
Agile Practices in Software Development – Experiences from Student Projects

Jean-Guy Schneider and Rajesh Vasa

Faculty of Information & Communication Technologies
Swinburne University of Technology

P.O. Box 218, Hawthorn, VIC 3122, AUSTRALIA
jschneider,rvasa @swin.edu.au

Abstract

To address the problems of traditional software devel-
opment methodologies, recent years have seen the intro-
duction of more light-weight or “agile” development pro-
cesses. These processes are intended to support early and
quick production of working code by structuring the devel-
opment into small release cycles and focus on continual in-
teraction between developers and customers. As these kinds
of software development processes are becoming more and
more popular in industry, there is a growing demand to ex-
pose Software Engineering students to agile development
practices. This, however, is not a straightforward task as
the corresponding practices cannot be adjusted easily to a
learning environment or may even run counter to educa-
tional goals. In this paper, we discuss our experiences in in-
troducing agile practices in student software development
projects and reflect on both the benefits and drawbacks of
agile processes in this setting.

1.. Introduction

Despite the fact that Software Engineering (SE) is a dis-
cipline that is clearly maturing with great achievements on
projects of significant complexity, the underlying SE prac-
tices still seem to undergo change. The situation can be
compared with translating a book from one language to an-
other where the book changes overnight and the paper and
pencil change while you are writing. Many tertiary insti-
tutions have tended to place overly much reliance on tra-
ditional process models to “explain” to students the best
way to develop software. However, there is a considerable
amount of empirical evidence that education in “traditional”
software development practices (most notably, the waterfall
approach) will not always endow students with the appro-
priate knowledge and understanding for the workplace.

Hence, as educators, we have to ask ourselves the ques-
tions whether there are alternative, more practice-focused

approaches to educate software engineers. Is it possible
to give students a solid understanding of what it takes to
methodologically develop software in a larger team and to
address the students’ misconception that Software Engi-
neering is mainly concerned with writing one document af-
ter another at the same time? What are the trends in industry
which would guide us in making the appropriate changes?

In recent years, so-called agile development processes
[7, 11] have become increasingly popular. These processes
are intended to support early and quick production of work-
ing code by structuring the development into small release
cycles and focusing on continual interaction between devel-
opers and customers. By considering working code as the
primary focus of any development activities, these practices
have become very fashionable for those people who con-
ceive Software Engineering as a very document centric ac-
tivity. Therefore, there is an increasing groundswell from
both students and industry for incorporating agile method-
ologies into the Software Engineering curriculum and to ex-
pose young software engineers to agile development prac-
tices.

Originally defined to address the specific needs of soft-
ware development conducted by small to medium-sized
teams in the face of vague and changing requirements, ag-
ile development methodologies have also attracted interest
in academia as an alternative to teaching “traditional” soft-
ware development practices [4,8–10,12,16]. Although these
reports are mainly positive, they generally only address se-
lected practices (such as Pair Programming) in isolation and
fail to address one important issue: what are the educational
goals the participating institution wants to meet introduc-
ing agile development methodologies? From our perspec-
tive, this is one of the key issues that needs to be considered
before agile methodologies can be introduced into a learn-
ing environment.

In previous work [13], we have taken the approach of
defining a list of educational objectives before setting eX-
treme Programming (XP) [1], one of the most prominent
members of the family of agile methodologies, in relation to

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

these goals. One of our main conclusions were that the 12
inter-related practices of eXtreme Programming have lim-
ited value for educating about large-scale system develop-
ment, but selected practices of XP may be helpful for ed-
ucating about small scale development. For this work, we
have, therefore, broadened our perspective and observed the
application of a number of agile practices in the context
of student software development projects in order to give
recommendations on aspects to consider when introducing
these practices in an educational setting.

The rest of this paper is organized as follows: in Sec-
tion 2, we briefly summarize the main principles and prac-
tices of agile software development. In Section 3, we will
further outline the background of our study and define edu-
cational objectives we want to achieve in our Software En-
gineering project subjects. In Section 4, we present observa-
tions made applying agile practices in the context of student
software projects. Based on our observations, we give rec-
ommendations for introducing agile development practices
in an educational setting in Section 5. We conclude this pa-
per in Section 6 with a summary of the main observations
as well as a list of topics for further investigation.

2.. Agile Development Practices

The Agile Manifesto [3] puts forward four broad themes:
(i) individuals and interactions over processes and tools,
(ii) working software over comprehensive documentation,
(iii) customer collaboration over contract negotiation, and
(iv) responding to change over following a plan. Agile de-
velopment practices provide the approaches needed to sat-
isfy these four themes. In recent years, a number of agile
methodologies (such as eXtreme Programming (XP) [1],
Crystal [7], and SCRUM [15]) have become increasingly
popular, recommending a set of practices and correspond-
ing process models.

At their core, most agile practices emphasis the impor-
tance of being aware of the risk profile, focus on the qual-
ity of artifacts produced, and aim to deliver working soft-
ware quickly to engage the client better. In Table 1 we have
listed a number of these practices grouped by the develop-
ment phase where they are commonly applied. The list pre-
sented here is by no means comprehensive, but covers the
main practices that we feel are important and useful in an
educational setting.

A recurring aspect in many of the practices is their fo-
cus on risk, a holistic awareness of the process as well as the
project vision. Hence, instead of producing an artifact to sat-
isfy the process, agile methodologies encourage asking the
question “What would happen if that artifact was not pro-
duced?” This type of reflection is what sets agile method-
ologies apart from traditional, heavy-weight methods. It is
important to note that despite the common misconceptions

Phase Practice
Requirements elicita-
tion and analysis

Rich domain models

Domain vocabulary

User scenarios

Management, Plan-
ning and Estima-
tion

Risk causality driven plan-
ning

Planning game

Complexity and risk driven
initial estimation

Iteration retrospectives

Design, Coding and
Testing

Time boxed iterations

Scope frozen for each iter-
ation

Quality attributes driven
architecture

Continuous design

Continuous integration

Refactoring

Test driven development

Risk driven documentation

Validation Risk-driven testing

Owned and tracked by do-
main experts

Table 1. Agile development practices

about the minimum level of documentation in agile method-
ologies, most agile processes recommend the development
of a document if it minimizes the risk profile of the project.

Apart from focusing on risks, agile methods also empha-
size the value of building quality into the product rather than
rely on a quality process that verifies a product after de-
velopment and where quality is tested into the system. The
heavy focus on test-driven development, continuous inte-
gration and frequent releases helps in ensuring this objec-
tive. In terms of a development approach, one of the key as-
pects that defines agile practices is time-boxed iterations,
where the amount of time allocated for an iteration as well
as the scope of work is fixed before work starts, assisting in
better focusing the effort needed. However, in order to com-
pensate for the inability to change requirements once an it-
eration has started, the length of an iteration is generally re-
stricted to 1 to 6 weeks, depending on the type and maturity
of the project.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

3.. Project Objectives

Introducing agile development practices in a class-room
setting only provides a limited basis on which students can
build an understanding of the benefits, drawbacks, and ap-
plicability of these practices. The real learning takes place
when practices are not seen as isolated entities, but are put
together in practice, i.e. in a real development project. In
this study, we will report on the experiences from two stu-
dent software development project subjects, run at Swin-
burne University of Technology, where agile practices were
applied in a project setting: (i) the final year, two-semester
“capstone” project of the four year Bachelor of Software
Engineering (BSE) course and (ii) a one-semester project
subject dedicated to agile development practices, open to
both mature undergraduate and postgraduate students. In
the following sections, we will briefly highlight the main
characteristics of these two project subjects and discuss the
corresponding learning objectives.

3.1.. BSE Capstone Project

The Bachelor of Software Engineering (BSE) was one of
the first accredited1 Software Engineering degrees in Aus-
tralia and its design was heavily influenced by international
efforts to standardize SE education (i.e. earlier versions of
both the SEEK and SWEBOK) [14]. The aim of this four
year degree is to give graduates a sound education in all
areas of Software Engineering, focusing on analysis, de-
sign and implementation of large-scale systems, along with
a sound understanding of the traditional aspects of com-
puter science including hardware and operating systems.
In their final year, the BSE students must undertake a two-
semester “capstone” Software Engineering team project. In
this project, teams of 12 to 15 students are formed, with the
expectation that each students spends, on average, between
10 to 12 hours per week working on the project.

The main focus of this project subject is to give students
the opportunity to apply knowledge and concepts acquired
throughout the earlier years of their study and to gain further
skills in a project setting. Furthermore, the project should al-
low them to gain experience in developing a software solu-
tion for a larger-scale problem given by an external client.
Interacting with an external client should not only make the
project more “realistic”, but also substantially enhance the
students’ motivation to deliver a solution at the end of the
given time-frame. Such a setting also aims at further en-
hancing their communication skills as communicating with
somebody external requires a different level of formalism
and professionalism as compared to communicating within
the development team itself.

1 The BSE degree is accredited by the Australian Computer Society
(ACS) and Engineers Australia.

Starting with an (often quite vague) initial problem de-
scription, the students are to undertake all the life-cycle
phases of standard software development in order to de-
velop a software system for their client. It is the students’
responsibility to negotiate the overall scope of the system to
be developed and to select a suitable development method-
ology given the nature of the problem to be solved. In this
work, we solely report on project experiences where the stu-
dent have selected an agile development approach.

In order to avoid a “let’s hack it together” approach,
a special focus within the project is on quality assurance
(QA). Whereas in projects with considerably smaller scope
and team sizes “ad-hoc” processes and QA procedures
might still lead to some sort of successful outcome, they are
most likely to fail in a project of the given size and complex-
ity. Hence, the students are asked to define their own quality
assurance standards and procedures, conduct reviews and
audits of their work, document all work products, and keep
a log of all project-related activities they undertake.

Another area that students are to gain experience in a
practical setting is risk management, an area often underes-
timated by students. Hence, students are asked to identify
possible risks in the project (both in regards to product and
process aspects), monitor these risks, and define appropriate
strategies to mitigate these risks. Prototyping, spiking, dis-
tributing knowledge within the team, planning ahead etc.
are only some of the strategies they are to undertake. Simi-
larly, the students are asked to regularly evaluate their work,
learn from mistakes, and address issues crucial for the suc-
cess of the project as soon as possible. Finally, in order to
experience various development tasks, the students have to
swap roles within the team at least twice during the entire
project.

Given these constraints, the students have the freedom
to make their own decisions, allocate work according to
their availability etc. In essence, the students “own” their
project, and supervisors intervene only when necessary. As
such, the aim of these projects is directed towards analyti-
cal and critical thinking, problem solving, self-learning and
self-assessment, but also taking responsibilities of decisions
made.

3.2.. Agile Development Project

The Agile Development Project (ADP) is a one-semester
project subject that runs over 12 semester weeks for teams
of 4 to 6 students. It aims to simulate 2 weeks of full-time
development work by building a small software system us-
ing common agile practices. The main objective of the sub-
ject is not necessarily to get a fully-developed system at the
end, but rather to expose students to popular agile develop-
ment practices and enhance their skills in using tools that
support these practices.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

Due to its shorter duration, the Agile Develop-
ment Project is structured much more rigidly than the
BSE project, and the process model and problem do-
main is predetermined by the subject convener to meet the
main educational objective. To facilitate experiential learn-
ing, the requirements for the deliverables were defined in
such a way that most (if not all) practices listed in Ta-
ble 1 can be applied.

In order to minimize communication overhead, the sub-
ject convener fulfills the roles of coach, client, and end-user.
Each week, students are introduced to various agile prac-
tices in a lecture setting, followed by a laboratory setting
where most of the discussed practices are trialed using small
scenarios, allowing the students to further interact with the
client/coach and clarify any unresolved issues.

The main focus of the first 4 weeks of the project is on
team formation as well as ensuring sufficient exposure to
the problem domain of the project. This is mainly achieved
by focusing on the definition of a vision statement, build-
ing models to capture the essence of the problem at hand,
and creating some paper prototypes to get an idea of the in-
tended solution direction. Work done in the initial weeks in-
tends to form the necessary ground work rather than the ba-
sis for any specific design decisions. It is expected that at
the end of this phase, the domain is broadly understood by
the students and high-level domain and functional goals as
well as user scenarios are prepared by the teams to show
their understanding of the end-user requirements.

Once the base has been prepared, the next 2 weeks are to
be used for a more comprehensive analysis of the user re-
quirements in order to scope the requirements and define
a suitable system architecture. Based on students’ under-
standing of the problem domain, and the intended solution
direction, the teams are expected to identify risks and im-
plement a set of spikes2 to minimize these risks as much
as possible before the start of regular iterative development.
This also includes the selection of appropriate tools for both
development and risk management.

The remaining 6 weeks of the semester are used for 4 it-
erations where the teams are expected to build the software
system to satisfy the identified user scenarios as provided
by the client. During this phase, the students are expected
to apply various agile practices introduced throughout the
project. For each of these iterations, the teams have to pri-
oritize and estimate requirements, define an iteration plan,
and develop a deliverable meeting the iteration goals. At the
end of each iteration, they are also expected to produce an
iteration retrospective to reflect on the work done and bet-
ter prepare for the next iteration. In order to improve the
students ability to estimate work, the maximum amount of

2 A spike is an activity undertaken to minimize a clearly defined set of
risks.

time a student is allowed to work on the project during de-
velopment is fixed.

To improve communication, all students are expected to
produce a weekly project diary reflecting on their work and
participate on the subject’s discussion board. The project is
wrapped up by a final presentation of each of the teams.

4.. Observations

In Section 2, we have presented a number of practices
that are commonly used in agile development methodolo-
gies. In this section, we present observations made applying
these practices in the context of student software projects.

4.1.. Communication

In [6], Cockburn analyzes a number of software devel-
opment projects in order to come up with the determinants
of project success or failure. His findings are rather sur-
prising in that it is neither process, tools, nor technologies
that mainly determine the outcome of a project; the single
most significant factor is communication. The best devel-
opment process will not lead to success if a development
team does not communicate (internally and with external
stakeholders), but a team that communicates well can be
successful even if they use less than optimal processes and
tools. Communication is of even greater importance in ag-
ile projects in order to enable the so-called warm communi-
cation paths [7]. Hence, it is extremely important that

appropriate, reliable, and fast communication paths are
set up right from the start,

appropriate tools that support these communication
paths are used, and

documentation is viewed as a means of communicat-
ing ideas and artifacts, not an unnecessary burden for
the project.

In both, the BSE and the ADP projects, we therefore
mandated compulsory formal weekly team meetings where
project-related issues were to be discussed, all meetings re-
quiring both an agenda and action minutes. Furthermore,
students were required to use a code/document repository
for technical coordination as well as to facilitate the com-
munication of changes made to work artifacts. Addition-
ally, we encouraged all teams to use a discussion forum,
a Wiki, and dedicated email addresses that were only to be
used for project-related purposes. In order to make these
means of communication effective, they had to be checked
on a regular basis, preferably at least once a day. On top
of this, the students decided to use on-line messenger tools
as well as mobile phones for instant communication when-
ever needed.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

Our experience has shown that in most cases where prob-
lems occurred, poor communication was the source of the
underlying problem. The agile development projects were
no exception to this rule, despite the fact that this was
pointed out to the students on a number of occasions. How-
ever, in all project teams, poor communication was identi-
fied as the most important problem during the first iteration
review (also see below) and addressed in such a way that
it was not considered to be a major concern in future iter-
ation reviews. Hence, we argue that it is much more likely
to address any shortcomings in regards to communication
early on in a project that uses an iterative development pro-
cess than one that uses a more “traditional” approach.

4.2.. Iteration Planning

The outcomes of any agile development methodology
are mainly achieved by a highly incremental and itera-
tive development process which starts with a simple design
that meets an initial set of requirements and is constantly
evolved to add needed flexibility, removing unneeded com-
plexity. In essence, it attempts to produce the “simplest pos-
sible solution” by fulfilling current requirements and avoid-
ing planning for future requirements as much as possible
[1].

Planning only one iteration ahead is certainly a feasible
approach when a development team understands the prob-
lem domain and the associated risks, but is quite a risky un-
dertaking in situations where team members have very little
experience in iterative and incremental development. Hedin
et al. described planning only one iteration ahead in an ed-
ucational setting as “developing blindfold” [9].

In order to address this concern, the BSE students de-
cided to use iterations of one month and plan for two itera-
tions ahead. Except for the last iteration, user stories were
selected for both the current and the next iteration. Require-
ments for the next iteration were considered (at least to a
certain degree) during analysis and design, but only the ones
for the current iteration were actually implemented. In ret-
rospect, this turned out to be a very effective way to stay
focused on the scope of the current iteration without loos-
ing sight what lies ahead. As a result, the project never run
into situations where substantial refactoring was required
due to a too narrow view of the overall scope of the sys-
tem to be developed.

On the other hand, the Agile Development Project (ADP)
project team (single semester) students spent an entire iter-
ation early in the semester planning out a broad architecture
and a high-level plan to solve the problem they have been
provided. They then used the iteration level planning to fine
tune the high-level plan and, where needed, closed off any
unaddressed gaps.

4.3.. Iteration Reviews

One of the most crucial activities in any agile method-
ology is to review project practices at regular intervals in
order to address potential problems as soon as possible.
Hence, for both, the BSE and the ADP projects, formal it-
eration reviews/retrospectives were mandated at the end of
each iteration. Prior to these reviews, students were asked to
submit any process and/or development related issues they
thought needed improvement. All issues raised were then
thoroughly discussed during a review meeting, prioritized
according to their level of severity/relevance, and mitiga-
tion strategies developed for those issues the team found to
be the most relevant ones for the next iteration. The out-
comes of these reviews were then formally documented and
archived in the teams’ document repositories.

In the ADP project, the teams especially reflected on
both the iteration progress as well as how much adapta-
tion they had to make to their high-level plans (c.f. the para-
graph on “Iteration Planning”). To help with the review pro-
cess, the teams tracked all work they undertook in the itera-
tion and orthogonally categorized each task into the follow-
ing groups: (a) Planned, (b) Unplanned, and (c) Ongoing.
Work that was planned in the iteration plan was classified
under planned work whereas ongoing work was consider to
be all operational tasks like weekly meetings, lecture ses-
sions, lab work and other similar tasks that were planned
for the entire semester. The unplanned work was all unan-
ticipated tasks that the team undertook to meet the iteration
level goals. During the iteration reviews, all unplanned work
was analyzed in more detail to see if it could have been pre-
dicted earlier. Though, a certain amount of unplanned work
was acceptable and even expected in a normal project, an
erratic pattern here can be used as a quick measure of the
quality of planning effort.

All teams involved found the formal iteration reviews
very valuable as they allowed them to openly discuss any
concerns they had in regards to development practices as
well as project progress, learn from any mistakes they made,
and make the necessary adjustments for future iterations.
They all stated that informal iteration reviews would have
probably not be as effective as the formal ones. Finally, the
teams stated that having little supervisor intervention during
these iteration reviews was crucial as it allowed all teams to
address the issues they thought were important, not the ones
the supervisor thought needed addressing most.

4.4.. Early Deliverables

One of the main observations we made in earlier projects
where the students decided to use a more rigid, waterfall-
type development process, were an overemphasis on docu-
mentation (“We have to write a comprehensive design doc-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

ument because that is what we are expected to do in a water-
fall process”), loss of motivation of the students (“The only
thing we are doing is writing documents, but we are not ac-
tually producing any code!”), late start of coding, cutting of
functionality due to lack of time, and heavy workloads to-
wards the end of the project. Similar observations were also
made by Coupal and Boechler [8].

To address this rather common problem of student de-
velopment projects, the client of the BSE project explicitly
asked for a deliverable after 8 weeks of the project as they
wanted something to show off during a company-internal
trade show. Having such an early deliverable (even if it con-
tained limited functionality) turned out to be crucial for the
success of the project. It forced students to start working
straight away, analyze the problem at hand, do some early
prototyping (in particular at a technological level), think
about the requirements for this deliverable, and most im-
portantly, get substantial interaction with the client early on.
During this time, they also found out that one particular re-
quirement by the client could not be met due to limitations
of the technology they had to use (i.e. the LDAP protocol).

In the early weeks of the semester, the ADP teams fo-
cus was on learning the problem domain. However, once
the domain was understood and the team was ready for de-
velopment, they worked on 5 iterations during the semester.
The first iteration was in place to understand and appreci-
ate the value of fast iterations with incremental deliverables.
The rest of the iterations were used to incrementally build
the product. The most interesting comment from all of the
student teams was how surprised they were of the amount
of working software that they managed to build in a sin-
gle semester without having excessive workloads.

In retrospect, it can be said that the students that used an
agile approach worked about the same amount of time on
the project as the students of similar projects in prior years.
However, due to the iterative nature of the project, their
workloads were much more evenly distributed over the en-
tire duration of the project, hence avoiding excessive work-
loads towards the end. Having early success also did won-
ders for the students’ motivation and they remained moti-
vated and focused throughout the entire project. Although
not all initially anticipated requirements could be met at the
end, the amount of functionality that was cut due to lack of
time was substantially less than in comparable projects in
previous years.

4.5.. Work Allocation

The ADP teams used the work acquisition model for
each iteration, rather than a direct allocation approach.
Hence, after the plans were drawn up and prioritized with
broad estimates, each team member acquired work. The
complete inversion of the traditional approach caused some

difficulties early in the project, especially where some tasks
were more popular than others. Over the semester, how-
ever, each of the various teams managed to learn of effec-
tive ways to acquire work.

One of the key rule that was strictly enforced was the
maximum amount of time any individual member could
work on the project. This was restricted to 12 hours per
week (with a 10% buffer). If any team member did put in
more hours, then the amount of time they could work on
the project in the following week was reduced accordingly.
This practice was required to ensure that the estimation and
work tracking practices worked effectively. Unfortunately,
team members that were inherently high-achievers due to
their nature found this limitation hardest to cope with, but
over time we observed that this restriction forced them to
work with their team better. As a consequence, rather than
re-work or do work that others acquired, they communi-
cated and discussed their ideas in the meetings and worked
as a team. In retrospect, this turned out to be a very effec-
tive way not only to control the workload of the students,
but also to enhance the level of communication within the
team.

Due to the size of the project team, the students of the
BSE projects decided to split up into a number of sub-
teams that focused on a particular activity for each iteration
(requirements elicitation, design, coding, quality assurance
etc.). The team also elected two team leaders that were in
charge of allocating overall tasks to each of the sub-teams
and coordinating work between the sub-teams. Allocating
work to individuals became the responsibility of the sub-
team leaders. Work was generally allocated based on (i) the
needs of a given sub-team and (ii) the skills of the respec-
tive members, taking “outside” commitments into consider-
ation. Based on the needs of the current project stage, stu-
dents were moved from one sub-team to another, in particu-
lar if more (or even less) resources where needed for a given
team. Having regular team-leader meetings was crucial for
allocating work in such a way as possible bottle-necks could
be identified early and addressed accordingly.

4.6.. Joint Development

As discussed above, the students of the BSE project team
could be member of more than one sub-team at the time and
moved from sub-team to sub-team. Moving team members
around did not only give them hands-on experience in var-
ious project activities, but also enhanced the distribution of
knowledge within the entire team.

Throughout all iterations, key members of the “Require-
ments Team” were part of the “Design Team” whereas
key members of the “Design Team” were also part of the
“Development Team”. As a consequence, a lot of implicit
knowledge made it into both the design and the correspond-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

ing implementation and any questions in regards to either
the requirements or the design could be resolved quickly in
the respective teams. This lead to the situation that despite
the fact that all development steps where documented ap-
propriately,3 the corresponding documentation was hardly
ever consulted in the following steps. This showed us that
the communication paths between the sub-teams worked
well and that producing less documentation would have
been enough. However, the team was of the impression that
they needed a certain level for documentation for future it-
erations and did not substantially reduce the level of docu-
mentation in any of the following iterations.

Despite students being members of more than one sub-
team, it was recognized early on by the entire team that joint
working sessions were a key factor if the warm communica-
tion paths [7] between the sub-teams were to be of any ben-
efit. Although this was not strictly enforced, all sub-teams
tried to organize joint working sessions as much as possi-
ble and get most of the work done during these joint ses-
sions. This was of particular importance for the “Develop-
ment Team” where they not only used Pair Programming [1]
to write most of the code, but hardly any production code
was written outside these development sessions. Having a
dedicated project room certainly helped the BSE students
organizing joint working sessions.

Although the size of the teams in the Agile Development
Project was considerably smaller and intra-team communi-
cation much easier, the teams decided to come in on Sat-
urdays where joint working sessions in the regular student
laboratories was possible. It should be noted that most of
the project work was done during these sessions. In retro-
spect, the student teams of both projects recognized that the
joint working sessions where one of the key factors for a
successful completion of the project.

4.7.. Risk Management

When we ran the ADP project subject for the first time,
we noticed that most students, though exposed in early
years to the concept of risk, did not properly appreciate the
importance of identifying and managing risks with care. Af-
ter some analysis, we found the key reason was that most
students did not capture the cause of the risk, they rather fo-
cused their attention on its effects. In subsequent years, we
started to focus the teams attention to both identifying the
risks as well as categorizing the risks based on causality
(e.g. knowledge gap, skill gap, unstable library etc.). This
was done for both the ADP and BSE projects. The approach
of identifying risk causality was inspired by the Orthogo-
nal Defect Classification approach used for improving de-

3 At the time, documentation of all development steps was part of the
project deliverables for final assessment.

fect management [5]. Once the risks were identified, prior-
itized, and potential causes for them established, the teams
developed spikes, each of which aimed at minimizing a set
of risks. Unlike methodologies such as eXtreme Program-
ming [1] where spikes are commonly used to build code,
we extended this concept to covering a broader area like us-
age of tools, design techniques as well as documentation.
This practice was repeated throughout the projects based on
some amount of impact analysis for risks.

4.8.. Test Driven Development

Most agile methodologies emphasize the value of test-
ing. Some methodologies recommend developing the test
cases before the actual code modules have been written,
while the Test-Driven Development (TDD) approach [2]
emphasizes the value of early testing. The project teams
were exposed to both approaches, however, we did not ex-
plicitly enforce one approach and encouraged the teams to
select the most appropriate one for each code module.

We observed that the TDD approach adds value by forc-
ing a team to think through their design choices. An inter-
esting side effect was the development speed slowed down
using this approach. However, the teams noticed that the
defect rate and overall clarity improved. Though, we can-
not directly conclude that TDD reduces defect rates, the
fact that it forces the developers to think through their de-
sign in some depth and the resulting overall improvement in
the design clarity seems to be the key cause behind the im-
proved quality. Another observation that is worth mention-
ing is that the team that had the most defects towards the
end of the project felt that early testing and the TDD prac-
tice would have helped them contain a large pool of these
defects.

4.9.. Feedback

Giving students direction in a software development
project is always a difficult task. As a supervisor, shall we
leave the students enough freedom to make mistakes and
only intervene when necessary or shall we step in and take
control the moment something might go wrong? This is of
even greater importance in an agile development project if
the participants have very little experience in the underly-
ing practices.

In the BSE project, we tried to give the students as much
freedom as possible and let them make the necessary ex-
periences themselves (i.e. the students owned the project).
Hence, the supervisor acted more as a coach on the side-
line that gave directions only when there was a likely-hood
that something was about to go seriously wrong. After be-
ing introduced to a number of agile practices early on in
the project, the students themselves decided that they pre-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

ferred having substantial supervisor feedback after each it-
eration review and very little intervention during each itera-
tion. On the other hand, they made sure that they got lots of
feedback from the client throughout all iterations, not only
in regards to clarifying requirements, but also when techno-
logical problems occurred and iteration deliverables needed
to be reviewed or tested.

In retrospect, this approach worked quite well. It, how-
ever, implies that (i) the client is continually willing to
be available for feedback (something we cannot take for
granted in all projects!) and (ii) the supervisor has an in-
creased workload towards the end of each iteration as all
project practices need to be evaluated and deliverables re-
viewed.

In the ADP, on the other hand, a slightly more rigid ap-
proach in regards to giving feedback had to be taken, mainly
due to the fact the less time was available. But again, after
giving the students initial directions where to go, most feed-
back was given when the iteration retrospectives were held
and not during the iterations themselves.

5.. Recommendations

Despite the fact that we were able to successfully run
both the BSE and the ADP projects in an agile fashion, it
is important to reflect on the crucial factors for their suc-
cess. In the following, we will summarize our main recom-
mendations that one should consider when introducing ag-
ile practices in student software development projects.

Communication: During their final presentation, the BSE
students were asked what the three most important practices
were that lead to a successful completion of the project. The
answer was “communication, communication, and commu-
nication.” Clearly, the team appreciated that almost any
problems they ran into during the project were (in one way
or the other) related to poor communication. They also rec-
ognized the value of having frequent interaction with the
client, in particular fast feedback whenever they had ques-
tions. Hence, we think that it is absolutely crucial for any
project that appropriate, reliable, and fast means of commu-
nication are set up right from the beginning, not only with-
ing the team itself, but also to all project stakeholders, and
that the effectiveness of these communication paths is mon-
itored on a regular basis.

Further, we noticed a significant improvement of the
teams’ productivity when they used proper tools for com-
munication. We strongly recommend the use of a Wiki to
facilitate project documentation, Web-based defect tracking
tools to help manage and track both requirements as well as
defects, daily integration build reporting tools, e-mail for di-
rected communication, and discussion boards for inclusive
team discussions. Though, the value of these tools has been

known for some time, we were however surprised at how ef-
fective they were in ensuring progress as well as the visibil-
ity of the progress that was made by the teams.

Joint Working Sessions: One of the main prerequisites for
applying any agile development methodology, namely a
joint working environment and warm communication paths
[7], are rather difficult to organize in the setting of a ter-
tiary institution [9, 13]. However, both are crucial for suc-
cessfully applying most of the agile practices. Therefore,
special attention has to be given how the students organize
themselves to work on the project – the moment team mem-
bers start working on their own from home, a few alarm
bells should start to ring! Having a dedicated project room
is of great value and substantially enhances the possibil-
ities of organizing joint working sessions. This has been
stated over and over again by our students [13]. If a dedi-
cated project room is not an option, then a substantial effort
should be made to make an environment available that the
students can work together, even if it means that the meet at
one of the student’s home.

Formal Iteration Reviews/Retrospectives: As discussed in
Section 4, one of the most crucial activities in any agile
methodology is to review project practices at regular inter-
vals in order to address potential problems as soon as pos-
sible. Based on our experiences, we would argue that infor-
mal reviews might not be enough and that a more formal
approach to iteration reviews is needed. It is important that

the entire team is part of the review, not only selected
team members,

any issues are submitted prior to the review so that
they can be prioritized according to their level of sever-
ity/relevance,

mitigation strategies are determined for the most im-
portant ones only (one cannot address everything at
once!), and

the outcomes of these reviews are formally docu-
mented.

It is also advisable that the client is included into the review
process in order to address any issues in regards to team-
client interaction early on.

Restricting Working Hours: One of the common patterns
in software projects, not only in an educational setting, is a
heavy workload towards the end of the project. This should
be of concern to us educators as in most cases, students
are also enrolled in other subjects that deserve equal atten-
tion than the project subject. As discussed earlier, restrict-
ing the maximum amount of time each student can work on
the project per week (roughly 12 hours per week for a “stan-
dard” subject), possibly in combination with penalties if this
rule is not adhered to, is a very effective way to control the

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

workload of the students. As a positive side-effect, restrict-
ing the maximum amount of time forces students to collabo-
rate more effectively within the team and rely on each other
to get the work done properly. Although it took our students
some time to get used to such a restriction, they all appreci-
ated its effectiveness in regards to team-work.

Early Prototyping/Spiking: One of the key aspects that all
education in software engineering needs to provide is an
effective appreciation of risk. We have found a good level
of participation from the teams when they were asked to
build prototypes/spikes to minimize the risk profile for their
project. This participation has contributed to the identifica-
tion and reduction of the key risks for the project early in the
life cycle. We found that prototyping/spiking to be an effec-
tive practice for reducing risk. However, we noticed that this
requires that the teams be provided with guidelines and tem-
plates on the process of identifying the cause of risks and
focus the goals of the prototypes/spikes to minimize them.
As a consequence, the teams were much more confident that
they will succeed in the project, hence substantially increas-
ing their motivation and level of participation.

Test-driven Development: One of the core practices in most
agile methodologies is testing, more specifically their rec-
ommendation for testing early and regularly, supported by
automation. We observed that teams that put effort into
early testing had a lower rate of defects compared to teams
that delayed their testing until most of the code was devel-
oped. Further, we noticed a that teams that used the practice
of TDD [2] improved the overall clarity of the design over
the various iteration. Further, they also managed to commu-
nicate the intents behind their design choices better. Based
on these observations, we recommend that students should
be exposed to the practices of early testing. Though, writ-
ing a large pool of test cases was considered to be repeti-
tive and boring by many students, after sufficient exposure
many students tend to see the positive benefits.

Documenting Work vs. Writing Documents: One of the
main shortcomings of many software development projects
is that work artifacts are not documented appropriately
and effectively. Student software projects are unfortunately
no exception. Whereas ad-hoc documentation approaches
might be enough to win the “current game” (to use Cock-
burn’s “Cooperative Game Principle” [7]), they generally
fail to prepare for the next game. Hence, in an educational
setting it is necessary to emphasize adequately documented
work artifacts and highlight the importance of document-
ing as means to reduce risks.

Students generally associate documenting a piece of
work with writing a document. However, we have found
that other means of documentation can be as (if not more)
effective. As illustrated by Coupal and Boechler [8], tak-
ing a digital photograph of a drawing on a whiteboard, up-

loading it to a Wiki or similar, and adding a few comments
how it has to be interpreted, can be enough to document the
outcomes of a design session. Such an approach not only
prevents somebody to spend a considerable amount of time
to re-create the same drawing in electronic format without
adding any new value, but more importantly, it leaves the
team with the impression that project time can be spent on
the more creative activities of the project, resulting in a sub-
stantial increase of the team’s motivation. Hence, we argue
that project teams should not be forced into writing large
documents where they have to fill in standard templates, but
rather encouraged to explore other, more “agile” ways of
documenting their work. We have found the use of check-
lists (as opposed to standard templates) to be very effective
in helping to ensure that all important information is cap-
tured.

Assessment: The core philosophy of agile methodologies is
the use of feedback to improve the product, the process, the
team, and the individuals. Another closely related tenet that
agile practices expound is that the software is always devel-
oped to match an intent with the goal to get closer to an ideal
system over time. This needs to be taken into consideration
when an agile project is assessed. As a consequence, we
heavily focused on both a team’s and an individual’s ability
to (i) reflect on their practices and use feedback to improve
their performance and (ii) to react to change in our assess-
ment. When assessing the deliverables of each iteration, we
also took the incremental improvements made to the prod-
uct as well as the team’s effectiveness to getting closer to
the intent into consideration.

But how does one measure improvement? We noticed
that our initial ideas from previous years were not appropri-
ate enough and had to be adjusted for the current projects in
order to reflect the direction in which the projects were go-
ing. We ended up with rather qualitative measures to assess
the improvement of practices, both at a team and at an indi-
vidual level. To ensure that an effective amount of feedback
is provided to the students, we observed a significant in-
crease in the workload for the project supervisor during the
semester.

6.. Conclusions

In this paper, we have presented our experiences in in-
troducing agile practices in student software development
projects in order to address the growing demand by com-
mercial expectations to expose young software engineers to
agile development methodologies. Based on our findings,
we also presented a number of recommendations that can
be of value for institutions who are considering to follow
similar pathways.

Our experiences have shown that, if it is done with care,
introducing agile practices in student development projects

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

can be very beneficial for all involved stakeholders. Our
students certainly enjoyed being exposed to agile software
development practices, were able to experience the cor-
responding benefits and drawbacks, and got a better un-
derstanding of when certain practices are appropriate (and
when not). However, the underlying educational goals need
to be carefully considered before agile methodologies are
introduced into a learning environment.

Despite having made positive experiences with agile stu-
dent projects, we should never forget that it is the peo-
ple (i.e. the students) that are the most determining factor
for success. In an educational setting, we can rarely choose
who participates in a project subject. Hence, we argue that
less experienced, less disciplined students are most likely to
struggle applying agile principles than if students are given
a more traditional methodology to work with.

Also, with very few exceptions, all of the students were
exposed to traditional, more rigid development processes at
an earlier stage in their studies where a more formal pro-
cess and level of documentation was emphasized. Hence
we have to ask the question whether the students would
have seen as much value in applying agile practices as if
they had not been exposed to more traditional methodolo-
gies before. This is certainly an area where further studies
are necessary, in particular if we consider replacing tradi-
tional methodologies by agile ones at an early stage of Soft-
ware Engineering education.

Finally, the recommendations we present here are mainly
based on a small number of agile student software projects
and are by no means exhaustive. Hence, further investiga-
tions are necessary in order to come up with a clear set
of principles and guidelines for educators when (and if so,
how) to introduce agile practices in an educational setting.

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[2] K. Beck. Test-Driven Development: By Example. Addison-
Wesley, 2002.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
Manifesto for Agile Software Development. Available at
http://agilemanifesto.org/.

[4] C. Bunse, R. L. Feldmann, and J. Dörr. Agile meth-
ods in software engineering education. In H. Eckstein,
Jutta Baumeister, editor, Proceedings of 5th International
Conference on Extreme Programming and Agile Processes
in Software Engineering (XP 2004), LNCS 3092, pages
284–293, Garmisch-Partenkirchen, Germany, June 2004.
Springer.

[5] R. Chillarege, S. I. Bhandari, K. J. Chaar, J. M. Halliday,
S. D. Moebus, K. B. Ray, and M.-Y. Wong. Orthogonal De-
fect Classification: A Concept for In-Process Measurements.
IEEE Transactions on Software Engineering, 18(11), 1992.

[6] A. Cockburn. Characterizing People as Non-Linear, First-
Order Components in Software Development. Technical Re-
port 99-05, Humans and Technology Inc., Oct. 1999.

[7] A. Cockburn. Agile Software Development. Addison-
Wesley, 2001.

[8] C. Coupal and K. Boechler. Introducing Agile into a Soft-
ware Development Capstone Project. In Proceedings Agile
2005, Denver, Colorado, July 2005.

[9] G. Hedin, L. Bendix, and B. Magnusson. Introducing Soft-
ware Engineering by means of Extreme Programming. In
Proceedings ICSE 2003, pages 586–593, Portland, Oregon,
May 2003. IEEE Computer Society Press.

[10] M. Holcombe, M. Gheorghe, and F. Macias. Teaching XP for
Real: some initial observations and plans. In Proceedings of
the Second International Conference on Extreme Program-
ming and Flexible Processes in Software Engineering (XP
2001), pages 14–17, Cagliari, Italy, May 2001.

[11] R. C. Martin. Agile Software Development: Principles, Pat-
terns, and Practices. Prentice Hall, 2002.

[12] M. M. Müller and W. F. Tichy. Case study: Extreme pro-
gramming in a university environment. In H. A. Müller,
editor, Proceedings ICSE 2001, pages 537–544, Toronto,
Canada, May 2001. IEEE Computer Society.

[13] J.-G. Schneider and L. Johnston. eXtreme Programming at
Universities – An Educational Perspective. In Proceedings
ICSE 2003, pages 594–599, Portland, Oregon, May 2003.
IEEE Computer Society Press.

[14] J.-G. Schneider, L. Johnston, and P. Joyce. Curriculum
Development in Educating Undergraduate Software Engi-
neers – Are students being prepared for the profession?
In P. Strooper, editor, Proceedings of 16th Australian Soft-
ware Engineering Conference (ASWEC 2005), pages 314–
323, Brisbane, Australia, Mar. 2005. IEEE Computer Soci-
ety Press.

[15] K. Schwaber and M. Beedle. Agile Software Development
with SCRUM. Prentice Hall, 2001.

[16] L. A. Williams and R. R. Kessler. The Effects of “Pair-
Pressure” and “Pair-Learning” on Software Engineering Ed-
ucation. In S. A. Mengel and P. J. Knoke, editors, Proceed-
ings of the Thirteenth Conference on Software Engineering
Education & Training, pages 59–65. IEEE Computer Soci-
ety, Mar. 2000.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on October 15, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

