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Abstract 

A severe limitation imposed by many continuum damage mechanics mod- 
els is the assumption of initial isotropy in many anisotropic damage models. 
This may place unrealistic assumptions about the material being modelled or 
restrict the application of continuum damage mechanics to materials without 
significant anisotropy. It remains a challenge to use anisotropic continuum 
damage mechanics to model common rocks and materials with significant 
initial anisotropy, for example sedimentary rocks or brittle composite materi- 
als. We show how ultrasonic investigations in experiments where an initially 
transverse isotropic material undergoes damage-induced anisotropy can be 
used to guide the development of transverse isotropic damage models. We 
provide a robust way to validate and advance models of general anisotropic 
damage evolution based on continuum damage mechanics. 
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1. Introduction 

Modelling and analysis of fracture propagation and progressive damage 
evolution are integral for damage-tolerant design in manufacturing, mechani- 
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cal, structural and civil engineering. Among the various approaches to model 
fracture and damage in solids, methods of continuum damage mechanics have 
gained the most attention. Two of the most challenging problems which 
arise in continuum damage mechanics is firstly the selection of variables to 
describe the internal damage and secondly the difficulty in modelling mate- 
rials with significant initial anisotropy (eg. composites, sedimentary rocks). 
Very few damage models have been proposed for initially anisotropic ma- 
terials (Cazcu et al. (2007)) and the correct modelling of the interaction of 
initial anisotropy and damage-induced anisotropy remains a much debated 
issue (Halm et al. (2002)). This paper outlines a method to identify the 
directionality and magnitude of the induced anisotropic damage for initially 
transverse isotropic materials using experimental ultrasonic measurements of 
damaged elastic moduli. This research provides an interface between theory 
and experiment, detailing a simple way to experimentally test and verify 
models of anisotropic damage evolution for initially transverse isotropic ma- 
terials remaining transverse isotropic with damage. In future work we will 
extend these results to modelling anisotropic damage for initially transverse 
isotropic or orthotropic materials becoming orthotropic with damage. 

Anisotropy is an important factor in producing composites with optimum 
utilization of the inherent strengths of the constituent materials. Manufac- 
turing materials with optimum strength properties is important in reducing 
safety margins and cutting costs. With the rapid advancement in material 
design, the assumption of scalar isotropic damage may not suffice and more 
accurate models of anisotropic damage for initially anisotropic materials are 
needed. This research aims to address some of these challenges by providing 
a way to develop phenomenological models of anisotropic damage for ini- 
tially transverse isotropic materials, such as unidirectional fibre reinforced 
composites or shales, using experimental measurements of ultrasonic elastic 
wave  velocities and the framework of continuum damage mechanics. 

Nondestructive testing using ultrasonic investigations is a relatively ma- 
ture  field  for  composite  materials  (Castellano  et  al.  (2017);  Marguéres  and 
Meraghni (2013); Audoin and Baste (1994); Hufenbach et al. (2006)etc). 
However the monitoring of elastic wave velocities in anisotropic sedimentary 
rocks such as shale is relatively uncommon (Sarout et al. (2007); Sarout and 
Guéguen  (2008a);  Piane  et  al.  (2015);  Kuila  et  al.  (2011);  Bonnelye  et  al. 
(2017)). This work will not only advance models of anisotropic damage in 
composites but also can be applied to other quasi-brittle materials with initial 
transverse isotropy such as sedimentary rocks like shales. 
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In many geotechnical applications such as unconventional oil and gas ex- 
traction, carbon dioxide sequestration, nuclear waste disposal and geothermal 
energy extraction the initial anisotropy of the rock can impact on the stabil- 
ity of structures such as cavities, wellbores, or hydraulic fractures. Although 
shales are the dominant clastic component in sedimentary basins, our un- 
derstanding of their behaviour is very limited and shale anisotropy has been 
known to be a significant problem for seismic exploration for many years 
(Dodds et al. (2007)). The elastic anisotropy in shales can amount to up 
to 50-60% in elastic stiffnesses and shales are often modelled as a transverse 
isotropic material. Clayrocks, and shales in particular, represent approxi- 
mately two-third of all sedimentary rocks in shallow earth crustal rocks. In oil 
and gas drilling operations, shales constitute 80% of all the drilled sections, 
mainly because they overlie most hydrocarbon bearing reservoirs (Sarout 
et al. (2007)). Modeling rock damage during the process of hydraulic frac- 
turing is still an open issue and predicting the actual geometry of the crack 
pattern in the field is challenging especially in anisotropic unconventional 
reservoirs such as shales and coal seams. The anisotropy of clayrocks and 
shales is not just important in petroleum and civil engineering but also if 
they are to be used as possible sites for storing nuclear waste (Guéguen and 
Kachanov (2011)). This work aims to advance models of anisotropic damage 
using continuum damage mechanics so that they can be applied to materi- 
als with significant initial anisotropy and in this paper we consider initially 
transverse isotropic materials such as sedimentary rocks or  composites. 

Several of the challenges in developing anisotropic damage models are 
firstly to develop anisotropic damage models which can be applied to initially 
anisotropic materials, secondly to identify the directionality and magnitude 
of the damage-induced anisotropy, and lastly to perform measurements which 
test the predictions of the proposed models. We show how anisotropic dam- 
age models can be developed for initially transverse isotropic materials re- 
maining transverse isotropic. We provide a quantitative relationship between 
the macroscopic, empirically observed damaged elastic moduli and the inter- 
nal damage variables in section 4. We analyze the tensorial damage evolution 
for four initially transverse isotropic materials undergoing damage to remain 
transverse isotropic in section 5. 

In section 2 we review current approaches to modelling anisotropic dam- 
age and how they compare with our approach. We outline our model in 
section 3 following the approach of Cauvin and Testa (1999a). In section  
4 we derive the relationship between the internal damage variables used in 
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general continuum damage mechanics models and the empirically observed 
reduction in elastic wave speeds. Section 4 extends the work of Cauvin and 
Testa  (1999a,b);  Jarić  et  al.  (2012) to  consider  initially  transverse  isotropic 
solids. Section 4.1 and 4.2 expand the scope of these previous papers to relate 
the internal damage tensor variables (D) to the empirically observed dam- 
age tensor (DE ) defined using the stiffness reduction given from ultrasonic 
measurements. This relationship can help advance and test the predictions 
of general continuum damage models. In section 5 we analyze experimen- 
tal results of several initially transverse isotropic solids undergoing damage- 
induced anisotropy. We plot the internal damage tensor variables, and also 
the change in the elastic parameters with damage in Fig. 1-4. 

In section 5 we apply the derived quantitative relationship between the 
macroscopic, empirically observed damaged elastic moduli and the internal 
damage variables from section 4 to four initially transverse isotropic mate- 
rials undergoing damage to remain transverse isotropic. First we model the 
damage-induced anisotropy of two initially transverse isotropic shale speci- 
mens (with axis of isotropy in z direction) under triaxial loading with the 
axial loading in the z direction using the experimental ultrasonic measure- 
ments of the elastic wave velocities with increasing axial pressure of Sarout 
and Guéguen (2008a).  Second we model the damage-induced anisotropy due 
to a low velocity impact to two transverse isotropic composites using the 
ultrasonic measurements of the elastic wave velocities for the experimen- 
tal  results  of  Marguéres  and  Meraghni  (2013)  and  Castellano  et  al.  (2017). 
Castellano et al. (2017) also subjected the composite to post-fatigue tensile 
loading. 

 
2. Modelling damage-induced anisotropy for initially transverse 

isotropic  materials 

Many different models of damage have been proposed using continuum 
damage mechanics since its inception. Many different mathematical repre- 
sentations for the internal damage variable have been proposed from scalar 
(Lemaitre (1996); Voyiadjis and Kattan (2012); Zhu and Tang (2004) etc); to 
second order tensors (Chow and Wang (1987); Murakami (1988); Chaboche 
(1993)) etc; to fourth order tensors (Ju (1990); Cauvin and Testa (1999a,b); 
Chaboche (1993)) etc. Scalar damage models are restricted to modelling 
isotropic damage only and have a further restriction that Poisson’s ratio of 
the material does not change with damage.  This restriction may not be 
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physically realistic as we will show in our analysis of experimental results 
of anisotropic materials where Poisson’s ratio changes significantly in some 
cases. Second-order tensorial anisotropic damage representation is restrictive 
compared to fourth-order tensorial formulation, but since its interpretation is 
quite simple it has been widely used for either metallic or quasi-brittle mate- 
rials. In this paper we consider the most general case to represent anisotropic 
damage using a fourth order damage tensor. 

Several micromechanical approaches have been employed including effec- 
tive medium theory (Sarout and Guéguen (2008b); Guéguen and Kachanov 
(2011); Sayers and Kachanov (1995)) etc and microplane models (Caner and 
Bažant  (2013);  Bažant  (1984);  Bažant  and  Caner  (2005);  Yang  and  Leng 
(2014)) etc, to model the progressive degradation of anisotropic and isotropic 
materials. Fabric tensors have also been related to the damage tensor in the 
work of (Voyiadjis and Kattan (2006, 2009)). We present an alternative phe- 
nomenological approach based on ultrasonic elastic wave velocity measure- 
ments and continuum damage mechanics. Instead of modelling the various 
damage mechanisms at the microscale level, we represent the damage indi- 
rectly by modelling the average material degradation at the mesoscale for an 
initially transverse isotropic material undergoing damage-induced anisotropy 
to remain transverse isotropic. Future work will extend upon these models 
of transverse isotropic damage resulting from well-defined and constrained 
loading experiments which result in transverse isotropic damage at both the 
meso and macroscale level to modelling localized damage at the mesoscale 
level. 

We show how ultrasonic measurements of seismic wave velocities can be 
used to determine the evolution of the fourth order anisotropic damage ten- 
sor characterizing this internal damage. Elastic properties can be determined 
by static measurements of stress and strain or by dynamic methods such as 
ultrasonic measurements of the seismic wave velocities (Paterson and Wong 
(2005)). Ultrasonic methods have been very popular in nondestructive test- 
ing and characterization of materials and monitoring progressive damage. 

Ultrasonic techniques provide fast and non-destructive methods for reli- 
able measurement of elastic properties and their change with damage (Marguéres 
and Meraghni (2013)). Ultrasonic techniques have been employed by sev- 
eral researchers (see for example Audoin and Baste (1994); Hufenbach et al. 
(2006); Castellano et al. (2017)) to identify purely phenomenological  models 
of anisotropic damage for composite materials. Our approach extends these 
models to equate the phenomenological models of experimentally measured 
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stiffness reduction during loading given by ultrasound measurements to gen- 
eral fourth order anisotropic damage tensorial models given by continuum 
damage mechanics in section 3. In section 3 we define the general fourth 
order anisotropic internal damage tensor using the approach by Cauvin and 
Testa (1999a) using the principle of strain equivalence and effective stress. 

Mallet et al. (2013, 2014) have also investigated cracking using ultra- 
sonic elastic wave velocity and thin section measurements of an initially 
isotropic glass sample undergoing thermal cracking to become transverse 
isotropic. Mallet et al. (2013) showed using effective medium theory and 
the non-interaction approximation (Sayers and Kachanov (1995)) how elas- 
tic wave velocity measurements can be used to infer crack densities and 
thus the damaged material stiffness and compliance tensor for thermally 
cracked glass. Closed form results for damage induced anisotropy in initially 
anisotropic materials are available for 2D problems using micromechanical 
approaches  (Guéguen  and  Kachanov  (2011)),  however  for  3D  damage  it  is 
much  more  difficult.   Sarout  and  Guéguen  (2008b)  have  obtained  an  exact 
solution for a transverse isotropic rock containing cracks that run parallel to 
the plane of isotropy. In this paper we also use ultrasonic measurements to 
quantify the anisotropic 3D damage in a similar approach to these microme- 
chanical approaches. However we relate the ultrasonic measurements to the 
general internal fourth rank tensorial damage variables defined using contin- 
uum damage mechanics for initially transverse isotropic materials undergoing 
damage-induced anisotropy to remain transverse isotropic. 

 
3. Fourth order damage tensor to characterize the internal damage 

 

Continuum damage mechanics is constructed adopting the following premises: 
the microstructural changes from damage can be described by means of 
macroscopic damage variables, the mechanical behavior of a damaged ma- 
terial can be described by a set of constitutive and evolution equations for  
the state variables. The mechanical formulation of these equations can be 
performed by the using the notion of effective state variables and the hypoth- 
esis of mechanical equivalence between the damaged state and a fictitious 
undamaged state with equivalent strain or energy (Murakami (2012)). We 
define the internal damage tensor (D) in this paper to be the damage tensor 
derived within this continuum damage mechanics framework. We also de- 
fine an empirical damage tensor (DE ) which represents the reduction of the 
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elastic stiffness tensor with damage. We quantify the relationship between 
the empirically measured damage tensor representing the ultrasonics stiff- 
ness reduction often employed in purely phenomenological models of damage 
in composites (see for example Audoin and Baste (1994); Hufenbach et al. 
(2006); Castellano et al. (2017)) and the internal damage tensor derived using 
continuum damage mechanics. This relationship allows anisotropic damage 
models based on continuum damage mechanics to be experimentally vali- 
dated using this relationship. 

In general if we consider a linear relationship between the undamaged and 
damaged stiffness tensor,  then we can define:  Ẽ  = (I8 − D8) :: E,  where Ẽ 
is the damaged stiffness tensor, E is the original undamaged stiffness tensor, 
I8 is an eighth rank identity tensor and D8 is an eighth rank damage tensor. 
However working with an eighth order tensor description of damage would 
be very complex. In the seminal work of Cauvin and Testa (1999a) they 
showed using the principle of strain equivalence that in general only a fourth 
order damage tensor (D) is needed to describe a material (anisotropic or 
isotropic) undergoing damage where Ẽ = (I4     D) :: E.  Using the framework 
of continuum damage mechanics and the concept of effective stress and the 
principle of equivalent strain we follow the approach of Cauvin and Testa 
(1999a) to define the internal general fourth order damage tensor. We will 
briefly outline this approach here. 

Cauvin and Testa (1999a) used the hypothesis of strain equivalence and 
the concept of effective stress to define the inelastic constitutive equation 
of a damaged material. The principle of strain equivalence considers two 
configurations with equivalent strain. In the damaged configuration where 
σ  =  Ẽ : E, σ is the actual stress tensor and E the strain tensor.  In the 
fictitious undamaged configuration where σ̃ = E : E, σ̃  is the effective stress 
tensor applied to the undamaged original material to produce the same elastic 
strain tensor. Because the same elastic strain is considered in both damaged 
and undamaged materials that strain is considered to be the equivalent strain. 
Using this principle of strain equivalence Cauvin and Testa (1999a) showed 
that the most general damage description will reduce from an eighth to a 
fourth order damage tensor. We use this definition of the general fourth 
order internal damage tensor (D) defined by Cauvin and Testa (1999a) using 
continuum  damage  mechanics:  Ẽ  =  (I4 − D)  ::  E.  This  is  different  to  our 
definition of the empirical damage tensor DE which represents the reduction 
of the elastic stiffness tensor with damage:  DEij   = 1    Ẽij /Eij  (no summation 
implied over repeated indice here). However it is clear that the two damage 
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tensors are related to each other and in this paper we derive this relationship. 
This provides a way to experimentally validate and guide the development 
of continuum damage models for transverse isotropic damage that model the 
damage response of all 5 independent elastic  parameters. 

Continuum damage mechanics can be used to define the evolution of the 
internal damage tensor a priori using irreversible thermodynamics. This 
work provides a bridge between this theoretical approach to modelling dam- 
age and experimental measurements of stiffness reduction with damage. The 
relationship between the empirically measured damage tensor (DE ) and the 
internal damage tensor (D) in sections 4.1 and 4.2 provides a way to indepen- 
dently validate and test existing theoretical anisotropic continuum damage 
models using ultrasonic measurements. 

Cauvin and Testa (1999a) also showed that the actual number of inde- 
pendent damage parameters in the fourth order damage tensor is related to 
the  material  and  damage  symmetry.   Cauvin  and  Testa  (1999a)  and  Jarić 
et al. (2012) showed that the general supersymmetry requirements for the 
damaged elastic stiffness tensor Ẽ  requires that Ẽijkl  = Ẽjikl  = Ẽijlk  = Ẽklij , 
and this requirement places the following constraint on the damage tensor: 

 
DijrsErskl − DklrsErsij =  0, (1) 

where Ẽijkl =   (Iijrs − Dijrs)Erskl, (2) 
1 

and Iijrs = (δirδjs + δisδjr). 
2 

where  D is  the  damage  tensor,  Ẽ is the damaged stiffness tensor, E is the 
original undamaged stiffness tensor and δij  is the Kronecker delta function. 
Here we note that the damage tensor is not supersymmetric like Ẽ but it does 
have  the  same  number  of  independent  variables  as  Ẽ (Jarić  et  al.  (2012)). 
Because E is supersymmetric equation (1) implies that D possesses minor 
symmetries: Dijkl = Djikl = Dijlk. The above equations hold for any material 
symmetry of the initially undamaged and damaged material. Here we note 
that we don’t need to require that our damage tensor is supersymmetric and 
that the constraint in equation 1 will ensure that the damaged stiffness tensor 
remains supersymmetric. 

This  paper  extends  the  work  of  Cauvin  and  Testa  (1999a,b)  and  Jarić 
et al. (2012) to consider the evolution of the anisotropic damage tensor for 
initially transverse isotropic materials. Cauvin and Testa (1999a) defined 
the internal fourth order anisotropic damage tensor for initially  isotropic 
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materials undergoing both isotropic or anisotropic damage. We extend this 
work to consider initially transverse isotropic materials undergoing damage to 
remain transverse isotropic. In our previous paper (Olsen-Kettle (2018)) we 
considered initially isotropic solids undergoing damage to become transverse 
isotropic. 

Jarić  et  al.  (2012)  also  defined  the  internal  damage  tensor  for  initially 
isotropic (initially 2 independent elastic parameters) or cubic (initially 3 inde- 
pendent elastic parameters) solids undergoing either isotropic or anisotropic 
damage. We extend their work to consider initially transverse isotropic ma- 
terials (5 independent elastic parameters) undergoing transverse isotropic 
damage.   Furthermore  we  expand  on  the  analysis  of  Jarić  et  al.  (2012)  to 
relate the fourth order internal damage tensor variables to the empirically 
measurable reduction in the stiffness tensor of initially transverse isotropic 
materials undergoing anisotropic damage. 

Cauvin and Testa (1999a,b) relate the change in well-known elastic pa- 
rameters, such as the bulk modulus, Young’s modulus and Poisson’s ratio 
with damage, to the internal damage variables for the case of an initially 
isotropic solid undergoing damage to remain isotropic. We extend this ap- 
proach to consider initially transverse isotropic solids undergoing damage 
to remain transverse isotropic. We employ different empirical measures of 
damage to Cauvin and Testa (1999a,b). Cauvin and Testa (1999a,b) relate 
the internal fourth order damage tensor variables to the change in isotropic 
elastic moduli and Poisson’s ratio with damage. Because we are consider- 
ing initially anisotropic materials and the evolution of anisotropic damage 
we use a more convenient empirical measure of damage which is the exper- 
imentally measured stiffness reduction using ultrasonic investigations. We 
chose this measure of damage as ultrasonic investigations are widely used 
in many anisotropic materials such as composites, and provide a convenient 
experimental tool to measure the evolution of the full stiffness tensor. The 
evolution of the full stiffness tensor is required to consider anisotropic damage 
evolution. 

Here we note that we use the conventional definition of the damage tensor 
using continuum damage mechanics defined as:  Ẽ = (I    D) : E in equation 
2 using the double inner product instead of a new definition of the damage 
tensor used by Audoin and Baste (1994); Hufenbach et al. (2006); Castellano 
et al. (2017).  Audoin and Baste (1994) defined the damage tensor used 
in  these  references  using  an  additive  form  where:   Ẽ  =  E − Ed  and  Ed  is 
their damage tensor before normalization. The damage tensor used in these 
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models is similar to our definition for the empirical damage tensor DE . 
 

4. Damage induced anisotropy in initially transverse isotropic ma- 
terials 

The compliance tensor in Voigt notation for an initially transverse isotropic 
material with the axis of isotropy in the z direction is: 
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where E = Ex = Ey is the Young’s modulus in directions x and y, Et = Ez is 
the Young’s modulus in the z direction; Gt = Gyz = Gxz is the shear modulus 
for coordinate planes y-z and x-z; and νt = νzy = νzx and ν = νyx(= νxy ) are 
the Poisson’s ratios in the direction of the second subscript produced by a 
load in the direction of the first subscript. Here we note that Poisson’s ratios 
are not symmetric (i.e.  νij  = νji  however they do satisfy νij /Ei  = νji/Ej . 
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simply the inverse of the compliance tensor: 
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Here we are using Voigt notation where each pair of indices (ij and kl) is 
replaced by a single index: 11 1, 22 2, 33 3, 23, 32 4, 13, 31 5, 
and 12, 21 6. 

For this paper we assume that the material symmetry axes of the trans- 
verse isotropic solid do not change and we apply our analysis to the exper- 
imental  loading  conditions  of  Sarout  and  Guéguen  (2008a);  Marguéres  and 
Meraghni (2013) and Castellano et al. (2017). These authors showed using 
ultrasonic investigations that this assumption is valid. Thus when deriving 
the stiffness tensor for the damaged material Ẽ and the damage tensor D we 
use the material axes of the original undamaged initial transverse isotropic 
specimens as the material axes for the damaged transverse isotropic speci- 
mens. Future work will also investigate the case of off-axis loading where 
the material axes and the principal stress directions do not align as in the 
experiments of Baste and Aristiégui (1998). 

The stiffness tensor for the damaged material remaining transverse isotropic 
with the same material symmetry axes (again using the material axes of the 
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ẼẼI ν̃I 
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[(1−ν̃)E I−2Eν̃I2] 0 0 0 
 

 

 ,
 

 

 
 0 0 0 0 G 0  
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Ẽ13 0 0 0 



 

=    
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where  Ẽ12  =  Ẽ11  − 2Ẽ66,  Ẽ =  Ẽx  =  Ẽy   is  the  damaged  Young’s  modulus 
in  directions  x and  y,  Ẽt   =  Ẽz   is  the  damaged  Young’s  modulus  in  the  z 
direction;  G̃t   =  G̃yz   =  G̃xz   is  the  damaged  shear  modulus  for  coordinate 
planes y-z and x-z; and ν̃ t  = ν̃zy  = ν̃zx  and ν̃ = ν̃yx(= ν̃xy ) are the damaged 
Poisson’s ratio in the direction of the second subscript produced by a load 
in the direction of the first subscript. Here we note that Poisson’s ratios are 
not symmetric (i.e.  ν̃ij  /= ν̃ji  however they do satisfy ν̃ij /Ẽi  = ν̃ji/Ẽj . 

Ẽ1212 0 0 0 0 0 
Ẽ1212 

Ẽ66 0 0 0 0 0 

0 0 0 

G̃t 0  0 
˜t 

2 

0 0 0 0 0 Ẽ 
2(1+ν̃) 

0 0 0 

0 0 0 
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The corresponding general anisotropic damage tensor for a material un- 
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dergoing transverse isotropic damage can be written in Voigt notation as: 



 


 




 




 

 

0 
0 
0 
0 

 



 

 1313 0 
 

 
 

We can still write D in Voigt notation as equation 1 implies that D pos- 
sesses the minor symmetries: Dijkl = Djikl = Dijlk. Here we note that D is  
not  supersymmetric  like  Ẽ.  However  D still  has  the  same  number  of  in- 
dependent components (nine) as Ẽ, and D21, D31  and D32  are given by the 
supersymmetric constraint for Ẽ  (equation 1): 

1 
D21 = E11 

((D11 − D22)E12 + (D13 − D23)E13) + D12, 

D31 = 
 

D32 = 

1 
E11 
1 

E11 

(D13E33 + (D11 + D12 − D33)E13 − D32E12) , 

(D23E33 + (D21 + D22 − D33)E13 − D31E12) . (3) 

, 

. 

D = 

= 

D11 D12 D13 0 0 0 
D21 D22 D23 0 0 0 
D31 D32 D33 0 0 0 

0 0 0 D44 0 0 
0 0 0 0 D55 0 
0 0 0 0 0 D66 

 D1111 D1122 D1133 0 0 
D2211 D2222 D2233 0 0 
D3311 D3322 D3333 0 0 

0 0 0 D2323 0 
0 0 0 0 D 
0 0 0 0 0 
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Using equation 2 the damaged stiffness tensor variables for Ẽ  become: 

Ẽ11 =   E11(1 − D11) − E12D12 − E13D13 

Ẽ12 =   −E11D12 + E12(1 − D11) − E13D13 

Ẽ13 =   −E33D13 + E13(1 − D11 − D12) 
Ẽ22 =   E11(1 − D22) − E12D21 − E13D23 

Ẽ23 =   −E33D23 + E13(1 − D21 − D22) 
Ẽ33 =   E33(1 − D33) − E13(D31 + D32) 
Ẽ44 =   G(1 − 2D44) 
Ẽ55 =   G(1 − 2D55) 

Ẽ66 
E(1 2D  ) 

= . (4) 
2(1 + ν) 

 

In the next section we show the conditions for the ultrasonic measurements 
required for the material to remain transverse isotropic with damage. 

 
4.1. Relating empirical damage parameters to ultrasonic measurements 

In this section we define the empirical damage tensor, DEij which can be 
experimentally measured. We will define the relationship between the exper- 
imentally measured empirical damage tensor (DE ) and the internal damage 
tensor (D) defined using continuum damage  mechanics. 

We can define empirical damage variables (DEij ) as in Olsen-Kettle (2018) 
which  satisfy  Ẽij  = (1     DEij )Eij  (no  summation  over  i, j)  to  compare  the 
measured decrease in ultrasonic elastic wave velocities (and decrease in cor- 
responding stiffness tensor elements Ẽij ) with the internal damage variables 
(Dij ). For example DE11 satisfies: 

Ẽ11 =   (1 − DE11 )E11, 
using equation 4: Ẽ11 =   E11(1 − D11) − E12D12 − E13D13. 

1 
Rearranging for DE11 : DE11 = E11 

(E12D12 + E13D13) + D11, 
Ẽ11 

and DE11 =   1 . 
11 

Here we note that the empirical damage parameters are not exactly the 
same as those used by Baste and Aristiégui (1998); Marguéres and Meraghni 
(2013) and Castellano et al. (2017).  We do not need to symmetrize our 
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empirical damage tensor to recover a supersymmetric elastic tensor (Olsen- 
Kettle (2018)). This powerful analysis provides a relationship between ex- 
perimentally measured empirical damage parameters and the internal fourth 
order tensorial damage variables using continuum damage mechanics for 
anisotropic damage of an initially transverse isotropic solid. 

Similarly  Ẽ12  =  (1 DE12 )E12  etc  and  we  can  rearrange  equation  4  to 
define the empirical damage parameters below: 

 

 
DE11 = 

 
DE22 = 

1 
E11 

1 
E11 
E13 

Ẽ11 
(E12D12 + E13D13) + D11 = 1 , 

11 
Ẽ11 

(E12D21 + E13D23) + D22 = 1 , 
11 

Ẽ33 
DE33 = E33 

(D31 + D32) + D33 = 1 , 
33 

1 
DE12 =   D11 + 

12 
 =   1 + (D 

(E11D12 + E13D13) 
E11 − 1) + 2(1 − D 

 
E66 ) , 

E11 E12 
E66 E12 

using Ẽ12  = Ẽ11 − 2Ẽ66, 
E33 

 
Ẽ13 

DE13 = E13 
D13 + D11 + D12  = 1 , 

13 

DE23 = 
E33 
E13 

Ẽ13 
D23 + D21 + D22  = 1 , 

13 
Ẽ44 

DE44 =    2D44 = 1 , 
44 

Ẽ44 
DE55 =   2D55 = 1 

44 
Ẽ66 

DE66 =   2D66 = 1 
66 

, 
 
. (5) 

 

Because the material remains transverse isotropic under loading we have 
used  the  fact  that  Ẽ11  =  Ẽ22, Ẽ13  =  Ẽ23  and  Ẽ44  =  Ẽ55.   This  means  that 
DE11   = DE22 ,  DE13   = DE23 ,  and  DE44   = DE55 ,  and  we  will  show  in section 
4.2 that this implies that D11 = D22, D13 = D23, D12 = D21  D31 = D32, and 
D44  = D55. 

E 
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4.2. Quantifying internal damage variables of a fourth rank transverse isotropic 
damage tensor in terms of the empirical damage parameters given by ul- 
trasonic  measurements 

To relate the internal fourth rank damage variables (Dij ) to the empirical 
damage  variables  (DEij )  we  can  invert  equations  5  and  use  the  constraints 
for D21, D31 and D32 in equation 3. The internal damage variables are: 

 

 
D11 = D22 = (ν − 1)Et [DE11 

+ νDE66 ] + Eνt  [(1 − ν)DE + (1 + ν)DE 2 
13 + 2νDE66 ] , (1 + ν) [(ν − 1)Et + 2Eνt2] 

D13 = D23 = −Eνt {2Eνt2(DE − DE66 ) + Et [−2DE11 + (1 + ν)DE13 + (1 − ν)DE66 ]} , (1 + ν)Et [(ν − 1)Et + 2Eνt2] 

D12 = D21 = Eνt2 [(1 − ν)DE + (1 + ν)DE13 − 2DE66 ] + Et(ν − 1)(DE11 − DE66 ) , 

 
D33 = 

 
2Eνt2DE 

(1 + ν) [(ν − 1)Et + 2Eνt2] 

+ Et(ν − 1)DE33 , 

 
D31 

D44 

 
= D32 

 
= D55 

 
D66 

(ν − 1)Et + 2Eνt2 

Etνt(ν − 1) [DE13  − DE33 ] 
 

(ν − 1)Et + 2Eνt2 
DE44 

= , 
2 DE66 

= , 
2 

where DE11 , DE13 , DE33 , DE44 and DE66 are measured experimentally from the 
ultrasonic elastic wave measurements. 

In this paper we only consider experiments where the principal applied 
stresses are coaxial with the material axes of the original transverse isotropic 
material and the damaged material. We consider a change in the magnitude 
of the initial anisotropy with damage but no change in the material axes’ 
directions with damage for this paper. 

The fourth order damage tensor for an initially transverse isotropic solid 
undergoing damage to become transverse isotropic (where the material sym- 
metry axes do not change from undamaged to damaged state) in Voigt no- 

11 

11 

11 

13 
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tation is: 



 


 




 


 

 
 
 

5. Internal damage variables for experiments of damage-induced 
anisotropy in initially transverse isotropic solids 

Figures 1 to 4 analyze the ultrasonic elastic velocity measurements of 
Sarout and Guéguen (2008a); Marguéres and Meraghni (2013) and Castellano 
et al. (2017) and relate them to internal damage tensor variables for different 
transverse isotropic materials undergoing damage-induced anisotropy to re- 
main transverse isotropic. All the materials are initially transverse isotropic 
with  the  axis  of  isotropy  in  the  z  direction.   Sarout  and  Guéguen  (2008a) 
investigated stress-induced anisotropy of both a wet and dry shale sample 
undergoing triaxial loading with axial loading perpendicular to the bedding 
plane (plane of isotropy). Castellano et al. (2017) considered a low-velocity 
impact in the x direction followed by fatigue tensile loading in the z direc- 
tion for a glass fibre-reinforced composite.  Marguéres and Meraghni (2013) 
consider a low velocity impact in the z direction for a polyester composite. 

5.1. Damage-induced anisotropy in shale samples 
Sarout  and  Guéguen  (2008a)  investigated  stress-induced  anisotropy  of 

both a wet and dry shale sample undergoing triaxial loading with axial load- 
ing perpendicular to the bedding plane (plane of isotropy). The authors 
obtained samples from the same core a few cms apart and cored the sam- 
ples perpendicular to the bedding plane. The dry shale sample was dried at 
105◦C, while the wet shale sample was equilibrated in an atmosphere of 98% 
relative humidity.  As noted by Sarout and Guéguen (2008b) interpretation 
of the wet experiment is less straightforward, and we add to their interpreta- 
tion and analysis of their experimental results. The presence of water in the 
shale’s crack-like pore network has the most effect on Poisson’s ratio as we 
can observe in the difference in Poisson’s ratio when comparing the dry shale 
sample’s elastic moduli in Table 1 at room temperature with the respective 
wet shale sample’s elastic moduli in Table 2. 

D = 

D11 D12 D13 0 0 0 
D12 D11 D13 0 0 0 
D31 D31 D33 0 0 0 

0 0 0 D44 0 0 
0 0 0 0 D44 0 
0 0 0 0 0 D66 
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Figure 1: The internal tensorial damage variables for a dry (a) and wet (b) shale rock 
specimen under triaxial loading with a confining pressure of 15MPa for the experimental 
results  of  Sarout  and  Guéguen  (2008a)  (see  Fig.  14).  Their  experimental  results  showed 
a change in the elastic moduli but not in the material axes of symmetry with the axis of 
isotropy remaining in the z direction. 

 

The internal damage tensor variable is plotted in Fig. 1 as a function of 
increasing axial stress until peak stress is reached and rupture along a shear 
plane  occurs  for  the  experimental  results  of  Sarout  and  Guéguen  (2008a) 
(see  Sarout  and  Guéguen  (2008a),  Fig.  14).   Figures  1  and  2  consider  the 
experiments of Sarout and Guéguen (2008a) for the second axial loading of 
the dry and wet shale samples with a constant confining pressure of 15MPa. 
The wet sample was loaded far beyond peak stress, however the dry sample 
was only loaded to peak axial stress. In Fig. 1 we consider negative values 
of the damage which correspond to strain hardening due to microcrack clo- 
sure during the triaxial loading and we observe that some of the damage is 
reversible. Negative values of the internal damage variables were also ob- 
served by Castellano et al. (2017) and they also noted that this does not 
violate any theoretical assumptions on the damage tensor. Perhaps in future 
work it could be advantageous to also consider an additional healing tensorial 
variable to represent the strain hardening behavior. 

 
 
 

Fig. 1 plots the internal tensorial damage variables for a shale rock spec- 
imen under triaxial loading with a confining pressure of 15MPa for the ex- 
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E(= Ex  = Ey ) 24.48GPa 
Et(= Ez ) 15.91GPa 

ν(= νxy = νyx) 
νt(= νzx = νzy ) 

νxz (= νyz ) 

 
 
 
 
 

 
 

Figure 2: The corresponding change in the elastic moduli with damage for a dry (a) and 
wet (b) shale rock specimen under triaxial loading with a confining pressure of 15MPa for 
the experimental results of Sarout and Guéguen (2008a) (see Fig. 14).  The corresponding 
change in the Poisson’s ratio with damage for a dry (c) and wet (d) shale rock specimen. 
Their experimental results showed a change in the elastic moduli but not in the material 
axes of symmetry with the axis of isotropy remaining in the z direction. 

 
 

Table 1: Initial elastic moduli for dry shale rock specimen in Fig. 1 and 2 for experimental 
results of Sarout and Guéguen (2008a) (in Table 3, room pressure results) 

  

G(= Gxy  = E/(2(1 + ν)) 7.40GPa 
Gt(= Gxz  = Gyz ) 10.80GPa 

0.3183 
0.0678 
0.1213 
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E(= Ex  = Ey ) 27.25GPa 
Et(= Ez ) 17.21GPa 

ν(= νxy = νyx) 
νt(= νzx = νzy ) 

νxz (= νyz ) 

 
 
 
 
 

Table 2: Initial elastic moduli for wet shale rock specimen in Fig. 1 and 2 for experimental 
results of Sarout and Guéguen (2008a) (in Table 3, room pressure results) 

  
 

perimental  results  of  Sarout  and  Guéguen  (2008a)  (see  Fig.  14).  The  axial 
pressure was applied in the z direction, and the shale was initially trans- 
verse isotropic with an axis of isotropy in the z direction. From symmetry 
considerations we can deduce that the lowest symmetry that should result 
from triaxial loading (axial stress applied in the z direction) of a transverse 
isotropic solid with axis of isotropy in the z direction is transverse isotropic 
with the same material axes in the undamaged and damaged state. The 
experimental  results  of  Sarout  et  al.  (2007);  Sarout  and  Guéguen  (2008a) 
confirmed this assumption and the ultrasonic measurements of the elastic 
wave velocities showed a change in the elastic moduli but not in the material 
axes of symmetry with the axis of isotropy remaining in the z direction. 

Similarly to our previous paper (Olsen-Kettle (2018)) we observe that the 
damage tensors in Fig. 1 are not diagonal using the principal stress directions 
as the model coordinates. Often only a subset of the diagonal elements of the 
damage tensor are retained (see for example Gaede et al. (2013); Chow and 
Wang (1987); Lemaitre et al. (2000)) and the principal directions of a second 
order or fourth order anisotropic damage tensor are assumed to coincide with 
the applied principal stress directions (Chow and Wang (1987)). However we 
show that the off-diagonal elements of the fourth order damage tensor are 
nonzero using the principal stress directions as our model axes. 

In Fig. 2(a) and (b) we observe that Ẽt   = Ẽz   increases  due  to  strain 
hardening from microcrack closure perpendicular to the compressive axial 
stress in the z direction for the lower values of axial pressure applied in the 
experiments  of  Sarout  and  Guéguen  (2008a).  As the  shale  reaches  its  peak 
axial stress and failure localizes along a shear band inclined at approximately 
45◦  to the bedding plane (Sarout and Guéguen (2008a)), we observe that Ez 

begins to decrease with rupture of the shale.  We observe that Ẽ = Ẽx(= Ẽy ) 
decreases due to microcracking parallel to the compressive axial stress in the 
z direction which then progress to macrocracking and rupture localization 

G(= Gxy  = E/(2(1 + ν)) 10.50GPa 
Gt(= Gxz  = Gyz ) 7.10GPa 

0.2976 
0.2198 
0.3480 
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along a shear band inclined at approximately 45◦ to the bedding plane. 
For the variation in Poisson’s ratio in Fig. 2(c) and (d) we observe that 

the wet and dry samples show slightly different overall qualitative behaviour 
and this could be partly attributed to their different initial elastic moduli 
in Tables 1 and 2. First we can analyze the variation in Poisson’s ratio in 
Fig. 2(c) and (d) for the lower axial pressures where the confining pressure 
of 15MPa has a dominant effect. Tables 1 and 2 show that the highest Pois- 
son’s ratio for the dry shale sample is ν = νyx = 0.3183 and for the wet shale 
sample it is νxz = 0.3480. When a material is subject to a constant confin- 
ing  pressure  of  15MPa  in  the  experiments  of  Sarout  and  Guéguen  (2008a) 
in Fig. 2 when the axial stress is zero, a high anisotropic Poisson’s ratio, 
νij , means that a confining pressure in direction i will cause extension in 
direction j becoming more compressible in this direction and thus νij de- 
creases for initially high values of anisotropic Poisson’s ratio. Conversely 
for a low anisotropic Poisson’s ratio, νij , a confining pressure in direction i 
will cause very little extension in direction j and the material accommodates 
the deformation without changing shape thus becoming less compressible in 
this direction and νij increases for initially low values of anisotropic Pois- 
son’s ratio. This explains qualitatively why νyx decreases for the dry shale 
and νxz decreases for the wet shale, while the remaining Poisson’s ratio for 
the respective samples increase for a constant confining pressure for the wet 
shale. Sarout et al. also confirmed this observation that elastic anisotropy 
decreases with both isotropic and axial stress applied perpendicular to the 
rock bedding plane. 

We can also analyze the variation in Poisson’s ratio in Fig. 2(c) and (d) for 
the highest axial pressures where the samples have reached peak axial stress 
and have ruptured. Once the samples have  ruptured and the  strain has 
localized onto a shear band the deformation is accommodated by the shear 
rupture plane. This means that νzx increases as the axial load in z direction 
no longer causes extension the x-y plane as the vertical microcracks close and 
the deformation is accommodated by the rupture plane (Kuila et al. (2011)), 
thus it becomes less compressible in the x-y planes and νzx(= νzy ) increases. 

Because Sarout et al. only considered normal stresses in the direction of 
the material axes we expect that there is no shear coupling with respect to 
the material axes in the elastic regime. This means that the applied normal 
stresses result in normal strains only and thus the effect on the shear moduli 
is relatively small until rupture of the specimen occurs as shown in Fig. 2(a) 
and (b). 
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E(= Ex  = Ey ) 8.82GPa 
Et(= Ez ) 8.02GPa 

ν(= νxy = νyx) 
νt(= νzx = νzy ) 

νxz (= νyz ) 

E(= Ex  = Ey ) 10.93GPa 
Et(= Ez ) 31.78GPa 

ν(= νxy = νyx) 
νt(= νzx = νzy ) 

νxz (= νyz ) 

 
 
 
 
 

Table 3:  Initial elastic moduli for UnifloQR   polyester composite of Marguéres and Meraghni 
(2013) in Fig. 3 

  
 

Table 4: Initial elastic moduli for the glass fibre-reinforced composite of Castellano et al. 
(2017) in Fig. 4 

  
 

5.2. Damage induced anisotropy in composite samples 
 
 
 
 
 

Figures 3(a) and 4(a) plot the internal tensorial damage variables for two 
composite samples for the experimental results using a polyester composite 
specimen  (see  Marguéres  and  Meraghni  (2013)  Table  6,  column  3)  and  for 
the experimental results using a glass fibre-reinforced composite specimen 
(see Castellano et al. (2017) Table 2). It is somewhat more difficult to in- 
terpret the results for the experimental loading conditions of Marguéres and 
Meraghni (2013) and Castellano et al. (2017) as they used both sample ge- 
ometries and experimental boundary and loading conditions which may not 
preserve the transverse isotropic symmetry of the composite samples being 
investigated. Another complicating factor in analyzing their results is that 
both experiments subjected their composite specimen to a localized low ve- 
locity impact which produced localized areas of damage and indentation even 
for  low  velocity  impact  (Marguéres  and  Meraghni  (2013);  Castellano  et  al. 
(2017)). There should be some caution in interpreting their results for mea- 
sured elastic velocities at the macroscale for the whole specimen. Because 

G(= Gxy  = E/(2(1 + ν)) 7.98GPa 
Gt(= Gxz  = Gyz ) 2.23GPa 

-0.3152 
0.2622 
0.0902 

G(= Gxy  = E/(2(1 + ν)) 3.00GPa 
Gt(= Gxz  = Gyz ) 2.65GPa 

0.4702 
0.2756 
0.2504 
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Figure 3:  (a) The internal tensorial damage variables for a polyester (UnifloQR ) composite 
subject to a low-velocity impact with energy 15J in the z direction with an impact diameter 
of 25mm for the experimental results of Marguéres and Meraghni (2013) (Table 6, column 
3). The composite was clamped at the ends in the x direction. (b) The corresponding 
change in the elastic moduli with damage. Their experimental results showed a change 
in the elastic moduli but not in the material axes of symmetry with the axis of isotropy 
remaining in the z direction. 
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Figure 4: (a) The internal tensorial damage variables in for the fatigue post low-velocity 
impact test for a glass fibre-reinforced composite for the experimental results of Castellano 
et al. (2017) (Table 2). The composite was first subject to a low-velocity impact with 
energy 7J in the x direction and then subsequent fatigue tensile loading in the z direction. 
(b) The corresponding change in the elastic moduli with damage. Their experimental 
results showed a change in the elastic moduli but not in the material axes of symmetry 
with the axis of isotropy remaining in the z direction. 
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of the impact the damage is localized and moderately diffuse and it would 
be expected that the elastic velocities may vary spatially within the sample, 
however the measurements of the elastic velocities and densities are assumed 
for the whole specimen. 

Castellano et al. (2017) subjected a thin, rectangular composite to a low- 
velocity impact with energy 7J and impact diameter of 10mm in the x direc- 
tion and then subsequent fatigue tensile loading in the z direction.  Marguéres 
and Meraghni (2013) subjected a thin rectangular composite (dimensions 
250mm 50mm 3.6mm) to a low-velocity impact with energy 15J and im- 
pact diameter of 25mm in the z direction. The composite was clamped at the 
ends in the x direction. It is expected that with these respective boundary 
and loading conditions, and the specimen geometries, that the initial trans- 
verse isotropic symmetry may be broken during impact or loading. However 
both  Castellano  et  al.  (2017)  and  Marguéres  and  Meraghni  (2013)  showed 
that due to the very low impact energies imposed it caused moderately dif- 
fuse damage and that the damage induced anisotropy resulted in a change of 
the degree of anisotropy of the material, but not in a change of its symmetry 
class or material symmetry axes. Both showed that the composites remained 
transverse isotropic with the same material axes with loading. 

We see again that the damage tensor is not diagonal in Fig. 3(a) and 4(a) 
using the principal stress directions as the model coordinates. It is little more 
difficult to interpret the single ultrasonic velocity measurements in Fig. 3 and 
4 because they only contain one measurement and it is hard to visualize the 
progression of the elastic moduli with damage as we could in Fig. 1 and 2. 

Interpreting the damaged elastic moduli is more straightforward in Fig. 3 
for  the  experimental  results  of  Marguéres  and  Meraghni  (2013)  where  they 
only consider a low velocity impact in the z direction for a polyester com- 
posite. The impact in the z direction caused some extension in the x-y plane 
and a subsequent reduction in Ex (and Ey ). Because the composite is very 
thin in the z direction the impact possibly caused not just compression in 
the z direction at the impact but also out-of-plane bending in the z direction 
and thus extension in this direction also. As we mentioned because the mea- 
surements are at the macroscale we cannot identify localized regions where 
the elastic moduli may change at the mesoscale and we see that Ez remains 
relatively constant. 

Similarly to the analysis of Sarout et al.’s results for Poisson’s ratio we 
observe that the Poisson’s ratio became less anisotropic under loading in 
Fig. 3(b). We observe that the highest Poisson ratio νyx(= 0.4702) decreases 
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after the impact while the two lower Poisson’s ratios increase. The impact 
in the z direction is likely to have most effect on the shear moduli in the x-z 
and y-z plane, with a decrease in the shear modulus Gyz (= Gxz ) as observed 
in Fig. 3(b). 

Castellano et al.’s results are much less straightforward and it is possible 
that the impact loading in the x direction may have broken the transverse 
symmetry in the x-y plane. Another complicating factor in their experiments 
is that the impact loading and subsequent tensile loading caused visible dam- 
age in the impact region and a fracture in the z direction near the gripping 
area (see Castellano et al. (2017), Fig. 8(b)). Possibly because of this fracture 
in the z direction we observe that the Young’s modulus decreases most for 
Ex(= Ey ), and that Ez also decreases due to tensile loading in the z direction 
in Fig. 4(b). 

The impact in the x direction is likely to have most effect on the shear 
moduli in the x-z and x-y plane affecting the shear modulus Gxz and Gxy . 
Table 4 shows that initially the shear moduli Gxz is more than 3.5 times lower 
than Gxy , potentially meaning that Gxz is much more affected and decreases 
substantially after loading as observed in Fig. 4(b). 

A very interesting result in Fig. 4(b) is that νzx and νyx become more 
anisotropic under loading. This could possibly be attributed to the fact that 
initially νyx = −0.3152 is negative. Fig. 4(b) shows that νzx increases becom- 
ing more positive while νyx decreases becoming more negative. This could 
possibly be explained by the fact that the tensile load in the z direction causes 
contraction in the x-y plane due to the fact that νzx > 0. The contraction in 
the x (or y) direction cause further contraction in the y (or x) direction due 
to the fact that νyx < 0, creating a positive feed-back effect which may lead 
to these values  becoming more anisotropic. 

 
6. Conclusions and future work 

We have developed models of anisotropic damage for initially transverse 
isotropic materials undergoing damage-induced anisotropy to remain trans- 
verse isotropic with the degree of anisotropy changing but not the material 
symmetry axes. In section 4.2 we quantified the relationship between the in- 
ternal damage variables of a fourth rank transverse isotropic damage tensor 
in terms of the empirical damage parameters given by ultrasonic measure- 
ments. We extend upon the seminal work of Cauvin and Testa (1999a,b) who 
considered anisotropic damage for initially isotropic undamaged solids, and 
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the  work  of  Jarić  et  al.  (2012)  who  considered  initially  isotropic  and  cubic 
undamaged solids. In this paper we consider anisotropic damage for initially 
transverse isotropic solids. We expanded the analysis of Cauvin and Testa 
(1999a,b) to relate the evolution of the internal fourth order anisotropic dam- 
age tensor to experimentally measured stiffness reduction of initially trans- 
verse isotropic solids undergoing anisotropic damage. We chose this measure 
of damage as ultrasonic investigations are widely used and provide a conve- 
nient experimental tool to measure the evolution of the full stiffness tensor 
with damage. 

We provide an alternative phenomenological approach to quantifying anisotropic 
3D damage for transverse isotropic materials using continuum damage me- 
chanics. In contrast to previous work based on micromechanical approaches 
(Mallet et al. (2013, 2014); Sarout and Guéguen (2008b)) we employ an ap- proach 
based on continuum damage mechanics to relate the general fourth 
rank tensorial damage variables defined using continuum damage mechanics 
to ultrasonic measurements of initially transverse isotropic materials under- 
going damage-induced anisotropy to remain transverse isotropic. This work 
can help validate and develop models of anisotropic damage using continuum 
damage mechanics which until now have been unable to be experimentally 
validated. 

Other researchers (Audoin and Baste (1994); Hufenbach et al. (2006); 
Castellano et al. (2017)) have also identified purely phenomenological models 
of anisotropic damage for composite materials. Our approach defines the 
damage tensor differently to these purely phenomenological models which 
use a simple definition of damage relating to the stiffness tensor reduction. 
We employ the conventional definition for a tensorial damage tensor given by 
continuum damage mechanics (Cauvin and Testa (1999a); Jarić et al. (2012)) 
for the internal damage tensor in this paper. We define a relationship between 
the measured stiffness reduction and the internal tensorial damage variables 
given by continuum damage mechanics. This work paves the way to build 
physically based continuum damage models of anisotropic damage evolution. 
Future work will extend upon these models of transverse isotropic damage 
resulting from well-defined and constrained loading experiments which result 
in transverse isotropic damage at both the meso and macroscale level to 
modelling localized damage at the mesoscale level. 

Analysis  of  the  experimental  results  of  Sarout  and  Guéguen  (2008a); 
Castellano  et  al.  (2017)  and  Marguéres  and  Meraghni  (2013)  have  shown 
that both the loading conditions and initial values of the anisotropic elastic 
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moduli are important in determining damage-induced anisotropy in initially 
anisotropic materials. Poisson’s ratio was affected the most in all the exper- 
iments. We saw in the analysis of the results of Castellano et al. (2017) that 
the sign of the anisotropic Poisson’s ratio is also important in interpreting 
the experimental results. 
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Mallet, C., Fortin, J., Guéguen, Y., Bouyer, F., 2013. Effective elastic prop- 
erties of cracked solids: an experimental investigation. Int. J. Fracture 182, 
275. 

Mallet, C., Fortin, J., Guéguen, Y., Bouyer, F., 2014. Evolution of the crack 
network in glass samples submitted to brittle creep conditions. Int. J. Frac- 
ture 190, 111. 

Marguéres, P., Meraghni, F., 2013. Damage induced anisotropy and stiffness 
reduction evaluation in composite materials using ultrasonic wave trans- 
mission. Composites: Part A 45, 134–144. 

Murakami, S., 1988. Mechanical modeling of material damage. J. Appl. Mech. 
Trans. ASME 55, 280–286. 

Murakami, S., 2012. Continuum damage mechanics A Continuum Mechanics 
Approach to the Analysis of Damage and Fracture. Springer. 

Olsen-Kettle, L., 2018. Bridging the macro to mesoscale: Evaluating the 
fourth order anisotropic damage tensor parameters from ultrasound mea- 
surements of an isotropic solid under triaxial stress loading, in press, Int. 
J. Damage Mechanics. 

Paterson, M., Wong, T.-F., 2005. Experimental Rock Deformation - The 
Brittle  Field. Springer-Verlag. 

Piane, C. D., Almqvist, B. S., MacRae, C. M., Torpy, A., Mory, A. J., 
Dewhurst, D. N., 2015. Texture and diagenesis of ordovician shale from 
the canning basin, western australia: Implications for elastic anisotropy 
and geomechanical properties. Mar. Petrol. Geol. 59, 56. 
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