
White on Black:
A White-Box-Oriented Approach

for Selecting Black-Box-Generated Test Cases*

T. Y. Chen
School of Information Technology

Swinburne University of Technology
Hawthorn 3122, Australia

tychen@i t . swin. edu. au
S. E TangT

Department of Accountancy
The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
acsharon@inet .polyu. edu. hk

Abstract

Many useful test case construction methods that are
based on important aspects of the specifcation have been
proposed in the literature. A comprehensive test suite
thus obtained is often very large and yet is non-redundant
with respect to the aspects ident$ed from the specif cation.
This paper addresses the problem of selecting a subset
of test cases from such a test suite. We propose the use
of white box criteria to select test cases from the initial
black-box-generated test suite. We illustrate our ideas with
examples and demonstrate the viability and benefits of our
approach by means of a case study.

Keywords Category-partition method, classification-tree
method, partition testing, specification-based testing, test
case selection

1. Introduction

It would be ideal to test a program with its entire
input domain (that is, with all the possible inputs). With

*This work is supported in part by a Strategic Research Grant (project
no. 7000958) from City University of Hong Kong, and in part by a grant
(project no. CityUll18/99E) from the Research Grants Council of the
Hong Kong Special Administrative Region, China.

+Contact author. Also with the School of Information Technology,
Swinburne University of Technology, Australia.

P. L. Poon
Department of Accountancy

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

acplpoon@inet .polyu. edu. hk

Y. T. Yu
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Kowloon Tong, Hong Kong

csytyu@cityu.edu.hk

this approach, in theory, any program fault that exists
in the program is guaranteed to he detected. In reality,
however, this “exhaustive” approach is difficult or almost
impossible to apply because of thc huge number of test
cases involved and the various resource constraints imposed
on the software tester. Thus, a more practical approach is
to construct a test suite (a subset of the input domain) for
testing [4, 1 I] .

Generally speaking, test-suite construction methods
belong to either the white box (or code-based) or the black
box (or spec$cation-based) approach. The former refers
to the testing that is based on the information derived from
the sourcc code of the program, whereas the latter makes
use of information from the specification. The two methods
have their own merits and limitations; they are generally
considered complementary to each other [2 ,3, 141.

Regardless of how the test suite is constructed, it has to
satisfy certain requirements, some of which are frequently
conflicting. For example, the test suite constructed should
be as comprehensive as possible so that it is effective in
detecting all possible faults in the software, and it should be
as small as possible in order to control the cost of the testing.
A very comprehensive test suite containing too many test
cases can be too costly to be practical, whereas a small hut
ineffective test suite may lead to many undetected faults that
severely compromise the quality of the software.

In the black box approach, the category-partition method
(CPM) [I , 131 and thc classifcation-tree method (CTM)
[5,6, IO, 151 are particularly useful, as they are easy to

275
0-7695-0825-1/00 $10.00 0 2000 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

understand and use, and can be applied to both formal and
informal specifications [7, 121. However, experience shows
that in many situations the size of a comprehensive test suite
derived from these methods is very large. There is a need to
select a subset from this test suite for use, particularly when
it is impractical to execute all the test cases in the original
comprehensive test suite.

In this paper, we address the problem of selecting test
cases from a comprehensive test suite TS that is derived
from a specification-based criterion CB (we shall use CB to
denote aBlack box or specification-based criterion, and Cw
to denote a White box or code-based criterion). We note
that, unless TS contains test cases that are redundant with
respect to CB, it cannot be reduced without jeopardising
its completeness [4]. Therefore, a theoretically sound
methodology of selecting a subset from TS has to make
use of information from a source different from the original
criterion CB. We propose that the specification-based
criterion should be supplemented by white box information
in the selection of test cases from TS for use. We
shall illustrate our ideas and demonstrate the viability and
benefits of our approach by means of examples and a case
study. In our examples, the test suite TS is constructed
by using the classification-tree method (CTM) [5, 6,10,15],
but it should he clear in the context that our approach
applies equally well to test suites constructed by using other
specification-based methods such as the category-partition
method (CPM) [l , 131.

The rest of this paper is structured as follows. Section 2
provides, by means of an example, an overview of
CTM for constructing a test suite from the specification.
Section 3 describes our approach. Section 4 presents a case
study showing the viability and benefits of our approach.
Section 5 summarises and concludes this paper.

2. Background

Basically, both CPM and CTM make use of the approach
of partition testing [8,9,14,16]. In this approach, the
input domain of a program is divided into subsets, called
subdomains, according to a partitioning scheme. In
CTM, the tester identifies important relevant aspects of
the specification for testing. Each aspect, called a
classiJication, corresponds to a partitioning scheme, and
the corresponding subdomains are called classes associated
with the classification. The idea is that all elements
within a class are essentially the same with respect to
the relevant aspect for the purpose of testing. For a
given specification, usually many aspects (corresponding
to different partitioning schemes) may be identified. Test
cases are then formed by combining classes associated with
different aspects, so that each combination forms one single
test case. A different terminology is used in CPM, and a

comparison of CPM and CTM can be found in [7] .
In this paper, we shall illustrate our approach by

an example in which the test suite is constructed using
CTM. However, we stress again that our approach
is also applicable to test suites constructed using other
specification-bascd methods such as CPM.

Example 1 (rewards)
Consider a specification rewards of a program which
accepts the details of a credit card purchase transaction
and, based on the credit balance information, determines
the number of reward points if the transaction is approved.
Cardholders can use the reward points to claim various
benefits. Other details such as the way of computing the
reward points and benefit claims need not concern us here.

Suppose that the classijications and their associated
classes have been identified as in Table 1. For ease of
reference, we abbreviate the classifications by letters in
upper case and the classes by corresponding letters in lower
case with numeric subscripts. For example, M and m2 refer
to the classification “Class of Ticket” and its associated
class “Business”, respectively.

Once all the relevant aspects and classes have been
identified, test cases can be formed by selecting and
combining classes from different classifications. For
example, two test cases t c ~ and tc2 formed by this approach
are:

tc1 = { a4. b4, C I , dl, el, f i , gl, hz, i z , j l , kz, nl }
tc2 = { a4. b4, cz,dl , el,fz,gz, h3, i z , A , kl, 11,ml }

An exhaustive evaluation of all combinations of classes
produces a total of 221 184 (= 4’ x 2’ x 3 x 2’ x 3 x 24 x
3 x 2) test cases. However, many of these test cases
are in fact not useful because they contain incompatible
classes. These test cases are said to be illegitimate [5,
61. For example, since holders of corporate cards are not
further distinguished as principal or additional cardholders,
the two classes “Corporate” (c1) and “Principal” (d l) are
incompatible. Thus, the test case tcl above is illegitimate
because it contains the incompatible classes CI and dl . Test
cases that are not illegitimate are said to be legitimate.

In CTM, a classification tree is constructed which
organises classifications and classes at alternate levels. A
Combination table is then formed from which test cases
are defined [5,6,10, 151. In this example, only 1302 test
cases will be defined, and all the remaining combinations
are illegitimate. In this way, a significant amount (221 184 -
1302 = 219882 or 99.4%) of illegitimate test cases is then
eliminated right from the start of defining the test cases. For
more details, readers may refer to [6, lo].

Even so, some of the test cases defined through the
classification tree and the combination table may still
be illegitimate. For instance, a cardholder’s cumulative

276

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

balance can never exceed his/her credit limit. Thus, the test
case tc3 = (04, h4,cz,di, e l , fi ,gi , h3, iz,jz,kz,nl } is also
illegitimate as it contains the incompatible classes “Credit
Limit in HK$ = 40000” (fi) and “40000.00 < Cumulative
Balance in HK$ 5 80000.00” (h3). Such illegitimate test
cases have to he further identified and eliminated. In this
example, 432 test cases are then removed, resulting in a test
suite of 870 legitimate test cases.

3. Our approach

3.1. Motivation

Let us first recapitulate the essentials of Example 1. By
considering the specification, the tester identifies important
aspects (classifications) and their associated classes that
are relevant for the purpose of testing as in Table 1. By
organising the classifications and classes in the form of a
tree and then further eliminating the illegitimate test cases,
a test suite TS containing all the 870 legitimate test cases is
constructed. We shall refer to TS as the initial test suite.

The initial test suite TS satisfies the criterion CB
of covering all compatible combinations of the classes
identified from the specification. According to this criterion
CB, there is no redundant test case in TS. Thus, all test cases
in TS should he selected for testing should resources allow.

In practice, software testers have to take into account of
the need to control testing costs. Resource limitations often
dictate that only a subset TS’ of the entire test suite TS can
he used when the latter is large. In such situations, there is
a need for some methodical guidelines as to how test cases
should he selected from TS for use. Doing so in an ad hoc
manner is obviously undesirable since the effect of such a
process is unknown and therefore the resulting subset TS’
may be of unknown quality.

We note that conventional test reduction methods such
as those proposed in [4,11] are not applicable here, simply
because there is no redundancy in TS with respect to the
original criterion CB. A theoretically sound mcthodology of
selecting test cases from TS must bring in a different source
of information for this purpose.

We propose to use white box information to select test
cases from the black-box-generated initial test suite TS,
for the following reasons. Firstly, if any other black box
criterion is considered appropriate, i t could have already
been taken into account during the construction of TS.
Secondly, it is well known that white box testing should he
complcmentary to black box testing in providing valuable
additional information that the latter lacks [2,3,14].

In what follows, we shall illustrate how white box
information can be used for selecting test cases from
a black-box-generated test suite. Although we use the
information of the paths executed by the test cases for

illustration in our example, it should he clear that other
white box information may also he used in our approach.

3.2. Rationale

Consider the three test cases from Example 1 as follows:

~Cs={a4,b4,cirei,fi,gi,hi,iz,jl,kl,1i,mz}
t c 6 = { a 4 , b4, ci, e l , fi, gl, h l , iz, j1, h, 1 1 , m3}

These test cases contain different classes “First” (ml),

“Business” (m2) and “Economy” (m3), respectively, for
the classification “Class of Ticket” (M), but are otherwise
identical. That is, they contain exactly the same classes for
all other classifications. We refer to a pair of test cases (such
as tc4 and tcg) with this property as a matching pair. The
two classes in which a matching pair of test cases differ
form a pair of differentinring classes, or a differentiating
class pair. By definition, a pair of differentiating classes
must be associated with the same classification. For the
matching pair tc4 and tcg, the differentiating classes are ml
and mz. Similarly, the test cases tcg and tC6 also form a
matching pair with m2 and m3 as the differentiating classes.

With only the specification, there is no choice but to
regard a matching pair as different since they differ in one
aspect. However, the program may process a matching
pair similarly or differently, depending on the way of
implementation.

Consider Figure l(a) which shows part of one possible
implementation of the specification rewards in Example 1.
Clearly, if this code segment is the only part in the
implementation that handles the aspect “Class of Ticket”
(M) , the two test cases tc4 and tcg will execute the same path
which contains the line (55), while the paths corresponding
to tc5 and tC6 will differ. On the other hand, if the relevant
part of the implementation is as shown in Figure I(b), then
the paths executed by tc4, tcg and tc6 will all differ.

We note that in the second case (Figure l (b)) , all
the three test cases tc4, tcg and tC6 have to be selected
from the initial test suite TS, or else its effectiveness will
be compromised. This is apparent if we consider the
possibility that a fault might he present in line (78) hut not
in line (76). In this situation, omitting fcg (which includes
the class “Business”) might leave this fault undetected.
Similar reasons show that neither rc4 nor tC6 should be
omitted.

In contrast, in the first case (Figure l(a)), the
differentiating classes ml and m2 have been processed in
a similar way according to the implementation. Thus,
any fault revealed by inputs from class ml is likely to he
revealed by inputs from mz as well. Therefore, selecting
only tc4 (or tcg) from the initial test suite TS should not
affect its effectiveness. In other words, although the

211

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

-
Classifications

Status of Card File (A)

Card Status (B)
Type of Card (C)

Tvpe of Cardholder (D)
I Class of Card (E) II Diamond (el). Gold (e?) , Classic (e?) I

Corresponding Classes

File Not Exist (a i) , File Empty (4,
File Not Empty and Card Not Found (a3),

Card Number in File (u4)

Loss (bl), Expired (62) . Suspended (b3), Normal (64)

Corporate (cl), Personal (c2)

Principal (dl), Additional (dz)

Credit Limit in HK$ (F)
Country of Purchase (G)

Cumulative Balance in HK$ (H)

Current Purchase Amount in HK$ (1)
Cumulative Balance + Current Purchase Amount

- Credit Limit (J)
5 0 (jib > 0 (j z)

40000 (fi 1, 80000 (fd
Hong Kong (gl), Overseas (g2)

0.00 5 H 5 10000.00 (h i) ,
10000.00 < H 5 40000.00 (h ~) ,
40000.00 < H 5 80000.00 (h3)

< 0 (i l) , > 0 (i2)

Q p e of Goods (K)
Airline Company (L)
Class of Ticket (M)
Bonus Partner (N)

<51> if “City Airlines” then
<52> caculate extra rewards
<53> else
<54> if (“first-class ticket” or ‘
<55> calculate extra rewards
4 6 3 . else
<57> calculate normal rewards
<58> endif
<59> endif

Airline Tickets (k l) , Other Goods (k2)

City Airline (I I) , Other Airlines (I 2)

First (mi), Business (Q), Economy (m3)
Yes (n ~) , No (n2)

‘business-class ticket”) then

if “City Airlines” then
caculate extra rewards

else
begin case

case “first-class ticket”
calculate extra rewards

case “business-class ticket”
calculate extra rewards

case “economy-class ticket”
calculate normal rewards

end case
endif

Figure 1. Two possible partial implementations of rewards

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

matching pair tc4 and tcg are considered different from
the specification perspectivc, one of them seems to be
redundant with respect to the white box (more specifically,
same-path) criterion.

Notice that whether we should select only tc4 or tc5 from
TS cannot he judged from the specification alone, hut can
only he determined by considering white box information.
Clearly, the above argument applies to all matching pairs
with the same pair of differentiating classes. In Figure 1 (a) ,
for every matching pair with differentiating classes ml and
m2, we may safely select one of the two test cases and omit
the other with little effect on the efficacy of TS.

In short, we argue that the implementation provides
additional information that are supplementary to the
specification-based criteria based on which the initial test
suite TS is constructed. Such additional information helps
us to decide which test cases should be selected and which
could he omitted from the initial test suite TS that is
constructed solely from some specification-based criteria.

3.3. Automation via partial dynamic analysis

In Section 3.2, we have illustrated the use of white
box information by means of the “same-path” criterion,
that is, test cases are considered to be processed similarly
if they execute the same path. In principle, however,
other white box criteria may be used. More generally,
test cases that are considered to be processed similarly by
a white box criterion CW are said to he Cw-equivalent.
Two classes XI and xz of thc same classification X are
also said to he &-equivalent classes if all matching
pairs with differentiating classes XI and xz are themselves
Cw-equivalent.

For ease of reference, when the “same-path’’ criterion
is used, two test cases (respectively classes) that are
Cw-equivalent will be simply called a copath pair of test
cases (respectively classes).

Our approach, in general, involves the following
essential steps:

(1) Obtain an initial test suite TS which is comprehensive
and contains no redundant test case according to a
black box (specification-based) criterion CB.

(2) Choose a white box criterion CW (such as the same-
path criterion) to he used in step (3) .

(3) Select a classification (called candidate classification)
X and two of its classes (called candidate classes) XI

and x2 that are expected to be Cw-equivalent.

(4) Identify all matching pairs with differentiating classes
XI and x2 from the initial test suite TS.

(5) Determine from the implementation if all the identified
matching pairs are Cw-equivalent. If so, select
only one test case from evcry such matching pair.
Otherwisc, all of the test cases are retained.

(6) Repeat steps (3) to (5) if appropriate.

It is clear that, in principle, our approach can he
used without any tool. However, there may be many
classifications and classes, and the initial test suite TS may
he very large. Thus, carrying out the above steps manually
can be tedious and error-prone. This is particularly true for
step (5) , which determines if every identified matching pair
is Cw-equivalent. Automation would therefore relieve the
effort of the tester and render the approach more appealing
in practice.

One way of automating step (5) is to perform a dynamic
analysis. For example, suppose that we choose the
same-path criterion. Then there are tools, usually based on
instrumentation, that can be used to check if every matching
pair is copath. However, this dynamic analysis method
requires the execution of every matching pair of test cases.
This seems to have defeated the purpose of trying not to
execute all these test cases in the first place.

We propose to address this problem by using a partial
dynamic analysis method. With this method, we sample
some of the matching pairs and monitor their executions.
Basically, our heuristics is to extrapolate the sampling result
to judge whether or not every matching pair is indeed CW-
equivalent.

Let us use the specification rewards and thc same-path
criterion to illustrate our partial dynamic analysis method.

Refer to Table 1 and Figure I . Firstly, based on the
information derived from rewards, the tester selects a
pair of candidate classes X I and x2 of some candidate
classification X . By doing so, the tester considers it likely
that every matching pair with differentiating classes X I and
x2 is a copath pair. Examples of candidate classes are
“First” and “Business” of the candidate classification “Class
of Ticket”. These two classes are selected as candidate
classes because the specification rewards states that if the
air ticket is purchased from City Airline, then the cardholder
can earn extra rewards points (calculated in the same way)
no matter whether it is a first-class or a business-class ticket.
Note that the selection of candidate classes is based on the
tester’s own experience and expertise, and the tester’s guess
that the matching pairs are all copath may he right or wrong.

Secondly, we construct the set TSI containing all these
matching pairs. Thirdly, we sample a certain proportion r
of the matching pairs of test cases from TSI and monitor
their executions. Then either one of the following situations
occurs:

(a) every matching pair of test cases selected from TSI are
a copath pair; or

219

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

(b) some matching pair of test cases selccted from TS1 are
not copath pairs.

If situation (a) occurs, then we may judge that the
remaining matching pairs (those that have not yet been
executed) are also copath pairs. Therefore, one test case of
each of these remaining matching pairs will be considered
redundant (with respect to the samc-path criterion). Note
that since this is essentially a sampling process, there is a
chance of making the wrong assertion that every matching
pair is copath.

On the other hand, if situation (b) occurs, then none
of the test cases in the remaining matching pairs could be
safely omitted.

In the above, the value of r is determined by the tester
based on the available testing resources and the confidence
level required of not making the wrong assertion that every
matching pair is copath. Obviously, with a larger value of r,
the tester will be more confident of the judgment, but then
more matching pairs have to be sampled, giving a larger
resulting test suite. In other words, there is a trade-off
between the level of confidence and the size of the final test
suite.

4. Case study

In order to assess the practicality and gain more
experience with the issues involved in our approach, we
have performed a case study. In this case study, we would
like to shed light to the answers of the following questions:

(a) How applicable is our approach?

(b) How much savings of test cases are possible with our

In this section, we outline the way our case study
is performed, followed by a discussion of the results of
analysis. The above two questions will be discussed in
Sections 4.2.2 and 4.2.3, respectively, in light of the results
obtained.

approach?

4.1. The study

We use the specification rewards outlined in Example 1.
One of us, hereafter referred to as Person-A, performs
step (I) of our approach (Section 3.3). More specifically,
Person-A, who is familiar with CTM, identifies relevant
classifications and their associated classes as in Table 1,
organises them into a classification tree, defines all the 1302
test cases and identifies all the 870 legitimate test cases’as
described in Example 1. This forms the initial test suite TS
which is based only on the information of the specification.

Another researcher, whom we call Person-B, chooses
the same-path criterion for selecting test cases from TS.

Based on his expertise and experience, Person-B identifies
threc candidate classifications and corresponding candidate
classes. These candidate classes are marked with an asterisk
(*) in Tablc 2. For the purpose of control, Person-B also
identifies two pairs of classes that are expected not to be
Cw-equivalent. These classes are marked with a dagger (t)
in Table 2. In addition, Person-B identifies all matching
pairs from the initial test suite TS with the differentiating
classes shown in Table 2. This completes steps (2) to (4) of
our approach.

We stress that due care has been made to ensure
that both Person-A and Person-B have performed their
tasks independently of each other (except that Person-B
has selected, from the classification tree constructed by
Person-A, the five classifications and the corresponding
class pairs as shown in Table 2), and that no implementation
information is available to them.

Meanwhile, two groups of computer science undergrad-
uate students were asked to write programs individually
for implementing the specification rewards. Among them,
the first group of students were studying full-time at their
final year whereas the second group of students were
studying part-time at the year before their final year. These
students generally had one year working experience in the
computer field. As such, they may be considered as novice
programmers.

These students have been reminded of the need to well
test their own programs, but they have not been taught CTM
or CPM at the time when they wrote the programs. Nor
have they been told what test cases we will use to test their
programs.

To limit the scope of this case study, we picked
15 programs arbitrarily from the students’ programs for
analysis. These 15 programs were instrumented and tested
with the entire initial test suite containing all the 870
legitimate test cases defined by Person-A. All executions
were monitored and the executed program paths were
recorded.

4.2. Results and analysis

4.2.1. Copath and quasi-copath pairs. In Section 3.3,
we have defined a “copath pair” of test cases as those that
execute the same path. We now extend the definition of
the term “copath pair” to classes as follows. Two candidate
classes XI and x;! of the same classification X are said to
form a copathpair, if all matching pairs with differentiating
classes XI and x;! are themselves copath.

We also define another term for classes that satisfy a
slightly less restrictive condition as follows. Two candidate
classes y~ and yz of the same classification Y are said to
form a quasi-copath pair of level p% (where 0 < p <
IOO), if at least p% but not all of the matching pairs with

280

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

differentiating classes y~ and y2 arc themselves copath.
Intuitively, every matching pair of test cases are

Cw-equivalent if their differentiating classes form a copath
pair. In Section 3.2 we have argued that one test case from
each of these matching pairs may he safely omitted from the
initial test suite without affecting its cffectiveness.

If the differentiating classes form a quasi-copath pair of
level p % , then a matching pair picked randomly will have
at least probability p % of being Cw-equivalent. Given a
large value of p , a similar argument as in Section 3.2 leads
to a slightly weaker conclusion: Omitting one of the two
test cases of a matching pair whose differentiating classes
form a quasi-copath pair of level p% will have a high
chance (which depends on the level p) of preserving the
effectiveness of the initial test suite.

4.2.2. Applicability. Obviously, whether two candidate
classes form a copath or quasi-copath pair depends on
the implementation. Table 3 shows the number of
programs in which the selected candidate classes are
copath or quasi-copath of level 85%. It shows that the
candidate classes “First” (m l) and “Business” (m2) of the
classification “Class of Ticket” are copath in 6 out of the 15
programs, that is, in about 40% of the programs. These two
candidate classes are quasi-copath (of level 8.5%) in all the
remaining 9 programs.

For the first two candidate class pairs, they are copath
in 3 and 4 out of the 15 programs, respectively, that is, in
about 20% and 27% of the programs. These two pairs are
also quasi-copath (of level 85%) in 11 out of the remaining
12 programs and 9 out of the remaining 11 programs,
respectively. Clearly, the candidate class pairs selected by
Person-B without any knowledge of the implementations
are, as expected, very likely to contain matching pairs of
test cases that are copath.

Also, as expected by Person-B before looking at the
implementations, the pair of classes “Hong Kong” (si) and
“Overseas” (g2) are neither copath nor quasi-copath in all
the 15 programs under study. Moreover, the last pair of
classes, “First” (ml) and “Economy” (m3), are not copath
in any of the 15 programs, though they are quasi-copath of
level 85% in 5 of the 15 programs.

As argued in Sections 3.2 and 3.3, once the candidatc
classes are judged to he copath, it is expected that one test
case of each matching pair can he safely omitted without
loss of effectiveness. If our partial dynamic analysis
method is used, then evcn if the class pair is actually
quasi-copath hut not copath, chances arc still high that the
matching pairs sampled are all copath pairs. If so, then the
tester will judge that the class pair is copath and therefore
omit some test cases from the initial test suite. In the latter
case, although the tester has made an incorrect judgment,
the effectiveness of the initial test suite will probably he

only slightly reduced. This is because the proportion of
matching pairs being copath is high, so that only few, if
any, of the paths might he missed due to the omission of
some test cases.

4.2.3. Savings of test cases. Obviously, the actual amount
of savings of test cases depends on the number of matching
pairs for a given candidate class pair. For the candidate
class pairs selected by Person-B, the number of matching
pairs are shown in column 3 of Table 2. The last two
columns of this table show the number of test cases saved by
using the partial dynamic analysis method which samples
a proportion of r of all matching pairs of the candidate
classes. For the selected candidate classes and values of
I shown in Table 2, the amount of savings ranges from 13%
to 30%.

These preliminary results are rather encouraging,
showing that a substantial amount of savings of test cases
can be achieved using our approach. This case study
demonstrates that our approach is indeed applicable, since
the candidate classes selected by a person without any
knowledge of the implementation are indeed copath in
some of the programs, and are almost always quasi-copath
in other programs.

5. Conclusion

Many black box testing methods have been developed
to construct test suites systematically from the information
in the specification. Qpically, such a method generates
a test suite that is comprehensive, in the sense that it
covers all compatible combination of classes of inputs. This
ensures that all aspects identified from the specification to
he relevant for the purpose of testing will be sufficiently
well tested.

Although considered comprehensive with respect to the
black box criterion CB, a test suite TS thus generated usually
contains too many test cases to he practically tested in its
entirety. Rcsource considerations often dictate the need of
selecting only a subset of test cases from the initial test suite
7’s. This paper addresses the problem of how this should he
done without jeopardising the effectiveness of TS.

We have argued that the black-box-generated test suite
TS is non-redundant with respect to the specification-based
criterion CB. As such, conventional test reduction methods
such as those proposed in [4,11] are not applicable. A
theoretically sound methodology must bring in a different
source of information to guide the process of selecting test
cases from TS. We have proposed that this new source
of information should he a white-box-oriented one, as
it is well known that the implementation often provides
valuable additional information that supplements what the
specification lacks.

281

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

Classification Class pair

Type of Cardholder (D) *Principal (d l) , *Additional (d2)

Credit Limit in HK$ (F) *40000 (t i) , *80000 (A)
Class of Ticket (M) *First (ml), *Business (mz)

Country of Purchase (G) +Hang Kong (si), toverseas (gz)
Class of Ticket (M) +First (mi), +Economy (m3)

Table 3. Number of Droarams in which the class Dairs are coDath or auasi-coaath

No. of No. (percentage#) of
matching test cases saved when

pairs r=0.1 r = 0.2

288 259 (30%) 230 (26%)
216 194 (22%) 172 (20%)
144 129(15%) 115(13%)

432 - -
144 - -

Classification

Type of Cardholder (D)
Credit Limit in HK$ (F)

Class of Ticket (M)

Countrv of Purchase (G)

No. (percentage) No. (percentage) of
of programs' in programs' in which

which the the class pairs
class pairs are are quasi-copath

Class pair copath of level 85%

*Principal (d i) , *Additional (dz) 3 (20%) 11 (73%)
*40000 (fi), *80000 (f2) 4 (27%) 9 (60%)
*First (ml), *Business (m2) 6 (40%) 9 (60%)

tHong Kong (PI) , +Overseas (27) 0 (0%) 0 (0%)

282

I Class of Ticket (M) I tFirst (mi), tEconomy (m3) I 0 (0%) 5 (33%)

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

In this paper, we have illustrated how this approach can
be applied by means of an example. The example involves a
specification rewards that processes the approval of credit
card purchase transactions and the calculation of reward
points. We use the classification-tree method (CTM) to
construct the initial test suite TS, and then the “same-path”
criterion to guide the selection of test cases from TS. We
have demonstrated how the same-path criterion may help to
decide which test cases should be selected and which could
be safely omitted from TS.

Our approach involves six essential steps. One crucial
step is to determine if the pairs of candidate classes are
considered to be processed similarly according to the
chosen white box criterion CW. If so, these classes are
called Cw-equivalent, and one test case from each of the
corresponding matching pairs may be safely omitted with
no loss of effectiveness.

Determining whether two classes are Cw-equivalent can
be a tedious and error-prone task. We have proposed a
partial dynamic analysis method to aid the automation of
this task. Basically, the method samples the matching pairs
corresponding to the two candidate classes and the sampling
result is used to judge whether the candidate classes are
Cw-equivalent.

Finally, we have performed a case study using the
specification rewards. Although the candidate classes
have been identified without any knowledge of the
implementation, they are found to be Cw-equivalent in
several of the programs under study. Moreover, in most of
the remaining programs, the candidate classes are “almost
Cw-equivalent”. That is, each such pair of classes have a
large proportion of the corresponding matching pairs of test
cases that are indeed Cw-equivalent.

Our case study also shows that a substantial amount
of testing effort can be saved by using our approach.
The proportion of test cases that are judged to be safely
omitted from the initial test suite with little or no loss of
effectiveness ranges from 13% to 30%, with respect to the
sample programs in this study.

Our case study is exploratory in nature and is by no
means a comprehensive one. Hence, over-generalisation
of its results is inappropriate. Nevertheless, it does
demonstrate the viability and potential benefits of our
approach. In view of the very encouraging preliminary
results, we are now performing more extensive case studies
and experiments to find out to what extent these results may
be generalised, and to investigate what other issues have
to be addressed before the benefits of our approach can be
fully realised.

Acknowledgement

The authors wish to thank Tina Fung and Candy Ng €or
helping to conduct the case study described in this paper.

References

M. Baker, W. Hasling and T. Ostrand, “Automatic
generation of test scripts from formal test specifications”,
in Proceedings of the ACM SIGSOFT ‘89 Third Symposium
on Software Testing, Analysis and Ver$cation, West Florida,
USA, pp. 21C-218, December 1989.

H. Y. Chen, T. H. Tse, ET. Chan and T. Y. Chen, “In black
and white: An integrated approach to class-level testing of
object-oriented programs”, ACM Transactions on Software
Engineering and Methodology, vol. 7, no. 3, pp. 250-295,
July 1998.

H.Y. Chen, T.H. Tse and T.Y. Chen, “TACCLE: a
methodology for object-oriented software Testing At the
Class and Cluster LEvels”, ACM Transactions on Software
Engineering and Methodology (accepted for publication).

T. Y. Chen and M. E Lau, “On the completeness of a test
suite reduction strategy”, The Computer Journal, vol. 42,
no. 5, pp. 430-440, 1999.

T. Y. Chen and P.L. Poon, “On the effectiveness of
classification trees for test case construction”, Information
and Sofware Technology, vol. 40, no. 13, pp. 765-775,
November 1998.

T.Y. Chen, P.L. Poon and T. H. Tse, “An integrated
classification-tree methodology for test case generation”,
International Journal of Software Engineering and
Knowledge Engineering (accepted for publication).

T.Y. Chen, P.L. Poon and Y.T. Yu, “Analysing the
category-partition method and the classification-trce method
for software testing”, in Proceedings of the Fourth World
Multiconference on Systemics, Cybernetics and Informatics
(SCI ’2000) and the Sixth Ititernutional Conference on
Information Systems Analysis and Synthesis (ISAS ‘2000),
Orlando, USA, July 2000.

T.Y. Chen and Y.T. Yu, “On the relationship between
partition and random testing”, IEEE Transactions on
Software Engineering, vol. 20, no. 12, pp. 977-980,
December 1994.

T.Y. Chen and Y.T. Yu, “On the expected number of
failures detected by subdomain testing and random testing”,
lEEE Transactions on SofWare ~IIgitIeering, vol. 22, no. 2,
pp. 109-1 19, February 1996.

M. Grochtmann and K. Grimm, “Classification trees
for partition testing”, Software Testing, Verijication and
Reliability, vol. 3, pp. 63-82, 1993.

283

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

[1 I] M. 1. Harrold, R. Gupta and M. L. Soffa, “A methodology
for controlling the size of a tcst suite”, ACM Transactions
on Sofiware Engineering and Methodology, vol. 2, no. 3,
pp. 270-285, July 1993.

[I21 A. I. Orfutt and S. Liu, “Generating test data from SOFL
specifications”, Journal of Systems and Software, vol. 49,
pp. 49-62, 1999.

[131 T. J. Ostrand and M. J. Baker, “The category-partition
method for specifying and generating functional tests”,
Communications of the ACM, vol. 31, no. 6. pp. 676-686,
June 1988.

[I41 D. J . Richardson and L. A. Clarke, “Partition analysis:
A method combining testing and verification”, IEEE
Transactions on sofhvare Engineering, vol. 11, no. 12,
pp. 1477-1490, December 1985.

[I51 H. Singh, M. Conrad and S. Sadeghipour, “Test case
design based on Z and the classification-tree method”, in
Proceedings of the First IEEE International Conference on
Formal Engineering Methods, pp. 81-90, November 1997.

[I61 E. J. Weyuker and B. Jeng, “Analyzing partition testing
strategies”, IEEE Transactions on Software Engineering,
vol. 17, no. 7, pp. 703-711, July 1991.

284

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:38:16 EDT from IEEE Xplore. Restrictions apply.

