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Abstract—The proliferation of cloud computing allows scientists 
to deploy computation and data intensive applications without 
infrastructure investment, where large generated datasets can be 
flexibly stored with multiple cloud service providers. Due to the 
pay-as-you-go model, the total application cost largely depends 
on the usage of computation, storage and bandwidth resources, 
and cutting the cost of cloud-based data storage becomes a big 
concern for deploying scientific applications in the cloud. In this 
paper, we propose a novel algorithm that can automatically 
decide whether a generated dataset should be 1) stored in the 
current cloud, 2) deleted and re-generated whenever reused or 3) 
transferred to cheaper cloud service for storage. The algorithm 
finds the trade-off among computation, storage and bandwidth 
costs in the cloud, which are three key factors for the cost of 
storing generated application datasets with multiple cloud service 
providers. Simulations conducted with popular cloud service 
providers’ pricing models show that the proposed algorithm is 
highly cost-effective to be utilised in the cloud. 1 

Keywords-cloud computing; scientific application; datasets 
storage 

I.  INTRODUCTION  
With the rapid growth of e-science, domain scientists 

increasingly rely on computer systems to conduct their research 
[5] [16] [23] [26], e.g. cluster, grid and HPC (High 
Performance Computing) systems. In recent years, cloud 
computing is emerging as the latest parallel and distributed 
computing paradigm which provides redundant, inexpensive 
and scalable resources on demand to user requirements [13]. 
The emergence of cloud computing offers a new way for 
deploying scientific applications. IaaS (Infrastructure as a 
Service) is a very popular way to deliver services in the cloud 
[1], where the heterogeneity of computing systems [36] of one 
service provider can be well shielded by virtualisation 
technology. Hence, scientists can deploy their applications in 
unified cloud resources such as computing, storage and 
network services without any infrastructure investment, and 
only pay for their usage according to the pay-as-you-go model.  

However, along with the convenience brought by using on-
demand cloud services, users have to pay for the resources used, 
which can be substantial. Especially, nowadays scientific 
applications are getting more and more data intensive [11] [21] 
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[28], where generated datasets are often gigabytes, terabytes, or 
even petabytes in size. As reported by Szalay et al. in [27], 
science is in an exponential world and the amount of 
application data will double every year over the next decade 
and future. These generated data contain important 
intermediate or final results of computation, which may need to 
be stored for reuse [7] and sharing [8].  Hence, cutting the cost 
of cloud-based data storage in a pay-as-you-go fashion 
becomes a big concern for deploying scientific applications in 
the cloud.  

In the cloud, users have multiple options to cope with the 
large generated application data. As excessive storage and 
processing power can be obtained on-demand from commercial 
service providers, users can either store all data in the cloud 
and pay for the storage cost, or delete them and pay for the 
computation cost to regenerate them whenever they are reused. 
Furthermore, as cloud computing is such a fast growing market, 
more and more different cloud service providers with cost-
effective storage solutions appear [3]. This phenomenon allows 
users to transfer the generated application data to cheaper 
services for storage with paying for the incurred bandwidth 
cost. Hence, in the cloud, users can flexibly store their data 
with different storage strategies which also lead to different 
total costs correspondingly. In light of this, a good storage 
strategy should be able to balance the usage of computation, 
storage and bandwidth resources in the cloud, which are three 
key factors for the cost of storing generated application data. 
Existing work [33] only investigates the trade-off between 
computation and storage within one cloud service provider, 
where bandwidth cost has not been considered.  

In this paper, by investigating the trade-off among 
computation, storage and bandwidth, we propose a novel cost-
effective algorithm for storing the generated application 
datasets in the cloud. We utilise a Data Dependency Graph 
(DDG) to represent generated application data in the cloud [33] 
and design the novel T-CSB algorithm which can calculate the 
Trade-off among Computation, Storage and Bandwidth (T-
CSB) in the cloud. The T-CSB algorithm can be utilised to 
cost-effectively store the generated application data with 
multiple service providers in the cloud.  

The remainder of this paper is organised as follows. Section 
II presents a motivating example of scientific application and 
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analyses the research problems. Section III introduces some 
preliminaries and data storage cost model in the cloud. Section 
IV presents our novel T-CSB algorithm in detail. Section V 
describes our experimental results for evaluation. Section VI 
discusses the related work. Section VII summarises our 
conclusions and points out future work. 

II. MOTIVATING EXAMPLES AND PROBLEMS ANALYSIS  
In this Section, we introduce a real world application in 

Structural Mechanics which generates large intermediate data 
with various sizes, and analyse the problems of storing them in 
the cloud.  

A. Motivating Examples 
Finite Element Modelling (FEM) is an important and 

widely used method for impact test of objects, where classic 
applications are split Hopkinson pressure bar test, gas gun 
impact test, drop hammer test, etc. In the Faculty of 
Engineering and Industrial Sciences, Swinburne University of 
Technology, researchers of the Structural Mechanics Research 
Group conduct FEM simulations of Aluminium Honeycombs 
under dynamic out-of-plane compression to analyse the impact 
behaviour of the material and structure. In their research, 
numerical simulations of the dynamic out-of-plane 
compression are conducted with ANSYS/LS-DYNA software 
which is a powerful FEM tool for modelling non-linear 
mechanics of solids, fluids, gases and their interaction. The 
FEM application has four major steps as shown in Figure 1. 

 
Figure 1. Overview of FEM application 

From Figure 1, at beginning, based on the researchers’ 
design, the object with special structure (i.e. the honeycombs 
structure in this example) for FEM analysis is generated in the 
Object Modelling step. Then, researchers specify more detailed 
parameters of the object model in the FEM Initiation step, e.g. 
material of the object and elements for modelling. Based on the 
well-defined model, researchers can run different FEM 
simulations according to requirements of the experiment, e.g. 
speed of the compression and time interval for recording data. 
This is the most time consuming and important step in the FEM 
application, which also generates the largest volume of data as 
simulation results. Depending on the speed of the compression, 
the computation time of this step varies from several hours to 
around one hundred hours, while depending on the time 
interval for recording data, the size of generated data varies 
from gigabytes to hundreds of gigabytes. These data are very 

important for researchers, based on which the simulation 
results can be demonstrated in various ways for analysis.  

As researchers often need to run different simulations, large 
volume of the generated results data are accumulated as time 
goes on. However, due to the capacity limit of the local storage 
system, researchers can only store the recently generated 
results. Whenever they want reuse or re-analyse the results of 
pervious simulations, they have to re-run the simulation from 
beginning to regenerate the data, which is not efficient. Hence 
researchers consider of migrating the FEM application to the 
cloud where the storage bottleneck can be avoided in a cost-
effective way. 

B. Problems Analysis 
The storage limitation would not be the case in the cloud, 

because the commercial cloud service providers can offer 
virtually unlimited storage resources. But, due to the pay-as-
you-go model in the cloud, cost is one of the most important 
factors that users would care about. In order to make good use 
of the redundant cloud resources from different service 
providers, we need to design a smart algorithm to greatly 
reduce the cost of storing large generated application data in 
the cloud. However, designing this algorithm is not an easy job, 
where the following two issues need to be carefully 
investigated. 

1) All the resources in the cloud carry certain costs. No 
matter how we dealt with the generated data (e.g. storing, re-
generating or transferring); we have to pay for the 
corresponding resources used. Different data vary in size, and 
have different re-generation costs and usage frequencies, e.g. 
data generated in the FEM application in Figure 1; therefore, it 
is most likely not cost effective to store all the generated data in 
the cloud. Intuitively, some heuristics can be applied for 
reducing the cost of storing the generated data. For example, 
we can delete the less frequently used data which have large 
size but small re-generation cost, and re-generate them 
whenever reused. Also, for the less frequently used data which 
have large size and huge re-generation cost, we can transfer 
them to cheaper places for storage, e.g. to other cloud storage 
systems, or even out of cloud to users’ own spare storage 
devices. Hence, there is a trade-off among computation, storage 
and bandwidth in the cloud which can minimise the cost of 
storing the generated application data. However, finding this 
trade-off is not easy, as data in the cloud have dependencies (i.e. 
complex generation relationships) and this is also the key issue 
for cost-effective data storage in the cloud. 

2) The best trade-off among computation, storage and 
bandwidth may not be the best strategy for storing the 
generated application data. When the deleted data are needed, 
the regeneration not only imposes computation cost, but also 
causes a time delay, e.g. Step 3: FEM Simulation in Figure 1 
sometimes takes several days to finish. It is also the same for 
data being transferred to other places are needed to be 
transferred back. Depending on the different time constraints of 
applications [20], users’ tolerance of this delay may differ 
dramatically. Therefore, for some applications, users’ 
preferences on storage are needed to be investigated. However, 
for some application, users do not concern about waiting for 
them to become available, hence they may delete or transfer the 



rarely used data to reduce the overall application cost. 
Therefore, this issue is not the focus of this paper. 

In this paper, we focus on the first research issue only. 
We design an algorithm which can find the trade-off among 
computation, storage and bandwidth in the cloud, and thus be 
utilised for cost-effective data storage with multiple cloud 
service providers..  

III. SCIENTIFIC DATASETS STORAGE IN CLOUDS  
In this section, we first present some preliminaries 

including a classification of application data in the cloud and 
the important concept of DDG (Data Dependency Graph). 
Then we present the data storage cost model which represents 
the trade-off among computation, storage and bandwidth in the 
cloud. 

A. Application Data and DDG 
In general, there are two types of data stored in the cloud, 

original data and generated data. 

1) Original data are the data uploaded by users, for 
example, in scientific applications they are usually the raw data 
collected from the devices in the experiments. For these data, 
users need to decide whether they should be stored or deleted 
since they cannot be regenerated by the system once deleted. 
As cost of storing original data is fixed, they are not 
considered in the scope of this paper. 

2) Generated data are the data newly produced in the cloud 
while the applications run. They are the intermediate or final 
computation results of the applications, which can be reused in 
the future. For these data, their storage can be decided by the 
system since they can be regenerated if their provenance is 
known. Hence, our work is only applied to the generated data 
in the cloud that can automatically decide the storage status of 
generated datasets in applications. In this paper, we refer 
generated data as dataset(s). 

DDG (Data Dependency Graph) [33] is a directed acyclic 
graph (DAG) which is based on data provenance in scientific 
applications. All the datasets once generated in the cloud, 
whether stored or deleted, their references are recorded in DDG. 
In other words, it depicts the generation relationships of 
datasets, with which the deleted datasets can be regenerated 
from their nearest existing preceding datasets. Figure 2 depicts 
a simple DDG, where every node in the graph denotes a 
dataset. We denote dataset di in DDG as DDGdi ∈ . Furthermore, 
d1 pointing to d2 means that d1 is used to generate d2; d2 
pointing to d3 and d5 means that d2 is used to generate d3 and d5 
based on different operations; d4 and d6 pointing to d7 means 
that d4 and d6 are used together to generate d7. 

d1 d2

d3

d8d7

d6

d4

d5

 
Figure 2. A simple Data Dependency Graph (DDG) 

To better describe the relationships of datasets in DDG, we 
define a symbol: → , which denotes that two datasets have a 

generation relationship, where di → dj means that di is a 
predecessor dataset of dj in DDG. For example, in Figure 2’s 
DDG, we have d1 → d2, d1 → d4, d5 → d7, d1 → d7, etc. 
Furthermore, →  is transitive, i.e. 

      kikjjikji ddddddddd →⇒→∧→⇔→→ . 
 

B. Datasets Storage Cost Model 
In a commercial cloud computing environment, service 

providers have their cost models to charge users. In general, 
there are three basic types of resources in the cloud: 
computation, storage and bandwidth. Popular cloud services 
providers’ cost models are based on these types of resources. 
For example, Amazon cloud services’ prices are as follows2: 

$0.10 per CPU instance hour for the computation 
resources; 

$0.15 per Gigabyte per month for the storage resources; 
$0.12 per Gigabyte bandwidth resources for data 

downloaded from Amazon via Internet.  

In this paper, we facilitate our datasets storage cost model 
in the cloud as follows:  

Cost = Computation + Storage + Bandwidth  

where the total cost of the datasets storage, Cost, is the sum 
of Computation, which is the total cost of computation 
resources used to regenerate datasets, Storage, which is the 
total cost of storage resources used to store the datasets, and 
Bandwidth, which is the total cost of bandwidth resources used 
for transferring datasets.  

To utilise the datasets storage cost model, we assume that 
the application be deployed in one cloud service3, denoted as c1, 
and there be m different cloud services, denoted as {c1, c2, … 
cm}, for storing the generated datasets in the cloud. For a 
dataset in DDG {d1, d2, … dn}, denoted as DDGdi ∈ , we define 
its attributes as follows: <xi, yi,s , zi,s , fi, vi, provSeti, CostRi>4, 
where 

• xi denotes the generation cost of dataset di from its direct 
predecessors in the cloud.  

• yi,s denotes the cost per time unit (i.e. storage cost rate) of 
storing dataset di in cloud service cs. Especially, yi,1 
denotes the cost rate of storing di in the cloud service 
where the application is deployed.  

                                                           
2 The prices may fluctuate from time to time according to market factors.  As 
this paper’s focus is cost-effectiveness, to simplify the problem, we assume 
that the same types of computation resources are used for generatio and 
regeneration of datasets, and the same types of storage resources are used for 
storing datasets.  
3 We assume that the application only run with one cloud service due to the 
following two reasons: 1) Some applications contain dedicate commercial 
software, e.g. the ANSYS/LS-DYNA software in the FEM application 
introduced in Section II. Due to the license restriction, these kinds of software 
cannot be freely installed in different service providers’ resources in the cloud. 
2) Migrating applications, especially scientific applications to a cloud service 
is a complex process. In order to take advantage of on-demand cloud services, 
software in the applications usually need second development to facilitate the 
dynamic scale up and down in the cloud.  
4 These atrributes were introduced in our prior work [33], based on which we 
incorperate bandwidth cost of data transfer into the original definitions. If 
needed, please refer to our prior work [33] for more detailed description of 
these attributes. 



• zi,s denotes the transfer cost of dataset di from service 
provider cs to c1 , especially, zi,1 =0. 

• fi is a flag which denotes the storage status of dataset di. 
Specifically, , {1,2,... }if s s m= ∈  represents that dataset 
di is stored in cloud service cs, and fi=0 represents that 
dataset di is deleted.  

• vi denotes the usage frequency, which indicates how often 
di is used.  

• provSeti denotes the set of stored provenance that are 
needed when regenerating dataset di. If we want to 
regenerate di, we have to find its direct predecessors, 
which may also be deleted or stored in other cloud 
services. provSeti is the set of the nearest stored 
predecessors of di in the DDG.  Hence the generation cost 
of di is  

,{ }

{ }

( )
j i

j i j k i

i j sj d provSet

k ik d provSet d d d

genCost d z

x x
∈

∈ ∧ → →

=

+ +

∑

∑
              (1) 

As we can see from formula (1), the regeneration cost of 
di is two folds: 1) the bandwidth cost of transferring di's 
stored provenance datasets to c1 which is the cloud service 
that the application is deployed, and 2) the computation 
cost of regenerating di in c1.  

• CostRi is di’s cost rate, which means the average cost per 
time unit of dataset di in the cloud. The value of CostRi 
depends on the storage status of di, where  

, ,

( ) , 0 / /
, / /
i i i i

i
i s i i s i i s

genCost d v f d is deleted
CostR

z v y f s d is stored in c
∗ =

=  ∗ + =
  (2) 

Hence, the total cost rate of storing a DDG is the sum of 
CostR of all the datasets in it, which is ∑ ∈DDGd ii

RCost . We 
further define the storage strategy of a DDG as F, which 
denotes the storage status of datasets in the DDG. Formally, 

{ }i iF f d DDG= ∈ , which is the set of every dataset's attribute fi 
indicating the cloud service in which di is stored. We denote the 
cost rate of storing a DDG with the storage strategy F as SCR 
(Sum of Cost Rate), where 

  ( )
FDDGd ii

RCostSCR ∑ ∈=                                        (3) 

Based on the definition above, different storage strategies 
lead to different cost rates for the application. This cost rate, i.e. 
cost per time unit, represents the cost-effectiveness of storage 
strategies, which incorporates the trade-off among computation, 
storage and bandwidth costs in the cloud. In next section, we 
will present the design of our T-CSB algorithm for cost-
effective datasets storage based on this trade-off model.  

IV. COST-EFFECTIVE DATASETS STORAGE ALGORITHM IN 
MULTIPLE CLOUD SERVICES 

In the section, we first briefly introduce the philosophy of 
the novel T-CSB algorithm, and then describe the detailed steps 
of the algorithm in order to find the trade-off among 
computation, storage and bandwidth costs for storing generated 
datasets with multiple cloud services.  

A. Overview of T-CSB (Trade-off among Computation, 
Storage and Bandwidth) Algorithm  
In this paper, we design the T-CSB algorithm that can find 

the minimum cost storage strategy for storing datasets of linear 
DDG with multiple cloud storage services. Linear DDG means 
a DDG with no branches, where each dataset in the DDG only 
has one direct predecessor and successor except the first and 
last datasets. The minimum cost storage strategy found by the 
algorithm represents the best trade-off among computation, 
storage and bandwidth costs in the cloud. Given a general DDG, 
the T-CSB algorithm can be utilised in every linear segment of 
the DDG respectively and thus find the trade-off for storing 
datasets with multiple cloud services. 

The basic idea of the T-CSB algorithm is to construct a 
Cost Transitive Graph (CTG) based on the linear DDG. First, 
for every dataset in the DDG, we create a set of vertices in the 
CTG representing different storage services where the dataset 
can be stored. Next, we design smart rules for adding edges to 
the CTG and setting weights to them. Based on rules, we 
guarantee that in the CTG, the paths from the start vertex to the 
end vertex have a one-to-one mapping to the storage strategies 
of the DDG, and the length of every path equals to the cost rate 
of the corresponding storage strategy in the cloud. Then we can 
use the well-known Dijkstra shortest path algorithm (or 
Dijkstra algorithm for short) to find the shortest path in the 
CTG, which in fact represents both the minimum cost storage 
strategy for datasets of the DDG with multiple storage services, 
and the best trade-off among computation, storage and 
bandwidth costs in the cloud.  

B. Detailed Steps in the T-CSB Algorithm  
Given a linear DDG with datasets {d1, d2 … dn} and m 

cloud services {c1, c2 … cm} for storage. The T-CSB algorithm 
has the following four steps: 

Step 1: Create vertices for the CTG. First, we create the 
start and end vertices, denoted as verstart and verend. Then, for 
every DDGdi ∈ , we create a vertex set { }miiii verververV ,2,1, ...,= , 
where m is the number of cloud services in which di can be 
stored. Hence veri,s represents dataset di storing in cloud service 
cs. 

Step 2: Add directed edges to the CTG. For every 
CTGver si ∈, , we add out-edges to all vertices in the set of 

{ }, , ',i s i s i i i iver ver CTG d d DDG d d′ ′ ′ ′ ′∈ ∧ ∈ ∧ → . In other words, 
for any two vertices CTGverver sisi ∈′′,, ,  belonging to different 
datasets’ vertex sets (i.e. ii VV ′≠ ), we create an edge between 
them. Formally,  

, , , ,, , ,i s i s i i i i i s i sver ver CTG d d DDG d d e ver ver′ ′ ′ ′ ′ ′∈ ∧ ∈ ∧ → ⇒∃ < > . 

Especially, for startver , we add out-edges to all other vertices in 
the CTG, and for endver , we add in-edges from all other vertices 
in the CTG. 

Step 3: Set weights to edges in the CTG. The reason we 
call the graph Cost Transitive Graph is because the weights of 
its edges are composed of the cost rates of datasets. For an edge 

, ,,i s i se ver ver ′ ′< > , we denote its weight as , ,,i s i sver verω ′ ′< > , 
which is defined as the sum of cost rates of di' and the datasets 



between di and di', supposing that only di and d i' are stored with 
corresponding cloud services and the rest of datasets between di 
and d i' are all deleted. Formally: 

( ) ( )

, ,

{ }

, , { }

,

( )
k k i k i

k k i k i

i s i s

i kd d DDG d d d

i s i i s k kd d DDG d d d

ver ver
CostR CostR

z v y genCost d v

ω

′

′

′ ′

′ ∈ ∧ → →

′ ′ ′ ′ ′ ∈ ∧ → →

< >

= +

= ∗ + + ∗

∑

∑
 (4) 

Since we are discussing linear DDG, for the datasets between di 
and di', di is the only dataset in their provSets. Hence we can 
further derive: 

( )
( )( )

, , , ,

,{ } { }

,

*
k k i k i h h i h k

i s i s i s i i s

i s k h kd d DDG d d d d d DDG d d d

ver ver z v y

z x x v

ω

′
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∈ ∧ → → ∈ ∧ → →

< > = ∗ +

+ + +∑ ∑
 

Step 4: Find the shortest path of the CTG. From the above 
construction steps, we can clearly see that the CTG is an 
acyclic oriented graph. Hence we can use the Dijkstra 
algorithm to find the shortest path from startver  to endver . The 
Dijkstra algorithm is a classic greedy algorithm to find the 
shortest path in graph theory. We denote the shortest path from 

startver  to endver as >< endstart ververP ,min .  

For the given linear DDG with datasets {d1, d2 … dn} and m 
cloud storage services {c1, c2 … cm}, the length of 

>< endstart ververP ,min  of its CTG is the minimum cost rate for 
storing the datasets in the DDG, and the corresponding storage 
strategy is represented by the vertices that >< endstart ververP ,min  
traverses. 

In Figure 3, we demonstrate a simple example of 
constructing CTG for a DDG with two datasets {d1, d2} and m 
different cloud services for the storage.  

d1 d2DDG

CTG

Data dependency:

Cost edge:

V1 V2

...

...

...

...

verstart verend

ver1,1

ver1,s

ver1,m

ver2,1

ver2,s

ver2,m

 
Figure 3. Example of constructing CTG for DDG 

Next, we analyses the efficiency of our T-CSB algorithm. 
As introduced above, for a linear DDG with n datasets and m 
cloud services for storage, we need to create mn vertices in the 
CTG. Hence the number of edges in the CTG is in the 
magnitude of m2n2. Since the time complexity of calculating 
the longest edge’s weight is O(n2), the worst case time 
complexity for creating the CTG is O(m2n4). Next, the time 
complexity of the Dijkstra algorithm is O(m2n2). Hence the 
total time complexity of the T-CSB algorithm is O(m2n4).  

V. EVALUATION 
In this section, we demonstrate simulation results 

conducted on Amazon cloud. First, we introduce our 
simulation setup and evaluation method. Then, we present 
general simulation results and evaluate the cost effectiveness of 
our algorithm.  

A. Simulation Setup and Evaluation Method 
As Amazon is a well-known and widely recognised cloud 

service provider, we conduct experiments on Amazon cloud 
using on-demand services for simulation. We implement our 
algorithm in Java programming language and run the algorithm 
on the virtualised EC2 instance with the Amazon Linux Image 
to evaluate its cost effectiveness and efficiency. We choose the 
standard small instance (m1.small) to conduct the experiments, 
because it is the basic type of EC2 CPU instances, which has a 
stable performance of one ECU5.  

To evaluate the cost effectiveness of our T-CSB algorithm 
for multiple cloud storage services, we compare it with 
different representative storage strategies for one cloud service 
provider, which are as follows: 
• Store all datasets strategy, in which all generated datasets 

of the application are stored in the cloud. 
• Store none datasets strategy, in which all generated 

datasets of the application are deleted after being used.  
• Cost rate based strategy reported in [32] [35], in which we 

store datasets in the cloud by comparing their own 
generation cost rate and storage cost rate.  

• Local-optimisation based strategy reported in [34], in 
which we only achieve the localised optimum of the trade-
off between computation and storage in the cloud.  

Next, we assume that the scientific application be 
deployed in Amazon cloud using EC2 service6 ($0.1 per CPU 
instance hour) for computation and S3 service ($0.15 per 
gigabyte per month) for storage. To utilise our T-CSB 
algorithm, we assume that generated datasets can be 
transferred to another two cloud services for storage with the 
prices: Storage Service One: $0.1 per gigabyte per month for 
storage and $0.01 per gigabyte for outbound7 data transfer and 
Storage Service Two: $0.05 per gigabyte per month for 
storage and $0.06 per gigabyte for outbound data transfer. We 
only use the above prices as representatives, as many cloud 
service providers (e.g. GoGrid 8, Rackspace 9, Haylix 10, and 
Amazon Glacier11 etc.) have similar pricing models.  

                                                           
5 ECU (EC2 Computing Unit) is the basic unit defined by Amazon to measure 
the compute resources. Please refer to the following address for details. 
http://aws.amazon.com/ec2/instance-types/ 
6 Amazon cloud service offers different CPU instances with different prices, 
where using expensive CPU instances with higher performance would reduce 
computation time. There exists a trade-off of time and cost [14] which is 
different to the trade-off of computation and storage described in this paper, 
hence is out of this paper’s scope. 
7 At present, most cloud storage services only charge on the outbound data 
transfer, while inbound data transfer is usually free.   
8 GoGrid: http://www.gogrid.com/ 
9 Rackspace: http://www.rackspace.com/ 
10 Haylix: http://www.haylix.com/ 
11 Amazon Glacier: http://aws.amazon.com/glacier/ 

http://aws.amazon.com/ec2/instance-types/
http://www.gogrid.com/
http://www.rackspace.com/
http://www.haylix.com/
http://aws.amazon.com/glacier/


 
Figure 4. Cost-effectiveness comparison of different storage strategies 

TABLE I.  DETAILED DATASETS STORAGE STATUS OF DIFFERENT STORAGE STRATEGIES 

          Strategies 
 
  DDGs 

Cost Rate based 
Strategy 

Local-
Optimisation 

based Strategy 

T-CSB algorithm with Two Additional 
Storage Services 

T-CSB algorithm with 
Additional 

Haylix Storage 

T-CSB algorithm with 
Additional 

Glacier Storage 

Deleted Stored 
(S3) Deleted Stored 

(S3) Deleted Stored 
(S3) 

Stored 
(Service1) 

Stored 
(Service2) Deleted Stored 

(S3) 
Stored 

(Haylix) Deleted Stored 
(S3) 

Stored 
(Glacier) 

100 datasets 64 36 57 43 43 0 29 28 57 38 5 5 0 95 
200 datasets 133 67 118 82 93 0 38 69 118 72 10 29 0 171 
300 datasets 203 97 176 124 149 0 69 82 173 110 17 29 0 271 
500 datasets 334 166 286 214 223 0 98 179 286 187 27 50 0 450 
700 datasets 466 234 406 294 324 0 150 226 404 262 34 67 0 633 

1000 datasets 644 356 577 423 428 0 182 390 573 379 48 103 0 897 
 

  

To further demonstrate the practicality of our T-CSB 
algorithm, we adapt real cloud service providers’ pricing 
models and use them as the additional cloud storage service 
respectively in the simulation. Specifically, 

(1) Amazon Glacier. Glacier is an extremely low-cost 
storage service that provides secure and durable storage for 
data archiving and backup. The pricing model for using Glacier 
is: $0.01 per gigabyte per month for storage, $0.02 per gigabyte 
for outbound data transfer from Glacier. 

(2) Haylix cloud storage. Haylix is a leading Australian 
IaaS cloud service provider, who provides reliable cloud 
storage with fast access for local Australian users. As data 
transfer over the Internet is often expensive and relatively slow 
in general, some cloud service providers (e.g. Amazon) 
cooperate with network Infrastructure providers (e.g. Equinix) 
to provider dedicate connection service (e.g. AWS Direct 
Connect) for boosting the data transfer speed in and out of the 
cloud. Hence, we use the pricing models of Haylix and AWS 
Direct Connect in our simulation, i.e. $0.12 per gigabyte per 
month for storage in Haylix, $0.046 per gigabyte for outbound 
data transfer from Haylix. 

B. Simulation Results  
The simulations are conducted on randomly generated 

DDG with datasets of random sizes, generation times and 
usage frequencies. In the experiments, we randomly generate 
large DDGs with different number of datasets, each with a 
random size from 1GB to 100GB. The generation time is also 
random, from 10 hours to 100 hours. The usage frequency is 
again random, from once per month to once per year. In order 
to run our T-CSB algorithm, we partition the large DDGs into 
linear DDG segments with 50 datasets12, on which we apply 
the T-CSB algorithm. 

Based on the above settings, we run evaluation strategies on 
DDGs with different number of datasets and calculate the cost 
rates (i.e. average daily cost) of storing the datasets. Figure 4 
shows the increases of the daily cost of different strategies as 
the number of datasets grows in the DDG, and Table I 
illustrates detailed datasets storage status of the DDGs under 
different storage strategies.  

From Figure 4, we can see that the “store none dataset” and 
“store all datasets” strategies are very cost ineffective. By 
investigating the trade-off between computation and storage, 

                                                           
12 The impact of DDG partition on cost-effectiveness and efficiency of storage 
strategy has been investigated in our prior work [34].  



the “cost rate based strategy” and “local-optimisation based 
strategy” can smartly choose to store or delete the datasets in 
one cloud storage service (as shown in Table I), thereby largely 
reducing the cost rate for storing datasets with one cloud 
service provider. If more cloud storage services are available, 
as shown in Figure 4, the simulation of “T-CSB algorithm with 
two additional storage services” demonstrates further reduction 
of the cost rate by taking bandwidth cost into account. Table I 
shows the number of datasets transferred and smartly stored in 
two representative cloud storage services with our T-CSB 
algorithm. Furthermore, how much cost can be reduced 
depends on the price of available storage services. In the 
simulation of “T-CSB algorithm with additional Haylix 
storage”, although some datasets are transferred to Haylix for 
storage (as shown in Table I), the cost rate only drops slightly 
comparing to the “local-optimisation based strategy” (as shown 
in Figure 4). This is because the price of Haylix is not much 
cheaper than Amazon S3 cloud. In contrast, in the simulation of 
“T-CSB algorithm with additional Glacier storage”, our T-CSB 
algorithm significantly reduces the cost rate (as shown in 
Figure 4) by transferring datasets to Glacier13 for storage (as 
shown in Table I). 

From the above simulation, we can see that for different 
price models of cloud storage services, our T-CSB algorithm 
can always store the datasets accordingly, even in the situation 
that the price difference is minor (e.g. the simulation of “T-
CSB algorithm with additional Haylix storage”). Hence our T-
CSB algorithm is very effective in reducing the cost (i.e. cost-
effective) for storing generated application datasets with 
multiple service providers in the cloud. 

VI. RELATED WORK 
Today, research on scientific applications in the cloud 

becomes popular [17] [18] [25] [30]. Comparing to the 
traditional computing systems, e.g. cluster, grid and HPC 
systems, a cloud computing system has cost benefits in various 
aspects [4]. With Amazon clouds’ cost model and BOINC 
volunteer computing middleware, the work in [19] analyses the 
cost benefits of cloud computing versus grid computing. The 
work by Deelman et al. [11] also applies Amazon clouds’ cost 
model and demonstrates that cloud computing offers a cost-
effective way to deploy scientific applications. The work 
mentioned above mainly focuses on the comparison of cloud 
computing systems and the traditional distributed computing 
paradigms, which shows that applications running in the cloud 
have cost benefits. However, our work focuses on reducing 
cost for running application in the cloud.  

This paper is mainly inspired by the research in the area of 
scheduling, in which much work focuses on reducing various 
“costs” for applications [29], systems [31] or data centre 
networks [10]. The difference is that scheduling aims at 
improving resource utilisation whilst our work investigates the 
trade-off among computation, storage and bandwidth costs, 
which is a unique issue in cloud computing due to the pay-as-
you-go model. Another important foundation for our work is 
the research on data provenance. Due to the importance of data 

                                                           
13 Data stored in Glacier usually need 3 to 5 hours to become available when 
users retrieve them. As analysed in Section II.B, users’ delay tolerance is out 
of the scope of this paper. Hence we only focus on the cost in the simulation. 

provenance in scientific applications, many works about 
recording data provenance of the system have been done [9]. 
Recently, research on data provenance in cloud computing 
systems has also appeared [22]. More specifically, Osterweil et 
al. [24] present how to generate a data derivation graph for 
execution of a scientific workflow. Foster et al. [12] propose 
the concept of virtual data in the Chimera system, which 
enables the automatic regeneration of datasets when needed. 
Our DDG is based on data provenance, which depicts the 
dependency relationships of all the generated datasets in the 
cloud. With DDG, we can manage where the datasets are 
stored or how to regenerate them. 

As the trade-off among computation, storage and 
bandwidth is an important issue in the cloud, much research 
has already embarked on this issue to a certain extent. First, 
plenty of research has been done with regard to the trade-off 
between computation and storage. The Nectar system [15] is 
designed for automatic management of data and computation in 
data centres, where obsolete datasets are deleted and 
regenerated whenever reused in order to improve resource 
utilisation. In [11], Deelman et al. present that storing some 
popular intermediate data can save the cost in comparison to 
always regenerating them from the input data. In [2], Adams et 
al. propose a model to represent the trade-off of computation 
cost and storage cost. In [33], the authors propose the CTT-SP 
algorithm that can find the best trade-off between computation 
and storage in the cloud, based on which a highly cost-effective 
and practical strategy is developed for storing datasets with one 
cloud service provider [34]. However, the above work did not 
consider bandwidth cost into the trade-off model. In [6], Baliga 
et al. investigate the trade-off among computation, storage and 
bandwidth in the infrastructure level of cloud systems, where 
reducing energy consumption is the main research goal. In [3], 
Agarwala et al. transform application data to certain formats 
and store them with different cloud services in order to reduce 
storage cost in the cloud, but data dependency and the option of 
data regeneration are not considered in their work. In this paper, 
we propose the T-CSB algorithm which can find the best trade-
off among computation, storage and bandwidth costs for 
storing datasets of linear DDG in the cloud. This algorithm can 
be utilised for cost-effectively storing generated application 
datasets with multiple service providers in the cloud.  

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we have investigated the unique features of 

storing large volume of generated scientific datasets with 
multiple cloud service providers in the cloud. Towards 
achieving the cost-effectiveness, we have proposed a T-CSB 
(Trade-off among Computation, Storage and Bandwidth) 
algorithm to find the minimum cost storage strategy for 
datasets of linear DDG, which also represents the best trade-off 
among three key factors (computation, storage and bandwidth) 
for the cost of data storage in the cloud.  This algorithm can be 
utilised for cost-effectively storing generated application 
datasets with multiple service providers in the cloud. General 
simulations indicate that our T-CSB algorithm is very effective 
in reducing cost for cloud storage. 

In our current work, we assume that the storage of one 
cloud service provider have a unified price. However, in the 



real world, the price of cloud storage is different according to 
different usages. In the future, we will incorporate more 
complex pricing models in our datasets storage cost model. 
Furthermore, methods for forecasting dataset usage frequency 
can be further studied, with which our T-CSB algorithm can be 
adapted to different types of applications more easily. 

ACKNOWLEDGMENT 
The research work reported here is partly supported by 

Australian Research Council under DP110101340 and 
LP130100324, Shanghai Knowledge Service Platform Project 
No. ZF1213. We are also grateful for the discussions on Finite 
Element Modelling application with Dr. S. Xu from Faculty of 
Engineering and Industrial Sciences, Swinburne University of 
Technology. 

REFERENCES 
[1] "Amazon Cloud Services", http://aws.amazon.com/. 
[2] I. Adams, D. D. E. Long, E. L. Miller, S. Pasupathy, and M. W. Storer, 

"Maximizing Efficiency by Trading Storage for Computation," in 
Workshop on Hot Topics in Cloud Computing (HotCloud'09), pp. 1-5, 
2009. 

[3] S. Agarwala, D. Jadav, and L. A. Bathen, "iCostale: Adaptive Cost 
Optimization for Storage Clouds," in IEEE International Conference on 
Cloud Computing (CLOUD2011), , pp. 436-443, 2011. 

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, 
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "A View of 
Cloud Computing," Communication of the ACM, vol. 53, pp. 50-58, 2010. 

[5] M. S. Avila-Garcia, X. Xiong, A. E. Trefethen, C. Crichton, A. Tsui, and 
P. Hu, "A Virtual Research Environment for Cancer Imaging Research," 
in 7th International Conference on E-Science (e-Science2011), pp. 1-6, 
2011. 

[6] J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, "Green cloud 
computing: Balancing energy in processing, storage, and transport," 
Proceedings of the IEEE, vol. 99, pp. 149-167, 2011. 

[7] R. Bose and J. Frew, "Lineage Retrieval for Scientific Data Processing: A 
Survey," ACM Computing Surveys, vol. 37, pp. 1-28, 2005. 

[8] A. Burton and A. Treloar, "Publish My Data: A Composition of Services 
from ANDS and ARCS," in 5th International Conference on E-Science (e-
Science'09),, pp. 164-170, 2009. 

[9] P. Chen, B. Plale, and M. S. Aktas, "Temporal representation for scientific 
data provenance," in 8th International Conference on E-Science (e-
Science2012), pp. 1-8, 2012. 

[10] Y. Cui, H. Wang, and X. Cheng, "Channel Allocation in Wireless Data 
Center Networks," in IEEE INFOCOM 2011 pp. 1395-1403, 2011. 

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The Cost of 
Doing Science on the Cloud: the Montage Example," in ACM/IEEE 
Conference on Supercomputing (SC'08), pp. 1-12, 2008. 

[12] I. Foster, J. Vockler, M. Wilde, and Z. Yong, "Chimera: A Virtual Data 
System for Representing, Querying, and Automating Data Derivation," in 
14th International Conference on Scientific and Statistical Database 
Management, (SSDBM'02), pp. 37-46, 2002. 

[13] I. Foster, Z. Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid 
Computing 360-Degree Compared," in Grid Computing Environments 
Workshop (GCE'08), pp. 1-10, 2008. 

[14] S. K. Garg, R. Buyya, and H. J. Siegel, "Time and Cost Trade-Off 
Management for Scheduling Parallel Applications on Utility Grids," 
Future Generation Computer Systems, vol. 26, pp. 1344-1355, 2010. 

[15] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang, 
"Nectar: Automatic Management of Data and Computation in 
Datacenters," in 9th Symposium on Operating Systems Design and 
Implementation (OSDI'2010), pp. 1-14, 2010. 

[16] X. Huang, Z. Luo, and B. Yan, "Cyberinfrastructure and e-Science 
Application Practices in Chinese Academy of Sciences," in 7th 
International Conference on E-Science (e-Science2011), pp. 348-354, 
2011. 

[17] M. Humphrey, N. Beekwilder, J. L. Goodall, and M. B. Ercan, 
"Calibration of watershed models using cloud computing," in 8th 
International Conference on E-Science (e-Science2012), pp. 1-8, 2012. 

[18] G. Juve, E. Deelman, K. Vahi, and G. Mehta, "Data Sharing Options for 
Scientific Workflows on Amazon EC2," in ACM/IEEE Conference on 
Supercomputing (SC'10), pp. 1-9, 2010. 

[19] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, "Cost-
Benefit Analysis of Cloud Computing versus Desktop Grids," in 23th 
IEEE International  Parallel & Distributed Processing Symposium 
(IPDPS'09), pp. 1-12, 2009. 

[20] X. Liu, Z. Ni, D. Yuan, Y. Jiang, Z. Wu, J. Chen, and Y. Yang, "A Novel 
Statistical Time-Series Pattern based Interval Forecasting Strategy for 
Activity Durations in Workflow Systems," Journal of Systems and 
Software vol. 84, pp. 354-376, 2011. 

[21] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, and 
E. A. Lee, "Scientific Workflow Management and the Kepler System," 
Concurrency and Computation: Practice and Experience, pp. 1039–1065, 
2005. 

[22] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, "Provenance for the 
Cloud," in 8th USENIX Conference on File and Storage Technology 
(FAST'10), pp. 197-210, 2010. 

[23] H. Nguyen and D. Abramson, "WorkWays: Interactive Workflow-based 
Science Gateways," in 8th International Conference on E-Science (e-
Science2012), pp. 1-8, 2012. 

[24] L. J. Osterweil, L. A. Clarke, A. M. Ellison, R. Podorozhny, A. Wise, E. 
Boose, and J. Hadley, "Experience in Using A Process Language to 
Define Scientific Workflow and Generate Dataset Provenance," in 16th 
ACM SIGSOFT International Symposium on Foundations of Software 
Engineering, pp. 319-329, 2008. 

[25] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S.-H. Bae, H. Li, B. 
Zhang, Y. Ryan, S. Ekanayake, T.-L. Wu, A. Hughes, and G. Fox, 
"Hybrid Cloud and Cluster Computing Paradigms for Life Science 
Applications " Journal of BMC Bioinformatics, vol. 11, 2010. 

[26] X. Su, Y. Ma, H. Yang, X. Chang, K. Nan, J. Xu, and K. Ning, "An Open-
Source Collaboration Environment for Metagenomics Research," in 7th 
International Conference on E-Science (e-Science2011), pp. 7-14, 2011. 

[27] A. S. Szalay and J. Gray, "Science in an Exponential World," Nature, vol. 
440, pp. 23-24, 2006. 

[28] S. Toor, M. Sabesan, S. Holmgren, and T. Risch, "A Scalable Architecture 
for e-Science Data Management," in 7th International Conference on E-
Science (e-Science2011), pp. 210-217, 2011. 

[29] D. Warneke and O. Kao, "Exploiting Dynamic Resource Allocation for 
Efficient Parallel Data Processing in the Cloud," IEEE Transactions on 
Parallel and Distributed Systems, vol. 22, pp. 985-997, 2011. 

[30] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, "An Algorithm in 
SwinDeW-C for Scheduling Transaction-Intensive Cost-Constrained 
Cloud Workflows," in 4th International Conference on E-Science (e-
Science2008), pp. 374-375, 2008. 

[31] L. Young Choon and A. Y. Zomaya, "Energy Conscious Scheduling for 
Distributed Computing Systems under Different Operating Conditions," 
IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 1374-
1381, 2011. 

[32] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A Cost-Effective Strategy for 
Intermediate Data Storage in Scientific Cloud Workflows," in 24th IEEE 
International Parallel & Distributed Processing Symposium (IPDPS'10), 
pp. 1-12, 2010. 

[33] D. Yuan, Y. Yang, X. Liu, and J. Chen, "On-demand Minimum Cost 
Benchmarking for Intermediate Datasets Storage in Scientific Cloud 
Workflow Systems," Journal of Parallel and Distributed Computing, vol. 
71, pp. 316-332, 2011. 

[34] D. Yuan, Y. Yang, X. Liu, W. Li, L. Cui, M. Xu, and J. Chen, "A Highly 
Practical Approach towards Achieving Minimum Datasets Storage Cost in 
the Cloud," IEEE Transactions on Parallel and Distributed Systems, vol. 
24, pp. 1234-1244, 2012. 

[35] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen, "A Data Dependency 
Based Strategy for Intermediate Data Storage in Scientific Cloud 
Workflow Systems," Concurrency and Computation: Practice and 
Experience, vol. 24, pp. 956-976, 2012. 

[36] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, 
"Improving MapReduce Performance in Heterogeneous Environments," in 
8th USENIX Symposium on Operating Systems Design and 
Implementation (OSDI'2008), pp. 29-42, 2008. 

http://aws.amazon.com/

	I.  Introduction
	II. Motivating Examples and Problems Analysis
	A. Motivating Examples
	B. Problems Analysis

	III. Scientific Datasets Storage in Clouds
	A. Application Data and DDG
	B. Datasets Storage Cost Model

	IV. Cost-Effective Datasets Storage Algorithm in Multiple Cloud Services
	A. Overview of T-CSB (Trade-off among Computation, Storage and Bandwidth) Algorithm
	B. Detailed Steps in the T-CSB Algorithm

	V. Evaluation
	A. Simulation Setup and Evaluation Method
	B. Simulation Results

	VI. Related Work
	VII. Conclusions and Future Work
	Acknowledgment
	References

