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Abstract

Congestion Control (CC) has a significant influence on the performance of Transmission Con-

trol Protocol (TCP) connections. Over the last three decades, many researchers have exten-

sively studied and proposed a multitude of enhancements to standard TCP CC. However, this

topic still inspires both academic and industry research communities due to the change in In-

ternet application requirements and the evolution of Internet technologies. The standard TCP

CC infers network congestion based on packet loss events which leads to long queuing delay

when bottleneck buffer size is large in a phenomenon called Bufferbloat. Bufferbloat harms

interactive and latency-sensitive applications and reduces network response speed, leading to

a poor quality of experience for end users.

A potential end-to-end solution to this problem is to use the delay signal to infer congestion

earlier and react to the congestion before the queuing delay reaches a high value. However,

delay-based feedback is fraught with difficulties including queuing delay estimation, signal

noise and coexistence with conventional TCP.

Loss-delay hybrid congestion control approaches aim to remedy the coexistence issue by

operating in delay mode to provide low latency transport, and switching to loss mode to im-

prove performance when competing with loss-based flows. Using a delay gradient enables the

CC protocol to detect congestion without relying on queuing delay estimates. This motivates

us to explore the previously published CAIA Delay-Gradient (CDG) CC algorithm.

In this thesis, we significantly enhance the CDG algorithm to create Hybrid Loss-Delay

Gradient (HLDG), a sender-side host-to-host congestion control algorithm for the Internet.

Compared to CDG, HLDG provides higher performance, lower queuing delay and better co-

existence when competing with loss-based flows.

Like CDG, HLDG uses the delay gradient signal to detect early congestion, preventing a

long queue from building up in the bottleneck, and providing low latency transport. It also ex-

plicitly switches between delay and loss modes depending on competing traffic characteristics

to coexist with loss-based flows.

By evaluating CDG in a range of scenarios, we identify weaknesses that impact protocol

performance. HLDG enhances CDG throughput by solving the unnecessary back-off issue and

by maintaining the number of unacknowledged bytes close to estimated the path bandwidth-



x

delay product (BDP). HLDG also improves coexistence by switching between loss and delay

mode based on a heuristic function. This function infers the presence of loss-based flows

based on queuing delay measurements. Finally, HLDG utilises an enhanced slow-start algo-

rithm using the delay gradient signal and BDP estimate. HLDG slow-start terminates with a

congestion window size close to estimated BDP, achieving high throughput without inducing

high queuing delay.

HLDG can also be effectively used as a low priority CC to provide scavenger class trans-

port for background file transfer without disturbing the foreground traffic. This can be achieved

by disabling the HLDG coexistence mechanisms and reducing the back-off factor.

We experimentally evaluate HLDG under a range of scenarios and network conditions.

This includes a range of link bandwidths and path RTT, with both FIFO Droptail and Active

Queue Management (AQM) used at the bottleneck.

Our results show that HLDG obtains up to 400% (54% in average) throughput improve-

ment over CDG in single flow scenarios without packet loss while maintaining queueing delay

under 20ms in the worst case. Our results also show that HLDG is able to achieve up to 3000%

(810% in average) better throughput than CDG when competing with TCP CUBIC. HLDG

slow-start exits with a congestion window between 96% - 200% of the path BDP compared to

1% - 800% for CDG slow-start.

HLDG achieves 94%, 89% and 95% average link utilisation under PIE, FQ-CoDel and FQ-

PIE respectively, compared to 89% for CDG under the same conditions. HLDG experiences

only 3%, 24% and 4% of packet loss experienced by CDG when run through PIE, FQ-CoDel

and FQ-PIE AQMs respectively.
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Chapter 1

Introduction

The Internet has changed modern communities to the extent that it has become an integral part

of an individual’s life. In its early days, the Internet was visualised as a static network transfer-

ring small streams of bytes representing messages and small files. Nowadays, it has grown to

become a large interconnected network used by hundreds of millions of users for a variety of

purposes. It forms the core of modern education, health, government and economy systems,

as well as personal entertainment including video streaming, online multiplayer gaming and

video conferencing.

This versatility has also led to the development of complex network protocols which are

responsible for providing the best quality of experience for all types of users to fulfil their

needs. Transmission Control Protocol (TCP) [1] deserves a great tribute for the success of the

Internet in the last three decades due to its ability to generally perform sufficiently well in spite

of the significant changes in Internet technologies. TCP is a transport protocol that provides

byte-streams and reliable data transfer over the packet-based best-effort Internet Protocol (IP)

layer [2]. As the preferred transport for many Internet applications, TCP has received a lot of

attention from the research community keen to maximise protocol performance.

Congestion Control (CC) is a critical part of TCP that directly influences the protocol’s

performance. CC aims to manage network resources in an efficient manner and to provide

resource sharing among competing flows while protecting the network from collapse.

Typically, TCP CC probes a path’s capacity by sending data and monitoring the incoming

implicit (or sometimes explicit) feedback signal. Based on the feedback signal, TCP increases

or decreases the number of unacknowledged bytes in flight to minimise congestion while

achieving high link utilisation. Implicit feedback can be inferred from packet loss caused

by bottleneck buffer overflow (loss-based CC) or variations in packet delivery delay caused

by queue building up at the bottleneck (delay-based CC). Other CC algorithms (e.g. BBR

[3]) control packet emission rates based on estimated bottleneck capacity, and adjust bytes-
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in-flight from minimum RTT and estimated bottleneck capacity. Additionally, TCP CC can

benefit from explicit feedback, such as Explicit Congestion Notification (ECN) [4], where end

hosts and bottlenecks both support such a feature.

The most common, actively used TCP implementations utilise reliable and easy to imple-

ment loss-based CC algorithms. However, flows using loss-based CC become problematic

when they compete with latency-sensitive flows for capacity at bottlenecks with large buffers.

In such cases, loss-based TCP fills bottleneck queue until buffer overflow occurs causing long

queuing delays in a phenomenon called Bufferbloat [5]. The resulting additional latency can

negatively impact latency-sensitive applications (such as live video streaming and online gam-

ing) and degrade network quality of service in general. Using packet loss as a signal also

wastes network resources due to the need for retransmitting the lost packet.

Consequently, many researchers have explored the use of delay as a feedback signal (par-

tially or fully) to remedy the shortcomings of loss as a signal.

Delay-based CC approaches provide low latency data transfer through controlling network

congestion as bottleneck queues start building. Using a such strategy, they prevent packet loss

which can significantly affect unreliable UDP streams such as VoIP traffic. Additionally, many

delay-based CC algorithms aim to achieve high and stable throughput by reducing oscillation

in data sending. Oscillation in packet sending reduces the performance of transport protocol in

long-distance high-speed paths with shallow bottlenecks buffers. Delay-based CC approaches

can be optimised to be used efficiently in high-speed long-distance networks to converge to full

link utilisation quickly without stressing the network. Moreover, it has been shown in many

industrial and academic works that delay-based CC can be efficiently used in background bulk

data transfer transports and scavenger class services such as system updates [6–11]. It is also

possible to utilise the delay signal to distinguish between congestion related and random losses

[12, 13]. This is useful to achieve high link utilisation in lossy networks.

Unfortunately, delay-based feedback is complicated and fraught with difficulties includ-

ing noise in the signal, sampling problems, coexistence and many other issues. This prevents

delay-based CCs from being widely used for general purpose use. Protocol coexistence sig-

nificantly impacts on the user experience in environments where loss-based and delay-based

flows traverse a bottleneck. In such environments, delay-based flows typically obtain much

lower bandwidth share than loss-based flows. This reduces the throughput of delay-based

flows, resulting in a poor quality of experience.

A hybrid delay-loss based congestion control approach can overcome the coexistence is-

sue. A hybrid algorithm can achieve low latency in the absence of competing loss-based flows

and better performance when accompanying loss-based flows. It normally operates in delay

mode where congestion is detected with the delay signal. When a competing loss-based flow
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is detected, hybrid algorithms switch to loss mode where congestion is detected using packet

loss signal to achieve better performance.

CAIA-Delay gradient (CDG) [12] is a hybrid delay-loss based congestion control algo-

rithm that aims to achieve high throughput and low queuing delay without relying on delay

thresholds. It also aims to coexist with loss-based flow by normally operating in delay mode

and switching to loss mode when it infers a competing loss-based flow. CDG has attracted

researcher interest due to its ability to detect congestion without relying on queuing delay

measurements while maintaining low queuing delay. Additionally, unlike many delay-based

CC algorithms, it does not suffer from latecomer advantage in which recent starting flows ob-

tain higher capacity share than older flows. However, no improvements have been proposed

to produce a better hybrid congestion control.

In this thesis, we deeply evaluate and analyse CDG algorithm in different scenarios to ex-

plore its issues and weaknesses. This allows us to propose a sender-side CDG-based algorithm

for the Internet called Hybrid Loss-Delay Gradient (HLDG) that provides higher performance,

lower queuing delay and better coexistence with loss-based flows.

1.1 Research objectives and contributions

As mentioned above, developing high-performance, low-latency transport for the Internet is

highly desirable. Such transport protocols can reduce the negative impact on latency-sensitive

traffic, providing a higher quality of experience for end users. Delay-based CC approaches

aim to achieve these requirements but they are fraught with difficulties preventing them from

being widely used on the Internet. Using loss delay hybrid algorithms with a proper delay

signal manipulation overcomes these difficulties, allowing them to achieve better performance

and wider deployment. CDG is a promising hybrid congestion control algorithm that relies on

delay gradient signal to infer congestion. This protocol has found interest from research com-

munities due to its congestion detection strategy that allows it to achieve a low queuing delay.

The objectives of this thesis are to 1) understand existing problems with the CDG algorithm;

2) find solutions to these problems to produce a better hybrid congestion CC algorithm; and

3) to derive new general knowledge about delay-based congestion control from the lessons

learned in this research.

This thesis experimentally evaluates and analyses the CDG algorithm in scenarios emu-

lating a typical home gateway. By exploring CDG performance in simple scenarios using a

controlled testing environment, we demonstrate that CDG suffers from significant low per-

formance in high path RTT scenarios due to unnecessary back off in different situations. We

begin by evaluating CDG link utilisation when only one flow traverses a bottleneck. Even
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though such scenarios are uncommon in real-world networks, it provides insight to identify

the potential problems that impact on protocol performance.

CDG includes coexistence mechanisms to provide better performance when competing

with loss-based flows. We evaluate and analyse CDG coexistence performance when compet-

ing with CUBIC, a widely deployed loss-based protocol, in a wide range of scenarios. We

demonstrate that CDG is unable to compete with loss-based flows due to limitations in its

coexistence mechanisms.

In addition to congestion avoidance, we evaluate and analyse CDG slow-start as it plays

an important role in protocol performance. We find that CDG slow-start terminates too early

in many scenarios, preventing the protocol from achieving high throughput.

To the best of our knowledge, this type of comprehensive evaluation and microanalysis

for CDG mechanisms has not performed before. This exploration of the reasons for CDG

weakness enables us to propose an improved protocol that achieves high throughput, low

latency and better coexistence.

We then propose HLDG, an enhanced sender-side hybrid CC algorithm built as an im-

provement to CDG. HLDG achieves higher throughput in single flow scenarios by eliminating

the unnecessary back-offs performed by CDG. It also uses bandwidth and base RTT estima-

tions to estimate the Bandwidth-Delay Product (BDP) to control the back-off size. Finally,

HLDG uses accumulated probability in making back-off decisions, resulting in better latency

control. Our experimental evaluation shows that HLDG realises up to 400% (54% in average)

throughput improvement over CDG in single flow scenarios without experiencing packet loss.

HLDG is able to maintain low queueing delay of no more than 20ms in the worst case.

To provide better coexistence with loss-based TCP, HLDG dynamically reduces protocol

sensitivity to delay increase when a loss-based flow is present. More importantly, when it

detects a competing loss-based flow, HLDG explicitly switches to CUBIC-like loss-based

mode in which back-off is performed only on packet loss events. HLDG switches back to

delay mode as soon as it senses no competing loss-based flow is present, maintaining low

queuing delay. A heuristic function based on the estimated queuing delay is used to make

this decision. HLDG obtains up to 3000% (810% in average) better throughput than CDG

when competing with TCP CUBIC. Additionally, the results reveal that HLDG coexistence

performs ten orders of magnitude better than CDG for large buffer sizes.

HLDG improves the CDG slow-start phase by fixing CDG signalling issues combined

with the use of the passive ACK train technique to estimate bottleneck bandwidth, allowing

HLDG to exit slow-start with high link utilisation. Our experiments show that HLDG slow-

start terminates with a congestion window between 96% - 200% of the path BDP compared to

1% - 800% for CDG slow-start.
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Moreover, we conduct a preliminary HLDG evaluation in more advanced scenarios includ-

ing homogeneous and heterogeneous path RTT and AQM environments. Our results show

that HLDG achieves 0.99 and 0.98 average Jain’s fairness index in homogeneous and hetero-

geneous path RTTs respectively while keeping average queuing delay below 13ms.

We evaluate HLDG in modern AQM based bottlenecks, namely PIE (Proportional Integral

controller Enhanced) [14, 15], FQ-CoDel (Flow-Queue CoDel) [16] and FreeBSD’s FQ-PIE

(Flow-Queue PIE) [17]. The results show that HLDG performs better than CDG and close

to CUBIC performance in many scenarios. HLDG performs best when FQ-PIE [17] is used.

HLDG realises 94%, 89% and 95% average link utilisation under PIE, FQ-CoDel and FQ-PIE

respectively compared to 89% for CDG under the same conditions. HLDG experiences only

3%, 24% and 4% of packet loss experienced by CDG when run through PIE, FQ-CoDel and

FQ-PIE AQMs respectively.

We also demonstrate that HLDG can also be used as low-priority CC providing efficient

scavenger-class transport. The can be done by disabling coexistence mechanisms, resulting

in using only the delay feedback signal in congestion control. The preliminary results show

that HLDG in LPCC mode utilises 5 - 18% bottleneck bandwidth when competing with TCP

CUBIC, producing an efficient scavenger class transport.

We provide a prototype HLDG implementation for the FreeBSD operating system, al-

lowing us to evaluate the algorithm in a range of emulated networks. This results in more a

realistic evaluation reflecting basic real-world scenarios.

More importantly, our research derives new general knowledge about delay- based conges-

tion control. This helps inform the TCP research community to avoid making similar errors

and to develop better congestion control. The new knowledge can be summarised as follows:

1. Delay-based CC algorithms should not back-off in response to small bursts caused by

delayed ACKs. In doing so, delay-based CC algorithms would back-off even when no

congestion is experienced.

2. A capacity estimator (e.g. using the acknowledged byte rate), combined with the delay

signal improves the performance of delay-based congestion control.

3. Standing queues can be avoided by replacing a moving average with a windowed mov-

ing average with weights over the delay signal, and more importantly re-starting the

calculation under certain circumstances.

This thesis also categorises and reviews popular delay-based, hybrid and delay-sensitive TCP

variants. This involves presenting a novel taxonomy for these algorithms based on the con-

gestion feedback signal usage.



6 Introduction

1.2 Summary of research contributions

This thesis fills a number of research gaps and contributes to both academic and industrial

communities. The thesis contributions are summarised as follows.

1. We explore the use of delay feedback signal in TCP congestion control by providing a

taxonomy for TCP variants that use the delay signal in their operations. We categorise

these techniques based on congestion feedback signal types and operation modes. Our

work involves reviewing and comparing a wide range of current and historical delay-

based, hybrid and delay-sensitive TCP variants. Moreover, we discuss the challenges of

using the delay signal in congestion control algorithms.

2. We perform a deep experimental evaluation and microanalysis for CDG under a range

of network settings. This includes comprehensive investigations for CDG low perfor-

mance in simple scenarios and when competing with loss-based flows. Additionally,

we explore the CDG slow start phase and provide insight into the issues causing low

performance in many scenarios.

3. We propose a CDG-based algorithm called Hybrid Loss-Delay Gradient (HLDG) that

addresses CDG low link utilisation, providing high throughput and low queuing delay.

This involves solving unnecessary back-off issues, using a better probabilistic back-off

function, as well as using the BDP estimate to reduce performance loss upon back-

off. We comprehensively evaluate the proposed protocol under a range of bottleneck

bandwidths and path RTTs.

4. We improve HLDG coexistence when sharing a bottleneck with loss-based flows by

adapting protocol sensitivity to the delay increase and explicitly mode switching. HLDG

uses a heuristic function based on queuing delay to detect competing loss-based flows.

HLDG switches to CUBIC-like loss-based mode when a loss-based flow is present and

switches back to delay mode when competing loss-based flows terminate. Through a

range of experiments, we demonstrate improved coexistence compared with CDG.

5. We propose an improved slow-start algorithm relying on delay-gradient signal and BDP

estimation. This algorithm ensures slow-start termination before a long queue builds up

with high link utilisation.

6. We perform a preliminary evaluation of HLDG in more advanced scenarios and AQM

environment. We explore the inter-protocol fairness in both homogeneous and hetero-

geneous path RTT.



1.3 Thesis organisation 7

7. We perform a preliminary evaluation for HLDG in LPCC mode.

8. We independently implemented CoDel, PIE and FQ-CoDel for Dummynet in FreeBSD

OS based on their Internet drafts at the time [17, 18]. This project was supported by

The Comcast Innovation Fund USA. We also use the Flow-Queuing scheduler with PIE

AQM to produce an experimental FQ-PIE AQM. This open doors for further research

to explore the benefits of using this new AQM. Our implementation was official added

to FreeBSD source tree from version FreeBSD 11.0 [19] and backported to FreeBSD

10.4 [20], and is used by reputable firewalls such as pfSense [21] and OPNsense [22].

This work also contributed in fixing errors in the FQ-CoDel [23] and PIE IETF Internet

drafts [24].

9. We developed ttprobe, an event-driven TCP statistics capturing tool for the Linux op-

erating system [25]. ttprobe provides high-resolution statistics from the TCP/IP stack

with lower processing overhead and better compatibility than the more commonly used

Web10G [26].

10. We develop the DIFTR tool for collecting AQM and FIFO statistics from inside Dum-

mynet in FreeBSD. This tool allows us to understand the interaction between congestion

control and bottleneck queue dynamic. It provides statistics such as queue length, the

queuing delay and per queue packet drop counts.

1.3 Thesis organisation

The rest of this thesis is organised as follows. Chapter 2 describes TCP background informa-

tion, congestion control principles and congestion feedback signals. It introduces our novel

taxonomy on delay-based and hybrid congestion control algorithms and reviews a range of

congestion control algorithms that use the delay signal in their operation. It also discusses the

challenges facing with the delay signal.

Chapter 3 describes our experimental methodology, tools used to conduct different exper-

iments, our testbed and testing scenarios covered in our research.

Chapter 4 evaluates CDG algorithm and explores its issues. This includes evaluating CDG

in simple scenarios, coexistence with loss-based flows and the CDG slow-start.

Chapter 5 introduces our HLDG congestion algorithm which fixes different CDG prob-

lems, providing better performance, low queuing delay and better coexistence with loss-based

flows.
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Chapter 6 provides preliminary evaluation for HLDG in more advanced scenarios and

AQM environment. It also briefly evaluates HLDG in low priority congestion control mode in

which it achieves lower throughput when sharing a bottleneck with conventional TCP.

Chapter 7 outlines future research direction and provides conclusions of this thesis.



Chapter 2

Delay-based congestion control

Congestion Control (CC) is a crucial part of TCP that controls the protocol’s performance.

The goals of using CC is to manage network resources in an efficient manner and to provide

resource sharing among competing flows while protecting the network from collapse.

Loss-based CC is the most common and actively used CC algorithm due to its reliability

and simplicity. However, loss-based flows negatively impact latency-sensitive flows when they

compete for capacity at bottlenecks having large buffers. Delay-based CC responds sooner to

network congestion, preventing a long queue from building at the bottleneck.

In this chapter1, we present a literature review of congestion control techniques that utilise

the delay signal as a primary or secondary indicator of control network congestion. We de-

scribe general principles of TCP CC and congestion signal types, and explore the challenges

of using the delay signal and how some recently popular queuing-delay based Active Queue

Management (AQM) techniques are likely to interact with delay-based CC techniques. Since

there are many proposed TCP CC algorithms utilising the delay signal, this chapter covers

popular techniques that have real impact on their working environments.

The rest of this chapter is structured as follow. Section 2.1 provides principles of TCP

flow control and congestion control. Section 2.2 describe the interaction between TCP and

the bottleneck FIFO buffer and introduces AQM functionality. Section 2.3 is devoted to TCP

congestion control literature including the delay and loss congestion feedback signals and

standard TCP CC algorithms. Section 2.4 is dedicated to reviewing popular delay-based,

hybrid and delay-sensitive TCP variants. Section 2.6 discusses the challenges faced with

using the delay signal including deploying AQM. Section 2.5 presents slow-start variations

that relies on the delay measurements. Section 2.7 presents details for the promising CDG

TCP CC algorithm. We conclude the chapter with Section 2.8.

1This chapter has been published as paper in IEEE Communications Surveys Tutorials[27]
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Figure 2.1: TCP sliding window mechanism

2.1 Transmission Control Protocol – An Overview

The TCP layer provides a reliable, connection-oriented end-to-end transport protocol that

guarantees error-free, in order delivery of data to the destination [1]. TCP flow control and

congestion control limit the amount of outstanding (unacknowledged) sent data. Flow con-

trol prevents fast senders from overrunning the buffers of slow receivers (which causes packet

loss). Congestion control aims to prevent senders from sending too much data that can over-

flow buffers within the network (network congestion). In this section, we summarise the

principles of TCP flow control, TCP congestion control and how the injection of packets into

the network can be controlled.

2.1.1 TCP Reliability and Flow Control

The IP layer [2] provides a best-effort packet transfer service between the source to destina-

tion host. IP does not guarantee delivery, nor ensure packets are delivered in-order. TCP is

responsible for both data integrity and network resource management to provide a reliable

end-to-end connection.

Data transfer over TCP is initiated by an application which supplies data to the TCP stack.

TCP buffers the data, allocating each byte a sequence number. TCP then partitions the buffered

data into segments, assigning each segment the sequence number of the first byte in that seg-

ment. Using a sliding window mechanism (shown in Figure 2.1), TCP transmits a number of

segments to the receiver over the IP protocol.

At the receiver, the destination host buffers the segments in its TCP receive buffer. If a

segment arrives without error and in order (checked using the sequence number), the receiver

confirms receiving the segment by generating and sending back an acknowledgement packet

(ACK)2 containing the sequence number of next byte it is expecting to receive.

The ACK packet confirms the delivery of all bytes that have sequence numbers smaller

2A normal TCP packet with the ACK flag in TCP header set.
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than the ACK number. As such, it is not required to send an ACK packet for each data

packet. When an ACK packet is received by the source, the sender moves the sending window

(swnd) by the amount of acknowledged data and sends new segments if they are ready in the

sending buffer. In other words, the sender should not transmit more data than swnd allows

until receiving acknowledgement of previously sent data i.e. seqnext < sequna + swnd where

seqnext is the sequence number of next packet to be sent, and sequna is the sequence number of

the first packet sent but not yet acknowledged. As such, swnd effectively limits the number of

unacknowledged bytes (bytes in-flight).

Using this mechanism, there is a period of time before the sender is aware if a segment

arrived at the destination correctly. The earliest the sender can receive an ACK is given by

the round trip time (RTT) – the combination of serialisation delays (transmission time), prop-

agation delays, and bottleneck queuing delays along both the forward and reverse paths. In

reality each ACK may be further delayed by additional factors such as the processing power

of the end hosts and middleboxes along the path, and efficiency improvement mechanises (e.g.

delayed ACK).

We can conceptualise the link between the source and destination as a virtual pipe between

the two points (see Figure 2.2). The bandwidth (link capacity) is represented by the diameter

of the pipe, while the delay (path RTT) is represented by the length. The product of these two

values, the bandwidth-delay product (BDP), represents the pipe’s volume – the amount of data

that saturates the link between the sender and receiver.

If the sender fills the pipe completely, data transmission will be continuous because ac-

knowledgements will be received while data is still being sent. On the other hand, if the pipe

is partially filled, there will be stalls during transmission because the sender has to wait for

acknowledgements to trigger sending new data as shown in Figure 2.3. In order to achieve

optimum throughput, the sender should keep swnd greater than or equal to the link BDP.

The destination TCP receive buffer size is subject to memory availability, system/applica-
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tion configuration and processing power. Therefore, the sender should be aware of the receiver

buffer availability. As part of TCP flow control, the receiver specifies the maximum number of

bytes it is willing to receive via the advertised receive window size (rwnd). This mechanism

prevents a fast sender from exhausting the limited buffer size in a slow receiver.

2.1.2 TCP Congestion Control

The original TCP specification limits outstanding (unacknowledged) packets only by the re-

ceiver’s rwnd [1]. However, this completely ignores network congestion.

Without awareness of the current network congestion state, TCP may send more data than

a bottleneck can handle, resulting in heavy packet loss, significant reduction in network perfor-

mance, increase in packet delivery delay, and could lead to a phenomenon called congestion

collapse. This is a scenario where only a small portion of transmitted data is successfully

delivered and acknowledged, leading to low goodput3 and long queuing delays.

Congestion collapse in the Internet was first observed in the mid 1980s [28], due to TCP

senders spuriously retransmitting packets that were actually not missing but waiting in long

queues. The retransmissions exhausted bottleneck capacity more seriously as the number of

flows increases.

An early solution to mitigate the congestion problem relied on an explicit message sent

using Internet Control Message Protocol (ICMP) [29]. An ICMP Source Quench [1] message

would be sent by the congested router to the sender when the bottleneck buffer becoming

congested, causing the sender to throttle back. However, use of ICMP Source Quench was

deprecated due to ineffectiveness and unfairness issues [30].

The fundamental solution has been the development and use of end-to-end congestion

control (CC). CC algorithms aim to monitor the network’s current congestion state, and to use

this information to adjust the sending rate, directly or indirectly, to stabilise network usage,

3Goodput is the amount of data that arrives to the destination successfully
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maintain high link utilisation and provide a fair share of the available bandwidth [31].

TCP CC [32] maintains a congestion window size (cwnd) for each TCP flow, representing

the maximum number of bytes the sender may send and have outstanding (unacknowledged)

based on current network congestion state. The sender selects the minimum of rwnd and cwnd

as the final sending window size swnd = min(rwnd, cwnd).

TCP CC attempts to fully utilise the network without causing congestion by inferring

current network conditions and dynamically adjusting cwnd accordingly. It reacts to changing

network conditions by increasing cwnd when no congestion is detected and reducing it when

a congestion event occurs.

At the start of new TCP connection, the sender is unaware of available network bandwidth.

TCP uses a phase called slow-start (see Section 2.3.3.1) to quickly probe the available band-

width in the path. During slow-start, the sender increases cwnd on each ACK received. When

congestion is detected, TCP CC sets cwnd as a portion of the achieved window size when the

congestion was detected, and exits slow-start to enter another phase called congestion avoid-

ance.

During congestion avoidance, cwnd increases more slowly than in slow-start, typically by

one segment per RTT, to avoid causing congestion while still adapting the window size to any

changes in available capacity. A detailed discussion on TCP CC algorithms is available in

Section 2.3.3.

Controlling congestion efficiently is not an easy task due to the distributed nature of the

TCP/IP protocol and constantly changing network conditions. Not all CC algorithms have the

same goals nor are expected to function in all environments. Some algorithms may prioritise

minimising delays, while others may focus on performing well under special conditions such

as within a data centre. Nevertheless, listed below are some common goals shared by most

CC algorithms [28].

• Preventing congestion collapse: Considered the main reason for the existence of CC.

• High bandwidth utilisation: Considered a fundamental requirement for all CC algo-

rithms. CC should avoid path capacity underutilisation to maximise throughput.

• Fairness: CC should guarantee an acceptable equal share of the available bandwidth

among all competing flows sharing the same bottleneck.

• Fast convergence to fairness: When a new TCP flow joins a shared bottleneck, the CC

should react rapidly to this event by increasing the cwnd of the new flow and reducing

it for all other flows until fairness is achieved.
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• TCP-Friendly: For deployment purposes, CC algorithms intended to be used in an un-

controlled network, e.g. the Internet, should coexist with other CC algorithms by main-

taining fairness.

Due to differences in CC algorithms, factors such as path RTT and flow starting sequence may

affect fairness, giving advantages to some flows over others. For example, TCP Reno [32]

flows transmitted over a high RTT path get lower overall throughput than flows using shorter

RTT paths. This is due to the Reno algorithm increasing cwnd by one Maximum Segment

Size (MSS) every RTT. As a result, cwnd increases faster for flows using shorter paths.

TCP CC protocol variations should manage cwnd such that it does not reduce their – or

other standard CC protocols – performance significantly. A well-known example of incom-

patibility with standard CC is TCP Vegas [33] which realises low throughput when competing

with loss-based CC in a large bottleneck buffer environment [34].

Some CC algorithms have been designed to work in a controlled environment, such as data

centres, where all machines use the same algorithm. For these protocols, compatibility with

other widely used algorithms is not a concern.

There are arguments about the ideology of flow fairness in TCP CC and how the fairness

concerns benefits for users but not for individual flows in real world [35]. However, flow

fairness is still considered important for many CC algorithms studied in academia. As such,

CC algorithms typically take flow fairness into consideration, trying to distribute available

bandwidth amongst competitive flows fairly.

Alternatively, Low Priority Congestion Control (LPCC) algorithms specifically aim to

achieve lower capacity sharing of the available bandwidth and/or lower queuing delay when

coexisting with other flows [36]. This group of algorithms (also called scavenger class or

less than best effort service) are used by background applications such as bulk file transfer,

peer-to-peer applications and automatic software updates. In these cases, the algorithms try

to reduce the impact on higher priority foreground applications, while attempting to maintain

fairness when coexisting with flows from the same class.

The original TCP specifications [1] do not specify a direct mechanism for the hosts to learn

about network congestion state. As a result, TCP CC utilises indirect information to determine

whether the path is congested or not, or the degree of congestion in the path. This indirect

information gathered from measurements taken during packet exchange between hosts, and

typically varies due to buffering effects that may occur at any point in the network path.

During the last three decades, many congestion control algorithms have been proposed to

calculate an optimum cwnd. However, only a few have been standardised including TCP Reno

[32], TCP NewReno [37] and TCP SACK[38]. We denote these CC algorithms as standard

TCP in this Thesis.
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2.1.3 Controlling the injection of packets into the network

Most TCP implementations utilise window-based CC strategies to limit the number of injected

packets in the network. Although this mechanism is efficient, easy to implement and does

not require timers, it can generate periodic packet bursts into the network. This can lead

to delay fluctuations, increased packet losses, higher queuing delays, and lower throughput

[39]. These bursts occur because the transmitter immediately sends new packets (as many as

swnd allows) whenever an acknowledgement is received. If acknowledgements are delayed

or compressed for any reason (e.g. congestion in the reverse path), the sender will receive

multiple acknowledgements in a short period, freeing a space in the window and causing the

sender to transmit multiple packets in a burst.

An alternative approach to control the number of transmitted packets in the network is to

limit the actual sending rate directly. Rate-based CC can calculate the required sending rate

that would fully utilise available bandwidth without causing congestion. The calculated send-

ing rate is then used to schedule regular transmission of packets, removing the burstiness seen

with the sliding window. Other types of rate-based CC can estimate the required sending rate

in a similar way to window-based CC, i.e. increase the sending rate when no congestion is de-

tected and reduce it when congestion happens to achieve acceptable fairness when competing

with window-based flows.

In rate-based strategy, the required sending rate can be realised either inside TCP stack

or externally (e.g. packet schedulers) using packet pacing. Packet pacing allows a chunk of

packets to be spread across a time slot by adding gaps between the sending of packets. The

duration of these gaps is determined by the required sending rate.

Packet pacing is also used with window-based mechanisms to eliminate packet bursts [40].

In this case, the transmission of a window’s worth of packet is spread across a full RTT.

Packet pacing provides smoother traffic flows and more stable demands on the network and

can improve the stability of TCP by minimising variations in queue utilisation. Additionally, it

has been shown that packet pacing provides a positive impact on delay-based CC by providing

smooth RTT measurements [41].

Despite their benefits relative to window-based strategies, implementation of rate-based

strategies is often more complex and requires accurate timers which is considered a costly

requirement for embedded and low-end devices.

2.2 Buffering and Queue Management

Network buffers are used to absorb packet bursts, reduce packet losses, and improve overall

network performance. They exist in many places of the packet transmission path including
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the host application, TCP socket, host network layer, network interface cards (NIC), network

switches, routers, proxies and firewalls.

Buffers are used to temporarily queue packets when the next layer is busy or unable to

process the packet as fast as they are provided. There may be a number of causes, such as

devices with low processing power, network scheduling priority, temporary reductions in link

layer sending rate, and transient network congestion.

2.2.1 Traditional Buffering and Queues

The most common method for implementing network buffers is First-In First-Out (FIFO)

with a DropTail management mechanism. In a FIFO queue, packets are appended to the

tail of the queue during the enqueue process and fetched and removed from the head of the

queue during the dequeue process. When the queue size exceeds the buffer size, the DropTail

mechanism drops any new packet until suitable buffer space becomes available. Figure 2.4

shows a conceptual representation of FIFO and DropTail mechanism.

When TCP was first designed, the bit error rate of transmission channel (usually wired)

was very low. Therefore, packet loss was mainly caused by buffer overflow, and taken as an

indication of congestion at the bottleneck. This relationship between packet loss and network

congestion is exploited by loss-based TCP CC to infer congestion along the path.

The proliferation of oversized FIFO buffers in the network, coupled with the aggressive-

ness of loss-based TCP CC, causes high queuing delay in a phenomenon called Bufferbloat

[5]. This high delay has a negative impact on latency-sensitive applications in particular, and

on network performance in general.

Active Queue Management (AQM) is a mechanism used to keep the bottleneck queues

of network nodes to a controlled depth, effectively creating short queues [42]. AQM is used

as a replacement for the DropTail mechanism. When AQM detects congestion it reacts by

dropping or marking packets with an ECN [4]. The loss event or ECN signal is then detected

by the sender which reduces the transmission rate by decreasing cwnd.
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2.2.2 Active Queue Management

In the last two decades, many AQM algorithms have been proposed to manage the queuing

delay problem. However, none have yet been widely deployed due to both a reduction in

network utilisation and complicated optimal configuration.

Legacy AQMs monitor queue occupancy based on bytes or packets in the queue. If the

queue length becomes larger than a specific threshold, AQM infers congestion and reacts

accordingly based on the congestion level. A well-known example of such statistical AQM

is Random Early Detection (RED) [43]. Many queue occupancy-based AQMs have been

proposed to mitigate different issues [44–46].

More recently, new AQM mechanisms have emerged that rely on queue delay measure-

ment rather than queue occupancy. Queue delay is directly correlated to the network metric

that AQM is intended to manage. These new AQMs are able to achieve high throughput and

better delay control with low complexity. Further, these AQMs are designed to perform rea-

sonably using their default configurations. Well-known examples of such AQMs are CoDel

(Controlled Delay) [47] and PIE (Proportional Integral controller Enhanced) AQM [14, 15].

Moreover, hybrid AQM/scheduler schemes have been proposed to improve fairness be-

tween competing flows while keeping queuing delay low. They achieve these goals by di-

verting the flows into separately managed queues and applying an individual AQM instance

for each queue. This separation protects low rate flows from aggressive flows while the indi-

vidual AQM instances control the queue delay. Examples of hybrid AQM/scheduler schemes

are FQ-CoDel (Flow-Queue CoDel) [16] and FreeBSD’s FQ-PIE (Flow-Queue PIE) [17]. In

addition to control queuing delays and provide relatively equal sharing of the bottleneck ca-

pacity, these AQMs provides short periods of priority to lightweight flows to increase network

responsiveness.

Figure 2.5 illustrates simplified FQ-CoDel and FQ-PIE algorithms where flows are hashed

to separate queues which are managed by either CoDel or PIE AQM. These queues are ser-

viced using a deficit round robin scheduler with higher priority for new flows.

2.3 TCP Congestion Control Literature -- Signals and Algo-

rithms

In Section 2.1 we explained that CC algorithms try to estimate available bandwidth to opti-

mally configure cwnd and maximise network utilisation. However, accurate bandwidth es-

timation is hard to achieve. Instead, CC algorithms use one or more congestion feedback

signals to infer whether the path is under or over utilised. Senders react by increasing or
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Figure 2.5: Simplified FQ-CoDel/FQ-PIE AQMs

reducing cwnd appropriately.

2.3.1 Implicit Congestion Feedback Signals

In many cases network infrastructure does not provide enough information to end hosts regard-

ing the current network condition. As such, end hosts need to infer network state indirectly.

One such mechanism is the congestion state of the path. Congestion state may be a simple

binary signal or more advanced signal indicating the level of congestion. These signals are

used to infer congestion without requiring support from middleboxes in the path between the

sender and receiver. Typically, TCP uses either loss or delay signals to infer congestion.

2.3.1.1 The loss signal

Packet loss is used as a loss signal by many TCP CC algorithms to indicate network con-

gestion. When a bottleneck experiences transient congestion, packets are queued until buffer

space is exhausted. When this occurs, any new packets arriving at the bottleneck will be

discarded until the queue drains, freeing up buffer space.

A sender typically detects packet loss using either the TCP Retransmission Time-Out

(RTO) timer, or via three duplicate acknowledgement (3DUPACK) packets.

The RTO timer fires for a packet when no ACK is received for that packet, or any packet

after it, within the RTO period of time. This event may occur during heavy loss situations due

to severe network congestion and/or high noise in the link. RTO also commonly triggered due

to loss of last packet in a window (tail drop) when the sender has nothing more to send for

longer than an RTO period (application limited flows). For example, if the sender transmits

three segments and the third segment lost, then there is no direct way for the receiver to inform

the sender (using ACK) that it has not received last segment. Therefore, the sender will keep
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Figure 2.6 illustrates a simple case of the RTO mechanism. No ACKs are received and

the RTO timer causes the first packet to be retransmitted. The RTO timer must be tuned

correctly to maximise link utilisation. Too large a value results in longer periods with no

traffic, while too low a value wastes bandwidth due to multiple transmissions of successfully

received packets. TCP Tahoe introduced improved RTO time estimation [48]. The original

TCP CC specification included just the RTO mechanism to detect losses.

Alternatively, lost packets result in unordered packet arrival at the receiver. In this case,

an ACK is constructed containing the sequence number of the missing packet for each subse-

quent packet arrival. With 3DUPACK, the sender uses the arrival of the third duplicate ACK

packet (four identical ACKs) to infer that the corresponding packet was lost and trigger a

retransmission [32].

Detecting congestion using 3DUPACK will typically occur more rapidly than waiting for

the RTO timer to fire. This allows for a quicker recovery through the fast retransmission

process as shown in Figure 2.7.

The 3DUPACK mechanism was introduced by TCP Reno [32]. TCP uses a threshold

of three duplicate ACKs as a balance between the speed of loss detection and false positive
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detection due to the possibility of out-of-order delivery by the IP layer.

Unlike other inferred congestion signals, determining the loss signal does not require pre-

cise timers or time calculations, and is simple to implement with minimal code. This was

important when TCP/IP was first developed as processing resources were more limited. The

simplicity of the loss signal is why standard TCP (and key variants such as TCP CUBIC [49])

use it to infer congestion.

While using loss feedback is effective and easy to implement, it has some drawbacks.

Firstly, using the loss signal, we can infer congestion only after network congestion becomes

high enough to cause packet loss. The higher use of buffering capacity leads to longer queuing

delays. This can lead to a poor quality of experience for latency sensitive applications sharing

the bottleneck’s buffer, such as VoIP and online gaming.

Secondly, packet loss is not always caused by network congestion. In some wireless net-

works packet loss may be caused by high bit error rate (BER) or user mobility [50]. The data

link layer of modern wireless networks provides better reliability such that upper layers will

rarely see packet losses on these networks. Link layer reliability instead translates into addi-

tional latency fluctuations at the IP layer, with subsequent implications for delay-based CC.
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These will be further discussed in Section 2.6.2. As such, while the performance of conven-

tional TCP on older wireless networks can be significantly affected by random packet losses,

this is not true for modern wireless networks.

2.3.1.2 The delay signal

Measurement of delay can also be used to infer network congestion. The delay can be directly

measured in the form of RTT or One Way Delay (OWD), or calculated as a delay gradient sig-

nal to more directly measure changes to delay. Figure 2.8 illustrates the delay signal between

two hosts connected over a bottleneck.

Some studies argue that there is low correlation between measured delay and congestion

in many cases [51–53]. However, McCullagh and Leith [54] studied the correlation between

the delay signal and congestion and concluded that the flow’s aggregate behaviour is what

is important for delay-based CC, not a single observation by one flow. Also, Prasad et al.

[55] investigated the reasons for the weak correlation between delays and losses caused by

congestion and identify conditions under which the delay signals can fail to provide durable

congestion feedback.

The delay signal provides more timely feedback of network congestion than the loss signal

or even an explicit feedback signal. This is important for large BDP networks (also called

Long Fat Networks LFNs) [56]. Unlike the loss signal, the delay signal gives approximate

information on the degree of congestion such that the CC algorithm can proactively reduce

the sending rate before packet loss occurs, or even before the queuing delay becomes high.

Moreover, the delay signal is also effective in lossy network environments. When packet
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loss occurs unrelated to congestion, packet delivery time will not increase and the delay signal

is unaffected. As a result, a delay-based CC has the potential to be more tolerant to random

packet losses and may perform better in lossy network environments.

Many delay-based CC algorithms use measured RTT as a delay signal, because this only

requires TCP sender side modification. As a path’s RTT combines the forward and reverse

OWD, there is no way to distinguish what component of delay originates in the forward or

reverse path. Including the reverse path delay in estimating queuing delay can lead to unnec-

essary cwnd backoff when the reverse path is congested. Congestion in the reverse path is not

caused by the aggressiveness of the sender, and decreasing cwnd will not improve congestion.

Some delay-based CC algorithms attempt to use only the OWD along the forward path

(direction of data flow), to avoid reacting to congestion in the reverse path. One method

of OWD calculation is to timestamp packets before transmission. At the receiver, the packet

timestamp is extracted and subtracted from the local time. The receiver attaches the calculated

OWD to the ACK reply packet.

A problem with this approach is that the direct calculated OWD will not have any meaning

without strict time synchronisation between the sender and the receiver which is difficult to

achieve. However, if the CC algorithm computes the difference between the calculated OW D

and OW Dbase (OW Dmin), then the difference will be the one way queuing delay without time

synchronisation.

OWDq = OWD−OW Dbase

The downside of using OWD in CC is that it requires receiver side modification, making

deployment of such CC algorithms more challenging.

An alternative is to use the TCP timestamp extension [57] to calculate OWD. The sender

subtracts the TS Echo Reply from the TS Value fields in the ACK packet to estimate the

forward OW D. However, TCP timestamp is an optional feature which not all stacks implement

or enable by default. Also, OWD measurement can suffer from clock drift between the sender

and the receiver, leading to an increase or decrease of OWD estimation over time. This issue

can be addressed by either resetting the OWDmin measurement regularly, or by using methods

to estimate clock drift [8, 58].

Generally, the delay signal is used to estimate the queuing delay Dq for the bottlenecks

along the path between the source and the destination. As a bottleneck queue fills, the packet

queuing time is translated to latency.

Most delay-based CC algorithms calculate Dq from the path delay by estimating the fixed

base (or propagation) delay Dbase. Dbase is practically determined as the smallest delay Dmin

seen during a period of time and assumes that the queues along the path completely drain (no
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Figure 2.9: cwnd vs time illustrates the latecomer advantage problem

queuing delay) at some points during that period. Then, Dq is estimated as Dq = D−Dbase

where D is the measured delay.

Despite the potential advantages of using the delay signal, it comes with a number of

difficulties. Primarily, the assumption that Dbase equals Dmin is not always true, which can

lead to over or under-estimation of Dbase.

Over-estimation of Dbase leads to an under-estimation Dq and can result in non-detection

of a congested network state. Alternatively, under-estimation of Dbase can result in false de-

tection of network congestion. Errors in measuring Dbase are caused by persistent queues in

the bottleneck. The aggressive nature of loss-based CC algorithms are an obvious source of

standing queues in a heterogeneous environment, however standing queues can be formed by

delay-based CC algorithms as well. Most delay-based CC algorithms try to achieve optimum

throughput, requiring cwnd to be at least BDP (see section 2.1.1). This results in queues al-

ways being partially filled. These errors can impact on CC performance where algorithms can

be either over or under-aggressive, leading to to problems such as unfairness, the latecomer

advantage, and generation of persistent large queues.

The latecomer advantage problem describes the case where a new flow gets higher band-

width share (higher throughput) through a congested bottleneck than preexisting flows [59].

This problem is common in threshold delay-based CC algorithms that aim to maintain a con-

stant number of packets in the queue. For example, Figure 2.9 plots cwnd versus time for the

staggered starts of three LEDBAT flows (section 2.4.1.8) sharing a bottleneck. The plot illus-

trates how the new flows increase their cwnd (achieving higher throughput) while the existing

flows decrease their cwnd (achieving lower throughput).

This is due to each new flow measuring a higher Dmin due to existing standing queues in the

bottleneck. This leads to overestimating Dbase, allowing the new flow to be more aggressive

in increasing cwnd. At the same time, existing flows decrease their own cwnd as they interpret



24 Delay-based congestion control

the new flow’s aggressiveness as network congestion.

A second challenge is the assumption that the path delay is unchanged during a connec-

tion’s life time, or at least over a period of time. However, this assumption is also not always

true (for example, due to path rerouting) [60, 61].

Another challenge when using delay signal is the noisiness of delay measurement due to

variation in queue occupancy and network jitter. The noise is exacerbated under a heavy load

environment and weakens the correlation between the sampled delay signal and congestion

[56].

The noise can be reduced using a filter, such as the exponentially weighted moving average

(EWMA) filter [58]. However, filtering the signal may reduce the responsiveness of delay-

based CC.

One final issue when using delay signal is delayed ACKs. The TCP delayed ACK option

is used to reduce the number of ACK packets in the reverse path to reduce resource wastage.

Delayed ACKs can cause inaccurate Dq estimation if the ACK is incorrectly matched to the

corresponding data packet.

Instead of treating the delay as a pure signal (threshold), the delay-gradient can be used

to infer congestion. Use of the delay gradient was first proposed by Jain in the CARD CC

algorithm which uses the normalised delay-gradient of RTT to detect congestion [62].

Hayes et al. [12] proposed a new algorithm that utilises the average smoothed delay-

gradient ḡn of RT Tmin and RT Tmax seen in the measured interval to estimate congestion level.

Using the gradient of minimum and maximum RTT, and the average smoothed filter, reduces

the noisiness of the RTT gradient. Depending on ḡn sign and magnitude, CC algorithm can

increase or decrease cwnd. Using this signal it is possible to distinguish between packet loss

related to congestion and loss related to a noisy environment such as a wireless network.

In addition to using the delay signal in congestion detection, some CC algorithms use this

signal in calculating cwnd. Moreover, it is worth noting that not only delay-based TCP CC

algorithms utilise the delay signal but also other transport protocols. For example, LDA+ [63]

and MLDA [64] rely on the delay measurement in additional to loss signal to control sending

rate of Real-time Transport Protocol (RTP) [65] and UDP multicast respectively.

2.3.2 Explicit Congestion Feedback Signals

Explicit congestion feedback refers to explicit signals sent by the bottleneck to inform the end-

host of the congested state of the bottleneck. The sender’s CC algorithm should respond to the

signal by reducing cwnd. Bottlenecks use different mechanisms to detect congestion in their

buffers and mark packets when congestion is encountered. It is clear that explicit feedback

signals needs cooperation from the bottleneck, network protocol and transport protocol in



2.3 TCP Congestion Control Literature -- Signals and Algorithms 25

order to function.

Explicit feedback for TCP/IP is typically implemented using the Explicit Congestion No-

tification (ECN) extension [4]. In the forward path, ECN supports packet marking, using ded-

icated bits in the IP header to encode congestion state.Additionally, ECN utilises bits within

the TCP header which are used to inform the sender that congestion has happened and an

action has been taken place.

If the router supports ECN, it marks the packet when the congestion is detected. When

processing the marked packet, the receiver sets a flag in the ACK packet. Upon receipt of an

ACK with congestion flag set, the sender reduces its cwnd.

To support ECN, a bottleneck router needs to detect and signal congestion before complete

exhaustion of available buffer space, such as using AQM in place of the traditional Droptail

mechanism (as described in section 2.2). The AQM can then mark ECN-capable IP packets

when congestion is experienced (rather than drop them).

As originally proposed [4], TCP was expected to react to an ECN signal in the same way

as to packet loss (e.g. halving cwnd for TCP Reno). However, a new proposal suggests that

cwnd should be reduced by a smaller amount for an ECN signal than for packet loss as the

ECN signal is likely generated by an AQM-enabled bottleneck emulating a small queue [66].

This new proposal can improve TCP throughput without causing network collapse.

While using explicit feedback for CC reduces packet loss and can improve overall net-

work performance, there are some difficulties. Middleboxes, including old, non-ECN aware

firewalls, intrusion detection systems, and load balancers, may respond with an RST (reset

connection) packet or drop the packet silently when processing a packet with the ECN enable

flags set.

Another issue involves non-compliant hosts which pretend to support ECN during connec-

tion negotiation but do not respond to marked packets. This results in the receiver attaining

higher throughput than other flows sharing the bottleneck, and increased congestion in the

bottleneck.

This vulnerability can be addressed in the AQM by dropping packets instead of marking

them when congestion exceeds a specific threshold. For example, PIE has a safeguard against

such behaviour by dropping ECN enabled packets when queuing delay becomes high, and the

sender will reduce cwnd as a reaction to packet loss. An alternate solution is to segregate flows

into queues using scheduling techniques such as FQ-CoDel or FQ-PIE (section 2.2.2), thereby

isolating well-behaved flows from unresponsive flows.

ECN-based CC approaches rely on explicit congestion feedback to estimate congestion

intensity and react (by reducing cwnd) in different degrees based on that intensity. The pur-

pose of this type of CC is to provide a low-latency and high-throughput protocol with low
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loss rate for controlled network environments such as data centres. Unlike AQM configured

for conventional TCP, ECN-based CC algorithms require AQMs to mark packets much ear-

lier (having lower target delay/occupancy and very short burst tolerance) to provide very low

latency. The throughput of ECN-based CC will not be affected by such very shallow buffer

emulation since cwnd back-off factor is adaptive based on congestion intensity. A well-known

example of ECN-based CC approaches are DCTCP [67], Deadline-Aware Data Center TCP

(D2TCP) [68] and L2DCT [69]. It is worth noting that a recent study proposes an architecture

called L4S [70] to use ECN-based CC on the Internet by utilising a special type of AQM (e.g.

DualQ Coupled AQM [71]). The proposed AQM separates classic TCP flows from ECN-

based flows in two different queues and then priority packet scheduler is used to provide fair

bandwidth share.

2.3.3 TCP Congestion Control Algorithms

Standard TCP deploys a combination of techniques (slow start (SS), congestion avoidance

(CA), fast retransmit and fast recovery) to respond topacket losses [32]. SS is used to probe

the link capacity when no previous information is available about the link. CA aims to prevent

heavy network congestion while adapting to changes in network conditions. Fast retransmit

and fast recovery are used to quickly resend the missing packets and recover from theses

losses. In this section, we describe these algorithms in some detail as they are considered the

base for most TCP variants.

2.3.3.1 Slow Start

In the absence of specific network feedback, a TCP sender is typically unaware of path capac-

ity when a connection is first established. TCP uses the slow start algorithm to initially probe

a path’s capacity.

To begin a new connection in SS mode, TCP sets cwnd to the Initial Window (IW) and

transmits this IW of bytes. For each received ACK that acknowledges new data, cwnd is

increased by no more that one MSS, typically doubling cwnd every RTT. This mode is referred

to as slow start because the sender does not begin with cwnd set to some large (and potentially

excessive) initial value.

TCP exits SS and enters congestion avoidance mode when congestion is detected. Path

capacity is estimated as a portion of cwnd that was realised when the congestion was detected.

To distinguish between SS and CA modes, TCP maintains a state variable called slow

start threshold (ssthresh). The SS algorithm runs when cwnd < ssthresh, otherwise the CA

algorithm is executed. Initially, ssthresh is set to a high value to allow the SS algorithm
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Figure 2.10: TCP Reno Slow-Start and Congestion Avoidance

to probe available bandwidth quickly. Following each congestion event, ssthresh is set as a

multiple (usually half) of cwnd.

Figure 2.10 plots cwnd progression and RTT versus time for TCP Reno. The first six time

samples cover the SS phase of the flow. The exponential growth of cwnd is shown in Figure

2.10a where cwnd increases to about 27 MSS at time 5RTT. In Figure 2.10b, we also see that

RTT increases above the base RTT of 40ms after time 2RTT once cwnd becomes larger than

the path BDP. RTT continues to increase to about 170ms when the bottleneck queue is full

and packets are dropped.

When packet loss is used to detect congestion, the exponential growth of cwnd can lead to

a large overshoot of the optimum value. This can result in high packet loss within one RTT,

leading to waste in network bandwidth, long unresponsive periods and increased loads on the

end-host operating systems during the loss recovery period [72]. This problem is exacerbated

in networks with large BDPs network as cwnd grows to a large size and there is an increased

time period before congestion feedback is noticed by the sender.

Consequently, improvements have been proposed to find a safe exit point from SS without

resulting in high packet loss and low bandwidth utilisation. One proposed algorithm is Hybrid

Start (HyStart) [72] which uses the ACK trains technique and sampled RTT to find a safe exit

point to CA.

2.3.3.2 Congestion Avoidance

During congestion avoidance (CA), TCP CC tries to avoid congestion by increasing cwnd

slowly during periods of no congestion, and reducing it significantly when congestion is de-

tected. Some algorithms try to stabilise cwnd when they infer that the available bandwidth is
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fully utilised.

The standard technique for maintaining cwnd is the Additive Increase/Multiplicative De-

crease (AIMD) algorithm, where cwnd increases linearly by α once per RTT and multiplica-

tively decreases it by β (where α and β are algorithm specific constants). For example, TCP

Reno uses α = 1 and β = 0.5 [32], resulting in cwnd increasing by no more than one MSS

bytes per RTT, and being halved when congestion is detected.

In order to keep cwnd ≥ BDP and achieve full link utilisation (see Section 2.1.1), cwnd

should be greater than 2×BDP upon packet loss. This can be achieved only if the bottleneck

buffer size equals at least the BDP of the connection. Otherwise, after backoff cwnd will be

dropped to less than BDP and require multiple RTTs in CA mode to regrow back to BDP. This

can cause severe degradation of throughput in large BDP networks.

To simplify implementation, the additive increase can be performed using the appropriate

byte counting method. The number of acknowledged bytes is accumulated until they become

greater than cwnd, and then cwnd is increased by one MSS. Another formula that can be used

to update cwnd is given in equation 2.1.

cwndi+1 = cwndi +MSS ∗
MSS

cwndi

(2.1)

When congestion is detected via RTO firing, TCP resets cwnd to one MSS and sets ssthresh

to no more than half of flight size. The missing packets are then resent and TCP reenters SS.

When congestion is detected via 3DUPACK, TCP enters the fast retransmit and fast recov-

ery phase.

2.3.3.3 Fast Retransmit and Fast Recovery

TCP Tahoe enters a fast retransmission phase when packet loss is detected via 3DUPACK.

The missing packet is immediately retransmitted, ssthresh is set to half of cwnd and cwnd is

reset to one MSS. TCP then enters SS.

TCP Reno augments the response to 3DUPACKs with fast retransmission and fast recovery

[32]. The missing packet is immediately retransmitted, ssthresh is set to half of cwnd and cwnd

is set to ssthresh plus 3×MSS. This inflates the congestion window to reflect the three packets

that departed the host after the missing packet. cwnd is subsequently incremented by one MSS

for each additional duplicate ACK received as a reflection of the additional packets delivered

to the destination. When new data is ready to be sent, TCP should send one MSS worth of

bytes if cwnd allows.

Fast recovery finishes by receiving a new ACK that acknowledges unacknowledged data.

After that, TCP Reno sets cwnd to ssthresh, and enters CA.
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TCP Reno fast recovery is inefficient when multiple packets losses occur in the same

transmission window since the cumulative acknowledgement doesn’t reflect losses after the

first missing packet. A new fast recovery algorithm called NewReno was proposed to address

this issue [37].

Another solution to multiple losses within a window is to use the TCP Selective Acknowl-

edgment (SACK) option [38]. SACK allows the receiver to inform the sender the exact se-

quence of bytes that have been received so the sender need only resend the missing segments

without waiting for multiple RTTs. The number of SACK blocks (range of received bytes)

within one packet is limited by the TCP options field. As a consequence, SACK may not

be able to provide all received byte ranges if many non-contiguous losses occur within one

window.

2.3.4 Congestion Control Metrics

It is important to understand congestion control evaluation metrics to be able to study and

compare the performance of different CC algorithms. Various CC algorithms are designed

with different aims and working environments. Some protocols focus on improving specific

metrics while others focus on trading-off multiple metrics. The main metrics for evaluating

congestion control mechanisms are [73]:

• Throughput: The amount of data sent per time interval. Can be measured for routers as

aggregate link utilisation, for flows as connection transfer times, and for users as user

wait times.

• Delay: Measures the additional queuing delay caused by the CC algorithm.

• Packet Loss Rate: Measures wastage of network resources.

• Fairness: The degree of equality in resource allocation.

• Convergence time: The time required to for flows to converge to fairness.

CC algorithms often need to consider a trade-off between metrics. For example, loss-based

CC typically has higher throughput at the expense of increased delay and packet loss. Alterna-

tively, delay-based CC has improved delays and packet loss at the expense of lower throughput

when competing with loss-based flows. To achieve both high throughput and low queuing de-

lay, CC schemes aim to maximise the power metric [74]. Power metric is given in Equation

2.2 where x is flow’s throughput, RTT is the current round trip time and α is a constant. If

α > 1, power metric will give a preference to throughput over the response time of the flow
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(higher throughput, higher queuing delay). If α < 1, this metric gives a preference for the

response time (lower throughput, lower queuing delay).

power =
xα

RT T
(2.2)

The choice of CC algorithms and preferred performance metrics are influenced by appli-

cation requirements. However, in environments that include a mixture of loss and delay based

CC, the ideal outcome is typically unachievable. Pure delay-based CC can suffer from unfair

resource allocation as they typically defer to loss-based CC due to the high queue occupancy

caused by loss-based CC.

Ensuring fair capacity sharing is not a trivial task, especially when different CC algorithms

coexist over the same path, or when flows travels over different path distances. One of the most

commonly used indices for measuring resource sharing fairness is Jain’s fairness index [75]

[73]. Jain’s index is given in Equation 2.3 where n is number of flows and xi is the throughput

of the ith flow. This index ranges from 0 to 1, and is at a maximum when all flows receive the

same allocation.

f airness =

(

n

∑
i=1

xi

)2

n
n

∑
i=1

x2
i

(2.3)

When a new flow joins a shared bottleneck, bandwidth should be reallocated for all com-

peting flows. Convergence time in a high BDP environment is important as large amounts of

data can be transferred over short time intervals.

One measurement of convergence time is the delta-fair convergence time [76]. This mea-

sures the time taken for two flows to go from a fully unfair share of the link capacity, to having

near fair sharing of link capacity. The time is calculated as per Equation 2.4, where B is the

total bandwidth, δ is the fairness wants converge to and b0 is the initial bandwidth allocated

to the new flow.

δ − f air conv = (B−b0,b0) → (
1+δ

2
B,

1−δ

2
B) (2.4)

In addition to these metrics, robustness to noisy environments, misbehaving users, min-

imising cwnd oscillations and dependability are considered important in many cases.
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2.4 CC algorithms that utilise the delay signal

We propose a taxonomy (Figure 2.11) to categorise the behaviour of TCP Congestion Control

Algorithms with respect to their use of different congestion signals. Within this taxonomy

we define primary categories of: 1) ECN-Based which use explicit congestion notification as

described in Section 2.3.2; 2) Loss-Based which primarily rely on packet loss as a congestion

signal; 3) Delay Based which primarily rely on the delay signal; 4) Hybrid which use a com-

bination of both Loss and Delay signals; and 5) Bandwidth Estimation Delay Sensitive which

use link capacity estimation and delay measurements to regulate the sending rate.

We further sub-classify Loss Based algorithms into Pure Loss Based approaches and Delay

Sensitive algorithms to differentiate those that may occasionally use the loss signal to achieve

their aims. We also sub-classify hybrid algorithms into Dual Signal and Dual mode algorithms.

Dual signal approaches utilise both loss and delay signals. The delay signal allows the

CC algorithm to scale quickly without stressing the network. They are usually deployed in

large BDP networks where traditional loss-based approaches can be slow to achieve high link

utilisation.

Dual mode approaches alternate between using loss and delay signals based on internal

state. They typically use the delay signal to infer early congestion and better manage queue

latency, and revert to using the loss signal when competing with loss-based flows to achieve

reasonable inter-flow fairness.

Pure loss based and ECN-based approaches are out of scope for the rest of this chapter.

In general, CC algorithms that utilise the delay signal use RTT or OWD based metrics

to detect the degree of network congestion. Although different CC algorithms may use cus-

tomised metrics, common delay metrics are queuing delay, queue occupancy or delay gradi-

ent. Algorithms that estimate queuing delay attempt to keep latency under a predefined time

threshold. Algorithms that estimate queue occupancy attempt to keep bottleneck buffer util-

isation to a specific threshold (bytes or packets) or to perform early detection of congestion

events. Delay gradient algorithms avoid the use of thresholds to avoid issues around RTT and

base RTT estimation.

2.4.1 Delay-based Algorithms

Most delay-based CC algorithms are threshold-based which infer early congestion in the net-

work when the measured delay signal exceeds a pre-configured or dynamically calculated

threshold or thresholds. A few use delay-gradient approaches to infer network congestion by

monitoring congestion trends in bottleneck buffer and make decisions based on the rate of

change of queuing delay.



32 Delay-based congestion control

B
/W

 E
s

tim
a

tio
n

D
e

la
y

 s
e

n
s

itiv
e

D
e

la
y

-b
a

s
e

dT
C

P
 V

e
g

a
s

T
C

P
 V

e
g

a
s
+

T
C

P
 V

e
g

a
s
-A

F
A

S
T

 T
C

P

T
C

P
 N

IC
E

T
C

P
-L

P

P
E

R
T

T
C

P
 

C
o

n
g

e
s

tio
n

 C
o

n
tro

l

H
y

b
rid

L
o

s
s

-D
e

la
y

 

D
e

la
y

 
s

e
n

s
itiv

e

C
D

G

T
C

P
 L

o
L

a

T
C

P
 D

U
A

L

T
C

P
 A

fric
a

C
-T

C
P

T
C

P
 L

ib
ra

T
C

P
-Illin

o
is

T
C

P
 W

e
s
tw

o
o

d
/

T
C

P
 W

e
s
tw

o
o

d
+

T
C

P
W

 C
R

B

 T
C

P
W

 A
B

S
E

T
C

P
W

 B
R

T
C

P
W

 B
B

E

T
C

P
W

-A

P
u

re
 L

o
s

s
-

b
a

s
e

d
 

a
p

p
ro

a
c

h
e

sT
C

P
 T

a
h

o

T
C

P
 R

e
n

o

T
C

P
 

N
e

w
R

e
n

o

T
C

P
 S

A
C

K

T
C

P
 C

U
B

IC

e
tc

...

T
C

P
 B

B
R

L
o

s
s

-b
a

s
e

d

D
u

a
l M

o
d

e
D

u
a

l S
ig

n
a

l

T
C

P
 C

o
p

a

E
C

N
-b

a
s

e
d

D
C

T
C

P

D
2

T
C

P

L
2

D
C

T

e
tc

...

R
A

P
ID

L
E

D
B

A
T

T
C

P
-A

P

Y
e

A
H

 T
C

P

C
x
-T

C
P

N
im

b
u

s

T
IM

E
L

Y

F
igure

2.11:
Taxonom

y
of

T
C

P
congestion

controltechniques
review

ed
in

this
survey



2.4 CC algorithms that utilise the delay signal 33

Most delay-based CC algorithms aim for high link utilisation with short bottleneck queues.

However, others are designed for background bulk file transfer applications, and typically aim

is to achieve a lower bandwidth share when competing with standard flows. Delay-based CC

can achieve high throughput by reducing the oscillatory cwnd behaviour of standard TCP by

slightly reducing the window size when the queuing delay reaches a defined threshold.

Unfortunately, CC algorithms of this category typically suffer from unfair resource allo-

cation when sharing a bottleneck with loss-based CC and experience the latecomer advantage

problem described in Section 2.3.1.2. Table 2.1 summarises the properties of the delay-based

TCP variants reviewed in this section.

2.4.1.1 TCP DUAL

In 1992, Wang and Crowcroft [77] proposed an enhanced algorithm, called TCP DUAL, to

minimise the oscillation of TCP Tahoe’s cwnd dynamic in CA mode. Dampening these os-

cillation helps reduce fluctuations in buffer utilisation that can lead to RTT instability and

periodic packets losses.

TCP DUAL estimates the queuing delay using RTT measurement to indicate the network

congestion level and reduces cwnd before a packet loss happens. The algorithm assumes that

the base RTT is RT Tmin , and RT Tmax represents the RTT of the highest congestion level along

the path. RT Tmin and RTTmax measurements are reset whenever RTO is triggered. At any time,

the two-way queue delay (Qi) can be estimated shown in equation 2.5.

Qi = RT Ti−RT Tmin (2.5)

DUAL attempts to keep the queuing delay at a point between the minimum and maximum

queue delay (Qi → δ ×Qmax) where Qmax = RTTmax−RT Tmin and 0 < δ < 1 ( δ = 0.5 is

used in [77]). In other words, it attempts to keep the RTT close to a threshold th where

th = (RTTmax +RT Tmin)×δ .

On every other received ACK, if RT Ti > th, TCP DUAL multiplicatively decreases cwnd

by 7/8 to fine tune the RTT around th. If network congestion is detected using RTO mecha-

nism, TCP DUAL behaves similarly to TCP Tahoe i.e. ssthresh = cwnd/2, cwnd=1 and moves

to SS phase. If no congestion is detected using the delay or loss signals, TCP DUAL increases

cwnd by one MSS every RTT.

Due to the delay component of TCP DUAL, this algorithm is affected by the latecomer

advantage unfairness problem. Additionally, in common with other delay based back-off

schemes, TCP DUAL flows can suffer from low bandwidth sharing when competing with

loss-based flows.
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Table 2.1: Delay-based TCP variants reviewed in Section 2.4.1

TCP variant Section Algorithm aims Signal

type

Metrics

TCP DUAL [77] 2.4.1.1 minimise cwnd

oscillation of TCP
Tahoe, better
throughput

RTT queuing delay

TCP Vegas [33] 2.4.1.2 minimise cwnd

oscillation, low
queuing delay, better
throughput

RTT queue occupancy

TCP Vegas-A [60] 2.4.1.3 remedy TCP Vegas
path re-routing and
fairness issues

RTT queue occupancy

FAST TCP [78, 79] 2.4.1.4 scalability in large
BDP networks, low
queuing delay

RTT queue occupancy

TCP NICE [9] 2.4.1.5 low priority, low
queuing delay

RTT queue delay

TCP-LP [58] 2.4.1.6 low priority, low
queuing delay

OWD queue delay

TCP PERT [80] 2.4.1.7 low queuing delay RTT queue delay

LEDBAT [8] 2.4.1.8 low priority, low
queuing delay

OWD queue delay

TIMELY [81] 2.4.1.9 low queuing delay in
datacentre
environments

RTT delay gradient

TCP LoLa [82] 2.4.1.10 scalability in large
BDP networks, low
queuing delay

RTT queue delay
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2.4.1.2 TCP Vegas

An early, well known delay-based TCP CC, TCP Vegas [33] aims to achieve maximum

throughput, low packet loss and queuing delay, with minimum cwnd oscillation. It uses cwnd,

the current RT T and RT Tbase (derived from the minimum witnessed RT T ) to regularly esti-

mate the number of in-flight bytes that reside in the bottleneck buffer, while aiming to keep

this number small.

TCP Vegas deploys an Additive Increase Additive Decrease (AIAD) approach when con-

gestion is controlled using the delay component. cwnd is increased by at most one MSS every

RTT, ensuring the algorithm is not more aggressive than standard TCP. When packet loss is

detected, TCP Vegas mimics standard TCP by halving cwnd.

During CA, TCP Vegas calculates the difference between the expected and actual sending

rate to estimate the data currently queued at the bottleneck. The expected sending rate can

be calculated as the throughput when no congestion is present in the bottleneck i.e. the RT T

equals RTTmin:

expected rate =
cwndi

RT Tmin

The actual sending rate is the calculated based on the actual RT T (RT Ti ) :

actual rate =
cwndi

RT Ti

To estimate the number of queued packets at the bottleneck ∆, the difference between the

rates is multiplied by RTTmin:

∆ = (expected rate−actual rate)×RTTmin (2.6)

TCP Vegas calculates ∆ upon receipt of each ACK and compares ∆ with algorithm param-

eters α and β (default α = 1 and β = 3). These parameters control the length and stability of

the bottleneck queue. The protocol aims to maintain the queue length between α and β .

When ∆ < α , TCP Vegas increases cwnd by one segment during the next RT T . When

∆ > β , network congestion is inferred and cwnd is decreased by one segment during the next

RT T . Otherwise cwnd is left unchanged.

The rationale of this algorithm is that if a sender can send a cwnd worth of data without

observing a large increase in RTT , this means the link is under-utilised and we can increase

cwnd. Alternatively, if the increase in RT T is such that ∆ exceeds threshold β , this means the

link is over-utilised and we should reduce cwnd.

TCP Vegas also proposes an enhancement to the TCP Reno SS mechanism to detect the
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available bandwidth and exit SS before packet loss occurs. Specifically, it exits SS when ∆>α

where ∆ is calculated as above upon receipt of every other ACK. TCP Vegas also introduces a

more timely technique to detect loss before receiving the third duplicate ACK.

Although these modifications aim to reduce the stress on the network, experimental results

[33] show a very small impact on overall network performance due to the short working time

of SS and fast retransmission compared with CA.

Barkmo and Peterson [33] claim that TCP Vegas is able to achieve 37% to 71% better

throughput and reduction in packet losses by 1/5 to 1/2 than TCP Reno on the Internet. Unfor-

tunately, later studies [34, 83–86] demonstrate a number of issues with TCP Vegas including

1) low fair share of bandwidth when competing with Reno-style flows (loss-based CC); 2) low

throughput following sudden increases in base RT T (eg. path rerouting); and 3) latecomer

advantage (section 2.3.1.2) due to incorrect base RT T estimation.

2.4.1.3 TCP Vegas-A

Despite the limitations, TCP Vegas still displays desirable characteristics. Srijith et al. [60]

claim that the re-routing and fairness problems when sharing a bottleneck with Reno flows can

be remedied by dynamically adapting α and β coefficients based on the actual sending rate.

They propose a modification to TCP Vegas called TCP Vegas-A.

Vegas-A uses the default α and β values (1 and 3 respectively) at the start of the connec-

tion, and keeps these values as the minimum boundaries. After that, Vegas-A dynamically

changes these values based on the network conditions.

When α < ∆ < β , the algorithm is in steady state. Vegas-A attempts to probe the available

bandwidth to adjust α and β to maximise throughput. When Vegas-A detects an increase in

the actual rate, α , β and cwnd are incremented.When α > 1, ∆ < α and there is a decrease in

the actual transmission rate, Vegas-A assumes that the coefficients have been over-estimated

and decreases α , β and cwnd. When α > 1, ∆ < α and there is an increase in the actual

transmission rate, cwnd is increased. Otherwise, the algorithm adjusts cwnd using the TCP

Vegas rules.

Using ns-2 simulations, Srijith et al. [60] show overall improvement with TCP Vegas-A

compared to TCP Vegas for the path re-routing issue over both wired and fluctuating RTT

satellite links. They also show better fairness when Vegas-A competes with TCP Reno flows.

However, Vegas-A is still unable to obtain fair capacity sharing with Reno-style flows

when the number of flows is small. Further, when the number of TCP Vegas-A flows becomes

relatively high, the fairness problem inverts and the Vegas-A flows get a higher capacity share

than Reno flows.
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2.4.1.4 FAST TCP

Inspired by the TCP Vegas idea of controlling congestion based primarily on the delay signal,

Jin et al. [78, 79], proposed FAST TCP, targeting low queuing delays and high bandwidth

utilisation in large BDP paths.

Similar to TCP Vegas in the steady state, FAST tries to maintain a fixed number of packets

(α) in the bottleneck queue by using RT Tbase (derived from observed RT Tmin) and the current

average RT T . Instead of adjusting cwnd by one MSS every RT T interval, TCP FAST updates

cwnd every fixed interval (eg. 20ms) using the specialised equation:

wi+1 = min

{

2.wi, (1− γ).wi + γ

(

RT Tmin

RT Ti
wi +α

)}

The window smoothing factor (γ) is a configurable parameter between 0 and 1 that affects

the window update response to congestion. The target number of packets in the queue (α) is

a constant that controls the protocol fairness.

Selection of α is an open challenge but the authors of FAST TCP used large values (eg.

200) in their experimental evaluation [79]. The window adjustment step is large when the the

current RT T is close to the base RT T , and small as the protocol approaches the steady state

(α packets buffered in the queue).

FAST TCP also uses packet pacing to control the burstiness of the congestion window

mechanism in a large BDP environment and to provide accurate RTT measurement.

Emulated network and simulation based experiments show good overall throughput, scal-

ability, stability, RT T -, inter- and intra-fairness for FAST TCP [78, 79].

However, Tan et al. [87] show unfairness problems and large variation in queue occupancy

related to inaccurate propagation delay estimation, as for TCP Vegas. This inaccurate estima-

tion happens during route change and standing queue scenarios. They also find that the FAST

TCP cwnd update rule is more aggressive than standard TCP which can cause unfairness in

specific scenarios.

Unlike most congestion control algorithms, FAST TCP is a commercial CC algorithm and

is protected by patents [88, 89]. It is one of the few delay-based algorithms that is actually

used in practice over the Internet.

2.4.1.5 TCP NICE

TCP Nice [9] is a scavenger class CC algorithm based on TCP Vegas with a more sensitive

congestion detection mechanism. TCP Vegas by itself provides low priority CC due to its

proactive reaction to congestion, but not low enough to be scavenger class CC.
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During one RTT interval, TCP Nice counts the number of times that the estimated bottle-

neck queuing delay is greater than a fraction of the maximum queuing delay. In other words,

the number of times measured RTT is larger than RT Tmin +(RT Tmax−RT Tmin)× threshold),

where threshold defines the target fraction.

If the count is greater than a fraction of the congestion window, TCP Nice halves cwnd,

otherwise it behaves like TCP Vegas. When loss is detected, TCP Nice halves cwnd.

Another mechanism used to ensure low priority is that cwnd is allowed to decrease to a

value lower than one, this postpones packet delivery for a number of RTTs.

Although TCP NICE flows realise low throughput when competing with Reno-style flows,

there is a concern about how well NICE can utilise the available capacity when just LPCC

flows exist. As with TCP Vegas, NICE also experiences the latecomer advance problem due

to incorrect base RTT estimation.

2.4.1.6 TCP-LP

TCP-LP [58] is an LPCC algorithm that aims to utilise available bandwidth without affecting

foreground TCP flows. Unlike TCP NICE, TCP-LP uses EWMA smoothing of one-way delay

measurements to infer queuing delay in the forward path, avoiding delay fluctuations caused

by reverse path traffic.

TCP-LP uses the TCP timestamps option [57] to calculate a form of OWD as the difference

between receiver’s timestamp in the ACK packet and the sender timestamp copied to the ACK.

Without synchronised clocks this is not a true OWD (section 2.3.1.2), so TCP-LP utilises the

minimum and maximum measurements to calculate one-way queuing delay.

TCP-LP infers early congestion in the forward path when equation 2.7 is true (a similar

strategy to that used by TCP Nice), where we are measuring if queuing delay is greater than a

fraction of the maximum queuing delay.

OWDi > OWDmin +(OWDmax−OWDmin)× th (2.7)

TCP-LP reduces cwnd more aggressively than standard TCP when congestion is detected.

At the first sign of congestion, cwnd is halved. If another congestion event occurs within one

RTT, TCP-LP infers that persistent congestion exists in the network and subsequently sets

cwnd to one MSS. During periods of no congestion, cwnd is increased similar to TCP Reno.

Using ns-2 simulation and a real-world Linux implementation, the authors of TCP-LP [58]

show that TCP-LP achieves its design goals of yielding available bandwidth to competing

standard TCP flows, and high bandwidth utilisation with good fairness when no high priority

flows are competing.
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Figure 2.12: PERT back-off probability function

It is unknown how well TCP-LP will achieve its goals in an AQM or wireless environment.

More evaluation is required for this and similar techniques in different scenarios.

2.4.1.7 PERT

Probabilistic Early Response TCP (PERT) [80] is a delay-based algorithm that emulates AQM

and the end-host without modification to the bottleneck. PERT authors claim that any AQM

can be emulated at the end-hosts but they choose RED [43] and PI [90] AQM.

PERT uses a probabilistic back-off function (Pbacko f f ) based on delay measurements at

the end host. On every receiving ACK, PERT smooths the instantaneous RT Ti sample using

Exponentially Weighted Moving Average (EWMA) to produce SRT Ti to reduce signal noise.

Then it uses SRT Ti and RTTmin to calculate back-off probability.

PERT defines three thresholds thmin (defaults to RT Tmin+ 5ms) , thmax(defaults to RT Tmin+

10ms) and Pmax (defaults to 0.05). By using RT Tmin, PERT estimates instantaneous queuing

delay similar to TCP DUAL. Pbacko f f is zero if SRT Ti is less than thmin. Pbacko f f increases

linearly until it reaches Pmax when SRT Ti equals thmax. Then, Pbacko f f increases faster to

reach one when SRT Ti becomes larger than or equal 2.thmax. Figure 2.12 shows the back-off

probability function that PERT uses.

PERT uses 0.65 multiplication decrease factor if the congestion is detected using the delay

component and 0.5 if packet loss occurs. Additionally, it responds to congestion once every

RTT since the effect of back-off is not observed until after an RTT. This reduces the number

backing off times per congestion event.
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Using ns-2 network simulator[91] and fluid mathematical model, PERT authors [80] find

that this algorithm achieves very low queuing delay and all most no packet loss with good

fairness between competing PERT flows. They also find that PERT is able to utilise the link

in similar way as using AQM on the bottleneck. However, PERT does not solve the coexisting

with loss-based flows problem and PERT authors highlight some possible solutions as future

work.

Kotla et al. [92] propose a modification to PERT to allow better coexistence with loss-

based flow by increasing the additive increase factor if high queuing delay is observed. How-

ever, it has been shown the this modification causes high loss rate and high queuing delay in

many scenarios [93]. Without a functional coexistence mechanism, PERT cannot be deployed

on the Internet since loss-based algorithms are the most widely used CC.

2.4.1.8 LEDBAT

Low Extra Delay Background Transport (LEDBAT) [8] is an LPCC that is widely imple-

mented in different bulk transfer applications such peer-to-peer file transfer [94] and software

updates. LEDBAT aims to keep the forward queuing delay relativity small to reduce interfer-

ence with other flows, particularly flows used by latency sensitive applications such as Voice

over IP (VoIP).

Similar to most delay-based CC, LEDBAT monitors queuing delay and considers an in-

crease in that delay as an early signal of network congestion. By responding to this signal,

LEDBAT flows defer to competing standard TCP flows.

As for TCP-LP, LEDBAT uses OWD measurement instead of RTT to avoid delay fluctua-

tions in the reverse path.

LEDBAT utilises a predefined target threshold (default 100ms) for queuing delay. When

no packet loss is detected, LEDBAT proportionally increases or decreases cwnd based on the

relative difference between the target and estimated queuing delay (equation 2.8). If loss is

detected, LEDBAT behaves like standard TCP by halving cwnd.

cwndi+1 = cwndi +
G×MSS×∆×Backed

cwndi

(2.8)

The gain scale (G) determines the cwnd growth/decline rate and should be no greater than

one to ensure LEDBAT is not more aggressive than the standard TCP. Backed is the number

of newly acknowledged bytes. ∆ is the normalised difference between the one-way queuing

delay and target and is defined in equation 2.9.

∆ =
(target +OWDbase−OWDi)

target
(2.9)
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LEDBAT requires OWD measurement to be made for every packet transmitted by the

sender in order to react accurately and quickly to changes in delay.

LEDBAT maintains a history (default ten entries) of base OWD where each element rep-

resents the measured OWDmin in a one minute interval. OWDbase is the minimum value of this

list. The history is used to minimise the effect of sudden changes in base OWD estimation

caused by delayed ACK, clock skew and re-routing problems.

Due to the low impact of LEDBAT flows on latency sensitive applications, BitTorrent, a

very popular peer-to-peer file sharing protocol, uses this algorithm in its UDP-based transport

protocol [95, 96]. Additionally, Apple Inc. implemented TCP-based LEDBAT to be used for

sending operating system updates to their clients [11].

A number of studies has been evaluated the performance of LEDBAT [6, 61, 97]. These

studies have found that LEDBAT introduces increasing delay due to measuring its self-induced

delay, and suffers from issues related to incorrect propagation delay estimation (unfairness

and latecomer advantage problems). Moreover, a study found that a special care should be

taken when choosing LEDBAT parameters in AQM environments since cwnd backs-off will

be controlled using loss signal as the delay will never reach LEDBAT target delay; otherwise

LEDBAT flows become too aggressive [98].

2.4.1.9 TIMELY

TIMELY [81] is a rate-based delay-gradient CC algorithm optimised to function in a data-

centre environment without the need for additional support from intermediate nodes such as

network switches and routers. The authors state that TIMELY can achieve high throughput

while maintaining low packet latency by relying on accurate RTT measurements for conges-

tion detection.

RTT is typically very small in a datacentre environment, and software time-stamping is too

inaccurate to to measure RTT. As such, the authors suggest using hardware time-stamping pro-

vided by modern Network Interface Cards (NICs) to obtain accurate microsecond resolution

RTT measurements.

TIMELY uses a delay-gradient signal similar to CDG. Due to the high accuracy of the

RTT measurements, the raw RTT can be used rather than RT Tmin and RTTmax.

TIMELY also uses rate-based congestion control rather than a window-based mechanism.

The Rate Computation Engine calculates the required sending rate from the delay-gradient

signal, and the packet transmission is managed by the Rate Control Engine.

RTT is measured once every chunk of data (16KiB - 64KiB). TIMELY uses two threshold

values for RTT of Tlow and Thigh specifying lower and upper bounds for acceptable RTT.

TIMELY infers the network is under-utilised if RT T < Tlow; or Tlow < RT T < Thigh and
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the normalised RTT gradient is negative. In this case the sending rate is additively increased

by δ .

TIMELY infers the network is over-utilised if RTT > Thigh; or Tlow < RT T < Thigh and

the normalised RTT gradient is positive. In the first case, the sending rate is reduced using

equation 2.10. In the second case, the sending rate is multiplicatively reduced in proportion to

the RTT gradient and β using equation 2.11.

rate = rate×

(

1−β ×

(

1−
Thigh

RT T

))

(2.10)

rate = rate× (1−β ×normalized_gradient) (2.11)

The authors of TIMELY claim that this is the first delay-based CC algorithm to be used

in a datacenter environment and is able to achieve high throughput and low latency without

ECN support. They also found a strong correlation between RTT and queue occupancy if an

accurate measurement with proper sampling is used [81].

As TIMELY requires NIC hardware support, deployment is only possible where appropri-

ate hardware is present. Further, Zhu et al. [99] found using fluid model and simulation that

TIMELY converges to a stable point, but with arbitrary unfairness.

2.4.1.10 TCP LoLa

TCP LoLa [82] is another threshold delay-based congestion control algorithm that aims to

achieve high link utilisation in long distance and high bandwidth networks while keeping the

bottleneck queuing delay low. TCP LoLa endeavours to keep bottleneck buffer utilisation

around a fixed target Qtarget value regardless of the number of flows competing for bottleneck

bandwidth. Moreover, it attempts to achieve fairness between flows having different path’s

RTT by using a proposed Fair Flow Balancing mechanism. In general, TCP LoLa is an

enhanced TCP Vegas based algorithm with CUBIC cwnd growth function, better inter-flow

RTT fairness and better RT Tmin estimation.

More specific, TCP LoLa algorithm relies mainly on estimating the current two-way queu-

ing delay Qi using TCP DUAL method (Section 2.4.1.1, Equation 2.5). Similar to Vegas in

SS phase, TCP LoLa uses queue occupancy based condition (Qi > 2.Qlow) to exit SS before

packets losses occur to prevent building-up long queue.

In CA phase, it uses the CUBIC TCP [49] algorithm to grow cwnd when Qi is less than a

predefined threshold Qlow. If Qi > Qlow, LoLa enters fair flow balancing state to realise inter-

RTT fairness. In this state, all flows sharing a bottleneck attempt to keep an equal number

of bytes X in the bottleneck’s buffer at the same time. X is calculated according to Equation
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2.12 where φ is a constant and t is the difference between current time and time at entering

the balancing state. The number of bytes in the buffer Qdata is estimated the same Vegas

queue occupancy estimator (Equation 2.6). During the fair flow balancing if Qdata < X(t),

cwnd increases based on the difference between X(t) and Qdata; otherwise cwnd is leaved

unchanged.

X(t) =

(

t.1000

φ

)3

(2.12)

A flow exits the balancing state and enters cwnd holding state when Qi > Qtarget . In cwnd

holding state, cwnd is kept unchanged for a certain amount of time (e.g. 250ms) to make

all flows to return to normal operation state at the same time. After the holding time elapsed,

cwnd decreases using a modified CUBIC function to realise a fully drained buffer. This allows

flows to obtain a good RT Tmin estimations.

Using a TCP LoLa Linux implementation and an emulated network testbed, TCP LoLa

authors [82] state this algorithm is able to achieve high link utilisation, low queuing delay

and good scalability in 100Mbps and 10Gbps links. However, the main weakness of this

algorithm is it cannot coexist fairly with loss-based CC in typical FIFO queue management.

It relies completely on the bottleneck (e.g. using AQM or isolating loss-based flows from

low-latency flows in separate queues) to provide fair share when competing with loss-based

flows. Therefore, it is practically very hard to deploy this CC protocol globally. Additionally,

it is not clear how this algorithm behaves in shallow buffers and how it reacts to packet loss.

2.4.2 Dual Mode Approaches

Since delay-based CC algorithms respond to congestion feedback much earlier than loss-based

CC, delay-based flows realise low link capacity sharing when competing with loss-based flows

especially when bottleneck’s buffer is large. Dual mode CC approaches work around that issue

by switching to aggressive mode (loss mode) as soon as buffer filler flows are detected. They

stay in the loss mode for an interval or until loss-based flows finish, then they return to normal

delay mode. Different algorithms have different loss-based flows detection techniques but all

of them use the delay signal in that matter. Table 2.2 summarises the dual mode TCP variants

reviewed in this section.

2.4.2.1 TCP Vegas+

Hasegawa et al. [84] proposed TCP Vegas+ to address some of the fairness issues identi-

fied with TCP Vegas (section 2.4.1.2). This algorithm borrows the aggressive cwnd growth
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Table 2.2: Dual mode CC approaches reviewed in Section 2.4.2

TCP variant Section Algorithm aims Signal

type

Metrics

TCP Vegas+ [84] 2.4.2.1
solves TCP Vegas
inter-protocol fairness
issue

RTT queue occupancy

YeAH TCP [100] 2.4.2.2

scalability, low
stressing on the
network, low queuing
delay, non-congestion
related tolerance

RTT
queuing delay,
queue occupancy

CDG [12] 2.4.2.3

low queuing delay,
tolerance to
non-congestion related
losses, standard TCP
compatibility

RTT
RT Tmin and
RT Tmax gradient

Cx-TCP [101] 2.4.2.4
low queuing delay,
coexistence with
loss-based flows fairly

RTT queuing delay

Copa [102] 2.4.2.5

high throughput, low
queuing delay,
coexistence with
loss-based flows fairly

RTT queuing delay

Nimbus [103] 2.4.2.6

high throughput, low
queuing delay,
coexistence with
loss-based flows fairly

RTT
queuing delay,
RT Tmin
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function of TCP Reno and the moderate TCP Vegas approach to produce a hybrid congestion

control technique. In CA, TCP Vegas+ employs TCP Vegas algorithm when no loss-based

flow is detected, and moves to TCP Reno cwnd increase mode if an aggressive flow is inferred

to be sharing the bottleneck.

TCP Vegas+ uses the following heuristic to detect the loss-based flows based on the trend

of RTT. One every received ACK, a state variable count is incremented by 1 if Vegas+ detects

an increase in the current RTT while cwnd is not increased. On the contrary, it decrements

count by 1 when RTT decreases while cwnd is not increased. Moreover, the algorithm halves

count when packet loss is detected using the 3DUPACK mechanism (see Section 2.3.1.1) and

resets it when the loss is detected using the RTO timer.

If count reached a predefined threshold (such as 8), the algorithm moves to the aggressive

(loss-based) mode, and it returns to the moderate (delay-based) mode when count becomes

zero.

The notion of the loss-based flow detection algorithm is that in a stable network, RTT

should not increase when cwnd is unchanged unless there is a Reno-like flow competing for

the bottleneck bandwidth. If the algorithm sees such RTT increase, it assumes another loss-

based flow is sharing the bottleneck so must itself moves into the loss-based mode. On the

other hand, the algorithm moves back to Vegas mode as soon as a packet loss is detected

because that loss could happen due to the aggressive cwnd growth of TCP Vegas+ flow itself.

Vegas+ uses the count threshold as an attempt to reduce the false positive detection of loss-

based flows.

Although this approach attempts to solve the friendliness problem, it does not address the

other issues of TCP Vegas such as rerouting problem. Additionally, in some environments that

include high congestion or high RTT fluctuations (such as wireless networks), TCP Vegas+

could enter the aggressive mode and never exit from it due to wrong RTT measurements. This

makes the algorithm act as loss-based most of the time, eliminating the advantages of the delay

component.

Moreover, TCP Vegas+ evaluated by the authors [84] using simulated network only in

which RTT measurements are not realistic since it does not reflect the noise of RTT signal in

the real world or emulated environments.

2.4.2.2 YeAH TCP

Yet Another Highspeed TCP (YeAH) is a hybrid congestion control algorithm by Baiocchi et

al. [100] that aims to achieve high throughput in large BDP networks but without stressing

the network. YeAH originates from the observation that other high speed CC algorithms (such

as HS-TCP [104] and STCP [105]) improve throughput in large BDP networks at the cost of
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high ‘stress’ on the network, causing frequent congestion events with large number of packet

losses as well as high queuing delay.

Similar to TCP-Africa (Section 2.4.3.1), YeAH works on one of two modes at a time de-

pending on the congestion level. In fast mode, the congestion window increases aggressively

using STCP rules while in slow mode TCP Reno rules are applied. The decision of changing

from one mode to another is also based on Vegas-like estimation of the number of packets

in the bottleneck buffer and congestion level estimation (TCP DUAL-like metric). However,

these estimations are redefined by YeAH in such way that RT Tbase is the minimum RTT seen

during the connection lifetime, RTT sample (RT T mini) is the minimum RTT seen during the

transmission of last window (i.e. measured once per RTT) and the congestion level is cal-

culated as a proportion to the RT Tbase but not to the Qmax. Formally, it calculates the queue

delay (Qi) using equation 2.13, queue size (∆i) using equation 2.14 and the congestion level

(Li) using equation 2.15

Qi = RT T mini−RT Tbase (2.13)

∆i = Qi.

(

cwndi

RT T mini

)

(2.14)

Li =
Qi

RT Tbase

(2.15)

If ∆i < δ and L < 1/ϕ , the algorithm switches to the fast mode, otherwise the slow mode

is used. δ is a tunable constant (for example, 80 packets) which governs the number of packets

pushed by one flow in the bottleneck buffer.ϕ is another tunable constant (for example, 8) the

limits the congestion level caused by all flows sharing a bottleneck.

Moreover, a precautionary de-congestion algorithm is utilised in the slow mode to control

the queuing delay and buffer overflow. Whenever ∆i > δ and with no Reno-like greedy flows

competing for the bottleneck, cwnd is reduced by ∆i and ssthersh is set to cwnd/2 once per

RTT. YeAH detects the competing greedy flows based on the mode switching behaviour of

the algorithm in order to achieve inter-protocol fairness. The algorithm calculates count f ast

which is the number of RTTs the algorithm spend in the fast mode and cwndreno representing

an estimation for the congestion window of the greedy flows (maintained using Reno rules).

If count f ast becomes greater than a threshold, cwndreno is set to cwnd/2 and count f ast is reset

as an indication for competing with other non-greedy flows.

The precautionary de-congestion can be applied only if the algorithm is in the slow mode

and cwnd > cwndreno, otherwise Reno-style window growth is used.

Finally, based on TCP Westwood (Section 2.4.4.1), the algorithm exploits the queue size
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after packet loss to find an optimum window size when the loss is not related to network con-

gestion. This can improve the algorithm performance in lossy environments such as wireless

networks.

Experimental evaluation shows that YeAH is able to realise very good throughput and low

queuing delay in fast and long distance network as well maintaining intra- and RTT-fairness

and friendliness. However, this approach needs more evaluation in more complex networks

and scenarios to confirm the robustness against delay signal noise and distortion.

2.4.2.3 CAIA-Delay Gradient (CDG)

CAIA-Delay Gradient (CDG) [12] is a hybrid CC algorithm that tries to maintain low queue

delay and reasonable fairness by using delay-gradient CC when possible, and loss-based CC

when competing with loss-based CC algorithms. CDG is also able to distinguish between

congestion related and random loss, behaving differently to achieve high goodput in lossy

environments such as a wireless network.

Hayes et al. [12] were inspired by an early delay-based approach proposed by Jain called

CARD [62] which used a delay-gradient signal to infer early network congestion. CDG also

uses delay-gradient measurements to infer bottleneck queue states (full, empty, rising and

falling). The notion of estimating the queue state allows CDG to differentiate between con-

gestion and random losses. CDG considers the loss is congestion related only if the queue

state is full and never backs off cwnd when the losses are not congestion related.

As instantaneous RTT measurements are noisy, CDG calculates the average smoothed

delay-gradient using minimum and maximum RTT seen in an RTT measured interval. When

congestion is detected using the loss signal and the queue state is full, CDG halves cwnd.

When congestion is detected using the delay gradient signal, CDG decreases cwnd by a back-

off factor β = 0.7. To help compete with loss-based flows, CDG uses the loss-based shadow

window technique first described in [106] and ineffectual backoff mechanism.

The authors of CDG [12] claim that at 1% non-congestion related packet loss, CDG

achieves 65% bandwidth utilisation compared with TCP NewReno at 35% under the same

network conditions. At the same time, CDG keeps bottleneck queues short (particularly com-

pared to loss-based CC).

Despite trying to compete with loss-based CC, early back-off by CDG results in it being

unable to attain fair capacity sharing with loss-based CC. For this reason, and because of

its low latency, Armitage et al. [7] propose using CDG as an LPCC for home networks to

reduce the impact of background traffic on latency-sensitive applications. Tangenes et al.

[107] evaluated CDG and also concluded that it is a good candidate to be used as a deadline-

aware LPCC as its priority can be dynamically adapted using the scaling parameter G from
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Figure 2.13: Cx-TCP back-off probability function

equation 2.27. We will describe CDG algorithm in more details in Section 2.7.

2.4.2.4 Cx-TCP

Coexistent TCP (Cx-TCP) [101] is another loss-delay hybrid congestion control that attempts

to provide low latency transport while achieving better coexistence with loss-based flows.

Budzisz et al. [101] were inspired by the Probabilistic Early Response TCP (PERT) [80]

algorithm to use a probabilistic back-off function based on delay measurements at the end

host.

The main difference between PERT and Cx-TCP is the back-off probability function be-

haviour. PERT back-off probability function increases when the delay exceeds a threshold

(thmin) until it becomes one when the delay exceeds another threshold (2.thmax). On the other

hand, Cx-TCP back-off probability function increases until the queuing delay exceeds a spe-

cific threshold (Qth). After that point, the back-off probability decreases as the queuing delay

increases. When the queuing delay reaches the maximum value (Qmax), the probability be-

comes a very small value (i.e. protocol becomes a full loss-based). This function allows

Cx-TCP to coexist with loss-based flows more fairly.

The rationale of the Cx-TCP back-off probability function is that competing delay-based

flows do not introduce a large queuing delay, so queuing delay should generally be lower

than Qth. However, competing loss-based flows will cause the queuing delay to exceed Qth.

Therefore, Cx-TCP should reduce the number of back-off events to better coexist with loss-

based flows. When the loss-based flows leave the bottleneck, Cx-TCP reverts to its low latency

mode as the queuing delay decreases below Qth.
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Using analytical model and simulation, Budzisz et al. [101] show that Cx-TCP is able

to achieve better coexistence when competing with loss-based flows while maintaining low

queuing delay in the absence of loss-based flows. However, this algorithm assumes that the

sender is able to obtain accurate queuing delay measurements which is hard to achieve in

many realistic scenarios. Additionally, Cx-TCP flows may obtain a low bandwidth share if the

bottleneck has a shallow buffer that does not allow queuing delay above the Qth threshold.

2.4.2.5 Copa

Arun et al. proposes a new loss-delay hybrid congestion control for the Internet called Copa

[102]. Copa aims to achieve high throughput and low queuing delay and to coexist with loss-

based flows fairly.

The authors of this algorithm state that the bottleneck bandwidth can be estimated as the

inverse of the queuing delay. Therefore, they define target sending rate thtarget to be sending

rate at which the sender can transmit to achieve full bandwidth utilisation and low latency.

thtarget is calculated as thtarget = 1/(δ .Qi) where δ is an adaptive parameter that controls

the tread-off between throughput and queuing delay, and Qi is the estimated queuing delay

calculated similar to DUAL (2.4.1.1) but using RT Tstanding instead of current RTT. RT Tstanding

is RT Tmin measured in the previous RT T/2 interval to remedy ACK compression and signal

noise. Copa also calculates the actual sending rate th is calculated similar to Vegas (2.4.1.2)

but also using RTTstanding instead of current RTT.

On each receiving ACK, If thtarget > th, cwnd increases by v/(δ .cwnd) otherwise cwnd

decreases by v/(δ .cwnd). v (defaults to 1) controls cwnd increase/decrease speed and its value

is changed based on the direction of cwnd trend to make Copa flows to converge quickly to

full bandwidth utilisation.

This algorithm works in another mode, called competitive mode, to be able to coexist with

loss-based flows. It first detects competing loss-based flows and then adjusts δ dynamically

to make Copa’s flows as aggressive as loss-based flows (i.e. behaving similarly to loss-based

scheme). Detecting loss-based flows is based on Copa working behaviour which involves

draining the queue periodicity. Thus, if the queuing delay does not reach 10% of maximum

queuing delay measured in last four RTTs intervals, buffer-filling flows are assumed to be

competing with a Copa’s flow. Otherwise, the algorithm works in the default mode.

Copa also changes SS exit condition to be thtarget < th which provides fast convergence

with low latency. Moreover, Copa uses packet pacing to reduces traffic burntness.

Through simulation and user-space implementations, Arun et al. [102] claim that this

algorithm is able to achieve similar throughput as TCP CUBIC but with much lower latency

and better RTT-fairness. They also state that Copa coexists with CUBIC fairer than TCP BBR
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(Section 2.4.4.5). However, it is not clear how well this algorithm performs in links with very

unstable latency such as wireless networks.

2.4.2.6 Nimbus

Nimbus [103] is a rate-based loss-delay dual mode congestion control algorithm that aims to

achieve low queuing delay and high throughput while fairly coexisting with loss-based flows.

Nimbus maintains a threshold-based, positive queuing delay to both ensure full link util-

isation and to estimate the cross traffic rate. Nimbus calculates a sending rate equal to the

bottleneck rate minus the cross traffic rate. Formally the sending rate is calculated using

Equations 2.16 and 2.17.

D(i) = β
C

RT Ti
(RT Tmin +Qi−RT Ti) (2.16)

S(i+1) = (1−α)S(i)+α(C− z(i))+D(i) (2.17)

Where α=0.8, β=0.5, C is the bottleneck capacity and z is the cross traffic rate estimation.

RT Tmin is the minimum RTT, RT Ti is the current RTT and Qi is the current queuing delay.

Bottleneck capacity C can be estimated using any bandwidth estimation technique such as in

[108–111]. Due to ACK compression and other problems, Nimbus implementation uses the

maximum received rate as estimation for bottleneck capacity.

Nimbus models the elasticity of cross traffic to infer the existence of competing loss-based

flows, and then switches to TCP-competitive mode (CUBIC-like). This algorithm calculates

the periodicity behaviour of link capacity using the Fast Fourier transform. Nimbus uses the

observation of high frequency behaviour to conclude the presence of competing loss-based

flows. When the frequency becomes low, Nimbus switches back to delay-based mode.

Using user-space implementation with emulated and real-world experiments, Goyal et al.

[103] evaluate Nimbus and show that this algorithm is able to detect competing CUBIC and

Reno like flows and achieve fair bandwidth share and low queuing delay (lower than BBR

(Section 2.4.4.5)). However, the authors of this algorithm state that this algorithm is unable to

detect competing BBR flows in shallow bottleneck buffers. Therefore, Nimbus flows obtain

lower bandwidth share. Additionally, Nimbus considers competing delay-based flows (such

as Vegas) as elastic flows and therefore it obtains much higher capacity sharing after moving

to TCP-competitive mode.
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Table 2.3: Dual signal TCP variants reviewed in Section 2.4.3

TCP variant Section Algorithm aims Signal

type

Metrics

TCP Africa [112] 2.4.3.1 scalability in large
BDP networks,
friendliness

RTT queue occupancy

C-TCP [113] 2.4.3.2 scalability in large
BDP networks,
friendliness

RTT queue occupancy

TCP Libra [114] 2.4.3.3 scalability and
maintain the
compatibility with the
standard TCP, RTT
fairness

RTT queuing delay

TCP-Illinois [115] 2.4.3.4 scalability and fairness RTT queuing delay

2.4.3 Dual Signal Approaches

Due to the limitations of using the loss signal, some TCP CC variants introduce the delay sig-

nal in their work as a supplementary signal in addition to the loss feedback.Generally speaking,

the dual signal CC approaches are designed to be scalable in fast and long-distance network

environments without stressing the network by increasing cwnd rapidly when the queue is

short and moving to slow standard cwnd growth after the queue becomes long. In addition

to that, they attempt to maintain RTT fairness and compatibility with standard TCP. Table

2.3 summarises TCP variants that use both the delay signal (secondary signal) and loss signal

reviewed in this section.

2.4.3.1 TCP Africa

King et al. [112] propose a CC algorithm called Adaptive and Fair Rapid Increase Rule for

Scalable TCP (Africa) to improve TCP scalability in large BDP networks.

TCP Africa operates in one of two regimes: aggressive cwnd growth and conservative

Reno-like cwnd increase. It switches between the two regimes depending on the estimated

network congestion level in order to achieve fast convergence and fairness to standard TCP.

The congestion level is estimated using Vegas-like metric ∆ (see Section 2.4.1.2). It then

compares ∆ with a threshold (α) to determine which mode should be used. If ∆ < α , the

fast mode is used in which cwnd increases aggressively uses the HS-TCP [104] CA and fast

recovery rules to achieve scalability. Otherwise, TCP Africa moves to the slow mode in which
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Reno-like cwnd growth style is used to achieve fairness i.e. increases the window by one MSS

per RTT when no loss is detected and halves it on packet loss.

The value of α is chosen to be small constant greater than 1 (α =1.641 in [112]) and

it affects the protocol performance. The authors found that no single α is optimal for all

networks and conclude that more study is needed to make the value α auto-tuned.

Simulations with ns2 show that TCP Africa can scale quickly to full link utilisation, adapt

quickly to network condition changes, causes low packet loss rate as well as good fairness and

friendliness prosperities. However, real world experiments should be conducted to confirm

these results.

2.4.3.2 Compound TCP (C-TCP)

Compound TCP (C-TCP) [113] is a compound loss-delay-based CC that aims to achieve high

throughput in high speed high delay networks. Similar to TCP-Africa, it relies on the delay

signal to increase cwnd quickly when no congestion is detected and loss signal to achieve

fairness when competing with other flows.

C-TCP maintains two congestion windows, one is a standard window Wreno managed by

Reno-style mechanism and the second is a scalable delay window Wf ast based on TCP Vegas

like algorithm. The congestion window cwnd that is used to control the outstanding data is the

summation of Wreno and Wf ast .

When Vegas queue size estimator detects small queue (∆ < α), Wf ast is increased accord-

ing to a modified AIMD borrowed from HS-TCP algorithm [104]. On the other hand, when

Vegas estimator exceeds the threshold (∆ > α), Wf ast is gradually decreased by ζ ×∆ where

ζ is a pre-defined constant (ζ = 30 in [113]). This approach provides fast convergence when

the queuing delay is short as well as a smooth transition from the scalable congestion control

to the standard TCP style.

Real-world and simulation experiments results [113] show C-CTP exhibiting good good-

put and inter/intra-fairness in a large BDP environment. C-CTP is used by default for older

versions of Microsoft Windows operation system [116] and replaced by TCP CUBIC in Win-

dows 10 Fall Creator update and Window Server 2016’s 1709 update [117]. The main reason

for abandoning C-TCP in Windows OS is the sensitivity of the delay component to delay

fluctuations which cases low performance in many cases [117].

As the scalable component of C-TCP is basically the TCP Vegas buffer estimator, it suffers

similar fairness and latecomer advantage issues when base RTT is wrongly estimated (Section

2.3.1.2).
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2.4.3.3 TCP Libra

TCP Libra is a TCP CC proposed by Marfia et al. [114] to remedy the RTT-unfairness problem

of NewReno when sharing a bottleneck link, improve scalability and maintain compatibility

with standard TCP. TCP Libra utilises the delay signal to control cwnd growth/decline speed

in order to become RTT independent.

Instead of increasing cwnd by one MSS every RTT, Libra increases the congestion window

according to the equation 2.18.

cwndi+1 = cwndi +
αi

cwndi

RTT 2
i

RT Ti +T0
(2.18)

On packet loss, Libra decreases the congestion window according to equation 2.19.

cwndi+1 = cwndi−
T1.cwndi

2(RTTi +T0)
(2.19)

where T0 and T1 are constant parameters (eg. T0 = 1 and T1 = 1). T0 controls the al-

gorithm’s sensitivity to the RTT and T1 is the multiplicative decrease factor. α is a control

function that aims to improve the convergence speed, the scalability and the stability of the

protocol, where here k1 is a protocol constant (eg. 2) and C represents the link capacity in

Mbps estimated using the CapProbe technique [118] (Equation 2.20).

α = k1C p (2.20)

p is a penalty factor that controls the the window increase step when the network is con-

gested based on queue delay estimation borrowed from TCP DUAL (Section 2.4.1.1). p is

defined in Equation 2.21 where k2 is a constant (e.g 2) that controls link utilisation and proto-

col friendliness, Q and Qmax are the current and maximum queue delays respectively.

p = e
−k2

Q
Qmax (2.21)

The estimated capacity C in Equation 2.20 allows the congestion window to converge

rapidly to fully utilise available bandwidth, while p reduces the window growth steps expo-

nentially when the queue delay increases. Moreover, RT T 2/(RTTi +T0) control RTT-fairness

of the protocol in which as the RTT becomes close to T0, the cwnd growth speed becomes

faster.

The multiplicative decrease function (equation 2.19) shows that cwnd is driven not only by

T0 and T1 but also by RT Ti. This prevents a large cwnd decrease after packet loss, providing

better throughput in high RTT paths. However, this approach goes against the accepted logic
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of CC as a large RTT followed by packet loss is typically inferred as a clear sign of congestion.

As such, cwnd decrease should be larger to control the congestion.

Using ns-2 simulator, the authors evaluate Libra and compare its performance with other

TCP protocols [114], showing that Libra can achieve good fairness and high link utilisation

in many scenarios. However, in some scenarios TCP Libra has lower performance comparing

with TCP SACK and TCP FAST. The authors conclude the the protocol needs more evaluation

using real world networks and in more complex scenarios.

2.4.3.4 TCP-Illinois

TCP-Illinois is a TCP CC proposed by Liu et al. [115] that utilises the loss signal as a primary

congestion feedback and the delay signal (queuing delay) as a secondary congestion signal

to improve the the scalability and fairness of TCP Reno. The underlying idea is similar to

TCP Africa (Section 2.4.3.1) but rather than use HS-TCP [104] constants, the increase (α)

and decrease (β ) factors are set to be functions of the queue delay Qi (similar to TCP DUAL

- Section 2.4.1.1).

TCP-Illinois sets the increase factor to αmax if Qi < Q1 and αmin if Qi > Qmax ; otherwise

it sets α to a concave function inversely proportional to Qi between αmax and αmin. Moreover,

it sets the decrease factor to βmin if Qi < Q2 and βmax if Qi > Q3; otherwise it sets β to a linear

function directly proportional to Qi between βmin and βmax. Qmin and Qmax are minimum and

maximum queue delay seen during the connection lifetime, and Q1, Q2 and Q3 are proportions

(e.g. 0.01, 0.1 and 0.8 respectively) of Qmax. αmin, αmax, βmin, βmax are protocol constants (e.g.

0.3, 10, 0.125 and 0.5 respectively).

This algorithm updates α and β once every RTT but does not allow α to be set to αmax

unless the queue delay stays below Q1 for a specific amount of time (for example, 5 RTTs) to

mitigate the effects of fluctuation in queue delay measurement which can be caused by noisy

RTT measurement and packet bursts. Moreover, to improve the fairness with TCP NewReno,

the algorithm moves to compatible mode (Reno’s α and β coefficients) whenever the window

size is less than a threshold (for example, 20KiB).

The authors create a mathematical model to analyse and compare TCP-Illinois with other

CC algorithms, and conduct simulation-based experiments to evaluate their algorithms’ per-

formance [115]. Their results show that TCP-Illinois achieves higher link utilisation in large

BDP networks compared to TCP NewReno as well as maintaining protocol intra- and inter-

fairness. Moreover, the mathematical model shows that the proposed protocol causes the

competing flows to backoff asynchronously which allows the congestion window of the flows

to be similar in size and therefore improve overall link utilisation and fairness. However, as

this approach primarily uses the loss signal to detect congestion, it cannot control the queue
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delay and therefore it can lead to bufferbloat problem in large bottlenecks buffers.

2.4.4 Delay-sensitive Algorithms

Some congestion control algorithms use the delay metric for specific purposes not directly

related to the congestion feedback signal. These techniques use the delay signal to calcu-

late an effective congestion window size after packet loss event and/or differentiate between

congestion and non-congestion related packet losses to improve the performance in wireless

networks. Others uses the delay metric to calculate reasonable bytes inflight limit to realise

both high throughput and low latency. Table 2.4 summarises the delay-sensitive TCP variants

reviewed in this section.

2.4.4.1 TCP Westwood/Westwood+

Mascolo et al. [119] proposed TCP Westwood (TCPW) CC algorithm to solve the low perfor-

mance of NewReno in intrinsically lossy and fast networks. TCPW modifies window multi-

plicative decrease mechanism during fast recovery to calculate an optimum window size based

on the estimated bandwidth (BWE) and RT Tbase. The goal is for window size at any time to

be approximately equal to the path’s BDP, and hence achieve full link utilisation with minimal

undesirable queuing.

Westwood sets the window size and ssthresh to BWE ×RT Tmin when packet loss is de-

tected, which is usually a less aggressive reduction than simply halving cwnd. TCPW uses

RT Tmin as an estimation for RT Tbase. RT Tmin is measured as the smallest RTT sample seen

during the connection lifetime.

Westwood’s strategy for estimating the bandwidth relies on detecting the ACK receiving

rate. If the receiver generates an ACK packet directly after receiving a data packet, the rate of

ACK packets observed by the sender will be same as the rate of data packets received by the

receiver i.e. the receiving rate equals the rate that the bottleneck supports. Then, the estimation

of the utilised bandwidth in the forward path can be calculated by multiplying the ACK rate

by number of bytes acknowledged by ACK packet. Even when some ACKs are lost or the

receiver decides to use delayed ACK mechanism, the calculation of long-term estimation will

not be significantly affected. Although the delayed ACK and ACK packet loss reduce the

ACK rate, the ACK packet will carry acknowledgement for larger amount of data leading to

an acceptable estimation.

TCP Westwood applies two-stage bandwidth estimation procedure to reduce the impact

of fluctuation on the measurement. In the first stage, the bandwidth samplebk is calculated as

bk = dk/∆kwhere dk is the amount of data that has been acknowledged and ∆kis elapsed time
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Table 2.4: Delay-sensitive TCP variants reviewed in Section

TCP variant Section Algorithm aims Signal

type

Metrics

TCP Westwood [119] 2.4.4.1
high throughput in
lossy environments

RTT RT Tmin

TCP Westwood+ [120] 2.4.4.1

high throughput in
lossy environments,
improved bandwidth
estimator

RTT RT Tmin

TCPW CRB [13] 2.4.4.2

high throughput in
lossy environments,
better bandwidth
estimator, friendliness

RTT RT Tmin

TCPW ABSE [121] 2.4.4.2

high throughput in
lossy environments,
better bandwidth
estimator, friendliness

RTT RT Tmin

TCPW BR [122] 2.4.4.2

high throughput on
heavy non-congestion
related losses,
friendliness

RTT RT Tmin

TCP-AP [123] 2.4.4.3
high throughput in
multihop wireless
networks

RTT coefficient of
RTT variation

RAPID [124] 2.4.4.4

Full bandwidth
utilisation in fast
network with dynamic
bandwidth, low
queuing delay and
fairness

OWD indirect queuing
delay

TCP BBR[3] 2.4.4.5
low queuing delay,
high throughput

RTT RT Tmin
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since the receiving of the previous ACK. In the second stage, the final BWE is obtained by

applying a low-pass discrete time filter:

BW Ek = α.BWEk−1 +(1−α)
bk +bk−1

2

where BWEk is the filtered bandwidth estimation, BWEk−1 is the previous estimation,α is

a constant (α = 0.9 for example) and bk, bk−1 are the current and the previous bandwidth

estimation samples respectively.

The evaluation results [119] show remarkable throughput improvement in the presence of

random errors compared with TCP NewReno as well as very good inter- and intra-fairness.

However, Grieco et al. [125] discovered that the estimator overestimates the bandwidth and

causes unfriendliness in certain conditions. These conditions include ACK-compression effect

that clusters ACK packet arrivals due to congestion and queue fluctuation in the reverse path

[126] and employing AQM in the router [127].

A slightly modified version of this algorithm, called TCP Westwood+, was proposed to

solve the ACK compression effect [120] by computing the bandwidth samples every RTT i.e.

bk = dk/RT Tk where dk is the amount of data that has been acknowledged during the last RTT.

The final BWE value is obtained by applying exponentially weighted moving average to the

bandwidth samples bk.

With respect to the RTT measurement, TCP Westwood creates a persistent queue in the

bottleneck buffer if the RT Tmin is larger than the actual RT Tbase, such as in statistical mul-

tiplexing backoffs where many flows share the same bottleneck. Wrong RT Tbase estimation

leads to a congestion window larger than BDP after packet loss event causing unfairness be-

tween the competing flows.

2.4.4.2 TCP Westwood-Based Algorithms

In this section we briefly summarise a number of modifications proposed to remedy the vul-

nerabilities of TCP Westwood’s bandwidth estimation technique.

TCP Westwood Combined Rate and Bandwidth estimation (TCPW CRB) [13] aims to

improve the efficiency and friendliness of TCPW. It uses Rate Estimation (RE), which is long-

term bandwidth estimation similar to what is used in Westwood+ but measured over a constant

time interval (T ) instead of RTT, in addition to Bandwidth Estimation (BE) of TCPW. The

rationale of using two estimators is that RE prevent overestimation of the bandwidth when

the network is suffering from congestion, but it underestimates the bandwidth when non-

congestion related packet losses occur. TCPW CRB calculates the congestion window size as

BE×RT Tmin when packet loss is caused by random transmission error, and RE×RT Tmin when
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the loss is caused by network congestion. TCPW CRB assumes that the loss is congestion

related if cwnd/(RE×RT Tmin) upon packet loss is is smaller than a threshold (for example,

1.4); otherwise, the loss is assumed to be a random loss.

The authors of TCPW CRB claim that the dual bandwidth estimation method improves

the trading-off of TCPW efficiency and friendless to NewReno [13]. However, their claim

has been confirmed only using ns-2 simulation experiments. Additionally, they conclude that

more study is needed to understand the impact of different conditions, such buffers sizes, the

error rate and AQM, on the friendliness of the algorithm.

TCPW CRB authors later found that the time interval of RE should not be constant during

connection lifetime to provide better friendless. Therefore, they proposed TCPW Adaptive

Bandwidth Share Estimation (TCPW ABSE) [121]. TCPW ABSE adaptively changes the

CRB sampling intervals depending on a congestion level estimation heuristic. The network

congestion level is estimated based on the difference between the averaged sending rate sample

(V E = cwnd/RT Tmin, Vegas estimation) and throughput sample (RE, Westwood+ estimation).

If the difference is large, the network is considered congested and large interval (one RTT) is

used; otherwise a small interval is used. The authors state that this technique produces more

precise bandwidth estimation in different congestion levels. Although ns-2 simulation shows

that TCPW ABSE is able to achieve very good fairness with TCP NewReno as well as fast

response to network conditions changes, real world experiments are required to validate the

results.

Yang et al. [122] showed that the previous TCPW-based enhanced algorithms improve the

throughput significantly in lossy environments but with random error rate < 2%. Therefore,

they propose TCPW with bulk repeat (TCPW BR) to improve the performance in extreme loss

conditions. TCPW BR uses dual mechanisms to discriminate between congestion and non-

congestion losses: the queue delay threshold method based on TCP DUAL (section 2.4.1.1)

and comparing bandwidth estimation (BE) to the expected throughput (VE) similar to TCPW

ABSE. If the packets losses seem to be caused by channel transfer error, TCPW BR resends

all packets in flight, freezes RTO value and leaves cwnd unchanged; otherwise it reacts to

the losses same as NewReno. Using ns-2 simulation, the author confirm the efficiency of the

algorithm even at high error rate (>5%) and the friendliness to TCP NewReno.

There are more TCPW variant techniques including: TCPW Bottleneck Bandwidth Esti-

mation (BBE) [127] which aims to solve TCP Westood unfriendliness problem in different

network conditions including highly varying bottleneck buffer sizes, AQM employment and

heterogeneous flows RTT.

TCP Westwood with agile probing (TCPW-A) [128] aims to provide better performance

in highly dynamic bandwidth networks as well as lossy environments. It achieves that by
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repeatedly resetting ssthresh based on BE like estimation and increasing cwnd exponentially

(when ssthresh is lower than the estimation) in SS phase to quickly converge to full bandwidth

utilisation, and does the same thing in the CA mode if a persistence non-congestion is detected;

otherwise it uses NewReno cwnd increase function.

Similar to TCPW, all these modified algorithms can suffer from unfairness problems in

different degrees if the RT Tmin is an overestimation of RT Tbase. Additionally, it is not clear

how they react to the bottlenecks that utilise AQM to control the congestion in their buffers.

2.4.4.3 TCP-AP

TCP with Adaptive Pacing [123] is specialist hybrid window/rate-based CC that proposed to

improve low performance of IEEE 802.11 multihop wireless networks. More specifically, this

approach aims to reduces reduces link layer contention by adjusting packet sending rate based

on contention estimation of the path. While window (cwnd) size controls the number of bytes

in-flight, the pacing rate is used to provide smooth packet sending and preventing packets

bursts.

This CC does not change any of standard slow-start, congestion avoidance and congestion

recovery algorithms. It only controls the pacing rate of packet sending when cwnd allows

transmitting new data.

TCP-AP mainly uses two metrics to calculate packet pacing rate. The first metric is the

coefficient of RTT samples variation which is used to estimate contention degree of the path.

The second metric is called out-of-interference delay which is the time between sending a

packet from a node and receiving that packet at a second node existing outside the signal

collision range of the first node.

The authors of this algorithm [123] claim that TCP-AP is able to achieve 10 times higher

throughput than TCP NewReno in an emulated wireless network with 20 nodes. They also

state that this algorithm provides good fairness with other flows and responses quickly to

network condition changes. However, this algorithm relies on the RTT measurement which

suffers from ACK compression and other packet delays caused by wireless link layer reliability

(see Section 2.6). Moreover, this algorithm requires additional information from the operating

systems, such as number of hops and data link parameters, which makes the kernel-space

implementation complicated.

2.4.4.4 RAPID

RAPID congestion control [124] is rate-based approach that aims to realise fairness and

high throughput in fast networks with dynamic bandwidth while maintaining inter- and intra-
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protocol fairness and low queuing delay. Although this algorithm does not utilise the delay

signal explicitly in its operation, the theory behind RAPID is based on the queue delay grow-

ing up.

The authors of this algorithm claim that conventional TCP CC algorithms are not able to

achieve full bandwidth utilisation in fast networks with variable bandwidth due to slow band-

width probing technique of those algorithms. More specifically, conventional TCP bandwidth

probing requires one RTT time interval to realise the result of a new probing cycle and the

new rate probing is not much larger than the previous rate (cwnd typically increases by one

MSS every RTT interval). Therefore, many RTT intervals are required before converging to

full bandwidth utilisation.

RAPID is able to probe multiple rates by sending groups of N packets with N-1 different

rates in each group i.e. increases the gap between the sending packets of a group. At the

receiver host, the inter-packet arrival times (the gaps) of each group is monitored. If the

gaps trend increases (i.e. gapi > gapi−1), this means the bottleneck queue started to build-

up since every packet sent at a faster speed then its preceding will cause additional delay in

packet delivery (larger gap). Then the estimated bandwidth will be the rate before seeing

positive gaps trend (i.e. ratei−1). If gapi ≤ gapi−1 for all groups, the sender generates and

transmits more groups with higher sending rate until the receiver obverses positive gap trend

(i.e. gapi > gapi−1). The receiver then explicitly sends the value of ratei−1 to the sender host

to use it as sending rate.

Using ns-2 [91] implementation of RAPID, Konda et al. [124] claim that this algorithm

can converge to full bandwidth utilisation of gigabit networks in 1-4 RTTs while keeping

the queue short. They also state that RAPID provides good fairness and a small impact on

conventional TCP flows. However, this algorithm requires receiver-side modification which

makes the global deployment very hard. Additional, RAPID requires high timer resolution

to send packets at an accurate rate which is hard to achieve for many hosts and produces

additional overhead. Moreover, similar to many delay-based algorithms, RAPID can suffer

and produce unpredictable behaviour in wireless networks due to collision avoidance and data

link frame recovery of these networks which change packets transmission pattern.

2.4.4.5 TCP BBR

Bottleneck Bandwidth and Round-trip propagation time [3] is a recent congestion control

algorithm that aims to solve the bufferbloat problem and improve TCP throughput. Rather

than seek a feedback signal to detect congestion, BBR controls congestion by pacing the

sending rate according to the currently estimated bottleneck bandwidth BW and RTTmin.

A delivery rate sample is calculated as the ratio between delivered data and time elapsed
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for delivering that data. BBR uses a windowed maximum filter over a 6-10 RTT period for

delivery rate samples to obtain a BW estimation.

As a secondary control mechanism, BBR utilises a TCP-like cwnd mechanism to limit the

maximum amount of inflight data. This window is set to a few multiples of BDP (with BDP

calculated as BW ×RT Tmin) to remedy common receiver and network issues such as delayed

and aggregate ACKs.

A windowed minimum filter for RT Ti is used to estimate RT Tmin. If RT Tmin does not

change and no RTT sample matches RT Tmin for 10 second period, the number of packets

inflight is reduced to 4 for a short period to drain the buffer and probe for a new RT Tmin. This

allows BBR to refresh its RT Tmin estimate as well as permitting flows to converge to a fair

share of the bandwidth.

BBR maintains one BDP worth of packets inflight most of the time to guarantee full link

utilisation with low queuing delay. Periodically, BBR increases the sending rate and inflight

size to 125% for an RTT interval to probe available bandwidth and changes the paced rate

accordingly. If BW remains unchanged, the sending rate and inflight size is reduced to 75% to

drain the built-up queue. BBR then returns to normal operation of using 100% of the estimated

BW and inflight size.

TCP BBR has been implemented in Linux and deployed in Google services since 2015,

achieving 2 to 25 times greater throughput than CUBIC [3].

BBR’s authors evaluate the algorithm in large variety of scenarios and network environ-

ments. They claim that BBR improves throughput and reduces latency compared with TCP

CUBIC, while being able to achieve acceptable fairness. However, the authors agree that BBR

has problems in specific situations and requires more research to remedy these issues.

For example, BBR flows obtain a lower share of bandwidth when competing with loss-

based flows through a bottleneck with a large (several BDPs) buffer. Additionally, BBR flows

can suffer from unexpected packet loss when token-bucket traffic policers are used. More

specifically, when BBR sends packets faster than the bucket fill rate, all packets are discarded

by the policer.

Moreover, Hock et al. [129] conduct experimental evaluation of TCP BBR in an emu-

lated environment and conclude that BBR is able to achieve its goals. However, they also find

that BBR produces a large number of packets losses, unfairness and long queuing delay in

some scenarios, specially in shallow bottleneck buffer. There is also a big concern in trans-

port research communities regarding BBR packets losses ingratiation as well as ECN support

ingratiation.

Although the algorithm attempts to remedy the wrong estimation of RT Tbase using RT Tmin

measurement reset mechanisms, it is not clear how well this method works in environments
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with long standing queues causing by other CC algorithms/flows. Therefore, more evaluation

is need to understand how the wrong estimation can affect its operation.

2.5 TCP slow-start variations

The purpose of slow start phase is to quickly discover the capacity of a path with no prior

information of the path characteristics or support from network infrastructure. Ideally, slow

start phase finishes with cwnd equal to path BDP to achieve both high throughput and low

latency. Standard TCP considers link capacity has been reached when packet loss is detected.

During this phase, cwnd doubles every RTT. Standard TCP SS finishes with ssthresh and

cwnd = (Brate ∗RTTbase+bs)/2. If the buffer size (bs) is too large, slow start will induce high

queuing delays and heavy packet loss from the same window since cwnd will be much larger

than path BDP.

Many slow-start alternatives have been proposed to remedy these issues. Hoe [130] pro-

poses to set ssthresh to the estimated path BDP instead of using an arbitrary large value. This

allows SS to finish before packet losses occur. BDP is estimated using packet-pair based

bandwidth estimator [131] and RTT. It has been shown that the cross traffic can lead to band-

width overestimation [132]. Additionally, this method requires sending back-to-back packets

to probe the path.

TCP Vegas [133] uses the difference between the expected and achieved rate to infer con-

gestion and exit slow start (see Section 2.4.1.2). This approach suffers from an early slow

start termination due to bottleneck queue build-up from the bursty nature of TCP transmission

[134].

Quick-start [135] is another slow start algorithm that can converge to full bandwidth util-

isation very quickly. However, this approach is hard to deploy since it needs supports from

middle boxes, and requires both sending and receiving host modification.

Cheng et al. [134] propose a slow start approach called Adaptive start. This approach aims

to reduces the number of packet losses during slow start by slowing down cwnd growth when

it nears to the path BDP.

Paced start [136] controls the spacing between packets of a packets train [132] to probe

available path capacity. This approach requires precise timing in packet transmission and

receiving which is costly and hard to implement in many systems.

CapStart [137] aims to reduce packet losses during slow start in fast networks. It infers

the existence of a bottleneck in the path and moves to limited Slow Start [138] when a queue

builds up. This method uses packet-pair [131] to infer queues forming.

Hystart slow start [72] aims to find a safe exit point from slow start with cwnd that allows
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flows to achieve high throughput and minimal packet losses. This exit point leaves cwnd

between (Brate×OW Dmin)/2 and Brate×OW Dmin+bs. Hystart exits SS whenever one of two

independent algorithms finds the exit point. At the end of slow start ssthresh is set to cwnd.

The first algorithm relies on the ACK train principle to infer congestion. Instead of directly

measuring the space between consecutive ACK packets, the time period between receiving the

first ACK and the current ACK in a window is used. If that time period is greater than or equal

to RT Tmin/2, SS finishes. Hystart uses a passive ACK train by relying on TCP transmission

burstiness during slow start phase.

The second algorithm monitors the RT Tmin,n gradient to see if congestion happens. RT Tmin,n

is measured for the first eight RTT samples at the start of a window (the train). If RT Tmin,n>

RT Tmin,n−1 +η , Hystart exits slow start. η is the maximum acceptable amount of time the

gradient can increase without exiting slow start, and is calculated based on RT Tmin,n−1. The

second algorithm protects slow start overestimating the bandwidth due to the challenges of

estimating RT Tmin as used by the first algorithm.

2.6 Challenges facing the delay signal

2.6.1 Inaccurate delay measurements

As we mentioned in Section 2.3.1.2, many problems facing the use of delay signal causing un-

desirable side effects for congestion control techniques that benefit form this signal. Usually,

inaccurate delay measurement happens due to queue fluctuation, burst packet sending, delayed

ACK, hardware transmission offloading, link layer buffering (especially in wireless networks)

as well as inaccurate sampling. Additionally, interference between competing flows causes the

delay-based techniques to wrongly estimate the congestion level. This includes wrong propa-

gation delay estimation (which is used by many algorithm) due to route change and sequence

of flow starting time (latecomer advantage problem).

Reverse path congestion is another problem that can distort the delay signal when the RTT

metric is used. When congestion happens in the reverse path (ACK path), the RTT metric

will not reflect the real congestion state of the network (forward path) since the ACK packets

are small and do not contribute to the congestion. Therefore, some algorithms utilise the

one-way delay signal instead. However, unlike using RTT, the one-way delay metric needs

receiver side modification or enabling TCP timestamp option which makes using that signal

not a universal solution for standard TCP. Furthermore, the one-way delay signal cannot be

used as an absolute delay time without clock synchronisation between source and destination.

Moreover, finding universal optimum threshold values for the threshold based algorithms is
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very hard or unachievable due to large varieties of network environments and conditions. More

serious problem for the delay-based algorithm is the unfairness when competing against the

greedy loss-based algorithms including the standard TCP congestion control.

2.6.2 Data link layer reliability and channel access method

Reliability mechanisms and channel access methods in some networks, such as wireless net-

works, have a significant negative impact on the delay signal usability. The data link layer of

modern wireless networks, for example, attempts to supply the network layer with error-free

packets by providing reliable packet recovery mechanisms. If packets arrive corrupted or do

not arrive at the destination, the sending station will retransmit the packets until they arrive

correctly. This behaviour makes the network layer to wait for an unknown interval of time

before receiving the packets. The duration of this interval depends on the degree of the noise

and interference on the channel.

Moreover, in shared transmission medium, Carrier-Sense Multiple Access with Collision

Avoidance (CSMA/CA) manages channel access and attempts to minimise collisions of trans-

mitted packets. This involves sensing the carrier to see whether it is busy andwaiting for a

random intervals until the channel becomes available.

CSMA/CA can also use Request to Send/Clear to Send (RTS/CTS) to reduce the problem

of collisions due to hidden nodes. With RTS/CTS, the sender first sends an RTS frame to be

received by the Access point (AP). The AP sends back a CTS frame to the sender to indicate

that it may begin trasmission. If the channel is busy or the AP has data to send (typically AP

has higher priority) the sender should further wait before reattempting the RTS/CTS proto-

col. If RTS/CTS frames are dropped, the node should wait for a random time period before

retransmitting the RTS frame.

This introduced waiting time becomes part of the end-to-end delay measurement used by

delay-based CC. This latency is not related to network congestion and it corrupts the delay

feedback. Managing medium access becomes more challenging in duplex communication

channels. In a point-to-point simplex communication channel, however, the issue becomes

less problematic since the channel will be dedicated for one transmitter only.

Both data link reliability and CSMA/CA significantly weaken the correlation between con-

gestion and the measured delay signal. Any congestion related decisions (e.g. cwnd backing-

off) made by delay-based CC depending on such signal significantly reduces the throughput

and produces unpredictable behaviour. In addition, these mechanisms can affect packets on

both the forward path and the reverse path causing packets to be sent in bursts. Sending pack-

ets in bursts causes queue fluctuation and ACK compression which have a significant negative

impact on RTT measurements.
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Another problem that causes inaccurate RTT measurements is packet aggregation of some

data link layers of wireless networks (e.g. IEEE802.11n). Packet aggregation aims to reduce

the overhead of sending small packets by combining multiple packets and transmitting them

as one frame. Karlsson et al. [139] have shown that packet aggregation can make several ACK

packets to be sent back-to-back causing ACK compression effect.

It is worth noting that even rate-estimation CC techniques (e.g. TCP BBR in Section

2.4.4.5) can suffer (but in a smaller degree) from these data link mechanisms since the ACKs

can arrive at the sender in burst faster than how the receiver sent. Therefore, the bandwidth es-

timator will overestimate the available bandwidth causing the sender hosts to transmits packets

faster than the actual available bandwidth.

Therefore, it is very difficult and unreliable to use the delay signal to control congestion

in noisy and shared medium networks with strong data link reliability. However, using some

delay based estimations (e.g RT Tbase) to improve protocol performance in such networks is

considered useful and usable.

2.6.3 Emerging communication networks

With wide deployment of the TCP protocol in many devices and operating systems, many

emerging network applications utilise this protocol to provide reliable data transfer. Different

types of networks have been developed to fulfil the needs of modern network applications.

These include vehicular networks (VANETs) [140], mobile ad hoc networks (MANETs) [141]

and delay tolerant networks (DTNs) [142]. These types of networks typically have different

characteristics to traditional wired networks.

These characteristics can include one or more of changing network paths (due to node mo-

bility), changing numbers of connected nodes, shared multi-hop channels, varying intrinsic

delays, unpredicatable medium and data link reliability, high bit error rates, lack of continu-

ous network connectivity and low powered (electricity and/or computation) resources. These

challenges can propagate up the stack where they can inpact on the performance of the trans-

port protocols used within these applications.

For example, varying latency due to changing paths or packet loss due to unstable network

topologies can result in the TCP RTO being falsely triggered. Similarly, non-congestion re-

lated packet losses can occur more frequently due to higher bit error rates in such networks

[141].

Further impact may be seen where variable data transmission and unpredictable latencies

can cause delay-based congestion control to misinterpret the delay signal. It is difficult to

determine if any increase in measured delay is the result of network congestion or other non-

congestion related effects.
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Another challenging application space is the Internet of Things (IoT). Many end devices

(things) utilise a TCP transport to communicate with a number of pre-existing Internet services

and devices [120]. Typically, a large number of these devices would connect via wireless

networks (infrastructure, Ad hoc or mesh networks).

IoT devices typically have limited processing power and/or energy resources, limiting their

capabilities. CC for these devices should be lightweight and efficient to provide high perfor-

mance with limited resources.

Traditional TCP algorithms may perform poorly under these circumstances. Packet loss re-

sults in wasted communication capacity, and can lead to increased processing overhead when

recovering from loss. Alternatively, delay-based CC may result in improved overall perfor-

mance at the increased cost of accurately predicting network state.

Each of these emerging applications have unique network and application requirements,

meaning no one CC algorithm is best for all cases. This implies that selection of suitable CC

mechanisms should be performed on a case-by-case basis.

2.6.4 Effects of using AQM on delay signal

While AQM and delay-based CC share the same goal of keeping queuing delay low, they

achieve that goal from different places. AQM’s place is the middleboxes (such as switches,

routers and firewalls) and they need a reaction from the end host to control the congestion.

On the other hand, delay-based CC achieves that goal using end-to-end approach without help

from network appliances.

In controlled environments (data centre networks, for example), it is easy to deploy AQM

in the bottlenecks since network equipment usually belongs to the one organisation. Addi-

tionally, delay-based CC algorithms can work very well in such environments since flows can

be homogeneous (one CC is used) and the noise in delay signal is low. Therefore, either of

the two approaches works well. On the Internet, however, there is no one organisation having

control over the equipment along the path between the sender and receiver hosts. If the place

of a bottleneck is known and accessible by an individual, queuing delay can be controlled by

deploying AQM in that bottleneck. An example of such bottlenecks is ADSL home gateways

in the upstream direction.

On the other hand,bottleneck location is unknown, inaccessible or AQM is not imple-

mented for specific hardware, there is no way for the end-users or service providers (such as

gaming servers) to use AQM. Furthermore, it is very hard to know whether AQM is deployed

along the path or not. Therefore, in such common case delay-based CC (low-latency transport)

is the only choice for the end-users or service providers to achieve low latency communication.

In this context, it is not uncommon to see delay-based CC flows pass across AQM-enabled
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bottlenecks. This raises questions about the effects of deploying AQM on delay-based flows

and the coexistence of AQM and delay-based CC.

AQMs effectively create short queues (in size or time) to prevent packets from unneces-

sarily residing in the buffer for too long. On the other hand, delay-based CC relies on queuing

delay measurement to infer congestion. Short queues reduce the signal variations that latency-

sensitive CC algorithms rely on.

Most delay-based and hybrid congestion control algorithms compare the delay measure-

ments with thresholds to infer the congestion level in a network. If these thresholds allow

the bottleneck queue to include packets longer than AQM allows, the algorithm will fall back

to loss signal reactive mode. This behaviour damages a substantial goal of the delay-based

algorithms in which they try to reduce the number of packets losses by early reacting to the

congestion.

Many delay-based CC algorithms (TCP DUAL and TCP Vegas for example) aim to re-

duce TCP saw-tooth cwnd behaviour to achieve both stability and high throughput even in

shallow bottleneck buffers. However, falling back to loss mode destroys these aims and can

create fluctuation in throughput because CC may excessively back off cwnd below path’s BDP

especially in high-speed long-distance links.

Additionally, working in loss-mode all the time can alter the design goal of some delay-

based CC. For example, it has been shown that AQM bottlenecks raise the priority of LPCC

making scavenger-class transport to compete equally with conventional TCP for bottleneck

bandwidth [143]. Without taking AQM deployment into consideration, scavenger-class trans-

ports can impact negatively on conventional TCP traffic. A study on the effects of modern

AQM bottlenecks on libutp [96], LEDBAT-based widely deployed transport, shows that LED-

BAT flows become more aggressive than conventional TCP flows when AQM is used [98].

The issue is that libutp increases cwnd quickly (faster than standard TCP) when the queuing

delay is small and cwnd growth becomes slower as the queuing delay becomes closer to LED-

BAT’s target delay (see Section 2.4.1.8 for details about LEDBAT CC). This strategy works

well with FIFO bottleneck to converge quickly to full utilisation but not with AQM enabled

bottlenecks since queuing delay will hardly reach LEDBAT’s target delay.

Moreover, if the AQM allows very low queuing delay, the noise reduction techniques used

by delay-based algorithms (such as moving average) can destroy the signal completely. Figure

2.14 illustrates how the use of AQM in a bottleneck can destroy the delay signal through

reducing the queuing delay variation.

Despite the challenges of using a delay signal in such environments, AQM can help some

algorithms to overcome the latecomer advantage problem by forcing all flows to back off. This

allows resistant queues to drain giving an opportunity for flows to obtain correct propagation
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delay estimation. Additionally, if a bottleneck employs AQM with ECN marking support

and the end hosts also support ECN, delay-based CC can work reasonably well in keeping

queuing delay low without packet losses since the congestion signal is sent directly from the

congested box. However, reacting to ECN signal by the delay-based CC can create fluctuations

in throughput similar to packet drop. In this aspect, TCP Alternative Backoff with ECN (ABE)

[66] plays a very important role in keeping unacknowledged data close to the path’s BDP and

reducing cwnd fluctuation. This proposal suggests using two different cwnd back-off factors;

one for ECN (βECN) and another for packet drop (βloss) and the proposal recommends using

0.8 for βECN .

Recently, there has been growing interest in deploying modern AQM on the Internet due

to increased sensitivity of many applications to latency caused by bufferbloat. This raises

questions about how AQM bottlenecks will affect CC algorithms that rely entirely or in-part

on the delay signal. Therefore, research needs to be conducted to understand the behaviours of

delay-signal CC with AQM in a wide range of environments. This requires more theoretical

and practical studies for the delay signal and the distortion level of AQM on that signal and

the CC algorithms that employ such a signal.

It is apparent that the presence of an AQM managed bottleneck may damage the delay

signal with respect to delay-based CC algorithm, which could result in some implementations

reverting to loss-based mode leading to unintended consequences when competing with other

flows. However, the short queues enforced by the AQM will limit this impact on the perfor-

mance of competing flows. Alternatively, the use of delay-based CC algorithms may help in

circumstances where AQMs are not deployed.

2.7 CDG: A promising hybrid CC algorithm

As previously mentioned, large FIFO buffers coupled with conventional TCP’s capacity prob-

ing strategy are a challenging problem for latency-tolerant applications (such as multimedia

conferencing and multi-player games). This problem is illustrated in Figure 2.15a. We can see

in this figure, a loss-based TCP flow (TCP CUBIC in this example) increases queuing delay in

a bottleneck resulting in the low-rate online game traffic being significantly delayed. We can

also see that the RTT experienced fluctuates due to back-off upon packet loss caused by the

TCP CUBIC bandwidth probing strategy. This behaviour results in a slower game response,

severely impacting on the online gaming user experience.

CAIA-Delay Gradient (CDG) [12] provides low latency transport by responding early to

network congestion before long queues form at the bottlenecks. This allows latency sensitive

applications to perform well in the presence of the cross traffic. Figure 2.15b illustrates how
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Figure 2.14: The effect of using AQM on the delay signal

bulk data transfer using CDG does not induce high queuing delay, allowing game traffic to

traverse the bottleneck without significant delay. This leads to better user experience for end

users. We can see in this figure that the measured RTT remains close to the path RTT during

the coexistence period. Further, no packet loss occurs in this scenario as the buffer is never

full.

Unlike many delay-based and hybrid CC algorithms, CDG uses the delay gradient signal

and a probabilistic back-off function to detect network congestion. This allows CDG to avoid

using the problematic queuing delay estimation and thresholds [12]. Additionally, CDG ig-

nores delay-based back-off and uses only the loss signal when a competing loss-based flow is

inferred. This allows CDG flows to perform better than pure delay-based CC when coexisting

with loss-based CC.

Despite the benefits of using CDG [7, 107, 144], some issues hinder wider deployment of

this algorithm. The advantages of using CDG motivate us to study and address these issues to

create an improved congestion control algorithm for the Internet. In this section, we describe

the CDG algorithm is some more details to understand its functionality and mechanisms.

2.7.1 Delay gradient signal

To avoid issues associated with RT Tbase estimation such as standing queue, route change and

latecomer advantage, CDG uses a delay gradient signal, which represents queuing trend based
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Figure 2.15: TCP CUBIC flow causes low rate Client-to-Server game flow to experience a
high RTT range while CDG has much less impact on game flow. 2Mbps bottleneck bandwidth,
20ms RT Tbaseand 40pkts buffer size

on delay measurements to infer congestion. The general concept is that when the bottleneck is

not congested, no queue is created in the bottleneck, and no additional delays will be observed

at the end host. When cwnd becomes larger than path BDP due to capacity probing strategy,

the average sending rate becomes larger than the bottleneck bandwidth. This creates a queue in

the bottleneck which results in additional delay. Therefore, end hosts will observe an increase

in latency. A positive difference between old and current delay samples observed at end host

indicates a queue is beginning to form.

The gradient signal does not only provide the congestion status, but also how aggressively

the congestion is forming. For steady queue growth, the gradient increases proportionally to

queue growth speed. Thus, a large positive gradient indicates that bottleneck inbound traffic

is much higher than outbound traffic.

CDG uses RTT measurements at the sender to estimate the latency in packet delivery. In-

stead of using instantaneous RTT estimation, CDG uses RT Tmin,n and RT Tmax,n measurements

by applying minimum and maximum filters for RTT samples obtained over a measurement

cycle (n). A measurement cycle is one RTT interval. RT Tmin,n and RT Tmax,n are measured per

Equations 2.22 and 2.23:

RT Tmin,n = min(RTTt)∀ t ∈ [T −RT T,T ] (2.22)

RT Tmax,n = max(RT Tt)∀ t ∈ [T −RT T,T ] (2.23)

Using minimum and maximum filters allows CDG to minimise delay signal noise. The

two measurements are used to calculate two delay gradient measurements (gmin,n and gmax,n).
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These gradient signals are then used to detect congestion.gmin,n and gmax,n are calculated once

every measurement cycle as per Equations 2.24 and 2.25 respectively.

gmin,n = RT Tmin,n−RT Tmin,n−1 (2.24)

gmax,n = RTTmax,n−RT Tmax,n−1 (2.25)

gmin,n and gmax,n give similar congestion information when the congestion is persistent and

continuously increases or decreases during the measurement period. However, there is a sub-

stantial difference between gmin,n and gmax,n regarding congestion detection. While gmax,n is

the difference between the peaks of measured delays (spike peaks) in the current and previous

RTT intervals, gmin,n is the difference between lowest measured delays in the current and pre-

vious RTT intervals. This means that gmax,n gives an indication of non-persistent congestion

state occurring during the measurement cycles. In other words, it can detect congestion that

occurs and dissipates during an RTT interval. On the other hand, gmin,n gives an indication of

the persistent congestion state that occurred during the previous RTT. That is, it tracks changes

in the standing queue. Figure 2.16 illustrates the difference between the two gradient signals.

The delay gradient measurements are further smoothed using a moving average window

to obtain ḡmin,n and ḡmin,n. Smoothing the gradient signal allows CDG to further reduce delay

signal noise. ḡmin,n and ḡmin,n are calculated as per Equation 2.26:

ḡn = ḡn−1 +
gn−gn−a

a
(2.26)

where ḡn is either ḡmin,n or ḡmin,n, n is the nth measurement cycle and a ≥ 1 being the

smoothing window size (8 by default). Without a smoothing window, there is a high proba-

bility of calculating a positive gradient due to RTT signal noise. This leads to false positive

congestion detection that affects protocol performance. CDG infers congestion when ḡmin> 0

or ḡmax>0.

2.7.2 Probabilistic back-off function

CDG uses a probabilistic back-off function based on the gradient magnitude to decide when

to back off. This allows CDG to work without requiring thresholds and provides fairness

between competing flows.

For steady queue growth, the calculated gradient increases proportionally to RTT since the

gradient is calculated once every RTT. Therefore, flows traversing long RTT paths will see

higher gradients than flows traversing shorter paths sharing the same bottleneck. This results
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Figure 2.16: gmin,n and gmax,n gives different information about queue state. RT Tbase is zero
for illustration purpose
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Figure 2.17: CDG back-off probability as function of ḡn. Default G = 3.

in unfairness between the competing flows. To remedy this issue, CDG uses an exponential

factor in the probabilistic back-off function to achieve fairness between flows with different

base RTTs. The exponential function results in flows with a smaller RTT experiencing similar

back-off probability on average to flows with a larger RTT. The CDG probabilistic back-off

function (pbacko f f ) is shown in Equation 2.27.

pbacko f f = 1− e−(
ḡn
G ) (2.27)

Figure 2.17 shows the back-off probability as function of the delay-gradient.
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Table 2.5: CDG queue state inferring based on ḡmin and ḡmax

ḡmin,n ḡmax,n Qstate

+ 0/+ full
0/+ - empty
+ + rising
- - falling
otherwise keep old state / unknown

2.7.3 Non-congestion related losses tolerance

CDG also aims to provide high goodput in lossy environments such as some wireless networks.

It uses heuristic inference based on the gradient signal to guess bottleneck queue states to then

distinguish between congestion and non-congestion related packets losses. By identifying the

type of loss, CDG can achieve better throughput than loss-based CC by not decreasing cwnd

when detecting non-congestion related losses.

CDG defines five queue states Qstate ∈{full, empty, rising, falling, unknown}. As con-

gestion loss occurs due to bottleneck buffer overflow, CDG considers packet losses to be

congestion related only when Qstate = full at the time of loss detection. If Qstate 6= full and

packet loss is detected, CDG considers this to be a random loss caused by channel noise.

The concept behind of CDG’s queue full inference heuristic is that when the bottleneck

buffer is full, RT Tmax,n stops increasing before RT Tmin,n. This happens because there is no

more space in the buffer leads to additional delay and RT Tmax,n reaches its maximum value

during the measurement period. However, RTTmin,n continues growing for a short period

before loss occurs. This happens because the bottleneck scheduler periodically serves packets

giving space for newly arriving packets. As the sender keeps sending packet faster than the

bottleneck capacity, the buffer space gradually becomes smaller resulting in some packets

experiencing increased delay.

When Qstate = empty, RT Tmin,n stops decreasing before RT Tmax,n. This happens because

some packets see no queuing delay resulting RT Tmin,n equalling RT Tbase, while other packets

will see decreasing queuing delay due to queue draining, causing RT Tmax to decay during a

measurement cycle.

Instead of monitoring RT Tmin and RT Tmax progression, CDG uses ḡmax and ḡmin signs to

infer the queue state as shown in Table 2.5.

Incorrect queue state inference during packet loss leads to different unwanted behaviours

that reduces CDG performance. In case of CDG wrongly inferring a full queue (false positive),

tolerance to non-congestion related losses will be less effective. This reduces the throughput of

flows over high bit error rate (BER) links due to backing off cwnd when there is no congestion.
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If it wrongly infers queue is not full upon packet loss, CDG will further congest the network,

causing further packet loss.

Further, the queue state inference heuristic assumes that the bottleneck uses a FIFO buffer

with a drop-tail mechanism. In AQM environments packets are instead dropped by AQM

due to congestion well before buffer overflow occurs [45]. CDG will consider these losses as

non-congestion related losses since the queue state is typically determined to be “rising” when

AQM drops packets.

In this thesis, we do not explore/evaluate the accuracy of the queue state inference heuristic

as random losses have become uncommon in modern networks, including wireless networks.

The network and higher layers rarely see any random packet loss since loss recovery happens

in the data-link layer (see Section 2.6).

2.7.4 Coexistence with loss-based flows

As mentioned before in Section 2.3.1.2, delay-based CC has problems when it comes to co-

existence with loss-based flows. Early back-off of delay-based flows results in the flows not

attaining fair capacity sharing with loss-based CC, and CDG is not an exception. However,

CDG borrows the shadow window mechanism from CAIA-Hamilton Delay (CHD) CC [106],

along with the ineffectual back-off mechanism to provide better coexistence with loss-based

flows.

2.7.4.1 Ineffectual back-off and loss mode:

CDG operates in two regimes to provide better coexistence with loss-based flows. By default

CDG operates in delay-mode where congestion is detected using the delay-gradient signal.

When CDG infers competing loss-based flows, it switches to loss-mode for a maximum of

five (default) detected delay-based congestion events. It then switches back to delay-mode.

Additionally, CDG moves back to delay-mode if a negative gradient (ḡmax or ḡmin) is observed.

CDG detects competing loss-based flows using ineffectual back-off detection. If CDG ex-

periences a number (default 5) of consecutive delay-based back off events without observing

a negative gradient (ḡmax or ḡmin), CDG assumes it is competing with loss based-flows. The

notion behind this assumption is that backing off cwnd multiple times should decrease bot-

tleneck queue length. This would reduce queuing delay, resulting in negative gradients. In

competition with a loss-based flow, even if CDG backs off multiple times, queuing delay will

continue to increase as the loss-based flow keeps increasing cwnd until packet loss occurs.
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2.7.4.2 The shadow window mechanism

CDG adopts the shadow window mechanism from CHD CC [106] to improve coexistence

with loss-based flows. The shadow window s mimics the loss-based window growth/decay

behaviour of NewReno while CDG is operating in the delay mode. The shadow window is

only used when congestion-related losses are detected. CDG cwnd is typically small when op-

erating in delay mode due to high queuing delay and multiple back-offs caused by competing

flows. Therefore, using a larger cwnd that mimics loss-based window growth when detecting

congestion related packet losses can enhance CDG’s coexistence abilities.

The shadow window does not decay on delay-gradient back-off events, but it is synchro-

nised with cwnd in case cwnd > s. When an empty queue is inferred, the shadow window is

reset. The shadow window is updated according to Equation 2.28:

si+1 =







































cwndi connection initialisation

max(cwndi,si) R < Pbacko f f ∧ ḡn > 0

si×0.5 packet loss ∧Qstate = Full

0 Qstate = empty

si +MSS si > 0

(2.28)

where si is the current shadow window and R is a random uniformly generated number.

CDG sets cwnd to the maximum of the s
2 and cwnd

2 as soon as packet loss is detected and the

queue state is not full.

2.7.5 Congestion window growth

CDG uses an additive-increase/multiplicative-decrease (AIMD) mechanism to probe network

capacity. It increases cwnd by one MSS per RTT when no congestion occurs.

When congestion is detected using the delay gradient signal (positive gradient), equation

2.27 is used to probabilistically determine if CDG should back off cwnd. When probabilistic

back-off occurs, CDG decreases cwnd by a back-off factor βdelay (default 0.7). The higher

factor for βdelay allows CDG to maintain high link utilisation since it backs off as soon as a

short queue is created.

If packet loss is detected and Qstate = full, CDG halves cwnd similar to TCP Reno; oth-

erwise it keeps cwnd unchanged. CDG uses the congestion window growth Equation 2.29 at
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every RTT or packet loss where βloss = 0.5 by default.

cwndi+1 =



























cwndiβdelay R < Pbacko f f ∧ ḡn > 0

max(cwndiβloss,si) packet loss ∧Qstate = Full

cwndi packet loss ∧Qstate 6= Full

cwndi +MSS otherwise

(2.29)

Since the effect of cwnd back-off is not observable to the sender host until the following

RTT, CDG backs off cwnd not more than once every two RTTs.

2.7.6 CDG slow start

CDG modifies the standard loss-based slow start to prevent large spikes in queuing delay

and to eliminate packet loss during this phase. CDG slow-start relies on the delay gradient

measurement to find a better exit point before packet loss occurs. During this phase, CDG

increase cwnd similar to NewReno i.e. it doubles cwnd every RTT.

CDG uses the same probabilistic back-off function (Equation 2.27) to exit from the slow

start phase and enter congestion avoidance phase. It also exits from the slow start phase if

a loss occurs before triggering a delay gradient based back-off. Similar to the CA phase, if

congestion is detected using delay-gradient signal, ssthresh is set to cwnd.βdelay. On the other

hand, if packet loss is detected, ssthresh is set to cwnd.βloss.

2.7.7 CDG FreeBSD implementation consideration

CDG was originally implemented for the FreeBSD operating system [145, 146] by David

Hayes, the primary author of the CDG paper [12]. This implementation is considered an offi-

cial CDG implementation. In 2015, Jonassen [147] implemented CDG for Linux based on the

original CDG paper and using the FreeBSD implementation as a reference. This implementa-

tion includes some modifications to the original CDG including the use of Proportional Rate

Reduction [148], HyStart slow start [72] and some changes to queue state inference.

The CDG FreeBSD implementation utilises the Enhanced Round Trip Time (h_ertt)

module [149, 150] to obtain accurate RTT estimations. This module aims to resolve three TCP

mechanisms that lead to inaccurate RTT measurements, 1) Delayed Acknowledgements [151];

2) Selective Acknowledgements (SACK) [38]; 3) and TCP Segmentation Offload (TSO)4.

4TSO is a hardware accelerating technique that is used to split a large number of bytes into small TCP
segments without needing intervention from CPU.
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h_errt module utilises TCP timestamp option [152] to improve the accuracy of RTT mea-

surements when it is enabled.

h_errt infers that delayed Acknowledgements are being used if receiving acknowledge-

ments that acknowledge multiple packets. In this case, RTT is measured for the second sent

packet unless TSO is enabled since the timestamp of the first packet is reflected by the re-

ceiving host. TCP Segmentation Offload causes multiple packets to have the same timestamp.

h_ertt mitigates this issue by disabling TSO for one packet every RTT to obtain at least one

accurate RTT estimation.

If the SACK option is enabled and a SACK packet is received, h_ertt matches only the

the largest SACK with the corresponding sending packet to estimate RTT for that packet. All

packets before this SACK packet are ignored [149].

h_errt also provides a flag (ERTT_NEW_MEASUREMENT) to inform the consuming

module that a new measurement epoch (RTT interval) has elapsed. According to [149], this

flag is set once per RTT to indicate a new accurate measurement is available to be used. The

CDG FreeBSD implementation relies on this flag to know when one RTT has elapsed in order

to perform its per RTT calculations of delay gradient calculation, back-off decision and cwnd

growth during congestion avoidance.

We discovered that the CDG FreeBSD implementation has some minor differences to the

CDG paper [12].

1. The CDG FreeBSD implementation [146] uses either smoothed or unsmoothed gradient

samples to make its back-off decision during the slow start phase while the paper uses

only smoothed gradients in this regard. We believe this is because the moving average

reduces the gradient signal response to delay changes, which could result in CDG exiting

slow start too late.

2. In the implementation, the shadow window increases only when cwnd increases (no

increase on cwnd back-off) while the paper indicates that the shadow window increases

even when delay-based back-off is performed.

In this thesis, we consider the FreeBSD implementation for our evaluation since it is the offi-

cial unmodified implementation based on the original CDG, and was developed by the author

of the paper [72].

2.8 Conclusions

During the last three decades, the Internet has become faster by many orders of magnitude

and, at the same time, users have been deploying more Internet based applications with a
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diverse mix of bandwidth and latency requirements. To meet the demands of Internet users

and applications, academic and industry research has focused on improving the performance

of TCP, the Internet’s dominant transport protocol.

Congestion control is a critical part of TCP, directly influencing transport performance.

Consequently congestion control techniques have attracted a great deal of research attention.

In this chapter, we have surveyed a range of key congestion control algorithms that utilise the

delay signal to infer the existence of congestion and/or use the measured delay as part of their

congestion response behaviour.

Standard TCP CC is effective in protecting the network from collapse. However, this is not

the sole concern of modern CC. Efficient capacity utilisation, low queuing delay and tolerance

of non-congestion loss have become key requirements imposed by many applications and

services. One of the biggest issues of standard TCP is that it is unable to control the the

latency caused by bottleneck queue congestion (or bufferbloat) due to using packet loss as

congestion feedback. This problem has serious impact on delay-sensitive applications such as

video conferencing and multiplayer online gaming.

One solution to the bufferbloat problem is to manage queues using delay-focused AQM

instead of DropTail management of FIFO queues.

Delay-based congestion control interprets the delay in packet delivery (RTT or one-way

delay) to infer network congestion early and control the congestion in an efficient manner

without causing the buffer to fill. In general, the delay-based approaches compare the delay

signal with a threshold (constant or adaptive), or monitor the delay trend or gradient to infer

congestion. Such techniques are capable of reducing bottleneck queuing delay and packet loss

rate, improving overall network performance.

However, using the delay signal as congestion feedback creates many challenges. Poor fair

sharing with standard TCP is one of the main issues of using delay-based congestion control

on the Internet. Some techniques primarily use the loss signal in their operations but utilise

the delay signal as a secondary signal to improve throughput, scalability and/or compatibility

of the protocol. Others are designed to switch from delay mode to loss mode based on the

type of the competing flows to provide better compatibility with standard TCP. Using delay-

based congestion control in the Internet can improve link utilisation and reduce the effects of

bufferbloat.

CDG is a dual-mode hybrid CC algorithm that aims to provide high throughput with low

queuing delay. It also aims to coexist with loss-based flows and perform well in lossy environ-

ments. Due to utilising the delay gradient signal and a probabilistic back-off function, CDG

avoids using queuing delay estimation and thresholds. Moreover, switching to loss mode for

a short period upon detecting competing loss based flows allows CDG to perform better than
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pure delay-based CC when coexisting with loss-based CC.

However, CDG is known to not fully utilise link in low multiplexing environments [12],

and to have low performance when coexisting with loss-based flows (despite its coexistence

measures) [153]. These issues have not been well understood and solved in the literature to

date.

This inspires us to study these flaws and weaknesses in more detail and enhance CDG.

In this work, we use the experimental methodology to evaluate CDG in a range of scenarios

to understand its strengths and weaknesses. The experimental methodology produces more

realistic results than simulations since many variables in real environments leads to different

behaviours than under simulation.





Chapter 3

Experimental Methodology

3.1 Introduction

Theoretical analysis and study of congestion control protocols is fundamental and plays a key

role in designing and understand the behaviour of the protocols. However, it is not enough to

rely solely only on theoretical studies to confirm the functionality, usability and dependability

of protocols. Protocol development also requires implementation, documentation, validation,

testing and evaluation in testing environments that emulate real-world networks.

Studying CC protocol behaviours requires a fully controlled testing environment that can

mimic realistic networks and testing scenarios. Additionally, different testing scenarios should

be prepared to test how a CC algorithm behaves under different network conditions; otherwise,

the algorithm could perform badly or unpredictably in specific untested scenarios.

CC algorithm are often evaluated using network simulators and/or network emulators.

Many network simulators are designed to be flexible and easy to use with the ability to mimic

real networks. However, external factors in real networks, such as channel noise, interference,

jitter, OS TCP/IP stack implementations and system design and architecture, can obstruct the

simulation from reflecting real networks behaviour. These factors can alter CC behaviours

in many cases, especially for delay-based and delay-sensitive CC. Some network simulators,

such as ns-2 [91] and ns-3 [154], support emulation mode to provide the ability to use live

traffic from real OS kernel.

On the other hand, well-designed network emulators provide more realistic testing en-

vironments. They have the ability to reproduce different networks with real TCP/IP stack

implementations, NIC drivers, packet processing delay, traffic generators, bandwidth limiters

and many other factors. Therefore, using network emulators to evaluate CC algorithms can

provide a better testing environment that reflects CC behaviours in real networks.

In this chapter, we describe the controlled testing environment and the testing scenarios



82 Experimental Methodology

that we use as well as challenges underlying the emulation quality. The rest of this chapter is

organised as follows. Section 3.2 describes the tools we use to emulate links, generating traffic,

TCP logging traffic statistics at the end hosts, and gathering bottleneck statistics. Section 3.3

presents the main measurements used in evaluation and comparison CC. Section 3.4 describes

our testbed setup and network topology. Section 3.7 describes the scope of scenarios we cover

in this thesis.

3.2 Tools

Evaluating protocols in emulated environments requires tools to emulate links, generate dif-

ferent types of network traffic, and collect statistics from the end hosts as well as middleboxes.

In this section, we describe the tools that we use in evaluating congestion control protocols

and the challenges facing some of these tools.

3.2.1 Link emulation

The TCP CC dynamic is highly influenced by the link characteristics and path conditions

including bottleneck bandwidths, buffer sizes, path RTTs (RT Tbase), random loss rates and

queue management deployed at the bottlenecks. Consequently, test environments must pro-

vide the ability to set up the characteristics of the path in addition to different traffic generators

to mimic TCP traffic in real-world scenarios.

Hardware link emulators can provide precise timing quality and support high data rates at

the expense of cost. For example, Network emulator II from Ixia [155] (previously known as

Anue Systems network emulator) can support 10 Gigabit Ethernet and accurate network con-

dition emulation.Software network emulators can provide less precise, but acceptable in many

cases, emulation quality with lower data rate speeds. However, software-based emulation has

a very low or no cost at all. Popular examples of such network emulators are Dummynet [156]

in FreeBSD and NetEm [157] with traffic control (tc) [158] in Linux operating system.

Topically, software network emulators utilise rate limiters (aka traffic shapers) to emulate

the bandwidth of a link. Path delay is emulated by moving packets into a delay line before

transmitting them to destination. To emulate lossy links, the emulator randomly drops packets

based on configurable loss ratio. It is worth noting that packet loss emulation can be applied

during packet enqueue or dequeue from the buffer depending on the emulator design. For

example, Dummynet randomly drops packets during the enqueue process to emulate a specific

loss rate.

Some software network emulators, such Dummynet, are able to emulate networks at data
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link level while others are able to emulate links at the IP level. Data link level emulation

allows configuring testbed without packet forwarding (router) using bridging mode (similar to

network switches) while IP level emulation requires the emulating machine to act as a router.

In addition, software network emulators are usually coupled with traffic classification soft-

ware to specify which packets are subject to the emulation. For example, Dummynet is typi-

cally used with ipfw [159] in FreeBSD OS and NetEm is used with tc [158] in Linux. In this

work, ipfw/Dummynet in FreeBSD11 is used to emulate links at IP layer level.

Dummynet stores packets in a buffer(s) and then fetches them using a packet scheduling

algorithm to be sent to the destination network. In a single queue configuration, First-In First-

Out (FIFO) is used where the first packet to enter the buffer will be dequeued first. The size of

this buffer is configurable and is refereed to as buffer size (bs). Buffer sizes used in network

middleboxes vary from brand to brand and model to model. Therefore, we use different buffer

sizes in our evaluation.

Buffers are controlled by buffer/queue management schemes. The most common is Drop-

tail in which packets are dropped from the end of the queue if there is no more room for

new packets in a situation called overflow. More advanced queue management schemes (Ac-

tive Queue Management) in which packets are dropped when queue lengths reach a specific

threshold (in time or size). Dummynet originally implemented only Random Early Detection

(RED) [43] and Gentle RED (GRED) [160] AQM. However, we implemented CoDel[47],

PIE [15], FQ-CoDel [16] and FQ-PIE [17] for the FreeBSD version of Dummynet. Our im-

plementation has been added of FreeBSD source tree since version FreeBSD 11.0 [19] and

backported to FreeBSD 10.4 [20].

The Dummynet traffic shaper is used to mimic a required link speed (bandwidth). On

every kernel tick, Dummynet dequeues packets from the buffer if the shaper allows. If the

data rate is above the desirable bandwidth, packets rmain in the buffer.

Dummynet can be configured to add delays after packets are fetched to emulate different

path RTT. Delays can be added to forward and reverse paths independently. In our experi-

ments, we configure Dummynet to delay packets by half of the required path RTT for each of

the forward and reverse paths. Dummynet implements delay emulation by temporally storing

the packets in another buffer (heap) with the transmit time. On every tick, the packets are

transmitted to the destination when the packets transmission time is greater than or equal to

the current time. Dummynet can be configured to drop packets randomly to emulate a lossy

environment where non-congestion related losses occurs.

Figure 3.1 shows a typical Dummynet link emulation.
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Figure 3.1: Typical Dummynet link emulation

3.2.2 Traffic generators

Traffic generators are used to mimic real network traffic that would be generated by user data

transfer over the network. Traffic can be unidirectional such as audio and video multicast or

bidirectional such as FTP, HTTP traffic and VoIP traffic.

Typically, traffic passes from the sending host (source) to the receiving host (sink). This

involves starting the server and client software on the sending and the receiving hosts. For

example, to mimic web serving traffic, an HTTP service and HTTP client should be started on

the sending host and receiving hosts respectively.

In our testing environment, we use the iperf [161] tool to generate TCP traffic between

two end points. This tool allows the sender host (client) to push data to the receiver host

(server) at the maximum possible speed. TCP bulk data transfer can be easily emulated using

this tool. Additionally, iperf can be used to generate UDP traffic at a desirable rate to mimic

different UDP-based application protocol such as VoIP traffic.

As described in Section 2.1.1, TCP receiver buffer sizes should be larger than path BDP

to let the sender push packets at the maximum link speed. We used a modified version of

iperf tool [162] that accepts additional arguments to set the sizes of sending and advertised

(receiving) windows. In our experiments, the receive buffer size of iperf is set to be larger

than path BDP plus bottleneck buffer size to prevent limiting the number of bytes in flight by

the receiver.

3.2.3 TCP Traffic loggers

In order to evaluate and explore TCP CC algorithms, TCP traffic statistics are collected from

end hosts. Per-flow statistics such as packet size and advised window size are extracted from

the packets. In this case, the t
pdump [163] tool is used to capture packets at all NIC’s.

Other TCP/IP statistics such as congestion window size and socket buffer sizes cannot

be retrieved from packet capture. Therefore, kernel TCP statistic loggers are also important.
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These loggers collect TCP/IP statistics from the OS kernel TCP/IP stack and store them to a

log file. This type of TCP logger is OS-specific.

In our testing environment, the Statistical Information For TCP Research (SIFTR) [164]

logger is used under FreeBSD to log different TCP statistics. This logger is an event-driven

logger which collects statistics on packets arriving and leaving the host. For logging CC spe-

cific statistics we patched SIFTR to collect different CDG (and our enhanced CC algorithm)

statistics and internal variable values, and to output them as additional fields in the SIFTR log

file.

For Linux, we developed ttprobe [25], a TCP event-driven1 logger which captures more

samples than the well know Web10G logger [26] with lower CPU overhead and better com-

patibility with newer Linux kernels.

Both SIFTR and ttprobe have extremely low CPU overhead, especially at low packet

rates. A ttprobe description and performance analysis can be found in Appendix A.

3.2.4 Bottleneck queue statistic loggers

It is also useful to obtain a clear picture of what is happening inside bottleneck queue(s). Ob-

taining accurate measurements of the congestion level, queue length and queuing delay can

help to explain the behaviours of delay-based congestion control algorithms. In our experi-

ments, it helps in understanding how the algorithm reacts to the bottleneck queue dynamic,

and the induced queuing delay that the algorithm generates.

We developed an event-driven Dummynet logger called DIFTR2 (Dummynet Information

For TCP Research) which can collect different queue statistics such as queue length, queuing

delay and the number of dropped packets. It also logs AQM-specific statistics such as CoDel

and PIE estimated queuing delay and FQ-CoDel and FQ-PIE per sub-queue statistics. DIFTR

logs statistics on packet enqueuing, packet dequeuing and packet sending after emulating path

delay.

3.3 Measurements

We use different measurement metrics to measure different performance aspects of the proto-

cols.

1Similar to SIFTR
2DIFTR code was developed on the top SIFTR source code.
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3.3.1 Throughput

Throughput is computed for flows by calculating the number bytes received per unit of time

using a moving average window of size W. Interpolation is used to obtain more throughput

samples when W is large to reduce noise and produce smoother plots. In our analysis unless

otherwise mentioned, we use a one second window size and four interpolated points.

We also measure the flow average throughput for comparison purposes which is calculated

as above using W equal to the flow running time with one interpolated point.

3.3.2 RTT

We use the Synthetic Packet-Pairs (SPP) RTT tool [165] to measure the round-trip time of

a flow. SPP does not require time synchronisation between the end points and uses passive

measurements. It produces more accurate RTT estimation than the RTT estimated by TCP

stack.

SPP relies on packets observation times at two measurement points (called monitor and

reference points). It captures packets at the two points and matches packets at one point

with packets at the other point. Each packet is assigned a unique identification and coupled

with capturing timestamps on both points. As a result two lists will be created, one at each

measurement point. Starting from the beginning of the list at the monitor point, the closest pair

of packets (one from monitor to reference point and one after it from the opposite direction)

are used. An RTT sample is calculated as the timestamp difference between that pair at the

reference point minus the difference between the pair at the monitor point [165].

When the two points are the sending and the receiving hosts, the RTT samples will be the

actual RTT the sending host experiences. The traces captured by the t
pdump tool are used as

input to SPP.

3.3.3 Queuing delay

Round-trip queuing delay can be measured using SPP by subtracting the base RTT from the

SPP RTT estimation. A better and more accurate queuing delay can be obtained from inside

the bottleneck. DIFTR computes packet sojourn time (similar to CoDel AQM [47]) for each

dequeued packets. Therefore, an accurate queuing delay per queue can be obtained.

We use queuing delay from DIFTR in our experimental analysis unless otherwise men-

tioned.



3.4 TEACUP - a specialised toolkit and testbed 87

3.3.4 Queue length

DIFTR also provides queue length statistics directly from inside bottleneck queues. Queue

length samples are generated on packet enqueue and dequeue.

3.4 TEACUP - a specialised toolkit and testbed

Protocol evaluation and development requires conducting hundreds or thousands of controlled

experiments that mimic different contexts and scenarios. Each experiment requires config-

uring many elements in the testing environment including end-hosts, routers and switches.

This also involves changing TCP/IP parameters (e.g. enable/disable TCP options), operating

system options (e.g. socket buffer sizes) and link emulation parameters (e.g. bandwidth and

emulated delay). It also includes starting and stopping traffic generators and collecting all log

files. Without a specialised and flexible automated testbed, this process becomes difficult and

inefficient.

TCP Experiment Automation Controlled Using Python (TEACUP) [162] is a very pow-

erful specialised automated TCP testbed software that provides all the required features for

conducting TCP experiments. It emulates different real-world scenarios in a fully controlled

environment. TEACUP can run and replicate experiments while varying experiment parame-

ters including bandwidth, path RTT, bottleneck buffer sizes, queue management scheme and

loss rate. Further, TEACUP supports a range of traffic generators and different operating

systems.

TEACUP also provides a collection of basic analysis functions that simplify analysing

TCP statistics such as extracting a wide range of statistics, correcting log timestamps and

plotting different graphs. Moreover, it is a well-documented open source project [166] which

makes extending features a straightforward process.

TEACUP separates experiment traffic from control traffic through the use of two separate

networks: a control network and an experiment network. This separation prevents testbed

control traffic from interfering with experiment traffic to produce a more accurate emulation.

All our experiments are conducted using the TEACUP testbed. The summarised steps of

what TEACUP does when running an experiment are:

1. Boot hosts and router(s) to the desired OS (Linux, FreeBSD, Microsoft Windows or
Mac OS) and test host connectivity.

2. Initialise and configure all hosts and router(s). This involves setting up TCP/IP param-
eter such as disabling hardware offloading, setting system receiver and sending buffer
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Figure 3.2: Testbed topology and network setup

sizes, setting up the bottleneck such as link’s bandwidth, emulated delay, packet loss
rate, buffer size, queue management.

3. Prepare traffic generators to run on the hosts at specific times.

4. Start all traffic and statistic loggers.

5. Wait for the experiment to finish.

6. Stop all loggers, collect log files and check their integrity.

7. Delete temporary files and finalise the experiment.

Our testbed includes four hosts, one software router and one control host. The control host

is responsible for running the TEACUP software, storing experiment configurations, and the

collected log and data files to be analysed later. Figure 3.2 shows the topology of our TEACUP

based testbed.

The hosts hardware specifications are Intel Core I5 @ 3.2GHz processor, with 8GiB mem-

ory and Intel PRO/1000 Gigabit Ethernet interfaces. The router hardware specifications is Intel

Core2 Duo @ 2.33GHz processor, 4GiB memory, Intel PRO/1000 Gigabit Ethernet interfaces.

The testbed uses FreeBSD-11.0-RELEASE and OpenSUSE with 4.9 Linux kernel. The hosts

are booted automaticity with the desired operation system at the start of the experiment.
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3.5 Kernel tick rate implication

The kernel tick rate plays an important role in link emulation accuracy by providing higher

time resolution and serving the queues more frequently. A high tick rate is required to better

reflect the realistic operation of real links. We configured the FreeBSD router to use a 10KHz

tick rate, this is large enough to allow smooth packet transmissions when emulating links up

to 120Mbps.

We discovered issues with Dummynet’s tick implementation which affect emulation ac-

curacy and we provide fixes for these issues. Additionally, we find that Dummynet results in

unintended TCP ACK compression in specific scenarios due to its traffic shaper. Appendix

B discusses these issues in detail and their implications on link emulation, along with our

solutions to realise better emulation with low system overhead.

3.6 Modern AQM implementation in Dummynet

Modern AQMs, such as CoDel[47], PIE [15] and FQ-CoDel [16], are attractive to both aca-

demic and industrial communities because of the high performance and low latency of these

algorithms. Additionally, these AQMs have emerged as a solution to the bufferbloat phe-

nomenon in home gateways. It is important to understand CC algorithm interaction with

AQMs, and how AQMs can alter the CC design assumptions.

CoDel and FQ-CoDel have existed in the Linux kernel since version 3.5 [167] and PIE

since version 3.14 [168]. There was no implementation for these AQM in Dummynet, we in-

dependently implemented these AQM based on IETF RFC specifications, verified their correct

functionality and integrated them to FreeBSD 11 and 10.2 releases. Additionally, we applied

the idea of the Flow-Queue part of FQ-CoDel to the PIE AQM to produce an experimental im-

plementation for FQ-PIE. Our technical report [17] includes details of CoDel, PIE, FQ-CoDel

and FQ-PIE implementation for ipfw/Dummynet in FreeBSD. Support for this implementa-

tion has added to TECUP [169].

3.7 Testing scenarios

In our experiments, we emulate links mimicking slow to medium speed home Internet sub-

scriptions. We use downlink bandwidths between 1.5Mbps and 25Mbps in most experiments,

and 1Mbps and 50Mbps in some experiments. We use uplink bandwidths between 0.5Mbps

and 20Mbps which are enough to prevent the uplink from becoming a bottleneck [170]. Table
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Table 3.1: Downlink and uplink bandwidths used in the experiments.

Down/up stream bandwidth (Mbps) Mimic gateway of

1.5/0.5 ADSL1
4/1 low speed ADSL2+

12/1 Medium speed ADSL2+
25/5 Low speed fibre subscription

50/20 Medium speed fibre subscription

Table 3.2: Path RTTs used in the experiments.

Path RTT (ms) Hosts locations

< 10 Local area
10 Intra-state
40 Inter-state

180 Intra-continent
240 Inter-continent
340 Far continent

3.1 shows the downlink and uplink bandwidths we use in our experiments. In our graphs and

discussions, only the downlink bandwidth is mentioned for simplicity.

We use a wide range of path RTTs in our tests from 10ms (representing inter-state pro-

rogation) to 340ms (representing far inter-continental connections) as shown in Table 3.2. In

some experiments, we use smaller path RTTs to mimic local networks.

Different buffer sizes are used depending on experimental context but we never use buffer

sizes less than one BDP worth of buffer. In all our experiments, we set up Host 1 and 2 to be

the receivers and Host 3 and 4 (see Figure 3.2) to be the senders unless otherwise mentioned.

3.8 Conclusion

In this chapter, we described the experimental methodology we use in this thesis as well as the

testbed used in protocol evaluation. Our automated testbed allows us to conduct experiments

to properly evaluate performance of CC algorithms. It is able to emulate different network

settings and mimic realistic scenarios. Further, the testbed software collects different TCP and

traffic statistic without interfering between experiment traffic and testbed control traffic.



Chapter 4

CAIA-Delay Gradient CC Evaluation

4.1 Introduction

In this chapter, we describe the CDG algorithm and evaluate CDG in a single-flow situation,

coexistence with loss-based flows and slow-start phase for different bottleneck bandwidths,

buffer sizes and path RTT. Further, we identify CDG issues and the potential causes of these

problems. In Chapter 5 we will use these insights to develop and improve CDG such that it

can be deployed as on the Internet as both a conventional and low priority CC.

The rest of this chapter is organised as follows. Section 4.2 presents the evaluation of

CDG in single flow scenarios and identifies CDG issues that reduce protocol throughput in

these scenarios. In Section 4.3, we evaluate CDG coexistence with loss-based CC, namely

CUBIC, and identify the potential problems leading CDG to obtain low bandwidth share.

Section 4.4 presents CDG slow-start evaluation and Section 4.5 concludes this chapter.

4.2 CDG link utilisation

In this section, we investigate how much the congestion avoidance mode of CDG CC algo-

rithm [12] utilises bottleneck capacity in single flow scenarios. In this simple scenario, one

sender transmits bulk data using CDG-based TCP to a receiver without any competing back-

ground traffic. This scenario is not uncommon in real-life traffic such as downloading system

updates or uploading large files overnight.

Using CDG’s FreeBSD implementation [145], we conduct an experiment to measure aver-

age link utilisation for a CDG generated TCP flow as it traverses a bottleneck. The experiment

is repeated for a range of bottleneck bandwidths (Brate) from 5Mbps to 25Mbps, a range of

emulated path RTT (RT Tbase) from 10ms to 300ms, and a 1000 packet droptail FIFO buffer.
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The Brate range reflects typical Internet connection speeds in a home network context when

the network is connected to the Internet through a broadband modem (see Section 3.7). The

RT Tbase range emulates connections between two points in different geographical locations

from intra-state to intercontinental. We use a FIFO buffer because it is the typical mechanism

utilised by most network equipment.

Although CDG does not need a large bottleneck buffer size in most cases to achieve full

bandwidth utilisation, a 1000 packet buffer size is chosen to be greater than the largest BDP

in our test (~ 625 packets when Brate= 25, RT Tbase = 300ms and 1500 byte packet size). The

receiver is configured to use 1MiB receiving buffer size which is again greater than the largest

BDP in our test (0.9 MiB for Brate= 25 and RT Tbase = 300ms) to prevent capping the flight

size based on the receiver window. The iperf tool is used to generate a 300 seconds CDG

flow.

The average link utilisation for the experiment is calculated for t=90s to 290s of each run.

First 90 seconds are excluded to skip CDG’s slow start and to ensure that CDG reaches a stable

congestion avoidance state before making measurements.

Figure 4.1 shows that when RT Tbase < 20ms, link utilisation is above 90%. As RT Tbase

increases link utilisation decreases. When RT Tbase > 200ms, link utilisation drops below 50%.
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Figure 4.1: Link utilisation of single CDG flow
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When RT Tbase > 250ms and Brate > 20Mbps link utilisation decreases below 40%. Figure 4.1

also shows that bottleneck bandwidth does not have a significant effect on CDG link utilisation

degradation.

4.2.1 Large cwnd back-off and slow recovery

Achieving 100% link utilisation requires a TCP flow to fill ‘the pipe’ by keeping bytes in-

flight at least equal to the “optimum” window size (i.e path’s BDP). CDG attempts to keep

cwnd close to the path BDP to achieve high throughput while preventing build queue up in the

bottleneck. In this context any back-off causes cwnd to fall below the path BDP.

As soon as congestion is detected using the delay gradient signal, CDG backs off cwnd

using βdelay factor (default 0.7). For continuous 100% utilisation across congestion epochs we

require cwnd to be no less than BDP after backing off cwnd.

Since CDG increases cwnd linearly by one MSS every RTT when no congestion is de-

tected, it takes time to recover cwnd to reach BDP again. Flows traversing larger BDP paths

require a longer time to recover cwnd, resulting in bytes in-flight being lower than BDP for a

longer period. The degree of utilisation degradation is dependent on the time taken for cwnd to

reach BDP after back-off. As shown in Figure 4.1, higher RTT paths result in longer recovery

periods.

We take a single CDG flow experiment with 20Mbps bandwidth and 100ms emulated RTT

as an example to further explore this behaviour. Figure 4.2 illustrates how CDG decays cwnd

below the path BDP to about 180KiB, resulting in throughput (calculated over one second

moving average window) being decreased to about 16Mbps. This figure also shows that it

takes about 5 seconds for CDG to recover cwnd to BDP. This saw-tooth cwnd behaviour is

similar to the TCP Reno algorithm. In this case the large bottleneck buffer size does not help

since the congestion signal here is delay rather than loss. A similar effect can be measured in

all cases where average throughput is well below 100%.

4.2.2 Unnecessary back-off

As CDG aims to maintain cwnd close to BDP, any unnecessary cwnd back-off results in cwnd

decreasing well below the path BDP, leading to a reduction in link utilisation. We define un-

necessary back-off as when cwnd decreases while it is smaller than the path BDP (i.e. average

sending rate is lower than the bottleneck bandwidth). This issue becomes more problematic

when the number of flows sharing the link is very small (lightly multiplexed environment). In

this case, link capacity will not be fully utilised.
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Figure 4.2: The impact of cwnd back-off on flow throughput

To understand why CDG sometimes backs-off unnecessarily, a microanalysis is performed

for one instance of Figure 4.1. We select an experiment with Brate=10Mbps and RT Tbase=100ms

(the path BDP = 122KiB) for our case study. In this experiment, the link utilisation was ap-

proximately 73%. We can clearly see in Figure 4.3 CDG occasionally backs off cwnd when

cwnd is below BDP.

We count the total number of cwnd backs-off and number of back-off events while cwnd

is below the path BDP (i.e. unnecessary back-off). We exclude the slow-start interval from

the calculations.

The results show that CDG backed-off cwnd 140 times in total. 66% (92 times) of those

back-offs occurred when cwnd was below BDP. Additionally, we found that CDG performed

a double back-off (two successive backs-off with a two RTT interval gap between them) while

cwnd was below BDP 11 times. This multiple back-off behaviour causes cwnd to drop signifi-

cantly below BDP, leading to a large reduction in average link utilisation. As the window size

drops to (cwnd×0.7+MSS)×0.7 after a double back-off.

To evaluate why this occurs, we calculate the probability that CDG chooses to back-off

in the Nth RTT after first back-off when cwnd remains below BDP. Figure 4.4 illustrates that
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Figure 4.3: CDG occasionally backs off cwnd while cwnd below BDP
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there is a relatively high probability that CDG backs-off close to (within four RTT intervals)

the first back off. These statistics clearly reveal that CDG performs unnecessary back-off on a

large scale for this scenario.

Both consecutive and early cwnd back-off reduce CDG performance in a single flow sce-

nario. Additionally, we can see in Figure 4.1 that link utilisation is less than 50% when RT Tbase

> 200ms and Brate >15Mbps scenarios. This large utilisation reduction is related to both the

CDG βdelay multiplicative factor (default 0.7) and the relatively large BDP in these scenarios.

In such conditions, cwnd drops well below the path BDP whenever CDG instigates a delay-

based back-off with cwnd close to the path BDP. When RTT is large, CDG needs a longer time

for cwnd to recover to the path BDP, causing the link to be underutilised for a longer period.

4.2.2.1 Underlying problem for consecutive back-off

To understand why CDG sometimes backs off unnecessarily, we instrument different CDG

state variables during an interval when an unnecessary back-off occurs. We ignore erttmax

gradient in this analysis because all back-offs occur based on erttmin gradient measurements

in the selected interval.

The cwnd vs. time plot shown in Figure 4.5a shows that CDG backs off three times un-

necessarily after first back-off at t=154.83s. The lower area between the path BDP and cwnd

reflects the amount of unused bandwidth. As this area increases, the degree of link under-

utilisation will be larger. We can see in this figure that after cwnd exceeds the path BDP for

an interval of time, CDG decreases cwnd using 0.7 beta factor. This back-off is enough to

decrease cwnd below the BDP and reduce the queuing delay. The progression of bottleneck

queue occupancy shown in Figure 4.5b clearly shows that the first back-off is effective and

drains the queue to about three packets. This is inline with ERTT and ERT Tmin,n plots shown
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in Figures 4.5b and 4.5d respectively. In these figures we can see the RTT drops from 122ms to

about 102ms after the back-off. We note that minimum RTT is higher than emulated the path

RTT (100ms) due to ipfw/dummynet’s internal architecture and operating system interrupt

frequency as described in 3.5.

The first cwnd back-off event occurs at t=154.83s due to queue building up result in erttmin

reaching 117ms. At the same point, ḡmin,n becomes 1.25 due to non-negative gmin,n samples

as shown in Figures 4.6c and 4.6a. This results in Pbacko f f (Figure 4.6d) being 0.34, resulting

in CDG backing off cwnd (based on a random generated number).

This is a desired back-off due to the queue build-up. However, at t=155.07s CDG performs

another (unnecessary back-off) because Pbacko f f is still high at 0.25 (since ḡmin,n =0.875) even

through erttmin drops to 102ms. gmin,n and ḡmin,n values for the interval from t=154.03s to

t=155.62s are shown in table 4.1.

Two causes combine to result in a high probability of a consecutive cwnd back-off. The

first is the effect of the smoothing window used by CDG, and the second is skipping a delay

gradient sample after the back-off without skipping RTT measurements. These factors keep

Pbacko f f high after the first cwnd back-off event.

Firstly, CDG gradient smoothing window (default eight gmin,n measurements) causes ḡmin,n

to slowly reflect RTT reduction after back-off. As mentioned in Section 2.7, CDG uses the

moving average window to address the fluctuation and noise of the RTT signal and measure-

ment. However, this mechanism reduces algorithm responsiveness to delay signal changes as

mentioned in Section 2.3.1.2. Therefore, CDG requires multiple RTT cycles after back-off to

calculate a small ḡmin,n and as a result obtain a small Pbacko f f . This results in a higher chance

for CDG to back off multiple times unnecessarily. Table 4.1 shows slow ḡmin,n decrease after

the first back-off at t=154.83s regardless of the small gn values.

Secondly, CDG misses an important RT Tmin,n gradient sample (gmin,n) due to skipping a

delay gradient sample after back-off without ignoring RTT measurements during that cycle.

This sample can reduce ḡmin,n value and change CDG behaviour significantly.

CDG wisely skips gradient measurements for an RTT interval (one measurement cycle)

after backing-off because the sender cannot measure the effect of cwnd reduction before one

RTT from that back-off. However, CDG only skips gmin,n and gmax,n without skipping RTT

measurements (RT Tmin,n, RT Tmax,n). Before explaining the implication of not skipping RTT

measurements of next measurement cycle, let us discuss the characteristic of RTT samples

during a measurement interval after back-off when actual congestion happens in the network.
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Figure 4.5: Single CDG flow performing multiple back-off
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Figure 4.6: Zoomed-in delay gradient stats when CDG flow performing multiple back-off
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During an RTT interval after cwnd back-off, RT Tmax,n will stay high because RT Tmax,n

is measured over an RTT interval. Since a maximum filter is used, any large RTT sample

will keep RT Tmax,n large. Therefore, gmax,n most probably will be positive or zero in next

measurement round after back-off in a single CDG flow scenario.

On the other hand, RT Tmin,n decreases because at exactly one RTT interval the effect of

the back-off will be measurable at the sender. Due to the effect of the minimum filter used

to measure RT Tmin, RT Tmin,n will include at least one RTT sample that reflects the cwnd

reduction. That is, the ACK packet for the first sent packet in the sending window (last ACK

packet received) will carry a delay measurement sample that reflects the reduction in cwnd.

Therefore, gmin,n most probably will be negative in next measurement round after back-off.

For this reason, skipping gmax,n is useful to prevent additional back-off while skipping

gmin,n is bad because it prevents ḡmin,n from decreasing quickly after cwnd reduction.

Now assume CDG backs off cwnd at cycle b. CDG calculates gmin,b+2 according to equa-

tion 4.1. Since gmin,b+1 is skipped, it is clear that no RT Tmin,n gradient will include the differ-

ence between RT Tmin before and after seeing the effect of cwnd back-off.

gmin,b+2 = RT Tmin,b+1−RT Tmin,b+2 (4.1)

We use the same experiment described above to analyse this behaviour. We can see in

Figure 4.5b that the bottleneck queue starts to drain immediately after back-off (t=154.83s)

but the sender does not see RTT reduction until one RTT later at t=154.97s (Figure 4.5c).

These figures illustrate why it is important to skip RTT measurements for one RTT interval

after back-off.

In Figure 4.5d, however, we can see at t=154.97s RT Tmin decreases to around 102ms caus-

ing gmin,n to dip to -16 (Figure 4.6a) which happens directly after the back-off. As shown

in Table 4.1, this value is excluded from ḡmin,n calculation and thus does not have significant

impact to reduce the probability of further back-off.

On the other hand, in Figure 4.6b we can see that at t=154.97s gmax,n is still positive at 3

and after another cycle at t=155.07s it dips to -19. This clearly shows that RT Tmax does not

reflect cwnd back-off after one RTT interval but after two RTTs.

It is worth noting that at t=155.30s Pbacko f f is around 0.2 and before t=154.83s Pbacko f f

is around 0.3 but CDG does not back-off. The reason behind that behaviour is that mak-

ing a probabilistic backing-off decision is based on a random generated number (random <

Pbacko f f ) and fortuitously the random generated numbers were greater than Pbacko f f .
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Table 4.1: ḡmin,n calculation for interval t=108.73s to t=110.05s using 8 samples smoothing
window where gn is gmin,n

t(Sec) gn−7 gn−6 gn−5 gn−4 gn−3 gn−2 gn−1 gn ḡmin,n

154.03 -2 2 0 2 0 2 0 3 0.875
154.14 2 0 2 0 2 0 3 0 1.125
154.25 0 2 0 2 0 3 0 2 1.125
154.37 2 0 2 0 3 0 2 0 1.125
154.48 0 2 0 3 0 2 0 3 1.25
154.60 2 0 3 0 2 0 3 0 1.25
154.71 0 3 0 2 0 3 0 2 1.25
154.83 3 0 2 0 3 0 2 0 1.25
154.97 0 2 0 3 0 2 0 (-16) (skipped)

155.07 0 2 0 3 0 2 0 0 0.875

155.20 2 0 3 0 2 0 0 (1) (skipped)

155.30 2 0 3 0 2 0 0 -1 0.75

155.40 0 3 0 2 0 0 -1 1 0.625

155.52 3 0 2 0 0 -1 1 (0) (skipped)

155.62 3 0 2 0 0 -1 1 0 0.625

4.2.2.2 Underlying problem for spurious back-off

CDG randomly backs off cwnd when the window is smaller than the path BDP. This spurious

back-off causes loss in flow throughput and has no useful outcome on reducing queuing delay.

Back-off happens in this case study occurs only due to ERT Tmin measurements which is why

we do not explore the ERT Tmax measurements in this investigation.

We can see in Figure 4.7a that at t=49.812s CDG backs off cwnd while the window has

not reached BDP. In Figure 4.7b, we also can see that there is no actual queue build up at that

instance in time. This figure also shows that the queue length fluctuates between zero and two

packets which is considered normal behaviour. This queue occupancy fluctuation happens due

to the TCP bursty sending caused by the TCP delayed acknowledgement mechanism [151] as

well as the asynchronous timing between the sent packets and the scheduler at the bottleneck.

The estimated RTT by the sender also reflects that behaviour as shown in Figure 4.7c.

This instability causes the delay gradient signal (gn) as well as the smoothed gradient (ḡn)

to oscillate. Although the smoothing window used by CDG can minimise this noise, it cannot

be eliminated completely. In Figures 4.8a we can see gn is vulnerable to queue oscillation

significantly since delay gradient fluctuates between -2 and 2 almost every RTT. In Figure

4.8b, however, we can see the smoothed gradient signal is semi-stable with some oscillations.

These oscillations lead to a high back-off probability value which causes the sender to back-off

when there is no actual congestion.
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Figure 4.7: Single CDG flow performing spurious back-off
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Figure 4.8: Zoomed-in delay gradient stats when CDG flow performing spurious back-off

Figure 4.8c shows that the back-off probability becomes 0.038 three times during the

shown interval (t=48.5s to t=50s). Although 0.038 is a low Pbacko f f , CDG decides to back

off cwnd at the third instance at t=49.81s. As mentioned in Section 4.2.2.1, that occurs as the

decision is made based on a random generated number (random < Pbacko f f ).

Preventing spurious backing-off without heuristic is hard to achieve. Using thresholds to

prevent CDG from backing off can work if accurate queue delay measurement can be obtained.

However, estimating queue delay is fraught with difficulties including RT Tbase estimation.
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4.2.3 Late cwnd back-off behaviour

Occasionally CDG makes a late decision to back-off cwnd which causes RTT spikes or unde-

sirable queuing delay. The uneven RTT leads to undesirable queue fluctuation which affects

protocol stability without performance improvement. Figure 4.9 shows this behaviour for a

60 second CDG flow traversing a bottleneck that emulates 10Mbps and 100ms base RTT link.

We can see in this figure that RTT occasionally increases much higher than the average RTT

of this experiment. At t={12, 18, 38}s for example, RTT increases above 115ms, which is

15ms higher than the base RTT. The average queuing delay for this experiment is 2.7ms and

average throughput is 7.76Mbps.

To understand why these spikes appear, we examine the period around the RTT spike at

t=38s for a close-up analysis. In Figure 4.10a, we can see that cwnd increases over the path

BDP at t=37.5s and keeps growing for 1.5 second until reaches 148KiB at t=39.1s. This causes

a queue up to 20KiB in size to build up in the bottleneck before backing off cwnd as shown in

Figure 4.10. As a consequence, the measured ERT Tmin,n at the sender increases up to 118ms

as shown in Figure 4.11a.

The reason for the late back-off decision is the nature of the probabilistic function which

depends on randomly generated numbers, occasionally resulting in CDG not backing off. In

addition, the noise of the delay signal causes the smoothed gradient to increase slowly. In

Figure 4.12a we can see gmin,n values fluctuate between 0 and 2 resulting in ḡmin,n rising

slowly as shown in Figure 4.12b. The reason for non-increasing RTT (which causes zero gn)

is the asynchronous timing between measurement cycles of the sender and bottleneck packet

scheduler.

Most importantly, in single CDG flow scenarios, the ḡmin,n value is capped by the seriali-

sation delay of MSS times the smoothing window size. In this experiment for example, ḡmin,n

cannot increase higher than 9.6 (1.2× 8) since the serialisation delay of 1500 bytes packet

at 10Mbps is 1.2ms. We can see how ḡmin,n becomes almost constant between t=38.6s and
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120
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Figure 4.9: CDG occasionally does not back off cwnd on time resulting in RTT spikes
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Figure 4.10: Queue occupancy
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Figure 4.11: CDG increases cwnd too much causing an RTT spike before backing off

t=39.1s due to the smoothing window.

As a result, the back-off probability slowly increases and then becomes flat as shown in

Figure 4.12c.

Another method in making the back-off decision is essential to solve this problem since

making a decision based on Pbacko f f is not sufficient. In Section 5.2.7 we propose a method to

solve this issue and provide a lower queuing delay.
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Figure 4.12: Delay gradient measurement indicates congestion but CDG does not back off on
time

4.2.4 Link utilisation in multi-flow environment

In multiplexed environment, the effect of low link utilisation of a single CDG flow becomes

less harmful. The multiplexing back-off of each individual flow allows cwnd of other flows to

grow further. Therefore, the overall link utilisation becomes close to 100% as the number of

concurrent flows increase.



106 CAIA-Delay Gradient CC Evaluation

4.3 Coexistence with loss-based flows

As previously described, the main obstacle preventing wide deployment of delay-based TCP

on the Internet is its poor ability to coexist with loss-based flows. More specifically, when

delay-based TCP competes with loss-based TCP for bottleneck bandwidth, delay-based TCP

obtains a very low share, particularly in large FIFO buffer sizes.

In a typical home network for example, user devices connect to the home broadband gate-

way via fast links (wired or wireless). Home gateways are bottlenecks for upstream traffic

because they have lower uplink speed slower than home network speed. FIFO with droptail is

the common (and usually default) mechanism to manage buffers in typical home gateways1.

Let us consider the following scenario to understand the impact of flow coexistence on user

experience. Suppose user A is uploading a very large personal video file to a video-sharing

service while user B is sending an email with a large attachment. Assume user A’s laptop is

configured to use loss-based TCP (e.g. CUBIC for example) while user B’s PC is configured

to use low latency delay-based TCP transport (e.g. TCP Vegas).

In this context, user B will notice that his email takes a long time to be sent so he/she has

to wait much longer than when he/she is alone at home. Similarly, if user B is busy with a

video conferencing call and then user A starts uploading his file. User B will notice that his

video call quality reduces and the video starts becoming choppy and unstable.

It is clear that in these contexts, the unfairness between loss-based and delay-based flows

impacts badly on Quality of Experience (QoE) for user B.

A similar situation occurs when two users are downloading large files where the bottle-

neck is at the service provider side (Digital Subscriber Line Access Multiplexer (DSLAM) in

Digital Subscriber Line (DSL) connection for example).

As previously described, conventional loss-based TCP probes path capacity by increasing

the number of packets in-flight until packet loss occurs. As soon as cwnd reaches the path BDP

(i.e. average sending rate reaches bottleneck bandwidth capacity), a queue starts forming in the

bottleneck buffer. This queue delay packet delivery for all flows sharing the same bottleneck.

Delay-based TCP measures that delay and interprets it as a congestion signal, reducing cwnd

in an attempt to reduce queuing delay. At the same time, the competing loss-based flows keep

increasing cwnd to use the newly available bandwidth. cwnd continues to increase until packet

loss is observed when the bottleneck buffer exhausts.

The problem worsens when buffer size is very large and bottleneck bandwidth is low.

A large buffer size allows loss-based flows to push a large number of packets to the buffer,

creating long queuing delays. On the other hand, low bandwidth makes queuing delay longer

1Some companies have already started producing high-end home gateways/ WiFi routers with modern AQM
implemented such pfSense [21], Netgear, ubnt [171])
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Figure 4.13: Typical home network with two users sharing a bottleneck. User A uses loss-
based transport and User B uses delay-based transport

due to increased serialisation delay. As a consequence, the cwnd dynamic slows, resulting in

loss-based flows backing off less frequently without giving delay-based flows an opportunity

to recover. Moreover, delay-based flows will back off more frequently as the queuing delay

increases quickly.

As an example, Figure 4.14 shows a throughput versus time plot for a TCP Vegas and a

TCP CUBIC flow sharing a 10Mbps bottleneck bandwidth. The bottleneck emulates a 20ms

RTT path with 200 packet buffer. We can see in this figure that when the CUBIC flow starts

at t=10s, Vegas throughput drops significantly. cwnd decreases due to observing high delay

(through RTT measurements of the sending packets) caused by the aggressiveness of the CU-

BIC flow. CUBIC keeps filling the buffer while Vegas gets no opportunity to increase its cwnd.

The high buffer occupancy of the CUBIC flow causes the scheduler to serve more packets from

the CUBIC flow than from the Vegas flow. As a consequence, the Vegas flow realises only

0.24Mbps bandwidth share while CUBIC achieves 9.75Mbps during the competition period

between t=10s to t=30s.

Delay-based TCP cannot be deployed widely on the Internet without mechanisms allow-

ing acceptable coexistence with loss-based flows. Some threshold delay based algorithms use

higher delay thresholds (e.g. 100ms queuing delay in LEDBAT [8]) which allow delay-based

flows to compete better with loss-based TCP. Although this can prevent the flows from starva-

tion in some cases, it does not solve the problem, especially for large bottleneck buffer sizes. It

can also create standing queues and introduce additional issues as described in Section 2.3.1.2.
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Figure 4.14: A TCP Vegas and a TCP CUBIC flows competing for 10Mbps bottleneck capac-
ity

Dual mode algorithms (see Section 2.4.2) attempt to infer competing loss-based flows and

explicitly switch between delay and loss based mode based on the detection. CDG falls into

this category as it switches between two modes seamlessly when the presence of a loss-based

flow is inferred. In addition, CDG uses a shadow window mechanism to further improve

coexistence further.

In this section, we use experimental analysis and evaluation methodologies to understand

the CDG coexistence mechanisms and discuss their issues.

4.3.1 Evaluating CDG coexistence with loss-based flows

We evaluate the performance of CDG coexistence with loss-based TCP by conducting exper-

iments that consist of one CDG flow competing with one TCP CUBIC flow2. The bottleneck

emulates a link with bandwidth Brate={1.5, 4, 12, 25}Mbps and RT Tbase={10, 40, 180, 240,

340}ms (see Section 3.7).

Bottleneck buffer size plays an important role in loss-based TCP performance. A BDP

worth of buffer is required for standard TCP to achieve full bandwidth utilisation (see Section

2.3.3.2 for more details). Selecting bottleneck FIFO buffer size in evaluating CC algorithms is

hard because different buffer sizes can change algorithm behaviour especially when it comes

to coexistence between delay and loss- based flows.

Practically, different vendors configure their equipment with different buffer sizes based

on Internet connection link speed. Typically, Internet Service Providers (ISPs) supply their

customers with home gateways that provide highest posible TCP throughput. This allows users

to upload and download files at maximum speed, and obtain high scores on Internet speed test

services. It is not uncommon for home gateways to be shipped with buffer sizes equal to a

2Linux TCP CUBIC is used since it is the most widely deployed loss-based CC.
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Table 4.2: Buffer size equivalent to 340ms delay and calculated based on bottleneck bandwidth

Bandwidth (Mbps) BDP(KiB) Buffer size (packet3)

1.5 62.26 43
4 166 114

12 498 340
25 1037.6 709

BDP calculated based on RT Tbase = 340ms or more [5]. This base RTT is selected because

the average round trip time for distant international hosts is around 340ms. For example, the

typical RTT between a server in Europe and Australia is 340ms [170].

For this reason, 340ms worth of buffer size is used to reflect this network configuration,

calculated as 0.34×Brate. Note that some of the scenarios in this experiment are not realis-

tic but are used for completeness. For instance, it is unlikely to have a fast connection (e.g

25Mbps) connecting to a far distance point. Table 4.2 shows the calculated buffer sizes used.

Since we are comparing throughput during the congestion avoidance phase, we patched

CDG to use a loss-based slow-start, allowing CDG to quickly converge to full capacity usage.

In this experiment, the CDG flow starts first with CUBIC starting after 10 seconds, giving the

CDG flow enough time to stabilise before entering the competition period. The CUBIC flow

finishes after 100 seconds. We measure throughput for the period between t=20s and t=100s

to avoid any instability caused by CUBIC start-up and termination.

Figure 4.15 shows bottleneck capacity sharing between a CDG and CUBIC flows. Average

throughput is calculated as the average throughput for each individual flow (CDG or CUBIC).

This figure demonstrates that CDG cannot coexist with loss-based flows reasonably when

bottleneck buffer sizes are large.

At 1.5Mbps CDG achieved between 10 - 21% of bottleneck capacity while CUBIC used

78% to 90% of the bandwidth. CDG performance decreased at 4Mbps where it achieved 5 -

9% bandwidth sharing with the lowest throughput at 320ms RT Tbase. This is primarily due to

large buffer sizes as calculated based on bottleneck bandwidth. Additionally, CUBIC performs

better at larger path RTT due to its larger multiplicative decrease factor (0.7) and faster cubic

cwnd growth.

As bandwidth increases, CDG cedes more bandwidth to CUBIC. The results show than

CDG utilised between 3 - 4% of bottleneck bandwidth at 12Mbps and 1 - 2% at 25Mbps.

This experiment reveals that CDG does not starve completely when buffer size is larger

than 60 packets and link speed is 1.5Mbps. However, at larger buffer sizes and higher band-

width, CDG flows starve without any ability to compete with CUBIC flows.

3Supposing a packet is 500 bytes long
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Figure 4.15: Bandwidth sharing between CDG and CUBIC flows competing for bottleneck
capacity. Bottleneck has 340ms delay equivalent worth of buffer.

4.3.2 The impact of bottleneck buffer size on CDG coexistence

Since different buffer sizes lead to different capacity sharing between delay-based and loss-

based flows, we conduct a simple experiment to understand the effect using different buffer

sizes on CDG flow when competing with CUBIC.

In these experiments, we use a setup similar to the previous experiment which consists of

one CDG flow competing with a CUBIC flow for bottleneck bandwidth. The bottleneck em-

ulates links with Brate={1.5, 4, 12, 25}Mbps and RT Tbase={10, 40, 240}ms, and FIFO buffer

sizes bs ={1, 2, 4, 6, 8}BDP. The CDG flow starts first with CUBIC starting after 10 seconds,

giving CDG flow time to stabilise before entering the competition period. The CUBIC flow

lasts for 100 seconds. Figure 4.16 shows the average throughput for each individual flow for

this experiment.

We can see in this figure that when RT Tbase=10ms and Brate=1.5Mbps, CDG achieved a

maximum of ~35% bandwidth utilisation when buffer size is 4 BDP. For buffer sizes of 2

and 8 BDP, CDG acheived ~20% throughput. CDG performed similarly for RTTbase of 40ms

with a slightly better throughput with buffer sizes equal to 1 and 2 BDP. CDG coexistence
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performance decreases dramatically when RT Tbase is 240ms due to larger buffer size allowing

CUBIC to push more packets to the buffer. Longer queues make CDG back off more often as

the delay gradient increases.

At 4Mbps and 10ms RTT, CDG performs better and was able to coexist fairly when bs is

set to 2 and 4 BDPs, achieved 35% at 8 BDPs and 15% when bs is set to 1 and 12 BDPs. At

40ms RTT, CDG also realised fair share with CUBIC but only when bs is 1 BDP. Bandwidth

utilisation then decreases as bs increases. Bandwidth utilisation dropped to 13% when buffer

size is 8 BDP (~ 107 packets). At 240ms RTT, CDG coexistence performance collapsed for

all buffer sizes. It achieved almost zero bandwidth utilisation at 8 BDP (~640 packets).

CDG performance at 12Mbps and 25Mbps is similar. For both bandwidths, CDG is able to

compete when path RTT is 10ms with buffer sizes of 1,2 and 4. However, CUBIC outperforms

CDG when bs is larger than 4 BDP. When RTTbase is 40ms, CDG starts collapsing gradually.

CDG is completely ineffective when RT Tbase is 240ms due to large buffer sizes.

This experiment shows that CDG can coexist reasonably with loss-based flows when buffer

size is between 6 and 60 packets in many scenarios. However, it is unable to achieve acceptable

capacity sharing otherwise. The experiment also reveals that CDG in general collapses when

buffer size increases above 160 packets. Table 4.3 summarises the CDG bandwidth utilisation

fraction for each bandwidth setting against the buffer size in packets.

4.3.3 Underlying cause for CDG poor coexistence

In this section we explore the CDG coexistence mechanisms to identify the issues that prevent

CDG from coexisting well with loss-based CC. We take case studies from the experiments in

Section 4.3.2 to investigate the problem. First we start with the ineffectual back-off mecha-

nisms since it is the main mechanism that allows CDG to coexist with loss-based CC. Then,

we explore issues with the shadow window mechanism.

4.3.3.1 Ineffectual back-off mechanism

Switching to loss mode (no delay gradient probabilistic back-off) when detecting of compe-

tition with loss-based flows is an efficient technique to remedy the delay-based coexistence

problem. However, detection of competing loss-based flows is a challenging problem. A

harder challenge is to detect when loss-based flows have terminated.

We take a single experiment instance from the experiment in Section 4.3.2 to understand

the issues related to the ineffectual back-off mechanism. The selected instance consists of a

CDG flow competing with a CUBIC flow over a 12Mbps bottleneck bandwidth with 40ms
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Figure 4.16: CDG and CUBIC throughput achieved when competing over bottlenecks of dif-
ferent bandwidths, buffer sizes, and RTT.
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Table 4.3: Bandwidth fraction for a CDG flow competing with CUBIC flow for bottleneck
bandwidth with different buffer sizes in packets.

1.5Mbps
RT Tbase(ms) bs (pkt) B/W fraction

5 2 0.062
5 3 0.175
5 6 0.347
5 8 0.258
5 10 0.194

20 6 0.159
20 10 0.292
20 20 0.305
20 30 0.280
20 40 0.167

120 30 0.138
120 60 0.083
120 120 0.046
120 180 0.04
120 240 0.026

4Mbps
RT Tbase(ms) bs (pkt) B/W fraction

5 4 0.146
5 7 0.503
5 14 0.520
5 20 0.351
5 27 0.307

20 14 0.477
20 27 0.324
20 54 0.176
20 80 0.125
20 107 0.088

120 80 0.072
120 160 0.040
120 320 0.021
120 680 0.018
120 640 0.012

12Mbps
RT Tbase(ms) bs (pkt) B/W fraction

5 10 0.351
5 20 0.456
5 40 0.357
5 60 0.253
5 80 0.197

20 40 0.199
20 80 0.136
20 160 0.069
20 240 0.042
20 320 0.034

120 240 0.026
120 480 0.017
120 960 0.007
120 1440 0.005
120 1920 0.006

25Mbps
RT Tbase(ms) bs (pkt) B/W fraction

5 21 0.578
5 42 0.471
5 84 0.284
5 126 0.160
5 167 0.139

20 84 0.164
20 167 0.095
20 334 0.046
20 500 0.032
20 667 0.021

120 500 0.011
120 1000 0.01
120 2000 0.008
120 3000 0.004
120 4000 0.005
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RT Tbase and 2 BDP (80 packets) buffer size. The test duration is 150 second and the compe-

tition period is from t=10s to t=110s. CDG achieved only 13.6% of the bottleneck capacity

during that period, and operated in delay mode for 93.2 seconds and in loss mode for only 3.6

seconds. CDG operated in loss mode for only 3.6% of the competition period.

As previously mentioned, CDG detects competing loss-based flows when it experiences

a number of consecutive congestion events (default 5) while not observing a decrease in la-

tency (see section 2.7.4.1 for more details). It then moves to loss mode for a few (default 5)

measurement cycles where the delay congestion feedback signal is ignored. CDG exits loss

mode whenever a negative smoothed gradient is seen or the period elapses. There are some

problems regarding this strategy that leads to poor coexistence performance.

First, when CDG switches back to delay mode, it cedes a large amount of bandwidth to

competing flows. After the loss mode period elapses, CDG observes large positive delay gradi-

ents as a result of the aggressiveness of loss based flows and CDG loss mode capacity probing

strategies. Additionally, the moving average window will include many positive gradient sam-

ples that are collected during loss mode. Therefore, CDG will observe a large ḡn, increasing

the back-off probability, resulting in an immediate back-off. Since the loss-based flow keeps

pushing packets to the bottleneck, there is an increased chance of consecutive back-off events,

further decreasing cwnd.

The second issue with the ineffectual back-off mechanism is that CDG rarely enters loss

mode due to observing negative gradients during competition. CDG back-off events reduce

bottleneck queue length even when competing with loss-based flows. Whether it is probabilis-

tic delay or packet loss driven back off, the number of packets arriving at the bottleneck will

reduce. This leads to a reduction in queuing delay, causing sending hosts to observe a decrease

in the measured RTT, resulting in negative delay gradients. In addition, if a competing flow

backs off its cwnd, queuing delay will also reduce and produce negative gradients. In either

case, CDG will reset its consecutive congestion counter, preventing CDG from entering loss

mode.

The final issue identified is that in many cases, CDG exits loss mode shortly after entering

it due to buffer overflow caused by CDG or competing flows. There is a higher probability

of packet loss when CDG switches to loss mode due to an increase in the number packets

arriving the bottleneck. Whether CDG or a competing flow lose packets, the queuing delay

will reduce due to cwnd decrease. CDG will then reset its consecutive congestion counter and

exit loss mode upon discovering negative delay gradients.

Delay signal noise, a well-know phenomenon that the delay signal suffers from [56], could

also result in RTT fluctuation resulting in negative gradients. As a result, CDG may reset the

consecutive congestion counter, causing CDG to exit or not enter loss mode.
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Figure 4.17: CDG exits the loss mode quickly due to experiencing a packet loss
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To see the ineffectual back-off mechanism effectiveness in the selected test, we plot a

zoomed-in cwnd trajectory for both CDG and CUBIC flows along with the consecutive con-

gestion counter, ḡmin,n and ḡmax,n for the period between t=21s and t=26s of the test. Addition-

ally, we plot the queuing delay trajectory for the same period measured at the bottleneck4. The

plots are shown in Figure 4.17. We can see in Sub-figure 4.17a CDG backs off cwnd t=21.45s

due to an increase in the queuing delay (shown in Figure 4.17b). Also, the consecutive con-

gestion counter increases by one. This congestion event reduces the queuing delay (shown in

figure 4.17b) due to cwnd decay after this back-off. However, the smooth gradients (shown

in figure 4.17c and 4.17d) does not become negative due to the small queuing delay reduction

and the property of the smoothing window.

The consecutive congestion counter keep increasing and CDG enters loss mode at t=23.07s.

Unfortunately, CDG switches back to delay mode after just 200ms due to packet loss for both

the CDG and CUBIC flows. This event significantly reduces the queuing delay, resulting in

the gradient to drop below zero, resetting the consecutive congestion counter. The reason for

the packet drops is that CDG and CUBIC experience packet loss shortly after CDG switching

to loss mode. CDG and CUBIC backing off reduces the queuing delay as shown in Figure

4.17b. Since all flows sharing the same bottleneck experience similar RTT decrease, CDG

observes negative gradients and exits loss mode.

At t=24.03 CDG backed off again due to an increase in the queuing delay and the con-

secutive congestion counter starts increasing until it reaches four at t=24.75s. Then, CDG

delay-based back-off drives ḡmax,n to a negative value so the consecutive congestion counter

is reset as a reflection of observing negative delay gradients. This situation occurs many times

during the experiment (not shown in the figure).

This is due to the CUBIC cwnd growth function reduces the cwnd increasing step when

it approaches the maximum cwnd captured when packet loss occurs [49]. The flat plateau

results in trivial queuing delay change, causing RTT variation to be driven entirely by CDG

cwnd growth. As a result, CDG assumes that there are no competing loss-based flows and

backs off to reduce latency. We also note that high RTT (due to both path RTT and queuing

delays) slows the cwnd dynamic, contributing to this behaviour.

Figure 4.18 shows CDF plots for the CDG consecutive congestion counter when compet-

ing with CUBIC for bottleneck rate Brate={1.5, 4, 12, 25}Mbps over emulated path RT Tbase={10,

40, 240}ms and bottleneck FIFO buffer size bs ={1, 2, 4, 8, 16} BDP. This figure shows that

CDG rarely enters loss mode at 10ms path RTTs. At 25Mbps and 16 BDP buffer size, CDG

enters loss mode the most but switches back to delay mode quickly after one or two RTTs.

The ineffectual back-off mechanism performs better at 40ms path RTT. When Brate≥12Mbps

4A queuing delay sample is measured when a packet leaves the bottleneck similar to CoDel AQM [47].
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and buffer size > 4 BDPs, CDG is able to switch to loss mode more frequently and stay in this

mode for longer.

At 240ms path RTT, the ineffectual back-off mechanism performs the best compared with

the other test with lower path RTTs. However, CDG sill exits from loss mode quickly due to

observing negative gradients before reaching the exit threshold.

In a nutshell, the ineffectual back-off mechanism does improve the coexistence with loss-

based flows. However, the improvement is not significant and has limited impact on the coex-

istence especially in small bottleneck buffer sizes.

4.3.3.2 The shadow window mechanism

The shadow window mechanism, described in Section 2.7.4.2, aims to improve CDiG coex-

istence by potentially recovering cwnd after multiple delay-based back-offs when competing

with loss-based flows. Since the shadow window s increases regardless of delay-based back-

offs, its size can be larger than the current congestion window size. CDG sets ssthresh to the

maximum of current cwnd and s when detecting congestion related losses. If s is larger than

cwnd, cwnd will increase exponentially similar to the slow-start phase because cwnd is smaller

than ssthresh. Therefore, CDG flow will obtain a higher bandwidth due to using a larger cwnd.

There are some potential issues with the shadow window mechanism. 1) if CDG wrongly

infers the buffer is full when observing packet losses, the shadow window will not be used. In

this case s will continuously increase until a packet loss with full queue are detected or infer-

ring an empty queue. 2) if the buffer wrongly is inferred empty, CDG will reset the shadow

window making s smaller than the mimic (loss-based) window. 3) When the shadow window

is used, there is a high probability for packet losses to occur since the exponential cwnd in-

crease causes a burst of packets to arrive at a saturated bottleneck and activating loss-based

back-off. In addition, a fast cwnd increase increases the queuing delay activating multiple

back-offs until the latency stabilises. This means CDG will continue observing large positive

gradients and backs off quickly, resulting in cwnd decreasing to a small value again.

We use the same case study in Section 4.3.3.1 to understand the issues involved with the

shadow window mechanism. We calculate the number of loss events and the number of times

that CDG used the shadow window during the test. Unfortunately, we found that CDG used

the shadow window only 4 times out of 40 loss events. We also found that 35 events out of

the 40 loss events, CDG wrongly inferred queue state was not full considering the losses to

be non-congestion related. On 29 events out of 35 loss events the shadow window was larger

than cwnd. We also found that only 7 events out of the 40 loss events, the shadow window

was smaller than cwnd. These results reveal that CDG wrongly ignored the shadow window
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Figure 4.18: CDF for CDG consecutive congestion counter when coexisting with CUBIC flow
over different bandwidth, path RTT and bottleneck buffer sizes
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Figure 4.20: Zoomed-in CDG shadow window and ssthresh trajectories with cwnd trajectory
for CDG and CUBIC flows

in 72% of the loss events while it should use it. That happened because queue state inference

was wrong 87% of the time. We did not emulate random packet losses in the bottleneck and,

therefore, all the losses were congestion related losses.

Additionally, CDG inferred an empty queue for 4 times during the competition period

which is not correct. This resetting makes the shadow window much smaller than cwnd of the

competing loss-based flow.

Figure 4.19 shows the shadow window trajectory along with congestion window of CDG

and CUBIC flows. We can see in this figure the shadow window is oscillating between zero

and cwnd when only CDG flow is utilising the bottleneck bandwidth. That happens because

the queue builds up and drains periodically due to CDG cwnd increase and decrease as well

as resetting the shadow window when an empty queue is detected.

As soon as CUBIC joins the competition, the shadow window starts increasing continu-

ously without reaction to packet losses (due to incorrect queue state inference) until t=40s.

Figure 4.20 shows a zoomed-in cwnd, ssthresh and shadow window trajectories for the period

between t=35s and t=45s. We can see in this figure, packet drop occurs at t=39.84s and CDG
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infers a full queue. CDG sets ssthresh to the shadow window since the shadow window is

larger than cwnd. However, another packet loss quickly occurred after two RTTs while CDG

inferred the queue was not full. Since CDG does not reduce cwnd when loss is non-congestion

related, it sets ssthresh to the current cwnd to preserve congestion window size after loss re-

covery 5. The second loss event causes ssthresh to be set to the current cwnd because CDG was

in congestion recovery6. This led CDG to leave congestion recovery and enter CA, preventing

cwnd from reaching the shadow window that was previously set to ssthresh.

At t=41.2s, CDG incorrectly inferred an empty queue and reset the shadow window. After

that, the shadow window increased as normal but remains lower than the competing CUBIC

flow.

In this experiment, CDG did not get a significant benefit from the shadow window mech-

anism due to the difficulties faced during the experiment. The main issue that negatively

impacts the performance of the shadow window mechanism is CDG queue state inference.

Our experiment shows that queue state inference does not work well in many scenarios. How-

ever, we do not explore the reason for the false negative full queue and false positive empty

queue states in this thesis. This needs further study to understand how delay signal sampling,

the moving average window and signal noise can affect queue state detection. We leave this

investigation for future work.

4.4 CDG Slow-Start Evaluation

Optimally, the slow-start phase should finish as soon as the congestion window reaches the

path BDP. This allows flows to converge quickly to utilise available bandwidth without intro-

ducing high latency and packet drops. It also permits CA phase to start with high throughput

from the beginning. As cwnd growth is typically slow in CA phase, exiting slow-start too

early costs the throughput, especially in high path RTTs. On the other hand, if the slow-start

finishes too late, it creates a long queue in the bottleneck leading to packet loss. Standard

TCP relies on the loss signal to exit the slow-start phase which causes high queuing delay and

heavy packet loss in large buffer sizes.

It is clear that the side-effects of Standard TCP SS bandwidth probing are not in-line with

CDG goals. Therefore, CDG uses the delay gradient signal to detect congestion in the slow-

start as an attempt to find a proper exit point from slow-start phase before a long queue builds

up. This allows maintaining low latency and preventing packet loss.

5CDG FreeBSD implementation uses this method to keep the cwnd value unchanged since FreeBSD TCP
stack set cwnd to one MSS and uses slow-start like cwnd growth during loss recovery.

6We found that there is a bug in CDG implementation causing ssthresh to always set to the current cwnd when
packet loss occurs while CDG is in congestion recovery.
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Table 4.4: Ratio of ssthresh to the path BDP when CDG exiting slow-start phase

RT Tbase(ms)

10 40 180 240 340

B
ra

te
(M

b
p

s)
1.5 813% 203% 45% 34% 24%

4 305% 76% 17% 13% 9%

12 333% 25% 13% 22% 3%

25 238% 60% 9% 16% 8%

50 119% 9% 2% 4% 1%

As mentioned in Section 2.7.6, CDG uses the probabilistic back-off function (Equation

2.27) to make a decision to exit from slow-start. It leverages NewReno slow-start cwnd growth

(i.e. increases cwnd by double the acknowledged bytes for each received ACK). CDG ssthresh

is set to cwnd.βdelay if congestion is detected using the delay gradient signal, and cwnd.βloss

if congestion is detected using loss signals.

To explore CDG SS performance in simple scenarios, we conduct a simple experiment

consisting of a single CDG flow traversing a bottleneck that emulates links with Brate={1.5,

4, 12, 25, 50}Mbps and RT Tbase={10, 40, 180, 240, 340}ms. Bottleneck FIFO buffer size is

set to 2000 packets and the Droptail mechanism is used. This large buffer size is selected to

prevent packet loss since we explore the performance of the delay gradient congestion signal

during slow-start.

Table 4.4 shows the percentage of ssthresh to the path BDP (ssthresh/BDP)× 100 for

each test. We extract ssthresh value just after CDG switches from SS to CA phase. This table

reveals that CDG leaves SS phase late when the path BDP is small, while exiting SS too early

in large BDP cases. For example, when Brate=1.5Mbps and RT Tbase=10ms (BDP ~1.83KiB),

ssthresh is about 8 times larger than BDP. On the other hand, ssthresh is set to only 1% of the

path BDP when Brate=50Mbps and RTTbase=340ms (BDP ~2MiB).

In small BDP scenarios, cwnd reaches BDP in a very small number of RTTs. There-

fore, the number of coin tosses to back off and exit SS is small before reaching BDP since

CDG makes back-off decisions once per RTT. As a result, cwnd grows large causing a high

queuing delay before moving to CA phase. We take Brate=12Mbps and RT Tbase=10ms (BDP

~14.6KiB) scenario as an example to see this behaviour in action. Figure 4.21 shows cwnd,

gmin,n and gmax,n trajectories, and queuing delay progression for the interval between t=0 and

t=0.15s. The unsmoothed gradient is shown because CDG FreeBSD implementation relies on

this measurement in addition to smooth gradient during SS phase (see Section 2.7.7).

In Figure 4.21a, we can see at t=0s cwnd is initiated with 10 packet (IW) which is already
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Figure 4.21: CDG leaves SS phase late when BDP is small. Brate = 12Mbps and RT Tbase =
10ms.

larger than BDP. This results in TCP sending 10 back-to-back packets to the router. This

packet burst increases the queuing delay as shown in Figure 4.21b. After one RTT at t=0.012s,

the queue drains since one RTT is needed to send all packets in the queue.

We can see in the second RTT, the queuing delay increases slower than the previous RTT

as ACK packets arrive at the sender spaced in time due to bottleneck traffic shaping, resulting

in cwnd growth being less aggressive. The lower queuing delay causes gmax,n to become

negative. gmin,n indicates an unchanged gradient (zero) due to queue draining causing RT Tmin,n

to be the same as in previous RTT. Then, gmin,n and gmax,n increase as the queue grows. After

four RTTs, the probabilistic back-off triggers back-off due to observing high delay gradients

(gmin,n and gmax,n) and as the randomly generated number (see equation 2.28). The slow start

phase finishes with ssthersh set to 48.8KiB (~333% of BDP).

On the other hand, CDG needs many RTTs for cwnd to reach BDP in a large BDP sce-

narios. Therefore, the number of CDG coin tosses to back off is large before exceeding BDP.

That means there is a higher chance for CDG to exit SS before cwnd reaches the path BDP.

Additionally, since TCP SS involves transmitting many packet bursts due to exponential cwnd

growth, gmax,n will show large positive delay gradients which leads to back-off. We take

Brate=12Mbps and RT Tbase=240ms (BDP ~351.6KiB) scenario as an example to discuss this
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Figure 4.22: CDG leaves SS phase early when BDP is large. Brate = 12Mbps and RT Tbase =
180ms.

behaviour. Figure 4.22 shows cwnd, gmin,n and gmax,n trajectories, and queuing delay progres-

sion for the interval between t=0 and t=1.5s.

In Figure 4.22a, we can see at t=0s cwnd is initiated with ten packets which allows TCP

to send a burst of ten packets to the bottleneck. This packet burst rises the queuing delay as

shown in Figure 4.22b. After a few milliseconds, the queue drains and there is a stall until

next RTT at t=0.24s where ACK packets return to the sender. We can see at that time, the

queuing delay does not increase significantly compared with the previous burst even though

cwnd is doubled. This occurs because the ACK packets are spaced due to bottleneck traffic

shaping. As a consequence, gmax,n is negative and gmin,n is zero at t=0.5s. As cwnd increases,

gmax,n increases due to higher delay spikes. However, gmin,n stays close to zero since the queue

drains at least once ever RTT. High gmax,n values actuates back-off which happens at t=1.42s

while cwnd is much smaller than the path BDP. The slow start phase finishes with ssthresh set

to 80.65KiB (~22% of BDP).

CDG SS is able to achieve low queuing delay but underestimates the available bandwidth

when the path BDP is large (> 40KiB), while it overestimates the available capacity when path

BDP is small.
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4.5 Conclusions

In this chapter, we evaluated the CAIA-Delay Gradient (CDG) congestion control algorithm.

We used experimental methodology to explore CDG flow behaviours in many simple scenarios

that mimic typical home network internet connections.

Firstly, we explored CDG in a single flow scenario in which CDG operates without com-

peting flows. We found that CDG performs unnecessary back-offs in many situations leading

to low link utilisation especially in high RTT links. These unnecessary back-offs can be due to

consecutive back-off events or spurious back-off. Consecutive back-off happens due to both

using average moving window to smooth the delay gradient signals, and due to skipping next

RTT measurement after backing off cwnd. Spurious back-off occurs due to bursty TCP send-

ing and delayed ACK mechanism that leads to bottleneck queue fluctuation. This fluctuation

causes CDG to observe many positive delay gradient samples leading CDG to back off without

actual congestion occurrence.

On the other hand, we showed that CDG occasionally delays the back-off decision, leading

to RTT spikes. The reason for the late back-off decision is the nature of the random proba-

bilistic function that CDG uses. Additionally, the delay signal noise and asynchronous timing

between measurement cycles and the bottleneck packet scheduler cause the smoothed gradient

to increase slowly. Therefore, CDG does not back off until the gradient becomes high.

Secondly, we explore CDG coexistence with loss-based flows, namely TCP CUBIC. We

found that CDG is able to obtain acceptable bandwidth sharing only when the bottleneck

has a small buffer. As buffer size increases, CDG realises very low capacity sharing. We

investigated the issues with CDG coexistence mechanisms and we found that the ineffectual

back-off mechanism has limited impact on coexistence performance. On the other hand, CDG

did not get a significant benefit from the shadow window mechanism due to difficulties facing

this mechanism. These difficulties include false negative queue-full state and false positive

queue-empty inference. This leads CDG to reset the shadow window periodically, and to

ignore using the shadow window when packet loss is detected.

Finally, we evaluated the CDG slow-start algorithm and we found that CDG SS underesti-

mates the available bandwidth when the path BDP is large (> 40KiB), while it overestimates

the available capacity when the path BDP is small. Underestimating the available bandwidth

reduces protocol throughput while overestimating the bandwidth results in high queuing delay.

In the next chapter, we will propose a hybrid congestion algorithm that extends and im-

proves CDG. The new algorithm aims to solve the identified CDG issues to provide high

throughput, lower queuing delay and better coexistence with loss based flows.



Chapter 5

Hybrid Loss-Delay Gradient Congestion

Control

5.1 Introduction

In chapter 4, we evaluated CDG under a wide range of scenarios focussing on different aspects

of the algorithm, and we identified a number of failings with CDG. In this chapter, we pro-

pose an enhanced congestion control algorithm, called Hybrid Loss-Delay Gradient (HLDG),

which overcomes various CDG issues to provide better performance. HLDG can achieve high

throughput, low queuing delay, good fairness and good coexistence with loss-based CC flows.

Similar to CDG, HLDG utilises the delay gradient signal to infer early network congestion.

It solves the CDG unnecessary and spurious back-off problems (see Section 4.2.2) in which

cwnd decreases while it is below the path BDP. Additionally, HLDG decreases cwnd to a

fraction of estimated path BDP to remedy the early and large back-off effect, improving flow

throughput.

HLDG uses explicit operation mode switching to improve coexistence with loss-based

flows. As soon as it detects the presence of a competing loss-based flow, HLDG switches to

loss mode where congestion is inferred using packet loss events to provide better coexistence

with competing loss-based flows. When HLDG infers there are no competing loss-based

flows, it switches back to delay-based mode to maintain low queuing delay.

HLDG uses estimated BDP and delay gradient signal during the slow-start phase to move

to the congestion avoidance with both high throughput and low queuing delay. Further, HLDG

improves protocol throughput in lossy environments by relying on estimated BDP.

Additionally, HLDG can be used as a low priority congestion control to provide scavenger

class services. In LPCC mode, HLDG never switches to loss mode, operating in delay mode
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all the time. In this way, it obtains lower bandwidth share when competing with other flows.

Our HLDG implementation in FreeBSD allows users to select the mode of operation (LPCC

or conventional CC) through sys
tl variables.

This rest of chapter is organised as follows. Section 5.2 describes HLDG improvements

and evaluation in single flow scenarios. Section 5.3 presents HLDG coexistence enhance-

ments and evaluation when competing with CUBIC flows. Section 5.4 presents an improved

slow-start algorithm used by HLDG. In Section 5.5, we apply TCP-Westwood like loss tol-

erance technique to improve HLDG in a loosy environment, and evaluate HLDG in different

scenarios. We conclude this chapter in Section 5.6.

5.2 HLDG in single-flow scenarios

As presented in Section 4.2, CDG does not fully utilise the available link bandwidth in large

BDP path, and when the number of competing flows are small. This is due to large cwnd

back-off and slow recovery, consecutive back-offs and spurious back-offs. In this section we

propose solutions to address these problems, and validate the functionality of these solutions.

5.2.1 Preventing consecutive delay-based back-offs

In Section 4.2.2.1 we identified that the main causes for consecutive back-offs was the ap-

plication of the smoothing window to gradient samples and skipping a delay gradient sample

after cwnd reduces upon back-off.

Although reducing the smoothing window size can improve protocol response to conges-

tion as well as prevent some unnecessary back-offs, it results in the gradient filter (averaging)

becoming less effective. This makes the delay signal more vulnerable to signal noise, leading

CDG to back off more frequently in real world situations.

This can be demonstrated by conducting the same experiment from Section 4.2.2 using

a smaller CDG smoothing window size of 4 samples. The experiment consists of a single

300 second CDG flow generated using iperf tool. The bottleneck is configured to emulate

Brate=10Mbps, RT Tbase=100ms (path BDP = 122KiB) with a 1000 packet buffer size. In this

experiment, link utilisation was approximately 70%.

Figure 5.1 shows the probability of CDG backing-off again in the Nth RTT following the first

back-off while cwnd is below BDP. This illustrates that by reducing the smoothing window to

4 samples (the blue curve), consecutive back-off slightly reduces comparing with Figure 5.1

(the red curve, smoothing window of 8 samples). However, reducing the smoothing window

causes CDG to back off slightly more frequently (145 times comparing to 140 with an 8
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sample window) causing the flows link utilisation to further reduce to 70% (compared to 73%

using an 8 sample window). Similar results were seen with different bandwidths and RT Tbase.

Skipping a delay gradient sample after cwnd backs off without skipping the corresponding

RTT measurements has a more significant impact on the number of consecutive back-offs.

This results in CDG missing an important gmin,n sample that can prevent a further unnecessary

back-off. As mentioned in Section 2.7, CDG obtains RT Tmin,n and RT Tmax,n measurements

over an RTT interval using minimum and maximum filters. The CC algorithm can measure

the effect of a cwnd reduction after exactly one RTT interval. Typically, the last sample in

the measurement window will include a delay sample that reflects the reduction in cwnd. The

smaller RTT sample does not affect the RT Tmax,n value for this interval, but could change

RT Tmin,n.

Assume that CDG backs off cwnd at cycle b when actual network congestion occurs.

Based on the above hypothesis, gmax,b+1 will most likely be non-negative and gmin,b+1will

be negative. Also, gmax,b+2 most likely will be negative and gmin,b+2will be non-negative.

This behaviour has been shown experimentally in Section 4.2.2.1. To better reflect the effect

of cwnd back-off, gmin,n and gmax,n should be calculated in a different manner following a

back-off.

CDG calculates gmin,n and gmax,n as per equations 2.24 and 2.25, regardless of whether

previous measurements have been skipped or not 1.

HLDG modification

HLDG differentiates between gradient calculation during normal operation and after

back-off to prevent consecutive delay-based back-offs.

We propose to differentiate between gradient calculation during normal operation and after

back-off to prevent consecutive delay-based back-offs. Specifically, we propose to calculate

gmin,n and gmax,n according to equations 5.1 and 5.2 respectively.

gmin,n =







RT Tmin,n−RT Tmin,n−2 backoff at interval (n-2)

RT Tmin,n−RT Tmin,n−1 otherwise
(5.1)

gmax,n =







RT Tmax,n−RT Tmax,n−2 backoff at interval (n-2)

RT Tmax,n−RT Tmax,n−1 otherwise
(5.2)

1Based on the CDG FreeBSD implementation [145]
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Figure 5.1: Probability of CDG and HLDG backing-off again after Nth RTT. CDG with 4 and
8 sample CDG smoothing window size

Using these equations, both gmin,n and gmax,n will be negative during the same sampling

epoch after cwnd backs off as RTT measurements will be ignored. Similar to CDG, HLDG

does not use gmin,n and gmax,n samples in gmin,n and gmax,n calculations.

To verify the effectiveness of this improvement, we run an experiment containing a single

HLDG flow generated using iperf over a bottleneck with Brate=10Mbps, RT Tbase=100ms

and 1000 packets buffer size. In this experiment, HLDG functions similar to CDG except for

changes to the gmin,n and gmax,n calculations as per Equations 5.1 and 5.2.

The black curve in Figure 5.1 shows the probability of HLDG backing-off again in the

Nth RTT following the first back-off while cwnd is below BDP. Whe compared with CDG,

we can see a significant drop on the probability of a second back-off in the immediate period

following the first. In this experiment, HLDG backs off 106 times (compared to 140 times

for CDG) with only 20 unnecessary back-offs and no consecutive back-offs. This results in

the HLDG flow achieving 88.6% of link capacity utilisation, an increase of about %14 when

compared with CDG.

In Figure 5.2a, we can see HLDG backs off cwnd unnecessarily less often than CDG

(Figure 5.2b) after modifying gmin,n and gmax,n calculations. This results in cwnd being close

to the path BDP, improving protocol throughput. However, we still see some unnecessary

spurious back-offs. We will discuss how we address this issue in Section 5.2.2.

We examine one back-off case in detail in Figures 5.3 and 5.4. We can see in Figure

5.3a that HLDG backs off after cwnd exceeds BDP at t=154.66s. Figure 5.3b shows that the

sender does not observe the reduction in RTT until one RTT later at t=154.79s. However, at
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Figure 5.2: Fixing gmin,n and gmax,n calculations in HLDG significantly reduces unnecessary
cwnd back-off compared with CDG.

t=154.79s, we can see RT Tmin, shown in Figure 5.3c, decreases to 103ms while RT Tmax shown

in Figure 5.3d, stays at 112ms at the same point of time. This demonstrates that RT Tmin and

RT Tmax decrease asynchronously after delay back-off.

Due to equations 5.1 and 5.2, both gmin,n and gmax,n decrease synchronously after two

RTTs at t=154.89s as shown in Figures 5.4a and 5.4b respectively. The asynchronous gradient

decrease one RTT after back-off is not important since it is ignored.

The smoothed gradients (ḡmin,n and ḡmax,n) shown in Figures 5.4c and 5.4d show that

gradients decrease immediately after two RTTs to reflect the impact of the cwnd back-off.

As a result, the back-off probability decreases following cwnd reduction. This subsequently

reduces the number of consecutive back-offs, resulting in significant improved throughput.
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Figure 5.3: Single HLDG flow performing back-off
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Figure 5.4: Zoomed-in delay gradient stats when HLDG flow performing back-off
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5.2.2 Preventing spurious delay-based back-offs

In Section 4.2.2.2 we demonstrated how the RTT signal noise caused by the TCP delayed

acknowledgement mechanism, coupled with the asynchronous timing between sent packets

and the scheduler at the bottleneck, can result in CDG backing off randomly when no actual

network congestion is present. More precisely, the TCP delayed acknowledgement mecha-

nism and asynchronous timing allow short queues (a few packets) to build and drain, leading

to queuing delay oscillation. The sender measures this oscillation through its RTT measure-

ments (small positive gradient), leading to small positive gmin,n and gmax,n. Since CDG uses a

probability function to back off, there is always the chance that back-off can occur even with

small RTT oscillations.

The decrease in the flow throughput caused by spurious back-offs becomes more notice-

able for large RTT paths where the dynamic cwnd response of (growth and back-off) becomes

slower due to the longer time taken for cwnd to reach the path BDP after back-off. On the

other hand, a flow traversing a short RTT path can more quickly recover cwnd to the path

BDP.

HLDG modification

HLDG allows a small number of packets to be queued without backing off even if the

probabilistic function indicates congestion.

We propose to solve the spurious back-off problem by allowing a small number of packets

to be queued without backing off even if the probabilistic function indicates congestion. One

method to achieve this is by estimating queue length using the TCP Vegas estimation (Section

2.4.1.2). However, this method requires an accurate RT Tbase estimation which has its own

challenges for short-term flows (Section 2.3.1.2). If RT Tbase is overestimated, a long queue

will build up as more packets will be allowed to queue. This can also create a standing queue

which is an undesirable state for many applications. Similarly, if the estimator underestimates

RT Tbase, the spurious back-off preventer will be ineffective.

Our proposed solution is to ignore the probabilistic back-off decision if the smoothed

gradient (gmin,n and gmax,n) is less than the equivalent delay of queuing a few packets. In

a single flow scenario, a flow introduces a positive gradient sample every RTT when cwnd is

greater than BDP since cwnd increases by one MSS every RTT. In this scenario, the magnitude

of an unsmoothed gradient sample is equivalent to the bottleneck serialisation delay of one

packet. We can easily estimate smoothed delay gradient for γ packets by dividing γ packets

serialisation delay by the smoothing window size. Given that the queue keeps growing under

congestion, but both increases and decreases when experiencing signal noise, we can safely
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allow a few packets to queue without destroying the probabilistic back-off. Similar to other

signal filtering methods this solution could reduce the congestion control responsiveness but

by not more than γ RTTs.

More formally, HLDG back-off probability is calculated according to Equation 5.3 where

γ is the number of packets we allow to queue, Wsize is the smoothing window size and B is

bottleneck bandwidth at the network layer in bps, n is the nth measurement cycle (RTT) and gn

is either gmin,n or gmax,n . In this equation, the back-off probability is zero when the smoothed

gradient is smaller than the queuing delay of γ packets divided by smoothing window size.

Otherwise, CDG’s normal back-off probability function is used.

P(gn) =







0 ḡn <
γ×8×MTU

Bn×Wsize

1− e−(gn/G) otherwise
(5.3)

γ can be set to a small constant value (e.g. 2) or can be calculated dynamically based

on bottleneck bandwidth. In general, γ should be small for low bandwidth connections and

increase as connection speed increases to provide low queuing delay. We propose using Equa-

tion 5.4 to prevent spurious back-offs at different bottleneck speeds. Note that by using this

equation, we allow not more than 1.2ms additional queuing delay when bandwidth is larger

than 20Mbps, and 12ms if bandwidth is between 2Mbps and 20Mbps. We disable this mecha-

nism for slower connections to prevent long queue delay. We also prevent queue lengths larger

than Wsize−1 packets because HLDG can only use the measured smoothed gradient of Wsize

samples to make a back-off decision. As such, this solution alone does not completely prevent

spurious back-off on fast links (B > 70Mbps when Wsize=8).

γ =







min(Wsize−1,max(2, B
107 )) B≥ 2Mbits/s

0 otherwise
(5.4)

This proposal requires HLDG to have a bandwidth (Bn) estimation mechanism. In end-

to-end CC, we do not have explicit information about bottleneck bandwidth, the sender must

estimate bandwidth using available measurements. One method to estimate Bn is by using the

TCP Vegas actual throughput estimator (cwndi/RT Ti) [133] where cwndi is the current con-

gestion window size and RT Ti is the current estimated RTT. This method is based on the fact

that the sender can transmit cwnd worth of bytes per RTT. At the same time, the sender cannot

transmit more data than bottleneck capacity per RTT without introducing queuing delay. This

queuing delay is combined with path RTT to produce current estimated RTT. Increasing cwnd

(bytes) above BDP will also increase RTT. Therefore, this method produces an approxima-

tion of bottleneck bandwidth. However, RTT signal noise affects this estimator, resulting in
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Figure 5.5: ACK rate reflects bottleneck bandwidth

a noisy bandwidth estimation. Moreover, this technique requires an accurate RTT estimation

otherwise the estimator will overestimate or underestimate link bandwidth.

HLDG uses a better (discussed later) bandwidth estimator that calculates acknowledged

bytes over an interval of time (ACKed byte rate). The rationale behind this estimator is that

the receiver receives packets/bytes as the same rate as the bottleneck. The receiver then sends

acknowledgements at the same rate to the sender. Therefore, the acknowledged byte rate

received at the sender side will reflect bottleneck bandwidth in the forward path. Figure 5.5

illustrates how the acknowledged byte rate reflects bottleneck bandwidth.

We select the measurement interval to be one RTT long, obtaining a new bandwidth es-

timate whenever HLDG makes its back-off decision. Formally, bandwidth estimation Bn for

the measurement cycle n is calculated using Equation 5.5 where ackedi is number of bytes

acknowledged by packet i, m is number of packets during the measurement cycle, and ∆t is

the difference between the start time (ts) and end time (te) of the measurement cycle.

Bn =

m

∑
i=1

ackedi

∆t
(5.5)

We assume that the flow’s throughput is an estimation for bandwidth but that is not true

when the sending rate is limited by the application or cwnd is below BDP. In both cases

throughput will be less than link bandwidth leading the estimator to underestimate bandwidth.

However, that does not affect Equation 5.3 because there is no network congestion if the sender

emits data slower than bottleneck bandwidth. Therefore, preventing cwnd back-off in this case

has no impact on network congestion.

We conduct an experiment to compare the ACK rate bandwidth estimator with the Vegas-

like bandwidth estimator to see which technique results in a better estimation. This experiment
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Figure 5.6: A comparison of bandwidth estimate using TCP Vegas-like estimator and Ack rate
estimator for a symmetric 10Mbps emulated link with different path’s RTT

involves a single Reno-based flow session generated using iperf. The bottleneck is config-

ured to emulate a symmetric 10Mbps link with 2ms, 10ms, 20ms ,40ms, 80ms and 160ms

path RTT and the buffer size is set to double the path BDP. Each run lasts for 5 minutes and

both estimator measurements are collected simultaneously.

The box plot for the experiments is shown in Figure 5.6. We can see that when RT Tbase

is less than 40ms, the TCP Vegas technique both overestimates link bandwidth and that the

estimation has a large variance. When RT Tbase is small, cwnd changes frequently, result-

ing in RTT measurements varying as well. Also, since the current RTT carries the delay

measurement of the previous window (one RTT before), cwnd and RTT values are not fully

synchronised. Additionally, TCP uses an exponential moving average to calculate a smoothed

RTT to minimise signal noise. This results in previous RTT samples impacting on the current

estimate.

On the other hand, (see Figure 5.6) bandwidth estimation using the ACK rate does not

overestimate bottleneck bandwidth and produces a better and more stable estimation. The is

due to the estimator not relying on other measurements such as RTT, but instead directly mea-

suring the number acknowledged bytes over an interval of time. This estimator however, can

be affected by the packet aggregation mechanism2 and ACK compression phenomenon. We

expect that by calculating the ACK rate over a long enough interval that would filter out such

packet bursts. This requires further investigation to measure the effect of ACK compression

on the estimator.

We repeat the same experiment from Section 5.2.1 to validate the functionality of our

proposed solution to the spurious delay-based back-off problem. The experiment consists

2Used by some wireless networks to improve performance
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Figure 5.7: HLDG provides better cwnd control and low queuing delay (Brate=10Mbps,
RT Tbase=100ms)

of a single 300 second HLDG flow with both consecutive and back-off fixes applied. The

bottleneck is configured to emulate Brate=10Mbps, RT Tbase=100ms (the path BDP = 122KiB)

with 1000 packets buffer size.

In this experiment, HLDG backs off cwnd 103 times without any unnecessary backs-off.

The HLDG flow achieves 90% link utilisation (a 23% improvement over CDG). In Figure

5.7a we can see HLDG does not perform any unnecessary back-off in this experiment after

applying the proposed solution. Furthermore, we can see in Figure 5.7b that HLDG does not

create a standing queue in this experiment with the queuing delay being mostly stable with

some RTT spikes causing by the probabilistic nature of the back-off function.

These findings allow us to draw a general conclusion that delay-based CC should filter out

signal noise caused by the delayed acknowledgement mechanism to prevent losses in protocol

throughput. The delayed acknowledgement mechanism leads to short RTT bursts which will

otherwise be interpreted as a congestion signal, leading to unnecessary back-off and reduced

throughput.
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5.2.3 Standing queue issue

Unlike CDG, HLDG backs off cwnd only when an actual queue builds up. Although this

improves throughput, it can create a standing queue for specific scenarios when RT Tbase is

small. However, when RT Tbase is large HLDG does not create a standing queue as shown

in Figure 5.7b. A standing queue has a negative impact on low latency applications since all

packets will experience extra delay which is contrary to HLDG goals.

Figure 5.8 shows the cumulative distribution function for queuing delay of HLDG flows

traversing bottlenecks emulating Brate={1, 10, 25, 50}Mbps links and RT Tbase={0, 2, 4, 8,

12, 16, 20, 40}ms. We can see in those graphs that as path RTT increases, the queuing de-

lay decreases. Additionally, the standing queue becomes shorter when bottleneck bandwidth

increases.

Figure 5.8a (Brate=1Mbps) reveals that HLDG creates a standing queue for all RT Tbase

settings. The shortest standing queue is when RTTbaseis 40ms. In Figure 5.8b (Brate=10Mbps)

we can see that when RT Tbase is 20ms or less, a standing queue is created. The graph also

shows no standing queue when RT Tbase = 40ms.

In Figure 5.8c (Brate=25Mbps) we can see a standing queue when RT Tbase is 12ms or

less. The graph shows no standing queue when RT Tbase ≥ 16ms. Figure 5.8d (Brate=50Mbps)

shows that when RT Tbase is around 8ms or less, HLDG creates a shorter standing queue. The

graph shows no standing queue when RT Tbase ≥ 8ms.

These results show that a standing queue is created when the path BDP is lower than

approximately 50KiB (~34pkts).

To further investigate this issue, we conduct an experiment consisting of a single 300

second HLDG flow. The bottleneck is configured to emulate a Brate=10Mbps, RT Tbase=2ms

with a 1000 packet buffer size. We can see in Figure 5.9a that HLDG maintains a cwnd

value much higher than the path BDP (BDP = 2.4KiB). Due to high cwnd values (greater than

40KiB) a standing queuing delay over 35ms in average is created as shown in Figure 5.9b.

This behaviour only happens with small RT Tbase. When the path BDP is small, backing

off cwnd using a 0.7 factor does not reduce cwnd by a large value. As a consequence, cwnd

more rapidly recovers to BDP and starts forming a queue. In addition, HLDG needs many

RTTs (up to Wsize RTTs) to properly measure this RTT increase due to the smoothing window

to overcome the negative gradient added to the smoothed gradient after a back-off. In other

words, HLDG does not back off cwnd quickly enough and does not reduce cwnd enough when

backing off. This behaviour results in the bottleneck queue growing until it reaches a stable

state where the queue length oscillates around a specific length and never decreases to zero.

The average RTT for this experiment is 41.29ms.

CDG also creates this standing queue behaviour but has a smaller effect. For the sample
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Figure 5.8: Queuing delay CDF plots for a single HLDG flow showing the effect of bottleneck
bandwidth and path’s RTT on standing queue build-up

experiment parameters above with a CDG flow, the average RTT is 19.28ms.

We perform a micro-analysis of a small period of the flow to better understand the cause.

Figure 5.10 plots ERT Tmin,n, gmin,n and ḡmin,n for the experiment for 154s < t < 155.5s. We

can see in Figure 5.10a that when HLDG backs off, RT Tmin,n decreases causing gmin,n to dip

to around -14 as shown in Figure 5.10b. The very small gmin,n causes ḡmin,n to decay to around

-0.75 as shown in Figure 5.10c. Although gmin,n fluctuates between 0 and 3, ḡmin,n remains at

about -0.75 for eight cycles due to the dominant negative gmin,n value immediately after back-

off. After eight cycles ḡmin,n jumps to 1.2 as the large negative gmin,n value moves outside the

window. This behaviour reduces HLDG back off frequency causing queue build up.
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Figure 5.9: HLDG causes standing queue in small RT Tbase paths (Brate=10Mbps,
RT Tbase=2ms)

5.2.4 Standing queue solutions

Many methods can be used to remedy the standing queue problem described in Section 5.2.3.

In this section, we validate, compare and contrast proposals to reduce the standing queue

created by HLDG flows.

5.2.4.1 Method 1: Reducing smoothing window size

A simple solution is to reduce Wsize. This allows the large negative gn sample after the back-

off to be more quickly excluded from the smoothing window calculation. HLDG will back

off more often, preventing a long standing queue from building up. Although this solution is

simple to apply, it can weaken the smoothing filter leading to nosier measurements.

5.2.4.2 Method 2: Weighed Windowed Moving Average Filter

The second method to remedy the standing queue problem is to use different gradient filter.
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Figure 5.10: Zoomed-in HLDG delay measurements shows the effect of smoothing window
and large negative gradient on back-off frequency

HLDG modification

HLDG utilises a weighted, windowed moving average (WWMA) to compute gn.

An exponential weighted moving average (EWMA) is a simple mechanism that can be de-

ployed to calculate a moving average that gives more weight towards more recent samples. A

similar technique is used to estimate RTT by many TCP CC algorithms. One of the drawbacks

of an EWMA us that all previous samples impact on the current smoothed delay gradient, even
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though the impact decays in time. As such, abrupt changes in underlying network conditions

will take some time to filter out of the EWMA calculation.

We propose to use a weighted windowed moving average (WWMA) instead of a normal

moving average to compute gn. Our WWMA is designed to emulate the basic properties of

an EMWA by giving stronger weight to more recent gn samples. This provides the advantage

that only the last (n=8) samples are used, ensuring currency and removing extreme transients

more quickly. Given that HLDG always maintains the last n samples, this comes at mini-

mal storage cost but at a slight computational cost. We propose to use WWMA weights of

( 1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
8 ,

1
8 ,

1
4 ,

1
4 ) 3.

Using such an approach would ensure that the impact of a large negative gn value on gn

will rapidly decrease following backoff. This increases the probability of HLDG backing off

again if the queue builds up, leading to better control of the queue delay.

We conduct an experiment consisting of a single 300 second HLDG flow while applying

WWMA in calculating gn. The bottleneck is configured to emulate Brate=10Mbps, RT Tbase=2ms

with a 1000 packet buffer size (the same experiment setup above).

We perform a micro-analysis of a small period of the flow to better understand the effect.

Figure 5.11 plots ERT Tmin,n, gmin,n and ḡmin,n for the experiment. We can see in Figure 5.11a

that when HLDG backs off, RT Tmin,n decreases causing gmin,n to drop to about -10 (shown

in Figure 5.11b). The small gmin,n causes ḡmin,n to decrease to about -2 (shown in Figure

5.11c). Although gmin,n in this experiment is a smaller negative than in Figure 5.10b, we see a

larger negative ḡmin,n compared with 5.10c. This is due to newer gmin,n samples having higher

weight than older samples, resulting in the large negative ḡmin,n having a higher but more

transient impact than when linear smoothing window is applied. Unlike Figure 5.10, ḡmin,n

gradually increases as the queue grows due to the WWMA filter.

The WWMA filter allows HLDG to more quickly respond to queuing delay increase, lead-

ing to more frequent back-off. We can see in Figure 5.11 at t=154.6s that HLDG backs off

and after six cycles backs off again. The average RTT of this experiment is 33.09ms which is

better than with a linear moving average (41.29ms).

Although this technique can reduce the standing queue, it reduces the effect of the smooth-

ing filter, making the delay measurements more prone to signal noise. This WWMA can also

produce additional processing overhead compared with a linear moving average.

5.2.4.3 Method 3: Reset the smoothed gradient window after back-off

In specific situations, samples in the smooth gradient window become invalid, resulting in

either unnecessary or late back-offs.

3Shift operations can be used to implement this filter to reduce division and multiplication operation overhead
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(c) ḡmin,n versus time

Figure 5.11: Zoomed-in HLDG with WWMA delay measurements shows the effect of
WWMA on the smoothed gradient and back-off frequency

HLDG modification

HLDG resets the smoothed gradient window when a negative gradient sample is observed

after back-off.

We propose to reset the smoothed gradient window (i.e. zeroing all samples in the window)

if a negative gradient sample (gn) is observed after back-off. The decision to reset the window

is made based on the sign of gn two RTTs from back-off to ensure the back-off is effective (i.e.
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Figure 5.12: Zoomed-in delay measurements of HLDG with gradient window reset shows the
effect of this method on the smoothed gradient and back-off frequency

decrease queuing delay) and due to of the measurement asynchronisation problem mentioned

in Section 5.2.1. Zeroing old gn samples allows gn to be quickly influenced by new gn samples,

allowing the back-off probability to increase as soon as a queue starts to form again. We call

this proposal the zeroing smoothed gradient window (ZSGW).

The concept behind restarting the smoothed gradient calculation is that after backing off

cwnd, the gn value will be invalid due to the sudden change in queuing delay. Even if the back-

off is effective, the queue may not be completely drained since cwnd could be either above or

below BDP. As such, it is better to ignore all previous measurements and begin again. If cwnd
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is below BDP, the queue will not form until cwnd reaches BDP. Alternatively, if cwnd is above

BDP, the queue will grow causing the gradient to increase quickly. HLDG will then back off

based on the increasing probability.

After implementing this method, we repeat the same experiment. A micro-analysis of

ERT Tmin,n, gmin,n and ḡmin,n for the experiment is shown in Figure 5.12. We can see that

HLDG backs off more frequently than with the WWMA method, resulting in a lower queuing

delay. The average RTT for this experiment is 29.3ms which is better than 41.29ms (CDG)

and 33.09ms (WWMA).

We can see in Figure 5.12a that when HLDG backs off, RTTmin,n decreases causing gmin,n

to drop to around -10 (shown in Figure 5.12b). The large negative gmin,n does not cause ḡmin,n

to become negative (shown in Figure 5.12c) since all gradient window samples are zeroed

following the cwnd decrease. Somewhat similar to WWMA , ḡmin,n gradually increases as the

queue grows. Interestingly, ḡmin,n behaviour is similar to ERT Tmin,n behaviour but independent

of the RTT absolute level.

5.2.4.4 Method 4: Using WWMA and reset the smoothed gradient window after back-

off

Combining WWMA with resetting the smoothed gradient window after back-off (methods 2

and 3 above) can produce lower queuing delay. WWMA results the smoothed gradient to

respond more quickly to delay changes while restarting values in the gradient window allows

HLDG to better infer network congestion after backing off cwnd.

After applying the two methods we again repeat the experiment with results plotted in

Figure 5.13. Similar to previous observations, we can see in Figure 5.13a that when HLDG

backs off, RT Tmin,n decreases causing gmin,n to drop to about -8 (shown in Figure 5.13b). The

negative gmin,n after two RTT from back-off, ḡmin,n and all eight samples in the smoothing

window are zeroed. After that ḡmin,n quickly increases (shown in Figure 5.13c) because of

positive gmin,n samples and the higher weighting of WWMA for new samples. We still see

ḡmin,n gradually increase as the queue grows. The average RTT for HLDG in this experi-

ment is 23.3ms which is very close to the original CDG. However, HLDG is able to prevent

unnecessary back-off in a higher and more realistic RT Tbase for Internet scenarios.

These results show that WWMA is an effective filter that both ensures a quick response

to changes in the delay signal while eliminating sharp transitions in the delay signal. More

generally, this filter can be deployed with any delay-based CC to improve response times to

delay signal changes.

In the next section, we provide a solution that can further enhance HLDG standing queue

behaviour and improve HLDG throughput in large RTTbase paths.
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Figure 5.13: Zoomed-in delay measurements of HLDG with WWMA and ZSGW shows the
effect of this method on the smoothed gradient and back-off frequency

5.2.5 Backing off cwnd to estimated BDP

The negative impacts of the CDG constant βdelay factor on link utilisation was demonstrated in

Section 4.2.1. CDG keeps cwnd close to the path BDP to achieve low queuing delay. However,

if congestion is detected using delay, CDG will decrease cwnd by 30%, which will now be

below BDP, leading to the link being underutilised. We can see in Figure 5.7a that cwnd drops

to about 95KiB (~ 27KiB below BDP) after cwnd back-off.

In this case, where the base RTT is larger, recovery of cwnd to BDP is slow and HLDG
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suffers from low link utilisation, resulting in 10% of the bandwidth not being used. Further,

as discussed in Section 5.2.3, there is the problem of a standing queue created by HLDG in

small BDP paths. These two problems can be minimised if HLDG backs off cwnd to a value

close to the path BDP instead of using βdelay factor.

HLDG modification

HLDG sets cwnd to a fixed fraction of estimated path BDP when congested is detected

using delay.

We instead propose to set cwnd to a fixed fraction of the estimated path BDP when con-

gestion is detected using the delay component. This method can prevent cwnd from dropping

too far below BDP and avoid a standing queue from forming at the bottleneck. It also ensures

that cwnd will not drop too far below BDP, thus preserving high link utilisation. HLDG will

not require too many RTT cycles for cwnd to recover which is critical in larger RTT paths.

Further, setting cwnd below BDP allows the building queue to drain, preventing a standing

queues from forming.

HLDG sets cwnd every RTT according to equation 5.6 where λ (< 1) is the back-off

factor (default 0.95) and determines how far below the estimated BDP cwnd should be set to

following a delay-based back-off. X is a uniformly distributed random number between 0 and

1, n is the nth measurement cycle (RTT), and P(gn) is the back-off probability for gmin,n or

gmax,n (Equation 5.3).

cwndi+1 =







BDP.λ X < P(gn)

cwndi +MSS otherwise
(5.6)

In order to use this technique, the sender requires a reasonable BDP estimation without re-

lying on intermediate nodes. HLDG estimates the BDP using a conventional BDP calculation

as per Equation 5.7.

BDP = Bn×RT Tebase (5.7)

where Bn is the estimated bottleneck bandwidth during the nth RTT, and RT Tebase is the esti-

mated base RTT. Bn can be estimated using ACK rate method (Equation 5.5). RT Tebase estima-

tion is described in Section 5.2.6. BDP should never be greater than cwnd in our calculations

as the Bn estimation is based on the sender transmission rate and bottleneck bandwidth. As

such, cwnd will always decreases when congestion is detected. We set cwnd to cwndi.βdelay

when congestion is detected and cwndi < BDP, since BDP estimation is inaccurate in that

case.
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Figure 5.14: Zoomed-in delay measurements of HLDG with backing off to BDP.λ shows the
effect of this method on the smoothed gradient and back-off frequency

We conducted an experiment consisting of a single 300 second HLDG flow (with WWMA,

resetting the smoothed gradient window samples after back-off, and using estimated BDP pro-

posals implemented). The bottleneck is configured to emulate Brate= 10Mbps, RT Tbase= 2ms

with a 1000 packet buffer size (the same experiment as in Section 5.2.4). In this experiment,

HLDG introduces an average RTT of 9.81ms with a median RTT of 9.52ms and standard

deviation of 4.32ms. This RTT is lower than using the default βdelay factor of 0.7 (average

RTT=23ms). This is due to HLDG backing off cwnd close to the estimated BDP which is

lower than 0.7× cwndi (cwnd is larger than BDP/0.7). HLDG flows do not induce long queu-
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ing delay.

A micro view of ERT Tmin,n, gmin,n and ḡmin,n for the experiment for 20s < t < 21s are

shown in Figure 5.14. We can see in Figure 5.14a that HLDG controls the latency very well

by keeping queuing delay as small as possible. WWMA and zeroing gradient samples of

smoothing window allow HLDG to back off shortly after the queuing delay increases.

Figure 5.14b shows that some back-off events result in large decreases in queuing delay,

resulting in gmin,n dropping below -6 while other back-off events have smaller impact on queu-

ing delay. This variation is due to HLDG decreasing cwnd by an adaptive ratio of bottleneck

capacity rather than constant βdelay.

When a longer queue is created (due to the probabilistic back-off function or the effect of

the smoothing window), HLDG decreases cwnd by a large amount. As a result, the sender

reduces packets in-flight allowing the queue to drain. Then, RT Tmin,n becomes much smaller

causing gmin,n to drop deeply. Alternatively, in the case of a short queue, HLDG backs off

cwnd by a smaller amount to preserve high link utilisation. As the queue is short, RT Tmin,n

decreases by a small amount since it is already close to RT Tbase. As a consequence gmin,n does

not drop as far. In Figure 5.14c we can still see ḡmin,n quickly increase after back-off due to

WWMA and zeroing gradient samples of smoothing window.

Despite the the benefits, there is potential for HLDG to drop cwnd too far if the path BDP

is underestimated. This occurs when the bandwidth estimator is unable to obtain an accurate

measurement due to the ACK compression phenomenon or a congested reverse path. BDP

can also be underestimated if RT Tbase is underestimated.

Further, backing off cwnd to BDP.λ may result in HLDG obtaining a lower bandwidth

share when competing with loss-based flows. If the sender host incorrectly infers congestion

(in the presence of competing loss-based flows) and reduces cwnd, the estimator will under-

estimate the available bandwidth. As a result, the BDP estimate will be smaller than the path

BDP, causing the HLDG flow to realise very low throughput.

To address this, HLDG provides an option to modify Equation 5.6 by backing off cwnd

to the maximum of BDP.λ and cwndi×βdelay as per Equation 5.8. When using this option,

HLDG will not decrease cwnd too far when the path BDP is underestimated. However, it does

create a standing queue when the path BDP is small (less than 50KiB).

We recommend enabling this option if HLDG is used on small BDP paths or when com-

peting with loss-based flows is expected to in order obtain higher throughput. Alternatively, if

HLDG is used to provide scavenger class services and low latency transport, then this option
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should not be enabled.

cwndi+1 =







max(BDP.λ ,cwndi×βdelay) X < P(gn)

cwndi +MSS otherwise
(5.8)

Using an accurate BDP estimation allows HLDG to achieve higher throughput while main-

taining low queuing delay. This result can be generalised to any delay-based CC. Using a frac-

tion of estimated BDP to set the congestion window size following back-off can help ensure

that bytes in flight remains close to the path BDP.

5.2.6 RTTbase estimation

RT Tbase estimation (RT Tebase) is considered a challenging problem for many delay-based CC

algorithms that use this estimation to infer congestion [56]. An inaccurate RT Tebase estimation

can lead to many issues including fairness issues, link underutilisation and undesirable latency

depending on how the CC algorithm uses this estimation. As a result, accurate RT Tebase is

important.

For HLDG, a highly accurate RT Tebase is not critical since BDP estimation is used only to

improve link utilisation while operating in delay mode. However, different RT Tebase estimates

by multiple HLDG flows can lead to some degree of unfairness. In many realistic scenar-

ios, HLDG flows can obtain a reasonable RT Tebase because HLDG keeps queuing delay low

by backing off cwnd below the estimated BDP whenever congestion is inferred. Typically,

RT Tebase can be estimated as the minimum RTT measured over the connection life-time.

In network environments experiencing frequent route changes (such as mobile networks),

HLDG can underutilise the link if the route moves to a large RT Tbase path. When this occurs,

RT Tbase is underestimated, causing the path BDP to be underestimated, resulting in HLDG

backing off cwnd too far when congestion is detected. On the other hand, no problem occurs

when the route changes from a longer to a shorter path since the estimator will observe the

smaller RT Tmin as soon as the route changes.

HLDG modification

HLDG estimates RT Tbase over a window size of at least Wrtt seconds in addition to using

a periodic RT Tebase probing cycle.

To provide a better RT Tbase estimation in such network environments, HLDG estimates

RT Tbase over a window size of at least Wrtt seconds in addition to using a periodic RT Tebase
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probing cycle. A simplified RT Tebase estimation is shown in Equation 5.9.

RT Tebase = min(RTTt)∀ t ∈ [Tbegin,Tbegin +Wrtt ] (5.9)

Where Tbegin signifies the start of the RT Tbase measurement period which is set to the event

time of observing a lower RTT sample, and Wrtt is the measurement window length in second.

At the end of RT Tbase measurement cycle (i.e. at Tbegin+Wrtt), HLDG starts a new cycle by

probing for a new minimum RTT value. The RT Tbase probing phase begins by setting ssthresh

to cwnd and reducing cwnd (default 0.8× cwnd) 4. This allows any existing queue to drain,

allowing HLDG flows to obtain RTT samples close to RT Tbase. Additionally, this prevents self

induced queuing delay (similar to the problem in LEDBAT [6]) which leads to an increased

standing queue. The 0.8 factor is a trade off between link utilisation loss and draining a very

long queues (is unlikely due to HLDG keeping queuing delay small).

cwnd is restored using an exponential increase similar to the slow-start phase (i.e. increase

cwnd by the number of acknowledged bytes for every ACK). Restoring cwnd using packet

pacing can provide a smoother traffic pattern, preventing RTT spikes during the restoration

phase. However, packet pacing adds complexity and overhead to the implementation and

requires a high resolution timer which is not available in all operating systems. We suggest

exploring packet pacing to restore cwnd as a future work.

Setting Tbegin dynamically based on new minimum RTT observations allows HLDG flows

to synchronise resetting RT Tbase estimation. This allows many flows to obtain similar RT Tbase

estimates at the same time, leading to better fairness between competing flows.

4if cwnd is smaller than one MSS, HLDG does not reduce it further since cwnd is small already
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(b) SPP RTT versus time shows route change at t=10s
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(c) Incorrect RT Tbase estimation after route change
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(d) RTTbase estimator produces correct estimation at

t=30s after starting new RTTbase measurement cycle
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(e) Flow throughput decreases after route change due

to an incorrect BDP estimate
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(f) Flow throughput increases after obtaining a cor-

rect RT Tbase estimate

Figure 5.15: Route change results in HLDG flow to underutilise the bottleneck, but better
bandwidth utilisation is achieved when using RT Tbase measurement window method.

To measure the effectiveness of this RT Tbase estimator, we conduct an experiment con-

sisting of a single HLDG flow traversing a 10Mbps bottleneck. RT Tbase is set to 40ms path

RTT from t=0s to t=10s, changing to 80ms from t=10s to t=40s. Figure 5.15e shows the effect

of the path change on HLDG throughput when no RT Tbase measurement window is used. In

Figure 5.15a, we see the change in RTT from 40ms to 80ms at t=10s. However, the RT Tbase

estimator underestimates RT Tbase after the change as shown in Figure 5.15c. This results in
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BDP being underestimated when backing of cwnd. As a result, HLDG backs off cwnd too far

after the change, resulting in an underutilised link.

We can see that at t=10s, HLDG gets confused and backs off cwnd multiple times as the

delay gradient increases significantly after the RTT change. Additionally, HLDG considers

the back-off ineffective and does not zero the gradient window since no negative gradient is

observed. As a consequence, the back-off probability remains high, causing HLDG to back

off cwnd multiple times until the smoothing window excludes the large unsmoothed gradient.

Also, due to the underestimated BDP, HLDG sets cwnd to a small value causing throughput

to significantly decrease.

After applying an RT Tbase measurement window method with a 30 second window size

(Wrtt), we repeat the experiment. Figure 5.15f shows the effect of the RTT change on HLDG

throughput when RT Tbase measurement window is used. Figure 5.15b, shows the RTT change

from 40ms to 80ms at t=10s. The RT Tbase estimator produces an underestimated RT Tbase of

40ms until time t=30s when a new RT Tbase measurement cycle begins as shown in Figure

5.15d. This results in HLDG using a correct BDP estimate when backing off cwnd, utilising

available bandwidth more efficiently.

5.2.7 Eliminating queuing delay spikes

As mentioned in Section 4.2.3, the probabilistic nature of the back-off function and the gradi-

ent smoothing window mechanism occasionally result in CDG making late back-off decisions,

leading to small RTT spikes. These issues cause the back-off probability to increase slowly or

stop increasing while queuing delay increases.

HLDG modification

HLDG accumulates back-off probabilities to allow it to be more responsive to increasing

delay.

To address the RTT spike issue, HLDG modifies the CDG back-off decision function to

make HLDG more responsive to increasing delay. Instead of using the calculated back-off

probability directly, HLDG accumulates (sums) the probabilities and uses the sum to make its

back-off decision. More precisely, the sum of probabilities P̄(n) is calculated as per Equation

5.10 where P̄n is either P̄(ḡmin,n) or P̄(ḡmax,n), and m is the number of probability samples since

the last back-off event. P(gi) is either P(gmin,i) P(gmax,i) which are calculated as per Equation
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Figure 5.16: RTT spikes are eliminated when accumulated probability is applied for HLDG

5.3. HLDG resets P̄(n) when P(gi) becomes zero to prevent an unnecessary back-off.

P̄n =
m

∑
i=1

P(gi) (5.10)

Similar to the CDG P(gi) probabilistic back-off, if P̄n is larger than an uniformed random

number, HLDG backs off cwnd; otherwise it does not. Accumulating the probabilities reduces

the chance of overshooting cwnd and minimises undesirable delay spikes and deviations in

queuing delay.

We conduct an experiment where a 60 second HLDG flow traverses a bottleneck emulating

10Mbps and 100ms base RTT link to observe the effectiveness of the proposal. Figure 5.16b

shows the RTT versus time plot for the experiment. We can see that the RTT spikes are both

less frequent and with a lower magnitude than for CDG (Figure 5.16a). The average queuing

delay for this experiment is similar at 2.3ms (compared with 2.7ms in CDG case), but the

average throughput has increased to 9.78Mbps (from 7.76Mbps with CDG).

Figure 5.17 shows a close view of ERT Tmin, back-off probability and accumulated back-

off probability versus time for this experiment. The figures demonstrate that the accumulated

probability increases smoothly and quickly as soon as a queue starts to form, allowing HLDG
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(c) Accumulated back-off probability

Figure 5.17: Using accumulated probability allows HLDG to make back off decisions in
timely bases

to back off well before a long queue is created. In Figure 5.17c we can see that the accumulated

probability feedback signal is less noisy than the new back-off probability shown in Figure

4.12c.

5.2.8 HLDG performance evaluation in single flow scenarios

In this section we evaluate and compare the performance of HLDG when the different stand-

ing queue solutions described in Section 5.2.4 are used. Additionally, we compare the perfor-
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mance of the HLDG+BDP method described in Section 5.2.5 with CDG.

We note that for small RT Tbase paths, CDG does not suffer from low link utilisation. How-

ever, CDG flows are unable to fully utilise available bandwidth at higher path RTTs. HLDG

can better utilise the bandwidth by addressing the unnecessary back-off problem. However,

HLDG with a linear moving average smoothing mechanism produces a standing queue in

small BDP paths. Using WWMA, ZSGW and backing off close to BDP can obtain lower

queuing delays while preserving high link utilisation.

We start by comparing the solutions to the standing queue issue on small BDP paths.

The experiment consists of a single 300s flow traversing a bottleneck emulating a 10Mbps

link with 2ms path RTT. The experiment is repeated for CDG, HLDG with moving average,

HLDG with WWMA, HLDG with ZSGW, HLDG with WWMA+ZSGW and HLDG with

WWMA+ZSGW+backing off to BDP.

Table 5.1 shows the average, median and standard deviation of the queuing delay for all ex-

periments. The results show that by using WWMA instead of linear moving average, HLDG

reduces the standing queue by about 8ms. ZSGW method reduces queuing delay by a fur-

ther 4ms. HLDG with WWMA+ZSGW provides high link utilisation and low queuing delay

without relying on BDP measurement.

Backing off cwnd to λ .BDP instead of cwndβdelay results in HLDG achieving a lower

queuing delay (10.22ms) and very high link utilisation as bytes in-flight are kept close to the

estimated BDP. When using the estimated BDP with WWMA and ZSGW, HLDG achieves

very low queuing delay (6.9ms) whilst maintaining 99.9% bandwidth utilisation. WWMA

allows HLDG to quickly respond to queuing delay growth, allowing HLDG to maintain a

lower latency.

HLDG achieves extremely low latency and high stability with only 4.4ms average queuing

delay while utilising 99.9% of the link bandwidth when accumulated probability, the estimated

BDP, WWMA and ZSGW are used together. The accumulated probability prevents HLDG

cwnd from overshooting BDP by too much, leading to low latency. At the same time, backing

off cwnd to λ .BDP prevents HLDG from reducing bytes in-flight too low than path BDP,

realising higher throughput.

Figure 5.18 shows a queuing delay CDF plot for the experiment. The graph reinforces the

results in Table 5.1 and illustrates that HLDG with WWMA+ZSGW+BDP produces very low

queuing delay compared to the other algorithms.

For the rest of this thesis, we refer to HLDG as HLDG with accumulated probabil-

ity+WWMA+ZSGW+BDP as this mode is the default operational mode of HLDG.

Next, we compare HLDG improvement over CDG in single flow scenarios. We conduct

two experiments, one using CDG and one with HLDG using the testing scenarios from Section
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Figure 5.18: CDF for queuing delay for a single flow traverse a bottleneck BW=10Mbps and
RT Tbase=2ms

3.7. Each experiment consists of a 90 second iperf flow traversing a bottleneck emulating

Brate={1.5, 4, 12, 25, 50}Mbps links and RT Tbase={0, 10, 40, 180, 240, 340}ms paths with

max(150×MSS,BDP) buffer size to prevent packet loss during the CA phase. We modified

both CDG and HLDG to use loss-based slow start (instead of delay-based slow start) to al-

low the flow to converge to full bandwidth. The major metrics used in this comparison are

throughput and queuing delay, all statistics are obtained from time t=30s to t=90s, allowing

the flow to reach a stable state in CA mode.

HLDG throughput improvement percentage is shown in Figure 5.19. The figure shows that

HLDG improves throughput by up to 400% over CDG in specific scenarios. For RT Tbase<40ms,

Table 5.1: RTT mean, median and standard deviation and link utilisation for a single 300s
flow traverses a bottleneck with BW=10Mbps and RT Tbase=2ms

Algorithm QD mean QD median QD SD Utili. %

CDG 16.28ms 16.1ms 5.43ms 99.9%
HLDG moving Avg. 38.29ms 37.78ms 5.82ms 99.9%
HLDG w/ WWMA 30.09ms 30.47ms 6.26ms 99.9%
HLDG w/ ZSGW 26.3ms 25.74ms 5.79ms 99.9%

HLDG w/ WWMA+ZSGW 20.34ms 20.78ms 5.19ms 99.9%
HLDG w/ backoff to BDP 10.22ms 9.14ms 5.322ms 99.9%

HLDG w/ WWMA+ZSGW+BDP 6.9ms 6.51ms 4.4ms 99.9%
HLDG w/ accumulated probability &

WWMA+ZSGW+BDP
4.4ms 4.15ms 2.26ms 99.9%
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Figure 5.19: HLDG throughput improvement over CDG

HLDG and CDG obtain similar throughput for all bandwidths with slightly lower throughput

for HLDG in specific scenarios. As RT Tbase increases, HLDG provides better throughput

improvement.

Queuing delay and throughput boxplots for the experiment are shown in Figures 5.20 and

5.21. We can see that HLDG achieves lower or similar queuing delay in general for almost

all tests. On small path RTTs (< 40ms), HLDG introduces lower queuing delay especially

at small bottleneck bandwidths. For example, at 4Mbps Brate and RT Tbase is 10ms, HLDG

introduces around 10ms queuing delay while CDG keeps queuing delay over 15ms. As band-

width increases, the queuing delay decreases as serialisation delay becomes smaller. Smaller

transmission delays allow the gradient signal increase steps to be finer. Therefore, both HLDG

and CDG can make back-off decisions before long queues build up.

Figure 5.21 shows that HLDG achieves higher throughput than CDG especially at higher

RT Tbase. At Brate = 1.5Mbps, HLDG realises about 87% bandwidth utilisation when RT Tbase

is 10ms and 40ms, while CDG realises 90 - 100% bandwidth utilisation. At higher RT Tbase,

HLDG outperforms CDG significantly. At Brate = 4Mbps, HLDG achieves 92% bandwidth

utilisation when RT Tbase is 10ms, while CDG realise 98% bandwidth utilisation. At higher

RT Tbase, HLDG outperforms CDG by up to 1.8Mbps. At Brate = 12Mbps, HLDG outperforms

CDG by up to 6Mbps when RT Tbase is larger than 40ms. Similar results are observed when

Brate = 25Mbps. At 50Mbps Brate, HLDG still performs better than CDG, especially when

RT Tbase is larger than 10ms.
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Figure 5.20: Queuing delay for HLDG and CDG

5.2.9 Summary of HLDG throughput improvements

Hybrid Loss-Delay Gradient (HLDG) is an improved hybrid TCP congestion control algo-

rithm that achieves high link utilisation with low queuing delay. The algorithm is based on

CDG CC algorithm but with enhancements to provide higher throughput in single flow sce-

narios and lower latency.

HLDG prevents unnecessary back-off which includes consecutive delay-based and spu-

rious back-off. HLDG also prevents consecutive delay-based back-off by synchronising the

smoothed gradient signals (ḡmin,n and ḡmax,n) after back-off. This causes the smoothed gradient

to include a negative gradient after back-off. This negative gradient sample reflects the cwnd

decrease, indicating that the action is effective in reducing queuing delay. Smaller smoothed

gradients decreases the probabilistic back-off, which inhibits multiple back-offs.

Spurious back-off occurs due to the noisy delay signal, delayed acknowledgement mecha-

nism, and asynchronism between packet transmission at the sender side and bottleneck packet

scheduler. HLDG mitigates this problem by allowing 1.2ms additional queuing delay without

backing off cwnd to filter out noise.

HLDG uses a windowed moving average with weights (WWMA) instead of a linear mov-

ing average to quickly reflect the changes in delay gradient signal. Additionally, it zeros the

smoothing gradient window (ZSGW) samples after backing off cwnd and negative gradient

is observed. This restarts the smoothed gradient measurement, allowing valid delay gradient

samples to be used in a new smoothed gradient. Using WWMA and ZSGW together reduces

standing queues significantly.

Moreover, HLDG backs off cwnd to a portion of the estimated BDP instead of using the



5.2 HLDG in single-flow scenarios 159

0.0

0.5

1.0

1.5

Base RTT (ms)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

0 10 40 180 240 340

BW=1.5Mbps

Algorithm

CDG

HLDG
0

1

2

3

4

Base RTT (ms)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

0 10 40 180 240 340

BW=4Mbps

Algorithm

CDG

HLDG

0

2

4

6

8

10

12

Base RTT (ms)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

0 10 40 180 240 340

BW=12Mbps

Algorithm

CDG

HLDG
0

5

10

15

20

25

Base RTT (ms)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

0 10 40 180 240 340

BW=25Mbps

Algorithm

CDG

HLDG

0

10

20

30

40

50

Base RTT (ms)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

0 10 40 180 240 340

BW=50Mbps

Algorithm

CDG

HLDG

Figure 5.21: Throughput for HLDG and CDG flows

βdelay factor. This allows HLDG to realise high throughput in large RTT paths. The BDP is

estimated by measuring bottleneck bandwidth using the acknowledged byte rate over an RTT

interval and the estimated RT Tbase.

In addition, HLDG controls queuing delay better than CDG, preventing cwnd from in-

creasing too far above BDP. HLDG accumulates back-off probabilities and makes back-off

decisions on the accumulated values to more quickly respond to any latency increase before

long queues form. It also produces a smoother congestion feedback signal, leading to better

congestion control.
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The evaluation results show that HLDG achieves up to 400% (54% in average) throughput

improvement over CDG in single flow scenarios without packet loss while maintaining queu-

ing delay at no more than 20ms in the worst case. Therefore, HLDG congestion control can

be used instead of CDG in many application that require high throughput without negatively

impacting delay-sensitive applications such as VoIP and multiplayer online gaming.

These experimental results allow us to draw some general conclusions with regards to

delay-based CC that can be deployed to improve all such algorithms:

1) The delayed acknowledgement mechanism causes a noticeable increase in the delay

metric which can lead to incorrect decision making by the CC algorithm. As such, all delay-

based CC should filter out these increases to prevent unnecessary back-off.

2) Using a WWMA filter instead of a simple moving average to smooth delay samples.

This allows delay-based CC to more quickly respond to changes in delay while also eliminat-

ing sharp delay transitions (eg. after back-off)

3) Use of a good BDP estimation (eg. using acknowledged by rate with path RTT) to reset

the congestion window following backoff. This allows delay-based flows to achieve higher

throughput while maintaining low queueing delay.

5.3 Enhancing HLDG coexistence with loss-based flows

HLDG provides low latency transport with high throughput and almost no packet loss. It

achieves this by keeping the number of packets in the queue very low. Despite these desirable

properties, HLDG suffers when competing with loss-based TCP similar to many delay-based

techniques such as TCP Vegas [34].

Some solutions have been proposed to provide better coexistence between delay-based and

loss-based TCP [84, 86, 101–103, 172–175]. However, these solutions are either designed

based on algorithm specific characteristics, or too complicated to be implemented in many

systems.

Deploying AQM in the bottleneck can remedy the issue to some degree [173]. AQM

sends congestion signals to the sender explicitly (mark packets) or implicitly (drop packets)

when a standing queue starts building. Therefore, loss-based flows back off early giving an

opportunity for delay-based flows to increase their cwnd and obtain a better bandwidth share.

Additionally, bottleneck buffer occupancy will be shared more fairly since loss-based flows

cannot overfill in the buffer due to AQM control polices. Using a scheduler/AQM hybrid

scheme such us FQ-CoDel [16] and FQ-PIE [17] can provide better coexistence between loss-

based and delay-based flows due to the flow separation mechanism.

As mentioned in 4.3.1, CDG coexistence mechanisms (the ineffectual back-off and shadow
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Figure 5.22: A TCP Vegas flow and a TCP CUBIC flow competing for 10Mbps bottleneck
capacity

window mechanisms) are not able to allow CDG to obtain acceptable capacity sharing. There-

fore, we propose two additional mechanisms to improve HLDG coexistence with loss-based

TCP. These improvements allow a HLDG flow to obtain reasonable bandwidth sharing without

adding much complexity to the implementation. Additionally, we disabled the non-congestion

loss tolerance mechanism to allow HLDG to use the shadow window whenever packet loss oc-

curs to improving coexistence.

5.3.1 G parameter adaptation

Similar to CDG, HLDG uses a scaling factor G to control the sensitivity of the back-off func-

tion to delay changes. The algorithm aggressiveness can be controlled through changing G

parameter. By default, CDG uses G=3 factor to reduce false positive back-off due to delay

signal noise.

A large G reduces the number of back-offs as the probabilistic back off function will be

less responsive to the gradient increase. Tangenes et al. [107] confirm this behaviour and

found that increasing G makes CDG more aggressive and achieve a better bandwidth share

when competing with loss-based flows. However, the impact of the G parameter on the HLDG

coexistence capability has not been studied.

Since HLDG uses probability accumulation to make its back-off decision, it impacts on

HLDG coexistence differently. We evaluate HLDG in a range of scenarios to understand the

effect of G on the coexistence between HLDG and loss-based flows, namely CUBIC.

Our experiment consists of one HLDG and one CUBIC flow competing for bottleneck

bandwidth. The bottleneck emulates a link with Brate ={1.5, 4, 12}Mbps, RT Tbase = {10, 40,

180, 240}ms and buffer size = {1, 2, 4, 8, 16}BDP. Bottleneck bandwidth and the path RTT

are chosen based on the testing scenarios in Section 3.7. We use G = {1, 3, 6, 12, 24, 48, 96,



162 Hybrid Loss-Delay Gradient Congestion Control

BW=1.5Mbit/s RTT=10ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=1.5Mbit/s RTT=40ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=1.5Mbit/s RTT=180ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=1.5Mbit/s RTT=240ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=4Mbit/s RTT=10ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=4Mbit/s RTT=40ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=4Mbit/s RTT=180ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=4Mbit/s RTT=240ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=12Mbit/s RTT=10ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=12Mbit/s RTT=40ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=12Mbit/s RTT=180ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

BW=12Mbit/s RTT=240ms

1
2

4
8

16 1
3

6 1
2

2
4

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

0.1
0.2
0.3
0.4
0.5
0.6
0.7

T
h
ro

u
g
h
p
u
t 
fr

a
c
ti
o
n

Buffer size (BDP) G scalin
g fa

ctor

0.0 0.2 0.4 0.6 0.8

Figure 5.23: The effect of HLDG G factor on bandwidth sharing with CUBIC

192, 384, 768, 1536} in this experiment. The HLDG flow starts first, the CUBIC flow joins at

t=10s and runs for 50 seconds. Traffic is generated using the iperf tool.

Figure 5.23 shows the average throughput fraction for the HLDG flow during the com-

petition period. The fraction is calculated as per Equation 5.11 where Tstart and Tend are the

start and end times. We use Tstart=20s and Tend=60s to avoid any transition phase caused by

CUBIC flow start-up.

avg_throughput_ f raction =

Tend

∑
t=Tstart

T hroughputHLDG,t

Brate

(5.11)

The results reveal that higher G values allow HLDG to compete better with CUBIC. They

also show that the bottleneck buffer size plays a significant role in HLDG coexistence with

loss-based flows. As buffer size increases, HLDG obtains a lower bandwidth share. This
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observation is in-line with the CDG coexistence results from Section 4.3.2. This is due to

buffer size increasing proportionally with RTT when set to a multiple of BDP. Large buffer

sizes allow CUBIC to push more packets into buffer than HLDG as HLDG not only backs

off due to packet loss, but also based on the delay gradient signal. As a result, more CUBIC

packets will be forwarded in the bottleneck.

Another cause of this behaviour is the larger multiplicative decrease factor and faster cwnd

growth function of CUBIC. CUBIC backs off cwnd using a 0.7 beta factor and uses a cubic

cwnd increase function while HLDG uses 0.5 beta factor and increases cwnd once every RTT

(similar to NewReno). Therefore, HLDG needs more time than CUBIC to recover cwnd

above BDP. This gives an opportunity for CUBIC to push more packets and achieve higher

throughput.

We can see in Figure 5.23, when G > 12, RT Tbase is 10ms and buffer size is smaller than 8

BDPs (80 packets), HLDG flow coexists well with CUBIC. When G < 192 and buffer size > 8

BDPs, HLDG obtains a low bandwidth share (< 20%). The CUBIC flow gains bandwidth as

RT Tbase increases. At 240ms RT Tbase, HLDG is unable to obtain more than 20% of bandwidth,

even at one BDP buffer size. 25Mbps bandwidth results reveal similar behaviour to 12Mbps

bandwidth with slightly better HLDG performance.

Despite the improved performance that can be obtained with larger a G factors, they cause

a significant negative impact on queuing delay. To understand the impact of G factor on the

queuing delay, we measure the average queuing delay for the first 10 seconds of each run of

the same experiments during this period. The average queuing delay only relates to the HLDG

flow.

Figure 5.24 plots the average queuing delay and shows that a large G factor prevents HLDG

from maintaining a low queuing delay, especially with short paths. The results also show that

as RT Tbase increases, the average queuing delay decreases. This is caused by HLDG needing

a longer time to recreate a high queuing delay after backing off as cwnd only grows by one

MSS per RTT. Therefore, the queue is kept short for a longer period of time resulting in lower

queuing delays.
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Figure 5.24: The effect of HLDG G factor on queuing delay

From this experiment we can conclude that it is impossible to select a constant G value that

results in HLDG providing both low latency and acceptable coexistence with loss-based flows.

However, if G adaptively increases when a competing loss-based flow is detected, HLDG can

achieve better coexistence with loss-based flows.

Since HLDG does not cause high queuing delays, competing loss-based flows can be in-

ferred if queuing delay exceeds a specific threshold (e.g. 30ms).

HLDG modification

HLDG calculates the G parameter dynamically based on estimate queueing delay when

competing loss based flows are detected.

When a competing loss-based flow is detected, the G parameter is calculated dynamically

based on the estimated queuing delay. Otherwise the default (G = 3) is used to provide low



5.3 Enhancing HLDG coexistence with loss-based flows 165

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0

Queueing delay (ms)

G
 (

1
0

3
)

Figure 5.25: HLDG adaptive G function

latency transport. The rationale for this adaptation is to keep queuing delay low for normal

HLDG operation. However, HLDG becomes more aggressive when we infer the presence of

competing loss-based flows through monitoring the estimated queuing delay. Queuing delay

is estimated using Equation 5.12 where RT Tebase is the estimated base RTT.

Qi = RT Ti−RT Tebase (5.12)

Using the data from Figure 5.24, coupled with the maximum queuing delay for each buffer

size, we applied a curve fitting algorithm to generate the exponential function shown in Figure

5.25. We scaled down the function coefficients to reduce the impact on queuing delay. This

is a preliminary approach, further work is required to tune and improve this function. This

allows HLDG to better compete with the loss-based flows without impacting queuing delay

when no loss based flows are present.

Although this approach can improve HLDG coexistence, it does not realise an equal band-

width share. There is always a high probability for HLDG flows to back off before loss-based

flows as HLDG backs off using the delay signal as well as packet loss. Therefore, CUBIC

flows keep increasing their cwnd and backing off well after HLDG flows. As a consequence

we also propose an explicit mode switching for HLDG to remedy this problem in environ-

ments with large buffer sizes.

5.3.2 Three operation modes (delay, loss and probing)

In the previous section we explored the impact of the HLDG G parameter on coexistence

with loss-based flows. Our proposal was to use an adaptive G to improve performance. This

technique can improve HLDG coexistence in low RTT paths with small buffer sizes but not

for large buffer sizes or large path RTT.
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Dual-mode hybrid loss-delay congestion control algorithms have been proposed to remedy

the poor coexistence performance of delay-based CC. These algorithms explicitly switch to

loss-based regime when loss-based competing flows are detected. We reviewed well-known

algorithms of this category in Section 2.4.2. The switching mechanisms used by those pro-

posals either do not fit with HLDG goals or the design, or too complicated to be implemented

in many systems.

HLDG modification

HLDG employs a new mode mode switching technique.

Therefore, we propose an new explicit mode switching technique that allows HLDG to

switch between delay-based and loss-based mode. Switching to loss-based mode allows

HLDG to achieve average throughput similar to loss-based flows. The decision to switch

between delay and loss mode is made based on queuing delay measurements.

In delay mode, HLDG backs off when congestion is detected using the delay gradient

signal and packet loss signal. Additionally, HLDG keeps using the ineffective back off and

shadow window mechanisms in this mode. In loss mode however, HLDG becomes a fully

loss-based algorithm and backs off cwnd only upon packet loss events. In this mode HLDG

behaves like TCP CUBIC [49] congestion avoidance mode. We select CUBIC cwnd growth

function because of its fast convergence[49], high throughput, and wide deployment across

the Internet.

This improves the initial performance of HLDG which might otherwise exit slow start

early due to observing queuing delay spikes created during slow start. Exiting early results in

HLDG starting with too-low cwnd, taking time to recover to a fair share.

To avoid synchronised slow-start of HLDG and loss based flows causing heavy packet

losses, HLDG delays switching to loss mode by one second. This give a reasonable time for

competing loss-based flows to exit their slow-start phase before HLDG enters its slow-start

phase.

When packet loss is detected, HLDG enters what we call probing mode for a short period

of time to check if loss based flows are still present. If no competing loss-based flows are

detected, HLDG returns to normal delay-based mode; otherwise it re-enters loss mode.To

reduce the number of mode-switching events, HLDG stays in loss mode for at least 5 seconds.

During these 5 seconds, HLDG does not enter probe mode or switch back to delay mode.

The mode switching mechanism involves:

1. Detecting competing loss-based flows.
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2. Switching to loss mode.

3. Probing and detecting leaving loss-based flows.

4. Switching back to the delay mode or moving back to the loss mode.

5.3.2.1 Detecting competing loss-based flows

As previously described, HLDG maintains low queuing delay during congestion avoidance

phase. However, loss-based flows push queuing delay much higher, especially with large

bottleneck buffer sizes. We exploit this to infer the presence of competing loss based flows.

HLDG monitors the estimated queuing delay for a short period of time (a few RTTs). If

the queuing delay remains high, HLDG infers that a competing loss based flow is present.

More precisely, it compares the estimated minimum queuing delay Qmin,n measured during

thw previous RTT with a threshold (Qthmax_delay) once every RTT interval5. Qmin,n is the

difference between the estimated path base RTT (RT Tebase) and RT Tmin,n, as per Equation

5.13.

Qmin,n = RT Tmin,n−RT Tebase (5.13)

If all RTTmin,n samples are larger than Qthmax_delay for the previous m RTTs, we consider

competing loss-based flows to be present.

The rationale of this approach is that HLDG flows should not introduce queuing delay

larger than Qthmax_delay. However, loss based flows introduce higher delays. To remedy the

impact of queuing delay fluctuation, HLDG does not make an immediate decision based on

the current RTTmin,n, instead, monitoring queuing delay for m RTT intervals to smooth the

measurement.

The value of m impacts detection speed as well as sensitivity to delay signal noise. If a

large m is selected, HLDG can take longer to detect competing loss based flows, especially

with high RT Tbase paths. Alternatively, if a small m is used, HLDG may enter loss mode when

no loss-based flows are present. In our HLDG implementation, we use a default m=4 which

appears to provide reasonably fast detection with a small number of false positives.

The value of Qthmax_delay controls the protocol sensitivity to queuing delay increase. If

Qthmax_delay chosen is too small, it results in false positives and enters loss mode incorrectly.

If the value chosen is too large, HLDG will not enter loss mode when the buffer size is not large

enough to produce high queuing delays. Our default value of 100ms Qthmax_delay appears to

work well to prevent false positive detection. HLDG can obtain better coexistence if a smaller

5In our implementation, we use ERTT new measurement flag to determine an RTT has elapsed.
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Qthmax_delay is used. However, it causes HLDG to switch to loss mode more often, even when

no competing loss-based flow is present.

It is clear that this technique works only if the buffer size can produce a queue delay higher

than Qthmax_delay equivalent. Otherwise, HLDG will remain in delay mode and never switch to

loss mode. Since HLDG provides acceptable performance for small buffer sizes, this method

can be used to provide enhanced coexistence for HLDG in large buffer sizes.

5.3.2.2 Detect leaving competing loss-based flows and exiting loss mode

After entering loss mode, HLDG remains in this mode until all loss-based flows leave the bot-

tleneck. When packet loss occurs while in loss mode, HLDG reattempts to detect competing

loss-based flows. When no loss-based flows are detected, HLDG returns to delay mode.

HLDG counts the number of times that Qmin,n is less than Qthmax_delay for the previous m

RTTs. If at least 75% of the samples satisfy that condition, we assume loss-based flows are

no longer present, and HLDG switches back to delay mode. Using a 75% threshold allows

HLDG to exit loss mode even when a few Qmin,n samples reveal a high queuing delay.

If m RTTs elapse and Qmin,n is still high, HLDG returns to loss mode. Returning to loss

mode starts by setting cwnd to the old cwnd value after backing off (i.e. cwnd * 0.7) plus the

cwnd increase that would have occurred between packet loss and the restoration time. Instead

of using a shadow window for this period to mimic the cwnd growth function, we use the

CUBIC cwnd growth function directly. The CUBIC function provides the exact cwnd value at

time t where t is the time since the last back off event[49].

Restoring the cwnd value directly can result in a large packet burst, causing multiple packet

losses and a spike in queuing delay. Packet pacing can help in this situation to smoothly in-

crease the sending rate. However, implementing packet pacing requires precise timers and

modification to the TCP stack. Therefore, HLDG restores cwnd gradually over two RTT in-

tervals in an attempt to reduce packet bursts. During the cwnd restoring phase, cwnd increases

by one MSS every Trestore using Equation 5.14.

The state machine governing HLDG mode switching is shown in Figure 5.26.

Trestore =
2×RTTi×MSS

(cwndcubic(t)− cwndi)
(5.14)

There are two main issues with this technique.

1. When an HLDG flow switches to loss mode, it behaves similarly to normal loss based

flows. Therefore, the estimated queuing delay will be always high even when competing

loss based flows leave. As a result, Qmin,n will not become less than Qthmax_delay since

the delay-based back off does not occur.
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Figure 5.26: HLDG mode switching state machine.

2. If multiple delay-based flows join a bottleneck and one flow decides to switch to loss

mode, all other flows will switch to loss mode as well. They will remain in loss mode

even if some flows leave the bottleneck. This occurs as each flow assumes the other

competing flows are loss-based and attempts to compete with them.

We propose to remedy the first issue by entering an intermediate mode (probe mode) in which

the bottleneck is probed to see whether loss-based flows are present. In probe mode, HLDG

sets cwnd to two MSS6 and uses delay mode congestion control rules. This allows any built

up queue to drain so the sender can see a lower queuing delay when no competing loss-based

flows are present. HLDG remains in probe mode for an m×RT T interval, allowing HLDG to

collect enough Qmin,n samples to make a decision on whether to leave loss mode. We found

that the packet loss events are good points to enter probe mode since these events already

reduce queuing delay due to backing off cwnd.

To remedy the second issue, all HLDG flows should enter probe mode at the same time.

This synchronisation provides an opportunity for any queue in the bottleneck to drain.

We exploit the fact the there is a high probability for some competing flows (working in

loss mode and having a similar sending rate) to experience packet loss at the same time due to

buffer overflow [176]. When many flows back off and enter the probe mode, there is a higher

chance that the queuing delay will become low, allowing flows to observe a low queuing delay

and exit loss mode.

6if cwnd is larger than that 2 MSS, cwnd is not changed.
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In specific scenarios, the probe phase becomes longer than loss mode. This occurs for large

buffer scenarios where CUBIC dynamic is slow. This situation negatively impacts HLDG

throughput during the coexistence phase. We solve this problem by entering the probe mode

only when the HLDG flow spends a longer time in loss mode than in probe mode.

5.3.2.3 HLDG mode switching algorithm

The pseudo code for the HLDG mode switching algorithm is shown in Algorithms 5.1 and 5.2.

HLDG initially works in delay mode and a detection_q circular queue of size m is created.

RT Tmin,n is obtained by comparing old RTTmin,n with current RTT (RT Ti). RT Tebase is also

obtained once every ACK (see Section 5.2.6).

During each RTT interval, Qmin,n is calculated as the difference between RT Tmin,n and the

estimated RT Tebase. If Qmin,n > Qthmax_delay, 1007 is added to detection_q; otherwise 0 is

added. If we have m samples in detection_q, HLDG tests the state of the competing flows.

Algorithm 5.1 Pseudo code for HLDG mode switching algorithm - packet loss event

1: On packet loss:

2: loss_epoch← NOW − t_in_loss_mode

3: inswitching_epoch← NOW − t_in_mode_switching

4: if mode == MODE_LOSS and inswitching_epoch > 10sec and loss_epoch >

probe_epoch then

5: cwnd← 2∗MSS

6: in_probe_mode← 0

7: old_cwnd← cwnd

8: mode←MODE_PROBE

9: t_in_probe_mode← NOW

10: end if

7We use integer arithmetic to allow us to implement the algorithm in OS kernel space.
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Algorithm 5.2 Pseudo code for HLDG mode switching algorithm - main part

1: Initialisation :

2: mode←MODE_DELAY

3: RT Tmin,n← RT Tebase← 8

4: detection_q← circular_queue(size = m)

5: On each ACK:

6: if RT Ti < RT Tmin,n then

7: RT Tmin,n← RT Ti

8: end if

9: if RT Ti < RT Tebase then

10: RT Tebase← RT Ti

11: end if

12: On each RTT:

13: Qmin,n← RTTmin,n−RT Tebase

14: if Qmin,n > Qthmax then

15: insert 100 into detection_q

16: else

17: insert 0 into detection_q

18: end if

19: if mode == MODE_PROBE then

20: in_probe_mode← in_probe_mode+1

21: end if

22: if length(detection_q) == m then

23: if mode == MODE_DELAY and sum(detection_q) == m∗100 then

24: After one second do:

25: mode←MODE_LOSS;ssthresh← 8

26: t_in_mode_switching← t_in_loss_mode← NOW

27: else if sum(detection_q)6 m∗25 then

28: mode←MODE_DELAY

29: end if

30: if mode == MODE_PROBE and in_probe_mode > m then

31: mode←MODE_LOSS

32: probe_epoch← NOW − t_in_probe_mode

33: t_in_loss_mode← NOW

34: RESTORE_CWND(old_cwnd)

35: end if

36: end if

37: RT Tmin,n← 8
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If HLDG is operating in delay mode and all elements in detection_q indicate high queuing

delay, it switches to the loss mode starting by slow-start phase (setting ssthresh to a large

integer value). If 25% or fewer samples in detection_q indicate high queuing delay, HLDG

switches to delay mode. On the other hand, if HLDG is in probe mode for at least m RTTs,

HLDG returns to loss mode and restores cwnd according to CUBIC cwnd growth function.

RT Tmin,n is set to a large integer number to start a new measurement during the next RTT

cycle.

When a packet loss is detected, loss mode epoch and time since starting the switching

mode are calculated. If HLDG is in loss mode and it has been more than 5 seconds since

switching to loss mode and the HDLG flow has spent more time in loss mode than in probe

mode, then HLDG sets cwnd two MSS and enters probe mode.

Figure 5.27 illustrates the algorithm in action. The figure shows cwnd, the detection heuris-

tic, queuing delay and throughput versus time plots for a HLDG flow competing with a CUBIC

flow over a 12Mbps bottleneck bandwidth with 10ms path RTT. The bottleneck buffer size is

set to 250pkts (250ms queuing delay equivalent). The HLDG flow starts first with CUBIC

starting at t=30s. The CUBIC flow finishes at t=120s and the experiment terminates at t=160s.

m is set to 4, and Qthmax_delay=50ms (for illustrational purpose).

We can see in Figure 5.27 that HLDG operates in delay mode for the first 30 seconds

before the CUBIC flow begins, achieving low queuing delay and full bandwidth utilisation.

As soon as the CUBIC flow starts at t=30s, the detection heuristic becomes 100 as all Qmin,n

measurements in last the four RTTs are larger than Qthmax_delay. HLDG enters loss mode

starting with slow-start phase after one second.

After 5 seconds and when packet loss is detected, HLDG enters probe mode to monitor

if the loss-based flow has finished. As the detections heuristic remains high, HLDG switches

back to loss mode. Both HLDG and CUBIC flows continue to back off and increase cwnd

until they achieve a fair-share of the bandwidth. When the CUBIC flow terminates, the HLDG

flow keeps operating in loss mode as queuing delay remains high. We can see in Figure 5.27b

that queuing delay reaches up to 250ms during the competition period because both HLDG

and CUBIC flows aggressively push packets to the buffer until packet loss occurs.

Since more bandwidth becomes available after the CUBIC flow finishes, HLDG exponen-

tially increases cwnd due to the cubic function being used. This behaviour quickly results

in packet loss, causing HLDG to enter probe mode. In probe mode, the detection heuristic

reveals a low queuing delay and HLDG exits loss mode, returning to delay mode. HLDG will

then continue in this mode, maintaining low queuing delay.

Figure 5.27c shows that both flows achieve very good bandwidth sharing in average. It also

shows that when HLDG flows enters probe mode, it loses some bandwidth which is quickly



5.3 Enhancing HLDG coexistence with loss-based flows 173

0 50 100 150

0

50

100

Time (s)

D
e
te

c
ti
o
n
 h

e
u
ri

s
ti
c

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
● ● ●

●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
● ● ●

●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
● ● ●

●
●
●
●
●

●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●
●
●
●
●
● ● ●

●
●
●
●
●
●

●
●
●
●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
● ●

●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
● ● ●

●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
● ● ●

●
●
●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●

●

●

●
●
●
●
●
●
●
●
●

● ●
●
●
●
●
●
●
●

●
●
●
●

●

●

●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●

●
●
●
●
●
●
●
●
●
●

● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●

●
●
●
●

0

100

200

300

400

C
W

N
D

 (
K

iB
)

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●●●●●●
●
●●●●●●
●●
●●●●●●●●●●●●●●

●●
●●

●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●

●●
●●

●●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●
●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●

●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●
●●●●●●●●●
●●
●●
●●

●●●●●
●●
●●
●●
●●
●●●●●●●●●
●●●●
●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●

●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●

●●
●●
●●

●●●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●

●●
●●
●●

●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●

●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●

●●
●●

delay mode delay modeHLDG in loss mode

LBF

 detected

exit

loss modeProbe phase cwnd restoring phase

packet loss

● ●HLDG CUBIC Detection

(a) Loss-based flows detection heuristic and cwnd versus time

●●●
●●

●●
●●
●
●

●●
●●
●●
●●
●
●●
●●
●
●●
●●
●
●●
●
●●
●●
●●
●
●●
●
●●
●●
●
●●
●●
●●
●●
●
●●
●●
●●
●●
●
●●
●●
●●
●●
●
●

●●●
●
●
●

●●
●
●●●●
●●

●●●
●●
●

●●●
●
●●

●●
●
●●●●
●
●●
●
●●
●
●●
●
●●
●●

●●●
●●
●

●●
●
●●
●
●●
●
●●
●
●

●●●
●
●
●●
●●

●●
●
●●
●
●

●●
●
●●
●●

●●
●
●●
●
●●●●
●
●●
●
●●
●
●

●●●●
●
●
●●
●

●●●
●
●
●●
●
●●
●
●●
●
●●
●
●

●●
●
●●
●
●

●●
●
●

●●
●
●●●●
●
●●
●●

●●
●
●●
●
●●
●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●
●●
●
●

●●
●
●●
●
●●●●
●
●●
●●

●●●
●
●
●●
●
●●●●
●●

●●
●
●●
●
●●●●
●
●●●●
●
●●
●
●●
●●

●●
●●

●●
●●

●●
●
●●
●
●●
●
●●●●
●●

●●
●
●●
●
●●
●
●

●●
●
●●
●
●●
●
●●●●
●
●

●●
●●

●●
●
●●●●
●
●●●●
●
●●
●
●●
●
●●
●
●●
●
●●●●●
●●●●●
●
●●●●
●●

●●●●●
●●●●●
●
●●
●
●●
●
●●
●
●●
●
●●●●
●
●●
●
●●
●
●●
●
●●
●●

●●
●●

●●
●●

●●●●●
●●
●●●●●●●
●●
●

●●●
●●●●
●
●●
●
●●
●
●●
●
●

●●
●
●●
●●

●●
●●

●●
●●

●●●●
●
●●
●
●●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●●
●
●
●●
●
●●
●
●

●●
●
●●
●
●●
●
●

●●
●
●●●●
●
●

●●
●
●●●●
●
●●
●
●●●●
●
●●●
●●●
●●

●●●
●●●●
●●

●●
●
●●
●
●●●●
●
●●●
●●
●

●●
●●

●●
●
●●
●
●●
●
●●
●
●●
●
●●
●●

●●
●●

●●
●
●●
●●

●●
●
●

●●
●
●

●●
●●

●●
●
●●
●
●●
●●

●●
●
●●●●
●
●●
●
●

●●●●
●●

●●
●
●●
●
●●●
●●●●
●
●●
●
●●●●
●●

●●
●
●●
●
●●●●●●
●
●●
●
●●●●
●●

●●
●
●

●●
●
●●
●
●

●●
●
●●●●
●
●

●●
●
●●
●
●●●●
●
●●●●
●
●●
●
●●
●
●●●
●●●
●
●●
●
●●
●
●●
●
●

●●●●
●
●●
●
●●●●●
●●●
●●
●

●●

●●

●●
●
●●
●
●
●●●
●●

●

●
●

●
●

●●
●●
●●
●●
●●
●●
●
●●
●●
●
●●
●●
●
●
●●
●●
●
●●
●●
●●
●●
●
●●
●●
●
●●
●
●●
●●
●
●●
●●
●
●●
●
●
●●

●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●

●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●
●●
●●●
●
●●●

●●

●
●●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●

●
●●

●●
●●
●●
●●
●
●●
●●

●●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●
●●●
●●
●●
●
●●
●●
●●
●●
●
●●

●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●
●
●●
●●
●●
●
●
●●
●●●
●●
●●●

●●●●●●●
●●
●●
●
●●
●●
●●
●●
●●

●
●●
●●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●
●
●●
●●
●●
●●

●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●● ●

●●●
●●
●●
●
●●
●
●
●●
●●
●●
●●●●

●●
●

●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●●●●

●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●●
●
●●
●●
●●●

● ●●
●●
●
●●
●
●●
●
●●
●●

●●●

●

●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●●
●
●●
●
●
●●
●
●
●●
●
●●
●
●●
●
●●
●
●●
●●
●
●●

●
●

●●
●●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●

●●
●●
●
●●
●●
●●
●●
●

●●

●
●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●●
●●
●
●●●
●●

●
●
●

●●
●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●●
●●
●
●●
●
●●
●●
●●

●
●●

●●
●●
●●
●●
●●
●
●
●
●
●
●

●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●
●●
●●
●
●●
●●●

●
●●

●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●●
●●
●
●●●
●●●●
●●
●

●●●●●●●
●
●●
●
●
●
●●
●●
●●●●
●●●●●
●

●

●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●
●●●
●●
●●
●
●●

●●

●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●
●●●
●
●
●●●●

●●●●●●●●
●●
●●
●●
●
●●
●●
●●
●●●●

●
●●

●

●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●
●●
●
●●
●●
●●
●●
●●●
●

●

●●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●●

●●
●
●

●●
●●
●●●●●●

●●
●●
●
●●
●
●●
●
●●
●●
●●
●
●
●●
●●
●
●●
●●
●●
●●
●
●●
●●
●●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●
●●
●

●
●
●
●
●●●●●●
●●

●●
●
●●●●
●
●●
●●

●●
●
●●
●
●●
●
●●
●
●●
●
●

●●
●
●●
●
●●
●
●●●
●●
●

●●●
●●●
●
●●
●
●●
●
●

●
●●
●●
●
●●●
●●●●
●
●●●●
●●

●●
●
●

●●●●
●
●●
●
●

●●
●
●●
●●

●●
●
●●●
●●
●●●●●
●●
●●
●
●

●●
●
●●●●
●●

●●
●
●●
●
●●
●
●●●●●●
●●

●●
●●

●●
●
●●●●
●
●

●●
●
●●●●●●
●
●●
●
●●
●
●

●●
●
●●●●
●●

●●
●●

●●
●
●●
●●

●●
●
●●●●
●
●●●●
●
●●
●
●●
●●

●●
●
●●●●
●
●●●
●●●●●●
●●

●●
●
●●
●
●

●●●
●●
●●●
●●●
●
●●
●
●●
●
●●
●
●●●●●●
●
●●
●●

●●
●
●●
●
●●
●
●●
●
●●
●●

●●
●●

●●
●
●●
●
●●
●●

●●
●
●●
●
●●
●
●●
●
●●
●
●●
●●

●●
●●

●●
●
●●●●●●●●
●
●

●●●
●●
●

●●
●●

●●
●
●●
●
●●
●
●●
●
●●
●
●●●●●●
●
●●●
●●●●●●
●
●●
●●

●●
●
●●
●
●●
●
●●
●
●●
●
●

●●
●
●●
●
●●●●
●●

●●
●●

●●●●
●
●●
●
●●●●
●
●●●●
●●

●●●●
●
●●
●
●●●●
●
●●●●
●●

●●
●●

●●●
●●
●

●●
●●

●●
●●

●●
●
●●
●
●●●●
●
●●
●●

●●●●
●
●●
●
●●
●
●

●●
●
●●●●
●
●●
●
●●●
●●
●●
●
●●●●
●
●●
●●

●●
●
●●
●
●●●●
●
●●
●
●●
●●

●●
●
●●●●
●
●

●●
●
●●●
●●●●●●
●
●

●●
●
●●
●
●●
●●

●●
●
●●
●
●●
●
●●
●
●

●●
●●

●●
●
●●●●●●
●●

●●
●
●●●●●
●●
●●
●
●

●●
●●

●●
●●

●●
●
●

●●●

0 50 100 150

0

50

100

150

200

250

300

350

Time (s)

Q
u
e
u
e
in

g
 d

e
la

y
 (

m
s
)

delay mode delay modeHLDG in loss mode

LBF

 detected

exit

loss mode

(b) queuing delay versus time

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●
●

●

●

●

●

●●
●

●
●●●●●●●●●

●
●●●●●

●●
●

●

●

●●

●

●

●
●
●●
●

●

●

●●

●

●

●
●●

●

●●●
●
●
●
●●
●
●
●
●●●
●●
●●●
●●
●

●

●

●●

●

●

●
●
●
●●

●

●

●●

●

●

●
●●

●

●
●
●●●
●●
●
●●
●
●
●
●●●●●

●
●
●

●

●

●
●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●
●
●
●
●●●●●●

●
●
●●●●●

●●
●
●●

●

●

●●

●

●

●
●
●
●●

●

●

●
●

●

●

●●●●

●
●
●
●
●●●●●

●
●●
●
●
●
●●●
●
●
●
●

●

●

●
●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●●

●

●
●●

●
●
●
●●
●●
●
●●
●●●●

●●
●●

●

●

●

●

●

●

●

●●●
●
●●

●

●
●
●

●

●●●

●

●
●●●
●
●
●
●●●●

●
●
●●●●●

●
●
●●

●

●
●
●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●

●
●
●
●●●●

●●
●●●
●●

●

●

●●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

0 50 100 150

0

2

4

6

8

10

12

Time (s)

T
h
ro

u
g
h
p
u
t 
(M

b
it
s
/s

)

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●
●

●

●

●

●

●●
●

●
●●●●

●●●●
●
●
●●●●●●●●

●

●

●●

●

●

●
●
●
●●

●

●

●●

●

●

●
●●

●

●●
●
●
●
●
●
●
●
●
●
●●●
●●
●●●
●●
●

●

●

●●

●

●

●
●
●
●●

●

●

●●

●

●

●
●●

●

●
●
●●●
●●
●
●●
●
●
●
●●
●●
●
●
●
●

●

●

●
●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●
●
●
●
●●●●●

●
●
●
●●●●●●●

●
●●

●

●

●●

●

●

●
●
●
●●

●

●

●
●

●

●

●●
●●

●
●
●
●
●●●●●

●
●●
●
●
●
●●
●
●
●
●
●

●

●

●
●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●●

●

●
●●
●
●
●
●●
●●
●
●●
●●●●●●

●●

●

●

●

●

●

●

●

●●●●
●●

●

●
●
●

●

●
●●

●

●

●●●
●
●
●
●●●●

●
●
●●●
●●
●
●
●●

●

●
●
●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●

●
●
●
●●●●●●

●●●
●●

●

●

●●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

delay mode delay modeHLDG in loss mode

● ●HLDG CUBIC

(c) Throughput versus time

Figure 5.27: HLDG mode switching when competing with CUBIC
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Table 5.2: HLDG bandwidth share percentage

RT Tbase(ms)

10 40 180 240 340

B
ra

te
(M

b
p

s) 1.5 47% 45% 40% 39% 36%

4 57% 49% 47% 48% 32%

12 52% 46% 44% 34% 40%

25 43% 40% 25% 35% 21%

taken by CUBIC. However, HLDG recovers as soon as cwnd is restored.

5.3.3 HLDG coexistence Evaluation

In the previous section we proposed an adaptive scaling parameter coupled with a new opera-

tional mode selection state machine in order to improve HLDG performance when coexisting

with loss-based flows. We also ran a simple experiment to verify its functionality. In this

section we perform a complete evaluation of our algorithm.

We conduct experiments consisting of one HLDG flow competing with one CUBIC flow

for bottleneck capacity. The bottleneck emulates {1.5, 4, 12, 25}Mbps bandwidth, RT Tbase =

{10, 40, 240}ms, with buffer size = {1, 2, 4, 6, 8}BDP. The HLDG flow starts first and runs

for 150 seconds. CUBIC starts at t=10s and runs for 100 seconds. Traffic is generated using

the iperf tool.

We measure average throughput for each flow individually for the period between t=20s

and t=110s (i.e. 10 seconds after the CUBIC flow begins) to give time for flows to stabilise.

Figure 5.28 plots the results for this experiment.

In general, the performance of HLDG is significantly better than that for CDG (see Figure

4.16) at large buffer sizes that would be typically found in the home environment.

At 1.5Mbps bandwidth the HLDG flow achieves approximately equal or higher average

throughput than CDG for all scenarios.

Generally speaking, HLDG flow achieves higher utilisation than CDG at 4 Mbps. HLDG

performance decreases with small buffer sizes at 10ms RTT ( < 6 BDP buffers at 10ms RTT

and < 4 BDP buffer at 40ms RTT). At higher RTT and buffer sizes, HLDG achieves fair

bandwidth share except at 240ms RTT and 8 BDP (640 packets) buffer size. HLDG is unable

to achieve parity due to the very high queuing delay. In this case, the queuing delay can

reach 1920ms, causing HLDG to enter probe mode for 7680ms on packet loss. This gives

an opportunity for the CUBIC flow to utilise more bandwidth, decreasing HLDG throughput
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Table 5.3: CDG bandwidth share percentage

RT Tbase(ms)

10 40 180 240 340

B
ra

te
(M

b
p

s) 1.5 21% 16% 13% 11% 11%

4 8% 8% 5% 6% 5%

12 5% 4% 4% 3% 5%

25 2% 3% 2% 2% 0.6%

significantly.

At 12 and 25 Mbit/s, HLDG performance is largely better than CDG except for low RTT

coupled with small buffers.

Figure 5.29 plots the throughput improvement of HLDG over CDG when competing with

CUBIC for bottleneck bandwidth. When RTTbase = 10ms, HLDG provides improvement up

to 120% over CDG at 1.5Mbps. However, HLDG performs worse than CDG when bandwidth

is {4, 12, 25}Mbps and buffer size is {1, 2, 4}BDP.

When RT Tbase = 40ms, HLDG achieves throughput up to 22 times better than CDG under

same conditions. HLDG provides much better coexistence when buffer size > 2 BDPs. For

small buffer size scenarios, HLDG and CDG perform similarly.

At RT Tbase = 240ms, HLDG clearly improves performance at all buffer sizes and band-

widths due to its mode switching technique. HLDG is able to achieve up to 4500% more

throughput than CDG when bandwidth is 25Mbps and buffer size is 2 and 6 BDP.

Although HLDG provides more achievable throughput than CDG, it still cannot achieve

~50% when coexisting with loss-based flows under many scenarios (see Figure 5.28). More

work is needed to further improve HLDG coexistence mechanisms. Even so, HLDG is still

able to perform reasonably in many realistic scenarios and does not starve.
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Figure 5.28: HLDG does not starve with compete with CUBIC
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Figure 5.29: HLDG throughput improvement over CDG when coexisting with a CUBIC flow

We note that HLDG can achieve better throughput if HLDG backs off cwnd to the max-

imum of cwndi×βdelay and BDP× γ (as mentioned in section 5.2.5). However, we did not

enable this option in our experiment to ensure that HLDG introduces as low a queuing delay

as possible.

As we evaluated CDG using a buffer size equivalent to 340ms in Section 4.3.1, we re-

run this experiment with HLDG to observe the performance of HLDG under these network

condition. This experiment consists of one HLDG flow competing with one CUBIC flow

over Brate={1.5, 4, 12, 25}Mbps bottleneck bandwidth. The bottleneck emulates paths with

RT Tbase={10, 40, 180, 240, 340}ms and has 340ms worth of bottleneck buffer size. The

bottleneck bandwidth and RT Tbase are selected based on the experimental methodology in

Section 3.7. The HLDG flow starts first and the CUBIC flow starts at t=10s. The CUBIC flow

runs for 100 seconds and the total experiment lasts for 150 seconds. Average throughput is

measured for each flow individually for the period between t=20s and t=110s.

Figure 5.30 depicts HLDG throughput improvement over CDG when competing with CU-

BIC TCP. This figure reveals significant improvement for most testing scenarios except at

1.5Mbps. In these scenarios HLDG does not result in much improvement in throughput as
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Figure 5.30: HLDG throughput improvement over CDG when coexisting with a CUBIC flow.
Bottleneck buffer size is set 340ms × bandwidth.
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Figure 5.31: Bandwidth sharing between a HLDG and CUBIC flows competing for bottleneck
capacity. Bottleneck buffer size is set 340ms × bandwidth.

CDG already achieves acceptable throughput in these conditions. On faster network links,

however, HLDG outperforms CDG for all base RTTs.

Figure 5.31 compares the average throughput of HLDG and CUBIC flows for each sce-

nario. In general, the HLDG flow realises between 25% to 52% bandwidth share in all sce-

narios. Compared to earlier CDG experimental results (shown in Figure 4.15), HLDG clearly

achieves better performance. Large buffer sizes allow HLDG loss-mode to better utilise the

buffer during the competition phase and achieve near-parity with CUBIC. Table 5.2 shows the

bandwidth share percentage for the experiment calculated as HLDG throughput divided by

the total utilised bandwidth. The results show that HLDG reduces its coexistence capability

as the path BDP increases. However, HLDG achieves significantly higher performance for all

scenarios compared with CDG results as shown in Table 5.3.



5.4 HLDG slow start 179

5.4 HLDG slow start

It is clear that Standard TCP SS side-effects are not in-line with CDG goals. Therefore, CDG

uses the delay gradient signal to find a proper slow-start exit point before long queues build

up in the bottleneck. As we previously discussed the issues of this mechanism in Section

4.4, CDG SS underestimates bottleneck capacity in large BDP paths, while it overestimates

available capacity when path BDP is small. This leads to high queuing delay or low throughput

respectively.

5.4.1 HLDG slow start algorithm

HLDG modification

HLDG avoids premature slow start termination by only using gmin,n to exit slow start.

A remedy to CDG premature slow start termination (see Section 4.4) is to use only gmin,n gra-

dient measurement to exit SS while ignoring gmax,n measurement. Using only gmin,n protects

against early exit due to temporary packet transmission bursts.

gmax,n is ignored as this measurement is calculated based on RT Tmax,n. RT Tmax,n represents

the highest delay seen in an RTT and includes gradients of temporary delay spikes. Since the

slow start phase involves packet bursts that increase every RTT. gmax,n will be a large positive

after a few RTTs, even when cwnd is well below BDP.

gmin,n is calculated based on RT Tmin,n and it indicates the state of the queue regardless of

temporary RTT spikes caused by TCP sending bursts. gmin,n increases only when the queue

grows and never drains during an RTT round. This occurs only when the bottleneck is actually

congested. Moreover, we ignore the first gmin,n sample since it is based on the bursty initial

window transmission.

After patching the CDG SS code, we conduct the same experiment in Section 4.4. This

experiment consists of a single modified CDG flow traversing a bottleneck that emulates links

with Brate={1.5, 4, 12, 25, 50}Mbps and RT Tbase={10, 40, 180, 240, 340}ms. Bottleneck

FIFO buffer size is set to 2000 packets and the Droptail mechanism is used. This large buffer

size is selected to prevent packet loss since we explore the performance of the delay gradient

congestion signal during slow start.

Table 5.4 shows the percentage of ssthresh to the path BDP (ssthresh/BDP)×100 for each

test. We extract ssthresh just after the modified CDG switches from SS to CA phase. This table

reveals that the modified CDG SS produces a better bandwidth estimation with less premature

SS termination. However, slow start terminates late in many situations leading to large cwnd
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Table 5.4: Ratio of ssthersh to path BDP for CDG SS after using only gmin,n for exiting slow-
start phase

RT Tbase(ms)

10 40 180 240 340
B

ra
te

(M
b

p
s)

1.5 2556% 641% 142% 165% 178%

4 961% 240% 185% 139% 100%

12 476% 265% 314% 71% 175%

25 509% 286% 340% 264% 187%

50 572% 323% 170% 304% 314%

and ssthresh values. This bottleneck bandwidth overestimation leads to unnecessary high

latency and packet loss for shallow buffers. The cause is that modified CDG checks for SS

exit points once every RTT. As cwnd doubles each RTT during SS, congestion detection occurs

late, causing cwnd to be large. Additionally, some congestion events are randomly ignored due

to probabilistic back off.

Our solution for late slow start termination is inspired by [130] and that HLDG already

uses BDP estimation. The idea is to set ssthresh to the estimated BDP instead of an arbitrary

large value during SS. This allows capping ssthresh to the upper limit to prevent high queuing

delay.

As soon as a BDP estimation sample is ready, HLDG sets ssthresh to that value. BDP

is calculated as Berate × RT Tebase where Berate is the estimated bottleneck bandwidth and

RT Tebase is the estimated base RTT (see Section 5.2.6). During SS, cwnd increases according

to standard TCP SS i.e. doubles every RTT.

HLDG SS relies on the passive ACK train technique similar to [72] instead of using a

packet-pair technique [131] to estimate available bandwidth Berate during SS. The packet-pair

technique suffers from overestimation when there is cross traffic in the reverse path [132]

and requires the sender to actively transmit a back-to-back train of packets to probe the path.

The ACK train technique is similar to the bandwidth estimator from Equation 5.5 but using

measurements over a shorter period than one RTT. A full RTT period is not usedfor the mea-

surement is because TCP typically does not start transmitting with large cwnd. Many TCP

implementations use an initial window of 10 MSS. If the measurement is performed over an

RTT period, then the bandwidth will be 10×MSS/RTT which is less than the actual bottle-

neck bandwidth if BDP > 10×MSS.

Since slow start already contains transmission bursts, we can exploit these bursts to mea-

sure the bottleneck bandwidth. We found that using 6 to 9 consecutive ACK samples within
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Figure 5.32: ACK train bottleneck bandwidth estimation

one transmission window can produce acceptable bandwidth estimation. By using an IW of

ten MSS with delayed acknowledgement mechanism enabled, the consecutive ACKs are re-

ceived within three RTT from the beginning of the connection. As such, ssthresh is set to BDP

at the beginning of the third RTT. We use 8 ACK samples in our implementation.

Assume that t1st , t9th are the times at receiving first and ninth ACK in a window respec-

tively. Further, assume AcktotalBytes is the total bytes acknowledged by the first eight ACKs.

The estimated available bandwidth Berate is calculated as per Equation 5.15. Figure 5.32 illus-

trates ACK train bandwidth estimator.

Berate =
AcktotalBytes

t9th− t1st

(5.15)

HLDG modification

HLDG uses both an ssthresh limiting mechanism and delay gradient signal to terminate

slow start.

HLDG SS uses both ssthresh limiting mechanism (using ACK train) and delay gradient

signal to terminate slow start. The ssthresh limiting mechanism in SS only estimate predicts

total bottleneck bandwidth when the bottleneck has a short or no queue.

Since HLDG maintains low queuing delay, bottleneck queues will include very few pack-

ets. Therefore, when a new flow joins a bottleneck and injects a train of packets, the queue

will include mostly packets from the new flow. As a consequence, the ACK train arrives

at the sender at a rate similar to if no other flows are sharing the bottleneck. This leads to

overestimating ssthresh and a spike in queuing delay. Using the delay gradient signal to ter-

minate SS can somewhat mitigate this issue since the sending rate increases gradually giving

an opportunity for other flows to share the bandwidth.
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Table 5.5: Ratio of ssthresh to path BDP for CDG SS after using only gmin,n for exiting slow-
start phase

RT Tbase(ms)

10 40 180 240 340
B

ra
te

(M
b

p
s)

1.5 202% 121% 101% 101% 99%

4 135% 106% 99% 98% 97%

12 116% 102% 98% 97% 98%

25 105% 102% 99% 98% 97%

50 102% 84% 98% 96% 96%

The pseudo code for the full HLDG SS algorithm is shown in Algorithm 5.3. The algo-

rithm includes both ssthresh limiting (using ACK train) and delay gradient signal to terminate

slow start.

5.4.2 Simple HLDG SS evaluation

We conduct the same experiment from Section 5.4.1 using HLDG slow start. Table 5.5 shows

the percentage of ssthresh to the path BDP (ssthresh/BDP)× 100 for each test. We extract

ssthresh value just after HLDG switches from SS to CA phase. This table shows that HLDG

SS terminates setting ssthresh to better BDP estimation in all scenarios with 0.096 average

error ratio.

It is possible that HLDG SS might experience early termination from the slow start phase.

One example would be when multiple flows join a bottleneck and each flow starts immedi-

acy after the previous flow finishes emitting its IW burst. In this case, each flow will observe

positive delay gradients, resulting in them terminating SS early. Such extreme circumstances

require further research and investigation to improve the performance of the HLDG SS algo-

rithm.

5.5 HLDG in lossy environments

CDG uses queue state inference on packet loss events to distinguish between congestion-

related and random losses. If the queue state is full upon packet loss, CDG considers the

loss is due to network congestion and halves cwnd; otherwise it preserves cwnd value during

loss recovery. We described this mechanism in Section 2.7.3. According to our discussion in

Section 4.3.3.2, the CDG queue state heuristic is not robust and produces a high false negative
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Algorithm 5.3 Pseudo code for HLDG slow-start

1: Initialisation :
2: AckCount← Agg_AckBytes← 0
3: RT Tmin,n← 8

4: RT Tmin,n−1← 0

5: On each ACK:
6: RT Tmin,n←min(RTTmin,n,RTT )
7: if ssthreh < cwnd then

8: #ssthresh cappingSS

9: if is_new_measurement_cycle() then

10: AckCount← Agg_AckBytes← 0
11: stime = NOW

12: else if AckCount == 8 then

13: ssthresh← agg_ack_bytes/(NOW − stime)
14: if cwnd > ssthresh then

15: cwnd← ssthresh

16: end if

17: end if

18: Agg_AckBytes← Agg_AckBytes+AckBytes

19: AckCount← AckCount +1

20: #delay gradientSS

21: if is_new_measurement_cycle() then

22: if RT Tmin,n−1 > 0 then

23: gmin,n← RT Tmin,n−RT Tmin,n−1

24: if probabilistic_backo f f (gmin,n) then

25: ssthresh← cwnd

26: end if

27: end if

28: RT Tmin,n−1← RT Tmin,n

29: RT Tmin,n← 8

30: end if

31: end if

32: On each packet loss:
33: if ssthreh < cwnd then

34: ssthresh← cwnd ∗βloss

35: end if
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Figure 5.33: HLDG performs similar or better than CDG on lossy link.

error ratio for queue full state inference. That means that CDG will not react to congestion

related losses when the queue state is wrongly inferred, causing a bad impact on network

stability.

Additionally, queue state heuristic design does not take AQM bottlenecks into considera-

tion. AQM bottlenecks drop packets when queue lengths (in size or time) exceed a specific

threshold. AQMs, such as RED [43], PIE [14, 15] and FQ-PIE [17], drop packets randomly

when congestion is detected. These packet drops are inferred by the CDG queue state heuristic

as non-congestion related losses. Ignoring such losses leads to high queuing delay and packet

losses that affect all flows sharing the bottleneck.

HLDG disables the loss tolerance mechanism to improve the shadow window mechanism.

We used a TCP Westwood [119] like mechanism to provide better throughput in the existence

of random losses. Instead of ignoring cwnd decay when packet losses are detected, the cwnd

is set to the estimated BDP. Since HLDG already uses BDP estimation in congestion control,

implementing this mechanism is simple. To prevent cwnd from being larger than current

window size or smaller than βdelay× cwndi when packet loss is detected, HLDG sets cwnd to

the estimated BDP upon packet loss only when BDP < cwnd ∧BDP > βdelay× cwnd.

We explore the effectiveness of this solution through conducting an experiment consist-

ing of a single HLDG flow traverses a bottleneck emulating a link with Brate={1.5, 4, 12,
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25}Mbps, random loss ratio={0.1%, 1%} and RT Tbase={10, 40, 180, 240, 340}ms. Bottle-

neck FIFO buffer Droptail mechanism is used with one BDP buffer size. We also repeat the

same experiment but for CDG and CUBIC for comparison purposes with HLDG.

Figure 5.33 plots average throughput for the flows calculated between t=10s and t=60s for

HLDG, CDG and CUBIC. Generally speaking, HLDG realises very good throughput at small

path RTTs.

At Brate=1.5Mbps and 0.1% random loss, HLDG achieves around 80% bandwidth utili-

sation when RT Tbase = 40ms. At higher path RTT, it utilises around 65% of the bandwidth.

CDG achieves higher throughput than HLDG when RT Tbase ≤ 40ms. However, it realises

lower throughput at higher path RTT. On the other hand, CUBIC performs the best in this

scenario due to the larger CUBIC decrease factor and the faster cwnd growth function. Addi-

tionally, path BDP in this scenario is small which makes cwnd recovery fast.

At Brate=1.5Mbps and 1% loss, CDG and CUBIC perform similarly. They achieve around

85% utilisation when RT Tbase ≤ 40ms while HLDG realises around 65% utilisation. At higher

base RTTs, the three algorithms perform similarly with around 45% bandwidth utilisation.

CDG performs a bit better in these scenarios.

HLDG performs better at 4Mbps than in 1.5Mbps scenarios. When the loss ratio is 0.1%,

HLDG and CUBIC obtain similar bandwidth with slightly advantage for CUBIC flow. When

RT Tbase = 10ms, HLDG, CDG and CUBIC achieve between 90% to 100% link utilisation.

When RT Tbase = 40ms, they realise between 80% to 95% link utilisation. When RT Tbase =

180ms, HLDG and CUBIC obtain about 95% of the bandwidth while CDG uses only 45%. At

higher RTTs, HLDG and CUBIC obtain between 60% to 80% of the bandwidth while CDG

achieves around 45%.

At Brate=4Mbps and 1% loss, HLDG and CDG perform almost identically. when RT Tbase≤

40ms, they obtain around 80% of the bandwidth. CUBIC, however, realise around 95% band-

width at when RT Tbase = 10ms and 55% when RT Tbase = 40ms. At higher RTTs, the three

algorithms perform similarly with around 25% link utilisation.

At higher bandwidths, the three algorithms perform similarly with a slight advantage to

HLDG in almost every test. In Brate=12Mbps and random loss ratio is 0.1% scenarios, they

achieve around 95% utilisation when RT Tbase = 10ms and about 85% when RT Tbase = 40ms.

At higher base RTTs, the bandwidth usage drops as path BDP increases. When RTTbase ≥

180ms, HLDG realises between 25% and 50% while CDG and CUBIC obtain between 25%

and 30% bandwidth. When random loss ratio is 0.1%, throughput decreases significantly as

path RTT increases. HLDG and CDG perform better than CUBIC but all of them utilise 10%

or less of the bandwidth.

In Brate=25Mbps scenarios, HLDG can still perform better than CDG and CUBIC. How-
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ever, all of the algorithms utilise less than 5% when RT Tbase ≥ 180ms and random loss ratio

is 1%.

Low throughput at large path BDP is due to the bandwidth estimator being unable to

obtain an accurate estimation and cwnd requiring a longer time to recover. Packet losses lead

to smaller cwnd and never reaching BDP. This results in sending stalling until the next RTT.

As bandwidth is calculated based on ACKs received in the previous window, the estimator

underestimates the bandwidth due to sending stall.

All algorithms suffer from low throughput at large BDP path due to spending most of

the time recovering from losses which takes longer as RTT increases. They also suffer from

transmission time-out due to many packet losses during loss recovery.

In summary, HLDG can perform well in a lossy environment due to the bandwidth estima-

tor. Compared to CDG and TCP CUBIC, HLDG obtains better or similar throughput for most

scenarios on the same testing conditions, especially at higher data rates. Although loss type

differentiation can provide better throughput in lossy environments, it can impact negatively

if the heuristic fails to infer congestion-related losses. This aspect requires further study and

research to produce a robust heuristic to produce accurate differentiation. Therefore, we leave

this aspect to future work study.

5.6 Conclusions

Coexistence with loss-based TCP flows is one of the major issues preventing delay-based

TCP from being deployed globally. CDG uses the ineffective back-off and shadow window

mechanisms to improve coexistence with conventional TCP flows. These mechanisms do

not work well in many scenarios. Since HLDG maintains a lower queuing delay than CDG,

it is exposed to starvation in many scenarios due to the aggressiveness of competing loss-

based algorithms. To better cope, HLDG adds further coexistence mechanisms to enhance

performance.

Firstly, HLDG exploits the G parameter of probabilistic back-off function. It has been

shown that the G parameter has an impact on the aggressiveness of the protocol. Instead of

using a constant value for G, HLDG adaptively calculates G based on the current estimated

queuing delay. As queuing delay increases, G increases exponentially. This mechanism allows

HLDG to achieve better coexistence in small bottleneck buffer size scenarios. However, it is

less effective when the bottleneck buffer size is large.

To improve coexistence in large buffers, HLDG deploys an explicit mode switching mech-

anism. HLDG detects competing loss-based flows based on queuing delay measurement and

transitions to CUBIC-like loss based mode. It keeps operating in this mode until it no longer
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detects the presence of loss based flows. The detection technique is enforced by a probe mode

in which HDLG enters a delay-based like temporary mode whenever packet loss occurs. This

mode ensures that any built-up queue in the bottleneck is drained when no loss based flows

are competing. If low queuing delay is observed, HLDG returns to delay mode, otherwise it

returns to the loss mode.

Our experimental results show reasonable bandwidth share of HLDG when competing

with loss-based TCP, namely CUBIC. HLDG is able to achieve up to 3000% (810% in aver-

age) better throughput than CDG when competing with TCP CUBIC. However, HLDG is still

not perfect with respect to coexistence and need further work to improve coexistence mecha-

nisms. Additionally, this approach need to be evaluated for more scenarios including very low

rate (<1.5 Mbps) and high rate (>25Mbps), multiple HLDG and CUBIC flows, and a mix of

mice and elephant background flows.

CDG slow start suffers from premature termination, resulting in flow with low throughput

on large BDP paths. HLDG slow start relies on minimum delay-gradient measurements to

exit slow start and ACK train to prevent SS from overshooting. The ACK train technique is

used to estimate bottleneck bandwidth which is used to calculate path BDP. ssthresh is set

to BDP to protect SS from overshooting in case the delay-gradient SS mechanism does not

terminate in time. HLDG SS does not require receiver side modification or explicitly sending

back-to-back packets. The result shows that HLDG slow-start exits with a congestion window

between 96% - 200% of the path BDP compared to 1% - 800% for CDG slow-start. It is easy

to implement, and produces high throughput and low queuing delay with average 0.096 cwnd

to the path BDP error ratio when SS terminates.

Additionally, we showed that HLDG is tolerant to random losses better than CDG in most

testing scenarios. Instead of loss type differentiation, HLDG relays on TCP Westwood like

technique in which cwnd is set to the estimated BDP at packet loss events.





Chapter 6

Further HLDG evaluation

6.1 Introduction

In previous chapters, we described the HLDG algorithm and provided an evaluation for a wide

range of simple scenarios. However, we did not consider more complex scenarios and specific

types of network environments.

In many real-world situations, traffic does not involve one or two flows sharing a bottle-

neck. Multiple users and applications open concurrent connections with remote hosts. Even

the simple task of browsing a website on the Internet involves opening concurrent TCP con-

nections.

Additionally, FIFO with DropTail is no longer the only deployed mechanism on home

gateways due to renewed interest in deploying modern AQMs on home broadband services.

Modern Active Queue Management (AQM) has become a desirable feature for many routers

and home gateways due to global awareness of the Bufferbloat phenomenon [5].

In this chapter, we explore and provide preliminary results for HLDG algorithm perfor-

mance in more complex situations than we have considered so far. In particular we consider

multiple HLDG flows with homogeneous and heterogeneous path RTTs.

Additionally, we explore the performance of HLDG with bottlenecks that use modern

AQM, namely CoDel (Controlled Delay) [47], PIE (Proportional Integral controller Enhanced)

AQM [14, 15], FQ-CoDel (Flow-Queue CoDel) [16] and FreeBSD’s FQ-PIE (Flow-Queue

PIE) [17].

Finally, we explore the possibility of using HLDG to serve as a LPCC where HLDG ac-

quires lower throughput in the existence of competing conventional TCP flows.

The rest of this chapter is organised as follows. Section 6.2 explores HLDG inter-protocol

fairness for both homogeneous and heterogeneous path RTTs. Section 6.3 provides a prelim-

inary evaluation for HLDG under different modern AQM bottlenecks. Section 6.4 explores
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Table 6.1: Jain fairness index and average queuing delay for five HLDG flows sharing a bot-
tleneck emulating 12Mbit/s link and {10, 40, 180, 240, 340}ms path RTT

RT Tbase 10ms 40ms 180ms 240ms 340ms

Jain fairness index 0.999 0.999 0.998 0.993 0.976

max-min fairness index 0.981 0.915 0.88 0.80 0.63

Avg. queuing delay 12ms 9ms 6ms 5ms 5ms

using HLDG as low priority CC for time-insensitive background TCP bulk data transfer. We

conclude this chapter in Section 6.5.

6.2 Intra-protocol fairness

We conducted experiments consisting of five staggered-start HLDG flows traversing a 1000

packet FIFO bottleneck emulating a 12Mbps link and {10, 40, 180, 240, 340}ms path RTT.

Each flow starts 10 seconds after the previous one begins and runs for 5 minutes. Jain’s

fairness index (Equation 2.3) and max-min fairness index (Equation 6.1) are calculated for

each individual scenario when all five flows are actively competing (i.e. period between t=50s

and t=300). In Equation 6.1, xi represents throughput for the ith flow.

f airnessmax_min =
Min(xi)

Max(xi)
∀1≤ i≤ n (6.1)

6.2.1 Homogeneous path RTT

First, we evaluate the protocol fairness when all flows traverse the same path RTT. Table

6.1 shows Jain’s fairness index, max-min fairness index and average queuing delay for the

experiment. This table reveals that the HLDG flows achieve similar throughput with low

queuing delay for all testing scenarios. However, the fairness between flows decreases as

RT Tbase increases. This is due to cwnd dynamic (including back-off) being slower for higher

path RTTs, than in smaller RTT paths.

The max-min fairness index shows that a few flows achieve higher or lower throughput

than the other flows in higher RTT paths. This occurs because if one flow realises higher

throughput (randomly), other flows will obtain lower throughput until that flow backs off

multiple times, releasing some bandwidth for other flows.

Figure 6.1 shows throughput versus time for the 12Mbit/s and 40ms RT Tbase experiment

calculated using a moving window of 5 seconds with 10-sample interpolation. We can see
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Figure 6.1: Five HLDG flows sharing a bottleneck emulating 12Mbit/s and 40ms RT Tbase.
In this stacked area graph, each area represents individual flow throughput stacked above the
area of the previous flow. The entire graph represents link utilisation. Flow throughput is
calculated over a 5-second window with 10-sample interpolation.

that the link is fully utilised and each flow achieves similar throughput during the experiment

life-time.

6.2.2 Heterogeneous path RTT

RTT-unfairness is a well know issue for most end-to-end congestion control algorithms [177].

This results in flows traversing shorter RTT paths obtaining higher bandwidth than flows trav-

elling over longer RTT paths when they share a bottleneck. This happens mainly due to two

causes; 1) slower cwnd increases, and 2) backing off by a larger amount. Standard TCP [32]

increases cwnd by one MSS every RTT, causing cwnd to reach BDP faster for flows travers-

ing shorter RTT paths. As the BDP for longer paths is higher than for shorter paths, flows

with higher RTT require more RTT rounds to recover cwnd above BDP (or pushing a similar

number of packets to the bottleneck buffer) after back off.

The HLDG protocol also exhibits a similar issue but in a lower scale and in the opposite

manner where flows with higher RTT achieve higher throughput than flows traversing shorter

paths. This is due to the HLDG probabilistic back-off function being performed on every RTT

cycle. As a result, flows with smaller RTT have higher back off probability than flows with

larger RTT.

CDG remedies this issue by using the exponential factor in the probabilistic back off func-

tion (see section 2.7.2). However, this solution is not very effective, especially in HLDG
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Table 6.2: Jain fairness index and average queuing delay for five HLDG flows sharing a bot-
tleneck emulating 12Mbit/s link. Two flows traverse {90, 120, 260, 320, 420}ms RTT paths,
and three flows traverse {10, 40, 180, 240, 340}ms RTT paths

Flow 1,2 RT Tbase(ms) 90 120 260 320 420

Flow 3,4, 5 RT Tbase(ms) 10 40 180 240 340

Jain fairness index 0.993 0.97 0.99 0.992 0.959

max-min fairness index 0.787 0.682 0.77 0.784 0.532

Avg. queuing delay 12ms 12ms 8ms 7ms 5ms

where cwnd is set to a fraction of estimated BDP. Nevertheless, HLDG flows can reach better

fair-share in long-lived connections.

We repeat the same experiment but with two flows traversing a longer path (80ms higher

path RTT than the others) to explore HLDG performance in heterogeneous RTT scenarios.

This emulates real-life scenarios when multiple users/applications share a bottleneck and some

of them are connected to further servers than the others.

Table 6.2 shows Jain’s fairness index, max-min fairness index and average queuing delay

for the experiment. The results reveal that the flows maintain low average queuing delay sim-

ilar to the homogeneous path RTT experiment. Jain’s fairness index shows that the HLDG

flows achieve similar throughput with lower fairness for the 420ms/340ms scenario. How-

ever, the max-min fairness index shows low fairness between some flows, especially for the

420ms/340ms scenario. This mean that some flows achieve higher or lower throughput than

the other flows.

Figure 6.2 shows the throughput trajectory for 12Mbit/s with 40ms/120ms RT Tbase ex-

periment, calculated using a 5-second moving average window with 10 interpolated samples.

We can see in this figure, the link is fully utilised but flows 1 and 2 achieve slightly higher

throughput than the others due to fewer back-offs compared to the other flows.

6.3 HLDG and modern AQM bottlenecks

Active Queue Management (AQM) is a mechanism used to keep the bottleneck queues of

network nodes to a controlled depth, effectively creating short queues [42]. AQM replaces the

traditional DropTail mechanism. AQM targets loss-based TCP flows by dropping or marking

(with an ECN [4]) packets when bottleneck queuing delay reaches specified levels, causing

TCP to back-off earlier than would occur with FIFO queues. The potential for significant

reduction in overall round trip time (RTT) is motivating deployment of these new AQMs at
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Figure 6.2: Five HLDG flows sharing a bottleneck emulating 12Mbit/s link. Flow 1, 2 traverse
a 120ms RTT path and flow 3,4, 5 traverse 40ms RTT path

either end of shared, home broadband last-mile services. In Section 2.2.2, we briefly described

how modern AQM use queuing delay measurements to detect congestion inside the bottleneck

buffer.

In our work [98] we find that the interaction between AQM and delay-based flows can

lead to undesirable side-effects, impacting on protocol stability. If CC does not take AQM

existence into a consideration, different types of anomalies can affect the performance of

all flows sharing a bottleneck. In this section we briefly explore the performance of HLDG

through PIE (Proportional Integral controller Enhanced) [14, 15], FQ-CoDel (Flow-Queue

CoDel) [16] and FreeBSD’s FQ-PIE (Flow-Queue PIE) [17] AQMs.

We conduct an experiment consisting of five HLDG flows traversing a bottleneck emulat-

ing 12Mbit/s link and {10, 40, 180, 240, 340}ms path RTT. PIE, FQ-CoDel and Flow-Queue

PIE are used with 1000 packet buffer size. We repeat the same experiment with CDG and

CUBIC for comparison purposes.

Tables 6.3, 6.4 and 6.5 show Jain’s fairness index, link utilisation and packet count dropped

by AQM respectively for HLDG, CDG and CUBIC when PIE, FQ-CoDel and FQ-PIE are used

by the bottleneck. Jain’s fairness index shows that all algorithms perform similarly with the

best results achieved by CUBIC. In terms of link utilisation, CUBIC still achieves the highest

performance due to the cubic cwnd growth function and higher multiplicative β factor.

In PIE AQM scenarios, HLDG performs better than CDG over high RTT paths (≥ 180ms)

and is close to CUBIC performance. However, the number of dropped packets is much larger

with CUBIC due to its aggressiveness and using only the loss signal. When RT Tbase ={10ms,

40ms}, HLDG experiences no packet loss while CDG has a large number of packet drops,
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even larger than CUBIC. CDG experiences large number of packet drops due to false negative

detection for full queue state which prevents cwnd reducing.

At higher RT Tbase, HLDG experiences a small number of packet loss compared to CUBIC.

CDG experiences fewer losses since it does not achieve high link utilisation.

With FQ-CoDel, HLDG and CDG perform similarly with a smaller number of losses than

CUBIC. At RT Tbase ={10ms, 40ms}, HLDG experiences fewer losses than CDG while CDG

has fewer losses at higher RTTs.

With FQ-PIE, HLDG performs very similar to CUBIC but with much fewer packet drops.

CDG, on the other hand, suffers a higher number of packet losses at small RTTs and lower

performance at higher RTTs.

These results indicate that HLDG performs reasonability in AQM environments while

preserving a low number of packet drops. HLDG exhibits the best performance with low

packet loss when FQ-PIE is deployed in the bottleneck. It realises 90-98% link utilisation

compared to 77-100% for CDG and experiences 96% less packet loss than CDG. This is due

to the queuing delay induced by HLDG being similar to what the PIE AQM allows, as well as

the flow-queue flow separation mechanism.

Table 6.3: Jain fairness index for five flows traversing 12Mbps bottleneck with PIE, FQ-CoDel
and FQ-PIE AQM.

PIE FQ-CoDel FQ-PIE

RT Tbase

(ms)

HLDG CDG CUBIC HLDG CDG CUBIC HLDG CDG CUBIC

10 0.997 0.979 0.999 0.997 0.999 0.999 0.997 0.999 0.999

40 0.998 0.995 0.998 0.997 0.999 0.999 0.997 0.999 0.999

180 0.996 0.996 0.996 0.998 0.999 0.999 0.998 0.999 0.999

240 0.994 0.992 0.993 0.996 0.997 0.999 0.999 0.998 0.999

340 0.97 0.995 0.995 0.995 0.995 0.994 0.999 0.973 0.999
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Table 6.4: Link utilisation for five flows traversing 12Mbps bottleneck with PIE, FQ-CoDel
and FQ-PIE AQM.

PIE FQ-CoDel FQ-PIE

RT Tbase

(ms)

HLDG

%

CDG

%

CUBIC

%

HLDG

%

CDG

%

CUBIC

%

HLDG

%

CDG

%

CUBIC

%

10 99 100 100 98 100 100 98 100 100

40 98 99 100 97 98 99 98 99 99

180 94 86 96 89 88 96 97 87 98

240 91 82 91 84 82 94 94 84 96

340 86 77 88 76 77 92 90 77 92

Table 6.5: Dropped packets to total packets ratio for five flows traversing 12Mbps bottleneck
with PIE, FQ-CoDel and FQ-PIE AQM.

PIE FQ-CoDel FQ-PIE

RT Tbase

(ms)

HLDG CDG CUBIC HLDG CDG CUBIC HLDG CDG CUBIC

10 0 2.979 2.496 0.008 3.146 0.207 0 3.16 2.222

40 0 1.315 0.787 0.592 1.241 0.923 0 0.01 0.753

180 0.043 0 0.237 0.259 0.165 0.307 0.0055 0.071 0.863

240 0.059 0 0.457 0.199 0.044 0.317 0.054 0.006 1.098

340 0.049 0.005 0.634 0.145 0.011 0.334 0.087 0.009 1.188

6.4 HLDG as LPCC protocol

It was shown in [7] that CDG can efficiently be used to provide low priority transport for

time-insensitive background TCP bulk data transfer in home networks. The similarity between

HLDG and CDG in terms of congestion detection technique inspires us to introduce a LPCC

mode for HLDG.

HLDG modification

HLDG can optionally operate in low priority mode by disabling its coexistence mecha-

nisms.
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Figure 6.3: HLDG in LPCC mode achieves lower throughput when sharing a CUBIC for a
12Mbps bottleneck. Buffer size is 2 BDP.

Since HLDG reacts to network congestion earlier than loss-based flows, it can be used

as a low priority congestion control protocol by disabling the coexistence mechanisms. This

includes disabling the ineffectual back-off, shadow window, adaptive G and mode switching

mechanisms. To further reduce the impact of HLDG on other flows, the BDP back-off factor

(γ) can be set to 75%, allowing cwnd to decrease well below BDP. Further, a smaller G pa-

rameter can be used which increases HLDG sensitivity to RTT increase. However, this can

lead to lower throughput, even in the absence of competing conventional TCP flows.

After enabling the LPCC mode, we conduct an experiment consisting of an HLDG flow

and a CUBIC flow traversing a bottleneck emulating a 10Mbps link bandwidth and {10, 40,

180, 240, 340}ms RTTbase with a two BDP FIFO buffer. The HLDG flow starts first, with the

CUBIC flow starting at t=10s. The experiment lasts for 300 seconds.

Figure 6.3 shows the throughput boxplot of the HLDG flow and CUBIC flow for the ex-

periment. The figure reveals that HLDG in LPCC mode achieves much lower throughput than

CUBIC in large RTT paths. However, HLDG obtains about 18% of available bandwidth when

RT Tbase is 10ms. This occurs due to the small buffer size (20 packets) that results in a smaller

number of CUBIC to HLDG packets ratio. At larger path RTT, HLDG utilises less than 5%

of bandwidth.

This experiment demonstrates that HLDG running in LPCC mode is a promising low pri-

ority protocol that can effectively provide scavenger class transport without impacting on con-

ventional TCP flows. However, further research is needed to evaluate the protocol under more

scenarios and network settings.
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6.5 Conclusions

In this chapter, we performed some preliminary evaluations for HLDG in more complex net-

work scenarios. On HLDG achieves very good fairness between flows sharing a bottleneck in

both homogeneous and heterogeneous path RTTs. However, fairness between flows reduces

as path RTT increases due to slow cwnd dynamic. The results show that HLDG achieves

0.99 and 0.98 average Jain’s fairness index in homogeneous and heterogeneous path RTTs

respectively while keeping average queuing delay below 13ms.

We then evaluated HLDG when AQM, namely PIE, FQ-CoDel and FQ-PIE, are used at

the bottleneck instead of a FIFO buffer. We have shown that HLDG performs well in most

network settings and leads to a small number of packet drops by AQM. The results show that

HLDG achieves 94%, 89% and 95% average link utilisation under PIE, FQ-CoDel and FQ-

PIE respectively compared to 89% for CDG under the same conditions. HLDG experiences

only 3%, 24% and 4% of packet loss experienced by CDG when run through PIE, FQ-CoDel

and FQ-PIE AQM respectively. HLDG achieves the best performance when FQ-PIE is used

due to its flow isolation mechanism and the similar queuing delay allowed by PIE AQM and

HLDG.

We also performed a simple evaluation for HLDG in low priority mode. HLDG operates in

this mode by disabling the coexistence mechanisms and using a smaller γ factor. In this mode,

HLDG acts as a scavenger class transport, allowing the conventional TCP flows sharing a

bottleneck to obtain higher bandwidth than HLDG flows. The results show that HLDG in

LPCC mode obtains 5 - 18% bottleneck bandwidth when sharing a link with CUBIC.





Chapter 7

Future work and conclusions

7.1 Future work

Since its first deployment in 1987, TCP congestion control has earned significant attention

from both research and industrial communities due to its direct impact on transport protocol

performance. Work in this area has not stopped since then due to rapid advances in network

technologies, increasing demands from end users, the high complexity of the signal and net-

work setting variation that influence congestion. Further, the delay signal is highly affected

by network conditions, configurations, background traffic and application behaviours. Simi-

lar to other congestion control algorithms, there are always limitations to address, gaps to fill

and improvements to apply. Potential future work arising from this thesis is summarised as

follows.

Similar to other TCP CC algorithms, HLDG should be comprehensibly evaluated under a

wider range of scenarios before being deployed on the Internet. This involves further testing

HLDG with slower and faster links, multi-bottleneck configurations, different flow starting

sequences and with a mixture of background traffic. Additionally, evaluating HLDG over

the Internet between different points around the world can produce more realistic results that

reflect protocol performance. This also allows comparing performance between HLDG and

other protocols over realistic scenarios.

Our observations show that the CDG queue state heuristic produces inaccurate inferences

for many scenarios. This causes CDG to ignore back-off when congestion related losses occur

while the heuristic incorrectly infers a non-full queue. For this reason, HLDG disables this

loss-tolerance mechanism. An investigation into the causes for CDG’s low accuracy in queue

state detection is required to provide a CC protocol that provides high performance in lossy

environments without ignoring congestion-related packet loss.

HLDG uses the adaptive G function to reduce protocol sensitivity to delay gradient in-
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crease when competing with loss-based flows. The current function uses the queuing delay

measurement to infer the presence of competing loss-based flows, and change the G value as

required.

Packet pacing reduces TCP traffic burstiness, resulting in smooth traffic with stable delays.

HLDG can benefit from packet pacing in two aspects. Firstly, packet pacing leads HLDG to

detect permanent congestion rather than temporary congestion caused by a short packet bursts.

Secondly, packet pacing can improve the RT Tbase estimation mechanism by eliminating the

cwnd restoration impact at the beginning of the estimation cycle (5.2.6).

HLDG uses some parameters to control different parts of the algorithm. We set the default

parameters based on experimental observations and trading off multiple algorithm aspects.

However, a comprehensive analysis is required to tune these parameters for different network

configurations. Tuning these parameters requires conducting experiments over different sce-

narios. Therefore, a comprehensive experimental study should be conducted to find optimum

parameters for different network settings.

In Section 6.3, we performed a preliminary evaluation for HLDG under AQM environ-

ments. However, that evaluation included only simple scenarios under limited network con-

figurations. The results show that HLDG performs better under specific AQM (e.g. FQ-PIE)

than other AQMs (e.g. FQ-CoDel). A comprehensive theoretical and experimental analysis is

required to characterise the interaction between HLDG and different AQM schemes.

Finally, HLDG can be used to provide scavenger class transport in which HLDG flows

obtain lower bandwidth sharing then conventional TCP flows. We demonstrated how HLDG

performs in LPCC mode under simplistic scenarios (Section 6.4). However, comprehensive

evaluation and analysis are required to quantify HLDG in LPCC mode under different network

conditions.

7.2 Conclusions

The primary contribution of this thesis is to enhance the previously published CAIA Delay-

Gradient (CDG) CC algorithm to create the Hybrid Loss Delay Gradient (HLDG) CC algo-

rithm. HLDG is a sender-side dual-mode hybrid TCP congestion control algorithm for the In-

ternet that provides low latency, high throughput and coexists well when sharing a bottleneck

with loss-base flows. HLDG fixes various CDG shortcomings and flaws that we identified.

Our experimental results indicate that HLDG responds appropriately to network congestion,

does not cause heavy packet loss, and therefore, is safe to use on the Internet.

The development of HLDG has evolved into the following key contributions.

1. We experimentally evaluated and analysed CDG performance in different network set-
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tings to identify possible issues and the causes of these problems. We studied CDG

link utilisation in simple scenarios where only a single CDG flow traversing a bot-

tleneck. This helped us understand the relation between network congestion and the

delay-gradient signal, and identified protocol issues that lead to low link utilising in

high path RTT scenarios.

2. We evaluated CDG coexistence performance when competing with loss-based flows,

namely CUBIC. We found that CDG suffers from low throughput and starves in most

scenarios, especially in large buffer sizes. In addition to the congestion avoidance phase,

we evaluated and analysed the CDG slow-start phase and identified issues limiting slow-

start performance.

3. We proposed HLDG, a sender-side hybrid congestion control algorithm for the Inter-

net. HLDG fixes CDG low link utilisation issues by preventing unnecessary back-off in

which cwnd is smaller than the path BDP and the probabilistic back-off function triggers

congestion event. HLDG backs off cwnd to a portion of estimated BDP when congestion

is detected using the delay gradient signal, allowing HLDG to maintain high through-

put and low queuing delay. We evaluated HLDG performance under different network

settings and the results show significant improvement over CDG. Our experimental eval-

uation shows that HLDG realises up to 400% (54% in average) throughput improvement

over CDG in single flow scenarios without experiencing packet loss. HLDG is able to

maintain low queueing delay of no more than 20ms in the worst case.

4. We proposed a mode switching algorithm for HLDG which dynamically switches the

algorithm operation between delay and loss mode. In delay mode, HLDG reacts to the

delay-gradient signal while in loss mode it backs off only on packet loss. This allows

HLDG to provide improved performance when competing with loss based flows in large

buffer environments. Additionally, HLDG dynamically reduces protocol sensitivity to

delay increase based on the congestion level to improve protocol coexistence. Our ex-

perimental evaluation shows that the improved coexistence allows HLDG to achieve up

to 3000% (810% in average) better throughput than CDG when competing with TCP

CUBIC. Additionally, it shows that HLDG coexistence performs ten orders of magni-

tude better than CDG in large buffer sizes.

5. HLDG overcomes CDG slow start low performance by using RT Tmin gradient signal

combined with BDP estimate. The new algorithm allows HLDG to leave the slow start

phase with cwnd close to the path BDP, improving protocol performance in large BDP

paths. The results show that HLDG slow-start terminates with a congestion window
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between 96% - 200% of the path BDP compared to 1% - 800% for CDG slow-start.

6. We provide a preliminary evaluation for HLDG intra-protocol fairness under FIFO. The

results show that HLDG achieves 0.99 and 0.98 average Jain’s fairness index in homoge-

neous and heterogeneous path RTTs respectively while keeping average queuing delay

below 13ms. In AQM environments, HLDG realises 94%, 89% and 95% average link

utilisation under PIE, FQ-CoDel and FQ-PIE respectively compared to 89% for CDG

under the same conditions. HLDG experiences only 3%, 24% and 4% of packet loss ex-

perienced by CDG when run through PIE, FQ-CoDel and FQ-PIE AQMs respectively.

7. Finally, we explore the possibility of using HLDG to serve as a LPCC where HLDG

flows acquire lower throughput when competing with conventional TCP flows. Our

preliminary results indicate that HLDG in LPCC mode utilises between 5 - 18% link

utilisation when sharing a link with the CUBIC flow.

Our research also derives new general knowledge about delay-based congestion control which

can be used to improve delay-based CC algorithms in general.

1. Any delay-based CC algorithm should not back-off in response to small bursts caused

by the delayed ACK mechanism. Delayed ACK bursts increase the queuing delay for

a short period, which can then be wrongly interpreted by the CC algorithm as a sign

of congestion. Therefore, such a burst should be filtered out from the delay congestion

feedback calculations, otherwise delay-based CC algorithm would back-off even when

no congestion is experienced. Many delay-based CC algorithms do not ignore the de-

layed ACK burst in congestion feedback calculations, this then results in unnecessary

back-off, reducing protocol throughput.

2. A capacity estimator, using ACKs in Westwood/BBR style for example, combined with

the delay signal improves the performance of delay-based congestion control. Instead of

using a constant multiplicative back-off factor, a capacity estimation can be utilised to

limit the amount of congestion window reduction after congestion events. This helps to

maintain the average sending rate close to available bandwidth while also maintaining

low queueing delay.

3. Standing queues can be avoided by replacing a moving average calculation with a

Weighted Windowed Moving Average (WWMA) over the delay signal, and by re-

starting the calculation under certain circumstances. A smoothed average is used to

reduce noise in the delay signal, however a common moving average approach can re-

sult in transient delay measurements impacting decision making over a larger a period
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of time. A weighted average can help to maintain currency by allowing a delay-based

CC to more quickly respond to changes in delay while also minimising this impact more

quickly after responding. Re- starting calculations allow the CC algorithm to discard old

samples following an initial response to a delay signal, allowing future responses to be

made based on new network conditions.
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Abstract

TEACUP is an automated software tool that is used to run TCP/UDP experiments in a testbed

with different operating systems including FreeBSD, Linux and Microsoft Windows. Inter-

nally, TEACUP uses many tools to emulate different networks conditions, generate network

traffics, log different system and traffic statistics, analyse data, plot graphs and many other

functions. To collect internal TCP information such Congestion Window Size (CWND) and

smoothed TCP Round Trip Time (RTT), TEACUP uses operating system specific tools such

as SIFTR in FreeBSD and Web10g in Linux. We developed ttprobe (TEACUP TCP probe),

an alternative packet-driven TCP state logger for TEACUP experiments under Linux. At high

packet rates ttprobe provides significantly more samples than web10g, with lower CPU over-

head in many scenarios. ttprobe code is based on a loadable kernel module called TCP Probe.

A.1 Introduction

Analysis and understanding network protocols are very important to improve network per-

formance. Researchers are looking forward for tools that simplify these processes and to get

more accurate and realistic statistics. TEACUP is one of these tools that makes studying and
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enhancing network protocols easier and required less time than before [162]. TEACUP pro-

vides a controlled environment for doing TCP experiments on a testbed. Providing testbed

with a controlled environment is very important for doing TCP experiments, such as analysis

congestion control algorithms, to get accurate and comparable results. TEACUP uses TCP

loggers to capture internal TCP statistics and information from inside TCP/IP stack such as

congestion window size (CWND) and smoothed TCP Round Trip Time (RTT). In FreeBSD,

TEACUP uses SIFTR logger which can collect per packet statistics and it has been included in

FreeBSD kernel since version 8.2-RELEASE [164]. On the other hand, in Linux environment,

TEACUP uses Web10g [26] which is a kernel patch and user space tools that allows users to

capture TCP statistics per time interval of 1 millisecond or more.

As an improvement to TEACUP and Linux TCP logger, we developed ttprobe logger

(TEACUP TCP probe) which is a per-packet TCP statistics logger that can capture detailed

and accurate TCP statistics. Moreover, we adapted TEACUP code to be compatible with our

logger. ttprobe brings many benefits to TEACUP when it is used with Linux hosts including

detailed statistics capturing and reasonable CPU overhead. ttprobe code is based on a loadable

kernel module called TCP Probe [178]. The ttprobe source code is available as part of the

official TEACUP source distribution [166].

A.2 TCP Probe

TCP probe is a Linux loadable kernel module that able to capture different information of

TCP connections on each incoming packet. TCP probe hooks t
p_r
v_established ker-

nel function by using kprobes framework [179], so the internal TCP/IP stack structures that

contain TCP/IP variables, such as congestion window, slow start threshold (ssthresh) and ac-

knowledge number (ACK), can be accessed and captured [180]. TCP probe also provides a

basic filter that can be set up to capture only data of a specific TCP port number and/or when

CWND is changed. When the module is loaded, it creates a virtual file, named tcpprobe,

in /pro
/net directory which is used to transfer TCP probe output to user space processes.

Basically, TCP probe can be started using the following shell commands:

> modprobe t
p_probe port=0 full=1

> 
at /pro
/net/t
pprobe >/tmp/out.log

These commands will log TCP statistics for all TCP flows on each TCP packet arrive.

An indication of the data format as output by TCP probe can be seen in Table A.1. Figure

A.1 is a sample of the TCP probe output for a small subset of data from a real experiment.
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Table A.1: TCP Probe output headings

Column Contents

1 Kernel Timestamp
2 Source_IP:port
3 Destination_IP:port
4 Packet Length
5 Send Next
6 Send Unacknowledged
7 Send window
8 Receive window
9 Congestion windows

10 ssthresh
11 Smoothed RTT

1.622631348 192.168.1.101:22 192.168.1.100:52680 84 0x3e4fafe 0 x3e4fafe 42 2147483647 65024 25300 34688

1.822848521 192.168.1.101:22 192.168.1.100:52680 20 0x3e4fb3e 0 x3e4fafe 10 2147483647 65024 25300 34688

1.950667701 192.168.1.101:22 192.168.1.100:52680 84 0x3e4fb3e 0 x3e4fb3e 10 2147483647 65024 47144 34688

1.957206390 192.168.1.101:22 192.168.1.100:52680 20 0x3e52d1a 0 x3e4fb3e 10 2147483647 65024 47144 34688

Figure A.1: A sample of TCP Probe output

A.3 Overview of ttprobe v0.1

ttprobe (TEACUP TCP Probe) is a packet-driven Linux TCP instrumentation that can collect

per-packet TCP statistics on each incoming and/or outgoing packet. ttprobe code is based on

TCP probe source-code with many improvements to meet TEACUP requirements.

Getting accurate and detailed statistics are very important for protocols analysis. As

TEACUP uses Web10g framework which is a time interval based method of a minimum of 1

millisecond, this causes TEACUP to miss many useful samples especially when link speed is

high.

Another issue with Web10g is that it requires a patched kernel to be functional, and patch-

ing a kernel is highly depending on its version. The latest (at the report writing time) stable

Web10g kernel patch is for Linux kernel 3.17. This means, currently1, there is no applicable

Web10g kernel patch for newer stable Linux kernels versions such as 4.0.9 and 4.1.3. More-

over, Web10g puts a high impact on CPU usage due to the time interval even when there is a

very low traffic flow in the network.

On the other hand, ttprobe’s per-packet data collection ensures virtually2 no TCP state

changes are missed. Furthermore, ttprobe consumes lower processing power than Web10g

1This report was written on 2nd of September 2015
2When ttprobe’s buffer size is too small and there is a very high traffic, ttprobe silently drops some samples.
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and it does not require patching the core kernel to work. However, some parts of ttprobe

source code should be modified if there are substantial changes in the kernel socket structure

and the hooked functions prototypes.

As ttprobe v0.1 is built on top of kprobes framework, ttprobe requires Linux kernel com-

piled with kprobes support to be functional. New versions of many Linux distributions, such

as Ubuntu, Debian, CentOS and openSUSE come with kprobes enabled kernels.

A.4 ttprobe Development

The main features that exist in ttprobe but not in TCP probe are:

1. The output timestamps are date/time timestamps (timeval) while in TCP probe are

relative kernel timestamps (k_time). This change is very important to make TEACUP

works properly with the output.

2. Hooking t
p_v4_do_r
v and t
p_v6_do_r
v (for incoming packets) and t
p_transmit_skb

(for outgoing packets) instead of just t
p_r
v_established (for incoming packets).

This change makes ttprobe able to log TCP information in all TCP connection states

and on every incoming and/or outgoing packet.

3. Collecting additional TCP states such as maximum segment size (MSS) and TCP con-

nection state.

4. Providing three output formats which are ttprobe, binary and web10g format.

5. Changing the module name and virtual file name to make ttprobe works without any

interference with the original TCP probe module.

6. Implementing a buffer flushing function to flush TCP probe kernel buffer to user space

buffer. This is very important to make sure that all the data inside ttprobe buffer is

logged to user space buffer at the end of the experiment without any lost.

ttprobe provides many parameters that can be set up before starting the logger. A list of

available ttprobe parameters is shown in Table A.2. The parameters have a format of pa-

rameter=value and must be written in the same command that is used to load the module as

follow:

> modprobe ttprobe parameter1=value1 parameter2=value2 ....



A.4 ttprobe Development 227

Table A.2: ttprobe parameters

Option Description

omode Output mode
‘0’ for ttprobe format (default).
‘1’ for binary output.
‘2’ for web10g format.

dire
tion Capturing direction
‘0’ on every outgoing packet.
‘1’ on every incoming packet (default).
‘2’ on every incoming and outgoing
packet

port Source or destination port number to
match
default: ‘0’ (capture all port )

bufsize ttprobe buffer size in packet
default: 8192

full Full log or just when CWND changed
‘0’ ttprobe will capture samples just
when CWND value is changed.
‘1’ ttprobe will log on every packet
(default).
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Table A.3: ttprobe output headings

Column Contents

1 Direction (i or o)
2 Timestamp
3 Source IP addr.
4 Source port no.
5 Destination IP addr.
6 Destination port no.
7 Packet counter
8 MSS
9 Smoothed RTT

10 Congestion windows
11 ssthresh
12 Send window
13 Receive window
14 Socket state
15 Send unacknowledged
16 Send next
17 Packet size

Table A.3 shows columns descriptions of ttprobe output format. Binary format can be used

to reduce log file size and CPU load. Our TEACUP patch all TEACUP to read binary format

and ttprobe format natively. Moreover, we developed a small tool, called ttpb2as
ii, that

can decode binary format log file and produce ttprobe ASCII format. The disadvantage of

using binary mode is it increases the execution time of data analysis functions.

After loading ttprobe module, it will create a virtual file with path-name /pro
/net/ttprobe.

This file is used to read the log data from the kernel to a user space process, and to send com-

mands to ttprobe module. ttprobe commands can be sent to the module from a shell using

e
ho command.

> e
ho "
ommand" > /pro
/net/ttprobe

Currently, there are two commands that can be used with ttprobe which are flush com-

mand that used to flush ttprobe kernel buffer, and finish command that is used to send end

of file signal to the reader process.

ttprobe was tested on Linux kernel 3.18 and 4.1, but it should work fine on any kernel

version higher than 3.0.

Example of using ttprobe from Linux shell:
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192.168.1.0

172.16.10.0 172.16.11.0

     Netem/tc (Linux)

Host 1 Host 2

Control Network

Experiment

Network

192.168.1.101 192.168.1.102

172.16.10.2 172.16.11.2

Control Host
192.168.1.254

Host 3
192.168.1.103

172.16.11.3

192.168.1.200

Figure A.2: TEACUP Testbed topology

> modprobe ttprobe dire
tion =2 omode=0 port=5000 bufsize =16384

full=1

> 
at /pro
/net/ttprobe > /tmp/ttprobe.log&

> # waiting for an experiment to 
omplete

> e
ho "flush" > /pro
/net/ttprobe

> sleep 0.5

> e
ho "finish" > /pro
/net/ttprobe

> rmmod ttprobe

A.5 Experimental comparisons of Web10g and ttprobe v0.1

We did practical experiments to compare the details of captured data and the CPU load when

Web10g or ttprobe is used. TEACUP tool was used in all our experiments.

The testbed that we used in the experiments includes three hosts, one bottleneck and a

control host. The hosts and the bottleneck are normal PCs with Intel Core 2 Due @ 3GHz

processes, 4GiB RAM and Gigabit and Fast Ethernet cards, and the control host is a Virtualbox

virtual machine. Host 1 is connected directly to the bottleneck while host 2 and host 3 are

connected through a Gigabit Ethernet switch, and the switch is connected to the bottleneck.

All machines having additional Ethernet cards to be connected to the control network. The

host machines and bottleneck run Linux 3.17.4 while the control host runs FreeBSD 10.1.

Figure A.2 shows the network topology of the testbed that was used in our experiments.
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(b) Using ttprobe and Web10g loggers at the same time
(Web10g poll interval is 10 ms)

Figure A.3: The first 1.4 seconds of CWND versus time plot captured using ttprobe and
Web10g

A.5.1 Comparing the Details of the Captured TCP Data Samples

Firstly, we did two identical experiments (two individual runs) except that one has 1 ms

Web10g poll interval and the other has 10 ms Web10g poll interval. In these experiments,

the bottleneck shapes the traffic to 100 Mbps and emulates 6 ms RTT. Both Web10g and

ttprobe ran together, iperf was used as a traffic generator and the congestion control algorithm

is TCP CUBIC.

Tacking CWND values as a sample, we notice that web10g misses many samples in TCP

rapid actions such as slow start stage and TCP congestion back-off event. These samples

losses happen because TCP stack changes CWND size many times in one web10g poll time

interval. As Web10g poll time interval is set to a high value, Web10g samples losses will

become even bigger.

Figure A.3a and Figure A.3b show the first 1.4 second of CWND graphs for the first

experiment (1 ms Web10g poll interval) and second experiment (1 ms Web10g poll interval)

respectively. These figures illustrate that web10g missed many CWND values during the

experiment even when the time interval was very short as opposite as ttprobe which captured

all CWND samples. As a note, Web10g data points are plotted on top of ttprobe data points in

all the graphs in this report.

Figure A.4a and Figure A.4b show zoomed in CWND plot of the first 30 ms of these

experiments. These figures show more clearly the details of ttprobe CWND plot and how

Web10g missed many data points especially during the slow start stage.
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Figure A.4: A zoomed in of CWND versus time plot captured using ttprobe and Web10g

A.5.2 Comparing CPU Overhead of Web10g and ttprobe

In this section, our goal is to compare CPU overhead of Web10g and ttprobe. We utilised

TEACUP tool with additional function that logs CPU utilization to get CPU usage in different

scenarios. Additionally, t
pdump was disabled in TEACUP during the experiment to get CPU

utilisation that related to the loggers as much as possible.

For both loggers, there is no way to get CPU overhead specifically for the logger. This

because a big part of Web10g code is injected inside TCP/IP stack which is run as a part of the

kernel, and the largest part of ttprobe is a kernel module that creates hooks to kernel functions

(similar to a callback).

Obtaining comparative CPU usage from specific sections within the kernel is more than

we require to do a simple comparison of how the choice of Web10g or ttprobe impacts on

aggregate end-system load during TEACUP experiments.

Using averaged CPU load every one second is sufficient for comparison purpose as there

are no big changes in the CPU load during the actual experiment load. System Activity Re-

porter utility (sar) , which it is part of Sysstat Utilities [181], was used to log CPU usage

during the experiments.

First, we did a TEACUP experiment to understand CPU load behavior during TEACUP

experiment. This experiment ran for 60 second and it included one TCP flow transmitted

between two computer (host 2 and host 3) connected through 1Gbps link.

Figure A.5 shows the percentage of CPU usage relative to maximum CPU capacity of the

sender machine when Web10g logger is used. CPU usage is including traffic generator and

other default system processes. In this figure, we can see that there are three regions, TEACUP
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initialisation, experiment load and TEACUP finalisation regions.

During the initialisation stage, TEACUP configures the host, collects different information

about the host, starts loggers and then starts traffic generators. During the finalisation stage,

TEACUP stops traffic generators, stops loggers and collect log files. The important stage for

comparing TCP loggers is the experiment load stage.
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Figure A.5: CPU usage % relative to maximum CPU capacity of the sender machine including
traffic generator and other default system processes CPU utilisation when Web10g is used

To compare CPU overhead of using Web10g and ttprobe, we did five TEACUP experi-

ments of 60 seconds duration and 10 runs each. The first experiment was run without TCP

logger, the second one with ttprobe logs just on receiving packets, the third one with ttprobe

logs on sending/receiving packets, the fourth one with Web10g logger and 1 ms poll interval

and the last one with Web10g logger and 10 ms poll interval.

In these experiments, there were two PCs (host 2 and host 3) which having 1Gbps Eth-

ernet cards and connected through 1Gbps network switch. This is considered the maximum

throughput that can be achieved in our testbed. For each experiment, we extracted CPU util-

isation for the experiment load period (t=15 s to t=65 s) of each run.

We then calculated cumulative distribution function (CDF) for each experiment using the

extracted CPU utilisation data of the ten runs.

Figure A.6 shows CDF of CPU utilisation for the four experiments. This figure illus-

trates that ttprobe (logging on sending/receiving packets) consumes less processing power than

Web10g when Web10g poll interval is 1 ms, and slightly more than Web10g when Web10g

poll interval is 10 ms at the same testbed condition. The figure also shows that ttprobe (logging

on receiving packets) consumes less processing power than Web10g in all cases.
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Figure A.6: CDF plot of CPU utilisation for five experiments with different TCP logger in
each experiment (link speed is 1Gbps)

To understand how link speed affects CPU overhead, we replicated the five experiments

but with traffic shaping of 100 Mbps and emulated base RTT of 6 ms. Figure A.7 shows CDF

of the five experiments with different loggers when the link speed is 100 Mbps. This figure

illustrates that in this scenario, ttprobe overhead is highly depends on traffic speed.

A.6 Installation Procedures

To make TEACUP working properly with ttprobe logger, ttprobe module should be install

in all TEACUP hosts and ttprobe TEACUP patch must be applied to TEACUP code in the

control host.

A.6.1 ttprobe Installation Procedure

Before starting the compilation and installation process, the system must be updated and all

software dependencies must be installed. The required packages to be installed are:

1. make

2. gcc

3. kernel-devel and/or linux-headers
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Figure A.7: CDF plot of CPU utilisation for five experiments with different TCP logger in
each experiment (link speed is 100 Mbps)

The procedure of updating the system and installing the dependencies are depending on Linux

distribution. Table A.4 shows dependencies installation commands for some Linux distribu-

tions. All commands must be executed by super user (root) account.

ttprobe module can be installed by using the following procedure:

1. Extract ttprobe-0.1.tar.gz archive file.

> tar xzvf ttprobe -0.1. tar.gz

2. Compile the module.

> 
d ttprobe -0.1

> make

3. If all the dependencies are installed correctly, ttprobe.ko file should be created in the

current directory.

> ls ttprobe.ko

4. Copy ttprobe kernel module to Linux kernel modules directory.

> mkdir -p /lib/modules/$(uname -r)/extra

> 
p -r ttprobe.ko /lib/modules/$(uname -r)/extra/

5. Update modules dependency descriptions.
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Table A.4: ttprobe Linux dependencies installation commands

Linux Distribution Tested on Commands

Ubuntu 14.04.2-desktop-amd64a
>apt -get update

>apt -get install make g



linux -headers -$(uname -r)

Debian 8.2.0-amd64
>apt -get update

>apt -get make g

 install

linux -headers -$(uname -r)

CentOS 7-x86_64
>yum update

>yum install make g

 kernel -

devel kernel -headers

openSUSE 13.2-x86_64
>zypper update

>zypper install make g



kernel -devel

aThis version comes with all required dependencies installed by default.
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Table A.5: TEACUP TPCONF variables for ttprobe logger

Option Description

TPCONF_linux_t
p_logger TCP logger to be used in Linux hosts
‘web10g’ web10g only (default).
‘ttprobe’ ttprobe only.
‘both’ to use ttprobe and web10g
together.

TPCONF_ttprobe_dire
tion Capturing direction
‘o’ on every outgoing packet.
‘i’ on every incoming packet.
‘io’ on every incoming and outgoing
packet (default).

TPCONF_ttprobe_output_mode ttprobe output mode
‘0’ for ttprobe format (default).
‘1’ for binary output.

> depmod $(uname -r)

If all TEACUP hosts have same Linux kernel version, it is easier to compile ttprobe kernel

module on one machine and copy it to all hosts machines (use steps 4 and 5 of ttprobe instal-

lation procedure).

A.6.2 Applying ttprobe’s TEACUP patch

We created a patch for TEACUP v1.0 to support ttprobe logger natively. This patch allows

TEACUP to start/stop ttprobe logger, and makes analys_*/extra
t_* functions working

properly with ttprobe output file (file name ends with _ttprobe.log.gz). The procedure of

applying the patch to TEACUP code is as follow:

1. Install TEACUP v1.0, if it is not already installed, by following the instructions in CAIA

technical reports [162][182].

2. Extract ttprobe-0.1.tar.gz archive inside the TEACUP directory <teacup_directory>3

using the following commands:

> 
d <tea
up_dire
tory >

> tar xzvf ttprobe -0.1. tar.gz

3. Apply the patch to TEACUP.

3<teacup_directory> is the full path to your TEACUP installation.
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> pat
h -p1 < ttprobe -0.1/tea
up -ttprobe -0.1. pat
h

A.7 TEACUP Configuration

TEACUP configuration file (
onfig.py) should include some additional TPCONF variables

to setup ttprobe options. Table A.5 lists TEACUP TPCONF variables that are used with our

TEACUP patch.

If both loggers are chosen to be used in an experiment, LINUX_TCP_LOGGER environment

variable must be set to either ‘ttprobe’ or ‘web10g’ in order to select which logger output

will be used in TEACUP analyse_*/extra
t_* functions.

A.8 Conclusions and Future Work

ttprobe module has many benefits over Web10g with respect to the details of the captured

information, kernel patching and CPU overhead load. Moreover, the installation process of

ttprobe is much easier than Web10g. ttprobe can easily integrate with virtually any Linux

kernel with version higher than 3.0 compiled with kprobe support. However, Web10g collects

more TCP statistics than ttprobe. For this reason, our update to TEACUP gives the choice to

the users to select the desired TCP logger depending on their needs, as well as the option to

use Web10g and ttprobe together. As a future work, ttprobe requires more development to add

more TCP statistics to its output and improve its filters.





Appendix B

Dummynet network emulation challenges

This appendix discusses challenges and solutions for Dummynet network emulation. Section

B.1 discusses the unintended TCP ACK compression issue and our solution. Section B.2

explores the problem and solutions for Dummynet excess delay emulation. Our Dummynet

patch that solves these issues is available online on [183].

In Section B.3, we discuss the implication of the kernel tick rate on the emulation quality,

and presents our Dummynet timing enhancement. We conclude this Appendix in Section B.4

B.1 Unintended TCP ACK compression

Due to Dummynet’s architecture and the relatively low operating system tick rate, Dummynet

compresses the gaps between ACK packets (unintended ACK compression) in specific situ-

ations. Dummynet’s traffic shaper regulates packet transmission rate using the leaky bucket

technique. To emulate the desired link bandwidth, Dummynet uses the 
redit variable which

contains the calculated number of bytes that can be transmitted at an instance of time. Periodi-

cally, packets are extracted from the queue until 
redit becomes negative or no more packets

available in the queue. Negative 
redit means the last packet has been dequeued too early.

Therefore, Dummynet calculates the serialisation delay of the bytes that dequeued too early

and adds an extra delay to the packet in the delay line.

Since Dummynet relies on kernel’s ticks as a unit of timer, the time resolution highly de-

pends on the kernel tick rate. For example, FreeBSD11 has 1000 ticks per second by default1

which provides 1ms resolution. Therefore, the minimum delay adjustment for a packet is 1ms.

Whenever 
redit becomes negative, Dummynet adds one tick (1ms) to the transmitting

time of the last packet. Additionally, if the queue becomes empty and a new packet arrives,

1Executing sys
tl kern.hz shows 1000
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Figure B.1: Dummynet ACK compression: ACK captured at the sender side for a single 60
second NewReno TCP flow, 12Mbps, 40ms RTT and 100pkt bottleneck buffer size


redit is set to zero. Although this method prevents packets from being sent faster than the

configured bandwidth, it leads to unintended ACK compression.

To explore this issue, assume bulk data is transmitted using TCP protocol over a Dum-

mynet bottleneck configured to shape the traffic at 12Mbps for both directions. Dummynet

will send one 1500 byte packet every 1ms to emulate the required bandwidth. If the receiver

does not use the TCP delayed acknowledgement algorithm [151], it will send one ACK packet

every 1ms as a reflection to the data packets. However, that does not happen in our experiment

due to the transmitting time adjustment performed by the traffic shaper. The CDF plot for

ACK inter-packet arrival time logged at the sender host is shown in Figure B.1a. This figure

illustrates that around 50% of ACK packets are sent in burst and the other 50% are sent after

2ms. Moreover, we can see in Figure B.1b ACK packets arrive to the sender in bursts of two

packets every 2ms.

In this experiment, Dummynet resets 
redit on every other tick for the reverse path

pipe because the bitrate of the reverse (ACK) path is smaller than the configured bandwidth

(12Mbps). When 
redit is zero, a dequeued packet is considered too early to send and

packet transmission is delayed by one tick. Since this packet leads to a busy scheduler in-

stance, 
redit will not be reset. As a result, next ACK packet (on next tick) will not be

delayed. This results in two ACK packets to have the same transmission time leading to the

ACK compression behaviour.

To remedy this problem, packet transmission time adjustment should be greater than or

equal to zero (instead of one or more ticks). Although this solution could result in periodically

sending at most one packet slightly faster, the average throughput will no be more than the
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Figure B.2: Fixing Dummynet ACK compression: ACK captured at the sender side - A single
60 second NewReno TCP flow, 12Mbps, 40ms RTT and 100pkt bottleneck buffer size

configured bandwidth.

After applying this solution to Dummynet and repeating the same experiment, the ACK

compression behaviour reduces significantly as shown in Figure B.2. The CDF graph for

ACK inter-packet arrival time (shown in Figure B.2a) illustrates that most packets are sent

regularity every millisecond. Furthermore, Figure B.2b shows ACK packets are sent smoothly

with burst.

Another useful solution that can be used is to increase kernel’s tick rate to make the adjust-

ment much finer. However, the ACK compression problem will appear again when the length

of one tick equals the serialisation delay of one packet for the configured bandwidth. For ex-

ample, if the tick rate is set to 10KHz, the ACK compression will appear when the bandwidth

is configured to 120Mbps. Combining the two solutions produces better and more accurate

network emulation.

B.2 Excess emulated delay

The out time adjustment for packets that causes ACK compression (see Section B.1) also leads

to additional latency for packets having adjusted transmitting time. In fact, almost no packet

will be sent without an extra delay whether due to queuing delay or packet transmitting time

adjustment delay. The only exception is the last packet in the queue that does not causes


redit to be negative (i.e. causing the scheduler to go to idle state). Additionally, due to ker-

nel’s 1000 tick rate (default), 1ms error can be added to the emulated delay for each direction

[156]. Therefore, the measured RTT at the end hosts will include additional 2ms above the
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(a) SPP RTT plot for a flow passed through unmodified
Dummynet bottleneck
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(b) SPP RTT plot for a flow passed through patched Dum-
mynet bottleneck

Figure B.3: Dummynet excess emulated delay: single NewReno TCP flow, 12Mbps, 40ms
RTT and 10pkt bottleneck buffer size

sum of configured delays to the forward and reverse paths.

Figure B.3a shows SPP RTT versus time for 5 seconds of a single TCP NewReno flow

traversing a Dummynet bottleneck that emulates 12Mbps link speed, 40ms path RTT and

has 10pkt2 buffer size. We can see in this figure that RT Tmin is around 42ms because of

transmitting time adjustment of Dummynet’s traffic shaper.

Implementing the solutions described in Section B.1 reduces the extra delay significantly

as shown in Figure B.3b. We can see in this figure RT Tmin is about 40ms which is the same as

the configured delays of this experiment without excess emulated delay. We can also see that

RTT steps is around 1ms which equals to the serialisation delay of the emulated link. Again,

higher kernel tick rate can improve time resolution and reduce the delay emulation errors.

B.3 The kernel tick rate implication on Dummynet emula-

tion accuracy

Dummynet uses timer driven events to serve the scheduler(s), shape the traffic, and transmit

packets from the delay line(s). Dummynet schedules these events on every tick. As a conse-

quence, delay emulation error in Dummynet is 1
tickrate

second.

This timer generates bursty traffic when the packet serialisation delay of the configured

traffic shaper is larger than 1/tickrate second i.e. when the kernel’s tick rate is less than

2Small buffer size is used to allow queue draining after cwnd backing-off
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Figure B.4: Dummynet packet burst behaviour due to low kernel tick rate: data packets cap-
tured at the router egress NIC - single 60 second NewReno TCP flow, 48Mbps, 40ms RTT,
and 200pkt bottleneck buffer size at 1KHz tick rate

packet sending rate.

For example, consider if Dummynet is configured to emulate a 48Mbps link at 1000Hz

kernel tick rate and the sender host is transmitting data at the same speed. Dummynet will

aggregate four packets and send them in bursts on every tick. The reason is that Dummynet

will serve the scheduler(s) and delay line(s) once every 1ms at that tick rate. However, the

events should occur every 250μs since the serialisation delay of one packet3 is 250μs at that

sending speed. Thus, the only way to achieve the required rate is to aggregate four send

events into one event for 75% of the packets so the averaged sending rate will be 48Mbps

(0.75×0ms+0.25×1000ms = 250µs).

To practically demonstrate this behaviour, we conduct an experiment using Dummynet

bottleneck with the kernel tick rate set at 1000Hz (default). The experiment consists of running

a single 60 second NewReno TCP flow over a symmetric 48Mbps emulated link and 40ms

emulated path RTT with 200pkt bottleneck buffer size. As expected, bursts of four packets are

transmitted every one millisecond as shown in Figure B.4b.

The CDF graph of inter-packet departure time of the data packets 4 shown in Figure B.4a

illustrates that about 75% of data packets are sent in bursts while 25% of them are sent after

one millisecond of the previous packets. This does not reflect how real networks function and

produces unrealistic network emulation.

It is well known that increasing the kernel tick rate improves timer resolution, leading to

fewer emulation errors and more precise link emulation [156]. However, Dummynet was de-

3Assume one packet = 1500 bytes
4captured at the router egress NIC
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Figure B.5: Dummynet sends packets in bursts due to Dummynet inaccurate tick counter
implementation. Data packets are captured at the router egress NIC - A single 60 second
NewReno TCP flow, 48Mbps, 40ms RTT, and 200pkt bottleneck buffer size at 10KHz kernel
tick rate

signed to work efficiently without adding large overhead on the operating system and hardware

resources, at the cost of timing resolution.

The Dummynet FreeBSD implementation uses getmi
rouptime() function [184] to im-

plement a tick counter. This function is executed quickly but returns a less precise time than

mi
rouptime() function. In our testbed, we found that precision of getmi
rouptime()

function is around one millisecond regardless of kernel’s tick rate. Therefore, in current Dum-

mynet implementation, increasing the tick rate more than 1000 Hz (default) does not improve

the timer precision. Thus, delay emulation error is not improved and packets burst5s at fast

emulated links cannot be remedied by only increasing the tick rate.

We conduct an experiment to explore this issue. The experiment consists of a single 60

second NewReno TCP flow traversing a symmetric 48Mbps emulated link with 40ms emu-

lated path’s RTT and 200pkt bottleneck buffer size.

Figure B.5a shows CDF graph for inter-packet departure time of the data packets captured

at the router egress NIC. We can see in this figure, about 65% of packets have inter-packet

departure time ~12μs and 10% have inter-packet departure time ~900μs. This means 65%

of packets has sent in bursts as the observed inter-packet departure time (~12μs) is smaller

than the serialisation delay for a 1500 byte packet at 48Mbps (~250μs). Moreover, about 10%

of the packets have ~100μs inter-packet departure time and 15% of the packets have ~1ms.

Dummynet sends around 75% of packets too early and, therefore, around 25% of packets

should be delayed to emulate the desired bandwidth. Figure B.5b illustrates how Dummynet

transmits four packets in bursts due to inaccurate tick counter implementation.



B.4 Conclusions 245

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Inter−packet departure time (ms)

C
D

F

(a) CDF for inter-packet departure time

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

10.001 10.002 10.003 10.004 10.005 10.006

52.895

52.900

52.905

52.910

52.915

52.920

52.925

Time (s)

S
e

q
. 
n
u

m
b

e
r 
(1

0
6
)

● Seq# at router's egress NIC

(b) SEQ number progression shows packets bursts

Figure B.6: Dummynet packets sending behaviour when ti
ks variable is used at 10KHz
kernel’s tick rate: data packets captured at router egress NIC - A single 60 second NewReno
TCP flow, 48Mbps, 40ms RTT, and 200pkt bottleneck buffer size

The obvious solution to this issue is to use mi
rouptime() function instead of getmi
rouptime().

However, mi
rouptime() causes system higher overhead by reading the time from hardware.

A better solution is to use the tick counter (ti
ks) provided by FreeBSD’s kernel clock

system. FreeBSD increments ti
ks variable automatically on every tick with no additional

overhead. When system ti
ks counter is used, Dummynet does not require to calculate ticks.

We repeat the same experiment but using patched Dummynet (using ti
ks instead of

getmi
rouptime() function) and kernel’s tick rate is set to 10KHz5. Figure B.6a shows CDF

graph for inter-packet departure time of the data packets captured at the router egress NIC.

We can see in this figure, around 50% of packets experience 200μs inter-packet departure time

while the other 50% experience 300μs. This means that the patched Dummynet is able to

provide more accurate link emulation. However, it is still unable to send a packet every 250μs.

This is due to the timer resolution for 10KHz tick rate is 100μs, and therefore Dummynet is

unable to emulate exact serialisation delay for one packet. To achieve 50μm time resolution,

the tick rate should be set to 20KHz which produces better emulation but at the expense of

additional interrupt overhead. In Figure B.6b, we can see packets are sent regularly without

bursts which confirms the functionality of the proposed fix.

B.4 Conclusions

In this appendix, we presented Dummynet link emulation challenges and enhancements. Dum-

mynet leads to unintended ACK compression due to its traffic shaper and relativity low kernel

5By setting kernel tunable kern.hz=10000 in loader.conf file.
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tick rate. We also showed that this problem could lead to excess delay emulation, resulting in

delaying packets by two ticks over the configured delay. We solved these issues by allowing

some packets to transmit slightly earlier than the traffic shaper allows.

Moreover, we discussed the implication of the kernel tick rate on Dummynet emulation

quality. We showed that Dummynet sends packets in bursts when the serialisation delay for the

desired bandwidth is smaller than one tick. We also explored Dummynet tick calculation issue

at kernel tick rates higher than 1KHz, and we presented our Dummynet timing enhancement

to solve this issue.

Our Dummynet improvements allow us to conduct experiments under emulated networks

that mimic real network behaviours with more accurate link emulation.
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