Test in Europe, 2002, p. 117.

[17] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power
allocation in server farms,” in Proc. of ACM Sigmetrics, 2009.

[18] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch, “Optimality
analysis of energy-performance trade-off for server farm management,”
Performance Evaluation, vol. 67, no. 11, pp. 1155 – 1171, 2010.

[19] T. Horvath and K. Skadron, “Multi-mode energy management for multi-
tier server clusters,” in Proc. ACM Int. Conf. Parallel Architectures and
Compilation Techniques (PACT), 2008, p. 1.

[20] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam, “Managing server energy and operational costs in hosting centers,”
in Proc. Sigmetrics, 2005.

[21] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely, “Dynamic
resource allocation and power management in virtualized data centers,”
in Proc. of IEEE NOMS, Apr. 2010.

[22] S. Albers, “Energy-efficient algorithms,” Comm. of the ACM, vol. 53,
no. 5, pp. 86–96, 2010.

5

