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Abstract 

Phononic crystals (PnCs) are novel artificial periodical materials which offer great 

flexibility for manipulating acoustic and elastic waves. Well-designed PnCs may give rise to 

phononic bandgaps which prevent the propagation of acoustic and elastic waves in a particular 

frequency range on a wavelength scale and can be used for many applications. The occurrence 

of bandgaps highly depends on the spatial distribution of the base materials of the PnCs. This 

thesis investigates the topology optimization of two-dimensional solid PnCs for maximizing 

specified bandgaps with different lattices and symmetries. The optimization algorithm based 

on the bi-directional evolutionary structural optimization (BESO) method is established and 

verified by numerical examples. Many novel patterns with large band gaps for out-of-plane, 

in-plane, and complete waves are obtained and discussed. Compared with the most commonly 

used method in the optimization of phononic crystals: Genetic Algorithm, the proposed 

gradient-based BESO method is much more efficient and able to present solutions with wider 

bandgaps. 

The results show that the structures consisting of the heavier and stiffer metal material (Au 

or Pb) isolated and embedded in the lighter and softer material (Epoxy) can exhibit broad 

bandgaps. The complexity of the optimized topologies increases with the band order. For the 

out-of-plane waves, the number of inclusions in the optimized structure is equal to the band 

order while for the in-plane waves, the broad bandgap appears when the number of inclusions 

equals three times the band order.  

In the investigation of the effect of the lattice type on the bandgap size, the majority of the 

results with the hexagonal lattice exhibit the greater bandgap than those with the square lattice. 

However, the gap size for PnCs with the hexagonal lattice may not always larger than that with 

the square lattice. At some bands, the gap size for PnCs with the square lattice is larger than 

that with the hexagonal lattice. 

Symmetry reduction has a beneficial influence on the topology characteristics of the 

optimized structures. Generally, asymmetric design exhibits a large bandgap than its symmetric 

counterpart. However, in some cases, both symmetric and asymmetric designs have the same 

topologies and bandgap sizes which demonstrate the symmetric ones tend to be truly optimal 

For the out-of-plane waves, the largest bandgap is the first bandgap with the six-fold symmetric 
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hexagonal lattice. For the in-plane wave, the phononic crystal with the asymmetric hexagonal 

lattice for the fifteenth bandgap has the greatest bandgap size. For the complete bandgap, the 

optimized asymmetric square-latticed phononic structure has the biggest bandgap between the 

second out-of-plane bandgap and the third in-plane bandgap. 

For some specified bandgaps of in-plane waves, topology optimization starting from a 

random initial design is still difficult to obtain the satisfactory solutions due to the coupled 

longitudinal and transverse waves. From our research, the in-plane bandgap for both square 

and hexagonal latticed PnCs can be easily achieved by introducing initial guess designs based 

on the PCVTs. 

Keywords: Phononic crystals; Band gap; Topological optimization; Bi-directional 

evolutionary structural optimization; Lattice type; Symmetry 
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Chapter 1. Introduction 

1.1 Research background 

Material science focuses on the development of new and better materials for the next 

generation of engineering applications, which is the significant fabric of the twenty-first 

century. In the past decades, the in-depth research of material always brought a great revolution 

in science and technology and therefore improved our daily lives. For example, semiconductors 

have the property of being a controllable switch, which is the basis of our everyday devices 

such as computers, the Internet, tablet devices, and smart-phones.  

Since two decades ago, many researchers have focused on the composite materials with 

periodic structures. In 1987, Yablonovitch [1] and John [2] proposed the concept of photonic 

crystals: periodic structures consisting of two and more materials with different refractive 

indexes forbid the propagation of electromagnetic waves at a certain range of wavelength. Then, 

the study of photonic crystals was spread to a wide range of new optical properties and 

applications.  

Photonic crystals manipulate the flow of electromagnetic waves. An analog of photonic 

crystals is phononic crystals (PnCs) which control the propagation of the acoustic and elastic 

waves. The analog between the electromagnetic waves and acoustic and mechanic waves have 

brought up the new research field of PnCs. In 1992, Siglas and Economou [3] studied the 

structure of spherical inclusions suspended in a host matrix with different elastic wave speeds 

and detected a narrow elastic bandgap. In the next year, Kushwaha et al. [4] proposed the 

concept of PnCs and used plane wave expansion method to calculate the band structure of two-

dimensional PnCs consisting of two metal materials: Al and Ni. Later on, the first experiment 

was carried out on a famous sculpture in Madrid, Span, which proved the existence of sound 

attenuation in some spectral regions [5].  

PnCs are composite materials formed by periodic variation of the mechanical properties of 

the base materials. Well-designed PnCs exhibit a salient feature called bandgap in which 

acoustic and mechanical waves are not allowed to travel at a certain frequency range. The 

property of phononic bandgap gives rise to many practical applications in designing various 

devices for vibration attenuation [6], waveguides [7], collimation [8] and negative refraction 
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[9, 10] of acoustic and elastic waves. To employ these novel applications, an adaptable 

approach to engineering the PnCs with large bandgaps has become an urgent need and attracted 

much attention in both computational mechanics and physics. 

Owing to the fascinating characteristics of the acoustic and elastic bandgap, phononic 

bandgap engineering received a great deal of attention. The early work mainly focuses on 

investigating the influential factors on the phononic bandgap size. For instance, different 

material combinations, inclusion shapes, lattice types, filling ratios, rotation of inclusions, 

material properties were compared in order to increase the phononic bandgap size [11-16]. 

Phononic bandgaps physically originate from strong scattering and destructive interference of 

the multiple scattered waves. Therefore, the occurrence and width of phononic bandgaps highly 

depend on the spatial arrangement of base materials in the primitive unit cell. The traditional 

trial-and-error approaches may not be able to introduce new configurations of PnCs, and the 

resulting bandgap width may also be far from optimal one. 

Since the implementation of optimization approaches on the design of phononic bandgap 

structure by Sigmund and Jensen [17] based on the finite element method (FEM) and the solid 

isotropic material with penalization (SIMP), the topology optimization of PnCs becomes a hot 

topic. Till now, optimization methods such as Genetic Algorithm [18-20] and BESO [21, 22] 

have also been developed for the design of phononic bandgap crystals. A variety of novel 

phononic structures with broad bandgaps have been successfully obtained by utilizing these 

topology optimization techniques.  

1.2 Gap of knowledge  

Topology optimization of phononic bandgap crystals is still at an early stage, and most of 

the previous studies focused on designing PnCs with the four-fold symmetric square lattice. 

Phononic bandgap crystals with hexagonal lattices were less considered although the previous 

study revealed that hexagonal-latticed phononic bandgap crystals could present wider 

bandgaps than those of the square-latticed phononic bandgap crystals [12, 16]. Compared with 

the square-latticed phononic bandgap crystals, the optimization of hexagonal-latticed phononic 

bandgap crystals needs to tackle the different unit cell models with the six-fold symmetry, 

which is more challenging to achieve the desirable bandgaps.  

In the recent years, a lot of literature reveals that the symmetry reduction is an efficient way 
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to enhance the bandgap size in the field of photonic crystals [23-25]. Because of the analog 

between electromagnetic and elastic waves, many properties of PnCs are comparable to those 

of photonic crystals. The study of symmetries of scatterers in the phononic bandgap crystal 

first reveals the strong influence of symmetry on the phononic bandgap [26]. However, because 

of the high computational load and the complex optimization procedure, most topology 

optimization approaches on maximizing phononic bandgap assumed that the unit-cell has a 

primary high-symmetry. As a result, a systematic and comprehensive research on the bandgap 

design of other symmetric or asymmetrical PnCs is needed, which is the main aim of the current 

research. 

1.3 Outline of this thesis 

The structure of the rest of this thesis is outlined as follow: 

Chapter 2 gives a literature review of the research fields which are highly related to the 

current research. The review is first dedicated to the current research status on the phononic 

crystal, which is followed by the introduction of several popular topology optimization 

methods. Then, the investigation into topology optimization of phononic bandgap crystals is 

reviewed at the end of the chapter.  

Chapter 3 starts with the detailed implementation of the numerical analysis on the phononic 

bandgap crystals. It is followed by the basic theory of the BESO method, material interpolation 

scheme, the sensitivity calculation, element filter scheme, topology updating criteria and 

algorithms. This chapter ends with a summary of the topology optimization process of BESO. 

Chapter 4 optimizes the two-dimensional PnCs with the six-fold symmetric hexagonal 

lattice for the out-of-plane, in-plane and complete wave modes, then compares their 

characteristics with the results with four-fold symmetric square lattice. The transmission 

spectra are analyzed to confirm the validity of the proposed optimization algorithm.   

Chapter 5 reports the results and discussions on the optimization of the two-dimensional 

asymmetrical PnCs with the square lattice and the hexagonal lattice. The newly found phononic 

structures with large out-of-plane, in-plane, and complete bandgaps are presented. The 

influence of symmetry is also analyzed for both square and hexagonal lattices. 

Chapter 6 gives the conclusions of this thesis and proposes the future work on the topic. 
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Chapter 2. Literature review 

2.1 Phononic crystals 

2.1.1 Concept of phononic crystals 

It has been over a half-century since scientists set out to investigate the propagation 

behaviors of elastic waves. However, the phononic crystal is a relatively new research field 

since the year of 1992 when Siglas and Economou [3] proposed a structure containing spherical 

scatters embedded in the matrix with a narrow elastic bandgap. In 1993, Kushwaha et al. [4] 

proposed the concept of PnCs based on the traditional natural crystals. A crystal or crystalline 

solid in nature (e.g., ice, calcite) is a solid material whose constituents (e.g., atoms, molecules, 

and ions) are distributed in a periodically ordered microscopic structure, which forms a crystal 

lattice [27]. By imitating the arrangement of constituents in the natural crystals, PnCs are 

developed as synthetic materials with periodic variation of the mechanical properties of base 

materials (i.e., elastic modulus and mass density). One of the most valuable characteristics of 

PnCs is bandgap, within which the propagation of acoustic and elastic waves is totally 

prohibited.  

The so-called elastic bandgap materials are inhomogeneous elastic materials consisting of 

one, two and three-dimensional periodic arrangement of inclusions embedded in a host matrix. 
One example of the one-dimensional phononic crystals is a layered comb-like structure [28, 

29]. A two-dimensional phononic crystal is usually composed of parallel cylinders embedded 

in a host matrix [6, 30]. Three-dimensional PnCs are arrays of spherical inclusions suspended 

in a host matrix where waves travel in any directions of the space [31, 32]. The simple concept 

of one, two and three-dimensional (1D, 2D, and 3D) PnCs are illustrated in Figure 2.1. 

Bandgap as one of the fascinating characteristics of PnCs has been attracting the growing 

interests among the academia. As a consequence, many contributions have been devoted to 

enriching the diversity of applications of PnCs. The following section will be dedicated to the 

introduction of engineering phononic bandgap and novel applications of the bandgap of PnCs. 

In the search for bandgaps, various categories of phononic structures differing in the states 

of matter with large bandgaps have been investigated, such as solid/solid [4, 33-35], fluid/fluid 
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[30, 32] and fluid/solid  [36-39] composite materials. Because the transverse wave can not 

propagate in fluids, the fluid/fluid PnCs and some fluid/solid where solid inclusions are 

separated by the fluid matrix are also known as the sonic crystals [40]. Besides, bandgaps in 

the porous [14, 41] and cellular [21] PnCs were also obtained. Compared with the composite 

PnCs, the porous and cellular PnCs can possibly achieve the lighter designs. In this research, 

we will focus on the design of solid/solid PnCs, which are able to propagate both longitudinal 

and transverse waves.  

 

Figure 2.1. 1D, 2D and 3D PnCs made of two different elastic materials arranged periodically. 
Different colors represent different base materials [42].  

2.1.2 Engineering bandgap of PnCs 

By now, a lot of works have been carried out to establish the relationship between the scatter 

properties (shapes, sizes, and lattice structures), the material constants (Young’s modulus, 

Poisson's ratios, mass density) and the phononic bandgaps. Kushwaha and Halevi [12] found 

the bandgap increases with a larger density-constant contrast and elastic-constant contrast of 

base materials in two-dimensional composite PnCs. In Kushwaha and Djafari-Rouhani’s study 

[43] into the two-dimensional periodic arrangement of air cylinders suspended in water, several 

broad acoustic bandgaps were identified. In the several references [12, 32, 34], researchers 

discovered the effect of the filling ratio of inclusions on the bandgap size. Generally, the 

bandgap size appears and rises with the increase of the filling ratio before reaching its peak, 

followed by a gradual drop. The largest bandgap appears at a different filling ratio ranging 

from 20% to 60% depending on the specific combination of the base materials. The results in 

[30] showed that, in the liquid system of water and mercury, the configuration of scatters with 

low density in a matrix with high density is the most favorable for achieving board acoustic 
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bandgaps. Wu et al. [44] created and tuned acoustic bandgaps in two-dimensional liquid sonic 

crystals by rotating square rods and found that the width of the lowest gap was raised by adding 

the rotation angle of the square inclusions. Lai and Zhang [45] discovered that by inserting air 

rods in the two-dimensional system of Al inclusions in epoxy, a sizeable bandgap for elastic 

waves can be obtained. Lin et al. [46] studied the bandgap characteristics of scatters embedded 

in different anisotropic matrices. Vasseur et al. [47] discovered that the phononic structures 

with hollow inclusions are also able to exhibit bandgaps. The influence of different shapes and 

symmetries of inclusions on the 2D phononic bandgap were investigated by Kuang et al. [26]. 

Their research shows that among various shapes and symmetries of inclusions with different 

lattices, the hexagonal-latticed structure with hexagonal inclusions has the largest relative 

bandgap. Zhou et al. [48] analyzed the influence of material constants on bandgaps of two-

dimensional solid PnCs for elastic waves and concluded that for the out-of-plane waves, the 

mass density ratio predominates the size of the bandgap, for the in-plane waves, the mass 

density ratio and the shear modulus ratio are both crucial to the bandgap generation.  

Traditional PnCs are commonly infinitely extended along the three spatial directions. The 

elastic and acoustic waves propagate inside the periodic structure, and the waves are known as 

the bulk waves. PnCs for bulk waves have attracted a lot of attention; meanwhile, it is also of 

great importance to investigate the wave behaviors in the semi-infinite structures and structures 

with finite thickness. However, when a phononic crystal with a low thickness (e.g., a plate, 

membrane, slab) was considered, two parallel surfaces limit the elastic wave propagation. For 

the particular case of isotropic solids and for elastic waves polarized in the plane of incidence 

(a plane containing both the direction of thickness and the direction of propagation), the wave 

equation has to be tackled by the Lamb waves [40]. When a phononic crystal with semi-infinite 

boundaries is considered, the propagation of elastic waves become strongly anisotropic, a 

variety of combinations of transverse and longitudinal polarizations can appear, and surface 

modes occur at the surfaces of PnCs. As a consequence, the wave equation that satisfies 

boundary conditions at the surface of a semi-infinite medium has to be solved by the surface 

wave [40].  

Owing to the finite structural dimension, surface wave PnCs and Lamb wave PnCs are 

favorable in the fabrication and design of bandgap based devices. Recently, surface and Lamb 

wave PnCs with phononic bandgaps have been investigated and reported in the references [46, 
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49-56]. Figure 2.2 shows the basic models of surface wave and Lamb wave PnCs. 

 

Figure 2.2. PnCs for (a) surface waves [51] and (b) plate waves [52]. 

The common PnCs exhibit bandgaps because the waves scattered from the inclusions 

interfere destructively, which is known as Bragg scattering PnCs. It is named after the 

phenomenon of the Bragg diffraction for X-rays in natural crystals. Similar to the Bragg 

diffraction for X-rays, the lattice constant of the phononic structures is generally of the same 

order of the wavelength of phonons. To manipulate the wave propagation in PnCs with a 

smaller lattice constant, Liu et al. [57] proposed an acoustic structure that uses lead balls in 

centimeter scale in the center of the unit cells, coated with a thin layer made of silicone rubber 

(Figure 2.3). Based on the locally resonant mechanism, this structure exhibits acoustic 

bandgaps, where the lattice constant of the structure is two orders of magnitude smaller than 

the acoustic wavelength. The locally resonant mechanism makes possible the sound and 

vibration controllable by compositions in smaller sizes [57]. Such PnCs are also termed with 

elastic or acoustic metamaterials. 

 

Figure 2.3. A locally resonant phononic crystal [57] 

(a)                                                              (b)  
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Even though a lot of outcomes in the phononic bandgap crystals engineering have been 

made, it is also worthwhile to investigate the bandgap generation mechanism of the PnCs 

because it will provide an in-depth understanding of the fundamental physics of the phononic 

bandgaps. In 2011, Croënne et al. [58] studied the generation mechanisms and interaction 

effects of phononic structure in analytical views. According to their research, there are in total 

three different mechanisms for phononic bandgaps: Bragg scattering, hybridization, and weak 

elastic coupling effects. The Bragg scattering is the most common and extensively-investigated 

feature. The Bragg bandgap arises because the waves scattering from the inclusions interfere 

destructively with each other. Hybridization gaps generate when the scattering resonances of 

the individual inclusions are coupled with the propagating mode of the scattering material. The 

bandgaps can also be observed from the weak elastic coupling effects between the individual 

resonances. Of all these mechanisms, Bragg scattering is the most important and typical 

mechanism that generates bandgaps of PnCs [59].  

The investigation in calculation methods of phononic band structure is also pivotal because 

they provide fast, reliable and accurate tools to describe the wave propagation in particular 

phononic-crystalline structures. After some years’ discovery and research, several different 

methods to has been developed such as the plane wave expansion method (PWE) [3, 4, 12, 34, 

60], the finite-difference time-domain method (FDTD) [14, 61, 62], the finite element method 

(FEM) [20, 21, 63], the multiple scattering theory (MST) [64]. Each of these methods has been 

proved valid and reliable in analyzing various 2D and 3D periodic structures in the field of 

PnCs, and each has its pros and cons. It is important to consider three methods that are 

commonly linked to the topology optimization of PnCs: PWE, FDTD, and FEM. 

The first application of the PWE method on the calculation of phononic dispersion relation 

(band structure) can be sourced from the research of Sigalas and Economou [3, 60], Kushwaha 

and co-workers [4, 12, 34]. Due to the periodicity of the PnCs, the PWE method uses Bloch’s 

theory to expand elastic displacement field and the mechanical properties (e.g., mass density, 

Young’s modulus and Poisson’s ratio) of the base materials into the Fourier series. These series 

are then converted into the wave equations, and the terms are substituted into a typical 

eigenvalue problem. The wave vectors along the first Brillouin zone boundaries are involved 

in calculating the eigenvalues and eigenvectors. It is then straightforward to use the eigenvalues 

to describe the dispersion relation over the wave vectors and to use the eigenvectors to calculate 
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the elastic wave field distributions [6]. 

 It is well-known that the conventional PWE method fails due to the convergence problems 

and converge very slow when it comes to the two-phase periodic structure with a big mismatch 

in material properties. To address the problem, some improved PWE methods are devised [65]. 

The FDTD method was initially developed to tackle the problems in electromagnetics [66, 

67] before its first usage in PnCs [62]. In the FDTD method, the acoustic/elastic wave equations 

are first discretized with a small spatial variation and time interval. Therefore, the displacement 

field becomes a function of time at each discretized point and will then be updated for each 

time step, creating a vast amount of displacement field data which is Fourier-transformed into 

the frequency space. The eigenfrequencies will be obtained at the positions of peaks in the 

frequency spectra [59]. Due to the manipulation in the time field, the FDTD method is also 

able to address other problems, such as transmission and reflection in the PnCs [68], 

waveguiding and energy trapping in defect states of PnCs [69-71]. The FDTD method has the 

advantage of computing PnCs with complex topology; however, it brings substantial 

computational burdens due to the discretization of time and spatial domains. In 2010, Su et al. 

[72] developed a postprocessing method on the basis of high-resolution spectral estimation, 

which alleviates the difficulty of FDTD.  

The FEM is a popular numerical technique serving the mechanics, physics, mathematics 

and many other disciplines. It is hard to confirm the earliest creation of FEM; however, in 

some’s perspective, the history of FEM can be traced back the work in 1941 [73, 74]. It was 

initially aiming to solve the problems in mechanics, and after long time’s development, it 

currently becomes a commonly used method for multiphysics problems, such as the band 

structure of photonic crystals [75]. Because the calculation of undamped phononic band 

structure is known as a natural frequency problem, the FEM has been introduced in the 

phononic calculation and performed well with regard to the accuracy and computational time 

[63].  

The FEM discretizes the design domain (e.g., square unit cell) with a great number of finite 

elements. It is noted that the accuracy of the final solution highly depends on the size of 

discretizing mesh. In this way, the continuous displacement field will be represented by the 

interpolation of the nodal displacement with the help of the shape function. After applying the 

periodic boundary condition and Bloch’s theory, the elastic wave equation can be converted 
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into the form of matrix equations. Then the eigenfrequencies and eigenvectors can be obtained 

by solving the matrix equations over the wave vectors over the first Brillouin zone edges.  

As the FEM offers flexibility in computing complicated PnCs, it is preferable to serve for 

topology optimization of phoninic crystals for wider bandgaps [20, 21]. In addition to 

calculating band structure of PnCs, it can also analyze surface acoustic waves [76, 77], point 

and linear defect states of phononic crystal plates [78].  

Owing to the availability of the commercial FEM software in the market, the analysis and 

design of PnCs become much easier and more convenient. At present, COMSOL Multiphysics 

[17], ABAQUS [79] and ANSYS [80] have provided convenient FEM software package to 

analyze the wave behavior in different sorts of phononic structures.  

2.1.3 Functional phononic crystals 

In the recent years, the applications of PnCs have been largely extended such as vibration 

attenuation [6], waveguides [7], collimation [8], negative refraction [9, 10], phonon focusing 

[81], beam splitting [82], unidirectional propagation [83] phonon trapping [69], multiplexing 

of acoustic waves [84], acoustic invisibility cloaks [85, 86]. The rapid development of these 

novel applications is greatly owing to the prosperous development of the phononic bandgap 

engineering. 

1). Shock and vibration proofing 

Owing to the novel property of acoustic and elastic bandgaps, the PnCs are extensively 

investigated for its potential in sound, shock and vibration proofing especially in civil 

engineering [87-93]. 

Cheng et al. [89] found the vibration attenuation zones existing in the two-dimensional 

composite periodic structures consisting of concrete, steel, and rubber. Yan et al. [90] 

theoretically and experimentally investigated the three-dimensional periodic foundation made 

of concrete, rubber, and iron as a feasible seismic isolator (Figure 2.4a, b). It can be seen from 

Figure 2.4c that the bandgap is at a low-frequency range that covers the primary frequency 

range of the seismic waves owing to the locally resonant mechanism [57]. Inspired by the idea 

of PnCs, Wen and co-authors [88] applied the periodic binary straight beams with different 
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cross sections to the vibration isolation and accordingly designed a vibration isolation structure. 

 

Figure 2.4. (a) One unit cell of a 3D periodic foundation; (b) the cross-section of a unit cell; (c) 
frequency bandgap of 3D periodic foundation [90]. (d) The sketch map of a vibration isolation structure 
[88]. 

2). Acoustic waveguide 

The acoustic waveguide is based on the PnCs with defected states. The removal of the 

inclusions in the PnCs creates an acoustic passway for the incident wave, thus produces 

acoustic waveguides. Within the phononic bandgap, the acoustic waves that would not 

propagate otherwise in the PnCs will be guided to pass through the phononic crystal along the 

line-defeat passway with minimal transmission loss [68, 94, 95].   

 

Figure 2.5. Transmission spectra in the frequency range of the bandgap and displacement fields at 290 
kHz through (a) a straight and (b) a bent waveguide [7]. 

Khelif and co-authors [7] carried out the experiment that the acoustic waves were guided 

and bent in waveguides by deleting inclusions from a periodic two-dimensional phononic 

crystal consisting of steel rods embedded in water. Figure 2.5 indicates the waves are highly 

confined within the straight and bending waveguide and guided with weak losses in their 

research. Khelif et al. [96] created a line defect by replacing a row of solid steel cylinders in 

(a)             (b)                                     (c)                                   (d)   

                         (a)                                                           (b)  
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the otherwise perfect phononic crystal with hollow cylinders and analysis the wave propagation 

in such a structure. Sun and Wu [70] proposed a line-defected phononic crystal consisting of 

circular steel cylinders in an epoxy matrix and studied the propagation of the surface acoustic 

waves in phononic waveguide structures using the FDTD method. Chandra et al. [97] analyzed 

the acoustic waves propagating along the three-dimensional waveguides in phononic structures 

consisting of lead spheres on a face-centered cubic lattice embedded in an epoxy matrix. In the 

micrometer scale, Benchabane et al. [98] reported surface wave guidance and confinement in 

a phononic crystal structure. Other exotic phenomena such as the coupling effect of two parallel 

phononic crystal waveguide were studied and discussed by Sun and Wu [99]. 

3). Negative refraction 

Refraction is a phenomenon that often occurs when waves travel from a medium to another 

with different refractive indexes at an oblique angle. The refractive wave is at the different side 

from the incident wave to the normal in the conventional materials, which is called positive 

refraction; negative refraction is on the contrary of positive refraction (Figure 2.6a). The 

negative refraction was first predicted by Veselago in 1968 if a kind of unusual material with 

both permittivity and permeability simultaneously negative exists [100]. This phenomenon was 

realized several decades later in the optical [101] and then acoustic [81, 102] regions. 

Sukhovich and co-authors [102] presented an experimental illustration of negative refraction 

and focusing of ultrasonic waves in 2D PnCs composed of steel cylinders arranged in the 

hexagonal lattice and embedded in methanol (Figure 2.6b, c). Li and Chan [103] reported a 

double-negative acoustic system with both negative density and modulus. 

 

Figure 2.6. (a) Schematic diagram of the positive and negative refraction. Two snapshots of the 
outgoing pulses in the negative refraction experiment, obtained by digitally filtering original pulses at 

              (a)             (b)                                                (c)  
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the frequency of (b) 0.85 MHz and (c) 0.75 MHz [102]. 

4). Acoustic diodes and unidirectional acoustic transmission 

A diode in the electronic region is a device that allows electrical current to flow 

unidirectionally. This creation led to an electronic revolution that revealed the age of 

information [104]. Today, with the emergence of phononic bandgap crystals, scientists have 

discovered the acoustic counterpart of the electronic diode. 

Liang et al. [83, 105] proposed a model of an acoustic diode and illustrated the wave 

behavior of the unidirectional acoustic transmission by combining layers of water and glass 

with a nonlinear acoustic material as shown in Figure 2.7. The nonlinear acoustic medium 

partially converts the incident wave at the frequency of ω  to a secondary wave at the frequency 

ω2 . The superlattice made from water and glass forms a bandgap to prevent the propagation 

of secondary wave but allows the original wave at the frequency of ω . Nonlinear medium 

converts the incident wave from the left side into the secondary wave, which can freely pass 

the structure, while incident wave from the right is complete reflected backward by the 

superlattice. Boechler et al. [106] found defected state of PnCs can also convert vibrations at 

the selected frequencies to a different frequency by creating a localized mode, thus realize 

sound rectification. 

Other researchers focused on the linear material without the frequency conversion [107-

113]. Li et al. [107] designed acoustic diode based on the asymmetrical sonic crystals and 

experimentally analyzed the unidirectional acoustic transmission in the structure in Figure 2.7b. 

An inverted bi-prism phononic crystal (Figure 2.7c) realizing one-sided elastic wave 

transmission was designed [108]. The proposal of another model that realizes the unidirectional 

acoustic transmission by making the use of the partial band (distinction of the bandgap of PnCs 

between two directions) was also reported in [109]. The incident wave from the right lies in 

the bandgap and thus reverses while waves arisen from the left ( o45  direction) reside outside 

the bandgap pass the PnCs as shown in Figure 2.7d [109]. 
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Figure 2.7. (a) An acoustic diode made of a 1D phononic crystal (alternating layers of glass and water) 
coupled to a nonlinear acoustic medium [83]. (b) A sonic crystal-based acoustic diode [107]. (c) An 
inverted bi-prism[108]. (d) Schematic model of the directional waveguide [109]. 

2.2 Topology optimization  

Size, shape and topology optimization are three types of structure optimization. In sizing 

optimization, the model was optimized by changing certain size variables including the cross-

sectional areas of beams or frames, and the thicknesses of slabs. This is the original and the 

simplest method to enhancing the mechanical performance of a structure. By changing the 

predetermined boundaries of the continuum structures, shape optimization is able to achieve 

the optimal designs. Compared with the size and shape optimization which updates the size 

variables and shape boundaries, topology optimization focuses on finding the optimal spatial 

order and connectivity for the discrete structure and the best location and geometries of cavities 

for the continuum structure [114]. Topology optimization brings with more effectiveness as 

well as challenges because it can generate the optimal topology without pre-designed topology 

automatically.  

Topology optimization originates from the investigation of the least-weight truss layout 

problem by versatile Australian engineer Michell [115]. Since the landmark work published by 

Bendsøe and Kikuchi in 1988 [116], a significant number of researchers have been devoted to 

             (a)                                                                (b)  

          (c)                                      (d)  
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developing the theory and applications of topology optimization, and it now becomes a well-

established technique. 

By now, topology optimization has been extensively used in scientific and engineering 

design. There are a large number of different practical topology optimization approaches that 

can be categorized into two groups with respect to the involvement of gradient. The gradient-

based group includes the homogenization approach [117], the solid isotropic material with 

penalization (SIMP) [118], the bi-directional evolutionary structural optimization (BESO) 

[114], level-set approach [119], while the non-gradient-based approaches comprise the early 

versions of evolutionary structural optimization (ESO) [120, 121] and bi-directional ESO 

(BESO) [122], the genetic algorithm (GA) [123], ant colonies method [124] and so on. 

2.2.1 Genetic algorithm 

The GA method is one of the most popular non-gradient-based optimization methods. It was 

biologically inspired by Darwin’s survival of the fittest principle of the natural selection. The 

genetic algorithm (GA) method was established by John Holland in the 1960s and has been 

greatly developed since then. At present, the GA method has evolved into an extensively used 

random search optimization approach solving the problems in all walks of life [125].  

The terminology in the GA method includes population, chromosome, gene, crossover, 

mutation, fitness, and others. A population contains a number of chromosomes that are also 

called individuals. A chromosome is a binary integer and consists of a certain amount of genes, 

which represent all of the design variables. For instance, in the topology optimization of 

phononic bandgap crystals combining the GA method with FEM, a gene can describe the 

material of a discretized element [20]. The fitness of a chromosome is the evaluation of the 

objective based on the topology translated from the genes contained in the chromosome. The 

genes that are usually chosen from two parent chromosomes will be hybridized by combining 

their genetic materials to make up new chromosomes, which is known as crossover. Mutation 

is a random modification of one and more genes in the chromosomes. In each iteration, enough 

chromosomes will be obtained to join the next iteration. 

Unlike the gradient-based optimization approaches, the GA method has a different set of the 

optimization procedure. It does not require material interpolation scheme and sensitivity 
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calculation, which makes the process more straightforward and accessible. At first, a random 

population will be generated to start with. The objective function (e.g., bandgap width) of each 

(chromosome) will be calculated to obtain the fitness in every iteration step. According to the 

fitness, the chromosomes in the population are selected to provide their genes for the iteration. 

In the population of the next generation, new chromosomes are achieved by crossover, 

mutation and direct inheritance from old chromosomes. The procedure will be terminated with 

chromosomes having optimal and stable average fitness after sufficient iterations [126].  

2.2.2 Solid isotropic material with penalization 

Bendsøe proposed the original idea of SIMP method in the year of 1989 [127], and it was 

improved in mathematical theory and was extended to a wide range of applications by Sigmund 

and others [128]. 

The SIMP method is based on the FEM where the design domain is discretized into a 

number of finite elements. Under the circumstance, every element is represented by a design 

variable ranged continuously from 0 or a minimal value (void) to 1 (solid). The design variables 

valued between 0 and 1 are called intermediate material. To achieve nearly 0/1 design and 

avoid intermediate material, a penalization scheme was introduced by adding a penalty power 

to the material properties (e.g., Young’s modulus in the minimization of compliance problem) 

of the intermediate materials. The value of penalty power should be larger than 1 and normally 

3. Based on FEM, the sensitivity of objective and constraint functions with regard to design 

variables can be calculated and used to update the design variables. In some cases, a filtering 

scheme which averages the sensitivity over the neighboring elements was introduced to solve 

the checkerboard and mesh-dependent problems. The procedure will continue until the 

particular convergence criteria are met [118]. 

2.2.3 Evolutionary structural optimization/Bi-directional evolutionary structural optimization 

The ESO method was first created by Xie and Steven in 1992 [120]. Since then it has been 

widely used in a variety of topology optimization problems [121]. Its simple concept lies in the 

evolvement towards the optimal topology by gradual removing of inefficient material from a 

structure. Later on, the bi-directional ESO (BESO) [122] was established by Querin et al., 
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which extends the idea of ESO from merely deleting material to allowing the material to be 

gradually added and deleted simultaneously. Generally, the BESO algorithm starts from a 

nearly full design and random initial design in the design domain. Based on FEM, the design 

domain is discretized and represented by 0/1 design variables indicating void/solid elements. 

The element will be ranked according to some criteria (sensitivity numbers, von Mises stress, 

and others). Then, a threshold is determined by the target volume fraction in each iteration. The 

material will be added to the elements above the threshold and removed in the elements below 

the threshold. In each iteration step, the volume fraction of the solid material changes by a 

small amount. The above steps will repeat until the prescribed volume constraint is achieved. 

To be noted, the early-stage ESO and BESO are greatly based on a heuristic concept and 

lack theoretical rigors. Particularly, the optimal design was selected by comparison out of a 

very great amount of intuitively generated results [121, 129]. 

Huang and Xie [114, 130] developed a new BESO method to avoid the deficiencies of the 

previous ESO/BESO method. The filter scheme of the sensitivity number was adopted to avoid 

the checkerboard and the mesh-dependent problems [131]. In the complete 0/1 design, the 

sensitivity number of the void elements can not be derived directly from a mathematical way. 

Rozvany and Querin advised a sequential element rejection and admission (SERA) method 

where the void elements are substituted by ‘virtual’ elements with very low Young’s modulus 

[132]. Finally, in the setting of discrete design variable without the intermediate variable, the 

optimization may suffer from oscillation in the evolution process and difficulty of convergence. 

To address the problem, two efficient measures were proposed. One is to add the intermediate 

discrete values between 0/1 value to stabilize the optimization process [133]; another is to 

calculate the average of the sensitivity number with its history information [130].  

2.3 Topology optimization of phononic bandgap crystals 

In the design of phononic crystal-based devices, PnCs with wider bandgaps mean the better 

performance of the devices. It is well known that bandgaps physically originate from strong 

scattering and destructive interference of the multiple scattered waves. Therefore, the 

occurrence and width of phononic bandgaps highly rely on the spatial arrangement of base 

materials within the primitive unit cell. The early work mainly focuses on the influential factors 

on the phononic bandgap size which may not be able to introduce new configurations of PnCs, 

and the resulting bandgap width may also be far from optimal one. As a result, topology 
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optimization approached are of great significance to search for the largest bandgaps as well as 

the expectant features of the phononic crystal-based structures. 

Topology optimization was firstly introduced in the design of 2D phononic bandgap crystals 

with the square lattice by Sigmund and Jensen [17] based on FEM and SIMP. However, the 

approach encountered the difficulty of opening bandgaps, and therefore the optimization just 

enlarged the existing bandgaps. Thereafter, many solid-solid, porous and cellular bandgap 

PnCs are designed by topology optimization. In the field of solid-solid phononic bandgap 

crystals, Hussein et al. [134] carried out an optimization work of one-dimensional periodic unit 

cells for longitudinal waves in the target frequency based on GAs. Gazonas et al. [18] combined 

GAs with FEM to search for the optimal phononic structures by maximizing the acoustic 

bandgap. In 2007, Hussein et al. [135] linked GA with FEM to design 2D PnCs with multiple 

bandgaps and conducted the optimization for a range of material constants (i.e., Young’s 

modulus ratio and density ratio). Dong et al. [20] used a two-stage GA and FEM to perform 

the bandgap optimization of the 2D PnCs with and without filling ratio constraint of the 

inclusions. In their research, many new structures were obtained with relatively wide bandgaps. 

Based on a multiple elitist GA with the adaptive fuzzy fitness granulation, two-dimensional 

asymmetrical PnCs are designed by Dong et al. [136]. 

In many of the above research, the optimization process is very time-consuming because in 

GA’s search for the optimal solutions, each iteration requires the calculation of a population of 

chromosomes, which exerts heavy computational burdens. Toward a fast, efficient and easy-

implement optimization for phononoc bandgap structures, Li et al. [21] applied the BESO 

method in conjunction with FEM to the phononic bandgap optimization. Chen et al. [137] 

proposed an approach to design PnCs for maximizing spatial decay of evanescent waves based 

on BESO.  

In the field of two-dimensional porous and cellular bandgap crystals, Bilal and Hussein [138] 

proposed a specialized GA in combination with the reduced Bloch mode expansion method for 

the design of silicon and void PnCs with wide bandgaps. Dong et al. [139] presented a study 

on the multi-objective optimization of porous PnCs in both square and hexagonal lattices with 

the reduced symmetry by using a fast non-dominated soring-based GA Ⅱ. Li et al. [21] used 

BESO and FEM on topology optimization of cellular PnCs to enlarge the relative elastic 

bandgaps with a bulk or shear modulus constraint. A record-breaking result of the relative 
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bandgap at 144.41% was obtained for the out-of-plane wave mode in their research.  

In conclusion, the topology optimization of phononic bandgap crystals is still on its early 

stage, and a lot of work still needs to be done. For example, to the authors’ best knowledge, 

there is no topological design conducted on the two-dimensional solid-solid phononic bandgap 

crystals with six-fold symmetric hexagonal lattice. Additionally, although the symmetry 

reduction has been investigated by Dong et al. [136], the results provided in their research are 

relatively few to conduct a comprehensive analysis of the effects of symmetry on the bandgap 

size. The further research on the topological design of phononic bandgap crystals is full of 

opportunities as well as challenges, which forms the main objectives of the current research. 
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Chapter 3. Numerical analysis and topology optimization for 

phononic crystals 

This chapter investigates the numerical analysis and topology optimization of two-

dimensional (2D) solid PnCs. Section 3.1 describes the numerical analysis of the phononic 

crystals. The implementation of BESO is introduced in Section 3.2. 

3.1 Numerical analysis  

In the Cartesian coordinate system, the stress tensor is shown below 
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In the free vibration system, the relationship of the stress and displacement can be expressed 

by 
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where wvu ,, are the displacements along zyx ,, directions. The above equations can be written 

in the Einstein notation as follows. 
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In the isotropic materials, the linear relationship between stress and strain depends on two 

independent Lame’s constants,  
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The above equations can be rewritten in the Einstein notation as follows. 

ijijij eµλθδσ 2+=   (3.3) 
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From equation (3.1-3.3), the propagation of elastic waves in PnCs is governed by 
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where λ and µ  are the Lame’s coefficients; ρ is the material density.  

In this thesis, only 2D PnCs are considered. As the wave field is independent of z , equation 

(3.4) can be divided into two sets of equations governing the out-of-plane mode (uz) and the 

mixed in-plane mode (ux and uy), respectively, 
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where ),( yxr is the position vector. 

According to the Bloch theory [140], the displacement vector can be expressed as 

)()(),( rk
k rukru ⋅= ie  (3.8) 

where )(ruk  is a periodic function of r  with the same periodicity as the structure. ),( yx kk=k

is the Bloch wave vector. To this end, the governing equation can be converted to a typical 

eigenvalue equation under the framework of the FEM [40] 

0))(( 2 =− uMkK ω  (3.9) 

where K and M  are the stiffness matrix and the mass matrix which are assembled from the 

elemental stiffness matrixes and elemental mass matrixes that are elaborated in Appendix 1. 

The above equation is solved by sweeping wave vectors k  along the boundary of the first 

irreducible Brillouin zone, which depends on the lattice type and symmetry. Here, a simple 

example of a symmetric hexagonal-latticed phononic crystal is shown in Figure 3.1a and its 

first irreducible Brillouin zone ( ΓMXΓ →→→ ) as shown in Figure 3.1c. The relationship 

between eigenfrequency ω  and k  forms its band diagram for the Au/epoxy system as shown 

in Figure 3.1d. The band diagram indicates that the complete bandgap (grey area) between the 

third in-plane band and the second out-of-plane band is achieved. Even so, it is still unclear if 

the bandgap can be further enlarged and the bandgap at other specified bands can be found. 

These questions will be addressed by the developed topology optimization algorithm in the 

next section. 

Generally, the size of the bandgap between the nth and (n+1)th band can be reasonably 

measured by the gapsize-midgap ratio. As discussed above, the elastic waves can be decoupled 

into the in-plane waves and out-of-plane waves for 2D PnCs. For the bandgaps for the in-plane 

waves and out-of-plane waves only, the relative bandgap between nth and (n+1)th band is 

defined by 
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For the complete bandgaps, the relative bandgap between the nth and (n+1)th band for the 

out-of-plane waves and at the same time, between the mth and (m+1)th band for in-plane waves 

can be measured by 
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where c
nω and c

nmω  are the midgap, ( )( ) ( )( )( )kk nn
c
n ωωω maxmin

2
1

1 += +  for single modes and 

( ) ( ))(),(max)(),(min
2
1

11 kkkk in
m

out
n

in
m

out
n

c
nm ωωωωω +++=  for combined wave modes. ω∆  is the 

absolute bandgap size. When 0≤nGAP , it means that the bandgap does not exist.   

 
Figure 3.1. (a) A typical 2D phononic bandgap crystal with the hexagonal lattice constant a, and the 
dashed red rhombus denotes its primitive unit cell. (b) Six-fold symmetry of the unit cell. (c) Irreducible 
Brillioun zone of the hexagonal lattice (Г-X-M-Г). (d) The band diagram of the phononic bandgap 
crystal. The dashed and solid lines denote the out-of-plane and in-plane phononic bands, respectively. 

3.2 Topology optimization 

3.2.1 Objective function  

Topology optimization aims to find an optimal material distribution of the primitive unit 

cell with the maximum bandgap between two adjoined bands. The primitive unit cell is 

discretized with finite elements and each element is assigned with an artificial design variable, 

(a) (b) (c) (d)  
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xi (i = 1, 2, …, n), where 10 ≤≤ ix . xi = 0 denotes that element i is composed of material 1, 

epoxy, and xi = 1 denotes element i is composed of material 2, Au or Pb. The optimization 

objective is to maximize the nth bandgap as 

{ }nn xxxGAPfMax ,,,,)(: 21 L== XX   (3.11) 

Thus, the optimization goal is to seek the optimal combination of design variables, X.  

3.2.2 Material interpolation scheme 

To establish the relationship between design variables and material properties, the following 

material interpolation scheme can be assumed.  

21)1()( ρρρ iii xxx +−=   (3.12a) 

21)1()( λλλ iii xxx +−=   (3.12b) 

21)1()( µµµ iii xxx +−=   (3.12c) 

where subscripts 1 and 2 denote material 1 and 2, respectively. In the most BESO examples, 

the intermediate material should be penalized to obtain 0/1 design in the final solution. Whereas 

in the design of PnCs, the massive difference in material constants between the matrix and 

scatters leads to broader bandgap. In this course, the topology will automatically evolve to the 

full or near 0/1 design without the usage of the penalty factor.  

3.2.3 Sensitivity analysis  

The current BESO method [114, 141] is a gradient-based optimization algorithm and 

gradually updates the topology of the primitive unit cell based on sensitivity analysis. The 

elemental sensitivity is characterized by the derivative of the proposed objective function with 

respect to the variation of design variable xi and given by 
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where 
ix∂

∂K  and 
ix∂

∂M  are calculated depending on the wave modes according to equations 

(A1.5-A1.8) in Appendix 1. After that, the elemental sensitivity numbers are needed to be 

averaged with neighboring elements according to the filter scheme and with their historical 

information so as to stabilize the evolutionary process.  

3.2.4 Sensitivity filter scheme 

The filter scheme smooths the elemental sensitivity numbers according to those of their 

neighboring elements. The filter has a length scale rmin which identifies the adjacent elements 

that affect the smoothed sensitivity of the ith element. This is illustrated by drawing a circle of 

radius rmin with the center at the centroid of the ith element as shown in Figure 3.2. Usually, the 

value of rmin should be larger than one so that iΩ  includes more than only the ith element. The 

smoothed elemental sensitivity number of the ith element s
iα is obtained by 

∑
∑

=

== K

j iji

j
K

j ijs
i

rw

rw

1

1

)(

)( α
α   (3.15) 

where K is the total number of elements whose centers are located in the sub-domain iΩ , )( ijrw  

is the weight factor defined as 

( )Kjrrrw ijij ,...,2,1)( min =−=   (3.16) 
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where rij is the distance between the center of the ith element and the center of the jth element.  

 
Figure 3.2. Schematic illustration of the filter scheme[114]. 

3.2.5 Average sensitivity numbers with history 

In the BESO methods, large fluctuations can often appear in the evolutionary process of the 

objective function. This is because the sensitivity numbers of the elements are based on discrete 

design variables. For this reason, the objective function can be difficult to converge. A simple 

averaging scheme is established to avoid this problem [114]. 

2

1−+
=

k
i

k
i

i
ααα

 
 (3.17) 

where superscript k is the current iteration number. The updated sensitivity number to be used 

in the later topology update will include the whole history of the sensitivity information in the 

previous iterations. It is noted that the averaging scheme increases the stability of the 

evolutionary process but has little influence on the final solution.  

3.2.6 Update of topology 

To update the design topology iteratively, BESO increases the design variables for elements 

with high sensitivities and decreases design variables for elements with low sensitivity numbers 

simultaneously as 



27 

 

( )
( )





−

+
=+

0,Δmax
1,Δmin1

xx
xx

x
k
i

k
ik

i

 
      

thi

thi

αα
αα

<
>

when
when

 (3.18)  

where 1.0Δ =x  denotes the variation of design variables in each iteration. thα  is the threshold 

of sensitivity numbers, which is determined by the volume fraction of constituent materials. As 

a result, new design variables, X, are found and formed a new topology. 

3.2.7 BESO procedure 

To summarise, the evolutionary procedure of the present BESO method in maximizing 

bandgap size follows these five steps: 

1. Discretize the design domain with a large number of finite elements and generate the 

initial guess design. 

2. Conduct finite element analysis and calculate the element sensitivity number using 

equation (3.13) and (3.14). 

3. Filter the sensitivity number with adjacent elements using equation (3.15) and average 

the sensitivity with its historical information according to equation (3.17). 

4. Update topology in the unit cell according to equation (3.18). 

5.  Repeat steps 2-4 until the convergence criteria are achieved. 

Such an iterative process evolves the material distribution in the primitive unit cell towards 

its optimum. The detailed implementation of BESO refers to the flowchart in Figure 3.3 and 

the reference [114]. 
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Figure 3.3. Flowchart of the proposed BESO method 
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Chapter 4. Topology optimization for 2D phononic bandgap 

crystals with six-fold symmetric hexagonal lattice 

4.1 Introduction 

Since the bandgaps have been detected in the photonic and phononic structures in the 

electromagnetics and acoustics, the search of the broad bandgaps never stops. The research in 

the photonics is years ahead of that of phononics. Because of the analog between 

electromagnetic and elastic waves, many properties of PnCs are comparable to those of 

photonic crystals. In the field of photonic bandgap engineering, the hexagonal lattice has been 

investigated by Sigmund and Hougaard [142]. Their designs with large bandgaps are of great 

importance to provide meaningful guidance for the later research. In [142], the optimal 

photonic bandgap structure at the band order increasingly from one to fifteen are presented. 

Among them, the biggest bandgap appears at the first band in the structure with the hexagonal 

lattice. Some other studies also confirmed the photonic crystals with the hexagonal lattice tends 

to have larger photonic gaps than those with the square lattice [23, 143]. 

In the field of phononic bandgap engineering, some previous studies revealed that 

hexagonal-latticed phononic bandgap crystals could present wider bandgaps than square-

latticed ones for some simple topologies [12, 16]. In 2015, Dong et al. [139]  conducted the 

topology optimization on porous PnCs, where many hexagonal-latticed patterns were achieved 

with very large bandgaps.  

Based on the above research, one may expect that the structures with hexagonal lattice may 

exhibit wider bandgaps. However, the optimization of the two-dimensional PnCs towards 

bigger bandgaps mainly concentrated on the systems with the four-fold symmetric square 

lattice. Compared with square-latticed phononic bandgap crystals, the optimization of 

hexagonal-latticed phononic bandgap crystals needs to tackle with different unit cell models 

with 6-fold symmetry, which is more challenging to achieve the desirable bandgaps.  

This chapter investigates topology optimization of two-dimensional solid hexagonal-latticed 

PnCs for maximizing desirable bandgaps. The materials considered in this study are Au and 

epoxy, same as in [22] to compare the influence of lattice on bandgap size. The optimization 

algorithm based on the BESO method is successfully established, and various novel patterns 
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with extremely large bandgaps for the out-of-plane, in-plane and combined (both in-plane and 

out-of-plane) waves are obtained. The results demonstrate that the bandgaps of hexagonal-

latticed phononic bandgap crystals are relatively larger compared with those of square-latticed 

ones. The transmission analysis of the finite phononic structures formed by the optimized PnCs 

shows that the out-of-plane waves and in-plane waves can be transmitted and prohibited, which 

agrees well with the optimization results.  

The rest of this chapter is organized as follows: section 4.2 states the hexagonal lattice and 

the six-fold symmetry. Detailed optimization results and discussions for the out-of-plane, in-

plane and combined wave modes are presented in section 4.3. This is followed by conclusions 

in section 4.4. 

4.2 Hexagonal lattice and six-fold symmetry 

 

Figure 4.1. (a) A typical 2D phononic bandgap crystal with the hexagonal lattice constant a, and the 
dashed red rhombus denotes its primitive unit cell. (b) Six-fold symmetry of the unit cell. (c) Irreducible 
Brillioun zone of the hexagonal lattice (Г-X-M-Г).  

Different from the 2D PnCs with 4-fold reflection symmetry and 4-fold rotational symmetry; 

the hexagonal lattice has 6-fold reflection symmetry and 6-fold rotational symmetry. Figure 

4.1a shows an example of hexagonal-latticed PnCs and Figure 4.1b demonstrates the six-fold 

symmetry of the hexagonal lattice. A unit cell with the hexagonal lattice can be either a hexagon 

or a rhombus. The rhombus unit cell is employed in this research because it is easier to be 

meshed with four-node elements in FEM. The rhombus unit cell is represented by red rhombic 

dash line with the side of length a  in Figure 4.1a and the gray area in Figure 4.1b.The unit cell 

is divided into 12 similar triangles because of the symmetry in Figure 4.1b. Figure 4.1c shows 

the first Brillouin zone for the hexagonal lattice, in which the black triangle represents the 

irreducible Brillouin zone that constitutes 1/12 of the first Brillouin zone. Due to the 

(a)                                         (b)                                                      (c) 
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relationship between the hexagonal lattice and its reciprocal lattice, the side length of Г-X is 

equal to a/ 332 π  and X-M, a/ 32π .  

4.3 Optimization results and discussion 

Based on the established BESO algorithm in the last chapter, this section will present 

numerical optimization results of hexagonal-latticed two-component solid phononic bandgap 

crystals for the out-of-plane, in-plane, and combined waves. In the following numerical 

examples, all solutions were obtained with less than 100 iterations. Compared with the Genetic 

Algorithm with hundreds, even thousands of iterations, the proposed gradient-based BESO 

method is much more efficient and allows a finer mesh to represent the clear boundary of the 

optimized design. The primitive unit cell is discretized with a 64×64 grid mesh, which is fine 

enough to depict its topology and has a good accuracy for the calculation of band diagram. It 

is also assumed that the phononic bandgap crystals are formed by epoxy and Au and the volume 

fraction of Au is restricted to be 40% of the total volume. The properties of constituent 

materials have been listed in Table 4.1. The frequency is normalized to tπCωa/ 2 , where 

m/s1160=tC  is the transverse wave speed in epoxy. The rmin in the filter scheme in equation 

(3.16) is set to be 3. 

Table 4.1: Mechanical properties of epoxy and Au 

 ρ (kg/m3) λ (GPa) µ (GPa) 

Epoxy 1200 6.38 1.61 

Au 19500 65.45 29.93 

The topology optimization follows the process that has been elaborated in Chapter 3. It is 

noted that to solve equation (3.9), the wave vectors k  should be swept along the boundary of 

the first irreducible Brillouin zone ( ΓMXΓ →→→ ) as shown in Figure 4.1c.  

4.3.1 Bandgaps for out-of-plane waves 

In this example, the optimization objective is to find the maximum bandgaps for out-of-

plane waves. Figure. 4.2 presents the optimized topologies of phononic bandgap crystals and 
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their corresponding band diagrams for the first ten bandgaps. The phononic bandgap crystals 

are shown with 3×3 arrays of unit cells, and the primitive unit cells are given in the rhombus 

boxes. It is noted that we opened the bandgaps between two adjacent bands at the different 

positions in the band diagram; thus in the following paragraphs, the first phononic bandgap 

means there is one band below the bandgap in its band diagram in Figure 4.2, whose band order 

is one; the second bandgap denotes there are two bands below the bandgap, whose band order 

is two, and so on. 

(a) (b) 

(d) (c) 

(f) (e) 

(h) (g) 
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Figure 4.2. Optimized hexagonal-latticed phononic bandgap crystals and their band diagrams for out-
of-plane waves; (a) the first bandgap; (b) the second bandgap; (c) the third bandgap; (d) the forth 
bandgap; (e) the fifth bandgap; (f) the sixth bandgap; (g) the seventh bandgap; (h) the eighth bandgap; 
(i) the ninth bandgap; (j) the tenth bandgap. 

The band diagrams indicate that all bandgaps are successfully opened, and the maximum 

gap width 116.67% is the first bandgap and the minimum gap width 55.39% is the fifth bandgap. 

Table 4.2 compares the bandgap size of PnCs with hexagonal lattice and square lattice [22]. 

The maximum bandgap is at the first bandgap for both lattices. The bandgap size of the 

hexagonal-latticed phononic crystal is about 10% larger than that of the square-latticed 

phononic crystal, about 106%. This further confirms the previous conclusion that hexagonal-

latticed phononic bandgap crystals could present wider bandgaps than square-latticed phononic 

bandgap crystals [12, 16]. However, the gap size for PnCs with hexagonal lattice may not 

always larger than that of the square lattice, e.g., the second and eighth bandgaps. This well 

indicates that the lattice type has a substantial impact on the formation and size of the bandgap. 

Table 4.2: Relative bandgap size of phononic bandgap crystals for out-of-plane waves with hexagonal 
lattice and square lattice 

 Hexagonal lattice Square lattice 

the first band 116.67% 106.13% 

the second band 86.15% 105.43% 

the third band 115.70% 77.15% 

the fourth band 116.42% 105.01% 

the fifth band 55.39% 87.40% 

the sixth band 92.34% 81.96% 

(i) (j) 



34 

 

the seventh band 109.27% 104.59% 

the eighth band 88.03% 105.25% 

As expected, all the optimized topologies of hexagonal-latticed phononic bandgap crystals 

are different from those of the square-latticed phononic bandgap crystals as reported in [22]. 

Many triangular and flower petal-shaped inclusions are formed for the hexagonal-latticed 

phononic bandgap crystals. Such shaped inclusions may provide better scattering properties 

and attribute to the increase of gap width in some cases. However, the optimized topologies of 

the two lattice types still share some similarities. Firstly, the heavier and stiffer material (Au) 

is isolated and embedded in the lighter and softer material (Epoxy). Secondly, the complexity 

of the optimized topologies increases with the band order. Thirdly, the distribution of inclusions 

in most cases follows the periodic centroidal Voronoi diagram in analogy to the law that was 

previously noticed in photonic bandgap crystals by Sigmund and Hougaard [142]. 

BESO starts from a randomly generated primitive unit cell in the above examples, but 

different initial guess designs may lead to different solutions. For example, Figure 4.3 shows 

three initial guess designs and their corresponding solutions aiming at maximizing the gap 

between the third and fourth bands. Although the target bandgaps successfully achieved for all 

cases, the optimized bandgap size and topology are different. Those topologies provide 

engineers with more options for designing phononic bandgap crystals. Nevertheless, it also 

indicates that the proposed BESO method may lead to a local optimum, which highly depends 

on initial guess design. In order to obtain the possible maximum bandgap, it is suggested that 

more initial guess designs can be tested for the current BESO method. 

 

(a) 
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Figure 4.3. Different optimized results from three initial topologies 

4.3.2 Bandgaps for in-plane waves 

This example aims to optimize bandgaps for in-plane waves, where longitudinal and in-

plane shear waves are coupled together. The resulting optimized topologies and their band 

diagrams are listed in Figure 4.4. The obtained maximum gap is the third bandgap, with the 

size of 91.70% and the minimum gap is the fifth bandgap, with the size of 52.09%. Table 4.3 

compares the optimized bandgap size of in-plane waves for PnCs with hexagonal lattice and 

square lattice [22]. Similar to out-of-plane waves, the bandgap size depends from case to case. 

Compared with the square lattice [22], the hexagonal lattice has a larger bandgap between the 

third band and the fourth band, as shown in Figure 4.4a, which is close to circular inclusions 

extensively investigated [26]. 

 

 

(b) 

(c) 

(a) (b) 
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Figure 4.4. Optimized hexagonal-latticed phononic bandgap crystals and their band diagrams for in-
plane waves; (a) the third bandgap; (b) the fifth bandgap; (c) the sixth bandgap; (d) the ninth bandgap. 

Table 4.3: Relative bandgap size of phononic bandgap crystals for in-plane waves with hexagonal 
lattice and square lattice 

 Hexagonal lattice Square lattice 

the third band 91.70% 87.00% 

the fifth band 52.09% 48.99% 

the sixth band 80.36% 86.73% 

the eighth band × 57.26% 

In all cases, the heavier and stiffer material (Au) is also isolated and embedded in the lighter 

and softer material (epoxy). Different from the optimized square-latticed phononic bandgap 

crystals with nearly circular rods and ring inclusions [22], the optimized hexagonal-latticed 

phononic bandgap crystals are with nearly hexagonal rod and ring, triangular rod inclusions. 

This difference can reasonably attribute to the scatting properties of inclusion under the 

different lattice type.  

Topology optimization of bandgaps for in-plane waves is extremely complicated due to the 

coupled longitudinal and shear waves. The current BESO method failed to obtain a solution at 

other bands e.g. the eighth bandgap identified for the square lattice [22]. The topology for the 

square lattice had a rod inclusion and a ring inclusion in the primitive unit cell as identified in 

[144]. However, it is impossible to have a rod and a ring simultaneously to construct a sixfold 

symmetric topology for the hexagonal lattice. To obtain the eighth bandgap for the hexagonal 

lattice, it is necessary to reducing symmetry constraint from the sixfold symmetry to the 

(c) (d) 
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threefold symmetry as shown in Figure 4.5a. With the reduction of the symmetry, the 

corresponding irreducible Brillioun zone has to be expanded as given in Figure 4.5b. As a result, 

the optimized topology for the eighth bandgap and its band diagram are shown in Figure 4.5c, 

which clearly indicates that the eighth bandgap with 53.75% is successfully obtained. 

 

 

Figure 4.5. (a) Three-fold symmetry and selection of the primitive unit cell (shaded area). (b) 
Irreducible Brillioun zone of the hexagonal lattice with the three-fold symmetry (Г-X-M (M’)-Г). (c) 
Optimized hexagonal-latticed phononic crystal with the three-fold symmetry and its band diagrams for 
in-plane waves. 

The volume fraction may also affect the bandgap size of optimized PnCs. Take maximizing 

the bandgap between the third and fourth bands as an example, Figure 4.6 shows the optimized 

topologies and their band diagrams for different volume fractions. With a volume fraction of 

70%, the optimized topology of the primitive unit cell is a rounded hexagonal inclusion 

embedded in the matrix. With the decrease of the volume fraction Vf, the rounded hexagonal 

inclusion becomes smaller and smaller; meanwhile, the bandgap size gradually increases and 

achieves its maximum value, 91.70%, around Vf = 40%. Further decreasing the volume fraction 

causes that the hexagonal inclusion turns into the circular rod and ring and the bandgap size 

decreases accordingly. It seems that Vf = 40% is the best volume fraction and was chosen for 

all our numerical examples. Even so, we also noticed that the best volume fraction for 

maximizing bandgap could depend from case to case. 

(a) (b) (c) 
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Figure 4.6. Optimized hexagonal-latticed phononic bandgap crystals and their band diagrams for in-
plane waves with the third bandgap at the volume fraction from 70% to 20%. 

4.3.3 Complete bandgaps for both out-of-plane and in-plane waves 

It is of significance to find complete bandgaps of PnCs, in which any propagating Bloch 

waves are forbidden, whatever the direction of incidence and the polarization. Complete 

bandgap crystals require both out-of-plane and in-plane bandgaps. However, it is still 

challenging to optimize the complete bandgap since the proper combination of band orders 

between out-of-plane and in-plane waves can hardly be determined by a priori assumption. 

Among them, in-plane bandgaps are significantly harder to achieve than out-of-plane ones 

according to our optimization work. Therefore, our priority is to guarantee in-plane bandgaps. 

Accordingly, it is more feasible to open and enlarge complete bandgaps from our optimized in-

plane topologies than from randomly generated designs and optimized out-of-plane topologies. 

Fortunately, after calculation, we found that both an out-of-plane bandgap and an in-plane 

bandgap appeared in all the results in Figure 4.4, from which we conducted optimization and 

achieved desired results listed in Figure 4.7. Their band diagrams show that the complete 

bandgaps for both out-of-plane and in-plane waves are successfully obtained. As expected, the 

optimized topologies are similar to the solutions above, with nearly hexagonal and triangular 

(a) (b) 

(d) (c) 

(f) (e) 
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rods and rings.  

 
Figure 4.7. Optimized hexagonal-latticed phononic bandgap crystals and their band diagrams for the 
complete bandgap; (a) the third in-plane bandgap and the first out-of-plane bandgap; (b) the fifth in-
plane bandgap and the third out-of-plane bandgap;(c) the sixth in-plane bandgap and the second out-of-
plane bandgap; (d) the ninth in-plane bandgap and the third out-of-plane bandgap. In the band diagrams, 
dot lines denote the bands of out-of-plane waves and solid lines denote the bands of in-plane waves. 

4.3.4 Wave transmission for finite PnCs 

PnCs are assumed to be infinite and arranged periodically along the plane and only 

evanescent waves within a bandgap are allowed to transmit with the exponential decrease [145]. 

Therefore, it is necessary to check the transmission spectrum for a finite phononic structure. 

Based on the optimized design for the complete bandgap shown in Figure 4.7c, the finite 

phononic structure is formed by ten layers of the primitive unit cell along the direction of wave 

propagation as shown in Figure 4.8 and simulated by the commercial FEM software, Comsol 

Multiphysics. Both left and right boundaries are defined as the perfect matched layers in order 

to reduce the interference of reflective waves. The incident wave excitation is applied on the 

left side of the phononic bandgap crystals, and the transmitted response is measured on the 

right side as shown in Figure 4.8. The periodic boundary condition is applied at the top and 

bottom edges.  

 
Figure 4.8. Model for transmission analysis in COMSOL Multiphysics. 

(a) (b) 

(c)   (d) 

Periodic boundary condition Perfect matched layer 

Wave evaluation 

Perfect matched layer 

Wave excitation 
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It should note that the transmission of out-of-plane waves cannot be directly simulated in Comsol 

Multiphysics. Fortunately, the governing equation of out-of-wave is formally equivalent to the acoustic 

wave equation in fluid-fluid PnCs by substituting µ/1  and ρµ / for mass density and wave speed, 

respectively [60].The resulting pressure filed is equivalent to out-of-plane displacement in solid-solid 

PnCs. The transmission coefficient is defined by 

)(log10  10 it /AATC ×=   (12) 

where A represents either out-of-plane displacement or in-plane acceleration amplitude. The 

subscripts t and i denote transmission and incidence, respectively.  

The calculated transmission spectrum for the phononic structure along Г-X direction is shown in 

Figure 4.9 for incident in-plane longitudinal (P), transverse (S), and out-of-plane waves, respectively. 

It can be seen that there are significant drops in transmission coefficient for out-of-plane waves at 

normalized frequency 0.4-1.04, and for in-plane P and S waves at normalized frequency 0.64-1.49. 

Those frequency ranges correspond to the bandgaps for out-of-plane waves and in-plane waves as 

shown in Figure 4.7c. The overlap between them indicates the complete bandgap between frequency 

0.64-1.04. 

 
Figure 4.9. The transmission spectrum of waves propagating along the Г-X direction for the phononic 

structure shown in Figure 4.8. 

We can further investigate the field distributions at three typical frequencies, 0.58, 0.86 and 1.12 

which correspond to points A, B and C as shown in Figure 4.9. The simulation field distributions are 

shown in Figures 4.10, 4.11 and 4.12 for the normalized frequency 0.58, 0.86, and 1.12, respectively. 

Figure 4.10 shows the out-of-plane waves are quickly evanescent but in-plane P waves and S waves are 

A         B        C 
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transmitted through the phononic structure at the normalized frequency 0.58. When the normalized 

frequency is 0.86, all waves are quickly evanescent, and no wave can be transmitted through the 

phononic structure as shown in Figure 4.11. At the normalized frequency 1.12, it can be observed from 

Figure 4.12 that the out-of-plane wave is transmitted through the phononic structure but the in-plane P 

wave and S wave are quickly evanescent. All those results agree well with the band diagram in Figure 

4.7c and the transmission spectrum in Figure 4.9. 

 

Figure 4.10. The field distributions of elastic waves at the normalized frequency, 0.58: (a) displacement 
distribution of the out-of-plane wave; (b) acceleration distribution of the in-plane P wave; and (c) 
acceleration distribution of the in-plane S wave. 

 

Figure 4.11. The field distributions of elastic waves at the normalized frequency, 0.86: (a) displacement 
distribution of the out-of-plane wave; (b) acceleration distribution of the in-plane P wave; and (c) 
acceleration distribution of the in-plane S wave. 

 

Figure 4.12. The field distributions of elastic waves at the normalized frequency, 1.12: (a) displacement 

   (a) 

   (c) 

    (b) 

  (a) 

   (b) 

   (c) 

  (a) 

   (b) 

   (c) 
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distribution of the out-of-plane wave; (b) acceleration distribution of the in-plane P wave; and (c) 
acceleration distribution of the in-plane S wave. 

4.4 Conclusions 

This paper has presented the optimization results from the established topology optimization 

procedure of hexagonal-latticed PnCs based on FEM and BESO for maximizing specified 

bandgaps. Our numerical examples demonstrate the effectiveness of the proposed method and 

some innovative designs with 6-fold symmetric hexagonal lattice are obtained for bandgaps of 

out-of-plane, in-plane and combined waves. The results are systematically compared with 

optimized phononic bandgap crystals with square lattice [22]. Meanwhile, the proposed BESO 

method is extended to achieve complete bandgaps, which are independent of the direction of 

wave incidence and polarization. The optimized phononic crystal is further used for 

constructing the finite phononic structure. The results demonstrate that the transmission and 

forbiddance of the out-of-plane and in-plane waves occur at different frequency ranges as 

expected. The proposed topology optimization provides a useful approach to designing 

hexagonal-latticed PnCs with large bandgaps. Due to the requirement of the six-fold symmetry 

of PnCs, it is hard to obtain optimized solutions of some specified bandgaps for in-plane waves. 

In those cases, reducing symmetry constraint, e.g., from the six-fold to three-fold symmetry, is 

necessary. Meanwhile, the selection of initial design influences the optimized bandgap and 

topology. 
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Chapter 5. Topology optimization for the 2D phononic bandgap 

crystals with the reduced symmetry 

5.1. Introduction 

PnCs have been a topic of great interest for several years [146], and many state-of-the-art 

techniques including topology optimization have been employed to engineer the phononic 

bandgap [59]. However, in the majority of the phononic bandgap optimization works, the 

lattices are considered to be symmetric. Under such assumption, the band diagram calculation 

only takes the wave vectors over the irreducible Brillouin zone edges into consideration [40]. 

Besides, the four-fold and six-fold symmetries reduce the design variable to 1/8 and 1/12 of 

the unit cell for the square and the hexagonal lattice. As a result, the computational cost has 

been alleviated to the minimum extent. However, from the viewpoint of optimization, the 

prescribed symmetry, as an extra constraint in the geometry of the unit cell, abates the 

possibility of achieving broad phononic bandgaps. 

Previous topology optimization attempts involving the symmetry breaking on the acoustic, 

porous and solid PnCs [18, 136, 139] reveals the bandgap size benefits from symmetry 

breaking. Gazonas et al. [18] employed the GA method and the FEM method to carry out 

phononic bandgap design for two-dimensional acoustic wave structures with an arbitrarily 

asymmetric lattice. In Dong et al.’s research [139], the optimization process is based on 

multiple objectives of simultaneously maximizing the bandgap size and minimizing the volume 

fraction under different symmetry assumptions. By gradually breaking the symmetry of both 

square and hexagonal lattice for two-dimensional porous PnCs, the bandgap size of the 

optimized porous phononic structures increases. In the field of two-dimensional solid-solid 

PnCs, Dong et al. [136] linked the FDTD method with the multiple elitist GA method with 

adaptive fuzzy fitness granulation for the phononic bandgap engineering. With this technique, 

they achieved larger bandgap size in the asymmetric PnCs than in the symmetric ones for the 

out-of-plane and combined wave modes, but the attempt for in-plane mode failed to exhibit 

wider bandgap. Due to the enormous computational load, only a limited number of results are 

reported in their research with the square lattice, and the hexagonal lattice is not considered, 

which is not enough for a comprehensive understanding on how the symmetry influences the 

optimal solution for the different lattices and for different band orders in the two-dimensional 
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solid phononic bandgap crystals.  

The above works are based on GAs that inevitably comes with heavy computational loads, 

and thus, a faster and more efficient topology optimization technique other than GAs is 

worthwhile to be attempted. In this chapter, the topology optimization for asymmetrical 2D 

phononic bandgap crystals with both square lattice and the hexagonal lattice is conducted by 

using the BESO method in conjunction with the FEM. The base materials used for constructing 

the unit cell in this study are Pb and epoxy, same as in [136] to show the improvement of the 

solutions.  

The rest of this chapter is organized as follows: Section 5.2 states different lattices and 

symmetries. Detailed optimization results and discussions for the out-of-plane, in-plane and 

combined out-of-plane and in-plane modes are presented in Section 5.3. This is followed by 

conclusions in Section 5.4. 

5.2 Lattice types and symmetries 

 

Figure 5.1. (a) C4v square lattice; (b) C1 square lattice; (c) C6v hexagonal lattice; (d) C1 hexagonal lattice. 
Left: unit cells (grey area) and symmetry. Right: the first Brillouin zone and irreducible Brillouin zone 
(grey area) in the reciprocal lattice. 

Among five classic Bravais lattices in the 2D system, we take the square lattice and the 

hexagonal lattice as examples to investigate the influence of symmetry on bandgap width 

because the square lattice and the hexagonal lattice have the highest 2D symmetry. Figure 5.1 
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illustrates the symmetry in the primitive unit cell for (a) symmetric square lattice, (b) 

asymmetric square lattice, (c) symmetric hexagonal lattice, (d) asymmetric hexagonal lattice 

and their reciprocal lattices. The symmetric square lattice has 4-fold reflection symmetry and 

4-fold rotational symmetry (C4v) and the symmetric hexagonal lattice has 6-fold reflection 

symmetry and 6-fold rotational symmetry (C6v) while the asymmetric square and hexagonal 

lattice only have a onefold rotational symmetry (C1). The irreducible Brillouin zones of 

symmetric structures constitute 1/8 and 1/12 of the first Brillouin zones for the square lattice 

and the hexagonal lattice, respectively; while the irreducible Brillouin zones of asymmetric 

structures comprise the entire first Brillouin zones for both lattices. However, owing to time-

reverse symmetry ( ) ( )kk −=ωω  [147], the wave vector required in asymmetric calculation 

reduces to half of the first Brillouin zone.  

 5.3. Optimization results and discussion 

In this section, numerical optimization results of two-component solid phononic bandgap 

crystals will be presented. Different lattices and symmetries are considered, i.e., the C4v and C1 

symmetry in the square lattice, and the C6v and C1 symmetry in the hexagonal lattice. In the 

following examples, the primitive unit cell is mapped to a fine 64×64 grid in resolution, same 

with the mesh used in Chapter 4. Material phases in use are Epoxy as material 1 and Pb as 

material 2 and their physical properties have been listed in Table 5.1 in which ρ  represents 

the mass density, Cl longitudinal wave speed, and Ct transverse wave speed. The frequency is 

normalized to tπCωa/ 2 , where m/s1160=tC  is the transverse wave speed in epoxy.  

Table 5.1: Mechanical properties of epoxy and Pb 

 ρ (kg/m3) lC (m/s) tC (m/s) 

Epoxy 1200 2830 1160 

Au 19500 2158 860 

In the calculation of band diagram and derivation of the sensitivity numbers, the construction 

of the element stiffness matrix in equation (A4) requires the Lame’s constants λ and μ which 
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can be converted from the wave speeds of the materials by 

2
tC⋅= ρµ   (5.1) 

µρλ 22 −⋅= lC  
 (5.2) 

The topology optimization is based on BESO in combination with FEM, whose implement 

has been elaborated in Chapter 3. It is noted that to solve equation (3.9), for the C4v and C6v 

symmetry, the wave vectors k  should be swept along the boundary of the first irreducible 

Brillouin zone ( ΓMXΓ →→→ ); while for the asymmetrical case, the wave vectors k  must 

be swept over the edges over half of the first Brillouin zone Г→X4(X2) →M1(M2) → 

Г→X1→M1(M2) for the C1 square lattice and X6(X2) → M6(M3) → Г→ X6(X2) → M1(M2) →  

Г→X1→M1(M2) for the C1 hexagonal lattice) as shown in Figure 5.1. In the optimization 

process, no volume constraint is applied in order to obtain the possible largest bandgaps. The 

rmin in the filter scheme equation (3.16) is set to be 3. 

5.3.1 Square lattice  

5.3.1.1 Bandgaps for out-of-plane waves 
In this section, the bandgaps of the two-dimensional PnCs with C4v and C1 square lattice for 

the out-of-plane wave mode are optimized. To thoroughly investigate and analyze the 

characteristics of the asymmetric phononic bandgap crystals, the first fifteen optimized 

bandgap structures are presented in Figure 5.2 for the C4v symmetry and in Figure 5.3 for the 

C1 symmetry with the square lattice. The phononic bandgap crystals are shown with 3×3 arrays 

of unit cells and the primitive unit cells are given in the square boxes for their corresponding 

lattices. 

It can be seen from Figure 5.2 and Figure 5.3, even though being deprived of the symmetry 

condition, the asymmetric optimized topologies still have two ordinary distribution laws with 

the symmetric designs. Firstly, the heavier and stiffer material Pb forms one and multiple 

inclusions isolated by the lighter and softer epoxy matrix. Secondly, the complexity of the 

optimized topologies increases along with the band order. To specify, the band order is equal 

to the number of the scatters (Pb) embedded in the epoxy in a unit cell for both C1 symmetry 
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and C4v symmetry.  

It is noticed that in some cases, the topologies for the higher bandgaps are rotated and resized 

from those for the lower bandgaps. For C4v symmetry, the optimized structures with the first, 

second, fourth and eighth bandgaps are very similar. The phononic crystal with the fourth 

bandgap in Figure 5.2d can be considered an augmented supercell consisting of 2×2 times the 

original unit cell of the phononic crystal with the first bandgap in Figure 5.2a. The PnCs with 

the second bandgap (Figure 5.2b) and the eighth bandgap (Figure 5.2h) turn out to be 45°-

rotated augmented supercells of the phononic crystal with the first bandgap. The rule is found 

less common for the C1 symmetric square lattice than C4v square lattice as only the phononic 

crystal with the fifth bandgap (Figure 5.3e) with C1 square lattice have the rotated augmented 

geometry.  

 
Figure 5.2. Optimized phononic bandgap crystals with the C4V square lattice from the first bandgap to 
the fifteenth bandgap for the out-of-plane waves. 
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Figure 5.3. Optimized phononic bandgap crystals with the C1 square lattice from the first bandgap to 
the fifteenth bandgap for the out-of-plane waves. 

The relative bandgap sizes with C4v and with C1 square lattice are given in Figure 5.4. The 

biggest bandgap for the C1 square lattice appears at the fifteenth bandgap, about 0.77, 

increasing by 7% compared with the widest symmetric bandgap: the seventh bandgap whose 

size is 0.72. The narrowest bandgap is the third bandgap for both C1 and C4v cases, whose size 

for the C1 symmetry is 0.50, 6% wider than that for the C4v symmetry, 0.47. The average 

bandgap size for the C1 symmetry is 0.69, having a nearly 6% rise compared to that of the C4v 

symmetry, 0.65. Therefore, for the out-of-plane wave mode, we can conclude that removing 

symmetry restriction yields a noticeable improvement in the gap size of the optimized PnCs.  

However, the increase of bandgap size is not for all the results with the square lattice. The 

advantage of symmetry breaking is observed at the results for the third to sixth, eighth to tenth, 

twelfth to fifteen bandgaps; for the other bandgaps, the gap sizes of symmetric results failed to 

make a difference from those of the symmetric PnCs. For these bandgaps, the symmetric and 

asymmetric topologies are merely the translation of each other. This is because the symmetric 

solutions are truly optimal for these cases.  

It is interesting to find that the scatters in the bandgap crystal with the fifteenth gap are 

arranged in the same was as a traditional hexagonal-latticed phononic crystal. Furthermore, at 

some band order with large gap size, such as fourth and sixth structures, in which the scatters 

are also hexagonally distributed and the bandgap sizes are much bigger than other non-

hexagonally-distributed solutions. This trend validates the conclusion in Chapter 4 that the 

hexagonal lattice has an advantage in exhibiting bigger bandgap size than square lattice.  
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Figure 5.4. Relative phononic bandgap sizes with the C1 and C4v square lattice from the first bandgap 
to the fifteenth bandgap for the out-of-plane waves. 

5.3.1.2 Bandgaps for in-plane waves 

It is complicated to open phononic bandgaps for the in-plane mode due to the coupling of 

transverse and longitude waves. In the early years, only a few phononic bandgap structures can 

be obtained until Li et al. [144] discovered the connections between the topology and phononic 

bandgap order for in-plane waves, and therefore proposed a method to simplify the 

optimization process by using the initial designs.  

In [144], results with large bandgaps are metal rods embedded in the epoxy matrix. They 

concluded that in the two-dimensional phononic structures with large bandgaps, the number of 

solid rods within the unit cell (usually square unit cell) is equal to one-third of the band order 

[144]. That means in our study with the material combination of Pb and epoxy, the third 

bandgap can be obtained by placing one solid Pb rod in the matrix; the sixth bandgap requires 

two Pb rods distributed in the unit cell, and so on. In [144], it is also mentioned that the ring 

shape scatters also activate bandgaps at the band order of five times scatter number; however, 

the average bandgap size of PnCs containing ring-shaped scatters is much lower than that with 

circular rods. In order to obtain wider bandgaps, we only consider topology with rod scatters. 

In [144], the position of scatters is determined by the periodic centroidal Voronoi 
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tessellations (PCVT). The PCVTs for the square lattice has been developed [148, 149]. 

However, the PCVTs for the hexagonal lattice are necessary to investigate. The procedure to 

compute a PCVT is discussed, and the PCVTs for symmetric and asymmetric, square and 

hexagonal lattices are given in Appendix 2. 

The PCVT-based initial designs are generated by filling Pb rods with the centers at the 

centroids of the PCVT, and the rest of the unit cell is filled with epoxy. For example, PCVT 

with nine seeds and the PCVT-based initial design with the C1 hexagonal lattice are shown in 

Figure 5.5. 

The radii of the rods are calculated as follow: 

πn
far =

 
 (5.3) 

where f  is the volume fraction of Pb in the initial design; a is the area of the unit cell; n  is 

the band order. Here, f is set at 0.4. 

 

Figure 5.5. (a) PCVT at n=9; (b) PCVT-based initial design for the phononic bandgap crystal with the 
C1 square lattice for the ninth bandgap.  

The topology optimization for the in-plane waves is performed on the PCVT-based initial 

designs. Figure 5.6 and 5.7 shows the optimized topologies for C4V symmetry and C1 symmetry, 

respectively.  The circular scatters in the initial designs are evolved into scatters of different 

shapes such as square, rectangle, circle, oval and triangle, but the positions of scatters are 

basically the same with the centroids in the PCVTs.  

(a)                                   (b)  
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Figure 5.6. Optimized phononic bandgap crystals with the C4V square lattice for the (3n)th bandgap 
from n=1 to n=15 for the in-plane waves. 

 
Figure 5.7. Optimized phononic bandgap crystals with the C1 square lattice for the (3n)th bandgap from 
n=1 to n=15 for the in-plane waves. 
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Figure 5.8 shows the relative bandgap sizes for the C4v and C1 square lattice for the in-plane 

wave mode. The square-latticed PnCs with the twenty-first bandgap have the almost identical 

topologies for the C4v and C1 symmetry with the largest bandgap size of 0.464. It is the first 

time to present a two-dimensional solid phononic bandgap crystal for the in-plane wave mode 

whose bandgap is larger than the third bandgap, which illustrates the meaningfulness of the 

high-order bandgap maximation for the in-plane wave mode. Compared with the results 

reported in [136] whose in-plane bandgap sizes for C4v and C1 square lattice are 0.455 and 

0.457 respectively, our optimized structures give even larger bandgaps. The smallest bandgap 

is the eighteenth bandgap with the size of 0.371 for the C4v symmetry and the ninth bandgap 

with the size of 0.381 for the C1 symmetry. The average bandgap size with the C1 symmetry is 

0.445, which is 4.3% bigger than average relative bandgap with the C4v symmetry at 0.426. 

Compared with the out-of-plane wave mode, the symmetry reduction has a less impact on the 

in-plane bandgap size for the square lattice.  

It is particularly interesting to notice that the results with the C4v symmetry at the twenty-

seventh and thirty-sixth bands are a little bit better than those with the C1 symmetry at the same 

bands. This is quite different from the case with the square lattice for the out-of-plane wave 

mode, where all the solutions with the C1 symmetry have bigger or equal bandgap sizes 

compared with those with the C4v symmetry. 

From the results, we also found the symmetry reduction will not affect the results when the 

PCVTs with or without symmetry are same. To specify, the results optimized from the initial 

designs based on the PCVTs in Figure A2.3b and Figure A2.4b are identical. Thus, at these 

band order, the symmetric designs are the best options because the large bandgap size and the 

low computational cost can be simultaneously achieved for the symmetric design. 
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Figure 5.8. Relative phononic bandgap sizes with the C1 and C4v square lattice for the (3n)th bandgap 
from n=1 to n=15 for the in-plane waves. 

5.3.1.3 Complete bandgaps for both out-of-plane and in-plane waves 

 
Figure 5.9. Optimized square-latticed phononic bandgap crystals and their band diagrams for the 
complete bandgap between the second out-of-plane bandgap and third in-plane bandgap (a) with the 
C4v symmetry; (b) with the C1 symmetry. In the band diagrams, dot lines denote the bands of the out-
of-plane waves and solid lines denote the bands of the in-plane waves. 

Complete bandgaps are complicated to open because it requires both out-of-plane and in-

plane bandgaps. According to Section 4.3, the complete bandgap may exist in the optimized 

in-plane structures. After optimization starting with the optimized in-plane results in the last 

section, only narrow complete bandgaps with the size less than 0.15 are obtained, and the 

topologies of the complete-bandgap results are very similar with the optimized in-plane results. 

This is because the out-of-plane bandgap resides in the much higher frequency than the in-

plane bandgap and only a portion of bandgaps overlap to form complete bandgaps. On the 

contrary, the two results with the C4v and C1 square lattice shown in Figure 5.9 have the 
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narrower out-of-plane and in-plane bandgaps; but the gaps match well to exhibit relatively 

large complete bandgaps.  

From Figure 5.9a, the solution with the C4v symmetry contains two scatters of different sizes. 

In Figure 5.9b, each of the two scatters in the solution with the C4v symmetry resembles a semi-

ellipse. The two semi-ellipses are of the similar size and are separated to form a tunnel in 

between along the minor axis of the semi-ellipses. The complete bandgap size for the C1 

symmetry is 0.273, 49% bigger than that for the C4v symmetry at 0.183. Compared with the 

results reported in [136], for the C1 symmetry, the present solution has a more regular topology 

and a larger bandgap size whereas, for the C4v symmetry, the optimized results are similar in 

both topology and gap size. The volume fraction of the inclusion material Pb is 0.270 for the 

C1 symmetry and 0.323 for the C4v symmetry. The bandgaps are located between the second 

out-of-plane bandgap and third in-plane bandgap for both C1 and C4v symmetries.  

5.3.2 Hexagonal lattice  

In this section, the bandgap maximization of PnCs with the C1 and C6V hexagonal lattices 

are carried out. To our best knowledge, topology optimization of asymmetric solid PnCs has 

never been reported for the hexagonal lattice so far. Thus, the results in this subsection will be 

meaningful to present a heuristic guide for the design of PnCs with the C1 and C6V hexagonal 

lattices. 

5.3.2.1 Bandgaps for out-of-plane waves 

The first fifteen optimized bandgap structures are presented in Figure 5.10 for the C6v 

symmetry and Figure 5.11 for the C1 symmetry with the hexagonal lattice. In analogy to the 

square lattice, some of the optimized topologies with the high-order bandgaps are rotated and 

resized from the result with the first bandgap. For C6v symmetry, the bandgap structures with 

the third, fourth and ninth bandgap are the resized supercell of the result of the first bandgap. 

For C1 symmetry, this trend is also observed in more solutions such as the PnCs with the third, 

fourth, sixth, seventh, ninth, twelfth and thirteenth bandgap.  



55 

 

 

 

Figure 5.10. Optimized phononic bandgap crystals with the C6V hexagonal lattice from the first bandgap 
to the fifteenth bandgap for the out-of-plane waves. 

  
Figure 5.11. Optimized phononic bandgap crystals with C1 hexagonal lattice from the first bandgap to 
the fifteenth bandgap for the out-of-plane waves. 

   (a)                        (b)                            (c)                        (d)                             (e) 

   (f)                        (g)                            (h)                        (i)                             (j) 

   (k)                        (l)                            (m)                        (n)                             (o) 

(a)                        (b)                            (c)                        (d)                             (e) 

(f)                        (g)                            (h)                        (i)                             (j) 

(k)                        (l)                            (m)                        (n)                             (o) 
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Figure 5.12 shows the relative bandgap sizes of the out-of-plane waves with the C6v and C1 

hexagonal lattice. The widest bandgaps for both C1 and C6V hexagonal lattice are the first 

bandgap, about 0.77. The pattern is similar to the traditional designs, but the shape of Pb 

inclusions is a rounded hexagon instead of a circular or a normal hexagonal rod in the 

traditional designs. Such a material distribution is assumed to be the best topology for the 

phononic bandgap design with the hexagonal lattice for the out-of-plane wave mode. The 

second bandgap of phononic crystal with the C1 hexagonal lattice has the smallest relative size 

of 0.48. Different from other optimized structures, the C6v hexagonal-latticed phononic crystal 

with the fifth bandgap consists of a ring-shaped scatter and two circular scatters, and the 

unusual topology brings it the smallest bandgap of 0.42. The average bandgap size with the C1 

symmetry is 0.70, which is 10.3% higher than the average relative bandgap of the C6v symmetry, 

0.63. Compared with the square lattice in the previous section, the symmetry reduction has a 

greater influence on the hexagonal lattice for the out-of-plane waves. 

 Figure 5.12. Relative phononic bandgap sizes with C1 and C6v hexagonal lattice from the first bandgap 
to the fifteenth bandgap for the out-of-plane waves. 

5.3.2.2 Bandgaps for in-plane waves  

Now we turn to the bandgap size maximation for the in-plane wave mode. The optimized 

results are obtained in the same method as illustrated in Section 5.3.1.2. Figure 5.13 and Figure 

5.14 listed optimized PnCs with the C6v and C1 hexagonal lattices. The C6v symmetric phononic 
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crystal with the fifteenth bandgap is different from other results as it consists of three ring-

shaped inclusions. This is because the five seeds in the C6v symmetric square-latticed PCVT 

(Figure A2.5e) are very close to each other, which is too difficult to form a topology with five 

rod-shaped inclusions. 

 

 
Figure 5.13. Optimized phononic bandgap crystals with C6v hexagonal lattice for the (3n)th bandgap 
from n=1 to n=15 for the in-plane wave mode 

  

 

(a)                        (b)                            (c)                        (d)                             (e) 

(f)                        (g)                            (h)                        (i)                             (j) 

(k)                        (l)                            (m)                        (n)                             (o) 

(a)                        (b)                            (c)                        (d)                             (e) 

(f)                        (g)                            (h)                        (i)                             (j) 
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Figure 5.14. Optimized phononic bandgap crystals with C1 hexagonal lattice for the (3n)th bandgap 
from n=1 to n=15 for the in-plane wave mode 

  
Figure 5.15. Relative phononic bandgap sizes with C1 and C6v hexagonal lattice with the (3n)th bandgap 
from n=1 to n=15 for the in-plane wave mode 

The relative phononic bandgap sizes of the C1 and C6v hexagonal lattice for the in-plane 

wave mode are presented in Figure 5.15. The largest bandgap of the C1 hexagonal lattice 

appears at the fifteenth bands, about 0.468, increasing by 7% compared with the largest 

bandgap of the C6v hexagonal lattice, the eighteenth bandgap of 0.458. The narrowest bandgap 

appears at the sixth bandgap with a size of 0.386 for C1 symmetry and the fifteenth bandgap 

with a size of 0.326 for the C6v symmetry. The average bandgap size for the hexagonal lattice 

with C1 symmetry is 0.445, having a nearly 4.5% rise compared to designs with C4v symmetry 

with the size of 0.426. In analogy to the square lattice, we also noticed the results with the C6v 

symmetry for the eighteenth, twenty-first, and thirty-ninth bandgaps have a slightly larger 

bandgap than those with the C1 symmetry at the same bands. At these bands, the symmetric 

topology might be the best possible solutions. 

(k)                        (l)                            (m)                        (n)                             (o) 
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5.3.2.3 Complete bandgaps for both out-of-plane and in-plane waves 

Figure 5.16 gives the optimized PnCs with complete bandgaps and their band diagrams for 

the C6v and C1 hexagonal lattice. In analogy to the square lattice, the PnCs with the C1 

hexagonal lattice contains two separate scatters close to each other. However, the PnCs with 

the C6v hexagonal lattice only have one scatter, which is similar to the previous designs with 

the first out-of-plane bandgap and the third in-plane bandgap. The complete bandgap size for 

the C1 symmetry is 0.215, 35% bigger than that for the C6v symmetry, 0.159. The optimal 

volume fraction of the inclusion material Pb is 0.298 for the C1 symmetry and 0.320 for the C6v 

symmetry. The bandgap for the C1 symmetry resides between the first out-of-plane bandgap 

and the third in-plane bandgap; while for the C6v symmetry, the bandgap lies between the 

second out-of-plane bandgap and the third in-plane bandgap. Due to the C6v symmetry, the 

hexagonal-latticed phononic can not distribute two inclusions with different sizes in a unit cell; 

as a result, it failed to open a bandgap between the second out-of-plane bandgap and the third 

in-plane bandgap. 

 

Figure 5.16. Optimized square-latticed phononic bandgap crystals and their band diagrams for the 
complete bandgap (a) between the first out-of-plane bandgap and the third in-plane bandgap for the C6v 
symmetry; (b) between the second out-of-plane bandgap and the third in-plane bandgap for the C1 
symmetry. In the band diagrams, dot lines denote the bands of out-of-plane waves and solid lines denote 
the bands of in-plane waves. 

5.4 Conclusion 

This chapter has presented the bandgap maximation for two-dimensional symmetric and 

asymmetric solid PnCs with both square and hexagonal lattices based on FEM and BESO. The 

PnCs consists of Pb and epoxy. Following a simple method to generate the initial guess designs 

based on the PCVTs, a number of symmetric and asymmetric designs of PnCs are successfully 

obtained for the out-of-plane, in-plane, and complete waves for the first time. Among them, 

the largest bandgaps for square lattices are 0.77 for out-of-plane waves, 0.464 for in-plane 

waves and 0.273 for combined out-of-plane and in-plane waves, and the largest bandgaps for 

hexagonal lattices are 0.77 for out-of-plane waves, 0.468 for in-plane waves and 0.215 for 
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combined out-of-plane and in-plane waves. From our investigations, for any wave modes and 

lattices, the symmetry reduction have an advantageous effect on the bandgap size. However, 

the effect varies depending on the band order and the lattice type. For some band orders, the 

symmetric designs have the bigger gap size and simpler topology than the asymmetric designs; 

thus, at these band order, the symmetric solutions may be the best choice. For the out-of-plane 

wave mode, the first bandgap for the C6v hexagonal lattice should be the largest. For the in-

plane wave mode, the fifteenth bandgap for the C1 hexagonal lattice is the optimal choice. The 

complete bandgap between the second out-of-plane bandgap and the third in-plane bandgap for 

the C1 square lattice should be the best option.  
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Chapter 6. Conclusion of current and future works  

6.1 Conclusion of current works 

This thesis extended the BESO method to maximize the bandgaps of the six-fold hexagonal-

latticed phononic crystals. Based on the developed BESO algorithm, topology optimization of 

symmetric and asymmetric two-dimensional PnCs is further investigated. Many innovative 

designs of PnCs with large bandgaps for out-of-plane waves, in-plane waves, and combined 

out-of-plane and in-plane waves are obtained. The main conclusions of this research are listed 

as follows: 

1. The topology optimization algorithm of the six-fold hexagonal latticed phononic 

bandgap crystals is established based on BESO. The effectiveness of the proposed 

method has been demonstrated through numerical examples aiming at finding and 

maximizing bandgaps of out-of-plane waves, in-plane waves, and combined out-of-

plane and in-plane waves.  

2. The presupposed lattice type and symmetry in topology optimization have large effects 

on the resulting solutions. Therefore, topology optimization for both symmetric and 

asymmetric of square and hexagonal latticed PnCs are also investigated. Generally, 

asymmetric design exhibits a large bandgap than its symmetric counterpart. However, 

in some cases, both symmetric and asymmetric designs have the same topologies and 

bandgap sizes which demonstrate the symmetric ones tend to be truly optimal. 

3. For some specified bandgaps of in-plane waves, topology optimization starting from a 

random initial design is still difficult to obtain the satisfactory solutions due to the 

coupled longitudinal and transverse waves. From our research, the in-plane bandgap for 

both square and hexagonal latticed PnCs can be easily achieved by introducing initial 

guess designs based on the PCVTs. 

4. Many novel patterns of the PnCs are presented in this research and provide the useful 

guidelines in designing the desirable bandgaps of PnCs for various industry applications.   

6.2 Future works 

Topology optimization is proved to be a powerful technique to achieve broad phononic 

bandgaps. Based on our current research, the following future works are recommended:  
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1. Topology optimization of the three-dimensional phononic bandgap crystals is still 

needed for further investigation. 

2. Topology optimization of the phononic bandgap crystals for the surface waves and plate 

waves is also recommended. 

3. Designing the functional phononic devices (e.g., multiplexer, acoustic clocking, 

waveguide, etc.) based on topology optimization is still lacking. 
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Appendix 1 

Element mass matrix, Me, and element stiffness matrix, Ke, can be evaluated using 

For out-of-plane waves: 

dA
A

T
e ∫= NNM ρout

 (A1.1) 

dAkkikik
A yxyxe ∫ ++++= )( 22out

4
out
3

out
2

out
1

out KKKKK µ
 (A1.2) 

where  

yyxx

TT

∂
∂

∂
∂

+
∂
∂

∂
∂

=
NNNNKout

1

; 

xx
T

T

∂
∂

−
∂
∂

=
NNNNKout

2
; 

yy
T

T

∂
∂

−
∂
∂

=
NNNNKout

3

; 

NNK T=out
4  
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where A denotes the area of an element; and 
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where N the shape functions of an element with respect to out-of-plane waves and in-plane 

waves. The shape functions are given below 

For out-of-plane waves: 
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For in-plane waves: 
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In order to discretize rhombus unit cells, the linear 4-node square and rhombus elements are 

used for square and hexagonal lattice. The shape functions can be expressed with local 
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coordinates ),( ηξ  as 
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where J is the Jacobian matrix 
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where a  is the lattice constant and yx nn , are the total numbers of elements along two sides of 

the unit cell.  

The differential element mass matrix and element stiffness matrix with respect to design 

variable xe, are: 

For out-of-plane waves: 
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Appendix 2  

In order to achieve PCVTs, we first introduce the concept of Voronoi tessellation and 

centroidal Voronoi tessellation, then by applying periodic boundary condition, we can compute 

PCVT easily. 

The Voronoi tessellation can be achieved by generating n random points in a domain D, 

followed by computing the Voronoi tessellation in the domain D. 

In the two dimensional cases, the Voronoi tessellation is a partitioning of the domain D 

which is a plane and a bounded convex 2D shape. A set of points { } 1≥iiz  (called seeds) will be 

randomly scattered in D, based on which, D will be divided into n Voronoi regions iV  defined 

by  

},1for  |),({ ijjDyxV jii ≠≥−<−∈= zxzxx
 (A2.1) 

where any points in a Voronoi region Vi is closest to the corresponding seed iz . 

For a given Voronoi region V, the mass center (or centroid) *z  of V is  

∫
∫

=

i

i

V

V
i xx

xxx
z

d)(

d)(
*

ρ

ρ

 

(A2.2) 

Repeat (1) computing Voronoi tessellation according to the seeds by eqn. (A2.1), (2) 

calculating new centroids by equation (A2.2), and regard the new centroids as seeds for the 

next iteration to start with. Then the centroidal Voronoi tessellation (CVT) is obtained until the 

newly calculated centroids coincide with the old centroids in the last iteration. See Figure A2.1 

as an illustration for a square domain and a rhombus domain at n = 4. 

In our case, we need to apply the periodic condition to the unit cell. An easy method to 

replicate 8 neighboring unit cells of the primary cell, forming a 3×3 array. In this way, the 

periodic Voronoi tessellation can be easily calculated by computing the 3×3 array. The Voronoi 

regions which lay in the primary cell constitute the PCVT. An example has been shown in 



68 

 

Figure A2.2 for a square domain and a rhombus domain at n=4, where grey shaded areas are 

the primary unit cells; white areas are 8 neighboring unit cells and red dots represent the 

centroids in their Voronoi regions. 

 

Figure A2.1. VTs and CVTs at n=4 for (a) square domain (b) hexagonal domain. Left: VT, Right: CVT. 
Blue stars are seeds and red dots indicate centroids. Voronoi regions are divided by black solid lines. 

 
Figure A2.2. PCVTs with C1 symmetry at n = 4 for (a) square domain (b) hexagonal domain 

The symmetry can also be applied by initially placing the seeds meeting the symmetric 

requirement. Then the resulting periodic centroidal voronoi diagram will automatically be 

symmetric as well.  

The first fifteen PCVTs for symmetric square lattice are listed in Figure A2.3, asymmetric 

square lattice in Figure A2.4, symmetric hexagonal lattice in Figure A2.5 and asymmetric 

hexagonal lattice in Figure A2.6, respectively. It is noted that the results vary depending on the 

initial distribution of the seeds [149]. Figure A2.4-A2.6 only lists the most possible results for 

each number of seeds.  
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Figure A2.3. PCVTs for square unit cells with C4v symmetry from n=1 to n=15 

 
Figure A2.4. PCVTs for square unit cells with C1 symmetry from n=1 to n=15 

(a)        (b)                           (c)                           (d)                            (e) 

           (f)                           (g)                            (h)                           (i)                            (j) 

           (k)                           (l)                            (m)                           (n)                            (o) 

(a)     (b)                           (c)                           (d)                            (e) 

           (f)                         (g)                            (h)                           (i)                            (j) 

           (k)                         (l)                            (m)                           (n)                            (o) 
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Figure A2.5. PCVTs for hexagonal unit cells with C6v symmetry from n=1 to n=15 

 
Figure A2.6. PCVTs for hexagonal unit cells with C1 symmetry from n=1 to n=15 

(a)     (b)                           (c)                           (d)                            (e) 

           (f)                         (g)                            (h)                           (i)                            (j) 

           (k)                         (l)                            (m)                           (n)                            (o) 

(a)     (b)                           (c)                           (d)                            (e) 

           (f)                         (g)                            (h)                           (i)                            (j) 

           (f)                         (g)                            (h)                           (i)                            (j) 
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