

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Yuan, Dong; Liu, Xiao; Cui, Lizhen; Zhang, Tiantian; Li, Wenhao; Cao, Dahai;
Yang, Yun. (2013). An algorithm for cost-effectively storing scientific datasets with

multiple service providers in the cloud

Originally published in Proceedings of the IEEE 9th International
Conference on eScience (eScience), Beijing, China, 22-25 October
2013, pp. 285-292

Available from: http://doi.org/10.1109/eScience.2013.34

Copyright © 2013 IEEE.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://ieeexplore.ieee.org/.

http://doi.org/10.1109/eScience.2013.34
http://ieeexplore.ieee.org/

An Algorithm for Cost-Effectively Storing Scientific
Datasets with Multiple Service Providers in the Cloud

Dong Yuan1, Xiao Liu3, Lizhen Cui2, Tiantian Zhang2, Wenhao Li1, Dahai Cao1, Yun Yang4,1*

1Centre for Computing Engineering
and Software Systems,

Swinburne University of
Technology,

Melbourne, Australia
{dyuan, wli, dcao}@swin.edu.au

2School of Computer Science
and Technology,

Shandong University,
Jinan, China

clz@sdu.edu.cn,
zhangtthappy@gmail.com

3Shanghai Key Laboratory of
Trustworthy Computing,

Software Engineering Institute of
East China Normal University

Shanghai, China
xliu@sei.ecnu.edu.cn

4School of Computer
Science and
Technology,

Anhui University,
Hefei, China

yyang@swin.edu.au

Abstract—The proliferation of cloud computing allows scientists
to deploy computation and data intensive applications without
infrastructure investment, where large generated datasets can be
flexibly stored with multiple cloud service providers. Due to the
pay-as-you-go model, the total application cost largely depends
on the usage of computation, storage and bandwidth resources,
and cutting the cost of cloud-based data storage becomes a big
concern for deploying scientific applications in the cloud. In this
paper, we propose a novel algorithm that can automatically
decide whether a generated dataset should be 1) stored in the
current cloud, 2) deleted and re-generated whenever reused or 3)
transferred to cheaper cloud service for storage. The algorithm
finds the trade-off among computation, storage and bandwidth
costs in the cloud, which are three key factors for the cost of
storing generated application datasets with multiple cloud service
providers. Simulations conducted with popular cloud service
providers’ pricing models show that the proposed algorithm is
highly cost-effective to be utilised in the cloud. 1

Keywords-cloud computing; scientific application; datasets
storage

I. INTRODUCTION
With the rapid growth of e-science, domain scientists

increasingly rely on computer systems to conduct their research
[5] [16] [23] [26], e.g. cluster, grid and HPC (High
Performance Computing) systems. In recent years, cloud
computing is emerging as the latest parallel and distributed
computing paradigm which provides redundant, inexpensive
and scalable resources on demand to user requirements [13].
The emergence of cloud computing offers a new way for
deploying scientific applications. IaaS (Infrastructure as a
Service) is a very popular way to deliver services in the cloud
[1], where the heterogeneity of computing systems [36] of one
service provider can be well shielded by virtualisation
technology. Hence, scientists can deploy their applications in
unified cloud resources such as computing, storage and
network services without any infrastructure investment, and
only pay for their usage according to the pay-as-you-go model.

However, along with the convenience brought by using on-
demand cloud services, users have to pay for the resources used,
which can be substantial. Especially, nowadays scientific
applications are getting more and more data intensive [11] [21]

*Yun Yang is the corresponding author of this paper.

[28], where generated datasets are often gigabytes, terabytes, or
even petabytes in size. As reported by Szalay et al. in [27],
science is in an exponential world and the amount of
application data will double every year over the next decade
and future. These generated data contain important
intermediate or final results of computation, which may need to
be stored for reuse [7] and sharing [8]. Hence, cutting the cost
of cloud-based data storage in a pay-as-you-go fashion
becomes a big concern for deploying scientific applications in
the cloud.

In the cloud, users have multiple options to cope with the
large generated application data. As excessive storage and
processing power can be obtained on-demand from commercial
service providers, users can either store all data in the cloud
and pay for the storage cost, or delete them and pay for the
computation cost to regenerate them whenever they are reused.
Furthermore, as cloud computing is such a fast growing market,
more and more different cloud service providers with cost-
effective storage solutions appear [3]. This phenomenon allows
users to transfer the generated application data to cheaper
services for storage with paying for the incurred bandwidth
cost. Hence, in the cloud, users can flexibly store their data
with different storage strategies which also lead to different
total costs correspondingly. In light of this, a good storage
strategy should be able to balance the usage of computation,
storage and bandwidth resources in the cloud, which are three
key factors for the cost of storing generated application data.
Existing work [33] only investigates the trade-off between
computation and storage within one cloud service provider,
where bandwidth cost has not been considered.

In this paper, by investigating the trade-off among
computation, storage and bandwidth, we propose a novel cost-
effective algorithm for storing the generated application
datasets in the cloud. We utilise a Data Dependency Graph
(DDG) to represent generated application data in the cloud [33]
and design the novel T-CSB algorithm which can calculate the
Trade-off among Computation, Storage and Bandwidth (T-
CSB) in the cloud. The T-CSB algorithm can be utilised to
cost-effectively store the generated application data with
multiple service providers in the cloud.

The remainder of this paper is organised as follows. Section
II presents a motivating example of scientific application and

mailto:clz@sdu.edu.cn

analyses the research problems. Section III introduces some
preliminaries and data storage cost model in the cloud. Section
IV presents our novel T-CSB algorithm in detail. Section V
describes our experimental results for evaluation. Section VI
discusses the related work. Section VII summarises our
conclusions and points out future work.

II. MOTIVATING EXAMPLES AND PROBLEMS ANALYSIS
In this Section, we introduce a real world application in

Structural Mechanics which generates large intermediate data
with various sizes, and analyse the problems of storing them in
the cloud.

A. Motivating Examples
Finite Element Modelling (FEM) is an important and

widely used method for impact test of objects, where classic
applications are split Hopkinson pressure bar test, gas gun
impact test, drop hammer test, etc. In the Faculty of
Engineering and Industrial Sciences, Swinburne University of
Technology, researchers of the Structural Mechanics Research
Group conduct FEM simulations of Aluminium Honeycombs
under dynamic out-of-plane compression to analyse the impact
behaviour of the material and structure. In their research,
numerical simulations of the dynamic out-of-plane
compression are conducted with ANSYS/LS-DYNA software
which is a powerful FEM tool for modelling non-linear
mechanics of solids, fluids, gases and their interaction. The
FEM application has four major steps as shown in Figure 1.

Figure 1. Overview of FEM application

From Figure 1, at beginning, based on the researchers’
design, the object with special structure (i.e. the honeycombs
structure in this example) for FEM analysis is generated in the
Object Modelling step. Then, researchers specify more detailed
parameters of the object model in the FEM Initiation step, e.g.
material of the object and elements for modelling. Based on the
well-defined model, researchers can run different FEM
simulations according to requirements of the experiment, e.g.
speed of the compression and time interval for recording data.
This is the most time consuming and important step in the FEM
application, which also generates the largest volume of data as
simulation results. Depending on the speed of the compression,
the computation time of this step varies from several hours to
around one hundred hours, while depending on the time
interval for recording data, the size of generated data varies
from gigabytes to hundreds of gigabytes. These data are very

important for researchers, based on which the simulation
results can be demonstrated in various ways for analysis.

As researchers often need to run different simulations, large
volume of the generated results data are accumulated as time
goes on. However, due to the capacity limit of the local storage
system, researchers can only store the recently generated
results. Whenever they want reuse or re-analyse the results of
pervious simulations, they have to re-run the simulation from
beginning to regenerate the data, which is not efficient. Hence
researchers consider of migrating the FEM application to the
cloud where the storage bottleneck can be avoided in a cost-
effective way.

B. Problems Analysis
The storage limitation would not be the case in the cloud,

because the commercial cloud service providers can offer
virtually unlimited storage resources. But, due to the pay-as-
you-go model in the cloud, cost is one of the most important
factors that users would care about. In order to make good use
of the redundant cloud resources from different service
providers, we need to design a smart algorithm to greatly
reduce the cost of storing large generated application data in
the cloud. However, designing this algorithm is not an easy job,
where the following two issues need to be carefully
investigated.

1) All the resources in the cloud carry certain costs. No
matter how we dealt with the generated data (e.g. storing, re-
generating or transferring); we have to pay for the
corresponding resources used. Different data vary in size, and
have different re-generation costs and usage frequencies, e.g.
data generated in the FEM application in Figure 1; therefore, it
is most likely not cost effective to store all the generated data in
the cloud. Intuitively, some heuristics can be applied for
reducing the cost of storing the generated data. For example,
we can delete the less frequently used data which have large
size but small re-generation cost, and re-generate them
whenever reused. Also, for the less frequently used data which
have large size and huge re-generation cost, we can transfer
them to cheaper places for storage, e.g. to other cloud storage
systems, or even out of cloud to users’ own spare storage
devices. Hence, there is a trade-off among computation, storage
and bandwidth in the cloud which can minimise the cost of
storing the generated application data. However, finding this
trade-off is not easy, as data in the cloud have dependencies (i.e.
complex generation relationships) and this is also the key issue
for cost-effective data storage in the cloud.

2) The best trade-off among computation, storage and
bandwidth may not be the best strategy for storing the
generated application data. When the deleted data are needed,
the regeneration not only imposes computation cost, but also
causes a time delay, e.g. Step 3: FEM Simulation in Figure 1
sometimes takes several days to finish. It is also the same for
data being transferred to other places are needed to be
transferred back. Depending on the different time constraints of
applications [20], users’ tolerance of this delay may differ
dramatically. Therefore, for some applications, users’
preferences on storage are needed to be investigated. However,
for some application, users do not concern about waiting for
them to become available, hence they may delete or transfer the

rarely used data to reduce the overall application cost.
Therefore, this issue is not the focus of this paper.

In this paper, we focus on the first research issue only.
We design an algorithm which can find the trade-off among
computation, storage and bandwidth in the cloud, and thus be
utilised for cost-effective data storage with multiple cloud
service providers..

III. SCIENTIFIC DATASETS STORAGE IN CLOUDS
In this section, we first present some preliminaries

including a classification of application data in the cloud and
the important concept of DDG (Data Dependency Graph).
Then we present the data storage cost model which represents
the trade-off among computation, storage and bandwidth in the
cloud.

A. Application Data and DDG
In general, there are two types of data stored in the cloud,

original data and generated data.

1) Original data are the data uploaded by users, for
example, in scientific applications they are usually the raw data
collected from the devices in the experiments. For these data,
users need to decide whether they should be stored or deleted
since they cannot be regenerated by the system once deleted.
As cost of storing original data is fixed, they are not
considered in the scope of this paper.

2) Generated data are the data newly produced in the cloud
while the applications run. They are the intermediate or final
computation results of the applications, which can be reused in
the future. For these data, their storage can be decided by the
system since they can be regenerated if their provenance is
known. Hence, our work is only applied to the generated data
in the cloud that can automatically decide the storage status of
generated datasets in applications. In this paper, we refer
generated data as dataset(s).

DDG (Data Dependency Graph) [33] is a directed acyclic
graph (DAG) which is based on data provenance in scientific
applications. All the datasets once generated in the cloud,
whether stored or deleted, their references are recorded in DDG.
In other words, it depicts the generation relationships of
datasets, with which the deleted datasets can be regenerated
from their nearest existing preceding datasets. Figure 2 depicts
a simple DDG, where every node in the graph denotes a
dataset. We denote dataset di in DDG as DDGdi ∈ . Furthermore,
d1 pointing to d2 means that d1 is used to generate d2; d2
pointing to d3 and d5 means that d2 is used to generate d3 and d5
based on different operations; d4 and d6 pointing to d7 means
that d4 and d6 are used together to generate d7.

d1 d2

d3

d8d7

d6

d4

d5

Figure 2. A simple Data Dependency Graph (DDG)

To better describe the relationships of datasets in DDG, we
define a symbol: → , which denotes that two datasets have a

generation relationship, where di → dj means that di is a
predecessor dataset of dj in DDG. For example, in Figure 2’s
DDG, we have d1 → d2, d1 → d4, d5 → d7, d1 → d7, etc.
Furthermore, → is transitive, i.e.

 kikjjikji ddddddddd →⇒→∧→⇔→→ .

B. Datasets Storage Cost Model
In a commercial cloud computing environment, service

providers have their cost models to charge users. In general,
there are three basic types of resources in the cloud:
computation, storage and bandwidth. Popular cloud services
providers’ cost models are based on these types of resources.
For example, Amazon cloud services’ prices are as follows2:

$0.10 per CPU instance hour for the computation
resources;

$0.15 per Gigabyte per month for the storage resources;
$0.12 per Gigabyte bandwidth resources for data

downloaded from Amazon via Internet.

In this paper, we facilitate our datasets storage cost model
in the cloud as follows:

Cost = Computation + Storage + Bandwidth

where the total cost of the datasets storage, Cost, is the sum
of Computation, which is the total cost of computation
resources used to regenerate datasets, Storage, which is the
total cost of storage resources used to store the datasets, and
Bandwidth, which is the total cost of bandwidth resources used
for transferring datasets.

To utilise the datasets storage cost model, we assume that
the application be deployed in one cloud service3, denoted as c1,
and there be m different cloud services, denoted as {c1, c2, …
cm}, for storing the generated datasets in the cloud. For a
dataset in DDG {d1, d2, … dn}, denoted as DDGdi ∈ , we define
its attributes as follows: <xi, yi,s , zi,s , fi, vi, provSeti, CostRi>4,
where

• xi denotes the generation cost of dataset di from its direct
predecessors in the cloud.

• yi,s denotes the cost per time unit (i.e. storage cost rate) of
storing dataset di in cloud service cs. Especially, yi,1
denotes the cost rate of storing di in the cloud service
where the application is deployed.

2 The prices may fluctuate from time to time according to market factors. As
this paper’s focus is cost-effectiveness, to simplify the problem, we assume
that the same types of computation resources are used for generatio and
regeneration of datasets, and the same types of storage resources are used for
storing datasets.
3 We assume that the application only run with one cloud service due to the
following two reasons: 1) Some applications contain dedicate commercial
software, e.g. the ANSYS/LS-DYNA software in the FEM application
introduced in Section II. Due to the license restriction, these kinds of software
cannot be freely installed in different service providers’ resources in the cloud.
2) Migrating applications, especially scientific applications to a cloud service
is a complex process. In order to take advantage of on-demand cloud services,
software in the applications usually need second development to facilitate the
dynamic scale up and down in the cloud.
4 These atrributes were introduced in our prior work [33], based on which we
incorperate bandwidth cost of data transfer into the original definitions. If
needed, please refer to our prior work [33] for more detailed description of
these attributes.

• zi,s denotes the transfer cost of dataset di from service
provider cs to c1 , especially, zi,1 =0.

• fi is a flag which denotes the storage status of dataset di.
Specifically, , {1,2,... }if s s m= ∈ represents that dataset
di is stored in cloud service cs, and fi=0 represents that
dataset di is deleted.

• vi denotes the usage frequency, which indicates how often
di is used.

• provSeti denotes the set of stored provenance that are
needed when regenerating dataset di. If we want to
regenerate di, we have to find its direct predecessors,
which may also be deleted or stored in other cloud
services. provSeti is the set of the nearest stored
predecessors of di in the DDG. Hence the generation cost
of di is

,{ }

{ }

()
j i

j i j k i

i j sj d provSet

k ik d provSet d d d

genCost d z

x x
∈

∈ ∧ → →

=

+ +

∑

∑
 (1)

As we can see from formula (1), the regeneration cost of
di is two folds: 1) the bandwidth cost of transferring di's
stored provenance datasets to c1 which is the cloud service
that the application is deployed, and 2) the computation
cost of regenerating di in c1.

• CostRi is di’s cost rate, which means the average cost per
time unit of dataset di in the cloud. The value of CostRi
depends on the storage status of di, where

, ,

() , 0 / /
, / /
i i i i

i
i s i i s i i s

genCost d v f d is deleted
CostR

z v y f s d is stored in c
∗ =

=  ∗ + =
 (2)

Hence, the total cost rate of storing a DDG is the sum of
CostR of all the datasets in it, which is ∑ ∈DDGd ii

RCost . We
further define the storage strategy of a DDG as F, which
denotes the storage status of datasets in the DDG. Formally,

{ }i iF f d DDG= ∈ , which is the set of every dataset's attribute fi
indicating the cloud service in which di is stored. We denote the
cost rate of storing a DDG with the storage strategy F as SCR
(Sum of Cost Rate), where

 ()
FDDGd ii

RCostSCR ∑ ∈= (3)

Based on the definition above, different storage strategies
lead to different cost rates for the application. This cost rate, i.e.
cost per time unit, represents the cost-effectiveness of storage
strategies, which incorporates the trade-off among computation,
storage and bandwidth costs in the cloud. In next section, we
will present the design of our T-CSB algorithm for cost-
effective datasets storage based on this trade-off model.

IV. COST-EFFECTIVE DATASETS STORAGE ALGORITHM IN
MULTIPLE CLOUD SERVICES

In the section, we first briefly introduce the philosophy of
the novel T-CSB algorithm, and then describe the detailed steps
of the algorithm in order to find the trade-off among
computation, storage and bandwidth costs for storing generated
datasets with multiple cloud services.

A. Overview of T-CSB (Trade-off among Computation,
Storage and Bandwidth) Algorithm
In this paper, we design the T-CSB algorithm that can find

the minimum cost storage strategy for storing datasets of linear
DDG with multiple cloud storage services. Linear DDG means
a DDG with no branches, where each dataset in the DDG only
has one direct predecessor and successor except the first and
last datasets. The minimum cost storage strategy found by the
algorithm represents the best trade-off among computation,
storage and bandwidth costs in the cloud. Given a general DDG,
the T-CSB algorithm can be utilised in every linear segment of
the DDG respectively and thus find the trade-off for storing
datasets with multiple cloud services.

The basic idea of the T-CSB algorithm is to construct a
Cost Transitive Graph (CTG) based on the linear DDG. First,
for every dataset in the DDG, we create a set of vertices in the
CTG representing different storage services where the dataset
can be stored. Next, we design smart rules for adding edges to
the CTG and setting weights to them. Based on rules, we
guarantee that in the CTG, the paths from the start vertex to the
end vertex have a one-to-one mapping to the storage strategies
of the DDG, and the length of every path equals to the cost rate
of the corresponding storage strategy in the cloud. Then we can
use the well-known Dijkstra shortest path algorithm (or
Dijkstra algorithm for short) to find the shortest path in the
CTG, which in fact represents both the minimum cost storage
strategy for datasets of the DDG with multiple storage services,
and the best trade-off among computation, storage and
bandwidth costs in the cloud.

B. Detailed Steps in the T-CSB Algorithm
Given a linear DDG with datasets {d1, d2 … dn} and m

cloud services {c1, c2 … cm} for storage. The T-CSB algorithm
has the following four steps:

Step 1: Create vertices for the CTG. First, we create the
start and end vertices, denoted as verstart and verend. Then, for
every DDGdi ∈ , we create a vertex set { }miiii verververV ,2,1, ...,= ,
where m is the number of cloud services in which di can be
stored. Hence veri,s represents dataset di storing in cloud service
cs.

Step 2: Add directed edges to the CTG. For every
CTGver si ∈, , we add out-edges to all vertices in the set of

{ }, , ',i s i s i i i iver ver CTG d d DDG d d′ ′ ′ ′ ′∈ ∧ ∈ ∧ → . In other words,
for any two vertices CTGverver sisi ∈′′,, , belonging to different
datasets’ vertex sets (i.e. ii VV ′≠), we create an edge between
them. Formally,

, , , ,, , ,i s i s i i i i i s i sver ver CTG d d DDG d d e ver ver′ ′ ′ ′ ′ ′∈ ∧ ∈ ∧ → ⇒∃ < > .

Especially, for startver , we add out-edges to all other vertices in
the CTG, and for endver , we add in-edges from all other vertices
in the CTG.

Step 3: Set weights to edges in the CTG. The reason we
call the graph Cost Transitive Graph is because the weights of
its edges are composed of the cost rates of datasets. For an edge

, ,,i s i se ver ver ′ ′< > , we denote its weight as , ,,i s i sver verω ′ ′< > ,
which is defined as the sum of cost rates of di' and the datasets

between di and di', supposing that only di and d i' are stored with
corresponding cloud services and the rest of datasets between di
and d i' are all deleted. Formally:

() ()

, ,

{ }

, , { }

,

()
k k i k i

k k i k i

i s i s

i kd d DDG d d d

i s i i s k kd d DDG d d d

ver ver
CostR CostR

z v y genCost d v

ω

′

′

′ ′

′ ∈ ∧ → →

′ ′ ′ ′ ′ ∈ ∧ → →

< >

= +

= ∗ + + ∗

∑

∑
 (4)

Since we are discussing linear DDG, for the datasets between di
and di', di is the only dataset in their provSets. Hence we can
further derive:

()
()()

, , , ,

,{ } { }

,

*
k k i k i h h i h k

i s i s i s i i s

i s k h kd d DDG d d d d d DDG d d d

ver ver z v y

z x x v

ω

′

′ ′ ′ ′ ′ ′ ′

∈ ∧ → → ∈ ∧ → →

< > = ∗ +

+ + +∑ ∑

Step 4: Find the shortest path of the CTG. From the above
construction steps, we can clearly see that the CTG is an
acyclic oriented graph. Hence we can use the Dijkstra
algorithm to find the shortest path from startver to endver . The
Dijkstra algorithm is a classic greedy algorithm to find the
shortest path in graph theory. We denote the shortest path from

startver to endver as >< endstart ververP ,min .

For the given linear DDG with datasets {d1, d2 … dn} and m
cloud storage services {c1, c2 … cm}, the length of

>< endstart ververP ,min of its CTG is the minimum cost rate for
storing the datasets in the DDG, and the corresponding storage
strategy is represented by the vertices that >< endstart ververP ,min
traverses.

In Figure 3, we demonstrate a simple example of
constructing CTG for a DDG with two datasets {d1, d2} and m
different cloud services for the storage.

d1 d2DDG

CTG

Data dependency:

Cost edge:

V1 V2

...

...

...

...

verstart verend

ver1,1

ver1,s

ver1,m

ver2,1

ver2,s

ver2,m

Figure 3. Example of constructing CTG for DDG

Next, we analyses the efficiency of our T-CSB algorithm.
As introduced above, for a linear DDG with n datasets and m
cloud services for storage, we need to create mn vertices in the
CTG. Hence the number of edges in the CTG is in the
magnitude of m2n2. Since the time complexity of calculating
the longest edge’s weight is O(n2), the worst case time
complexity for creating the CTG is O(m2n4). Next, the time
complexity of the Dijkstra algorithm is O(m2n2). Hence the
total time complexity of the T-CSB algorithm is O(m2n4).

V. EVALUATION
In this section, we demonstrate simulation results

conducted on Amazon cloud. First, we introduce our
simulation setup and evaluation method. Then, we present
general simulation results and evaluate the cost effectiveness of
our algorithm.

A. Simulation Setup and Evaluation Method
As Amazon is a well-known and widely recognised cloud

service provider, we conduct experiments on Amazon cloud
using on-demand services for simulation. We implement our
algorithm in Java programming language and run the algorithm
on the virtualised EC2 instance with the Amazon Linux Image
to evaluate its cost effectiveness and efficiency. We choose the
standard small instance (m1.small) to conduct the experiments,
because it is the basic type of EC2 CPU instances, which has a
stable performance of one ECU5.

To evaluate the cost effectiveness of our T-CSB algorithm
for multiple cloud storage services, we compare it with
different representative storage strategies for one cloud service
provider, which are as follows:
• Store all datasets strategy, in which all generated datasets

of the application are stored in the cloud.
• Store none datasets strategy, in which all generated

datasets of the application are deleted after being used.
• Cost rate based strategy reported in [32] [35], in which we

store datasets in the cloud by comparing their own
generation cost rate and storage cost rate.

• Local-optimisation based strategy reported in [34], in
which we only achieve the localised optimum of the trade-
off between computation and storage in the cloud.

Next, we assume that the scientific application be
deployed in Amazon cloud using EC2 service6 ($0.1 per CPU
instance hour) for computation and S3 service ($0.15 per
gigabyte per month) for storage. To utilise our T-CSB
algorithm, we assume that generated datasets can be
transferred to another two cloud services for storage with the
prices: Storage Service One: $0.1 per gigabyte per month for
storage and $0.01 per gigabyte for outbound7 data transfer and
Storage Service Two: $0.05 per gigabyte per month for
storage and $0.06 per gigabyte for outbound data transfer. We
only use the above prices as representatives, as many cloud
service providers (e.g. GoGrid 8, Rackspace 9, Haylix 10, and
Amazon Glacier11 etc.) have similar pricing models.

5 ECU (EC2 Computing Unit) is the basic unit defined by Amazon to measure
the compute resources. Please refer to the following address for details.
http://aws.amazon.com/ec2/instance-types/
6 Amazon cloud service offers different CPU instances with different prices,
where using expensive CPU instances with higher performance would reduce
computation time. There exists a trade-off of time and cost [14] which is
different to the trade-off of computation and storage described in this paper,
hence is out of this paper’s scope.
7 At present, most cloud storage services only charge on the outbound data
transfer, while inbound data transfer is usually free.
8 GoGrid: http://www.gogrid.com/
9 Rackspace: http://www.rackspace.com/
10 Haylix: http://www.haylix.com/
11 Amazon Glacier: http://aws.amazon.com/glacier/

http://aws.amazon.com/ec2/instance-types/
http://www.gogrid.com/
http://www.rackspace.com/
http://www.haylix.com/
http://aws.amazon.com/glacier/

Figure 4. Cost-effectiveness comparison of different storage strategies

TABLE I. DETAILED DATASETS STORAGE STATUS OF DIFFERENT STORAGE STRATEGIES

 Strategies

 DDGs

Cost Rate based
Strategy

Local-
Optimisation

based Strategy

T-CSB algorithm with Two Additional
Storage Services

T-CSB algorithm with
Additional

Haylix Storage

T-CSB algorithm with
Additional

Glacier Storage

Deleted Stored
(S3) Deleted Stored

(S3) Deleted Stored
(S3)

Stored
(Service1)

Stored
(Service2) Deleted Stored

(S3)
Stored

(Haylix) Deleted Stored
(S3)

Stored
(Glacier)

100 datasets 64 36 57 43 43 0 29 28 57 38 5 5 0 95
200 datasets 133 67 118 82 93 0 38 69 118 72 10 29 0 171
300 datasets 203 97 176 124 149 0 69 82 173 110 17 29 0 271
500 datasets 334 166 286 214 223 0 98 179 286 187 27 50 0 450
700 datasets 466 234 406 294 324 0 150 226 404 262 34 67 0 633

1000 datasets 644 356 577 423 428 0 182 390 573 379 48 103 0 897

To further demonstrate the practicality of our T-CSB
algorithm, we adapt real cloud service providers’ pricing
models and use them as the additional cloud storage service
respectively in the simulation. Specifically,

(1) Amazon Glacier. Glacier is an extremely low-cost
storage service that provides secure and durable storage for
data archiving and backup. The pricing model for using Glacier
is: $0.01 per gigabyte per month for storage, $0.02 per gigabyte
for outbound data transfer from Glacier.

(2) Haylix cloud storage. Haylix is a leading Australian
IaaS cloud service provider, who provides reliable cloud
storage with fast access for local Australian users. As data
transfer over the Internet is often expensive and relatively slow
in general, some cloud service providers (e.g. Amazon)
cooperate with network Infrastructure providers (e.g. Equinix)
to provider dedicate connection service (e.g. AWS Direct
Connect) for boosting the data transfer speed in and out of the
cloud. Hence, we use the pricing models of Haylix and AWS
Direct Connect in our simulation, i.e. $0.12 per gigabyte per
month for storage in Haylix, $0.046 per gigabyte for outbound
data transfer from Haylix.

B. Simulation Results
The simulations are conducted on randomly generated

DDG with datasets of random sizes, generation times and
usage frequencies. In the experiments, we randomly generate
large DDGs with different number of datasets, each with a
random size from 1GB to 100GB. The generation time is also
random, from 10 hours to 100 hours. The usage frequency is
again random, from once per month to once per year. In order
to run our T-CSB algorithm, we partition the large DDGs into
linear DDG segments with 50 datasets12, on which we apply
the T-CSB algorithm.

Based on the above settings, we run evaluation strategies on
DDGs with different number of datasets and calculate the cost
rates (i.e. average daily cost) of storing the datasets. Figure 4
shows the increases of the daily cost of different strategies as
the number of datasets grows in the DDG, and Table I
illustrates detailed datasets storage status of the DDGs under
different storage strategies.

From Figure 4, we can see that the “store none dataset” and
“store all datasets” strategies are very cost ineffective. By
investigating the trade-off between computation and storage,

12 The impact of DDG partition on cost-effectiveness and efficiency of storage
strategy has been investigated in our prior work [34].

the “cost rate based strategy” and “local-optimisation based
strategy” can smartly choose to store or delete the datasets in
one cloud storage service (as shown in Table I), thereby largely
reducing the cost rate for storing datasets with one cloud
service provider. If more cloud storage services are available,
as shown in Figure 4, the simulation of “T-CSB algorithm with
two additional storage services” demonstrates further reduction
of the cost rate by taking bandwidth cost into account. Table I
shows the number of datasets transferred and smartly stored in
two representative cloud storage services with our T-CSB
algorithm. Furthermore, how much cost can be reduced
depends on the price of available storage services. In the
simulation of “T-CSB algorithm with additional Haylix
storage”, although some datasets are transferred to Haylix for
storage (as shown in Table I), the cost rate only drops slightly
comparing to the “local-optimisation based strategy” (as shown
in Figure 4). This is because the price of Haylix is not much
cheaper than Amazon S3 cloud. In contrast, in the simulation of
“T-CSB algorithm with additional Glacier storage”, our T-CSB
algorithm significantly reduces the cost rate (as shown in
Figure 4) by transferring datasets to Glacier13 for storage (as
shown in Table I).

From the above simulation, we can see that for different
price models of cloud storage services, our T-CSB algorithm
can always store the datasets accordingly, even in the situation
that the price difference is minor (e.g. the simulation of “T-
CSB algorithm with additional Haylix storage”). Hence our T-
CSB algorithm is very effective in reducing the cost (i.e. cost-
effective) for storing generated application datasets with
multiple service providers in the cloud.

VI. RELATED WORK
Today, research on scientific applications in the cloud

becomes popular [17] [18] [25] [30]. Comparing to the
traditional computing systems, e.g. cluster, grid and HPC
systems, a cloud computing system has cost benefits in various
aspects [4]. With Amazon clouds’ cost model and BOINC
volunteer computing middleware, the work in [19] analyses the
cost benefits of cloud computing versus grid computing. The
work by Deelman et al. [11] also applies Amazon clouds’ cost
model and demonstrates that cloud computing offers a cost-
effective way to deploy scientific applications. The work
mentioned above mainly focuses on the comparison of cloud
computing systems and the traditional distributed computing
paradigms, which shows that applications running in the cloud
have cost benefits. However, our work focuses on reducing
cost for running application in the cloud.

This paper is mainly inspired by the research in the area of
scheduling, in which much work focuses on reducing various
“costs” for applications [29], systems [31] or data centre
networks [10]. The difference is that scheduling aims at
improving resource utilisation whilst our work investigates the
trade-off among computation, storage and bandwidth costs,
which is a unique issue in cloud computing due to the pay-as-
you-go model. Another important foundation for our work is
the research on data provenance. Due to the importance of data

13 Data stored in Glacier usually need 3 to 5 hours to become available when
users retrieve them. As analysed in Section II.B, users’ delay tolerance is out
of the scope of this paper. Hence we only focus on the cost in the simulation.

provenance in scientific applications, many works about
recording data provenance of the system have been done [9].
Recently, research on data provenance in cloud computing
systems has also appeared [22]. More specifically, Osterweil et
al. [24] present how to generate a data derivation graph for
execution of a scientific workflow. Foster et al. [12] propose
the concept of virtual data in the Chimera system, which
enables the automatic regeneration of datasets when needed.
Our DDG is based on data provenance, which depicts the
dependency relationships of all the generated datasets in the
cloud. With DDG, we can manage where the datasets are
stored or how to regenerate them.

As the trade-off among computation, storage and
bandwidth is an important issue in the cloud, much research
has already embarked on this issue to a certain extent. First,
plenty of research has been done with regard to the trade-off
between computation and storage. The Nectar system [15] is
designed for automatic management of data and computation in
data centres, where obsolete datasets are deleted and
regenerated whenever reused in order to improve resource
utilisation. In [11], Deelman et al. present that storing some
popular intermediate data can save the cost in comparison to
always regenerating them from the input data. In [2], Adams et
al. propose a model to represent the trade-off of computation
cost and storage cost. In [33], the authors propose the CTT-SP
algorithm that can find the best trade-off between computation
and storage in the cloud, based on which a highly cost-effective
and practical strategy is developed for storing datasets with one
cloud service provider [34]. However, the above work did not
consider bandwidth cost into the trade-off model. In [6], Baliga
et al. investigate the trade-off among computation, storage and
bandwidth in the infrastructure level of cloud systems, where
reducing energy consumption is the main research goal. In [3],
Agarwala et al. transform application data to certain formats
and store them with different cloud services in order to reduce
storage cost in the cloud, but data dependency and the option of
data regeneration are not considered in their work. In this paper,
we propose the T-CSB algorithm which can find the best trade-
off among computation, storage and bandwidth costs for
storing datasets of linear DDG in the cloud. This algorithm can
be utilised for cost-effectively storing generated application
datasets with multiple service providers in the cloud.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have investigated the unique features of

storing large volume of generated scientific datasets with
multiple cloud service providers in the cloud. Towards
achieving the cost-effectiveness, we have proposed a T-CSB
(Trade-off among Computation, Storage and Bandwidth)
algorithm to find the minimum cost storage strategy for
datasets of linear DDG, which also represents the best trade-off
among three key factors (computation, storage and bandwidth)
for the cost of data storage in the cloud. This algorithm can be
utilised for cost-effectively storing generated application
datasets with multiple service providers in the cloud. General
simulations indicate that our T-CSB algorithm is very effective
in reducing cost for cloud storage.

In our current work, we assume that the storage of one
cloud service provider have a unified price. However, in the

real world, the price of cloud storage is different according to
different usages. In the future, we will incorporate more
complex pricing models in our datasets storage cost model.
Furthermore, methods for forecasting dataset usage frequency
can be further studied, with which our T-CSB algorithm can be
adapted to different types of applications more easily.

ACKNOWLEDGMENT
The research work reported here is partly supported by

Australian Research Council under DP110101340 and
LP130100324, Shanghai Knowledge Service Platform Project
No. ZF1213. We are also grateful for the discussions on Finite
Element Modelling application with Dr. S. Xu from Faculty of
Engineering and Industrial Sciences, Swinburne University of
Technology.

REFERENCES
[1] "Amazon Cloud Services", http://aws.amazon.com/.
[2] I. Adams, D. D. E. Long, E. L. Miller, S. Pasupathy, and M. W. Storer,

"Maximizing Efficiency by Trading Storage for Computation," in
Workshop on Hot Topics in Cloud Computing (HotCloud'09), pp. 1-5,
2009.

[3] S. Agarwala, D. Jadav, and L. A. Bathen, "iCostale: Adaptive Cost
Optimization for Storage Clouds," in IEEE International Conference on
Cloud Computing (CLOUD2011), , pp. 436-443, 2011.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "A View of
Cloud Computing," Communication of the ACM, vol. 53, pp. 50-58, 2010.

[5] M. S. Avila-Garcia, X. Xiong, A. E. Trefethen, C. Crichton, A. Tsui, and
P. Hu, "A Virtual Research Environment for Cancer Imaging Research,"
in 7th International Conference on E-Science (e-Science2011), pp. 1-6,
2011.

[6] J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, "Green cloud
computing: Balancing energy in processing, storage, and transport,"
Proceedings of the IEEE, vol. 99, pp. 149-167, 2011.

[7] R. Bose and J. Frew, "Lineage Retrieval for Scientific Data Processing: A
Survey," ACM Computing Surveys, vol. 37, pp. 1-28, 2005.

[8] A. Burton and A. Treloar, "Publish My Data: A Composition of Services
from ANDS and ARCS," in 5th International Conference on E-Science (e-
Science'09),, pp. 164-170, 2009.

[9] P. Chen, B. Plale, and M. S. Aktas, "Temporal representation for scientific
data provenance," in 8th International Conference on E-Science (e-
Science2012), pp. 1-8, 2012.

[10] Y. Cui, H. Wang, and X. Cheng, "Channel Allocation in Wireless Data
Center Networks," in IEEE INFOCOM 2011 pp. 1395-1403, 2011.

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The Cost of
Doing Science on the Cloud: the Montage Example," in ACM/IEEE
Conference on Supercomputing (SC'08), pp. 1-12, 2008.

[12] I. Foster, J. Vockler, M. Wilde, and Z. Yong, "Chimera: A Virtual Data
System for Representing, Querying, and Automating Data Derivation," in
14th International Conference on Scientific and Statistical Database
Management, (SSDBM'02), pp. 37-46, 2002.

[13] I. Foster, Z. Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid
Computing 360-Degree Compared," in Grid Computing Environments
Workshop (GCE'08), pp. 1-10, 2008.

[14] S. K. Garg, R. Buyya, and H. J. Siegel, "Time and Cost Trade-Off
Management for Scheduling Parallel Applications on Utility Grids,"
Future Generation Computer Systems, vol. 26, pp. 1344-1355, 2010.

[15] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
"Nectar: Automatic Management of Data and Computation in
Datacenters," in 9th Symposium on Operating Systems Design and
Implementation (OSDI'2010), pp. 1-14, 2010.

[16] X. Huang, Z. Luo, and B. Yan, "Cyberinfrastructure and e-Science
Application Practices in Chinese Academy of Sciences," in 7th
International Conference on E-Science (e-Science2011), pp. 348-354,
2011.

[17] M. Humphrey, N. Beekwilder, J. L. Goodall, and M. B. Ercan,
"Calibration of watershed models using cloud computing," in 8th
International Conference on E-Science (e-Science2012), pp. 1-8, 2012.

[18] G. Juve, E. Deelman, K. Vahi, and G. Mehta, "Data Sharing Options for
Scientific Workflows on Amazon EC2," in ACM/IEEE Conference on
Supercomputing (SC'10), pp. 1-9, 2010.

[19] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, "Cost-
Benefit Analysis of Cloud Computing versus Desktop Grids," in 23th
IEEE International Parallel & Distributed Processing Symposium
(IPDPS'09), pp. 1-12, 2009.

[20] X. Liu, Z. Ni, D. Yuan, Y. Jiang, Z. Wu, J. Chen, and Y. Yang, "A Novel
Statistical Time-Series Pattern based Interval Forecasting Strategy for
Activity Durations in Workflow Systems," Journal of Systems and
Software vol. 84, pp. 354-376, 2011.

[21] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, and
E. A. Lee, "Scientific Workflow Management and the Kepler System,"
Concurrency and Computation: Practice and Experience, pp. 1039–1065,
2005.

[22] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, "Provenance for the
Cloud," in 8th USENIX Conference on File and Storage Technology
(FAST'10), pp. 197-210, 2010.

[23] H. Nguyen and D. Abramson, "WorkWays: Interactive Workflow-based
Science Gateways," in 8th International Conference on E-Science (e-
Science2012), pp. 1-8, 2012.

[24] L. J. Osterweil, L. A. Clarke, A. M. Ellison, R. Podorozhny, A. Wise, E.
Boose, and J. Hadley, "Experience in Using A Process Language to
Define Scientific Workflow and Generate Dataset Provenance," in 16th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 319-329, 2008.

[25] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li, B.
Zhang, Y. Ryan, S. Ekanayake, T.-L. Wu, A. Hughes, and G. Fox,
"Hybrid Cloud and Cluster Computing Paradigms for Life Science
Applications " Journal of BMC Bioinformatics, vol. 11, 2010.

[26] X. Su, Y. Ma, H. Yang, X. Chang, K. Nan, J. Xu, and K. Ning, "An Open-
Source Collaboration Environment for Metagenomics Research," in 7th
International Conference on E-Science (e-Science2011), pp. 7-14, 2011.

[27] A. S. Szalay and J. Gray, "Science in an Exponential World," Nature, vol.
440, pp. 23-24, 2006.

[28] S. Toor, M. Sabesan, S. Holmgren, and T. Risch, "A Scalable Architecture
for e-Science Data Management," in 7th International Conference on E-
Science (e-Science2011), pp. 210-217, 2011.

[29] D. Warneke and O. Kao, "Exploiting Dynamic Resource Allocation for
Efficient Parallel Data Processing in the Cloud," IEEE Transactions on
Parallel and Distributed Systems, vol. 22, pp. 985-997, 2011.

[30] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, "An Algorithm in
SwinDeW-C for Scheduling Transaction-Intensive Cost-Constrained
Cloud Workflows," in 4th International Conference on E-Science (e-
Science2008), pp. 374-375, 2008.

[31] L. Young Choon and A. Y. Zomaya, "Energy Conscious Scheduling for
Distributed Computing Systems under Different Operating Conditions,"
IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 1374-
1381, 2011.

[32] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A Cost-Effective Strategy for
Intermediate Data Storage in Scientific Cloud Workflows," in 24th IEEE
International Parallel & Distributed Processing Symposium (IPDPS'10),
pp. 1-12, 2010.

[33] D. Yuan, Y. Yang, X. Liu, and J. Chen, "On-demand Minimum Cost
Benchmarking for Intermediate Datasets Storage in Scientific Cloud
Workflow Systems," Journal of Parallel and Distributed Computing, vol.
71, pp. 316-332, 2011.

[34] D. Yuan, Y. Yang, X. Liu, W. Li, L. Cui, M. Xu, and J. Chen, "A Highly
Practical Approach towards Achieving Minimum Datasets Storage Cost in
the Cloud," IEEE Transactions on Parallel and Distributed Systems, vol.
24, pp. 1234-1244, 2012.

[35] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen, "A Data Dependency
Based Strategy for Intermediate Data Storage in Scientific Cloud
Workflow Systems," Concurrency and Computation: Practice and
Experience, vol. 24, pp. 956-976, 2012.

[36] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
"Improving MapReduce Performance in Heterogeneous Environments," in
8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI'2008), pp. 29-42, 2008.

http://aws.amazon.com/

	I. Introduction
	II. Motivating Examples and Problems Analysis
	A. Motivating Examples
	B. Problems Analysis

	III. Scientific Datasets Storage in Clouds
	A. Application Data and DDG
	B. Datasets Storage Cost Model

	IV. Cost-Effective Datasets Storage Algorithm in Multiple Cloud Services
	A. Overview of T-CSB (Trade-off among Computation, Storage and Bandwidth) Algorithm
	B. Detailed Steps in the T-CSB Algorithm

	V. Evaluation
	A. Simulation Setup and Evaluation Method
	B. Simulation Results

	VI. Related Work
	VII. Conclusions and Future Work
	Acknowledgment
	References

