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Abstract

Electroencephalography (EEG) provides a non-invasive measure of brain electrical activity.

Neural population models, where large numbers of interacting neurons are considered col-

lectively as a macroscopic system, have long been used to understand features in EEG sig-

nals. By tuning dozens of input parameters describing the excitatory and inhibitory neuron

populations, these models can reproduce prominent features of the EEG such as the alpha-

rhythm. However, the inverse problem, of directly estimating the parameters from fits to

EEG data, remains unsolved. Solving this multi-parameter non-linear fitting problem will

potentially provide a real-time method for characterizing average neuronal properties in

human subjects. Here we perform unbiased fits of a 22-parameter neural population model

to EEG data from 82 individuals, using both particle swarm optimization and Markov chain

Monte Carlo sampling. We estimate how much is learned about individual parameters by

computing Kullback-Leibler divergences between posterior and prior distributions for each

parameter. Results indicate that only a single parameter, that determining the dynamics of

inhibitory synaptic activity, is directly identifiable, while other parameters have large, though

correlated, uncertainties. We show that the eigenvalues of the Fisher information matrix are

roughly uniformly spaced over a log scale, indicating that the model is sloppy, like many

of the regulatory network models in systems biology. These eigenvalues indicate that the

system can be modeled with a low effective dimensionality, with inhibitory synaptic activity

being prominent in driving system behavior.

Author summary

Electroencephalography (EEG), where electrodes are used to measure electric potential

on the outside of the scalp, provides a simple, non-invasive way to study brain activity.

Physiological interpretation of features in EEG signals has often involved use of collective
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models of neural populations. These neural population models have dozens of input

parameters to describe the properties of inhibitory and excitatory neurons. Being able to

estimate these parameters by direct fits to EEG data holds the promise of providing a real-

time non-invasive method of inferring neuronal properties in different individuals. How-

ever, it has long been impossible to fit these nonlinear, multi-parameter models effectively.

Here we describe fits of a 22-parameter neural population model to EEG spectra from 82

different subjects, all exhibiting alpha-oscillations. We show how only one parameter, that

describing inhibitory dynamics, is constrained by the data, although all parameters are

correlated. These results indicate that inhibitory synaptic activity plays a central role in

the generation and modulation of the alpha-rhythm in humans.

Introduction

The classical alpha rhythm is one of the most remarkable features observed in electroencepha-

logram (EEG) recordings from humans [1, 2]. First discovered by Berger in the 1920s [3, 4]

these waxing and waning oscillations of 8—13 Hz, that are prominent during eyes-closed,

are a defining feature of the resting EEG and have played a central role in phenomenological

descriptions of brain electromagnetic activity during cognition and in behaviour [5]. Despite

being discovered almost a century ago, the alpha rhythm remains poorly understood, both in

terms of its underlying physiological and dynamical mechanisms as well as its relevance to

brain information processing and function. The received view proposes a central role for the

thalamus [5] with early theories suggesting that alpha oscillatory activity intrinsic to thalamus

‘drives’ or ‘paces’ overlying cortical tissue [6]. This conception has been modified to suggest

that it is feedback reverberant activity between thalamus and cortex which underpins the gene-

sis of alpha band cortical activity [5, 7]. A contrasting hypothesis is that such oscillatory activity

arises intrinsically in cortex, emerging purely from the recurrent activity between cortical pop-

ulations of excitatory and inhibitory neurons. These different hypotheses have motivated a

variety of theories for describing the alpha-rhythm [8–12].

Theories of alpha-rhythmogenesis can be divided into two major frameworks: those that

take a nominal microscopic perspective by modeling the behaviour of large numbers of synap-

tically connected biophysically realistic individual neurons [8, 9] and those that take a macro-

scopic, or mean-field, stance by considering the activity of interacting populations of neurons

[13–15]. While the microscopic approach is more fundamental, macroscopic models are better

matched to the spatial scale at which the bulk electrophysiological measurement, the EEG,

occurs.

Despite their reduced complexity, it is still extremely difficult to estimate the input parame-

ters of neural population models by direct fits to EEG data. Up until now, the use of such mod-

els to explain alpha-rhythmogenesis has largely been limited to calculations of the forward
problem: manually selecting input parameters such that the model generates alpha oscillations.

It is vastly more difficult to solve the inverse problem, where a full set of parameters and their

uncertainties are estimated directly from fits to EEG data. Yet solving this inverse problem is

crucial if we are to ever regard the inferred parameter values as physiologically meaningful. As

we will show, the fundamental challenge in fitting a neural population model is that many dif-

ferent combinations of input parameters can give the same EEG signal. Understanding the

nature of such parameter unidentifiability (discussed next) in a neural population model is the

major contribution of this paper.

Parameter estimation and identifiability in a neural population model
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Parameter identifiability and sloppy models

Neural population models are high-order, multi-parameter, dynamical systems. It has long

been known that, even in simple dynamical systems, there can exist very different parameter

combinations which generate similar predictions [16–27]. This many-to-one mapping

between parameter inputs and model observables is referred to as structural unidentifiability,

if the predictions are exactly identical, or practical identifiability, if the predictions are nearly

identical. Any fitting of an unidentifiable model to data results in large, correlated parameter

uncertainties. Many developments in the study of identifiability in differential equation models

have been motivated by problems in systems biology involving biomolecular regulatory net-

works [28–35].

Model unidentifiability is closely related to, though distinct from, model sloppiness. A

model is referred to as sloppy if the sensitivity of its predictions for different parameters covers

a broad range [36–41]. These sensitivities, quantified by the eigenvalues of the Fisher informa-

tion matrix, are roughly uniformly spaced over a log scale. This characteristic has been discov-

ered in a variety of nonlinear models and arises from the geometry of nonlinear models

projected into data space [37, 38]. Parameters that sensitively affect model predictions are

termed ‘stiff’ while those that can be changed with little effect on predictions are termed

‘sloppy’. While sloppy parameters are often unidentifiable as well, the terms are not synony-

mous [42, 43]. Like unidentifiability, sloppiness has been found to be prevalent in models of

biomolecular networks [44–47].

Unidentifiability and sloppiness are pervasive in nonlinear fitting problems, the simplest

examples of which are fits to polynomials or to multiple exponentials [36, 38]. Since parameter

estimation in differential equation models always involves nonlinear fits (to exponential

impulse responses in the time domain or rational transfer functions in the spectral domain, for

example), unidentifiability and sloppiness should always be a concern in dynamical systems.

This is true even for linear, time-invariant systems [19, 22, 26]. Of course, explicitly nonlinear

functions of parameters certainly exacerbate the problem—a nonlinear function at saturation

will give the same response for a range of different parameter inputs, for example. Unidentifi-

abilities also arise when a model supports phenomena at significantly different timescales. For

instance, if only dynamics on a slower timescale can be observed, parameters which determine

behavior at the faster timescale would not be constrained by data [48].

Unlike in systems biology modeling, in neurophysical modeling there has been little recog-

nition of the problem of unidentifiability, beyond select examples in neural code models [49],

a thalamo-cortical neural population model [50], and dynamic causal models [51]. This has

been cited in [52] as an example of how approaches used in systems biology can help address

problems in computational neuroscience [53]. However, despite this lack of formal discussion,

implicit recognition of unidentifiability in computational neuroscience has been widespread,

with several studies, including those for models of single neurons [54–58], occulomotor inte-

gration [59], and neural populations [60–62], detecting the large, correlated parameter uncer-

tainties that are the hallmark of unidentifiability and sloppiness.

Outline

In this paper we examine identifiability and sloppiness in a well-known neurophysical model

[11, 61, 63, 64] with 22 unknown parameters. We concentrate on fitting EEG data exhibiting

alpha-oscillations in resting state human subjects in an attempt to understand the mechanis-

tic origin of this prominent, yet still poorly understood, phenomenon. We fit the model to

the EEG spectrum from each of 82 subjects using both a particle swarm optimization and

Markov chain Monte Carlo method. When viewed across all subjects, only 1 of the original
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parameters, the decay rate of inhibitory synaptic activity, emerges as being identifiable. This

indicates that inhibitory synaptic activity is essential for explaining alpha-rhythmogenesis.

Examination of the Fisher information matrix shows that there are�5 parameter combina-
tions that are identifiable, a considerable reduction from the original 22. This indicates that,

although most parameters are unidentifiable, their values cannot in general be selected arbi-

trarily to fit the data.

Neural population model

The neural population model used in this paper is well established and has been described pre-

viously [11, 65]. Semi-analytical and numerical solutions of these equations have revealed a

rich repertoire of physiologically plausible activity including noise driven, limit cycle and cha-

otic oscillations at the frequency of the mammalian alpha rhythm [11, 61, 66, 67]. Here we use

the spatially homogeneous version given by the following coupled set of first and second order

ordinary differential equations:

te
dheðtÞ
dt
¼ hrest

e � heðtÞ þ
heq

e � he

jheq
e � hrest

e j
IeeðtÞ þ

heq
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jheq
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e j
IieðtÞ; ð1Þ

ti
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dt2
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dt2
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b

ii SiðhiÞ þ piiðtÞÞ; ð6Þ
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SjðhjÞ ¼
Smax
j

1þ exp �
ffiffiffi
2
p ðhj � �mj Þ

sj

� �� � ; j ¼ e; i: ð7Þ

These equations describe the interactions between inhibitory and excitatory neuronal pop-

ulations in a macrocolumn.

Table 1 lists the parameters along with their physiological ranges as assumed by Bojak and

Liley [61]. The temporal dynamics of mean soma membrane potentials for the excitatory

(he(t)) and inhibitory (hi(t)) populations are described in Eqs (1) and (2). The temporal

dynamics of the synaptic activity, Iee(t), Iie(t), Iei(t), and Iii(t), are given by Eqs (3)–(6). The rela-

tionship between the mean population firing rate, Sj, and the mean soma membrane potentials

of the respective population is given in Eq (7). It has been shown that the local field potential

measured in the EEG is linearly proportional to the mean soma membrane potentials of the

excitatory populations, he(t) [68, 69].

Parameter estimation and identifiability in a neural population model
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Spectral analysis of EEG data

In this study we fit the above model to EEG recordings from 82 different individuals. This data

is a subset of a larger dataset which, in its full version, consists of 14 experimental tasks per-

formed by each of the 109 subjects with recordings on 64 electrodes according to the Interna-

tional 10-10 System. The full set, collected and contributed by Schalk et al [70] using the

BCI2000 instrumentation system, is available for public access in PhysioNet [71] (https://

www.physionet.org/pn4/eegmmidb/).

Table 1. Physiological parameters of the model presented along with their physiological ranges.

No Physiological parameter Symbol Min Max

1 Mean resting membrane potential of the excitatory population hrest
e -80

mV

-60

mV

2 Mean resting membrane potential of the inhibitory population hrest
e -80

mV

-60

mV

3 Mean Nernst membrane potential of the excitatory population heq
e -20

mV

10 mV

4 Mean Nernst membrane potential of the inhibitory population heq
i -20

mV

10 mV

5 Maximum mean firing rate of the excitatory population Smax
e 0.05/

ms

0.5/ms

6 Maximum mean firing rate of the inhibitory population Smax
i 0.05/

ms

0.5/ms

7 Firing thresholds of the excitatory population �me -55

mV

-40

mV

8 Firing thresholds of the inhibitory population �mi -55

mV

-40

mV

9 Std. deviation of firing thresholds of the excitatory population σe 2 mV 7 mV

10 Std. deviation of firing thresholds of the inhibitory population σi 2 mV 7 mV

11 Passive membrane decay time const. of the excitatory population τe 5 ms 150 ms

12 Passive membrane decay time const. of the inhibitory population τi 5 ms 150 ms

13,14 Excitatory postsynaptic potential rate constant γee, γei 0.1/ms 1.0/ms

15,16 Inhibitory postsynaptic potential rate constant γie, γii 0.01/

ms

0.5/ms

17 Postsynaptic potential amplitude of the excitatory population Γe 0.1 mV 2.0 mV

18 Postsynaptic potential amplitude of the inhibitory population Γi 0.1 mV 2.0 mV

19 Rate of the excitatory input to the excitatory population pee 0.0 /ms 10.0/

ms

20 Rate of the excitatory input to the inhibitory population pei 0.0 /ms 10.0/

ms

21 Rate of the inhibitory input to the excitatory population pie 0.0/ms(fixed)

22 Rate of the inhibitory input to the inhibitory population pii 0.0/ms(fixed)

23 Total number of connections an excitatory neuron receives from nearby

excitatory neurons

Nb
ee 2000 5000

24 Total number of connections an inhibitory neuron receives from nearby

excitatory neurons
Nb

ie 100 1000

25 Total number of connections an excitatory neuron receives from nearby

inhibitory neurons
Nb

ei 2000 5000

26 Total number of connections an inhibitory neuron receives from nearby

inhibitory neurons
Nb

ii 100 1000

Among the 26 physiological parameters involved in the model, there are only 22 unknown parameters that are fit to

the data (In our implementation, pie and pii are fixed constants, γee = γei � γe, and γie = γii� γi).

https://doi.org/10.1371/journal.pcbi.1006694.t001
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For the purpose of studying alpha-rhythm, we restricted our analysis to signals from the Oz

electrode, selecting data from individuals whose EEG spectrum exhibited clear alpha peaks

during the associated eyes-closed task. Welch’s method of averaging the spectra derived from

multiple overlapping time segments [72] was used to estimate the single spectrum for a partic-

ular individual. This approach improves the precision of the power spectral density estimate

by sacrificing some spectral resolution. A one-minute EEG signal associated with a particular

individual, sampled at 160 Hz, was divided into segments using a 4-second Hamming window

with an overlap of 50%.

Since the computational demands of fitting our model directly to EEG time series data are

prohibitive, we fit the EEG spectrum instead. This approach is in accordance with earlier fits

of neural population models [50, 61, 62], which involved fewer unknown parameters than we

have here, and generally only fit a single EEG spectrum. We are thus assuming stationarity of

the system over the one-minute EEG signal, where stationarity here means that it is the param-

eters that are constant; the states are allowed to vary about a stable fixed point. We furthermore

assume that deviations of the state away from the fixed point are small enough to allow lineari-

zation of the model. Though parameters are assumed to be constant within a given EEG

recording they can of course vary between different recordings (and thus individuals). Because

of well-known nonlinearities and nonstationarities in EEG recordings, our linearized model

was used in inference procedures only for frequencies between 2 Hz and 20 Hz. It is well

known that well over 95% of the spectral power in the resting M/EEG falls below 30 Hz.

Indeed, typical estimates of resting M/EEG spectral edge frequency (SEF95) (i.e. the frequency

below which 95% of the spectral power is contained) are in the range of 24-26 Hz (see e.g.

[73–75]).

To demonstrate the accuracy of our inference methods, we also show an example of param-

eter estimation from a simulated spectrum where the underlying parameter set is known (and

referred to as the ground truth). In order to choose a plausible parameter set for this test, we

use the maximum likelihood estimate found for Subject 77 (the estimate found from any other

subject would also have been suitable). The simulated spectrum was then calculated by sam-

pling each frequency channel from the gamma-distributed model prediction.

Model fitting and analysis

To examine the identifiability and sloppiness of the neural population model, we fit to an

EEG spectrum and estimate the posterior distribution over the 22 unknown parameters. We

then characterize the properties of this distribution to diagnose the signatures of unidentifia-

bility and sloppiness. To ensure that our results are not specific to a particular fitting algo-

rithm, we use two independent methods: particle swarm optimization (PSO) and Markov

chain Monte Carlo (MCMC). To ensure that our results are not specific to a given individual,

we estimate the 22 posterior distributions, using both methods, for each of the 82 different

EEG spectra.

A full description of the methods for fitting the data and analyzing the results is given in

Section “Methods” where we first describe the procedure for calculating the predicted model

spectrum, along with the likelihood function for the spectral estimate. We then outline the two

fitting schemes, focusing on how we use them to sample from the 22-dimensional posterior

distribution. Finally, we describe use of the Kullback-Leibler divergence (KLD) to summarize

how much we learned about individual parameters, and the Fisher information matrix (FIM),

to assess the sloppiness and identifiability of the model. Our implementation of the methods

and all datasets are publicly available at https://github.com/cds-swinburne/Hartoyo-et-al-

2019-DATA-n-CODE.

Parameter estimation and identifiability in a neural population model
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Results

Figs 1 and 2 illustrate best fits using two different methods: PSO, which finds the best fits in

least squares (LS) manner, and MCMC, which samples solutions based on maximum likeli-

hood (ML) estimations. Although the fits are generally similar, subtle differences between

the two methods can be observed. For example, in subject 72 the the ML fit performs better

on regions with lower power but less well in regions with higher power. This difference is

expected: while LS are computed over unweighted power spectra, ML favors frequencies with

lower variances which typically are those with lower power spectra.

The posterior marginal distributions for each parameter, from a few subjects, are shown in

blue in Fig 3 (from PSO sampling) and Fig 4 (from MCMC sampling). These are compared to

the uniform prior distributions (green). The top row, which corresponds to analysis of the sim-

ulated spectrum, also shows the ground truth value (red). Each parameter is plotted in normal-

ized coordinates, where -1 corresponds to the lower limit of the plausible parameter interval

and +1 corresponds to the upper limit (see Table 1).

Fig 1. Best fits using least squares. Comparison of model spectra (blue dotted line) fit to experimental spectra (red thick line)

by least squares (LS) minimization using particle swarm optimization, for a select set of subjects. Also shown are the 16% and

84% quantiles based on the gamma distribution for the fitted spectra (thin black lines). The subjects have been selected to show

the range of spectra included in the full data set. A comparison of the experimental time series with representative samples of

modelled time series for the same subjects is included in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1006694.g001
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Posterior distributions found using PSO sampling are generally broader than those found

using MCMC sampling. This behavior is expected from the differences between the sampling

methods: while MCMC sampling can retain correlations between samples even with signifi-

cant subsampling, the different PSO samples are independent from one another. This demon-

strates the superiority of the PSO approach, at least under the sampling conditions employed

here. Nevertheless, both methods show that it is the postsynaptic potential rate constant of

the inhibitory population, γi, which is consistently constrained by the data across different

subjects.

To better quantify how much we have learned about each parameter, the KLDs for each

parameter, from all 82 subjects, are shown in Fig 5 (for PSO) and Fig 6 (for MCMC). These

confirm that it is γi that is best-constrained by the data. Most other posterior distributions are

only slightly narrower than their prior distribution. Furthermore, by analysis of a simulated

spectrum (see Table 2), we find that the γi estimate is accurate as well as precise.

Eigenvalues of the Fisher information matrix (FIM) are shown on log scale for the selected

subjects are shown in Fig 7 (for PSO) and Fig 8 (for MCMC), i.e. those computed around LS

Fig 2. Best fits using maximum likelihood. Comparison of model spectra (blue dotted line) fit to experimental spectra (red

thick line) by maximum likelihood (ML) estimation using MCMC. Also shown are the 16% and 84% quantiles (thin black lines).

The subjects are the same as in Fig 1. It should be noted that LS and ML fits are expected to differ in this case, since the LS fits are

more sensitive to deviations in the unweighted spectral power (typically in regions with larger power) whereas the ML fits are

more sensitive to deviations in regions where the variance of spectral power is small (typically in regions of lower spectral

power).

https://doi.org/10.1371/journal.pcbi.1006694.g002
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Fig 3. Posterior distributions based on PSO sampling. Comparison of the posterior (solid color) and prior marginal (green line) distributions for the

selected subjects used in Figs 1 and 2. For the simulated spectrum (first row), the distributions of the parameters are presented against the ground truths

for the corresponding parameters (red line). The distributions are based on kernel density estimates from the best 100 of 1000 randomly seeded particle

swarm optimizations for each subject. The seeds are uniformly distributed over the allowed parameter ranges. The major result is that, across the full set

of 82 subjects, only the parameter γi is significantly constrained. All other parameters have nearly the same uncertainties as the prior.

https://doi.org/10.1371/journal.pcbi.1006694.g003
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Fig 4. Posterior distributions based on MCMC sampling. Comparison of the posterior marginal distributions (solid color) with the prior marginal

distributions (green line) for the selected subjects used in Figs 1 and 2. For the simulated spectrum (first row), the distributions of the parameters are

presented against the ground truths for the corresponding parameters (red line). Each distribution is based on a kernel density estimate from 1000

samples (sub-sampled from 106MCMC samples). Consistent with the conclusions from PSO sampling, only γi is consistently constrained by the data

when viewed across all subjects.

https://doi.org/10.1371/journal.pcbi.1006694.g004
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best fits and ML best fits, respectively. In all cases presented in the figures, the eigenvalues are

spread over many decades with approximately uniform spacing over a log scale. This indicates

that this neural population model is sloppy [36–41]. Comparison of these eigenspectra across

different subjects suggests that there are usually�5 identifiable parameter combinations for

each subject.

The larger FIM eigenvalues define eigenvector directions corresponding to identifiable

parameter combinations. To understand the parameters that contribute the most to each

Fig 5. KLDs based on PSO samples. Kullback-Leibler divergences of marginal posterior parameter distributions calculated relative to

uniform prior distributions. The posteriors are based on the best 100 of 1000 randomly seeded runs of particle swarm optimization (see Fig 3).

The boxes represent the 25% and 75% quartiles; the whiskers represent the 5% and 95% quantiles; the red lines show the median KLDs and the

circles the mean KLDs over the full set of 82 subjects.

https://doi.org/10.1371/journal.pcbi.1006694.g005

Fig 6. KLDs based on MCMC samples. Kullback-Leibler divergences of marginal posterior parameter distributions (see Fig 4). Here kernel

density estimates based on 1000 MCMC samples of the posterior parameter distribution are used.

https://doi.org/10.1371/journal.pcbi.1006694.g006
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(identifiable) eigenvector we compute the angular distance between each parameter direction

and a given eigenvector. The closer the angular distance to 0˚ or 180˚, the greater the parame-

ter contributes to the parameter combination and thus the more identifiable that parameter.

Fig 9 (LS fits) and Fig 10 (ML fits) show the distributions, across all 82 subjects, of angular dis-

tances between each parameter and the three stiffest parameter combinations (red). For a null

comparison, the angular distances to vectors randomly pointed in the 22-dimensional space

are also shown (blue). For both LS and ML fits, γi again stands out. It has the greatest contribu-

tion to the stiffest parameter direction, once again showing that it is identifiable. Interestingly,

the postsynaptic potential rate constant of the excitatory population, γe, dominates the third

stiffest parameter combination. This indicates that it may also play an identifiable role in driv-

ing system dynamics, though to a lesser extent than γi.

Discussion

Fitting a neural population model to EEG data is an ill-posed inverse problem, where a wide

range of parameter combinations are consistent with the observed spectrum. Our approach to

fitting such an unidentifiable model is to generate many samples of parameter estimates, all of

Table 2. Accuracy and precision of parameter estimates in the analysis of the simulated spectrum.

Parameter PSO samples MCMC samples

Normalized error SD Normalized error SD

hrest
e 0.0224 0.4771 0.1198 0.3772

hrest
i 0.6165 0.4785 0.2231 0.1669

heq
e 0.6402 0.5702 0.5069 0.5779

heq
i 0.2550 0.4864 0.1516 0.2082

Smax
e 0.1382 0.5405 0.0220 0.3967

Smax
i 0.3847 0.5322 0.5205 0.4957

μe 0.4217 0.5281 0.1260 0.2655

μi 0.2423 0.5216 0.0613 0.3217

σe 0.2215 0.4528 0.0972 0.3991

σi 0.0064 0.3669 0.0459 0.2440

τe 0.1043 0.4970 0.1640 0.2075

τi 0.3050 0.3934 0.2444 0.4614

γe 0.1939 0.3761 0.1747 0.3269

γi 0.0071 0.0346 0.0156 0.0215

Γe 0.0972 0.4558 0.2641 0.2167

Γi 0.4104 0.5393 0.3805 0.5452

pee 0.0708 0.4707 0.3750 0.3335

pei 0.1199 0.4443 0.0031 0.4528

Nee 0.3600 0.5229 0.2575 0.5362

Nei 0.2240 0.5255 0.1608 0.5410

Nie 0.2087 0.4796 0.0784 0.2057

Nii 0.1042 0.4789 0.0108 0.3417

The accuracy of a parameter estimate is given by its deviation from the known ground truth value. Shown is the mean of this deviation for different sample estimates,

normalized to the prior of the parameter. Also shown is the precision, given by the standard deviation of the sample estimates. The values in bold are the top three

lowest values for each category. In this single case, the estimate of γi always has the highest precision, for both PSO and MCMC sampling, and one of the highest

accuracies.

https://doi.org/10.1371/journal.pcbi.1006694.t002
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which give a good fit to the data, and then characterize the structure of these samples. The

steps we used can be summarized as follows:

1. Optimization with a prior: Using two different optimization methods, particle swarm opti-

mization (PSO) with least squares minimization and Markov chain Monte Carlo (MCMC)

with likelihood maximization, we search for parameter combinations which provide a good

fit to the data. This required imposing a prior distribution on the parameters to ensure that

only solutions within physiologically-plausible ranges were accepted.

2. Marginal posterior: information gained about parameters individually: To characterize the

sampled parameter sets, we started by estimating the marginal posterior distribution of

each parameter, using the Kullback-Leibler divergence to separate the information gained

from the data from that which was already present in the prior. This showed that only γi,
the rate constant associated with inhibitory synaptic activity, had significantly less variabil-

ity than its prior.

Fig 7. FIM eigenspectra based on LS best fits. Leading eigenvalues of the FIM for selected subjects. The FIM is

numerically calculated using dimensionless increments at the parameters corresponding to a least squares fit to the

experimental spectrum. Of the 22 possible eigenvalues, roughly 7 correspond to zero, at least to the numerical accuracy

of the eigenvalue estimation routine. Typically 7 of the remaining 15 are too small (relative to the largest eigenvalue) to

be reliably calculated using the Matlab™ eig command. The roughly uniform distribution of the eigenvalues on a log

scale is a characteristic of a sloppy model. The blue dotted line delineates the separation of identifiable (above the

dotted line) from unidentifiable (below the dotted line) regimes [43]. Thus�5 parameter combinations are usually

identifiable, suggesting that the 22-parameter model can be described using 5 or 6 effective parameters. A

comprehensive plot of the FIM eigenspectra for all subjects is included in S2 Fig; the spectra observed above are typical

of those seen across the full set of subjects.

https://doi.org/10.1371/journal.pcbi.1006694.g007
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3. Fisher information matrix: information gained about parameters collectively: The marginal

posterior characterizes our knowledge about each parameter individually. It does not cap-

ture what the data has taught us about the parameters collectively. Pairwise correlations and

pairwise marginal distributions do not help either (See S4 Fig for details). In other words,

because of the complexity of the interrelations among parameters, marginal posteriors for

individual parameters and even pairs cannot fully describe what we have learned from the

data. Clearly the joint posterior distribution has the information we need, but estimating

this would require generating a prohibitive number of parameter estimates to adequately

sample the 22-dimensional space. We rely instead on the Eigen-analysis of the Fisher Infor-

mation Matrix (FIM), which examines the second-order behaviour of the model around

the best fit solution. The fact that many of the eigenvalues of the FIM are zero or nearly

zero indicates that the manifold surrounding the global optimum is essentially flat (zero

curvature) in those directions, meaning that certain parameter combinations are impossible

to determine from the data. The spacing of the first several eigenvalues is characteristic of

the ‘hyper-ribbon’ geometry of sloppy models [37, 38].

Characterization of unidentifiability and sloppiness helps quantify the degree to which a

model is over-parameterized. This in turn helps to illuminate how it can be simplified. The

existence of correlations between parameter estimates suggests that model complexity can be

reduced by grouping together, eliminating, or averaging subsets of parameters. This produces

an effective model, with fewer degrees of freedom, without compromising predictive ability.

Fig 8. FIM eigenspectra based on ML best fits. This is similar to Fig 7, except here the FIM is calculated around the

best fit found from maximum likelihood optimization for each subject’s spectrum.

https://doi.org/10.1371/journal.pcbi.1006694.g008
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A number of model reduction techniques have been proposed for dynamical systems,

such as balanced truncation [76–78], singular perturbation [79], and the manifold boundary

approximation [80, 81]. In physical theory, model reduction techniques such as mean field

and renormalization group methods [82] have long been used to quantify the effective parame-

ters in complex physical systems. The concept of entropy, which enumerates the number of

(unidentifiable) microstates that are consistent with a single (observable) macrostate, can be

thought of as a measure of unidentifiability. Our finding that there are only�5 identifiable

eigenvalues in the FIM spectrum indicates that the number of effective parameters in our

model is only about 5. The challenge is to understand what these effective parameters mean

physiologically.

Some insight into their role can be obtained by examining the derivatives of the modelled

spectra in the directions of the leading eigenvectors of the Fisher information matrix [83] (See

S3 Appendix for details). In broad terms, for most subjects, it appears that the leading eigen-

vector (effectively the inhibitory decay rate γi) is related to variation in the location of the

alpha peak; the second eigenvector is related to the height of the alpha peak compared to the

overall background level and (somewhat more loosely) the third eigenvector is associated with

the width of the alpha peak. The remaining combinations do not appear to be related to easily

identifiable features of the spectrum. Importantly, although each eigenvector could have con-

tributions from all 22 of the original parameters, the leading 3 eigenvectors appear to be influ-

enced by just a few of these (See S5 Fig for details). This indicates that, even though γi is the

Fig 9. Contributions to the eigenvectors corresponding to 1st, 2nd and 3rd eigenvalues based on LS best fits. Alignment of the leading

eigenvectors relative to each parameter. 0˚ and 180˚ represent perfect alignment (maximum contribution) whereas 90˚ represents

orthogonality (no contribution). To compare the 82 subjects, results are presented as angular distributions (red lines). The first row is for the

largest eigenvalue, the second row for the second-large eigenvalue, etc. The blue lines show the expected angular distributions for a randomly

pointed vector in the 22-dimensional parameter space, illustrating how these are most likely to be orthogonal to any parameter direction. The

angles are the inverse cosines of the direction cosines of the vectors. The distributions indicate that the parameters γi and (to a lesser extent) γe
may play significant roles in determining the spectral form in their own right. The remaining parameters appear largely in complicated

combinations.

https://doi.org/10.1371/journal.pcbi.1006694.g009
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only parameter that is clearly identifiable, a subset of the other parameters is being constrained

as well. This suggests that the essential character of the alpha peak —its position, height and

width—is determined by only a few of the original parameters.

Neural population models are coarse-grained approximations to networks of single neu-

rons. When trying to interpret a measurement such as the EEG, our results show that even

neural population models are not coarse-grained enough, since most parameters are unidenti-

fiable. The fact that only one of the original parameters, out of 22, is consistently identifiable,

a result confirmed by comparisons over 82 subjects and two different fitting routines, would

seem to be a bleak result: despite the considerable effort required to fit the model, we appear

to still be ignorant of 21 of the 22 parameters. However, when fitting a nonlinear model with

many parameters, there is no guarantee that any of them will be identifiable. The fact that one

has been found hints that it has a special role.

This has parallels in physical systems where the effective model parameters are the ones

that remain identifiable under coarse-graining. For example, it has been shown [39] that in

diffusion processes and magnetic phase transitions, most of the microscopic parameters

become unidentifiable at macroscopic scales, with only parameters such as the diffusion

coefficient and average magnetization emerging unscathed. It has been suggested [84] that

there may exist organizing principles that create ‘protectorates’ at mesoscopic scales, corre-

sponding to particular parameters or parameter combinations that are robust to coarse-

graining. The suggestion here then is that γi is an effective parameter in neural population

models, one that plays a central role in generating and modulating the alpha-rhythm in

cortex.

This discovery has potential clinical significance since the majority of agents used to induce

a state of surgical anaesthesia are thought to function by altering the time course of postsynaptic

Fig 10. Components of eigenvectors corresponding to 1st, 2nd and 3rd eigenvalues based on ML best fits. As for Fig 9, but using the ML

best fits, again showing the significant roles played by the parameters γi and γe.

https://doi.org/10.1371/journal.pcbi.1006694.g010

Parameter estimation and identifiability in a neural population model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006694 May 30, 2019 16 / 27

https://doi.org/10.1371/journal.pcbi.1006694.g010
https://doi.org/10.1371/journal.pcbi.1006694


inhibition. Being able to determine γi, the postsynaptic inhibitory rate constant, by fitting to

EEG data could provide real-time physiological insights into the functional effect of anaesthesia,

improving upon standard signal processing methods [85] which are not built on an underlying

theory of brain dynamics.

We note that it is likely that the alpha band activity obtained from a single electrode (in

our case Oz) represents the superposition of multiple independent, spatially distributed, alpha

rhythm generators [86–88]. In future, it may be possible to differentiate between these differ-

ent sources by jointly fitting the model to signals from multiple electrodes.

We conclude by remarking that there are deep parallels between model identifiability,

dynamic compensation [89–91] and evolvability [92] in a dynamical system. If the

function of the system is robust, or insensitive, to changes in some of its underlying parame-

ters, it can be impossible to infer those parameters by studying functional observables alone.

Thus the study of identifiability and sloppiness is not simply a study of fitting problems but

is also an examination of which parameter values are functionally essential and which are

not.

Methods

Predicted model spectrum

The model spectrum is calculated from the spatially homogeneous version of the full model

equations [11]. We make the additional assumptions that:

1. In the vicinity of the solutions corresponding to the resting eyes-closed spectra, the system

is linearly stable [93, 94].

2. The excitatory rate constants γee and γei are equal, as are the inhibitory rate constants γii
and γie [95].

3. The measured EEG signal is proportional to the excitatory mean soma membrane potential,

he [68, 69].

4. The linearised system is driven by Gaussian white noise fluctuations on the external excit-

atory to excitatory signal pee [11].

Under these assumptions, it can be shown that the linear system transfer function, T(s), is

(to within an overall sign) that of a simple feedback system as shown in Fig 11 involving two

third order filters:

TðsÞ ¼
H1ðsÞ

1þH1ðsÞH2ðsÞ
; ð8Þ

Fig 11. The model as a simple feedback system. The transfer function of the system TðsÞ ¼ H1ðsÞ
1þH1ðsÞH2ðsÞ

where both

H1(s) and H1(s) are third order filters.

https://doi.org/10.1371/journal.pcbi.1006694.g011
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H1ðsÞ ¼
k13

k13k31 � k11ðsÞk33ðsÞ
; ð9Þ

H2ðsÞ ¼
k15k24k41k52

k13fk22ðsÞk55ðsÞ � k26k62g
: ð10Þ

The polynomials k11(s) and k22(s) are linear in s and k33(s) and k55(s) are quadratic in s. The

derivation of this result and detailed expressions for the factors appearing in these equations

are given in S1 Appendix.

Given that the spectra are assumed to arise from a white noise spectrum filtered by this

transfer function, the expected value of the spectral estimate at frequency ω, given a vector of

model parameters (θ), has the form:

hSðoÞi ¼ aŜðojθÞ ¼ a
H1ðioÞ

1þH1ðioÞH2ðioÞ

�
�
�
�

�
�
�
�

2

; ð11Þ

where the constant α accounts for the unknown driving amplitude and for attenuation due to

volume conduction and other (frequency-independent) effects. The value for α is found using

a least-squares fit to the measured spectral estimates. The analytic result is:

a ¼

P
nSnŜnðθÞ
P

nŜ2
nðθÞ

; where Sn � SðonÞ; n ¼ 1; . . . ;N : ð12Þ

Likelihood for the predicted model spectrum

For a spectrum of the form described above, with sufficiently high sampling rates and negligi-

ble measurement noise, the spectral estimate from the Welch periodogram at each sampled

frequency {ωn = 2π fn; n = 1, 2, 3,. . .,N} is approximately an independent random variable with

a known distribution [96]. The exact form is computationally involved and for our immediate

purposes we will ignore the effects of window overlap and non-uniform window shape on the

resulting distributions. With this simplification the probability distribution function (pdf) for

the spectral estimate, Sn, is a gamma distribution:

f ðSn;K;YÞ ¼
SK� 1
n e�

Sn
θn

Y
K
nGðKÞ

; Sn > 0: ð13Þ

Here, for non-zero frequencies, the shape parameter K is found from the number of epochs

averaged in the periodogram. For zero frequency, replace K with K/2 throughout. The scale

parameter is given by

Ynðθ; aÞ ¼ a
ŜnðθÞ
K

; where ŜnðθÞ � ŜðonjθÞ; n ¼ 1; � � � ;N: ð14Þ

The likelihood function for the vector of spectral estimates, S = [S1 S2 S3 � � � SN]T, given the

parameter values θ, is then the product of the distributions of the individual spectral estimates:

pðSjθ; aÞ ¼
1

GðKÞ

� �N Y

n

Sn
ŜnðθÞ

� �K� 1

ŜnðθÞ

0

B
@

1

C
A

K
a

� �NK

exp �
K
a

X

n

Sn

ŜnðθÞ

 !

: ð15Þ
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The constant α is adjusted to give the maximum likelihood fit of the model spectrum to the tar-

get experimental spectrum. The analytic result is that

a ¼
1

N

XN

n¼1

Sn

ŜnðθÞ
: ð16Þ

The likelihood based on model parameters alone is then

pðSjθÞ ¼
KKe� K

GðKÞ

� �N
1

1

N

PN
n¼1

Sn
ŜnðθÞ

 !NK
Y

n

Sn
ŜnðθÞ

� �K� 1

ŜnðθÞ

0

B
@

1

C
A: ð17Þ

Fitting schemes

Particle swarm optimization and least squares minimization. The first method we used

to find the best fit parameters and their uncertainties is particle swarm optimization (PSO)

[97], a standard technique for nonlinear optimization problems. PSO is an optimization algo-

rithm inspired by swarming behavior in nature to process knowledge in the course of search-

ing the best solution in a high-dimensional space RD
. At the individual level a particular

particle p in a particular iteration represents a distinct candidate solution Xp 2 R
D

whose qual-

ity is defined by the cost function. Throughout the iterations the particle moves around in the

search-space in the direction and velocity guided by its local best known position Lp 2 R
D as

well as the global best known position G 2 RD in such a way that in any iteration p’s velocity is

given by:

Vp  cVp þ �ind � ðLp � XpÞ þ �soc � ðG � XpÞ ð18Þ

where ψ is a predefined inertia weight, as proposed by Shi and Eberhart [98], while �ind ¼

randð0; �
max

ind
Þ and �soc ¼ randð0; �

max

soc
Þ are weights given to individual versus social interac-

tion, respectively (here rand(0, cmax) represents a random value between 0 and cmax). The

algorithm iteratively updates the global best known position G until the stopping criterion is

reached.

PSO was used to estimate the 22-dimensional vector of parameters θ̂ that minimizes a least

squares (LS) cost function C given by the sum of squared residuals between the measured spec-

trum S and the normalized model spectrum aŜðθÞ:

C ¼
X

n

ðaŜnðθÞ � SnÞ
2
: ð19Þ

Markov chain Monte Carlo and maximum likelihood estimation. In addition to the

PSO method, we also used a Markov Chain Monte Carlo (MCMC) approach. For a given mea-

sured spectrum, S, the best fit θ was found by maximizing the posterior distribution p(θ|S)

given in Eq 20. To simplify the calculation, a local maximum is sought in the vicinity of the

MCMC sampled parameter that maximizes the likelihood function (Eq 17) evaluated at the

observed spectrum. In practice this starting value is based on the resampled parameter set

rather than on the full set and the maximum found using the Matlab1 fminsearch command

on the negative of the log of the posterior distribution.
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Sampling schemes

PSO-based random sampling. We apply an unbiased approach to draw a set of fair sam-

ples from a complicated distribution of solutions to a model-parameterization problem. Given

a target spectrum to infer the distributions of the estimated parameters from, we carry out the

approach by performing the three steps as follows.

1. Generate samples. We perform this step by using 1000 independent instantiations of the

PSO to find 1000 different parameter estimates. In this scheme we use 80 particles for each

swarm. Parameter starting points are chosen by random sampling from a uniform distribu-

tion over the physiologically-relevant ranges given in Table 1. During the parameter search,

each parameter is forced to stay within its physiologically-relevant range by assigning a

high cost to particles with values outside these ranges. This is similar to employing a Bayes-

ian prior that is flat over the acceptable parameter range, and zero elsewhere. This step

results in a preliminary set of 1000 parameter estimates θ̂.

2. Select the best samples. Not all samples drawn in the first step represent acceptable fits.

We only accept the 10 percent of estimates which have the lowest cost functions, since, by

inspecting fits to multiple subjects (See S3 Fig) only these consistently correspond to good fits.

3. Estimate the distributions. Having selected samples of θ̂, we construct kernel density esti-

mates of the marginal posterior distributions of the parameters.

Markov chain Monte Carlo sampling. In the MCMC approach we employ an explicitly

Bayesian framework, treating the parameters as random variables. Given a known prior distri-

bution, p0(θ), we seek the posterior distribution, conditioned on the observed spectrum S
given by

pðθjSÞ ¼
pðSjθÞp0ðθÞ

pðSÞ
: ð20Þ

In the absence of an explicit closed form expression for this function, averaged quantities

can be estimated in a Monte-Carlo fashion given a sufficiently large set of parameter values

drawn randomly from this distribution. To obtain these values we use the Metropolis-Hastings

Markov chain Monte Carlo (MCMC) algorithm [99] based on the log likelihood ratio that fol-

lows from the likelihood function described before.

ln
PðSjθnþ1Þ

PðSjθnÞ

p0ðθnþ1Þ

p0ðθnÞ

� �

¼ KN ln
1

N

X

m

Sm

ŜmðθnÞ

 !

� ln
1

N

X

m

Sm

Ŝmðθnþ1Þ

 !( )

þK
XN

m¼1

f ln ðŜmðθnÞÞ � ln ðŜmðθnþ1ÞÞg

þ ln ðp0ðθnþ1ÞÞ � ln ðp0ðθnÞÞ

ð21Þ

The sampled sets obtained for each target spectrum consist of 106 MCMC samples with the

step size (of normalised parameter values) adjusted during a burn-in phase of length 40000 to

yield an acceptance ratio in the vicinity of 0.25. When appropriate, the long sampled sequence

is resampled, typically to yield sequences of length 1000 upon which to base averages. For con-

sistency with the particle swarm approach, the prior distribution is assumed to be uniform

over its support.
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Kullback-Leibler divergence

A convenient measure of the information gained about individual parameters as a result of the

measurement of the spectrum is the Kullback-Leibler divergence (KLD) [100, 101]. Here we

use the KLD to measure the change in the marginal posterior distribution of each parameter

relative to its marginal prior:

DðiÞKLðSÞ ¼
Z

piðyijSÞ ln
piðyijSÞ
p0ðyiÞ

dyi: ð22Þ

When KLDs are used to measure how posteriors differ from priors based on MCMC sam-

ples, the integral is numerically evaluated using marginal distributions approximated by kernel

density estimates using 1000 parameter values resampled from the full MCMC sampled

parameter set for the given spectrum. The prior distributions are uniform over their support.

For consistency, the posterior kernel estimates are truncated to have the same support. The

kernel density estimate for a given parameter is sampled at 100 points over its support and the

integral estimated numerically. For the PSO samples, due to the limited number of indepen-

dent samples, the integral is estimated using a 10 bin histogram approximation.

Fisher information matrix

To assess the sloppiness of the model fit, we examine the eigenvalues of the Fisher information

matrix (FIM), the definition of which for the pdf P(S|θ) is given by:

ImnðθÞ ¼
Z

PðSjθÞ
@ ln PðSjθÞ

@y
m

@ ln PðSjθÞ
@y

n dNS ð23Þ

In general the integration here could present considerable difficulty, however, for the distri-

bution given by Eq (13), it can be shown that a simplification is possible, resulting in an expres-

sion involving only the derivatives of the model spectral estimates, evaluated at the desired

parameter values:

ImnðθÞ ¼ K
X

n

@ ln ŜnðθÞ
@ym

@ ln ŜnðθÞ
@yn

ð24Þ

(For a derivation of this result, see S2 Appendix.)

The derivatives, with respect to normalised parameters at the LS or ML estimated values,

are evaluated numerically using a 5-point finite difference approximation, and the resulting

products summed over the sampled frequencies. The Matlab1 eig command is used to find

the eigenvalues and eigenvectors of the resulting matrices. Numerical experiments with surro-

gate matrices suggest that the eigenvalues calculated using eig are reliable over some 10 orders

of magnitude. For our modelled spectra we expect the FIM to be positive semidefinite and of

less than full rank, so negative eigenvalues and eigenvalues smaller than 10−10 times the largest

eigenvalue are taken as zero.

Supporting information

S1 Appendix. Derivation of the transfer function of the system. The derivation of Eq (8)

and detailed expressions for the factors appearing in Eqs (9) and (10).

(PDF)
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S2 Appendix. Derivation of the Fisher information matrix. The derivation of Eq (24) from

Eq (23).

(PDF)

S3 Appendix. Directional derivatives of modelled spectra. Computation and analysis of the
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