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Abstract

Automated negotiation is a key interaction mechanism in distributed and multi-agent
systems. By adapting negotiation as an interaction method, autonomous agents can
interact, compete and cooperate with one another effectively. When the scale of ne-
gotiation expands to involve more than two agents, the negotiation process becomes
more complex. This thesis addresses the problem of managing concurrent and de-
pendent instances of automated negotiations in the one-to-many multi-agent systems
where agents are self-interested, unwilling to disclose their private information (e.g.,
utility structure, deadline, etc.) and the available information about the opponents is
mainly the current history of their offers. In particular, this thesis considers the one-to-
many negotiation where a buyer agent negotiates with multiple seller agents over one
or more objects concurrently. Dependent instances of negotiation occur when different
negotiations are related and the situation of one instance affects the situation of one or
more other instances.

The main challenge of this thesis was to investigate the bidding strategy for a buyer
agent negotiating concurrently with multiple seller agents over one or more negotiation
objects where each object can be characterized by one or more issues (attributes.) Most
of the current works in the literature target simple one-to-many negotiations where
agents negotiate a single negotiation issue. A few works investigate the case where
agents negotiate multiple issues. The work in this thesis proposes new negotiation
techniques to further improve the existing ones. In addition, more complicated ne-
gotiation scenarios are investigated where agents negotiate over multiple objects with
single or multiple negotiation issues.

The first step in the proposed solution approach is to analyze the one-to-many nego-
tiations illustrating how different numbers of negotiation components can affect the
course of the coordination mechanism in each negotiation scenario. In the context of
this thesis, the negotiation components are: negotiation objects, negotiation issues and
agents. Considering the different negotiation scenarios that can arise from the com-
bination of different numbers of the negotiation components, appropriate mechanisms
and algorithms are proposed to solve the relevant coordination problem in different
negotiation scenarios. Defining different negotiation scenarios depend on the number
of negotiation objects, the number of negotiation issues per object and the number of



opponent agents per object. The number of each component can be either single or
multiple. Since the one-to-many negotiation is considered in this thesis, the number of
opponents is always multiple. Considering the behaviors of the opponent agents that
are still in negotiation, this thesis proposes effective coordination solutions that involve
determining the value of the next counteroffer the buyer agent needs to propose to each
seller agent in each negotiation round.

Five one-to-many negotiation scenarios are recognized and named coordination sce-

narios. Coordinating the bidding strategy for a buyer agent in the five coordination
scenarios is the main focus of this thesis. This work advances the state of the art by an-
alyzing different negotiation scenarios and proposing novel mechanisms that improve
and further extend the existing work to solve more complex negotiation scenarios.

The main approach adopted in solving the coordination problems in the one-to-many
negotiation is to change the negotiation strategy during negotiation (i.e., in real-time)
in response to the current behaviors of the opponents in terms of their concessions. For
example, the convexity of a concession curve is one of the parameters of a negotiation
strategy. If the convexity of a concession curve can be dynamically controlled dur-
ing negotiation, then a particular coordination problem can be solved. Since different
coordination scenarios have different numbers of components and related variables,
then different coordination mechanisms are necessary to deal with different coordina-
tion scenarios. For example, when an agent negotiates with multiple other agents over
one object characterized by one issue (e.g., price), then the agent can use a coordina-
tion mechanism that manages the convexity of its concession curve(s) to maximize its
utility. In this case, the agent cannot consider other cooperative solutions such as the
trade-off mechanism.

Experiments that compare between the proposed negotiation strategies and the state-
of-the-art strategies are used to test the effectiveness and robustness of the proposed
solutions empirically. The main performance criteria in the experiments are the agree-
ment rate and the utility rate. In most cases, the results of the experiments prove that
the proposed solutions to the coordination problems in different coordination scenar-
ios are effective and robust in terms of both, the utility rates and the agreement rates.
In scenarios where there is room for cooperation e.g., in case of multi-issue negotia-
tion, the proposed techniques consider also the social welfare and the fairness of an
agreement as performance criteria.
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Chapter 1

Introduction

Negotiation is prevalent in our daily life as a method of conflict resolution. Negotiation

is a major mechanism of interaction and decision making in many important domains

such as politics, law, sociology, business and personal situations (e.g., [75][64][130]).

In particular, negotiation can be looked at as a process of distributed decision making

amongst two or more parties who seek to agree upon a conflicting matter [61]. The ne-

gotiation theory has been investigated from different perspectives such as game theory

[47] and decision-analytic approach [116].

The tremendous advances in the web technology and networking have opened a new

era for the application of automated negotiation where software agents or autonomous

computer systems are able to automate some aspects of the negotiation process. Au-

tomated negotiation has been an active research area for more than a decade (e.g.,

[2][32][33][39]). As negotiation is an effective mechanism for decision making and

conflict resolution, the automation process of negotiation aims for better negotiation

results in terms of utility gain, agreement rate, social welfare and fairness. In addition,

the automation of the negotiation process aims to enable software agents to work on

behalf of the users to reach agreements quickly with the best possible outcome. More-

over, the automation of negotiation enables agents to negotiate complex contracts more

efficiently than humans do. Complex contracts may contain a large number of issues

that can be either interdependent or independent.

Negotiation is one of the coordination approaches that can be used to coordinate var-

ious activities amongst different parties such as scheduling and resource allocation

(e.g., [153] [55]). However, the main focus of this thesis is the problem of coordinat-
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ing the bidding strategy for a buyer agent conducting multiple negotiations simulta-

neously. The multiple concurrent negotiations are assumed to be interdependent since

all negotiations share a common goal(s) and a common resource(s). The resources are

managed in a way to achieve the common goal(s). For example, if the common goal is

to reach an agreement with a high utility then the resources (e.g., money) are dynam-

ically allocated during negotiation amongst the multiple negotiations to help achieve

the specified goal.

Even though the proposed negotiation model, the proposed coordination mechanisms

and the experimental results present a buyer agent’s point view, the negotiation model

is general and can present a seller agents’ point of view as well. In addition, the

proposed coordination mechanisms can still be used by a seller agent. However, the

seller agent might also consider other factors when using the proposed mechanisms,

such as reputation.

A few existing works in the literature address the aspects of the coordination problem

in the one-to-many negotiation. However, most of the related works focus on simple

negotiation scenarios where agents aim to negotiate a single issue. In addressing the

problem, we use the divide and conquer strategy to tackle it systematically through

different scenarios. The cardinalities of negotiation objects, negotiation issues per

object and providers/opponents per object are considered the main negotiation criteria

and are used to define different negotiation scenarios. For example if the cardinality

for the set of agents is 2, then the negotiation is of a bilateral type.

A subset of the negotiation scenarios is highlighted and named coordination scenar-

ios. It encompasses all the one-to-many negotiation variants that are determined by

the negotiation components mentioned in the previous paragraph. Each coordination

scenario is characterized by a unique combination of a number of distinct objects, a

number of issues per object and a number of providers per object. For example, if a

buyer agent seeks to procure a storage space, a software application and a certain com-

putational power from the cloud, given that all specifications are agreed upon apart

from the price, then the buyer agent needs to negotiate the price of each service with

one or more providers. This scenario is characterized by multiple negotiation objects

(e.g., storage space) given that each object has one negotiation issue (e.g., price) and

multiple providers. If the number of negotiation issues per object is multiple, then a

different coordination scenario arises.

2



For each different coordination scenario, one or more negotiation parameters are se-

lected to be controlled or adapted during negotiation. The adaptation of a certain ne-

gotiation parameter reflects the behaviors of the current opponents in terms of their

concessions in the current negotiation encounter. For example, the convexity of the

concession curve is one of the parameters that can be managed during negotiation. To

validate the proposed solutions, experiments are designed and implemented to compare

between the performance of the proposed solutions and other benchmark solutions in

terms of the utility rates, agreement rates, social welfare etc.

The bilateral negotiation is the basic form of negotiation where two agents exchange

offers and counteroffers. Different game theoretic and artificial intelligence (AI) mech-

anisms have been proposed in the process of decision making during negotiation (e.g.,

[13] [12] [163] [6]). However, it is difficult to apply the game theoretic approaches in

real negotiations since they typically require that the two negotiation partners disclose

their preference profiles which is an unrealistic assumption due to privacy and trust

issues. In most cases, the AI mechanisms are heuristic approaches that require either

historical data or use learning mechanisms that need considerable computational power

and time. When it comes to making a decision in the one-to-many negotiation, the sit-

uation becomes even more complicated since there are multiple interactions between

multiple agents.

The mediated negotiation is a negotiation approach where two or more agents nego-

tiate using a mediator (e.g., [79][31]). The approach requires that agents send their

proposals to the mediator. The participating agents need also to disclose all or some of

their preference profiles to the mediator. The mediator uses the collection of profiles

and attempts at finalizing an agreement that is fair and acceptable for all parties. The

trust and privacy matters are the main obstacles in adopting the mediated negotiation

approach.

The proposed mechanisms in this thesis do not require historical data. As a source

of information, they rely only on the offers received from the opponents during the

current negotiation. Finally, the negotiation strategy components that are considered

in this thesis are: the reservation value and the set of negotiation tactics with their

parameters. A dynamic negotiation strategy may change the value of any of these

parameters during negotiation to accommodate a new negotiation situation.

3
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1.1 Problem Description

When a software agent interacts with other software agents through negotiations, it

needs to decide the values of the proposals in every negotiation round. In other words,

the agent needs to have a bidding strategy that enables it from taking appropriate deci-

sions regarding the values of the proposals in every negotiation round.

This research aims at advancing the state-of-the-art in the process of automation of ne-

gotiation and particularly it focuses on the problem of coordinating the bidding strategy

for multiple concurrent one-to-many negotiations in multi-agent systems. The bidding

strategy controls the process of generating offers and counteroffers. The bidding strat-

egy and negotiation strategy are used interchangeably in this thesis. A negotiating

agent needs to coordinate its concurrent multiple negotiations when interacting with

multiple agents to improve one or more performance criteria. The key point in solving

any coordination problem is the ability to manage dependencies between related ac-

tivities [84]. In other words, the dependencies between the different related activities

cause the coordination problem. The activities of an agent in the negotiation context

mean all possible actions that can be taken by an agent as defined by a negotiation

protocol. For example, proposing an offer with a certain value and accepting an agree-

ment are examples of possible actions during negotiation. Given that a negotiation

strategy consists of a set of parameters with certain values, the coordination problem

is to define a value for each parameters dynamically during negotiation.

The proposed coordination mechanisms (decision making mechanisms) depend on the

behaviors of the current opponents in terms of their concessions. The concessions of

the negotiating agents affect the coordination mechanisms that decide the proposal val-

ues in the next negotiation round. Taking into consideration the concessions offered

by the negotiating agents in the previous negotiation round(s), one or more negotia-

tion parameters can be changed by the coordination mechanisms. The convexity of

the concession curve is one of the negotiation strategy parameters than can be ma-

nipulated during negotiation. Chapter 4 contains more details about the coordination

problem and the solution approach.
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1.2 Usage Scenarios

This work mainly investigates the bidding strategy problem in one-to-many automated

negotiation. Ma and Leung in their book titled ‘Bidding Strategies in Agent-Based

Continuous Double Auctions’ wrote [82]:

Automation of bidding is complex. Given the variety of auction pro-

tocols, it is perhaps not surprising that the bidding strategies of the par-

ticipants cover a similarly broad spectrum of behaviors. In short, there is

no optimal strategy that can be used in all cases. To be effective, bidding

strategies need to be tailored to the type of the auction in which they are to

be used. Perhaps the key challenges in this area is to design effective and

efficient strategies that agents can use to guide their bidding behavior.

Deciding on a bidding strategy in the one-to-many negotiation is a nontrivial problem

since an agent needs to analyze the behaviors of the opponents and reply to each one of

them and/or to each group of them differently. It is even more complex than the bidding

strategy in auctions since the auctions assume bidding on one issue (mainly price) in

most cases. The one-to-many negotiation applies to many real life interaction scenar-

ios. The electronic commerce is a potential application domain for the agent-mediated

with fully automated negotiation [132]. To motivate this research, three potential appli-

cation scenarios are presented. The first one shows how the one-to-many negotiation

can reduce cost and/or improve the efficiency of the scientific workflows execution.

The second one presents the holiday booking scenario and how the one-to-many nego-

tiation helps travelers find good deals while the third application scenario shows how

automated negotiation can help in the process of supply chain management.

1.2.1 Scientific Workflow in the Cloud Scenario

Many scientific applications nowadays are highly demanding for both computational

and storage resources [152][26]. For example, the astrophysics applications process

large amounts of data such as pulsar searching which is a scientific application that

processes terabytes of data [26]. The pulsar searching has a workflow of processing

the raw data collected from the telescope and preparing it for decision making. Such
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scientific workflows produce large amount of intermediate datasets and require inten-

sive computational power. The generated intermediate datasets are needed either for

generating of other intermediate datasets or for analysis. The intermediate datasets are

interdependent since an intermediate dataset requires one or more other datasets for its

generation. Figure 1.1 shows a dependency example amongst a group of datasets. In

Figure 1.1, dataset 1 (dt1) is required to generate both dt2 and dt3, while dt2 is required

to generate dt4 and dt5 etc.

Figure 1.1: Data set generation workflow

When dealing with such scientific workflows, the problem of deleting or storing the

intermediate datasets comes in place. When running such scientific workflows on the

cloud, the problem of limited storage and computational resources can be avoided since

the cloud provides, theoretically, unlimited resources. While executing a scientific

workflow in the cloud, an application needs to use computational power or storage

space throughout the execution of the workflow. To improve the utilization of resources

on the cloud in terms of both the cost and efficiency of producing a needed dataset from

another predecessor dataset(s) during the execution of a certain workflow, we propose

provisioning computational power and/or storage space during the execution of the

workflow using automated negotiation in real-time. For storage power, agents can

negotiate: storage size, price and length of the storage period etc. For computational

power, agents can negotiate: price, computational speed, etc. In some cases, some

software is needed to execute certain tasks.

During negotiation, when the customer agent receives several offers from different ser-

vice providers, it analyzes the value of the received offers along with its own preference

profile and makes appropriate decisions regarding accepting, rejecting or counteroffer

proposing. It is the objective of this thesis to develop decision making mechanisms that
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enable the consumer agent to take effective negotiation decisions in real-time during

negotiation. Using automated negotiation in the cloud has the following advantages:

1. A scientific workflow may not know in advance the future computational and

storage resources needed. Instead of buying resources before starting the work-

flow, an agent can negotiate with the providers of cloud resources to provision

resources in real time. In this case the workflow will use the minimum needed

resources during its execution.

2. Since there are multiple resource providers in the cloud, automated negotiation

in real-time takes the advantage of existing multiple providers in increasing the

bargaining power of the buyer negotiator.

3. During negotiation, the workflow controller can decide whether to store a certain

dataset or delete a dataset depending on the received offers from the resource

providers.

As the cloud computing provides a set of computational resources, the buyer agent can

negotiate with different resource providers in the cloud during processing scientific

data, see Figure 1.2.

Figure 1.2: Resources on the cloud

This thesis proposes a general negotiation model that considers each resource, service

or an item as an object. A buyer agent may require different objects at a certain point

of time. Each object can be characterized by one or more issues. Most of the related

works in the literature consider simple scenarios where agents negotiate over a single

object, e.g., a cloud resource. The work in this thesis improves the current bidding

strategies of simple scenarios and proposes more effective bidding strategies for more

complex negotiation scenarios where the number of the required objects are multiple.

7



Chapter 1. Introduction

1.2.2 Holiday Booking Scenario

This scenario is well known in the service oriented domain (e.g., [96][7][98]) where

a customer seeks a holiday package including a flight, a hotel and a car, see Figure

1.3. The automated one-to-many negotiation is a flexible approach for provisioning a

holiday package. It is known that travelers prefer certain dates and travel times, have

certain preferences over hotel bookings, such as hotel location (e.g., within a city or

outside the city) and hotel rating, e.g., 5 star hotel. For choosing a car, the traveler

may have certain preferences over the model and make of the car, its color etc. The

price can be one of the important issues but not the only one. Figure 1.3 shows that

each service has multiple attributes (issues) to be negotiated over between a traveler

and service providers.

Figure 1.3: Travel booking scenario

The auction models for service provisioning are not flexible since they focus on one

negotiation issue (usually price) and provide a limited number of predefined packages.

As Figure 1.3 shows, each service can have multiple negotiation issues. In addition,

each service can have multiple providers. The one-to-many negotiation allows a cus-

tomer agent to interact with different service providers concurrently. A negotiating

agent who receives multiple offers from service providers can analyze the received

offers and determine its next decision, either to accept one of the received offers or

to offer a new proposal. The coordination problem in that context is to find the best

match between the issue values of the different services taking into consideration the

preference profile of the customer agent and the value of the received proposals.

Most of the related works do not consider negotiation over multiple objects (e.g., ser-

vices) concurrently. This thesis proposes effective negotiation strategies for a buyer

agent negotiating concurrently with multiple seller agents over multiple objects.
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1.2.3 Supply Chain Scenario

A supply chain consists of all the intermediate points between the raw materials and

customers through which raw materials are acquired, processed, and delivered [44].

For example, the intermediate points can be: suppliers, warehouses, factories, etc.

Using a mediator agent to help in the negotiation process between two agents repre-

senting two firms is proposed in [41] where the negotiating agents aim to coordinate

their production sequences. Duan et al. propose a negotiation framework to tackle the

supplier-manufacturer problem where agents negotiate on the delivery schedules. The

issues of negotiation can include time, quantity and price [28]. The authors consider

that the delivery schedules for the supplier-manufacturer form an integral part of an

agent’s local optimization problem.

Supply chain management is a critical task for business success. As supply chain

management is concerned with the moving of material in a consistent manner, material

procurement is an essential part of the supply chain management. Figure 1.4 shows that

a factory, which can be represented by a buyer agent, interacts with three sources of

raw materials that can be represented by three raw material seller agents. The raw

material can contain negotiation issues such as price, quantity, delivery date etc.

Figure 1.4: Supply chain

Adopting the one-to-many negotiation model for solving the material procurement

problem in the supply chain can empower customers where there are multiple suppliers

in the market. In this case, when the customer negotiates with multiple suppliers, the

customer can benefit from the different proposals received from the suppliers by either

accepting the best proposal or offering new proposals. This thesis aims to empower

the customer agent by providing it with the appropriate decision making mechanisms

in such scenarios.
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Just-in-time (JIT) manufacturing is a managerial philosophy that depends on procur-

ing the only needed materials or parts for running manufacturing processes. The JIT

manufacturing reduces both, the amount of inventory and the amount of waste [147].

When the JIT model is used by a manufacturing system, automated negotiation can

add a value to the JIS. When a certain amount of material or some parts are needed by

a manufacturing system, the system conducts concurrent negotiations with a number

of suppliers to negotiate critical issues such as quantity, price and delivery time of the

required parts or material. Introducing the automated negotiation in the JIF automates

the process of procuring materials which improves the efficiency and the effectiveness

of delivering the right materials at the right time.

As the case with the previous two sections, most of the related works in the literature

consider the problem of a single object of a single issue negotiation. In case of the

supply change management, most negotiations involve multiple issue negotiation or

multiple object negotiation. This thesis improves the current negotiation mechanisms

of simple scenarios and presents novel algorithms to handle complex negotiation sce-

narios.

1.3 Research Questions

Since the objective of this thesis is to investigate the coordination problem in the one-

to-many negotiation in multi-agent systems under the assumptions that agents do not

disclose their private information and the only available information for an agent dur-

ing negotiation is the offers received from its current opponents, this thesis addresses

the following main research question:

Can the bidding strategy for multiple concurrent one-to-many negotiations be
coordinated by adapting an agent’s negotiation strategy parameters during nego-
tiation?

The main question can be subdivided into the following research question:

1- Convexity of the Concession Curves: the convexity degree of a curve determines
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its slop at a certain point. Changing some parameter of the curve equation can change

its slop. In the time-dependent offer generation tactics [33], changing the β value

results in changing the convexity of the concession curve. The first subquestion can be

formulated as follows.

• Can the approach of adapting the convexity of concession curves during multi-

ple concurrent negotiations be an effective method in improving one or more of

the negotiation performance criteria?

2- Negotiation Meta-Strategy: a meta-strategy is a strategy that uses more than one

type of negotiation tactic. For example, the concession and trade-off are two different

negotiation tactics that can be used during negotiation according to some rules. The

second subquestion can be formulated as follows.

• Can the approach of alternating between different negotiation tactics during

multiple concurrent negotiations be an effective approach in improving one or

more of the negotiation performance criteria?

3- Local Reservation Values: the local reservation values refer to the reservation val-

ues of the common issues of different negotiation objects. We assume that the global

reservation value of common issues is fixed throughout negotiation while it is possi-

ble to update the local reservation values of the common issues of certain negotiation

objects as a response to some changes in the negotiation environment. The third sub-

question can be formulated as follows.

• Can the approach of adapting the local reservation values during multiple con-

current negotiations be an effective method in improving one or more of the

negotiation performance criteria?

4- Multi-Level Coordination: When an agent negotiates over multiple objects given

that each object has multiple providers, then the agent needs to analyze the behaviors

of all opponents over all objects (global coordination level) and analyze the behaviors

of opponents over each particular object which is the local coordination level. For each

coordination level, the agent controls one or more negotiation strategy parameters in

the coordination process. The fourth subquestion can be formulated as follows.

11
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• Can the approach of managing negotiation strategies at both, the global level
and local level during multiple concurrent negotiations be an effective method

in improving one or more of the negotiation performance criteria?

The answers to the research questions are discussed in chapter 8.

1.4 Contributions

The dynamic coordination in concurrent one-to-many negotiation involves managing

the negotiation strategy dynamically during negotiation for multiple instances (inter-

actions) of concurrent negotiations. The main body of this work investigates the dy-

namic bidding strategy in one-to-many negotiation. The bidding strategy determines

how an agent calculates the value(s) of its next offer(s). The proposed coordination ap-

proach considers the level of cooperation of the opponents in the terms of their offered

concessions in the current negotiation interaction. The previous data about the past

negotiations are not considered. The reason is that agents can be situated in dynamic

environments and their goals can be changed from one negotiation to another which

reduces the value of the historical data.

The main contributions of this thesis can be summarized as follows.

• Propose an extended negotiation model that emphasizes the notion of negoti-
ation objects and allows for describing a variety of negotiation scenarios.

The proposed negotiation model is general and can be used to describe a wide

range of possible negotiation scenarios. It emphasizes the notion of a negotia-

tion object that allows for describing complex negotiation scenarios that involve

multiple objects, multiple negotiation issues and multiple providers for each ob-

ject.

• Analyze the possible negotiation scenarios in the one-to-many negotiation and
define a set of scenarios that requires coordination, these scenarios are named
coordination scenarios.

Considering the three main negotiation cornerstones, the negotiation objects, the

negotiation issues per object and the number of providers per object, most of the
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negotiation interaction types can be classified accordingly. A subset of the pos-

sible negotiation scenarios is identified and named coordination scenarios. The

identified coordination scenarios are the one-to-many negotiation types. This

work mainly investigates the coordination problem in the defined coordination

scenarios.

• Propose and evaluate new mechanisms that coordinate the bidding strategy
for a buyer agent dynamically during negotiation.

The main objectives of the mechanisms are to achieve effective and robust results

in terms of the utility rates and the agreement rates. In the case of multiple

issues, the proposed mechanisms aim at improving the Nash product rates as

well. Coordinating the bidding strategy comes as a response to the behaviors

of the opponents that exist in the current negotiation. The work involves the

investigation of five coordination scenarios.

For each scenario, one or more coordination mechanisms that manage the bid-

ding strategy (negotiation strategy) dynamically during negotiation are proposed

and validated. The solution to the coordination problem depends on the idea

of managing one or more negotiation strategy components during negotiation.

The convexity of a concession curve, the local reservation values and the types

of negotiation tactics are chosen for adaptation during negotiation. Most of the

works presented in this thesis focus on developing and validating the coordina-

tion mechanisms.

• Propose a new Iterative Offer Generation (IOG) bidding strategy that is com-
petitive and cooperative at the same time.

The IOG mechanism involves two offer generation tactics: IOG-trade-off tactic

and IOG-concession tactic. Both tactics are used to generate counteroffers for

the proposed meta-strategy. The IOG-trade-off tactic proposes different coun-

teroffers that have the same utility in every negotiation round. Once the utility

level is changed, the new counteroffers are generated according to the new util-

ity. The IOG-concession tactic concedes in every negotiation round according

to a predefined amount. The difference between the proposed IOG-concession

tactic and other types of concession tactics is the that the IOG-concession tactic

considers that agents can have divergent preferences over issues. Therefore it
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concedes more on the issues that are believed to be of high importance to the

opponent.

1.5 Thesis Outline

This thesis is structured into eight chapters as follows.

Chapter 2 is the background and related work part. It introduces the basic concepts

in automated negotiation and coordination and presents the related work. The chapter

first introduces briefly the multiagent systems paradigm, then it moves to introduce the

automated negotiation and approaches to automated negotiations including game the-

ory, learning and reasoning, and heuristic-based approaches. The argumentation-based

negotiation is also introduced briefly. Next, the dependencies and coordination is dis-

cussed including possible sources of dependencies in the negotiation context. Finally,

the related work in the one-to-many negotiation is presented.

Chapter 3 presents a novel negotiation model that captures various negotiation scenar-

ios. The model emphasizes that the negotiation object is one of the main components

that are necessary for describing any negotiation scenario. The model introduces the

term of delegate for describing an agents’ component that can negotiate with other

agents on the behalf of the agent. The utility functions that are used to evaluate offers

are also presented. Finally, since an object can have one or more negotiation issues,

an agent needs to decide when to accept an offer, the offers’ evaluation decisions are

discussed.

Chapter 4 is the coordinated negotiation and solution approach chapter. It presents

the coordination problem in the one-to-many negotiation and the solution approach.

In addition, it classifies the possible negotiation scenarios and defines a subset called

the coordination scenario set which is the study target of this thesis. In addition, the

difference between the global reservation value and the local reservation values is pre-

sented. Finally, the general experimental settings and the simulation environment is

introduced.
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Chapter 5 presents coordination approaches for two coordination scenarios. The first

scenario is when a buyer agent is negotiating with multiple seller agents over one object

that contains a single negotiation issue. The coordination approach for this scenario

is based on managing the convexity of the concession curve during negotiation. The

second scenario is similar to the first one except that the number of negotiation objects

are more than one distinct object. One coordination approach considers the behaviors

of all seller agents across all objects (global approach) and a second one considers the

behaviors of the seller agents of each object alone, hence it is called the local approach.

The first approach is based on managing the local reservation values whereas the sec-

ond one is based on adapting the convexity of the concession curve. The combination

of both approaches is called a hybrid approach. In addition, the chapter presents an

empirical analysis for the different measures that can be used to analyze the behaviors

of the opponents. The results of the experimental work are presented and discussed.

Chapter 6 tackles the coordination scenario when a buyer agent seeks to procure a

single object characterized by multiple issues. The buyer agent negotiates with multi-

ple providers concurrently for the sake of reaching one agreement. A meta-negotiation

strategy is proposed to manage the multiple concurrent negotiations initiated by a buyer

agent. The coordination approach introduces a mechanism that selects a certain tac-

tic to use according to the current cooperation level of the opponents. In addition,

a novel offer generation mechanism is proposed, the iterative offer generation (IOG)

mechanism to generate counteroffers. It includes both a IOG-trade-off tactic and a

IOG-concession tactic. The mechanism assumes that agents have divergent prefer-

ences over issues. Both tactics are cooperative and competitive. They are competitive

because they aim to maximize the utility gain of the proposing agents and cooperate

since they consider the preferences of the opponents when proposing counteroffers.

The experimental results are presented and analyzed.

Chapter 7 investigates the coordination scenario where a buyer agent seeks to procure

multiple objects given that each object is characterized by multiple issues and has a

single provider. The scenario describes a monopolistic market where each service or

product has one provider. The proposed coordination approach considers manipulating

the local reservation values for the common issues. In addition, a global coordination
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mechanism is proposed for the coordination scenario where each object has multiple

issues and the buyer agent is in a non-monopolistic market where each object has mul-

tiple providers. The empirical results for the coordination mechanisms are presented

and discussed.

Chapter 8 is the conclusions chapter. It concludes the thesis, answers the research

questions and discusses the thesis extensions and future work.
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Chapter 2

Background and Related Work

After a brief introduction to the multiagent systems, the automated negotiation is in-

troduced and its application domains are highlighted. The approaches to negotiation

is presented next. This chapter starts with the game theory based approaches followed

by a discussion of the learning and reasoning methods used in negotiation. It also

presents different heuristic tactics used to generate offers and counteroffers during ne-

gotiation. Finally, the argumentation based negotiation approach is discussed briefly.

The next part of this chapter discusses dependencies and coordination by highlighting

possible interdependencies between the subjects of negotiation. The last part discusses

the relationship between coordination and negotiation. It presents short introduction

on some of the multiagent system coordination mechanisms and shows how negotiation

is considered as one of the possible coordination mechanisms. This part emphasizes

that the aim of this thesis is to coordinate concurrent multi-bilateral negotiations. In

addition, the relevant related work on the one-to-many negotiation focusing on the

different mechanisms proposed in the literature to coordinate multiple concurrent ne-

gotiations is presented.

2.1 Multiagent Systems Paradigm

The widespread connectivity amongst electronic devices provided by the Internet opens

the door for building large scale distributed applications and systems that span over a

large number of connected machines. The cloud computing and the grid computing are
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amongst the most important outcomes of such complex network systems. Electronic

commerce is another innovative domain for doing business. In addition, the advances

in computer systems lead to new computing paradigms such as ubiquitous computing

[112].

Distributed systems are characterized by the fact that different entities are connected

and are able to exchange messages and information. A multiagent system is a dis-

tributed computing system consisting of interacting software agents that can be used

to model and solve different real world problems such as business process management

[60], fault diagnosis in power systems [94], traffic management [17], etc. Task alloca-

tion [15] [83] and resource allocation [20] are two important problems in multiagent

systems that captured the attention of many researchers. The main differences between

the multiagent systems and the classical distributed systems is that the multiagent sys-

tems consist of intelligent and autonomous entities called agents where the agents are

self-interested entities that act to achieve its predefined goals [131] [57]. In addition,

agents in multiagent systems can have different owners in terms of their design and

implementation and may have even conflicting goals [159].

Multiagent systems model is suitable for: 1) uncertain, complex and dynamic environ-

ments 2) where agents are natural metaphors and used to model many environments as

societies of cooperating or competing agents such as most organizations 3) distribution

of data, control or expertise where centralized approaches are difficult to implement 4)

to solve the problem of dealing with legacy systems by wrapping a legacy component

with an agent layer [159]. An agent can represent a human, a robot or a software sys-

tem. In this manuscript, a software agent refers to a software system since software

agents are assumed to engage in negotiation where some agents represent buyers and

other agents represent sellers.

Some complex problems, especially those characterized by some social behavior, can

be modeled as multiagent systems since multiagent systems are enhanced distributed

systems equipped with components that are able to reason and make autonomous deci-

sions. Examples of such complex systems are socio-economic systems and biological

systems. In the electronic commerce domain, an electronic market can be modeled as

a virtual place where buyer agents, seller agents and broker agents meet and trade. In

general, agents in the electronic commerce are modeled as self-interested agents. In

this thesis, the following definition of a self-interested agent is assumed.

18



2.1. Multiagent Systems Paradigm

Definition 2.1. (Self-interested agents)

A self-interested agent is an agent who aims to maximize its gain from any interaction

with any other agent or with the environment without having the intension to harm

other agents or the environment. When there is room for a win-win outcome of an

interaction, the agent is willing to cooperate.

The above definition implies that a self-interested agent is a rational agent. The fol-

lowing is the formal definition of a rational agent.

Definition 2.2. (Rational agents)

A strict rational agent selects an option opi over an option opj if the expected utility

(EU) of opi is greater than the expected utility of opj , formally, a strict rational agent

selects opi iff EU(opi) > EU(opj). On the other hand, a weak rational agent selects

opi over opj iff EU(opi) ≥ EU(opj).

The rationality of agents can entail a thorny problem; there are situations where an

agent does not have enough computational resources or time for enumerating all the

possible options or decisions, which means that agents are rationally bounded. In such

situations, an agent aims to find a good or satisficing rather than an optimal solution.

The bounded rationality was first discussed in [140] in the context of a human decision

maker. To overcome this problem, heuristic decision making methods were proposed

[141]. Heuristic methods will be discussed later.

The above definitions are consistent with the characteristics of a self-interested agent

considered in the game theoretic models. From the definition above, the self-interested

agent is not necessary a bad agent since it does not have the intension to harm other

agents and it is willing to cooperate in case of existing a win-win situation. In addition,

type of agents we consider in this thesis are not benevolent agents.

As mentioned earlier, using three types of agents, one can model any electronic market.

Figure 2.1 shows two types of agent-based electronic markets, Figure 2.1(a) shows

that the seller agents and the buyer agents are interacting through a broker agent while

Figure 2.1(b) shows that the seller agents and buyers agents are interacting directly

with each other.

The work in this thesis investigates the situation shown in Figure 2.1(b) where agents
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Figure 2.1: Agent-based electronic market structures

interact amongst each other without a broker agent. The reason is that, in reality, there

would be trust problems if a broker agent or a mediator agent is introduced. In addi-

tion, an extra overhead in terms of the communication cost will be experienced in case

of adopting a mediator-market model. However, Figure 2.1(b) includes three forms

of interactions: one-to-one, one-to-many and many-to-many, see Section 2.2. As men-

tioned previously, this thesis addresses the coordination problem of an agent interacting

concurrently with multiple other agents through negotiation in terms of managing the

bidding strategy for the agent on the one-side dynamically during negotiation.

2.2 Automated Negotiation

Negotiation is proven to be an effective conflict resolution method and has been used

extensively throughout history to settle conflicts between nations, groups and individ-

uals [117]. Negotiation is a challenging research field in many disciplines including

economics [124][145], political sciences [42], law [156], psychology and sociology

[27][113], anthropology [50] and applied mathematics [51].

Scholars from the Harvard Negotiation Project have proposed a method called princi-
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pled negotiation or negotiation on the merits [43]. The principled negotiation focuses

on four points that define a negotiation method that can be used in many situations.

The points are: people, interests, options and criteria. The first point emphasizes the

separation of people from the problem. In many cases negotiators deviate from the

main problem into personal disputes which will not help in solving the original ne-

gotiation problem. The interests point means that the focus of negotiation should be

on the interest, not positions. For example, if two people are arguing against open-

ing or closing a window, we need not to think about closing or opening the window,

we rather need to think about the interests of each individual from having the window

opened or closed to find a reconciled solution. The options point focuses on generat-

ing a variety of possibilities before deciding on what to do. It means that negotiators

should explore many options that may include adding more negotiation issues to the

negotiation problem and not leaving money on the table, i.e., reach a Pareto-optimal

solution. A solution is Pareto-optimal if and only if no agent can increase its utility

without affecting negatively the utility of other agent. The criteria point means that

the result of negotiation should be based on some objective standard. The agreement

needs to be based on fairness that meets certain standards, if known, such as market

value or scientific merits. For more details about the principled negotiation, see [43].

The reason behind introducing the principled negotiation here is that automated negoti-

ation using agents meet most of the principled negotiation points. For example, agents

have no personal view of the problem and the separation of people from the problem

is achieved. Agents are able to negotiate over interests not positions. In multi-issue

negotiation, agents can have many options that make them indifferent. In addition,

the principle of a win-win outcome is related to the third point, i.e., the options point.

Many negotiation techniques aim to achieve a win-win agreement. Moreover, many

automated techniques are designed to achieve a fair outcome (e.g., [31] [79]) which is

related to the criteria point.

The interest in the automated negotiation accompanied the recent advances in com-

puter network systems and communication technologies that facilitate the interaction

between software systems. For more than a decade, automated negotiation received

tremendous attention from researchers (e.g., [71] [164][30][33][68][37][40]). The

work on automating the negotiation process results from the fact that computer sys-

tems are becoming more intelligent, more connected and the delegation in decision
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making are increasingly being granted to computer systems. Consequently, computer

systems are becoming more autonomous and they need to interact to cooperate and

coordinate their actions to achieve their goals. Negotiation is one of the most effective

methods for managing the inter-agent dependencies at run time [58]. Automating the

negotiation process can help negotiate complex contracts [68]. According to Sand-

holm, the automation of negotiation [127]:

can save labor time of human negotiators, but in addition, other sav-

ings are possible because computational agents can be more effective at

finding beneficial short-term contracts than humans are in strategically

and combinatorially complex settings.

Improving the results of negotiation in terms of utility rate and/or agreement rate is

another advantage. In addition, negotiation may improve the social welfare of the

agency [36].

Automated negotiation borrows from other disciplines such as Game Theory, Eco-

nomics, Artificial Intelligence and Psychology. However, the related literature suggests

that three areas related to automated negotiation are of most importance [61] [80]:

• Negotiation Protocols: rules of encounter. This covers the participants (e.g.,

buyers and sellers) in the negotiation process, the permissible messages (e.g.,

sending a bid) amongst the participants, the negotiation states (e.g., negotiation

is active) and the events that cause the change in a negotiation state, e.g., bid

accepted.

• Negotiation Objects: a negotiation object can be characterized by a single is-

sue such price or more, e.g., price, quality, delivery time etc which is called the

object structure. An agreement entails agreement over the issues of an object.

The negotiation protocol determines the type of operation that can be done on

an agreement including the structure and the content of the agreement. There

are three possible operations that can be done to the agreement structure (set

of negotiation issues) and its content during negotiation: 1) both are fixed and

the opponents(s) can take (accept) or leave (reject) the offer 2) opponents can

propose counteroffers with different issue values from the received ones 3) op-
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ponents can change the structure of the agreement by adding or removing issues

during negotiation which is sometimes called issue-manipulation [33].

• Decision Making Models: the set of algorithms or methods an agent uses to

determine its next offer or counteroffer, i.e., the bidding strategy. The deci-

sion making models can be game theoretic based models, heuristic based mod-

els or argumentation-based approaches. The decision making models must be

aligned with the negotiation protocol and is affected by the operation allowed on

the agreement structure and its contents. In addition to the adopted negotiation

protocol, the set of issues and their types (i.e., an issue can take continuous of

discrete values) affect the range of a possible decision and the intricacy of the

decision making models [33].

In some auction models (e.g., English auction, Vickrey), the protocol allows buyer

agents only to bid on an issue and the room for employing different decision models

is limited since the dominant strategy for a buyer agent is to bid up to its reservation

value. The reservation is defined as the minimum/maximum acceptable value of an

issue. It is minimum when an agent (e.g., a seller agent) is in a position to gain a

resource such as money and maximum when an agent (e.g., a buyer agent) is in a

position to lose a resource such as money too.

In cases where a protocol does not describe an optimal strategy for an agent (e.g., the

alternating offer protocol), the decision making models and mechanisms receive the

main attention. This is the case where agents can bargain to reach an agreement. As-

suming fixed values for the agreement structure does not allow for bidding, bargaining

or strategic conduct. In summary, the settings of any of the above factors can affect the

possible set of negotiation outcomes.

Given the assumption that agents can bargain by exchanging offers and counteroffers,

negotiation can be classified into two types [67]:

1. Distributive negotiation: This type of negotiation assumes that a gain for one

agent is a loss for another. It is described as zero-sum game in the game theory

terminology. This type is also called positional bargaining. Distributive nego-

tiation exists if the negotiating agents have the same preference profile on the

negotiation object structure. For example, if the negotiation object contains the
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price issue then a gain for one agent during negotiation means a loss for one or

more other opponents.

2. Integrative negotiation: This type of negotiation exists when agents negotiate

over multiple negotiation issues given that agents have divergent preferences

over some or all issues. In case of integrative negotiation, agents have a chance

to reach a win-win agreement. This kind of win-win agreement can happen

because an agent may concede on an issue that is less important to him and more

important to its opponent(s) and vice versa.

The type of negotiation affects the decision making mechanism used by agents during

negotiation. Both of the above types are considered in this thesis. When the negoti-

ation is distributive (mainly when agents are negotiating over an object containing a

single issue), the decision making mechanisms are purely competitive while the de-

cision mechanisms can be competitive and cooperative at the same time in case of

integrative negotiation.

Automated negotiation has the potential of leading to a giant step forward in many ap-

plication domains. The main application candidate domains are: electronic commerce

(e.g., [101][103]), supply chain management (e.g., [120][157]), task scheduling and

allocation (e.g., [166][65]) and resource allocation for grid and cloud systems (e.g.,

[138][2]). Another potential application domain where automated negotiation can play

an important role is the dynamic load management of the power grid that allows for

both, cost-effective use of electricity production capabilities and customer satisfac-

tion [9]. Brazier et al. propose a component-based multi-agent system that manages

electricity load using negotiation [9]. Three application scenarios are presented and

discussed in Section 1.2.

In the service oriented domain, agents usually negotiate to establish the service level

agreements (SALs) over the quality of service (QoS) under negotiation (e.g., [134][162]).

QoS is the non-functional characteristic of a service (e.g., reliability) which distin-

guishes between functionally equivalent services. It is the focus of competition be-

tween providers of functionally similar services. A competitive criterion in the service

oriented domain is the flexibility in the number of possible QoS options that is avail-

able for customers to choose from. The current offer-based methods of QoS show

either little or no flexibility in the possible number of available options for the combi-
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nations of the QoS configurations. The service configuration flexibility problem stems

from the fact that in many cases, the number of possible combinations of different at-

tribute values of services is large. When a service is characterized by several issues,

then automated negotiation can be a flexible solution for establishing the SLA between

a customer and a provider.

The reason is that the provider does not need to enumerate varying service character-

istics by recounting the possible number of values that can be assigned to different

attributes of each negotiation object. In theory, when the issues are of a continuous

type, the number of possible SALs is infinite. Negotiation can be considered as a search

mechanism where agents jointly search the SLAs space for a possible agreement over

a certain SLA.

Web services composition is an important application domain where automated negoti-

ation can play an important role in the process of procuring different services. Besides

that an agent can search for a certain service provider(s), an agent can negotiate on

the behalf of its owner over the nonfunctional characteristics of a web service such

as response time, throughput, reliability, etc. Using agent technologies to conduct the

process of provisioning web services can be more efficient than using manual methods

that consume time, effort and cost more. For example, a coordinated-negotiation ar-

chitecture is proposed [21] for web-service composition to ensure end-to-end QoS. In

addition, the results of manual procuring of web services can be less efficient in terms

of procuring the most suitable web services in terms of quality of service.

In multiagent systems, there are three forms of interactions determined by the number

of interacting partners and their respective positions. The basic form is the bilateral

interaction where two opponent agents interact. For example, B1 and S4 agents in

Figure 2.1(b) conduct bilateral interaction. The second form is the one-to-many in-

teraction where an agent interacts with multiple agents. In Figure 2.1(b), agent B2

interacts with agents S2 and S3. The last form is the many-to-many interaction where

multiple agents interact with multiple other agents. Different market mechanisms can

be represented by one of these interaction forms. For example, the English auction can

be modeled as the one-to-many form where many buyers interact with one seller. The

reverse English auction can also be represented by the one-to-many form where many

sellers interact with one buyer. The double continuous auction can be represented

by the many-to-many form. The interaction between agents can be either a one-way
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model or a two-way model. The one-way interaction model refers to auctions while

the two-way interaction model refers to negotiation where agents exchange offers and

counteroffers.

One of the first explicit architectures for the one-to-many negotiation was presented

in [115] where the buyer agent consists of sub-negotiators and a coordinator. The

sub-negotiators negotiate concurrently with a set of seller agents given that each sub-

negotiator negotiates with one seller. As mentioned earlier, this thesis investigates

mainly the situation of a buyer agent negotiating concurrently with seller agents for

the purpose of reaching one or more agreements over one or more negotiation objects.

During the last decade, work has been done to address the one-to-many negotiation as

an alternative mechanism to the single-sided auction [106] [48] [105] [161] [3] [2].

Adopting the one-to-many negotiation as an alternative to the single-sided auction has

many advantages. Not only does the agent on the one side receive offers, but it also

proposes counteroffers to each individual agent on the many side. Accordingly, the

chance of reaching an agreement will improve since each agent in the negotiation pro-

cess analyzes the previous offers in the current negotiation encounter which aims at

predicting the preference structure of its opponents and proposes counteroffers that

might improve the chance of reaching an agreement.

To shed more light on the advantages of adopting concurrent negotiation over the

single-sided auction, the following few points provide more information [105]:

• when agents seek agreement over multiple attributes or issues, a buyer can select

an offer from a set of offers proposed by the seller agents in case of a reverse

auction and a seller can select an offer from a set of offers offered by the buyers

in a forward auction. In both cases, the buyer in the first case and the seller in

the second case do not have the chance to ask for modification of any of the

proposed offers. In the multi-bilateral concurrent negotiation, an agent has the

chance to respond and ask for a specific value for each issue. This is important

since buyers and sellers can have divergent preferences over different issues. For

example, a buyer is willing to offer a premium price for having an item delivered

within 24 hours while other buyers can wait one week for the same item to

be delivered for paying a lower price. In other words, the chance of reaching

an agreement will improve since the agent on the ‘one’ side in the negotiation
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process may analyze the previously received offers in the current negotiation

encounter which aims at predicting the preferences of its opponents and tries to

propose counteroffers that might improve the chance of reaching an agreement.

It is obvious that the multi-bilateral concurrent negotiation improves the search

for agreement(s) process since the approach allows buyers and sellers to search

for offers that meet their criteria more efficiently.

• when a buyer agent receives multiple offers from different sellers, its bargaining

power will improve and its negotiation strategy can be different against each

seller. For example, some sellers might be desperate for reaching a deal and that

fact can be used by the buyer to secure a good deal.

• the agreement reached in a certain negotiation encounter can affect (help) other

negotiations. For example, a buyer can not accept a worse deal than an existing

one.

• the time for reaching an agreement can be reduced in comparison with time

needed by auctions since some auctions need to wait for a certain time before

announcing any agreement. In the concurrent negotiation approach, a buyer can

accept an offer at anytime and finish negotiation before the deadline.

The downside of using the multi-bilateral concurrent negotiation approach instead of

auction models is the communication cost and the need for coordination mechanisms

to manage the negotiation strategies of agents.

2.3 Approaches to Negotiation

The negotiation objective criteria vary. In competitive environments, each agent aims

to maximize its gain regardless of the gain of other agents. In other situations, agents

seek to maximize both, the individual gain the system gain. As the bidding strategy is a

critical part in the negotiation process since it is the process by which an agent decides

on the value and the content of the offer/counteroffer for the next negotiation round,

the focus in most negotiation literature is on devising bidding strategy techniques that

can achieve an optimal solution to the negotiation problem. Given the fact that au-

tomation of the bidding process is complex, it is difficult to find an optimal strategy for
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a dynamic process such as negotiation [82], various negotiation approaches are pro-

posed in the literature to automate the negotiation process, e.g., [33]. There are three

main negotiation approaches: game theory-based, argumentation-based and AI-based

approaches. The following sections discuss each briefly.

2.3.1 Game Theory-Based Approaches

In many cases, the negotiation problem is treated as a bargaining problem which is

defined by Rubinstein as [125]:

Two individuals have before them several possible contractual agree-

ments. Both have interests in reaching agreement but their interest are not

entirely identical. What “will be” the agreed contract, assuming that both

parties behave rationally?

Game theory is a mathematical tool that can be used to answer that bargaining question

under certain assumptions. Game-theory is a branch of economics that is used to study

and analyze how self-interested agents make decisions during their interactions [109].

In their book titled ‘The Theory of Games and Economic Behaviour’ [154], John von

Neumann and Oskar Morgenstern invented the mathematical theory of games in 1944.

The proposed mathematical framework was limited since it is applicable only under

some strict conditions. Since then, the framework has gone under many iterations of

refinements to make it work under less strict conditions [123]. In the context of game-

theory, an agent can be defined as an entity with preferences that aims to maximize its

utility which is measured by a utility function [123]. The utility function of an agent

assigns a value (usually numeric) to the outcomes of the game.

Optimal strategy and equilibrium are two important keywords in game theory since

researches aim to find the optimum strategies for interacting agents that lead to equi-

librium considering their preference and possible alternatives. The most famous type

of equilibrium is Nash equilibrium. Two strategies st1 and st2 are said to be in Nash

equilibrium if an agent is playing st1 and its opponent agent can do no better than play

st2 and vice versa.
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Figure 2.2: Taxonomy of game theory

Negotiation is a bargaining problem where two or more agents have conflict of inter-

est over an issue or more and there is a possibility for achieving a mutually beneficial

agreement(s) and the agreement(s) needs approval from all parties. Bargaining theory

is a part of game theory that investigates and analyzes bargaining games. Game theory

can be divided into cooperative and non-cooperative game theory. A possible taxon-

omy of game theory is shown in Figure 2.2 [77]. The cooperative game theory aims

at finding a solution while given a set of possible outcomes rather than on the specific

rules of the game or the negotiation process. The chosen solution usually needs to

satisfy some conditions such as being fair or stable. These conditions or properties are

called axioms. For example, if the condition is that the two bargainers gain the same

utility upon an agreement, then this would be an axion [77] [47].

The eminent work of Nash results in defining a unique solution satisfies four properties

which are called Nash axioms [102]. Assuming that players are rational, the axioms

are: 1) The outcome is invariance to equivalent payoff representation. This means that

the outcome of the bargaining process is not affected by a utility function transforma-

tion and keeps the same ordering over preferences 2) Pareto optimality. There is no

other agreement that can make both players better off or make one player better off

without making the other player worse off. 3) Independence of irrelevant alternatives.

This means that the outcome is not related to irrelevant outcomes, i.e., if the current

agreement is feasible, other alternative agreements are not considered 4) Symmetry. If

the players are indistinguishable, they should gain the same utility, i.e., no discrimina-

tion in selecting the agreement.
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When the previous assumptions hold, Nash proves that there is a unique solution

(Nash-bargaining solution) that maximizes ((u1(x1) − d1).(u2(x2) − d2)) which is

called Nash-product. The u1(x1), u2(x2) are the pay-offs of the solutions x1 and x2
respectively. In addition, d1, d2 are the payoffs in case of conflict outcome.

Kalai and Smorodinski argue against Nash’s third axiom and suggest a new axiomatic

solution called kalai-Smorodinski bargaining solution by replacing the third axiom of

Nash by the monotonicity property, see [63]. Since the outcome of the negotiation

process that is considered in this thesis depends on the interactions amongst agents,

the approach of cooperate game theory is not applicable here.

On the other hand, if a game has a well defined set of rules defined by a certain proto-

col that is known by the players before the start of the game, then the non-cooperative

game theory is the branch that handles such situations. The actions of each player at

each step during the game are determined by a bargaining strategy given the histori-

cal information of negotiation. The objective of the non-cooperative game theory is

to find the equilibrium strategy to define the rational behaviors of players, then the

rational behaviors of all players decide the outcome of the game. As mentioned be-

fore, Nash equilibrium is an example of such an equilibrium. For example, a strategy

equilibrium for a buyer agent and a seller agent who have unlimited negotiation time

is that each agent offers the minimum allowed concession in each negotiation round

until their offers match. There is no benefit for any player to deviate from this strategy

by conceding, for example, more than the minimum allowed concession. As Figure

2.2 shows, the non-cooperative game theory is divided into complete information and

incomplete information. In the complete information case, agents know about the pref-

erences of each other. Different protocols lead to different outcomes at the subgame

perfect equilibria (SPE) [77]. Games such as ultimatum [99], alternating offers [125]

and monotonic concessions [122] were analyzed and investigated to find the SPE.

The mechanism design and sequential bargaining are two approaches usually used to

study the non-cooperative game theory with incomplete information. The mechanism

design abstracts the process of bargaining and uses the players’ private information to

find the bargaining solution [77].

In sequential bargaining games, the outcome is reached by exchanging offers and coun-

teroffers between the players. The sequential bargaining games are divided into one-

sided incomplete information and two-sided incomplete information, see Figure 2.2.
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Assume that a buyer and a seller would like to reach an agreement over a certain issue

using the alternating offer protocol (i.e., by exchanging offers and counteroffers) and

if one player (say the buyer) knows about the reservation price value of the seller, then

the game is called a one-sided incomplete information game. If both, the seller and the

buyer do not know anything about each other (e.g., reservation values) then the game is

called a two-sided incomplete information. When analyzing the two-sided incomplete

information games, researchers assume that each player has a limited number (e.g., 2)

of types to simplify the analysis, see [16].

Finally, using game theory, it is possible mathematically to analyze games in terms of

finding the equilibrium fulfilling strategies. However, to do that, game theory applies

strict conditions. It assumes that agents have the ability to assign ‘utility values’ for all

possible outcomes. In many cases, a utility function that maps an outcome to a numeric

value does not exist. For humans, it is difficult even to rank different outcomes espe-

cially when negotiating over objects characterized by multiple issues. Another limi-

tation is that game theory generates specialized models that are applicable in certain

types of interdependent decision-making and fails in producing a general model. In

addition, game theory assumes that players or agents are rationally unbounded which

means that they know all possible solutions within a feasible range of outcomes or can

find them within an acceptable computational time. Finally, players are assumed to

have full knowledge about the environment and about the opponents in terms of their

preferences over different outcomes. The assumption about total rationality and full

knowledge are unrealistic since agents are computationally bounded and rarely know

the outcome preferences of their opponents. Game theory is suitable in terms of analy-

sis and can be used in automated negotiation when the relevant conditions are assumed

to exist, see [77] [47] [58].

To enable adopting automated negotiation in more realistic situations, the artificial

intelligence (AI) techniques are used in automated negotiation to relax the strict as-

sumptions of game theory. The AI techniques use learning and reasoning methods that

can help agents in learning and reasoning about their opponents’ models and adapt

their behavior to the current situation. The next section discusses briefly some of the

AI techniques that are relevant to automated negotiation.
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2.3.2 Learning and Reasoning Based Approaches

In general, it is difficult to apply game theory in real life negotiation situations due to its

strict assumptions. The artificial intelligence (AI) approaches are applied in the field of

automated negotiation to relax these assumptions. The learning and reasoning methods

of AI are proposed to deal with the situation of incomplete information and limited

computational resources. In the automated negotiation context, an agent aims to learn

about the model of its opponent. A negotiating agent aims to model its opponent in

terms of learning or approximating one or all of the following:

• preference profile, such as reservation value, deadline, preferences over issues,

preferences over the outcomes etc.

• negotiation tactics and their associated parameters. For example, an agent can

aim on finding its opponent’s offer generation technique, e.g., time-dependent.

The subfields of artificial intelligence that are relevant to automated negotiation is

learning and reasoning. To facilitate concise summary of the work done in automated

negotiation using learning and reasoning methods in AI and partially based on [126],

Figure 2.3 shows a simple classification of the AI learning and reasoning methods that

are relevant to automated negotiation. The classification shown in Figure 2.3 is neither

comprehensive nor precise. Figure 2.3 does not include all the AI techniques that are

relevant to automated negotiation. In addition, one can argue against the classification

itself since some AI methods can be classified under more than one category.

Figure 2.3: AI Learning & reasoning methods used in automated negotiation
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If an agent can model its opponent, it can use relevant decisions to maximize its utility

gain or achieve other negotiation objective criteria. The most used learning meth-

ods are classified under statistical learning where agents apply statistical techniques

to predict and/or to learn information about their opponents. Learning can be offline,

online or both. The offline learning uses previous information (e.g., outcomes of pre-

vious negotiation encounters) in the learning process while the online learning uses the

information available during the current negotiation encounter. In most cases, the dy-

namic information that are available to the agents in the current negotiation encounter

are the current negotiation threads, see Section 3.2. Domain knowledge is another

source of information. In addition, a probability distribution over unknown parameters

(e.g., deadline) is a useful source of information for agents. Finally, some approaches

assume a predefined set of models about the opponent.

Regression methods are used in negotiation to estimate the parameter(s) of a given

negotiation decision function using the thread of the current negotiation encounter.

Regression methods are also used to predict the type of negotiation tactic (e.g., time-

dependent) used by the opponent assuming that the opponent uses a predefined set of

tactics [11] [12]. In one-to-many negotiation, [135] uses linear regression to predict

the future proposals of an opponent. The prediction result is used to decide whether an

agent should continue negotiating or accept the best offer in an acceptable list and quit

negotiation. The coordination process involves deciding on proceeding or terminating

the concurrent negotiation. The work in [135] assumes that agents are negotiating over

a single issue.

A limitation of the regression methods is the assumption about the decision models

of the opponent. In addition, the online prediction using regression methods can be

computationally expensive.

On the other hand, Coehoorn and Jennings use the kernel density estimation KDE

method to approximate the preferences of an opponent over various issues in multi-

issue negotiation [22]. The KDE is a non-parametric statistical method that can be

used to estimate the probability density function of a stochastic variable. The authors

use the difference between the last two offers of the opponent to find a relation between

this difference and the preference in terms of weight the opponent has for each issue.

Once an agent approximates the weight that its opponent places on each issue, it uses

the trade-off method to generate its offer aiming to reach a win-win agreement. The
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limitation of this approach is that the agent using the KDE method needs a probability

density function over the opponent’s likely weights for the various issues estimated

from previous negotiation encounters, i.e, the history of previous offers and counterof-

fers. In addition, the authors assume that the agent uses time-dependent tactics in order

to behave differently overtime.

In sequential decision-making models (e.g., alternating offers protocol model) where

there are sequence and dependent decision making points and the decision maker

is able to update its beliefs after making a certain decision and receiving feedback,

Bayesian learning would be a suitable learning model [164]. Zeng and Sycara pro-

pose “modeling beliefs about the negotiation environment and the participating agents

under a probabilistic framework using a Bayesian learning representation and updat-

ing mechanism [164]”. We use a similar example to the one presented in [164] to

briefly explain how the Bayesian learning works. Consider a buyer agent negotiating

with a seller agent over a price issue using Bayesian learning. In this case, the buyer

agent needs to have a partial belief about the reservation price (RVseller) of the seller

represented as a probability distribution over the expected reservation prices. This be-

lief can be modeled as a set of hypothesis H = {Hi|i = 1, 2, ...n}. Say that, for

H1, RVseller = 120 and for H2, RVseller = 150. Each hypothesis is true to a certain

extent. The priori knowledge about each hypothesis is represented as a probability

distribution. The updating process in Bayesian learning starts when new information

is received, see Equation 2.3.2.

P (Hi|e) =
P (Hi)P (e|Hi)∑n
j=1 P (e|Hj)P (Hj)

, (2.1)

where P (Hi|e) is the posterior knowledge or estimation of the RVseller and P (e|Hi)

is an encoded domain knowledge about the probability of event e given Hi. To run

a numerical example, assume that the buyer agent has no more information about the

H1 and H2 which means that P (H1) = 0.5 and P (H2) = 0.5. Regarding the domain

knowledge, it can be known that sellers usually add 15% to their reservation price.

The encoded domain knowledge is P (e|H1) = 0.35 and P (e|H2) = 0.1 where e is the

event that the seller asks 120 + 0.15 ∗ 120 = 135. Assume that the seller agent offers

$135 then the posterior priorities are:
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P (H1|e) =
0.5 ∗ 0.35

0.35 ∗ 0.5 + 0.1 ∗ 0.5
= 77.78%

P (H2|e) =
0.5 ∗ 0.1

0.35 ∗ 0.5 + 0.1 ∗ 0.5
= 22.22%

The buyer agent updates its knowledge about the reservation value of the seller accord-

ingly. For more information, see [163][164].

Bayesian learning is used to learn both the issue preferences and the issue priorities of

an opponent in multi-issue negotiation [53]. One of the proposed model assumptions

is that an agent has some knowledge about issue priorities of the opponent. Another

assumption is that a hypothesis space of predefined function types about the opponent

is assumed.

The Bayesian learning assumes some knowledge to work such as the encoded specific

domain knowledge which is not always available. In addition, the Bayesian framework

does not provide a negotiation strategy in the form of concession behavior. Applying

the Bayesian learning in one-to-many negotiation is more difficult since an agent needs

to have some information about a large number of agents which is difficult to do in

reality given that agents negotiate in an open and dynamic system.

Neural networks do not assume any relationship between the input and out variables

since this kind of relationship will be learned by the neural network itself. A neural

network needs a training on a training dataset when using offline learning, or it can

start processing information after a certain number of offers are exchanged between

agents. For example, [13] uses both, offline and online neural network training to

model the negotiation process in a time-series style. The neural network used in [108]

was trained offline and then online before testing it. The trained neural network is used

by a seller agent negotiating with a buyer agent over the price issue. Using the neural

network, the seller agent needs to predict the next price proposal of the buyer agent

given that the buyer agent has already sent three proposals. The experimental results

show that the seller agent using neural network achieves more deals when compared

with a seller agent using Q-learning when the deadlines are long.

The drawback of using neural networks is that they need training before they can per-

form well. In addition, if an agent using a neural network is negotiating with an oppo-
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nent agent playing different strategies from the ones that were used in the training set,

the neural network could have unpredictable behavior.

The idea of Case-based reasoning (CBR) is to solve a new problem using or adapting

previously found solution(s) used to solve similar problems. The CBR mechanism elic-

its information and learns from previous cases histories, hence it does not need explicit

information about some domain knowledge [155]. In negotiation, an agent adopting

CBR, uses previously stored cases for comparison and decision making during nego-

tiation encounters. The cases that are kept in the case database and used later are the

ones who achieved successful outcomes in negotiation. Sycara was one of the first to

use CBR in the PERSUADER program, that resolves labor disputes using negotiation

where “contracts, impasses and arguments are used as basis for Case-Based Reasoning

at performing” the required tasks [148]. Argumentation and CBR are used in [167] to

manage the negotiation strategy in e-commerce. Matos and Sierra use CBR as a tech-

nique to assign parameter values to negotiation tactics and determine the weights that

will be used to combine those tactics [93] whereas the fuzzy rules are used to adapt the

chosen solution considering the environmental information before making new offers.

A possibilistic case-based reasoning is used in [10] to predict negotiation outcomes

for a potential set of negotiation partners. The partner with the highest score or rate

is selected to be a negotiation partner. However, this approach was not used in the

process of managing the negotiation strategy during negotiation.

One of the drawbacks of using CBR in negotiation is that an agent requires a large

number of previously stored cases in order to achieve good results since agents in

many cases, exist in open and dynamic environments. In addition, a CBR agent may

not be able to reason during negotiation when it faces a situation where its opponent

behaves differently from any stored case.

The Markov decision process (MDP) is a stochastic process that has been used to

model the negotiation process, e.g., [101][149]. Narayanan and Jennings model a bi-

lateral negotiation as two non-stationary MDPs because each agent views the state

space differently, and they are non-stationary processes due to the environmental dy-

namics which makes the probability of transition from one state to another vary over

the negotiation time [101]. In their model, the authors assume that agents have some

information about the transition function represented as probabilistic knowledge. In

addition, they assume the Markov property in the system (i.e., the state transition of a
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system depends only on the current state) as they argue that only the current state of

the system triggers the process of selecting an effective strategy. However, they state

that more work needs to be done to verify that claim.

The state space in [149] is modeled as a set of negotiation tactics. An agent using

the MDP method needs to negotiate with several other agents to build an empirical

probability distribution of the tactics after which the agent updates the empirical prob-

abilities by learning from other agents’ responses. A decision making strategy based

on a tractable Markov chain model of negotiation process is proposed [3] to help an

agent adopting that model to make a decision on whether to accept the best received

proposal from a set of partners or to keep on negotiating in case the expected utility

in the next proposals will be better. The main drawback of using the MDPs is that it

requires a meaningful probability distribution over the state transition matrix in order

to deliver effective outcomes.

Reinforcement Learning (RL) is a learning method where agents learn by experience.

An Agent observes the state of its environment and takes action. Depending on the

action it takes, it receives either a positive or negative reward. When an agent has

the opportunity to take a new action, it selects the action that brings him a positive

reward. This process of learning is repetitive and the agent is expected to learn over

many repetitions [146].

In negotiation, agents adapt their negotiation strategies according to the feedback re-

ceived after using a particular strategy. The feedback can be an opponent’s response to

using a certain strategy. For example, after using a certain strategy, the opponent may

accept, reject or quit negotiation.

Q-learning is the most used type of reinforcement learning. An agent using Q-learning

updates the Q-value when it selects an action a given a state s, see Equation 2.2. In

negotiation, the Q-value is updated at every negotiation round for the chosen action a

taken while in state s.

Q(s, a)← Q(s, a) + α[R(s′) + γmax
a′

Q(s′, a′)−Q(s, a)] , (2.2)

where maxa′ Q(s′, a′) is maximum expected reward (e.g., utility) of the next state s′.

The learning rate α controls the amount of Q-value update, α ∈ [0, 1]. If a Q-learning

agent assumes α = 0 then the agent does not learn (i.e., it does not update the Q-
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value) since it keeps the oldQ-value. When α = 1, the agent considers the most recent

information. The factor γ ∈ [0, 1] is the discount factor. If γ = 0 then the agent

considers the current rewards. If γ = 1 then the agent will look for a high reward in

the future. R(s′) is the immediate reward after choosing the state s′.

In automated negotiation, Q-learning is used to select a negotiation strategy from a set

of different combinations of negotiation tactics (e.g., [14]) where an agent learns to

select an appropriate negotiation strategy during negotiation. The choice of a certain

strategy can be either rewarded or punished. The Q-learning agent is expected to per-

form well after a certain number of iterations depending on the number of states, e.g.,

strategies.

The problem of using Q-learning in negotiation is that Q-learning has proven to have

slow convergence towards near-optimal solutions in comparison with other techniques

such as genetic algorithm based classifier systems [108]. Another problem is that, an

agent using Q-learning has to reason whether to exploit the current situation or explore

other possible solutions.

Evolutionary computation methods are based on models of natural selection. The three

most popular forms of evolutionary computation are genetic algorithms, evolution

strategies and evolutionary programming. The genetic algorithms model evolution

at the level of genes. Evolution strategies model evolution at the level of individuals

competing for resources while evolutionary computation models evolution at the level

of species competing for resources [5].

A genetic algorithm starts with a randomly generated population. The population is

evaluated using a fitness function and with a probability related to the fitness of each

individual, an individual can be transferred into the next generation either unchanged,

mutated or created by the crossover method where information from two parents are

used to make a new individual. The process is repeated until some stop condition

becomes true. In negotiation, the evolutionary computation methods allow agents to

empirically learn using good negotiation strategies. A genetic algorithm based learning

technique is proposed in [107] for learning negotiation strategies. The strategies are

structured as sequential rules consisting of offers separated by thresholds. Each thresh-

old represents the utility of an offer. However, the model offers little expressiveness to

model strategies with even simple decision rules. Tu [150] proposes an approach based

on genetic algorithms that evolves from negotiation strategies where each strategy is
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presented as a finite state machine. Each strategy competes against other strategies and

is adapted over time depending on the completion outcomes using a genetic algorithm.

If the population size is not large, genetic algorithms can produce acceptable outcomes.

However, in real world scenarios, their application is limited due to the large number

of negotiation strategies. Accordingly, the population search space becomes large and

intractable.

Fuzzy logic is used in negotiation as a decision making approach for selecting an appro-

priate negotiation strategy considering current negotiation environmental conditions,

e.g., [93] [139]. When using fuzzy logic, it is important to choose a fuzzy model that

suits a certain system since fuzzy modeling is the most important issue in fuzzy logic

[144]. In automated negotiation, two main fuzzy logic models are used to model the

decision making process: the fuzzy if-then rules and the fuzzy constraint satisfaction

problem. The fuzzy rules are a set of rules applied to certain variables. When a certain

fuzzy rule is satisfied, a corresponding action is initiated. For a multi-input and single-

output system, the fuzzy rule looks like [144]: Ri : ifx1 is A
i
1 and x2 is A

i
2 ... and xn

is Ain, then y is B
i, where Ri is the ith rule, xj is the input variable and Aij and Bi

are fuzzy variables. Matos and Sierra use fuzzy rules to adapt the current mental state

of an agent by adapting the parameters of the negotiation tactics and their contribution

weighs in the next offer while considering the current environmental situation. Fuzzy

rules are used in [139] to manage the amount of concession during negotiation. They

take into consideration the negotiation environmental conditions such as competition,

deadlines, trading options, etc.

The problem of using fuzzy rules is that some knowledge and experience is needed to

set up the rules. In addition, it is difficult to change the rules during negotiation which

can be a problem in dynamic and open systems.

On the other hand, negotiation can be modeled as a constraint satisfaction problem [70]

since an agent has constraints and preferences that need to be satisfied during the nego-

tiation. To provide a more flexible model, negotiation is modeled as a fuzzy constraint

satisfaction problem (FCSP), e.g., [69][81] where the constraints are considered fuzzy

and presented by membership functions. In general, an agent using FCST to model

negotiation aims to reach an agreement that maximizes its gain, and when possible,

to maximize the opponent’s gain too, i.e., the agent aims to achieve a Pareto optimal

solution. The Prioritized FCSP approach is used in [81] to handle situations in which
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an agent is not able to describe precisely its preferences over negotiation issues, when

the agent’s constraints are fuzzy. For example, if an agent is searching for a nearby

inexpensive restaurant, then there is no precise acceptable preference over choosing a

restaurant. A certain restaurant could be partially satisfied or partially violated. For

more reasons on adopting the PFCSP, see [81]. The concept of priority in FCSP was

introduced to handle the matter of existing issues with different importance. Exiting

issues with different importance are the base of using trade-off in negotiation. For

more detail on using trade-off in negotiation, see Section 2.3.3.5. Finally, the model

assumes that agents exchange more information than the ones related to the values of

issues, such as constraints about the product the buyer agent intends to buy which lim-

its the applicability of the approach where only values over issues can be exchanged.

To wrap-up this section, the following are general comments about using learning and

reasoning AI techniques in automated negotiation:

• even though AI techniques relax the strict conditions assumed for applying game

theoretic techniques, i.e., complete knowledge and unbounded rationality, AI

techniques still require either partial knowledge represented as probability dis-

tribution over variables (e.g., Bayesian learning) or training before the start of

negotiation, e.g., neural networks

• most AI techniques are proposed for bilateral negotiation

• most AI techniques are designed for the situation where agents negotiate over one

object, and in most cases that object contains the price as the only negotiation

issue.

2.3.3 Heuristic-Based Tactics

Negotiation is a dynamic and non-deterministic process. The assumption is that agents

work under incomplete knowledge since the preferences over the negotiation out-

comes, the utility structure and the deadlines are considered private information for

each agent. The heuristic-based models provide approximate solutions to the problem

of the bidding strategy. The heuristic approaches can be used in different application

domains and allow an agent to show different behaviors in terms of its concession strat-

egy that help it to adapt to the current situation. The heuristic-based approaches are
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computationally efficient and tractable since they do not need to exhaustively search

the negotiation space while looking for the optimal choice.

Widely used heuristic based techniques were proposed in [33]. The proposed tech-

niques are called negotiation tactics and consist of a set of decision functions catego-

rized according to some negotiation variables such as time or according to the conces-

sion behavior of the opponent. The following few sections provide an overview.

2.3.3.1 Time-Dependent Tactics

An agent uses the time-dependent tactics to generate its offers/counteroffers takes into

consideration both, the time elapsed since the start of negotiation and the negotiation

deadline. In addition, the convexity of the function curve affects the amount of gen-

erated concession. The convexity parameter used in the literature is often denoted as

β. The time-dependent tactics do not take the concessions of the opponents into con-

sideration in the process of generating offers/counteroffers. Different functions can be

used to control the amount of generated concession on each issue in each negotiation

round. For example, polynomial (see Equation 2.3) and exponential (see Equation 2.4)

functions were proposed [33] and used in conducting various experiments that aim to

evaluate empirically the proposed negotiation tactics and strategies. It is worth noting

that the behavior of these functions is monotonic, i.e., each proposed offer/counteroffer

will have less utility than the previously offered one. The monotonic behavior is re-

alistic in many real life applications. For example, it would be inappropriate for a

merchant to ask for a higher price than the previously asked one during the same ne-

gotiation encounter.

αdjl(t) = κdjl + (1− κdjl)(
min(t, tdmax)

tdmax
)

1
β , (2.3)

αdjl(t) = e
(1−

min(t, tdmax)

tdmax
)β lnκdjl

, (2.4)

where αdjl(t) is the function that controls the amount of concession in the next nego-

tiation round, k is a constant that determines the initial concession at time = 0 given

that k ≤ αdjl(t) ≤ 1 and 0 ≤ k ≤ 1 . The β parameter controls the convexity of the

concession curves. With different β values, the first two functions behave in a similar
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way except in the extreme values of β in which the function in Equation 2.3 (called

polynomial function) tends to concede more quickly with higher beta values than the

function in Equation 2.4 (called exponential function), see Figure 2.4. When the val-

ues of beta are small, the exponential function waits more than the polynomial function

before it starts conceding.

Figure 2.4: Polynomial (left), exponential (middle) and sigmoid decision function cur-
vatures using different β values

The sigmoid function (see Equation 2.5) is another decision making mechanism that

controls the amount of concession in each negotiation round [168]. Its behavior is

different from the behavior of the functions in Equations 2.3 and 2.4. The sigmoid

function starts conceding more after the turning-point which is in the middle of the

deadline interval (i.e., tamax/2) for all high values of β. For small values of β, the be-

havior of the sigmoid function tends to be linear in terms of how it models concession.

For relatively high β values, the sigmoid function offers little concessions while after

the turning-point, it offers large concessions towards the reservation value of the nego-

tiation issue. With small β values, the concession behavior is relatively stable before

and after the turning-point, see Figure 2.4.

αdjl(t) =
1

e−β(t−tmid)
(2.5)

After calculating the αdjl , Equation 2.6 is used to calculate the real value for an issue jl
that is going to be offered in the next negotiation round.

x
tn+1

d→s
=

IV d

jl
+ αdjl(t)(RV

d

jl
− IV d

jl
) if RV d

jl
> IV d

jl

IV d

jl
− αdjl(t)(IV

d

jl
−RV d

jl
) if RV d

jl
< IV d

jl

(2.6)

In general, the first case in Equation 2.6 is used by a buyer agent who starts offering
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the least amount of resources (e.g., money) to its opponent seller agent for buying

an object oi, while the seller agent starts asking for high amounts of resources (e.g.,

money) in exchange for the negotiation object oi.

The concession patterns shown by the functions in Equations 2.3 and 2.4 can be classi-

fied into three broad areas of behaviors that are controlled by the convexity parameter

β. The three behavior types are:

• Boulware, where β < 1. The Boulware agent makes small concessions in the

start of negotiation and continues until it reaches near its deadline where it offers

large amounts of concessions and reaches its reservation value when it meets

its deadline. This type of behavior represents an agent who is not desperate in

reaching an agreement quickly. This type of agent is rather aims to reach an

agreement with high utility.

• Linear, β = 1. The linear agent offers the same amount of concession in each

negotiation round and this linear behavior is applied strictly to the polynomial

decision function, see Equation 2.3. The behavior of the exponential function

(Equation 2.4 is nearly linear when β = 1. The linear behavior represents an

agent who balances between the time of agreement and the quality of that agree-

ment.

• Conceder, where β > 1. The conceder agent offers large concessions at the

beginning of negotiation then starts offering small concessions until it reaches

its reservation value at the deadline. The conceder type of agent represents a

situation where an agent is desperate in reaching an agreement regardless of the

quality of that agreement.

2.3.3.2 Resource-Dependent Tactics

As the name implies, the resource-dependent 2.3.3.1 tactics depend on the amount of

the available resources for determining the value of the offer/counteroffer in the next

negotiation round. In Equation 2.7, the resourcea(t) is a function that returns the

amount of available resources at time t, such as the number of the negotiating agents

or the number of the exchanged messages during negotiation etc. [33].

αdhj(t) = κdhj + (1− κdhj)e
−resourced(t) (2.7)
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When the amount of the available resources are low, then the value of the function

αdhj(t) is high, which means that agent d needs to offer large concessions to improve

the chances of reaching an agreement. On the other hand, when the available resources

are high, agent d tends to offer small amounts of concessions. Time is a specific type

of resource and it will be the resource that is investigated in this thesis since time is a

critical factor for any negotiation process and the time-dependent tactics are a special

type of resource-dependent tactics.

2.3.3.3 Behavior-Dependent Tactics

Behavior-dependent tactics or Tit-For-Tat (TFT) family is another approach for gen-

erating offers. When an agent uses a behavior-dependent tactic to generate offers, it

imitates the behavior of its current opponent in terms of the opponent’s concessions.

The imitation procedure depends on weather the imitation takes into consideration the

recent or old amount of concessions offered by the opponent. In addition, the imitation

can be exact (where an agent concedes the exact amount of its opponent concession)

or proportional where an agent offers an amount of concession proportional to the

amount of concession offered by its opponent. To accommodate the stated imitation

factors, three behavior-dependent tactics (TFT) are proposed [33]. The type of TFT

shown Equation 2.8 is called Relative Tit-For-Tat where an agent finds the percentage

between two previously received offers then multiplies that percentage by its last offer.

For example, if δ = 1 and the last received offers by a seller agent are $18 and $16

at t = 1 and t = 3 respectively and the buyer agent offered $10 at t = 2 then the

buyer agent will propose (18/16) ∗ 10 = $11.25 at time t = 4. Equation 2.8 is ap-

plicable when n > 2δ. The δ in the TFT tactics determines whether an agent imitates

the recently received offers or the offers received some time back in the history of the

current encounter. If δ is small then the agent imitates the recently received offers. In

the following three equations, If IV d

jl
< RV d

jl
then mindjl = IV d

jl
and maxdjl = RV d

jl
,

otherwise mindjl = RV d

jl
and maxdjl = IV d

jl
. Finally, the Max(., .) is a function that

returns the maximum value of its two arguments andMin(., .) is a function that returns

the minimum value of its two arguments.

x
tn+1

d→s
[jl] = Min(Max(

x
tn−2δ

s→d
[jl]

x
tn−2δ+2

s→d
[jl]

x
tn−1

d→s
[jl],min

d

jl
),maxdjl) (2.8)
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The Random Absolute Tit-For-Tat tactic is shown in Equation 2.9. If an agent uses this

tactic, it imitates the concessions of its opponent exactly, i.e., in absolute terms. For

example, if a seller agent decreases its offer by $5 then the buyer agent increases its

offered price by $5 too. As said before, it is an exact imitation. A random function

(R(M) ∈ [0,M ]) is introduced in the tactic where M is the maximum amount by

which an agent would deviate from its imitation pattern. The random function R(M)

is introduced to break the cycle of exact imitation between agents.

x
tn+1

d→s
[jl] = Min(Max(x

tn−1

d→s
[jl] + (x

tn−2δ

s→d
[j]− xtn−2δ+2

s→d
[jl]) + (−1)sR(M),mindjl),max

d

jl
)

(2.9)

Again, the condition for Equation 2.9 applicability is that n > 2δ since an agent needs

to receive a minimum of 2 offers before applying the tactic. In Equation 2.9, if IV d

jl
<

RV d

jl
then s = 0, otherwise s = 1.

The third TFT is the Averaged Tit-For-Tat (see Equation 2.10) where an agent finds the

percentage of an offer received ν steps back in the history of the current negotiation

encounter to the most recent received offer then multiply the resultant percentage by

the value of the last offered proposal by the agent. When ν = 1, it becomes similar to

the relative Tit-For-Tat tactic. If ν > 1, the agent is expected to offer more concessions.

x
tn+1

d→s
[jl] = Min(Max(

x
tn−2ν

s→d
[jl]

xtn
s→d

[jl]
x
tn−1

d→s
[jl],min

d

jl
),maxdjl) (2.10)

The above behavior-dependent tactics model different ways of imitation behaviors.

The success of each tactic can be tested empirically. For empirical results concerning

these tactics, see [33].

Another formulation is adapted [78] where an agent imitates the concession of its op-

ponent as shown in Equation 2.11. This will be referred to as Concession Tit-For-Tat.

Ct
d

= A ∗ |xt−1
d→s

[jl]− xt−3d→s
[jl]|+ (1− A) ∗ |xt−2

s→d
[jl]− xt−4s→d

[jl]| , (2.11)

whereCt is the amount of concession proposed at time twhich will be added to the last

offer of agent d if IV d

jl
< RV d

jl
and deducted from the last offer when IV d

jl
> RV d

jl
.

A is the imitation factor, A ∈ [0, 1]. Formula 2.11 assumes the absolute value in the
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difference between the last two offers in order to accommodate for all types of issues,

i.e., whether their values are increasing or decreasing during negotiation.

To illustrate using Equation 2.11, assume that the turn is for agent d to propose an

offer where it sets A = 0.6. It means that the amount of concession (Ct) that will be

offered by agent d at time t consists of 60% of its previous concession and 40% of its

oppnent’s previous concession. If A = 0, then agent d imitates the exact concession

of its opponent and if A = 1 then it offers the same amount of concession it offered

previously. The concession Tit-For-Tat offers a flexibility to manage the amount of

imitation during negotiation by changing the amount of the concession factor A taking

into consideration some environmental changes such as behaviour of the opponents,

number of out side options etc. In addition, as the previous imitation methods provide

the flexibity in selecting recent or old concessions to imitate, the concession Tit-For-

Tat also provides the flexibility of sellectig either recent concessions or old concessions

to imitate.

In general, an agent takes into consideration the current negotiation thread in formu-

lating the behavior-dependent proposals and does not use old negotiation threads gen-

erated by previous negotiations.

2.3.3.4 Mixing of Tactics

When an agent uses a single negotiation tactic throughout the course of negotiation to

generate proposals, its strategy can be described as a pure-strategy or a non-strategic.

On the other hand, the strategic behavior can be either static or dynamic. The static

strategy in this context means that an agent first generates multiple offers by different

tactics. Each generated offer contributes to the final proposal according to the weight

that is previously assigned to each tactic. The weights that mix between tactics do not

change during negotiation. In dynamic strategy, the weights change during negotiation

in response to change in the opponent’s behavior [33]. However, for the experimental

work of this thesis, the static strategy indicates that an agent does not change any

negotiation parameter(s) during negotiation regardless of the number of tactics used

to generate an offer while the dynamic strategy indicates that an agent changes some

negotiation parameter(s) during negotiation even if that agent uses a single negotiation

tactic to generate a proposal.

To generate an offer, each tactic contributes some percentage (determined by a mixing
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weight matrix) to the value of the generated offer. For a dynamic strategy, the mixing

weights matrix are changed according to some factors that form the mental state of an

agent. IfMSt
d

is the mental state of an agent d at time t andMSd is the set of agent d’s

possible states. The MSt
d

combines both knowledge and attitudes. The knowledge is

about both the environment and the opponents. The attitudes include goals, designers,

intention etc. The change in the mental state of agent d can trigger a change in the

negotiation strategy including the change in the mixing weight matrix Γ
tn+1

d→s
[35].

Γ
tn+1

d→s
=


γj11 γj12 . . . γj1h

γj21 γj22 . . . γj2h
...

...
...

...

γjp1 γjp2 . . . γjph

 (2.12)

A row γjl in Equation 2.12 represents the percentages of contributions of different tac-

tics in the generated offer for the issue jl given that each γjl,i ∈ [0, 1] and
∑h

i=1 γjl,i =

1. Agent d builds the Γ
tn+1

d→s
matrix according to its mental state MSt

d
at time t.

τ
tn+1

d→s
=


τj11 τj12 . . . τj1h

τj21 τj22 . . . τj2h
...

...
...

...

τjp1 τjp2 . . . τjph

 (2.13)

The matrix τ
tn+1

d→s
is the matrix of generated proposals using tactics {1, .., h} for each

issue jl ∈ Jq at time (t + 1) by agent a where |Jq| = h. Equations 2.12 and 2.13

represent a multidimensional proposal for an object oi where oi is characterized by

the negotiation issues {j1, ..., jp}, i.e., oi ∼ Jq. The weighted proposal is defined as

follows [33].

Definition 2.3. (Weighted proposal) A weighted proposal xtn+1

d→s
[jl] is a linear weighted

combination of proposals generated by a set of negotiation tactics {1, ..., h} and de-

fined as: xtn+1

d→s
[jl] =

∑h
i=1 γjl,i ∗ τjli

For example, if the vector of negotiation tactic types of an agent d that is used in a cer-

tain negotiation instance (see Section 3.2) to generate proposals for the price issue is

<Boulware, linear, conceder, tft> and the associated weight row vector Γ
tn+1

a→b [price] =<
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0.35, 0.2, 0.15, 0.30 > and assume that τ tn+1

d→s
[price] =< 40, 60, 80, 65 >, then the

x
tn+1

d→s
[price] = 0.35 ∗ 40 + 0.2 ∗ 60 + 0.15 ∗ 80 + 0.30 ∗ 65 = $57.5 and agent d sends

$57.5 as a counteroffer to agent s.

A multidimensional weighted proposal is a set of weighted proposals where xtn+1

d→s
[Jq] =

x
tn+1

d→s
[j1], ..., x

tn+1

d→s
[jh]. In other words, the multidimensional weighted proposal is a

proposal which consists of multiple values (one value per a negotiation issue) where

each value is a weighted proposal.

This method of mixing different tactics in generating a proposal has the advantage of

incorporating different factors that can play a role in determining the bidding strat-

egy of an agent such as the behavior of the opponents and state of resources, e.g.,

time. Other external environmental factors that many affect the urgency of reaching

an agreement can give more weight, for example, to the conceder tactic etc. When

the mental state (MS) of an agent changes, it changes the matrix Γ
tn+1

d→s
accordingly.

Applying the weighted proposal method by an agent d decreases the probability of

predicting the negotiation strategy of agent d by its opponent especially when the ma-

trix Γ
tn+1

d→s
is dynamic since there will be a regular pattern that can be analyzed by the

opponents of agent d.

As stated in Section 4.3, any change to any negotiation parameter is considered a

change to the negotiation strategy. The model proposed in this thesis assumes that

the Γ
tn+1

d→s
is part of the negotiation parameters. Taking into account the mental state

of an agent, Γ
tn+1

d→s
= f(MStn

d
,Γtn

d→s
) where f is a function that takes the mental state

and the mixing weight matrix of agent d at time t and returns Γ
tn+1

d→s
that is going to

generate weighted proposals at time (t+1). Realizing the function f will be discussed

in the following chapters.

2.3.3.5 Trade-off Generation Approach

Trade-off is a concept meaning that one can tolerate losing something for gaining

something else. This concept is widely used in real life especially in business. The

trade-off approach of generating offers is heavily investigated in the literature of auto-

mated negotiation (e.g., [34] [22] [19]). The Trade-off approach is important since it

is a method where negotiating partners can use to reach a win-win agreement instead

of reaching win-lose (zero-sum) agreement.
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There are two necessary conditions for using trade-off as an offer generation mecha-

nism:

• number of negotiation issues is greater than 1. A negotiating agent should be

able to concede on one or more issues and gain on one or more other issues

simultaneously

• negotiating agents should have divergent preferences over negotiation issues.

This is also an important condition because if all negotiating agents have the

same preferences over all issues then there would be no room for using the trade-

off mechanism and the game type becomes a win-lose instead of a win-win.

Pareto-optimal line

Nash solution
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Figure 2.5: The outcome space for two agents negotiating over a single negotiation
issue (left) and multiple negotiation issues.

Figure 2.5 [34] shows the two utility outcome spaces for two negotiating agents. The

first outcome space is for two agents negotiating over a single decision variable (i.e., a

single issue) and is represented by a straight line. The second utility outcome space is

for two agents negotiating over multiple decision variables (i.e., multiple negotiation

issues) and is represented by a curve with a curvature.

Each figure in Figure 2.5 shows the Pareto-optimal line and Nash solution or Nash

product. Any outcome that lies on the Pareto-optimal line is considered an efficient so-

lution. The Nash solution selects a point on the Pareto-optimal line that maximizes the

product of the two utilities. In case of a single decision variable, all possible outcomes

lie on the Pareto-optimal line. The Nash solution in this case is the midpoint where the

utility of the first agent (u1) is equal to the utility of the second agent (u2) assuming

that the two agents valuate the gain on that issue equally. In our case, assuming the

conflict outcome utility is zero, the Nash solution is achieved when u1 = 0.5,u2 = 0.5
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where u1 ∗ u2 = 0.25 which is the maximum possible combination between the two

utilities. It is like dividing the cake equally between two individuals. In case agents are

negotiating over multiple issues, the Nash solution is the point that is Pareto optimal

and lies on the line connecting the reference point to the utopia point. The reference

point can be computed as the utility outcome at the midpoint of each decision variable

[34].

In many real life scenarios, agents are negotiating under incomplete knowledge and it is

difficult to find optimal bargaining solutions such as Nash solution. Heuristic methods

are used to approximate the preference structure of the opponent as an approach to

reach near optimal solutions.

The trade-off generation approach in the context of automated negotiation is associated

with terms such as Pareto-optimality (see Section 2.2), social welfare and iso-curves

or indifference curves. The social welfare refers to the system utility. Social welfare

can be looked at either from the utilitarian or egalitarian point of views. The utili-

tarian principle is based on achieving the greatest total welfare. The total welfare of

a society is the sum of each individual utility in that society. The egalitarian princi-

ple is concerned about maximizing the utility of the most needy individuals in society

[97]. For example, Nash solution is considered more utilitarian than egalitarian [114].

kalai proposed a characterization of an egalitarian solution when the bargaining set

is convex, compact and comprehensive for a fixed number of individuals [62]. The

solution is characterized by being symmetric, having weak Pareto optimality and so

strong monotonicity is assumed. An egalitarian solution considers fair outcomes by

maximizing the more unfortunate individuals.

The indifference curve consists of the set of composite offers over a certain object that

have the same utility value. If the negotiation issues are of a continuous type, the

number of possible indifference curves are infinite.

Definition 2.4. (Composite offer) A composite offer is an offer that contains more

than one value. It happens when a negotiation object is characterized by more than

one issue in which case the offer proposed or received for this object is a composite

offer.

For example, a proposed composite offer may contain $10 for the price issue and 2 kg

for the weight issue of a certain material. Figure 2.6 shows three iso-curves, u1, u2 and
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u3. For example, all the points on the iso-curve u1 have the same utility level. In other

words, an agent is indifferent to any composite x and y values that lie on the curve u1.

The same applies to any iso-curve.

Figure 2.6: Iso-curves

For an agent who intends to keep the same aspiration level (i.e., utility value) while

negotiating with other agent(s), it can move along its current indifference curve trying

to propose offers with higher values to its opponent(s) given the fact the agents have

divergent preferences over issues. For example, consider a buyer agent and a seller

agent. Both are negotiating over an item containing the price and delivery_time issues.

The seller agent needs a long time to deliver the item and is willing to concede more

on the price. On the other hand, the buyer agent is more concerned about the price and

is willing to concede more on the delivery_time than the seller agent who may give

more concessions on the price and less concessions on the delivery_time which suits

the buyer agent’s preferences.

As a negotiation strategy, an agent should stay on its current indifference curve as

much as it can. The agent can stay on its current indifference curve without causing

the opponent agent to withdraw from negotiation by proposing trade-off offers that

may provide the opponent with more valuable offer(s) than the ones proposed pre-

viously. Given the fact that agents negotiate under incomplete knowledge, since the

utility structures, reservation values and deadlines are considered private information

for each, different methods are used to approximate the preference structure of the op-

ponent in the process of generating offers that may give higher values to the opponent

than the previously offered ones while staying on the current indifference curve.

Besides the mediated-negotiation (e.g., [31]) in which agents disclose some informa-

tion to a trusted third party that helps in reaching a Pareto-Optima agreement (or near

Pareto-optimal) agreements, the similarity (e.g., [34]) methods such as fuzzy similar-
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ity and shortest-distance (e.g., [73]) approaches are proposed to reach a near Pareto-

optimal outcome in multi-issue negotiation. In addition, the iterative-offer-generation

is a proposed method that enhances the chances of proposing offers that are of more

value to the opponent than the previously proposed ones [87]. The iterative-offer-

generation mechanism is discussed in Section 6.2.

The mediated-negotiation proposed in [31] searches for an optimal-agreement in bi-

lateral negotiation where the negotiation issues are of a continuous type. The media-

tor takes into consideration the preferred directions submitted by the two negotiating

agents. In each negotiation round, the mediator receives two proposals from the two

agents then it generates a new tentative agreement taking into consideration the jointly

improving direction. The negotiation process continues until the optimal solution is

found. However, due to the practical problems associated with using a mediator such

as trust, in many situations, it is difficult to use the mediated-negotiation approach.

The idea of using similarity between offers is investigated in [34]. The proposed al-

gorithm uses the fuzzy similarity principle to approximate the preference structure of

a negotiating opponent by modeling the domain of the decision variables. The hill-

climbing technique is used to search the apace of possible trade-offs for the offer that

is most likely to be acceptable by the opponent. It is easy to find similarity between

continuous issues such as a price, since if the difference between two prices is zero,

then the similarity is maximum. The problem in measuring similarity between the val-

ues of issues happens when the negotiation issues are of discrete types. For example,

a color can be an issue of negotiation. The color domain can be a set containing red,

blue, yellow, green, etc. The problem is that how can one measure the similarity be-

tween two colors such as red and blue? Faratin et al. propose creating a set of criteria

functions that can be used to associate each color in the color domain with a specific

number representing a certain criteria such as “warmness” of colors [34]. When an

agent decides on using the trade-off method, it generates a few counteroffers then it

selects the most similar one to the last received offer from the opponent given that the

agent generates the counteroffers at the same previous utility level, i.e., the agent stays

on its current indifference curve. However, the method needs some knowledge about

how the opponent places weights on the different issues. In addition, it is difficult to

find suitable techniques to measure similarity between discrete negotiation issues.

The shortest distance approach [74] finds the shortest distance between the last re-
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ceived offer and an offer on the current indifference curve. The empirical experimental

results presented in this paper show that agents achieve near Pareto optimal agree-

ments by using the shortest distance approach given that the negotiation issues are of

a continuous type. The preference of each agent is rational and strictly convex and

the monotonicity behavior is assumed. However, the negotiation model requires that

agents stay enough time in negotiation and propose a number of offers (to increases

the chances of finding a proposal that is close enough to the last opponent’s offer) in

each negotiation round. In addition, the approach assumes that both agents capture

their preferences using utility functions. However, in many real cases, agents can not

characterize their preferences by a utility function, because this function may not ex-

ist. Moreover, it is not clear when an agent should move from the current indifference

curve to another indifference curve. In addition, it is not clear how efficient the tech-

nique is in case the number of negotiation issues is large. Other trade-off approaches

are proposed, for example [119] assumes that negotiation issues have binary values in

estimating the opponent’s utility structure.

2.3.4 Argumentation-Based Negotiation

Argumentation-based negotiation (ABN ) is a relatively new approach where agents

exchange not only offers/counteroffers but also arguments. The arguments are pieces

of information that aim to change the mental state of an opponent. Changing the mental

state of an agent using an argument can be achieved by either justifying the proposed

offer or persuading (influencing) the opponent’s point of view or stance [59]. The in-

fluencing argument could be a promise for reward or a threat. For example, when a

project manager asks his/her employee to finish a task within a short period of time,

then the employee might disagree to that request as he/she needs more time. In this

case, the manger may promise a financial reward if the employee finishes the task

within a short period of time or threat to fire the employee if the task is not finished

within the requested time frame. An agent using the argumentation-based method may

ask to change the negotiation object or add more attribute(s) to the current negotiation

object. For example, if an employee asks his/her manager a pay raise then the man-

ager may reject the request. To overcome this problem, the number of working hours

attribute can be introduced to the negotiation as an argument where the employee asks

to keep the same rate of pay while reducing the working hours etc. [160].
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People usually use the argumentation concept during their daily negotiation interac-

tions. For example, a customer who would like to buy a laptop can visit different

shops to check prices and other related data. Then he/she can use the collected infor-

mation as an argument with a new shop manager saying that “I found a similar laptop

with a price of $330 and you are asking for $340”. This type of argument may con-

vince the shop owner to beat that price and sell that laptop for less than $330. If the

customer does not know about the prices of that type of laptop in other places, then

convincing the owner of the current store to sell that laptop for less than $330 would

be more difficult.

Since the classical negotiation approaches (i.e., game-theoretic and heuristic) of con-

flict resolution in multiagent systems focus on exchanging potential proposals accord-

ing to different protocols or on mechanism design that have limitation in achieving the

goal(s) of negotiation, argumentation-based negotiation can improve both the chance

of reaching an agreement and the quality (in terms of utility, fairness etc.) of the

agreement for agents engaged in negotiation. In general, agent using game-theoretic

or heuristic models are allowed only to exchange proposals; agents are unable to ex-

change additional information to persuade or influence other agents. In case agents

have limited information about the environment and/or about other agents especially

when the rational choices of some agents depend on the choices of other agents, the

traditional methods of negotiation-based conflict resolution limit the quality of the ne-

gotiation outcomes [160].

The ABN approach has the potential to improve the outcomes of the negotiation pro-

cess when compared to the game-theoretic and heuristic approaches since the propos-

als exchanged between agents during negotiation is richer in terms of information.

However, the drawback of the ABN lies in the added complexity in design and im-

plementation of the ABN frameworks. It is obvious that the process of generation,

selection and evaluation of arguments by agents is nontrivial. Several ABN mod-

els were proposed in the literature [111][72][133][1] that target several dimensions

of the ABN complexity. Some models are based on psychology of persuasion using

threats, rewards and appeals (e.g., [72]) and assume agents use utility functions and

have the same architecture while the protocol is implicit in the agent’s specification.

On the other hand, the argumentation style is logic-based in [111] and the protocol is

designed as a finite state machine and allows generic meta-information to be passed
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amongst agents. A more recent ABN framework [1] is proposed which formally de-

fines the link or relationship between the status of the arguments and the offers they

support. In addition, it defines the notion of concession and its effect on the course

of negotiation. The work also investigates how the theories of agents evolve during

negotiation. However, the work assumes that the agents have the same set of offers

and compare their offers similarly which are strict assumptions.

Modeling the argumentation process as a planning problem is presented in [95]. The

output of the process is argumentation plan. The authors propose constructing a partial

order of arguments that allows an agent to reach an expected agreement if the agent

utters the arguments according to the specified partial order in a certain negotiation

situation. To build the argumentation plan, a planning algorithm based on preferences

of an agent were proposed. The proposed framework evaluates the argumentation plan

rather than the individual arguments. A limitation to the presented approach is that

an agent needs certain information especially about the opponents to build a robust

argumentation plan.

An agent negotiating with multiple opponents concurrently can use arguments simi-

lar to the one given in the previous example to strengthen its bargaining power and

convince other opponents to agree on proposals presuming high value to the argu-

menting agent or to all agents. However, the ABN is not the subject of this thesis. An

argument-based approach in one-to-many negotiation will be left for future work.

2.4 Dependencies and Coordination

Interdependency between related activities is the driving force behind the need for

coordination. Malone and Crowston define coordination as “managing dependencies”

[84]. The dependency and coordination are two related concepts since coordination

becomes an important task when the dependencies cause problems.

Figure 2.7 [84] shows a classification of possible dependencies between related activ-

ities that can apply in different application domains. According to Figure 2.7, several

types of dependencies in the automated negotiation domain can be identified. Since

this thesis investigates the problem of coordinating multiple negotiations running con-

currently, the activities considered in this context are the set of actions that can be taken
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in each single negotiation encounter such as accepting a proposal or offering a counter

proposal.

Figure 2.7: Common dependency types

Objects under negotiation may share resources, for example, an agent negotiating

for buying a laptop and a camera needs to allocate a certain amount of the available

money (a resource) for buying the laptop and another amount for buying the camera.

In that sense, the laptop and the camera share a resource. The agent needs to dis-

tribute/redistribute the resource in a way to achieve the negotiation goal, i.e., reach a

valuable agreement.

The task assignment dependency that is related to the shared resources dependency

appears when multiple agents negotiate over performing different tasks. Different tasks

may require different resources and/or different amounts of resources. Accordingly,

task assignment is related to the distribution of certain resources, i.e., the assignment

of tasks to agents is related to the type and/or amount of resources allocated to each

agent. From a different point of view, when resources can be shared, multiple agents

can use the same resource at the same time, e.g., multiple agents may access and read

the same document (a resource) at the same time.

The prerequisite constraints dependency exists when one activity must be completed

before another activity can start or finish [84]. When an agent seeks to buy a hardware

and a software given that both the hardware and software must be compatible, it can

select to buy the hardware first then buy a compatible software or vice versa since

buying both simultaneously may result in buying incompatible products.

The simultaneity constraints dependency determines which negotiations can run con-

currently and which negotiations should not run concurrently. In other words, the

process of running different negotiations or taking certain actions during negotiation

such as quitting a certain instance of negotiation needs to be synchronized.

The task/subtask dependency in a negotiation process can be illustrated when one ne-
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gotiation depends on some other negotiations, i.e., the negotiations are multi-linked

[165]. For example, if there are 3 negotiations a, b, c, but negotiation a depends on

negotiations b and c (i.e., negotiation a is successful iff negotiation a is successful

and both negotiations b and c are also successful), then we consider that negotiation a

has two subtasks (i.e., b and c).

One of the most complicated activities during negotiation is deciding on the value of

the next proposal by an agent. During negotiation and for each negotiation round,

an agent needs to select a bidding strategy that can generate the next proposal, i.e.,

generate an offer or a counteroffer. Calculating the value of an offer/counteroffer in

each negotiation round is a non-trivial process due to the following:

• the process can be affected by the actions of the outside options

• the interdependency between the issues of the same object

• the interdependency between the issues of different objects

• the interdependency between different negotiation objects.

In the next next two sections, there will be more elaboration on the interdependency in

the one-to-many negotiation considering the dependency from the point of view of a

buyer agent negotiating concurrently with multiple seller agents.

2.4.1 Interdependency Amongst Objects

Sometimes, it it important to procure a certain number of objects in a certain order

when the objects are interdependent. The interdependency between objects results

from the precedence relation between the objects. For example, hardware and software

objects can be interdependent due to the compatibility issues between softwares and

hardwares. In many cases, software needs to run on compatible hardware and hardware

has some requirements for the software it can operate. In this case, procuring the

hardware first has an effect on the type of software that is going to be procured and vice

versa. Solving the problem of procuring different objects with precedence constraints

can be solved either by sequential negotiation or by concurrent negotiation.
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Accepting a number of agreements by an agent in a certain order while negotiating

concurrently with multiple opponents is equivalent to achieving the same number of

objects in the same order while negotiating with opponents sequentially. Procuring a

certain number of objects sequentially is the easiest solution to solve the problem of

procuring a certain number of objects in a certain predefined order. However, using the

sequential approach has a few drawbacks. Firstly, because negotiations are conducted

once at a time, it is difficult to predict the results of the future negotiations in terms of:

1) whether a certain negotiation instance will be able to reach an agreement 2) the ex-

pected utility of the agreements. Secondly, it is difficult to allocate resources for each

negotiation instance because we have no knowledge about the demand behavior of the

opponents of the future negotiations. For example, we might allocate more resources

for the first few negotiation instances to guarantee reaching agreements but the re-

sources for the next negotiations may not be enough to guarantee reaching agreements

over the rest of the objects. Finally, the sequential approach takes more time.

An alternative solution to the sequential negotiation approach is adopting the concur-

rent negotiation approach where a negotiating agent receives feedback during negoti-

ation in terms of the opponents’ offers and can act accordingly to fine tune its strat-

egy and resource allocation pattern. The drawback of the concurrent approach is the

need for coordination whenever any type an of interdependency exists between objects

or between objects’ issues, etc. For example, different objects may have interdepen-

dency between their attributes such as interface compatibility between two different

softwares. Sometimes buying object (o1) before buying object (o2) causes a loss in

utility such as confirming a hotel reservation before confirming a flight. If the flight is

canceled for any reason then the buyer might be obliged to fulfill his/her obligations

towards the hotel reservation.

In some cases, the order of procurement is not defined before the start of negotiation,

it could be determined dynamically during negotiation. For example, a person needs

to book a flight and an accommodation before starting his/her vacation and at the same

time, he/she does not know which one is more difficult to find. During negotiation, the

agent working on the behalf of that person detects which one is more difficult to secure

and decides the order of agreements and resource allocation dynamically. The agent

may find that booking a flight is more difficult than booking an accommodation, then

it decides to secure an agreement for booking the flight first.
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2.4.2 Interdependency Amongst Issues

Each object under negotiation is characterized by one or more negotiation issues or

attributes. The interdependency between two (or more) issues results from existing

relations between them in the sense that the utility of an agreement on the two issues

together is greater than the sum of the utilities if the two agreements are achieved in

disjunct manner. This type of interdependence is called preferential dependency [92]

since the utility of an issue depend on the value of one or more issues. For example, a

flight can have two issues, the day-of-the-flight and the time-of-the-flight. Assume that

a certain passenger prefers to fly on Friday before 12PM. The travel agency says there

is a flight available on Thursday before 12PM and another one is available on Friday

after 5PM. To evaluate the situation, the utility of flying on Friday before 12PM is

more than the sum of the utilities of flying on Thursday before 12PM and the utility of

flying on Friday after 5PM. This type of relation between the issues of day-of-the-flight

and time-of-the-flight is called complementary relation, i.e., the issues complement one

another. Moreover, different issues can be interdependent in terms of their acceptable

values. For example, an agent may agree to pay a high price for a high quality product.

When the number of negotiation issues is large, it becomes difficult to search for a

proper combination between the values of issues since the search space becomes large.

When the issues are of a continuous type, the search problem becomes even more

difficult and intractable. Utility functions without preferential dependencies have a

simple linear structure (weighted average) with a single optimum value. On the other

hand, utility functions with preferential dependencies often have a nonlinear behavior

with multiple optima structure.

Apart from dealing with the problem of searching for the best offer that can achieve

the highest possible utility in case the utility function is nonlinear, we focus on the

problem of allocating shared resources amongst different negotiation issues. In many

cases, the distinct objects can have the same issue such as price. In our work, we call

the issues of different objects that share the same resource as common issues.

Definition 2.5. (Common negotiation issue)

A common negotiation issue is an issue ji ∈ J s.t. at least two subsets Jk, Jl ∈ 2J exist

where ji ∈ Jk ∩ Jl. J is the set of negotiation issues.
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In other words, a common issue is an issue that is common amongst multiple objects.

For example, multiple services can have the price issue as a common issue.

To this end, we propose managing resources shared amongst common issues as an

approach for coordinating the bidding strategy which takes into consideration the be-

haviors of the opponents over the common issues, see Section 4.3. Managing the distri-

bution of the available resources (which is part of the bidding strategy) is one solution

for managing the interdependency problem.

2.5 Coordination and Negotiation

Negotiation is a potential mechanism for agents to use for coordinating their actions.

A possible classification of coordination types is shown in Figure 2.8. In the cen-

tralized coordination, all agents report to a central authority that make decisions by

looking at the coordination problem globally. The main drawbacks of the centralized

coordination are the single point of failure and the trust problems. The single point

of failure means that if the central authority fails, the entire system will stop working.

In a community of heterogeneous agents, it is difficult to apply the centralized coordi-

nation approach since agents can have different and conflicting goals and agents find

it difficult to have a trust in a third party to coordinate their actions. The hierarchy

coordination is similar to the centralized coordination except that in hierarchy coordi-

nation, there are different levels in the decision making process and each level needs

to report to the upper level and different levels in the hierarchy can be responsible for

different types of decisions. Ossowski and Menezes [110] present the term emergence

coordination which indicates that the solutions to the coordination problems emerge

from the interaction between agents (or processes) in which an agent tells the other

agents about its actions without expecting a direct consequence from that interaction.

Such coordination mechanisms can be efficient in particular games such as the mi-

nority game [8]. However, negotiating agents are affected directly by the messages

(proposals) exchanged between them.

In multiagent systems, the focus is on the decentralized coordination. The decentral-

ized coordination is a more interesting approach since it does not have the drawbacks

inherited in the centralized coordination approaches. In addition, agents can be more
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Figure 2.8: Categorization of coordination in multiagent systems

autonomic and can interact, compete and cooperate to reach mutual decisions or can

react to the changes in the environment or follow certain rules that guide them to a well

coordinated situation.

The decentralized coordination can be divided into direct and indirect subcategories.

The direct negotiation means that agents coordinate their actions by direct interactions

amongst themselves. On the other hand, in the indirect coordination, agents do not

interact directly but they follow some rules and regulations or interact to some envi-

ronmental changes. In other words, agents interact with the environment in which they

are situated in. Keil and Golden define direct interaction as “interaction via messages,

where the identifier of the recipient is specified in a message” and indirect interaction

as “interaction via persistent, observable changes to a common environment; recipients

are any agents that will observe these changes” [66].

Collaborative and coopetitive coordination approaches are found in both direct and

indirect coordination. The mutual modeling is a coordination approach where agents

try to model the behavior of other agents in a given situation. This approach was first

defined formally by Genesereth et al. and called cooperation without communication

[45]. As the utility of one agent depends on the action(s) of other agent(s), the joined

actions of agents determine the utility of each agent. If two agents are interacting

without communication, Genesereth et al. show that an agent can benefit from the
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information gathered about its opponent by determining its rational action(s) and act-

ing accordingly [45]. If the aim of the agents is to achieve a common goal the mutual

modeling is the name of the approach. If agents have different goals, then the opponent

modeling is the name of the coordination approach which is similar to the mutual mod-

eling except that the mutual modeling is used in a totally collaborative environment.

Market mechanisms can involve both cooperative and competitive behaviors.

The social norms is another collaborative coordination approach where agents adhere

to some norms (which are established or expected) during the interaction. For example,

it is a social norm for a student to raise his/her hand before asking a question while in

a class. On the other hand conventions or social laws can be either designed offline or

emerge from within the system. For more information about emergence from within

the system social laws, see [158].

The information sharing is a collaborative coordination approach where agents share

information and try to coordinate their tasks accordingly. For example, a set of agents

can share and exchange information about each others skills and expertise before as-

signing a certain set of tasks. In task complementing, agents collaborate in the process

of task assignment in a complementary fashion where agents are assigned task(s) in

which their expected performance is high. Factors like an agent’s resources and the

expertise of each agent are taken into consideration in the process of task assignment.

The partial global planning (PGP) is a distributed control technique to ensure that the

local plan of each node in a network is coherent with the local plans of the neighbouring

nodes assuming that each node in the network represents an agent [29]. It is called

partial because agents do not aim to generate a plan for the whole system and it is

called global because agents exchange local plans to form non-local plans. The partial

global planning consists of three repetitive steps: 1) each agent generates short-term

plans that aim to achieve a predefined goal(s) 2) agents exchange information that help

in updating their short-term plans 3) agents modify their short-term plans. The PGP is

extended into generalized partial global planning that makes use of five techniques to

coordinate agents’ activities: Updating non-local viewpoints, communicating results,

handling simple redundancy, handling hard coordination relationships and handling

soft coordination relationships [25][159].

The joint intention coordination is a technique that considers the intentions of agents

in terms of their planning doing certain work. Intentions can provide stability, pre-
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dictability, flexibility and reactivity. The first two points are important for the social

interaction while the latter two points are important to cope with a changing environ-

ment [159]. Jennings developed and implemented the joint responsibility coordination

model that is based on joint intentions. Before commencing the joint problem solving

process, the defined preconditions must be satisfied. The joint responsibility model as-

sumes that each individual within a system needs to stay committed to using the agreed

upon solution to achieve the common goal until one of a set of events is fired, such as

the objective has been met, the objective will never be met etc. If a team member agent

decides to decommit its responsibility, it must ensure that all of its team members are

aware of the new status to enable the rest of the team to reassess the new situation

and judge the viability of the joint action especially the actions that are supposed to be

carried out by the decommitted team member [56].

The contracting is a coordination method that can apply in a situation where a group

of agents compete for a certain number of tasks. The Contract Net (CNET) protocol

is “a high level protocol for communication among the nodes in a distributed problem

solver” [142]. To apply the CNET protocol as a task allocation mechanism amongst a

group of agents, tasks are announced by a manager agent. Then each group member

bids for one or more tasks, and finally the manager allocates tasks. The agents who are

selected to perform tasks are called contractors. Each contractor agent sends a report to

the manager after the completion of its allocated task(s). It is possible for a contractor

agent to subdivide its tasks and play the role of a manager by announcing the new

subdivided tasks. An agent’s decision to bid on new tasks depends on the marginal

cost calculations. If the marginal (extra) cost is less than or equal to zero, then it is

rational for the agent to bid on the new tasks, otherwise it is not rational to bid on the

new tasks since the agent would need more resources to complete the new bids than

what it has. This protocol was inspired from the way that organizations usually put

contracts out to tender [159].

As shown in Figure 2.8, negotiation is considered a coopetitive, direct and decentral-

ized coordination mechanism. Negotiation is coopetitive because agents can compete

and cooperate during negotiation. For example, agents cooperate when they use the

trade-off negotiation mechanism to reach an agreement and compete when they need

to concede to reach an agreement. Negotiation can be direct when agents interact

with each other directly without any mediation mechanism. It is decentralized since
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agents synchronize their actions by interacting with each other without a central deci-

sion making authority. In other words, the decision making mechanism is distributed

since each agent can participate in reaching the final agreement(s).

The relationship between negotiation and coordination is presented from a new angle

here. Negotiation is listed as one mechanism in which agents can use to coordinate

their actions, see Figure 2.8. This thesis considers a buyer agent negotiating concur-

rently with multiple seller agents and since the buyer agent is interacting with multiple

agents concurrently, its actions need to be coordinated to achieve the overall goal of

negotiation. During negotiation, the buyer agent receives multiple offers from a group

of seller agents. Consequently, it needs to decide how to react to each agent since the

different negotiation instances (see Section 3.2) can be interdependent. For example,

when the buyer agent receives 4 different offers simultaneously, it can accept the best

one of them and quit negotiation. On the other hand, there is a possibility for the

buyer agent to receive a better offer from other agent(s) if it stays in negotiation. The

buyer agent can monitor the level of concessions offered by each agent by inspecting

the current negotiation threads and deciding what to do next. For example, when the

behaviors of the seller agents vary, this can be a favorable situation to the buyer agent

since it means the chance for receiving a better offer in the future is high. It can be

concluded from this example that different negotiation instances can be interdependent

from this point of view. In addition, Section 2.4 discusses possible dependency types

in negotiation. One of the important dependency types that is investigated in this thesis

is when one or more issues of different objects share a resource. For more detail on the

coordination problem in one-to-many concurrent negotiation, see Chapter 4.

Since the focus of this thesis is on the bidding (bargaining) strategies in the one-to-

many interaction where a buyer agent is negotiating concurrently with a set of seller

agents over one or more negotiation objects, the following few sections discuss the

related work and present and analyze different negotiation strategies that are proposed

in the literature to coordinate the one-to-many negotiation.

The sections are divided according to the number of negotiation issues and/or a number

of negotiation objects under negotiation. This division is chosen to facilitate the pre-

sentation of the related work since the number of negotiation issues and/or the number

of negotiation objects have an effect on choosing a certain negotiation strategy. For

example, if agents are negotiating over a single issue, then the trade-off negotiation
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tactic is not an option. When agents are negotiating over multiple objects, the issues

of the objects may share a resource in which the allocation of that resource needs to be

coordinated dynamically during negotiation.

2.5.1 One-to-Many Negotiation Over a Single Issue

In the context of business negotiation, the single issue negotiation is the most inves-

tigated type of negotiations where in most cases the single issue represents the price

issue. This section discusses various methods proposed in the literature concerning the

one-to-many negotiation over a single continuous issue.

In their proposed one-to-many negotiation model, Rahwan et al. [115] propose four

coordination decision making mechanisms for a buyer agent negotiating with multiple

seller agents concurrently: 1) desperate strategy in which the buyer agent accepts the

first acceptable agreement and quits negotiations with all other sellers, hence it is called

desperate 2) patient strategy where the buyer agent makes temporary agreements with

some of the seller agents during negotiation and holds on to these agreements until all

the remaining instances of negotiations are finished, then the buyer agent selects the

agreement with the highest utility and renege from all other agreements 3) optimized

patient strategy is similar to the patient strategy except that it does not accept a new

agreement with less utility than the highest acceptable one 4) manipulation strategies

in which the coordinator entity in the buyer agent changes the negotiation strategies of

its sub-negotiators during negotiation. Changing a negotiation strategy means adapting

one or more of the negotiation strategy parameters, see Chapter 4.

The first three strategies (i.e., desperate, patient and optimized patient) assume that the

buyer agent has the privilege of reneging on temporary agreements without penalty.

This assumption can be realistic in situations where the number of seller agents is

large and/or the seller agents are offering infinite supply, e.g., information. In such

cases, a seller agent might be satisfied to make deals with many potential buyers in

hope that some of the buyers will confirm their deals later. The other two agreement

handling rules are: an agent can renege from an agreement and incur a penalty to be

paid, the second one is that an gent must honor its agreement(s) which means an agent

must be committed to executing its agreement(s).

If reneging on an agreement incurs a penalty, the processes of deciding to make a

65



Chapter 2. Background and Related Work

temporary agreement and reneging on agreement needs to be analyzed carefully. In

other words, a commitments/decommitment mechanism is required. A rational agent

can only renege on a temporary agreement if and only if the utility of the new agree-

ment(s) is larger than the utility of the temporary agreement plus the incurred reneging

penalty. The amount of penalty can be either a fixed amount that is agreed upon by

negotiation partners or dynamically calculated according to a certain formula. Empir-

ical results show that when agents use a dynamic method to calculate the amount of

incurred penalty, they can be more flexible in deliberating about their behaviors that

results in gaining a better negotiation outcomes than using a fixed amount [105].

Managing commitments in concurrent negotiation is investigated in the literature, e.g.,

[105][2]. Nguyen and Jennings [105] propose a commitment model that considers

calculating the amount of penalty according to equation 2.14.

ρ(t)d = U(xts
s→d

)×
(
ρo +

t− ts
tdmax − ts

× (ρmax − ρo)
)
, (2.14)

where ρ(t)d is the penalty fee that has to be paid by the agent d at time t, U s(xts
s→d

)

is the utility value of the offer xts
s→d

calculated according the utility function of the

agent d, ρo is the fee that needs to be paid if the deal is broken at the contract time

(ts). Finally, ρmax is the fee that needs to paid if the deal is broken at the execution

time which is considered the agent’s d deadline. It is a common sense that if an agent

breaks a deal at the execution time, the harm to the contractee agent is maximum and

so the penalty fee should be. According to equation 2.14, the penalty is maximized if

an agent breaks a deal at its deadline. The agent d may commit (accept) a new offer

and renege on an existing offer (if it exists) if U(xt
s
′→d

) > U(xt
′

s→d
) + ρ(t)d, t > t

′

and the degree of acceptance for the offer xts
s
′→d

is higher than a certain predefined

threshold. Even though the model of calculating the penalty fee is a dynamic since it

takes into consideration the time elapsed, it is not clear that how genuine an agent can

be in declaring its U s(xts
s→d

) value since the preference over an outcome is considered

a private information. In addition, it is not clear how an agent can determine the value

of the threshold.

In their work, An et al. [2] consider the problem of resource allocation in a dynamic

environment like the cloud computing platforms and propose a negotiation mecha-

nism where agents negotiate over a price of a resource and a decommitment penalty of
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reneging on a contract. The rule proposed to determine the decommitment penalty is:

The lower the price, the higher the penalty. This rule can be a practical one. For exam-

ple, a seller may agree to offer a resource with a low price in exchange for receiving

a high penalty fee if the buyer agent decides to renege on the agreement. In this way,

the seller agent either sells its resource or receives a good payment from the buyer in

case it reneges on the agreement. When a buyer agent needs a set of resources and no

one seller agent can fulfill its demand, the experimental results show that the optimum

strategy for the buyer agent is to make two sets of agreements. A possible reason is

that the buyer agent needs to pay larger penalty fees when it makes more agreements

since it needs to confirm one set of agreements and decommit all other agreements at

its deadline. On the other hand, if the buyer agent makes one agreement, some seller

agents may decommit some agreements and the buyer agent will not be able to com-

plete its tasks because of shortages in resources. For more information on commitment

management in automated negotiation see [129] [136].

This thesis does not consider the negotiation situation where agents incur a penalty

when reneging on temporary deals. However, it does consider managing the negoti-

ation strategy for the other two agreement rules: firstly, an agent has the privilege to

decommit an agreement without incurring a penalty. Secondly, the agents must honor

their agreements. Even though giving an agent the right to decommit a previously

agreed upon contract (with penalty) would give more flexibility to the agent to adapt

to the new changes in the environment, the other agreement rules are more common in

the literature.

The outside options in the multi-bilateral negotiation can affect the negotiation strat-

egy of an agent because of the possible interdependent relationships amongst different

negotiation instances as discussed earlier. To study such interdependencies, Li et al.

investigate the effect of outside options on the negotiation strategy of a buyer agent

negotiating concurrently with multiple seller agents where the agreements are consid-

ered binding to the negotiating agents [23]. Knowledge of an opponent’s reservation

value on an issue such as price can change the mental state of an agent which results in

changing its negotiation strategy by changing its reservation price towards a higher util-

ity reservation price. The objective for the buyer agent is to achieve a single agreement

with the highest possible utility. The important parts of the study consider the one-

to-many negotiation and investigate two situations: the first situation is when a buyer
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agent is negotiating concurrently with a number of seller agents and new seller agents

are not expected to join negotiation. In this case, the buyer agent has a number of nego-

tiation threads equal to the number of seller agents. In this case, the buyer agent assigns

to each thread a reservation utility value equal to the expected utility from the multi-

threaded negotiation formed by all other threads. From one thread’s perspective, all

other threads are considered outside options and form a synchronized multi-threaded

negotiation. The study proposes four heuristics to estimate the expected utility from

a synchronized multi-threaded negotiation. Three of them (conservative estimation,

medium estimation and uniform approximation) use the reverse English auction the-

oretical analysis results in the approximation process for the expected utility in the

synchronized multi-threaded negotiation. The proposed mechanisms are based on the

assumption that the buyer agent has a prior belief about the probability distribution of

each seller agent’s reservation price. The fourth mechanism is a learning mechanism

that depends on the outcomes of previous negotiations. The study assumes that the

data comes from the market survey or from data of a third party. The proposed learn-

ing mechanism approximates the expected utility from a multi-threaded negotiation by

estimating the expected utility from the most competitive thread in a single negotiation.

For more detail, see [23].

The second situation is the dynamic multi-threaded negotiation where the buyer agent

is negotiating concurrently with multiple sellers and more seller agents are expected

to join the current negotiation. In that case, the bargaining power of the buyer agent

becomes better. The outside options for a negotiation thread in this case includes

both, the current outside options and the negotiation threads that can be initiated in

the future by the new arrived sellers. The arrival pattern of the outside options is

assumed to follow a Poisson process. The assumption about the arrival probability

along with the probability distribution about the opponents’ values that are expected

to arrive in the future are used by the buyer agent to forecast the number and the

quality of the outside options arriving. The work presented in [23] demonstrates how

multiple negotiation instances can be interdependent. The drawback of the described

work is in the previous knowledge assumption about the probability distribution about

the opponents’ reservation prices and about the value of the seller agents that might

join the current negotiation which are necessary for the described approaches. In open

and dynamic automated negotiation systems, such knowledge is difficult to attain.
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The Markov chain model is proposed as a decision making mechanism in the one-

to-many negotiation where a buyer agent is negotiating with multiple seller agents

concurrently and the agreements are considered binding to agents. An et al. propose a

decision making strategy based on Markov chain model (Markov chain based decision

making MCDM) of a negotiation process [3]. The MCDM considers the dynamics and

uncertainties of the negotiation process using stochastic modeling of the negotiation

process. The aim of the MCDM mechanism, at each negotiation round, is to decide

whether to accept the best available offer and quit negotiation or to proceed with nego-

tiation for the hope that the buyer agent would receive an offer(s) with better value(s).

Again, the study presents a model that captures the interdependencies amongst the ne-

gotiation instances or threads. In their work, An et al. consider the price issue as the

only negotiation issue. The limitation of the proposed approach is in its assumption

that all agents use the set-and-wait negotiation tactic.

In the case an agent uses the time-dependent tactics, limβ→∞ α(t) = (t/tmax)
β =

0 where 0 ≤ t < tmax and limβ→∞α(t) = (t/tmax)
β = 1 where t = tmax, see Equa-

tion 2.3. When an agent uses very large β value it offers its initial value at the start of

negotiation and waits (set-and-wait strategy) until its deadline approaches and offers

its reservation value. The MCDM approach assumes that the buyer agent offers a very

low price and the seller agents offer a very high price at the beginning of negotiation.

Even though the set-and-wait strategy is proven [137] to be the dominant strategy for

an agent using a time-dependent strategy regardless of the type of negotiation stra-

tegies its negotiation partners may use, this assumption does not fulfill some of the

automated negotiation objectives where agents are supposed to exchange multiple of-

fers and counteroffers in order to broaden the search space for possible agreements that

suit the negotiating partners. The negotiation strategies proposed in this thesis assume

that agents exchange multiple offers and counteroffers during a negotiation encounter.

A coordination model that is based on categorizing the types of the opponent agents

into either conceder or non-conceder are proposed for a buyer agent negotiating con-

currently with multiple seller agents. The buyer agent is assumed to have the privilege

of making temporary agreements without the need to pay a penalty fee in case it re-

neges on an agreement(s). In their proposed model, Nguyen and Jennings assume that

the buyer agent has a probability distribution about the types of agents (i.e., conceder

type and non-conceder type) taken from previous negotiations or from any other party
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[106]. If no information is available about the types of seller agents , then all seller

agents are considered of unknown type. The model also uses the percentage of success

(PS) matrix and the pay off (PO) matrix. The PS records the rate of reaching a suc-

cessful agreement for each type of the buyer agent’s strategies against the two types

of seller agents. In other words, the rows of the PS matrix consist the buyer’s strate-

gies (conceder, linear and tough) and the columns are the conceder and non-conceder

seller agent types. The PO is similar to the PS matrix except it records the utility rate.

Equation 2.15 finds the buyers’ expected utility of using a certain strategy λ where

λ ∈ {conceder, linear, tough} which are the only strategies that the buyer uses in the

proposed model.

EU(λ) =
∑

s∈Atypes

PS(λ, a)PO(λ, a)P (a), (2.15)

where P (a) is the probability that the seller agent is of type a. The values PS(λ, a)

and PO(λ, a) are taken from the matrices PS and PO at the intersection of λ and

a. The buyer agent calculates three EU(.) values, one expected utility per a strategy

λ ∈ {conceder, linear, tough}. The buyer agent selects the strategy with the highest

expected value. That process is repeated to select a strategy for each negotiation thread.

The model uses Bayesian rule to update the probability distribution of the agent types

and continues on to select a strategy for the second thread. The experimental results

show that the initial information about the probability distribution of the seller types

have small positive (1-2 %) results on the buyer’s utility rate. Most of the positive

experimental results are due to the reclassification process of the seller agent types that

the buyer agent performs during negotiation. The buyer agent assigns a certain seller

agent into either theAcon or theAnon sets according to the utility value of its proposals.

The buyer agent starts classifying seller agents after receieving the third proposal as

follow: at time t = 3 and if
( U(s, t)− U(s, t− 1)

U(s, t− 1)− U(s, t− 2)
> ψ

)
then the seller agent

s ∈ Acon otherwise s ∈ Anon where ψ is the threshold value set on the concessionary

behaviour. The buyer applies this procedure in each negotiation round. Equation 2.15

is used to select a strategy λ accordingly. In this case the P (s) can be either 1 or 0.

The proposed model is compared with the desperate, the patient and the optimized

patient strategies that were discussed earlier. The experimental results show that the

proposed model outperforms the mentioned strategies in terms of the utility rate and
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agreement rate. However, the model still needs the PO and the PS matrices for the

strategy selection process. In addition, the model limits the buyer’s negotiation tactics

into only three tactics which is a bit restricting since the number of negotiation tactics

can be large. Even though it is mentioned in the experimental section that the number

of negotiation issues considered in the experiments can be between 1 and 8, the real

impact of having multiple negotiation issues is not clear since the model classifies the

seller agents according to the utility of the last 3 offers received from each seller. In

addition, the buyer agent uses the time-dependent tactics which -without manipulation-

concede on all issues with the same rate in each negotiation round. Moreover, it is not

clear how the ψ threshold value can be set and whether it is a fixed value or can be

changed during negotiation.

Finally, another study proposes manipulating the convexity of the concession curves of

a buyer’s agent is presented in [90]. The proposed method uses the current behaviors

of the current seller agents to adapt the slop of the buyers’ concession curves during

negotiation.

2.5.2 One-to-Many Negotiation Over Multiple Issues

In real life, most negotiations involve more than one issue. For example, buying a

laptop may involve negotiating the price of the laptop and both, the memory size and

processor speed. If the agents participating in negotiation are competitive and self

interested, then the objective of each agent is to reach an agreement with the highest

possible utility regardless of the opponents’ needs or preferences. However, when

negotiation involves multiple issues, agents usually have divergent preferences over

different issues which allows them to reach an efficient agreement for both parties, i.e.,

achieving a win-win outcome.

There are a fair number of research papers that discuss negotiation over multiple is-

sues, e.g., [34][37]. However, most works consider bilateral negotiation. For exam-

ple, Fatima et al. propose a negotiation model for multi-issue negotiation under time

constraints in an incomplete information setting [37]. The proposed model allows ne-

gotiation over one or more negotiation objects where each object is characterized by a

single continuous issue. Moreover, the model investigates the scenario where agents

negotiate over a single object characterized by multiple issues. However, the work in-
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vestigated in [37] focuses on the problem of the agreements’ implementation scheme in

which the agreements can be implemented either sequentially or simultaneously. The

work of this thesis focuses on developing dynamic negotiation strategies that can guar-

antee effective and/or efficient outcomes for a buyer agent negotiating concurrently

with multiple seller agents.

In an interesting study about the one-to-many multi-attribute negotiation setting, Van

de Walle et al. [151] consider the problem of evaluating and ranking different offers

proposed by a set of buyers. The negotiation setting involves a seller negotiating with

multiple buyers over a single object characterized by multiple issues. Given the re-

ceived offers from the buyers, the objective of the study is on which buyer the seller

should focus on to negotiate further and sell its product. A simple strategy to answer

such a question is to rank the buyers according to the value of their offers. In this case,

the value of each offer is reduced to a single number, i.e., the weighted average utility

of the offer. Van de Walle et al. propose an alternative strategy that preserves the infor-

mation richness of an offer by doing pairwise comparisons of the seller’s preference on

the buyers’ offers and rank the buyers (a partial order ranking) accordingly. The pro-

posed ranking strategy is based on the fact that the preferences over negotiation issues

may vary by different negotiating partners. The proposed approach uses the fuzzy sets

and fuzzy relations in the pairwise comparison between different issues. In a fuzzy

quasi-order relation, each α-cut is a crisp quasi-order relation. Each α-cut of a fuzzy

quasi-order relation is a quasi-order relation in the set of buyers. The equivalence re-

lation partitions the buyers into equivalence classes of buyers in which the buyers of

each class are of equal quality to the seller agent. The same study also analyzes the

sellers’ preferences over its different attributes or issues and compares between them

at different α-cuts.

The first step in implementing the proposed approach is to construct the preference

relation matrix. To construct the matrix, the seller needs to assign a value (usually

between 0 and 1) to each proposed value for each issue in the received offer of each

buyer. For example, if a buyer proposes $10 and 2 days delivery time over a certain

item and the preference of the seller is $15 and 2 days delivery time, the seller agent

may assign 0.4 to the received price value and 0 to the received delivery time value. It

means that the seller does not prefer more than the value of the offered delivery time

while the value of the received price is less than its expectation, hence the number
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corresponds to the received price in the preference relation matrix and is estimated to

be 0.4. Building such a matrix is subjective and is not easy to start with. In automated

negotiation, the process of constructing the preference relation matrix needs to be re-

peated each time the seller agent receives a new set of offers. It is not clear how to

automate building such matrix during negotiation by an agent. Further more, giving

the analyses of buyers’ responses and seller’s preferences, the study does not show how

the seller would choose the level of α-cut. Finally, the proposed work does not explain

how to respond to each buyer using the information about buyers’ classification.

In another study, Gerding et al. [46] investigate the negotiation scenario where a seller

agent is negotiating concurrently with multiple buyer agents for the purpose of selling

unlimited amounts of goods such as information. The study proposes a number of

one-to-many bargaining strategies for the seller agent that takes into consideration the

fairness amongst different buyers. The fairness can be defined from either the seller

agent’s point of view or from a buyer agent’s point of view. Assume that a buyer

reaches an agreement at time td ∈ [ts, ts + ∆], ds is a start time. This agreement

is fair relative to a fixed interval ∆ > 0 if the seller agent is indifferent amongst all

other agreement reached within the interval [ts, ts + ∆]. Its definition from a buyer’s

point of view is related to the notion of envy-free auctions presented in [49]. If a

deal reached at td ∈ [ts, ts + ∆] and a buyer does not strictly prefer any other deal

reach within the interval [ts, ts + ∆], the deal is considered fair. The proposed idea of

assuring fairness is that the seller agent should not accept two simultaneous (or within

a predefined slot of time) proposals from two different buyers or more if the proposals

differ in their utilities. To be fair amongst buyers, the seller agent should be indifferent

to all proposals within a certain slot of time. The action of the seller agent in that case

is to propose a counteroffer(s) that ensures equality amongst offers within a certain

predefined time interval.

In dynamic and competitive environments, we do not expect buyers to communicate

their agreed upon deals given that each buyer agent accepts an agreement according

to its own constraints. In addition, the experimental results are based on using an

evolutionary algorithm that allows agents to learn from previous negotiations. Again,

dynamic agents in dynamic environments may not repeat their behavior patterns which

makes using an evolutionary algorithms of little use here.

In another study which also considers a seller agent negotiating with a number of
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buyer agents for selling bundles of news items where each news item is characterized

by negotiation issues: price, quality and content of the delivered goods, Somefun et al.

[143] propose an approach where the seller agent uses both, concession strategies and

Pareto efficient search strategies during negotiation. The study considers also reaching

agreements that are fair to the customers. In their market model, the news items are

divided into a number of categories. Within each category, there are two quality of

service levels. The first level (low quality) shows the headline news only, while the

second one (high quality) offers the complete article. The customer bargains with the

seller over the bundle tariff which consists of a fixed part (pf ) and a variable part,

pv. The pf is the price specified to a bundle with a certain quality of service while

the pf is the price the customer pays for reading a full article whenever the quality

of service specifies delivering only the article headline. For each information bundle,

agents negotiate over the pv and pf . The idea used to achieve a fair agreement with a

buyer agent is similar to the idea implemented in [46].

In addition, the study [143] proposes the orthogonal and orthogonal-DF mechanisms

as two Pareto efficient search strategies. An agent using the orthogonal strategy finds

a counteroffer (at time t + 1) that is closest (measured in Euclidean distance) to the

last received offer that has the same utility as the one generated at time t − 1. The

orthogonal-DF adjusts the value of one negotiation issue (e.g., pv) that was generated

by the orthogonal mechanism to speed up the search and its accuracy. Consequently,

the pf also needs to be changed to keep the agent on its current iso-curve. The best

results in terms of the distance from the Pareto efficient solution is when a buyer agent

uses the orthogonal technique and the seller agent uses the orthogonal-DF technique.

If both use the orthogonal-DF, the results are similar to the results when agents use

random search. It is obvious that none of the agents have an advantage over the other

if both are using the same strategy.

The proposed Pareto efficient search mechanisms are limited to the situation where

two continuous issues are used. In addition, it is not clear when the seller agent should

move from one iso-curve to another during negotiation. Moreover, the approaches

assume that the seller agent decreases its aspiration level by a fixed amount each round.

However, the number of existing buyer agents and their behaviors are not considered

as a factor that can affect the amount of the next aspiration level!

As a means to approximate a version of qualitative Vickrey auction (QVA) that pro-
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duces a Pareto-efficient outcome where the best seller wins, Hindriks et al. [54] pro-

pose using one-to-many negotiation where a buyer agent negotiates with multiple seller

agents over an object characterized by multiple issues. The reason behind using the

one-to-many negotiation is that at least one negotiation party needs to disclose its pref-

erences and in many cases that option is not accepted by any party due to privacy and

trust concerns. Three variants of the alternating protocol are analyzed: 1) the set of

allowed offers for all agents is restricted 2) the winning offer is announced after each

round 3) the sellers are told whether they have won or not after every round. The re-

sults of the experiments show that each of the three mechanisms is able to approximate

the efficient outcome defined by the QVA [54]. The interesting results of this work

indicates that the one-to-many negotiation over multiple issues can reach efficient out-

comes that are similar to the one obtained by the QVA without the need from any agent

to disclose its preferences.

As a dynamic negotiation strategy, a meta-strategy that uses two different offer gener-

ation tactics is proposed in [87]. The strategy uses a concession tactic and a trade-off

tactic. In each negotiation round, the buyer agent needs to select which tactic type to

use depending on the current behaviors of the opponents in terms of their concessions.

During negotiation, the buyer agent assigns each seller agent to either a favorable group

or unfavorable group. The favorable group offers more concessions than the conces-

sions offered by the corresponding buyer agent’s delegates.

2.5.3 One-to-Many Negotiation Over Multiple Distinct Objects

The problem of procuring multiple distinct objects concurrently is a difficult problem

due to the possible interdependencies amongst negotiation objects from one side and

amongst negotiation issues from the other, see Section 2.4.

As a resource coallocation procurement one-to-many negotiation based model was

proposed as a GRID resource management system. In their model, Sim and Shi [138]

consider a buyer agent seeking to procure multiple distinct services, each characterized

by the price as the only negotiation issue. For each service, the buyer agent conducts

multiple negotiations with different sets of service providers, one set for each service.

For n types of resources, there would be n sets of service providers. The objective

is to reach n agreements, one agreement from each set. The second objective is to
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maximize the agreements’ average utility. If the number of the final agreements is less

than n, the negotiation process fails. For each set of the service providers of each ser-

vice, there is a commitment manager and all the commitment mangers communicate

with a coordinator. Each commitment manager is responsible for managing both de-

commitments and commitments of temporary deals. The coordinator is responsible to

decide whether to accept agreements and quit all negotiations with service providers or

to continue in negotiation. A commitment manager finds the probability that a certain

seller agent s reneges on an agreement according to equation 2.16.

ptsi [jl] =


1−

√
v(Xt

si−→di
[jl])

max(
√
v(Xt

si−→di
[jl]), avg(Xt

si−→di
[jl])− xtsi−→di

[jl])
, t < tdmax ,

0, t = tdmax ,

(2.16)

where pt
si

[jl] is the probability (belief) that the seller agent si offering resource Rjl

at time t would renege from an agreement. The X t
si−→di

[jl] denotes the set of offers

sent from the provider of resource Rjl to the buyer agent’s delegates di (a delegate

is a component in the buyer agent that interacts with one opponent agent, see Section

3.2) at time t,
√
v(X t

si−→di
[jl] is the standard deviation of the set of offers received

at time t. Finally, xt
si−→di

[jl] is the offer received from the seller agent si for the

resource Rjl at time t. When (avg(X t
si−→di

[jl]) − xt
si−→di

[jl]) �
√
v(X t

si−→di
[jl]),

there is a high probability that the seller si would renege on an agreement since its

current offer value is way less than the average of the offers received from all other

sellers for the same resource and may find a better deal with other buyer agents. The

commitment manager calculates the expected utility of a received offer as follows:

EU(xt
si−→di

[jl])) = u(xt
si−→di

[jl]) ∗ (1 − pt
si

) where u(.) is a utility function. Each

commitment manager uses an approach that is similar to the approach used in [105] to

accept a new agreement and/or renege on an existing one. The difference is that [138]

uses the expected utility EU(.) to evaluate offers. The EU(.) is communicated to the

coordinator.

If there is no intermediate agreement for a resource Rjl , the coordinator predicts the

change in utility taking into consideration the maximum predicted utility (u1) from
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the proposals at t+ 1 and the maximum utility (u2) in the acceptable agreements over

the resource Rjl at time t. The change in utility is calculated ∆u = u1 − u2. If

u1 < u2 then ∆u has a negative sign. If the resource has an intermediate agreement

then ∆u = u(avg(X t
si−→di

[jl]) − u(xt
′

si−→di
)) where the xt

′

si−→di
[jl] is the proposal

of a temporary deal established at t′ , t′ ≤ t. For coordinating multiple one-to-many

negotiations, the utility-oriented coordination(UOC) is proposed. At each negotiation

round, the coordinator finds the weighted sum of the expected utility of each resource

Rjl . If the weighted utility change is less than zero then the buyer agent finalizes (if

possible) all agreements and quits negotiation, otherwise the buyer agent proceeds into

the next negotiation round. The interdependencies between different negotiations is

manifested since the expected change in the utility of each set of resource providers

affect the final decision of accepting the best deals or proceeding in negotiation.

The predicted utility calculations depend on the assumption that the buyer’s utility in

the consecutive negotiation rounds does not vary significantly [138]. In many cases,

that assumption about the change in utility does not hold. For example, if an agent uses

the time-dependent tactic to generate offers, then the only situation where the change in

an offer’s utility in consecutive negotiation rounds remains constant is when the agent

shows linear concession behavior, i.e., β = 1, see Section 3.2. In addition, the number

of providers of each resource is not considered in the proposed negotiation model since

the buyer agent will be better off when there are a large number of providers for a

certain resource. Finally, since all the needed resources in the study [138] have the

price as the only negotiation issue, the possibility of shifting money between different

resources to help secure a certain resource(s) when it seems difficult for the buyer agent

to secure that resource(s) from a certain set of providers is not considered.

A more complex negotiation model that can be used in the cloud market as a trading

mechanism is proposed in [135]. The proposed model involves brokers as a middle

layer between the consumers and the providers of cloud resources. A buyer agent

may conduct concurrent negotiations with several broker agents and a broker agent

may conduct multiple negotiations with multiple buyer agents. In addition, the broker

agent conducts multiple one-to-many negotiations with multiple resource providers in

the cloud market. A broker agent accepts requests for services from buyer agents. A

service may consist of multiple cloud resources. The price was the only negotiation is-

sue for all types of resources. A broker agent buys resources and composes a collection
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of resources to satisfy the buyer agents’ need. For the many-to-many negotiations be-

tween the buyer agents and the broker agents, a bargaining-position-estimation (BPE)

strategy is adopted. The BPE strategy changes the convexity (by changing the β pa-

rameter, see Section 3.2) of the concession curve in the next negotiation round given

that the agent uses the time-dependent tactics to generate offers and counteroffers. If

an agent changes the convexity of its concession curve, it means it is changing the

amount of concession it is going to offer in the next negotiation round. To do that, a

buyer agent i uses its bargaining position Bi
p(t) given that Bi

p(t) = δip/∆
i
p, where δip is

the difference between the proposals received from the broker agents at time t− 1 and

at time t. The ∆i
p is the average value of the difference between the proposals received

at the start of negotiation (time t = 0) and at the proposals received at the current time

t. If Bi
p � 1 then the situation for the buyer is considered favorable because the broker

agents are currently offering a larger concession than before. The value of the conces-

sion parameter β for the next negotiation period is calculated according to Equation

2.17.

βt+1 =

max(βmin, β
t − (1/∆Bi

p)(β
t − βmin)), 1 ≤ βt <∞,

βt + (1/∆Bi
p), 0 < βt < 1,

(2.17)

where ∆Bi
p = Bi

p(t)−Bi
p(t− 1) and βmin is the minimum β value which is set before

negotiation by an agent i. Depending on the value of ∆Bi
p, an agent can change its

stance. For example, if βt = 3 which is in the conciliatory region and the current

∆Bi
p = 4 which means the situation for agent i is favorable, βt+1 = min(0.1, 3 −

(1/4) ∗ (3 − 0.1)) = 0.9 which means that the agent i stance becomes more tough

in terms of concession offering and will offer little concession in the next negotiation

round. If βt = 0.4 and ∆Bi
p = 0.5 which means the situation for the buyer agent is

less favorable, then βt+1 = 0.4 + (1/0.5) = 2.4 which means that agent i becomes

conciliatory and will offer more concession in the next negotiation round.

The negotiation outcomes between a broker agent and cloud resource providers affect

the broker agent’s reservation prices. In each negotiation round, a broker agent calcu-

lates the reservation price as the cost of the resource plus a percentage of the resource

cost [135]. As a consequence, the utility of the same proposal can vary from a broker
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agent’s point of view from one negotiation round to another.

The proposed multiple one-to-many negotiation approach is similar to the one pre-

sented in [138]. The coordination approach includes both, the UOC [138] and the

regression-based coordination (RBC). The difference between them is that the UOC

predicts the utility of the next proposal while the RBC predicts the utility at t′ where

t
′

= (tmax − t)/2, tmax is the deadline of the agent adopting the RBC. In other words,

the broker agent predicts the utility of a proposal at the midpoint between the current

time and its deadline. It is selected that way because predicting the behavior of an

opponent in the near future may not deliver much information about the long term fu-

ture and the prediction in the long term future may provide little accuracy. As stated

earlier, the problem of using either approach stems from the strict assumption of the

opponents’ behavior. The linear assumption of the opponents can not hold in many

real scenarios. The approach assumes that agents use the time-dependent tactics to

generate offers and counteroffers and the convexity of the concession function used

is controlled by the value of β. The concession curve is not linear except in case the

value of β is around 1. Since the proposed approach considers that agents have limited

knowledge about each other, assuming that the behavior of opponent agents is linear,

is a great deal of knowledge.

Little work has been done on the scenario where an agent is negotiating for the purpose

of procuring multiple distinct objects. The previous work about procuring multiple

negotiation objects considers that each object has the price as a single negotiation issue.

In addition, the coordination mechanism objective is to decide whether to accept the

best available deals or to proceed with negotiation. The work in this thesis considers

coordinating multiple concurrent negotiations from a different angle. The problem of

resource distribution over common negotiation issues during negotiation is considered.

For example, if a buyer agent needs to procure three distinct objects (e.g., a camera, a

phone and a laptop) given that the criteria (such as the color of the phone must be black)

of each object is predefined and the only issue under negotiation is the price, then

during negotiation, the buyer agent can estimate the difficulty of procuring each object

from evaluating the proposals received for the object and then allocating a reserve price

for each object accordingly. That reserve price can change in each negotiation round

depending on the current bargaining power of the buyer agent. The same idea can

apply in case agents negotiating over objects characterized by multiple issues.
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The works in [89] [91] [88] investigate the scenario where a buyer agent seeks agree-

ments over multiple objects given that each object has several issues and a single

provider. The proposed approaches in [89] [91] depend on allocating the available

resources to the common issues of different objects dynamically during negotiation.

The works presented in [89] [91] investigate the process of adapting the local reserva-

tion (see Section 4.3) values during negotiation according to the behaviors of the ex-

isting opponents over the common issues. Each common issue is assigned (possibly) a

new local reservation value in every negotiation round. The work in [88] involves the

adaptation of both, the initially generated counteroffers and the issues’ counteroffers

weight matrix during negotiation. Instead of adapting the local reservation values, the

approach presented in [88] adapts a matrix that determines how much each delegate

should propose for each issue of each object at the start of every negotiation round.

In addition, Chapter 7 investigates a more complex negotiation scenario where the ob-

jective of the buyer agent is to procure multiple distinct objects where each object is

characterized by multiple issues and have multiple providers.

2.6 Summary

This chapter first introduces the multiagent systems and their potential application do-

mains including automated negotiation. The automated negotiation is introduced in

Section 2.2. The section highlights the importance of negotiation as a conflict reso-

lution mechanism and the most important research areas that are related to automated

negotiation. In addition, it discusses the pros and cons of adopting the concurrent

negotiation approach. Moreover, the potential application domains of automated ne-

gotiation are presented.

Section 2.3 introduces the main approaches to negotiation including the game-theoretic

approaches, the learning and reasoning approaches and the argument-based ones. In

addition, the heuristic-based approaches including the time-dependent, the behavior-

dependent and the mixed tactics are discussed. The advantages and disadvantages of

each of the mentioned approaches are discussed in terms of their practical application

and feasibility including their computational power and processing time needs. The

game-theoretic approaches have their limitations in their hard assumptions about the

kind of knowledge they require and the unbounded rationality of agents. The learning

80



2.6. Summary

and reasoning approaches require historical data and/or large amounts of computa-

tional and time resources. The argument-based mechanisms have a future potential

in facilitating negotiating complex matters but is still in its early stages. The heuris-

tic negotiation approaches are simple and more practical than the other approaches,

especially in the research oriented studies.

The dependencies and coordination where the sources of dependencies in the context

of negotiation are discussed in Section 2.4. This part defines the possible interdepen-

dencies amongst the objects of negotiation such as the objects’ procuring order and the

possible interdependencies amongst the issues of negotiation such as when a group of

issues share a resource such as money.

The last section is the coordination and negotiation section. It presents a short intro-

duction to the coordination mechanisms that are used in multiagent systems and shows

how negotiation is considered as one of these mechanisms. It also emphasizes that

the aim of this thesis is to coordinate the concurrent multi-bilateral negotiations. In

addition, the relevant related works on the one-to-many negotiation focusing on the

different coordination mechanisms proposed in the literature are presented.

Most of the one-to-many negotiations in the literature investigate the situation where

an agent seeks to procure a single object characterized by a single issue. Managing the

convexity of the concession curves and/or updating the reservation values during nego-

tiation are amongst the coordination techniques that are adopted in the related work as

well as in this thesis. When the negotiation scenarios involve a single object of a single

negotiation issue, novel coordination mechanisms that are based on managing the con-

vexity of the concession curves are proposed and benchmarked against the proposed

mechanisms in the literature.

In the related work, previous negotiation data (e.g., utility rates) or some knowledge

about the probability distribution of some key data (e.g., the reservation values of the

opponents) are used to coordinate different negotiations. The negotiation mechanisms

proposed for a buyer agent in this thesis use only the negotiation information in the

current negotiation, i.e., the values of the received offers in the current negotiation en-

counter. On the other hand, the case where agents negotiate multiple objects are rarely

addressed in the negotiation literature. The works presented here address the negotia-

tion scenarios where a buyer agent negotiates with multiple seller agents over multiple

objects, e.g., services. Other related works propose the decommitment management
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approach as a coordination mechanism where an agent is allowed to renege from a

previous agreement(s) by paying a penalty. The decommitment management approach

is not investigated in this thesis since the types of agreements considered are either

binding for the agents or such that the buyer agent has the privilege of reneging from

an agreement without paying penalty.
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General Negotiation Model

This chapter presents a novel negotiation model that captures various negotiation sce-

narios. The model emphasizes that the negotiation object is one of the main com-

ponents that are necessary for describing any negotiation scenario. The model de-

fines negotiation thread, negotiation instance, connected agreement and disconnected

agreement. It also introduces the term delegate for describing an agent’s component

that can negotiate with other agents on the behalf of the agent. In this case, the agent

can create and destroy any number of delegates during negotiation as needed. The

utility functions that are used to evaluate offers are also presented. Finally, since an

object can have one or more negotiation issues, an agent needs to decide when to

accept an offer, the offers’ evaluation decisions are discussed.

3.1 Introduction

The negotiation model is an important tool for describing any negotiation scenario. A

negotiation scenario in multiagent systems contains agents as the interacting compo-

nents. Agents need to have common interests over a certain object(s) which serve as

the purpose of interaction between them. In addition, agents need to know the things

that they need to negotiate which are represented as negotiation issues. Each negotia-

tion issue has constraints in which the agent cannot go beyond during negotiation. In

addition, agents need to follow a certain interaction rule. Moreover, the agents need to

be aware about the policy of accepting an agreement in different circumstances.
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3.2 Overview of the Negotiation Model

The first part of this section presents the negotiation model in terms of its main compo-

nents: agents, negotiation objects and negotiation issues. In addition, it presents how

these components interrelate and the main assumptions of this of thesis. The second

part discusses how agents evaluate offers and counteroffers especially when negotiat-

ing multiple issues.

3.2.1 Negotiation Model

The following formalized negotiation model is general and can be used to describe var-

ious negotiation scenarios. The negotiation is presented by the tupleN =< O,S,D,J >

where,

1. O is the set of negotiation objects where agents have interest to negotiate over. A

negotiation object represents either a physical item (e.g., a printed book, a cam-

era etc.) or a non-physical item, e.g., a service, a resource etc. The set of objects

O = {o1, ..., om}, where oi stands for a negotiation object. It is assumed that

the O set contains all the negotiation objects and remains unchanged throughout

negotiation.

2. S is the set of seller agents in the current negotiation encounter, S = {s1, ..., sm}.
If one or more negotiation objects have more than one provider, then si =

{si1, ..., sini} where i is the object identity in which the group si is aiming to

sell and ni is the number of seller agents that are willing to sell object oi, see

Figure 3.1, otherwise, si stands for a seller agent who is willing to sell the object

oi, see Figure 3.2.

3. D is the set of buyer agent’s negotiation delegates, D = {d1, ..., dm}. If one or

more negotiation objects have more than one provider, then di represents a set of

delegates, di = {di1, ..., dini}, that are responsible for buying object oi where i

is the object identity, ni is the number of the buyer agent’s delegates responsible

for buying object oi, see Figure 3.1. If object oi has one provider, then di stands

for a buyer’s delegate who is responsible for buying object oi, see Figure 3.2.
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4. J is the set of negotiation issues or attributes, J = {j1, ..., jg}, where ji is an

issue characterizing at least one negotiation object.

Figure 3.1: Complex one-to-many negotiation

In addition to the notation described above, the following assumptions are considered

in this thesis:

• |D| = |S|. It means the number of delegates are equal to the number of seller

agents at any point of time during negotiation. The delegates are created and

destroyed during negotiation to match the number of seller agents.

• ∀si ∈ S and ∀di ∈ D, |di| = |si|. It is similar to the previous point and applies

in case an object has multiple providers.

• ∀oi ∈ O, oi ∼ Jq where Jq ∈ 2J. It means that each object is characterized by a

set of issues. It is possible that two or more objects have the same set of issues.

• agents use the alternating offers protocol [125].

• in case of multi-issue negotiation, when an agent reaches an agreement over a

negotiation object, it means that the agent have an agreement over each issue

of that object using the object response and the issue response decision making

mechanisms, see Section 3.2.2

• each negotiating agent has a deadline by which the agent accepts an offer or

withdraws from negotiation.

• agents negotiate under incomplete knowledge, since the reservations values,

deadlines, utility structure and the offer generation models are private informa-

tion.
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• we assume that the seller agents are independent in their actions, i.e., they do not

exchange information.

• sometimes, we refer to a buyer agent’s delegate as an agent since it takes the

responsibility of receiving offers and sending counteroffers to a seller agent.

• negotiation agents are rational agents, see Section 2.1.

• negotiations are assumed to be one-off. In this case, the information about the

previous negotiation encounters are not considered.

• agents negotiate in an open and dynamic environment, as a result, the agent’s

reputation matter is not considered in this work.

• all agents are equal in their capabilities and can do the same set of actions.

• even though we represent the negotiation model from a buyer agent’s point of

view, the model is general can be used to represent a seller agent’s point of view

as well.

Figure 3.2: One-to-many negotiation

When a buyer agent seeks to reach agreements over multiple objects, the agreements

over the objects can be either connected agreement or disconnected agreement.

Definition 3.1. (Connected agreement)

In multi-object negotiation, a connected agreement is an agreement under the condi-

tion that an agent is required to reach an agreement over each negotiation object. If

the number of negotiation objects is m , then the agent needs to secure m agreements

to count for one successful agreement. In other words, if an agent fails to reach an
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agreement over any negotiation object then the negotiation ends with a conflict deal

and the utility for that agent is assumed to be zero.

Similarly, an object agreement is considered a connected issue agreement since an

agent must reach an agreement over every issue.

Definition 3.2. (Disconnected agreement)

In multi-object negotiation, if an agreement over each negotiation object is not a strict

obligation, then an agreement over any object is considered a disconnected agreement.

One disconnected agreement counts for one agreement. An agent counts how many

disconnected agreements are achieved in a negotiation encounter for the purposes of

evaluating the negotiation process.

In case the agreements are of a disconnected type, an agent seeks to reach the largest

possible number of agreements and the overall utility of the final agreement is calcu-

lated by considering only the utilities of the objects in which the agent reaches agree-

ments over.

We assume that each negotiation delegate is responsible to negotiate over one object at

a given negotiation encounter (see function fd in Equation 3.1), while many delegates

may negotiate with many seller agents over the same object concurrently.

The negotiation scenario described in Figure 3.1 is a bit complicated since the coordi-

nator unit in the buyer agent needs to consider two levels of coordination, one at the

level of each object (i.e., local level) and another at the level of all objects, i.e., global

level.

In our model, each negotiation delegate is mapped to an object, a deadline tmax ∈ N∗,
an offer generation strategy θ ∈ Θ, and an object weightWi ∈ (0, 1], see fd in Equation

3.1. The objects’ weights are used to calculate the weighted average utility of procuring

m objects under the assumption that the objects are independent and
m∑
i=1

Wi = 1.

fd : D
1−1−−→ (O× N∗ ×Θ×Wi × ...)

fo : O
1−1−−→ 2J

fj : J
1−1−−→ ([min,max]× ...)

(3.1)
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Each object is mapped to a negotiation issue set Jq where Jq ∈ 2J, see fo in Equation

3.1. Finally, each issue is mapped to a set of constraints, e.g., the interval of acceptance

([min,max]), where min,max represent either the starting offer value or the reserva-

tion value of a negotiation issue, see fj in Equation 3.1. When min is the starting offer

value then max is the reservation offer value and vice versa. Usually, a seller agent

starts proposing a high price (i.e., its max) for a certain item, then it may concede up

to its minimal acceptable price for this item, i.e., its min. The buyer agent behaves the

opposite way regarding the price issue.

In each negotiation round, the buyer agent may need to execute one or more of the

three functions (i.e., fd, fo, fj in Equation 3.1) as a response to some changes in the

negotiation environment, such as destroying a delegate as a result of withdrawing its

partner seller agent from negotiation or reaching an agreement over the object assigned

to that delegate, changing or updating the current negotiation tactic etc. The buyer

agent creates and destroys delegate negotiators during negotiation to match the number

of the existing seller agents.

We use the notation xt
d→s

[Jq] to stand for the vector of values proposed by an agent d

to an agent s (s ∈ {si, sil} and d ∈ {di, dil}) at time t given that the xt
d→s

[Jq] has a

value for each issue jl ∈ Jq and ∃ oi ∼ Jq. All the formulae included in this chapter

can be used by both agent types, i.e., d and s. To refer to a value of a certain issue

say [jl] ∈ xtd→s
[Jq], we use the notation xt

d→s
[jl]. Assume that agents are negotiating

over independent issues, let Ub(xt
s→d

[Jq]) be a function that computes the weighted

average utility of the agent d from receiving the offer xt
s→d

[Jq] at time t. The weighted

average utility of delegate d is computed according to Equation 3.2.

Ud(xt
s→d

[Jq]) =

|Jq |∑
l=1

Wl ∗ ud(xt
s→d

[jl]), (3.2)

where
|Jq |∑
l=1

Wl = 1 and ud(xt
s→d

[jl]) is a function that calculates the utility gain of the

agent d from receiving the offer (xt
s→d

[jl]), see Equation 3.3 below. For m objects,

the agent computes m utility values. The total utility is calculated as the average of m

utility values given that all objects have the same importance (i.e., the same weight) to

the buyer agent. In case objects differ in their importance, the total utility is calculated
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as a weighted average of m utility values given that the objects under negotiation are

independent.

An agent uses equation 3.3 to compute the utility of a single issue offer. For example,

a buyer’s delegate d uses the utility function ud to evaluate an offer received from an

agent s over an issue jl:

ud(xs→d[jl]) =

(xs→d[jl]−RV d
jl

)/(IV d
jl
−RV d

jl
), If(IV d

jl
> RV d

jl
)

(RV d
jl
− xs→d[jl])/(RV

d
jl
− IV d

jl
), If(IV d

jl
< RV d

jl
)

(3.3)

The buyer agent uses Equation 3.3 to evaluate both, the received offer over an issue

and its generated counteroffer over that issue. Similarly, with simple modifications,

Equations 3.2 and 3.3 can be used by the seller agents for the purpose of calculat-

ing the weighted average utility and the single issue offer utility, respectively, for the

counteroffers they receive and the offers they generate.

The set of offers and counteroffers that are exchanged between any negotiation pair

during the current negotiation encounter is called a negotiation thread. Formally, the

negotiation thread denoted by X t
d↔s

[Jq] is defined as follows:

Definition 3.3. (Negotiation thread)

Assuming that a seller agent s starts proposing at time t = 0, the negotiation thread

for the negotiation pair (d, s) over an object oi ∼ Jq at time t is denoted by X t
d↔s

[Jq],

where X t
d↔s

[Jq] =< xt
d→s

[Jq], x
t−1
s→d

[Jq], x
t−2
d→s

[Jq], ..., x
0
s→d

[Jq] > . The first element

is optionally ∈ {accept,withdraw}. A negotiation thread X t
d↔s

[Jq] is active at time t

if first(X t
s↔d

[Jq]) /∈ {accept, withdraw} where first(.) is a function that returns the

first element in a sequence.

The above definition is adapted from [33]. In general, the negotiation thread is consid-

ered the real-time information that is available for a negotiating agent. It can be used

in the process of decision making regarding the required action(s) in the next negoti-

ation round, e.g., withdraw from negotiation, what the value of the next offer is etc.

The decision making mechanisms proposed in this thesis rely on the active negotiation

threads as the source of real-time information. The negotiation threads can be used

to analyze the different patterns of concessions offered by different opponents in the

one-to-many negotiation.
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To refer to a negotiation interaction between a buyer’s delegate and a seller agent, the

term negotiation instance is used.

Definition 3.4. (Negotiation instance)

A negotiation instance describes an active negotiation interaction between two agents.

The number of negotiation instances at a given time is equal to the number of active

negotiation pairs.

A negotiation instance is similar to a negotiation encounter. The difference is that

the negotiation instance describes an active negotiation encounter. In the one-to-many

negotiation, a negotiation instance is used to describe a negotiation encounter between

a buyer’s delegate and a seller agent. When the buyer agent creates a new delegate,

it actually creates a new instance which is a term borrowed from the object oriented

paradigm. Moreover, the negotiation encounter term is connected more to bilateral

negotiation.

The number of negotiation instances is dynamic in the one-to-many negotiation. For

example, when an agreement is reached between a delegate and a seller agent, the

number of negotiation instances is reduced by one and if a new seller agent engages in

negotiation, the number of negotiation instances is increased by one etc. In the one-to-

many negotiation, the number of active negotiation threads is equal to the number of

negotiation instances at any given time during negotiation.

3.2.2 Evaluation Decisions

When a buyer agent’s delegate d receives an offer for an issue jl from its opponent

seller agent s, it needs to evaluate the received offer using its utility function. If the

utility function does not exist, other evaluation criteria can be used such as existing

of minimum constraints accepting criteria or using certain ranking ordering rule. The

minimum constraints means that the agent accepts any offer that matches or exceeds

its minimal constraints. On the other hand, the rank ordering rule works when an agent

is able to rank its preferences over the decision variables and if the received offer is

aligned with this ranking, the offer is accepted. In this thesis, a utility function is used

in the evaluation process. In case of existing multiple negotiation issues and/or mul-

tiple negotiation objects, the negotiation decision mechanism needs to accommodate
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for the existing multiple decision variables. In case an object has multiple issues and

issues are different in their importance, the utility of the object’s offer is calculated as

a weighted average utility. Similar procedure is applied in case of existing multiple

objects. The difference is that the objects can also have different weights if they differ

in their importance from an agent’s point of view. When the negotiation objects have

different weights, the utility of each object is calculated as a weighted average utility

and the utilities of all objects are calculated again as a weighted average utility using

the objects’ weights instead of issues’ weights. The following definitions formalize the

evaluation decisions in different situations.

Definition 3.5. (Issue response I(.))

At the start of each negotiation round, an agent d takes an issue response I(.) decision

at time t
′

regarding the received offer (xt
s→d

[jl]) given that t < t
′

as follows:

Id(t
′
, xts→d[jl]) =


accept if(ud(xt

s→d
[jl]) ≥ ud(xt

′

d→s
[jl]) &(t

′ ≤ tdmax))

withdraw if(t
′
> tdmax)

send(xd→s[jl]) otherwise

(3.4)

The issue response (Id) considers the utility of the received offer by delegate d for an

object oi represented by the issue jl. The issue response in Equation 3.4 applies in case

agents are negotiating over a single issue. To handle the situation of multiple-issue

negotiation, Equation 3.5 is applied to each element of the composite offer to make

sure that the utility of each issue is not less than the utility of the reservation value of

that issue. Equation 3.5 is applied after the conditional accept decision is selected in

the object response, see Equation 3.6.

Ĩd(t
′
, xt

s→d
[jl]) =


accept if(ud(xt

s→d
[jl]) ≥ ud(RV d

jl
))

reject if(ud(xt
s→d

[jl]) < ud(RV d

jl
))

withdraw if(t
′
> tdmax)

(3.5)

The modification of the offer acceptance condition in Equation 3.5 is connected to

the object response Bd(.) since the object response is concerned with the weighted

average utility of the received composite offer. Equation 3.5 does not have the send(.)
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option since it is used only to check whether the utility of each issue’s offer of the

received composite offer that has the status conditional accept does not go beyond the

reservation utility of that issue, i.e., the minimum acceptable utility.

The accept and reject in Equation 3.5 are two labels that can be used to mark the status

of each issue. If the utility of a certain issue member of a received composite offer is

equal to or above the reservation utility of that issue, then the status of that issue will

be “accept”, otherwise, the status is “reject”.

Definition 3.6. (Object response B(.))

At the start of each negotiation round, an agent d takes an object response B(.) deci-

sion at time t
′

regarding the received offer (xt
s→d

[Jq]) given that t < t
′

as follows:

Bd(t
′
, xt

s→d
[Jq]) =


conditional accept if(Ud(xt

s→d
[Jq]) ≥ Ud(xt

′

d→s
[Jq]) &(t

′ ≤ tdmax))

withdraw if(t
′
> tdmax)

send(xd→s) otherwise

(3.6)

The object response (Bd) considers the weighted average utility of the received offer

by delegate d for an object oi represented by the set of issues Jq.

If an agent d decides to conditionally accept an offer according to Bd, then it needs to

apply the issue response (̃Id) criteria shown in Equation 3.5 on each issue to make sure

that no issue receives a lower utility than its reservation utility. Because it is possible

that the weighted average utility of a certain composite offer is acceptable due to the

utility of a member offer (or more) is high whereas the utility of other member(s) of the

composite offer is/are under its/their reservation utility. In other words, the decision of

accepting a composite offer includes two steps, first, check the weighted average utility

of the received composite offer for a certain object and then check the individual utility

of each member of that offer. If the first result is true and the second result is true for

each member of the composite offer then the offer is accepted. Figure 3.3 shows the

decision process of accepting a multi-issue offer.

The other way around of making decisions over whether to accept a certain composite

offer is also possible. The agent starts inspecting the utility of each member of the

received composite offer and if all utilities are acceptable, the weighted average utility
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Figure 3.3: The decision process of accepting a multi-issue offer

is computed and compared against the current aspirational level of the agent. If it is

equal or above that level, the offer is accepted, otherwise the offer is rejected. During

the process of computing the utility of the individual members of the composite offer,

it is possible that the utility of a member is the less than the current required utility

level of that issue. In this case, the process stops and the composite offer is rejected.

However, when using the object response method, an agent computes the weighted

average utility of the composite offer first and marks the received composite offer with

the conditional accept label if its utility is equal or more than the current aspiration

level. The next step is to apply the Ĩ. If any issue member of the composite offer

receives the label reject from Ĩ, the agent’s behavior in the next negotiation round

can be aligned towards reaching an agreement over the issues who receive the label

reject by the Ĩ. The agent may offer more concession on the issue(s) marked with

the reject label to increase the opportunity of changing the labels of those issues from

reject to accept. However, the agent needs to repeat the decision process of accepting

a multi-issue offer in every negotiation round. The offer acceptance decision making

mechanisms described above are applied by the buyer agents and the seller agents.

3.3 Summary

This chapter presents a novel negotiation model that captures various negotiation sce-

narios. It describes the negotiation as a tuple of 4 vectors: objects, sellers, delegates

and issues. The objects are the items which agents have interest to negotiate over. An

object is characterized by one or more issues and every issue has a set of constraints.
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Each delegate can negotiate with one seller agent over one object. In other words, a

delegate can be responsible for procuring only one object in any given interaction. The

proposed notation allows for the description of the situations where there is a single

provider per object and when an object can have multiple providers. The first case has a

single level of coordination, while the second case can have two levels of coordination.

The buyer agent creates a number of delegates equal to the number of seller agents that

are still in negotiation. If a seller agent quits negotiation or an agreement is reached

with a certain seller agent, its delegate partner is destroyed. Each delegate is assigned

an object and each object is assigned a set of issues. Finally, each issue is assigned a

set of constraints. The two main issue constraints that are used in this thesis are: the

issue reservation intervals and the issue weights vector.

The utility function that are used to evaluate offers and counteroffers are presented. The

utility function uses the minimum and the maximum values of the reservation interval

of a given issue to calculate the utility value for a received or generated offer for this

issue. The utility value can be any number in the closed interval [0, 1]. In addition, the

weighted average utility is explained. The agents use the alternating offers protocol

during their interaction.

The model also defines some relevant terms: negotiation thread, negotiation instance,

connected agreement and disconnected agreement. Finally, the model discusses the

evaluation decisions for the offers. Additional terms such as issue response and object

response mechanisms are proposed, defined and discussed. These mechanisms are

used in the offer accepting process.
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Chapter 4

Coordination Scenarios and Solution
Approach

This chapter introduces the coordination problem in the concurrent multi-bilateral ne-

gotiation and emphasizes the coordination direction of this thesis. Possible negotiation

scenarios in multiagent systems are classified. The classification includes the bilateral

(i.e., one-to-one) negotiation and the multi-bilateral (i.e., one-to-many) negotiation

whereas the many-to-many negotiation can be formed by either. Five scenarios in the

one-to-many negotiation are identified and named coordination scenarios. Moreover,

the general solution approach is presented including a detailed example about the data

preparation. Finally, the general experimental settings are presented.

4.1 Coordination Problem in One-to-Many Negotiation

Consider a reverse auction where a buyer agent interacts with multiple seller agents.

Instead of adopting the reverse auction rules of encounter amongst agents, the alter-

nating offer protocol are assumed as a rule of the encounter. The buyer agent receives

multiple offers from the seller agents at time t and it responds at time t+ 1. In reality,

the responses of the seller agents may not be synchronized in terms of the time of their

response, however, for simplicity, all seller agents are assumed to send their offers at

the same time and the buyer sends its counteroffers to all seller agents at once. Each

agent has a deadline by which it either accepts an offer or withdraws from negotiation.
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Unlike the reverse auction where the price is the only issue of interest for all agents,

we consider the situation where the agents are interested in negotiating over not only a

single issue, but over multiple issues such as delivery time, response, time etc.

When the buyer agent receives multiple offers at time t where t < tbuyermax , the buyer

agent can take one of two decisions: accept one or more of the received offers and quit

negotiation or reject some or all of the received offers and propose one or more coun-

teroffers. Some negotiation protocols allow the buyer agent to accept offers temporary

while in negotiation. As stated in Section 2.5.1, this thesis does not consider the prob-

lem of managing commitment/decommitment. The investigated cases are when the

buyer agent can renege on an agreement(s) without the need to pay penalty or it needs

to honor its agreement(s).

Certain mechanisms are proposed in the negotiation literature to coordinate the con-

current one-to-many negotiation. Most of the work focuses on tackling the following

two main coordination problems:

• the proposal accepting problem. Some coordination mechanisms (e.g., [138] [3]

[23]) are designed to answer the following question: when an agent receives a

number of offers in a certain negotiation round, should the agent accept the best

acceptable offer and quit negotiation? In this case the coordination mechanism

should consider different factors such as the value of the best existing offer, the

number of existing opponents, the agents’ deadlines and the expected utility of

the opponents’ future offers. The proposal accepting problem exists in all forms

of negotiation. Since deadlines and preference profiles are considered private

information of each agent, it becomes difficult for an agent to decide whether

to agree on an acceptable agreement or proceed with negotiation. If the buyer

agent accepts the best acceptable offer, it may lose a higher future offer value.

On the other hand, if the agent decides to continue in negotiation, it may not

reach an agreement at all since the deadlines of the opponent agents are private

information and the opponent agents may withdraw from negotiation at any time.

If an agent reaches its deadline during negotiation, i.e., current time t = tmax, the

dominant strategy for an agent is to accept the best acceptable offer. If t < tmax

then it becomes difficult to determine the dominant strategy. In case an agent

decides to proceed in negotiation, the risk of not reaching an agreement in case

of bilateral negotiation is higher than the case of multi-bilateral negotiation. In
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multi-bilateral negotiation, an agent negotiates with multiple opponent agents

concurrently and the probability that all agents withdraw from negotiation at

once is less than the probability of a single agent withdrawing from negotiation.

• the bidding strategy problem. This problem tackles the problem of generating

offers (e.g., [118][18][40][34] [24]) for the next negotiation round. It can involve

defining either the offer value and/or the offer structure. Different methods are

proposed to generate offers such as using mathematical functions that depend on

the elapsed negotiation time and the value of the convexity parameter, imitation

offer generation mechanisms and mixing techniques, see Section 2.3.3. Other

methods are designed to propose trade-off offers to help reach an agreement

faster and at the same time do not jeopardize the utility of the proposer agent, see

Section 2.3.3.5. Even though manipulating the offer structure during negotiation

may help in reaching an agreement(s), its automation process is rarely addressed

in the negotiation literature.

The bidding strategy problem is an important problem in negotiation and in all nego-

tiation forms. It is a more challenging problem in the one-to-many negotiation since

the buyer agent needs to consider the behaviors of a number of opponents and a differ-

ent offer may need to be proposed to each opponent. Most of the work in this thesis

focuses on the bidding strategy in one-to-many negotiation. The focus is on devising

dynamic bidding strategies that consider the collective behaviors of the opponents in

terms of the their concession. The buyer agent uses only the received offers in the cur-

rent negotiation instance as source of data in the proposed dynamic bidding strategies.

The main coordination problem presented in this thesis is the problem of managing the

interdependencies between the generated counteroffers by a buyer agent negotiating

concurrently with a set of seller agents taking into consideration the behavior of each

seller agent. The interdependencies are managed by detecting the behaviors of the op-

ponent agents in terms of their concession behavior over different negotiation issues

in each negotiation round. The process is repeated in each negotiation round since the

seller agents may change their behaviors from one negotiation round to another.
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The main coordination question addressed by this thesis is:

Given the offers received by a buyer agent from the seller agents and

the counteroffers sent to the seller agents in the current negotiation in-

stance, what is the value of the next counteroffer that a buyer agent should

send to each seller agent?

The values of the next counteroffers are decided by the buyer’s bidding strategy. Co-

ordinating the buyer’s actions in that context means coordinating the buyer’s bidding

strategy during negotiation. For the rest of this thesis, the term offer is used to refer

to a proposal generated by an agent or a seller agent while a counteroffer refers to a

proposal generated by a buyer agent. An agent in this context can be either a buyer or

a seller agent.

The coordination objective is twofold: firstly, the buyer agent needs to secure an

agreement(s) beyond its reservation value(s), secondly, the coordination mechanism(s)

needs to be designed in a way that maximizes the utility of the agreement(s). In other

words, the coordination mechanisms maximize the utility of the agreements, see Equa-

tion 4.1.

maximize
(∑m

i=1

∑|gi|
l=1 u(x[jl])

m
), (4.1)

where m is the number of objects under negotiation, gi is the issue set of the object i

and u(x[jl]) is the utility of the accepted value for the issue jl. The utility function is

discussed in Section 3.2. Equation 4.1 assumes that all objects under negotiation have

the same weight or importance. If the objects have different importance, Equation 4.1

needs to reflect that.

The next section presents the classification of negotiation and coordination scenarios

while Section 4.3 elaborates more on the coordination problem and presents the gen-

eral solution approach.
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4.2 Coordination Scenarios

This section categorizes possible negotiation scenarios (adapted from the work pub-

lished in [86]) in multiagent systems taking into consideration the two main criteria

of a negotiation object that determine a particular negotiation scenario: the number

of negotiation issues and the number of opponents (providers) per object at a given

negotiation interaction. In addition, the number of the required agreements are added

to indicate the number of the required objects, see Figure 4.1. We consider that each

negotiation object requires one object agreement and each issue requires one issue

agreement. Formally, if an object oi has k issues, then we need k issue agreements to

make an object agreement over the object oi. For the rest of this manuscript, unless

stated to the contrary, an agreement means an agreement over an object.

Figure 4.1: Negotiation scenarios

Each of the three sub-nodes of the negotiation objects node shown in Figure 4.1 has

a cardinality of 1 or many. The Agreements node in Figure 4.1 refers to agreements

over objects given that each negotiation object requires one agreement. Saying that

an agent needs to reach N agreements is equivalent to saying that an agent needs to

secure N objects. When an agent seeks an agreement over multiple objects, it means

that the objects are distinct. For example, a camera and a TV are two distinct objects.

If the aim of a buyer is to negotiate with a seller agent for the purpose of buying two

identical objects (e.g., two cameras), then the model used in this work considers the

two identical cameras as one object taking into consideration the issues that can be
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combined such as price and weight. When a buyer agent aims to buy several identical

objects, it can use this fact to strengthen its bargaining power. When many buyers

decides to make a coalition and submit one proposal to buy several objects at once,

that can help in strengthening the bargaining power of the buyer agents. However, the

agent coalition problem is not investigated here. For more information about agent

coalition, see [52] [76] [128].

As negotiation is one of the important interaction mechanisms in multi-agent systems,

considering the main criteria of negotiation objects (i.e., the number of issues per ob-

ject and the number of providers (opponents) per object) as shown in Figure 4.1, nine

negotiation scenarios are recognized. Amongst the nine negotiation scenarios, five are

identified and called coordination scenarios, namely, scenarios SSM, MSM, MMS,

SMM and MMM where the first letter stands for the number of negotiation objects

required, single or multiple, the second letter stands for the number of issues per nego-

tiation object, single or multiple and the third letter stands for the number of provider(s)

per object, single or multiple. For example, the SMM stands for the coordination sce-

nario where an agent seeks a single object characterized by multiple issues and there

are multiple providers for that object. These coordination scenarios are the study target

of this thesis. The coordination scenarios are investigated and a dynamic negotiation

strategy(s) is/are proposed for each. The proposed negotiation strategies control the

bidding process of a buyer agent negotiating concurrently with multiple seller agents

for the purpose of procuring one or more objects. All the coordination scenarios end

with the letter M except the scenario MMS. The scenario MMS targets the monopo-

listic markets where each object has a single provider.

As mentioned earlier, we assume that the number of objects is equal to the number of

agreements. Accordingly, we can decide whether an agent aims to procure one object

or more by looking at the arrow targeting the agreements node. If the arrow ends at 1

in Figure 4.1, then the number of objects is 1, otherwise the number of objects is more

than 1. The same logic applies for the issues and opponents nodes.

The first four scenarios shown with the dotted arrows in Figure 4.1 assume agents un-

dertake bilateral (i.e., one-to-one) negotiation where two agents engage in negotiation.

Scenario 1 in Figure 4.1 represents a situation where an agent is negotiating with one

opponent over one object characterized by a single issue. Negotiation scenario 2 refers

to a situation where an agent is negotiating with an opponent agent over multiple ob-
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jects (N > 1) given that each object has a single issue. For example, a buyer agent

can negotiate with an electronic store agent over buying a TV and a camera of specific

criteria given that the only negotiation issue for each is the price issue. Negotiation

scenario 3 refers to a situation where an agent is negotiating with an opponent over

a single object characterized by several issues (L > 1). For example, an agent may

negotiate with a cloud storage provider over renting a storage space. The storage space

contains the issues: Price, storage size and duration of the storage.

Finally, scenario 4 describes a situation where an agent is negotiating with an oppo-

nent over multiple objects given that each object is characterized by several issues.

For example, a buyer agent can negotiate with an electronic store agent over buying

a camera and a TV given that each of them is characterized by several issues such as

price, warranty, delivery time, etc. This scenario is similar to scenario 7 (coordination

scenario MMS). The coordination scenario MMS assumes that each object has a dif-

ferent provider while scenario 4 assumes that all objects under negotiation have one

provider. The coordination approach proposed for scenario MMS may also apply for

negotiation scenario 4. However, in coordination scenario MMS, the variation in the

preference profiles of different agents are assumed to be more than the variation in the

preference profile assumed in negotiation scenario 4. For example, if all objects have

the same provider agent, then its preference over the price issue can be similar across

all objects while in case of scenario MMS, one provider may care about the price more

than about delivery time while other agents may have the opposite preference. Since

the proposed coordination mechanisms are based on the assumption of preference vari-

ations amongst the opponent agents, the coordination approach used in coordinating

the bidding strategy in scenario MMS is more effective than in scenario 4.

Since the work of this thesis focuses on coordinating the bidding strategy in one-to-

many negotiation, the bilateral negotiation is not investigated per se. However, some

of the offer generation methods used in bilateral negotiations are adopted in the one-

to-many setting.

The coordination scenario SSM represents an agent negotiating with multiple oppo-

nents over a single object characterized by a single issue. In real life, one may contact

several sellers before deciding to buy from any. For example, an agent can negotiate

concurrently with several opponents to buy a specific type of camera. This scenario

is investigated in Chapter 5. The difference between coordination scenarios SSM and
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MSM is that an agent in scenario MSM is negotiating with multiple opponents for

the purpose of procuring several objects given that each object has multiple providers.

Each object in scenarios SSM and MSM has a single issue. As a real life example for

scenario MSM, a customer seeks to book both a flight and a room in a hotel by negoti-

ating with several carriers and several hotels. In this case, a customer agent negotiates

concurrently with several agents that can provide flight booking and several agents that

can provide hotel booking assuming that the customer agent seeks to secure the best

deals on the price of each, hence the price would be the only issue of negotiation for

both objects. Scenario MSM is investigated in Chapter 7.

Coordination scenario MMS refers to a situation where the purpose of an agent is to

secure multiple distinct objects (and hence multiple agreements are required) given

that each distinct object has one provider. This situation exists in monopoly markets

where there is only a single seller offering a certain product. When a buyer agent

needs to procure several distinct objects in a monopoly market, there would be a single

provider for each object.

The coordination scenario SMM represents an agent negotiating with several oppo-

nents for the purpose of securing an object characterized by several issues. This sit-

uation is abundant in real life. For example, an agent may find several carrier agents

to negotiate with over booking a flight. In this scenario, the customer agent cares, for

example, about the price, the date and the time of the flight that constitute the issues

of negotiation. This scenario is investigated in Chapter 6 where a meta-strategy is

proposed to coordinate the bidding strategy during negotiation.

Finally, the coordination scenario MMM considers a situation where an agent seeks

to secure several agreements over several objects given that each object has several

providers and several negotiation issues. This scenario is the most complex one. It

exists in markets where there are several providers for each distinct object and each

object contains multiple issues. For example, an agent can negotiate with several cloud

service provider agents (e.g., Amazon EC2, Google App Engine, AT&T Synaptic, etc.)

over a storage space and computations power in the cloud. The storage space can have

several issues such as price, size, duration, etc. The computational power can have

issues like price, response time etc. This scenario is investigated in Chapter 7.
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4.3 Solution Approach

When a buyer agent engages into multi-bilateral concurrent negotiation with a set of

seller agents, the buyer agent needs to coordinate its actions (see Section 4.1) against its

opponents in each negotiation round to achieve one or more of the negotiation objective

criteria such as utility gain and agreement rate.

Formally, let Ωa be the negotiation strategy of an agent a, then Ωa = 〈IV a, RV a, T a,Θa〉,
where IV a, RV a, T a,Θa represent the vector of the initial offer/counteroffer values,

the vector of the reservation values, the deadlines vector and finally the vector of the

offer/counteroffer generation tactics of an agent a.

Our representation of an agent’s a strategy vector (i.e., Ωa) is similar to its repre-

sentation in [38]. The difference is that the fourth part of the strategy vector in [38]

represents the value β which is a parameter of functions normally used in the time-

dependent tactics, while the fourth part in our representation (i.e., Θa) is a more

general: it indicates any possible offer/counteroffer generation tactic, e.g., trade-off,

time-dependent, behavior-dependent etc., its associated parameters (e.g., β value) and

constraints. For example, if an offer generation tactic calculates a value beyond the

reservation value of an issue, then there should be a constraint to modify that value to

be the reservation value of that issue.

A change to any of the Ωa components during negotiation is considered a change in

agent a’s negotiation strategy. In this thesis, the negotiation strategy and the bidding

strategy are used interchangeably. In our work, we investigate how a bidding strategy

for each of the buyer agent delegates (a delegate is a component in the buyer agent

that interacts with one opponent agent, see Section 3.2) can be dynamically managed

or coordinated taking into consideration the behaviors of the active opponents during

negotiation. An active opponent is an opponent whose last offer is neither accept nor

withdraw, see Section 3.2. Based on the offers received from an active opponent, two

methods can be used to evaluate the opponent, the first one is called the difference

in concession measure (DIC) and the second one is called the last offer utility (LOU)

measure. The LOU uses the utility of the received last offers from all agents. When

the buyer agent uses DIC measure to evaluate the opponent agents, a data preparation

procedure is required.

To manage the bidding strategy during negotiation (in real-time) for a buyer agent ne-
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gotiating concurrently with multiple seller agents assuming that the information about

each seller agent is the sequence of the offers received from each during the current

negotiation instance, the following steps are implemented:

1. select an appropriate strategy component(s) for manipulation. The selection of

a particular component for manipulation depends mainly on the coordination

scenario. For example, a trade-off negotiation mechanism is not an option in

coordination scenarios SSM and MSM since there is a single negotiation issue

and the negotiation game is of zero-sum type. Another factor is the type of the

counteroffer generation tactic the buyer agent chooses to use. For example, if the

buyer agent chooses to use the time-dependent tactics to generate counteroffers,

then the only parameters that can control the process of counteroffer generation

are the convexity and deadline parameters. In this case, these two parameters

are the only options that can be used to manage the bidding strategy during

negotiation.

2. the offers from each opponent is treated as a mathematical sequence and for

each sequence, the first order-difference (see [12]) sequence is constructed in

each negotiation round. Let X t
si→di

[jl] =< xt−1
si→di

, xt−2
si→di

, ..., xt=0
si→di

> be the

sequence of offers sent from a seller agent si to a buyer’s delegate di over the

issue jl and let t be the current time, ∆si =< |xt−1
si→di

− xt−2
si→di

|, |xt−2
si→di

−
xt−3
si→di

|, ..., |x1
si→di

− xt=0
si→di

| >, where ∆si is the first order difference of the

sequence X t
si→di

[jl]. The absolute sign is used to accommodate for two situa-

tions: the first case is when the initial offer value of a negotiation issue is larger

than the reservation value of that issue, such as the price issue for a seller agent.

The second case is when the initial value of an issue is smaller than the issue’s

reservation value, such as the quantity issue for a seller agent. The ∆si is cal-

culated for each seller in each negotiation round. Analogously, the ∆di is found

for each delegate di where the sequence is used to calculate ∆di is X t
di→si

[jl].

Depending on the mental state of the buyer agent, the concession behavior dur-

ing any part (partial sum or total sum) of the history of the offers received from a

seller agent si during the current negotiation instance can be used to evaluate the

behavior of the seller agent si. The sum of each ∆si is used if the buyer agent

considers the total concession of a seller agent since the start of negotiation. If

the buyer considers only the recent concession, it might consider the first element
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in ∆si, etc. If the buyer agent assume that the behaviors of the seller agents are

dynamic and non consistence, then it might consider the recent concession only.

3. during negotiation, the behavior of each seller agent is compared to the behavior

of its delegate counterpart. In other words, we do pairwise comparison between

the concession of a buyer’s delegate and its counterpart seller agent. The reason

is that different buyer’s delegates may behave differently during negotiation. For

example, if the vector of the first elements in each ∆si is <$3,$7,$2,$10,$4>

and the vector of the first elements in each ∆di is <$2,$5,$4,$12,$3>, then

the pairwise comparison involve finding the difference between the two vectors,

<$3,$7,$2,$10,$4> - <$2,$5,$4,$12,$3> = <$1,$2,$-2,$-2,$1>. It is obvious that

if we take the absolute amount of concession of each seller without doing the

pairwise comparison, the seller agent number 4 is offering the largest conces-

sion ($10). By doing the pairwise comparison we decide that the seller agent

number 4 is as good as the seller agent number 3, while the best seller agent

from the buyer agent point of view is the seller agent number 2.

4. the information obtained in points 2 and 3 are used to manipulate the compo-

nent(s) of point 1

5. counteroffers are generated according to the updated bidding strategy.

6. at the start of a new negotiation round, goto 1

Steps 2 and 3 above are the data preparation procedure necessary for the DIC measure.

The described steps are a general solution approach that can be used to manage the

bidding strategy of a buyer agent negotiating with multiple seller agents concurrently.

Similarly, the same approach can be adopted by a seller agent negotiating with multiple

buyer agents concurrently. The realization of the above steps are shown in the next

chapters.

The above approach is based on the following assumptions:

• agents are self-interested aiming at maximizing their utility gain per agreement

and willing to cooperate - if possible - to reach a win-win agreement

• agents keep their preferences and strategies private
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• agents negotiate in a dynamic and open environment and their behavior can be

different in each new negotiation instance.

• the problem of reputation is not considered here for the same reason stated in the

previous point. In an electronic market, we assume that customers and sellers can

create agents with different identities each time. In addition, the dynamic and

ever changing market causes inconsistent patterns of behavior by both, buyers

and sellers.

The buyer agent needs to process or prepare the offers/counteroffers related data at the

start of each negotiation round, Example 4.1 shows an example about data preparation.

Data preparation is important for the proposed dynamic negotiation strategies.

Table 4.1: Example of three negotiation rounds

Rounds Sellers Offers/Counteroffers Buyer Rounds
j1 j2 j3 j3 j2 j1

0 s1 100 60 24 7 10 20 d1 0
0 s2 150 65 30 7 10 20 d2 0
0 s3 140 80 35 7 10 20 d3 0
1 s1 90 55 20 11 15 25 d1 1
1 s2 120 58 26 11 15 25 d2 1
1 s3 115 70 27 11 15 25 d3 1
2 s1 74 48 16 14 21 33 d1 2
2 s2 95 49 17 14 21 33 d2 2
2 s3 100 50 19 14 21 33 d3 2

Example 4.1 Data preparation illustration

In this example, we assume a buyer agent is negotiating with three seller agents of the

same object characterized by the set of issues J = {j1, j2, j3}. Table 4.1 shows the

values of the offer values proposed by the seller agents and the counteroffer values

proposed by the buyer agent’s delegates assuming that the first round starts at time

t = 0. Table 4.1 shows that the agents exchange 3 offers and 3 counteroffers at every

point of time. The monotonicity concession behavior for agents are assumed. Consider

the current time t = 3:
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1. X3
d1→s1

[J ] = < x2
d1→s1

[J ], x1
d1→s1

[J ], x0
d1→s1

[J ] > = << 33, 21, 14 >,< 25, 15, 11 >,<

20, 10, 7 >>.

2. ∆d1 = << |33− 25| = 8, |25− 20| = 5 >,< |21− 15| = 6, |15− 10| = 5 >,< |14− 11| =
3, |11− 7| = 4 >>

3. X3
d2→s2

[J ] = < x2
d2→s2

[J ], x1
d2→s2

[J ], x0
d2→s2

[J ] > = << 33, 21, 14 >,< 25, 15, 11 >,<

20, 10, 7 >>.

4. ∆d2 = << 8, 5 >,< 6, 5 >,< 3, 4 >>.

5. X3
d3→s3

[J ] = < x2
d3→s3

[J ], x1
d3→s3

[J ], x0
d3→s3

[J ] > = << 33, 21, 14 >,< 25, 15, 11 >,<

20, 10, 7 >>.

6. ∆d3 = << 8, 5 >,< 6, 5 >,< 3, 4 >>.

7. X3
s1→d1

[J ] = < x2
s1→d1

[J ], x1
s1→d1

[J ], x0
s1→d1

[J ] > = << 74, 48, 16 >,< 90, 55, 20 >,<

100, 60, 24 >>.

8. ∆s1 =<< |74−90| = 16, |90−100| = 10 >,< |48−55| = 7, |55−60| = 5 >,< |16−20| =
4, |20− 24| = 4 >>.

9. X3
s2→d2 [J ] = < x2s2→d2 [J ], x1s2→d2 [J ], x0s2→d2 [J ] >=<< 95, 49, 17 >,< 120, 58, 26 >,<

150, 65, 30 >>.

10. ∆s2 = << 25, 30 >,< 9, 7 >,< 9, 4 >>.

11. X3
s3→d3 [J ] = < x2s3→d3 [J ], x1s3→d3 [J ], x0s3→d3 [J ] > = << 100, 50, 19 >,< 115, 70, 27 >,<

140, 80, 35 >>.

12. ∆s3 = << 15, 25 >,< 20, 10 >,< 8, 8 >>.

13. ∆F1 = ∆s1−∆d1 =<< 16, 10 >,< 7, 5 >,< 4, 4 >> − << 8, 5 >,< 6, 5 >,< 3, 4 >>

= << 16 − 8 = 8, 10 − 5 = 5 >,< 7 − 6 = 1, 5 − 5 = 0 >,< 4 − 3 = 1, 4 − 4 = 0 >>,
where the ∆1F refers to the difference between the first order-differences of the seller s1 and
the delegate d1.

14. ∆F2 = ∆s2 −∆d2 = << 25, 30 >,< 9, 7 >,< 9, 4 >> − << 8, 5 >,< 6, 5 >,< 3, 4 >>

= << 17, 25 >,< 3, 2 >,< 6, 0 >>, where the ∆2F refers to the difference between the first
order-differences of the seller s2 and the delegate d2.

15. ∆F3 = ∆s3 − ∆d3 = << 15, 25 >,< 20, 10 >,< 8, 8 >> − << 8, 5 >,< 6, 5 >,<

3, 4 >> = << 7, 20 >,< 14, 5 >,< 5, 4 >>, where the ∆3F refers to the difference between
the first order-differences of the seller s3 and the delegate d3.

16. F (0,t−1)
j1

= < 8 + 5 = 13, 17 + 25 = 42, 7 + 20 = 27 >, F
(1,t−1)
j1

=< 8, 17, 7 >.
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17. F (0,t−1)
j2

= < 1 + 0 = 1, 3 + 2 = 5, 14 + 5 = 19 >, F
(1,t−1)
j2

= < 1, 3, 14 >.

18. F (0,t−1)
j3

= < 1 + 0 = 1, 6 + 0 = 6, 5 + 4 = 9 >, F
(1,t−1)
j3

= < 1, 6, 5 >.

19. F t−1,t =< F
(t−1,t)
j1

, F
(t−1,t)
j2

, ... >

The result of the pairwise comparison between the seller agents of issue jl and their

counterparts delegates are denoted by F (t1,t2)
jl

. The t1 and t2 are the conceding time

interval (CTI). The CTI includes the start time and the end time in the current nego-

tiation thread where the concessions of agents are considered. For example, at time

t = 3, the F (0,t−1)
j1

indicates that the buyer agent considers all the concessions from the

starting time of negotiation till time t = 2 whereas the F (1,t−1)
j1

indicates that it consid-

ers the concessions from time t = 1 till time t = 2. The buyer agent decides the values

of t1 and t2 depending on its belief about the important time interval of opponents’

behaviors. If it believes that the recent concessions are the most important ones, then

the first elements (or the first few elements) in the ∆F are considered.

By inspecting our example, the F (0,t−1)
j3

= < 1, 6, 9 > is the pairwise comparison of

the seller agents’ concessions on the first issue (j1). It shows that the agent number

3 is the most generous while agent number 1 is the least generous. When we con-

sider only the recent concessions, F (0,t−1)
j3

= < 1, 6, 5 >, the agent number 2 is the

most generous agent. This example shows that choosing the location and the length

of the time interval ([t1, t2]) of the current negotiation instance can affect the process

of coordination in terms of distinguishing between the behaviors of different agents.

In our experiments, two situations are considered, the recent concessions and the total

concessions up to the current negotiation round.

Example 4.1 shows an illustration for data preparation when a buyer agent is negotiat-

ing with three same object sellers where the purpose is to secure one object. Similar

approach is used to process the current negotiation threads (see Section 3.2) for more

complex scenarios. Once the F (t1,t2)
jl

is found for each issue, the proposed coordination

mechanisms utilizes the current information in controlling one or more of the strategy

components during negotiation. The difference in concession method is one possible

approach to evaluate the behavior of a seller agent. A second approach to evaluate

the behaviors of the seller agents is to compare the utility values of their last proposed

offers. More detail about the second approach is presented in Chapter 5.
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Since seller agents are assumed to be competitive and self-interested during negotiat-

ing, the buyer agent plays tough with the conceding seller agents and behaves more

lenient with the tough negotiating agents. The reason is that, a conceding agent is

more desperate to reach an agreement than a tough negotiating agent. The buyer agent

seeks to reach a high utility agreement with a conceding agent and reach an agree-

ment with tough agents since the worst case for the buyer agent is not to reach an

agreement. However, the proposed negotiation strategies consider the welfare of other

agents when agents are negotiating over objects characterized by several issues given

that agents have divergent preferences over issues. The proposed iterative offer genera-

tion mechanism is designed to be competitive and cooperative. It is competitive in case

the proposing agent using a concession strategy and cooperative when the proposing

agent uses a trade-off strategy, see Chapter 6 for details.

4.4 Global and Local Reservation Values

As reservation values are part of an agent negotiation strategy and since Chapter 7 fo-

cuses on managing the local reservation values during negotiation, it is important to

differentiate between global and local reservation values. We assume that global reser-

vation values are fixed during negotiation while local reservation values are subject to

change during negotiation. For example, a buyer agent negotiates over 2 objects o1 and

o2 which are characterized by the price issue. The buyer’s budget, which is $100, is

the global reservation value. The global reservation value can be divided amongst the

two objects’ common issue, i.e., the price issue. Assume that the buyer agent valuates

the object o1 by $60 and the object o2 by $40. The values $60 and $40 can change

during negotiation but their sum will always be $100. Hence the $60 and $40 are the

local reservation values and the $100 is the global reservation value for the price issue.

The same idea is applied for other common issues.

The global and local reservation values are important concepts in negotiation. Almost

every one of us practices managing the local reservation values. For example, let us

say I need to buy a laptop and a phone and my budget is $1000. Before checking

the market, it would be difficult for me to say how much I would spend on each. I

probably could say that the laptop may cost around $600. It can happen that during the

shopping process, I find a sale on a certain laptop brand that brought their prices from
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$1200 down to $750. In that case, I may allocate the $750 to buy the laptop and find

a phone with around $250. By doing that, I am managing the local reservation values

over my items according to the current information in the market.

In automated negotiation, if a certain resource can be divided amongst different objects

such as the price resource, then there would be local reservation values which can

be modified during negotiation to achieve the main goal of negotiation which is, for

example, buying a certain number of distinct objects given the global reservation value.

4.5 General Experimental Settings

The dynamic negotiation strategies (bidding strategies) proposed in this thesis are eval-

uated empirically since it is difficult to evaluate the proposed mechanisms theoretically

due to the dynamicity nature of the one-to-many negotiation process. In particular, the

proposed mechanisms are based on heuristics. Moreover, there are a number of in-

terrelated negotiation variables that can affect the outcome of the negotiation process

such as different negotiation tactics, their associated parameters and deadlines which

makes theoretical validation difficult. The proposed algorithms are tested against sets

of negotiation variables that are constructed from using different combinations of these

variables to represent a realistic situation. For each different combination of variables,

experiments are conducted and results are analyzed.

The objectives of the proposed coordinated negotiation models to be maximized are

both, the utility of an agreement and the total number of agreements. In addition, some

models are tested for possible social welfare gain. In short, the dependent variables in

the proposed models are utility rate, agreement rate and social welfare. On the other

hand, there are many independent variables such as deadlines, overlaps, tactics and

their parameters, etc. More detail about the specific independent variables considered

in the experiments are discussed in the chapters to come. The next two sections discuss

the simulation environment and the general experimental setup.
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4.5.1 Simulation Environment

The Mathematica 8.0 in the Wolfram Workbench 21 environment is the technology and

platform used for building and running the experiments. Figure 4.2 shows a snapshot

of the development environment. The proposed negotiation strategies are structured

according to the specific coordinated negotiation scenario. Accordingly, the experi-

mental works are grouped in different projects. Some functions are used across dif-

ferent projects such as the time-dependent and behavior-dependent offer generation

mechanisms.

Figure 4.2: A snapshot of the experimental working environment

An agent in the experiments is abstracted as a negotiation strategy that generates offers

and counteroffers. In addition, it determines when to accept an offer and when to

withdraw from negotiation.

1Wolfram Workbench: www.wolfram.com/products/workbench/
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4.5.2 Experimental Settings

Heuristic-based offer generation methods are often used in the negotiation literature

to evaluate different negotiation strategies, e.g., [33][38] [4]. The heuristic methods

discussed in sections 2.3.3.1 and 2.3.3.3 are used to generate offers and counterof-

fers by different agents. As shown in Section 2.3.3.1, time-dependent tactics contain

three -broadly speaking- types of concession behaviors: Boulware, linear and con-

ceder. If we use a combination of them to generate an offer using weights indicating

the percentage of participation of each type in the offer, wide range of offer types can

be created. When the behavior-dependent tactics are mixed with the time dependent-

tactics, a wider range of offers can be generated that reflect different possible types of

agents. Accordingly, the mixing technique ensures that the results of the experiments

are more robust. As explained in Section 2.3.3.3, the behavior-dependent tactics are

reactive towards the opponent concessions since they imitate the concession of the op-

ponent. Mixing a resource dependent offer generation method such as time-dependent

with a reactive offer generation method such as behavior-dependent assures testing the

proposed dynamic negotiation strategies against large and different possible types of

opponents. Table 4.2 shows a sample of tactics and the their intervals of weights.

Polynomial decision function: Conceder: PC = {β|β ∈ [2, 10]}
(Time-dependent) Linear: PL = {β|β ∈ [0.9, 1]}

Boulware: PB = {β|β ∈ [0.1, 0.8]}
Mixing of time-dependent tactics: MTD: PC ∗ r1 + PL ∗ r2 + PB ∗ r3,

∑3
i=1 ri = 1

Behavior-dependent concession Tit-For-Tat:
a ∈ [0, 0.5)
A = 1− a

Weights Small: S = {µ|µ ∈ [0.1, 0.3]}
Medium: M = {µ|µ ∈ (0.3, 0.6]}
Large: L = {µ|µ ∈ (0.6, 0.9]}

Table 4.2: Negotiation tactics, their parameters and weights for possible mixing be-
tween different tactics

In Figure 2.4, the polynomial and the exponential concession functions show some-

how different convexity at different β values. For example, the linear behavior of the

exponential function lies roughly between 2 and 4, i.e., β ∈ [2, 4] whereas the linear

behavior for the polynomial function happens when β = 1. Values of β that are near
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1 also show close to linear behavior for the polynomial function. The values in Table

4.2 reflect the behavior of the two functions. Since the Sigmoid function behaves dif-

ferently from the polynomial and the exponential, it is excluded from the experiments.

For the behavior-dependent tactic, the concession Tit-For-Tat tactic is chosen because

its flexibility, see Section 2.3.3.4.

The negotiation tactics shown in Table 4.2 and their parameters can be mixed to pro-

duce a range of different concession behaviors. The Cartesian product between the

different components in Table 4.2 can be applied to generate a set of hybrid tactics.

For example, a set containing the polynomial time-dependent tactics and the behavior-

dependent tactics using different weights to mix between them is shown in Equation

4.2.

ST = {polynomial} × {concession T it− For − Tat} × {weights}

ST = {PC, PL, PB} × {a,A} × {S,M,L}
(4.2)

The following is the result of applying the Cartesian product in Equation 4.2:

ST = {(PC × a× S), (PC × a×M), (PC × a× L), (PC ×A× S),

(PC ×A×M), (PC ×A× L), (PL× a× S), (PL× a×M),

(PL× a× L), (PL×A× S), (PL×A×M), (PL×A× L),

(PB × a× S), (PB × a×M), (PB × a× L), (PB × a× S),

(PB ×A×M), (PB ×A× L)}

(4.3)

Since the polynomial and the exponential functions behave similarly, the polynomial

function is used to generate offers and counteroffers by agents when they use the time-

dependent tactics. In the context of mixed tactics used in this thesis, an abbrevia-

tion such as PCaS means the mixed tactic PCaS uses the polynomial function with

a conceder behavior mixed with the concession Tit-For-Tat behavior-dependent (see

Equation 2.11) tactic where the contribution of the concession Tit-For-Tat behavior-

dependent in the final offer is small, i.e., S = {µ|µ ∈ [0.1, 0.3]}. Finally, the a in

PCaS means that the contribution of the opponent’s previous concession is a small part

(a ∈ [0, 0.3], see Table 4.2) of the offer being proposed using the concession Tit-For-

Tat behavior-dependent tactic, see Equation 2.11, whereas A indicates the opposite,

see Table 4.2. The rest of the abbreviations can be interpreted analogously. In some

experiments, the random absolute Tit-For-Tat is used instead, see Equation 2.9.
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Each member of the ST set (see Equation 4.3) represents a subset of related con-

cession behaviors (the β parameter within the conceder behavior can have different

values, see Table 4.2) to ensure that the proposed bidding strategies are tested against

a wide range of opponents’ behaviors. In other words, to improve the diversity of op-

ponent’s behaviors, there are distinct groups of behaviors and the members of each

distinct group shows some variation. Specific experimental settings are presented in

the experimental evaluation part of each chapter.

The Mixing of time-dependent tactics (MTD) is introduced to ensure more variety in

the behavior of the opponent agents. The set r′ = {r′1, r
′
2, r

′
3} is generated randomly

from the interval [0, 1], then it is divided by its total (r = r
′
/sum(r

′
)) to make sure

that the total of r = {r1, r2, r3} equals 1. The previously generated PC,PL,PB are

multiplied by the set r as shown in Table 4.2.

In the experimental part of this thesis, we consider that agents are mostly driven by

their internal resource(s) such as time. However, in some experiments, the seller

agents are designed to use tactics that mix between the behavior-dependent and the

time-dependent tactics given that the contribution of the behavior dependent-tactics in

the final offer values are small to medium. The reason is that the actions of agents

are subject to the availability of certain resources and if agents are imitating their op-

ponents and do not care about the availability of their resources, e.g., time, then they

will just imitate their opponents which seems irrational and naive. If two agents do

not have time limitation, then the dominant strategy for an agent is to offer the mini-

mum amount of concession imposed by the system. If the opponent agent imitates its

counterpart, it will propose similar amounts of concessions. Given the situation, it can

not be sure that the two agents can reach an agreement within a reasonable time frame

especially if the minimum amount of allowed concession is very small.

In addition to the behaviors of the opponents in terms of their negotiation strategies,

two other important negotiation environmental factors need to be taken into consider-

ation: The percentage of overlap and the deadlines. The percentage of overlap deter-

mines the length of the agreement zone between negotiators. The overlap percentage

between the reservation value intervals of negotiation issues is an important factor for

the result of the final outcome of the negotiation process. In case the percentage of

the overlap is zero, then reaching an agreement becomes impossible. For example,

assume that the reservation interval for the price issue of a buyer agent is [10, 20] and

114



4.5. General Experimental Settings

the reservation interval for the price issue of an opponent seller agent is [40, 21]. In

this case the buyer agent, ultimately, will offer its reservation price as the last option

which is 20 and the seller agent offers its reservation price as the last proposal which is

21. It is obvious that the two agents will not come to an agreement because the overlap

between their reservation intervals is zero. In other words, there is no agreement zone

between the two agents.

The ramification of having small overlap percentage(s) (i.e., small agreement zones)

and agents having different deadlines is that the chance for reaching an agreement be-

comes slight since a buyer agent may concede up to its reservation price at its deadline.

At the same time, the seller agents can have different deadlines which means it can be

difficult to guarantee that at least one seller agent has the same deadline as the buyer

agent. If a seller agent and the buyer agent has the same deadline, then both will offer

their reservation value at the same time an agreement is reached.

In some experiments, different percentages of overlaps are incorporated to test for the

effect of the length of the agreement zone length on the negotiation outcome. Sup-

pose that an agent d has the reservation interval [mindjl ,max
d

jl
] for an issue jl, the

reservation interval of the issue jl of an opponent agent s is calculated as follows:

[minsjl ,max
s

jl
] =

minsjl = mindjl + Φjl(max
d
jl
−mindjl)

maxsjl = minsjl + (maxdjl −min
d
jl

)
(4.4)

In Equation 4.4, Φjl is the overlap percentage (Φjl ∈ [0, 1]) that determines the agree-

ment zone length between the two agents for the issue jl. For example, when Φjl = 0,

there is a complete overlap while if Φjl = 1 then the two agents meet exactly at their

reservation values and an agreement is only possible if both agents offer their reserva-

tion values. If Φjl = 0.4, then the percentage of the overlap is 60% etc. Using different

Φjl values result in different percentages of overlaps.

The deadline is an important factor in negotiation. In real negotiation environment, the

length of the negotiation time is finite and can be determined either by the negotiation

environment or by the individual agents. If the deadline is determined by the environ-

ment then all agents will have the same deadline, otherwise, each agent chooses its

own deadline according to its mental state. Deadlines are related to reservation values

in the sense that agents offer their reservation values at their deadlines. In addition,
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a deadline is a parameter used in the time-dependent tactics to decide the value of an

offer for the next negotiation round.

The number of exchanged messages in terms of offers and counteroffers between

agents coined in the term negotiation rounds can be used instead of considering the

real negotiation time for testing different negotiation strategies which is a widely used

approach in the negotiation literature, e.g., [35][164][40]. In this thesis, the concept of

negotiation round is used and one negotiation round is equivalent to one time unit. A

negotiation round involves the exchange of two offers between two agents. If an agent

s starts a negotiation round by proposing an offer at time t = 0, then an opponent agent

d replies with a counteroffer at time = 1. This makes a complete negotiation round.

For example, if the deadline is assumed to be 20 then the number of negotiation rounds

is 20 and each agent proposes 20 offers and receives 20 counteroffers etc.

The results of the experiments are averaged and plotted. The error-bars are shown to

indicate the significance of the results. In addition, the Mann-Whitney test [85] is used

to ensure that the differences between the results are statistically significant at 95%

confidence level.

4.6 Summary

This chapter introduces the coordination problem in the one-to-many negotiation. An

agent (a buyer agent in our case) is assumed to conduct multi-bilateral negotiations

with a group of seller agents concurrently given that the buyer’s concurrent negotia-

tions have a common goal. Accordingly, the state of a certain instance of negotiation

can affect the state(s) of the other instances. In other words, the concurrent negotiations

can be interdependent. The interdependency between different negotiations causes the

need for coordination.

Section 4.2 in this chapter classifies possible negotiation scenarios and names the 5

one-to-many negotiations as coordination scenarios. The reason for choosing this

name is that the negotiation scenarios require coordination between the concurrent

negotiations of each type given the assumption that they aim to achieve a common

goal. The classification scheme is based on the numbers of the main components of

any negotiation: objects, issues and providers. The number of these components can
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be either single or multiple. Since this thesis targets the one-to-many negotiation, the

number of the opponents per object is assumed to be multiple, except for the case when

the objective of the buyer agent is to procure multiple distinct objects in a monopolistic

market where each object has a single provider.

The solution approach for coordinating multiple negotiations is presented in Section

4.3. The proposed approach assumes that the only available information during nego-

tiation is about the offers received from the current seller agents. Since the buyer agent

is assumed to receive, most of the times, multiple offers at every negotiation round, the

received offers are compared against each other and against the concessions offered by

their delegate partners in terms of the concessions offered. The first-difference order of

the received and the proposed offers from a given seller agent and its delegate partner,

respectively, are used as input data for the coordination mechanisms. According to

the results of the data analyses, the proposed coordination mechanisms decide the next

course of action in each negotiation round. The section illustrates the process of data

preparation by a numerical example.

Since managing the local reservation values is used by some of the coordination mech-

anisms in this thesis, the concept of a local reservation value is explained. In addition,

the difference between a global reservation value and a local reservation value is dis-

cussed and a numerical example is used to provide more clarification. The last part

of this chapter presents the general experimental settings that are considered in this

thesis. It shows a snapshot of the experimental environment that is used to run the ex-

periments. In addition, it discusses the offer generation tactics that are used to generate

offers by different agents in the experiments. Moreover it discusses the different ne-

gotiation environmental variables, including the deadlines and the overlap percentages

between the reservation intervals of the negotiation issues.

Most of the negotiation mechanisms presented in the one-to-many related work rely

on the historical data and/or knowledge about the probability distribution of some key

data, e.g., reservation values of the opponents. However, the work presented in this

thesis relies on the values of the offers received from the current opponents to decide

the next counteroffer value for each opponent agent.
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Chapter 5

A Single Negotiation Issue for One or
Multiple Objects

This chapter investigates the problem of coordinating the bidding strategy in concur-

rent one-to-many negotiation in two coordination scenarios: the single object single

issue and multiple providers (SSM) coordination scenario and the multiple objects sin-

gle issue and multiple providers (MSM) coordination scenario. Both scenarios assume

one negotiation issue per object. The SSM scenario assumes one object during negoti-

ation whereas the MSM scenario considers multiple distinct objects. Manipulating the

convexity of a concession curve is one of the mechanisms that are used in the automated

negotiation literature to coordinate multiple concurrent negotiations. A novel mecha-

nism that manipulates the convexity (slop) of different concession curves is proposed

to coordinate the bidding strategy for a buyer agent in the SSM scenario. In addition,

a different mechanism for manipulating the concession curve convexities for the MSM

local coordination scenario is devised. Moreover managing the local reservation val-

ues is proposed for coordinating the MSM global coordination scenario. Finally, all

the proposed coordination mechanisms are validated empirically.

5.1 Introduction

One of the motivating scenarios that are presented in Chapter 1 is the scientific work-

flow in the cloud, see section 1.2.1. Such scientific workflows produce large amount
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of intermediate datasets and require intensive computational power. The generated

intermediate datasets are needed either for generating other intermediate datasets or

for analysis. When dealing with such scientific workflows, the problem of deleting or

storing the intermediate datasets comes in place. When running such scientific work-

flows on the cloud, the problem of limited storage and computational resources can

be avoided since the cloud provides, theoretically, unlimited resources. To improve

the utilization of resources on the cloud in terms of both the cost and efficiency of

producing a needed dataset from another predecessor dataset(s) during the execution

of a certain workflow, we propose provisioning computational power and/or storage

space during the execution of the workflow using automated negotiation in real-time.

A workflow may need one object like a storage space that can contain the price as the

only issue. In the this case, the agent who works on the behalf of the workflow con-

ducts multiple concurrent negotiations with multiple storage space providers on the

cloud. This case represents the SSM coordination scenario. On the other hand, if the

worklow requires more than one object, such as storage space, software application

etc., the agent conducts multiple negotiations with multiple cloud providers with the

assumption that all the objects contains the same single issue such as price. The second

case can be represented by the coordination scenario MSM.

The coordination negotiation scenario where a buyer agent is negotiating with multiple

seller agents seeking an agreement over a single object of a single issue (SSM, see Sec-

tion 4.2), is targeted by several studies in the negotiation literature, (e.g., [23][161][3][2]

[90]). For more information, see Chapter 2.

Section 5.2 presents the proposed coordination mechanism for the SSM coordination

scenario including the detailed technique and the experimental evaluation. The pro-

posed coordination mechanisms for the MSM coordination scenario and the experi-

mental evaluation is presented in Section 5.3. The section includes three mechanisms.

The first one is based on managing the local reservation values as a global coordina-

tion mechanism, the second one is based on managing the convexity of the concession

curves as a local coordination mechanism whereas the third one combines the two

mechanisms into a hybrid mechanism.
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5.2 SSM Coordination Scenario

The coordination model proposed in this section targets the SSM coordination sce-

nario, see Figure 4.1. The objective of the buyer agent in this scenario is to procure

one object characterized by a single issue while negotiating with multiple providers.

Figure 5.1 shows that the number of the required objects is 1 and the number of the

negotiation issues is also one. In addition, the number of buyer’s delegates equals the

number of the seller agents at any point of time during negotiation. The buyer agent

creates a new delegate for each new seller agent and if any seller leaves negotiation,

its counterpart delegate is destroyed. Since there is a single negotiation issue, the type

of negotiation game is a zero-sum game which indicates that each agent seeks to max-

imize its utility gain without considering the utility gain of its counterpart.

Figure 5.1: One-to-many negotiation over a single object of a single issue

The polynomial and the exponential concession functions are widely used in the lit-

erature as mechanisms to determine the concession in every negotiation round in the

process of generating offers by agents, see Section 2.3.3.1. The value of the concession

function at a certain time during negotiation depends on two parameters, the convexity

parameter that is called β and the time elapsed since the start of negotiation which is

represented as the number of negotiation rounds in our negotiation model. The pro-

posed negotiation model for the SSM coordination scenario depends on managing the

convexity of the concession curve during negotiation. The model is presented in the

next section.
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5.2.1 Managing the Convexity Parameter

As discussed in Section 2.3.3.1 and shown in Figure 2.4, different β values result in

different concession behaviors. For the rest of this chapter, unless stated to the contrary,

the negotiation strategy means the buyer agent’s negotiation strategy.

A coordination mechanism can be presented as a process that requires inputs (inde-

pendent variables) and produces outputs, i.e., dependent variables. The quality of an

output is used to assess the coordination mechanism. The independent variables of

the coordination process are the negotiation strategy (Ω) components and the feedback

from the opponents, see Section 4.3. Since the reservation value in our scenario is

classified as a global reservation value, see Section 4.4, it is not possible to update the

reservation value during negotiation. Regarding the initial value, it can be determined

before the start of negotiation based on some domain knowledge. Two strategy com-

ponents can be managed in the SSM coordination scenario: β ∈ Θ and the deadline

tmax ∈ T . The dynamic deadlines approach is left as future work. The other input

to the coordination process is the opponent’s responses in terms of their proposed of-

fers which are important feedback during negotiation. Other information such as the

possible arrivals of new outside options during negotiation can affect the coordination

method. However, in our model, we only consider the feedback in terms of the oppo-

nents’ offers since in many cases, other information may not be available or difficult

to estimate. The outputs of the coordination process determine the effectiveness and

robustness of the process in fulfilling its goals. Various metrics (dependent variables)

can be used to measure the effectiveness and robustness of the coordination process,

such as utility, agreement rate and social welfare.

Figure 5.2 shows the effect of different curve convexities on the amount of concession

proposed by an agent over an issue j with IVj < RVj . Figure 5.2a shows 4 different

concession curves. Three of them represent the Boulware (β = 0.3), linear (β = 1) and

conceder (β = 5) concession curves. The behavior of the three concession curves is

smooth and predictable. The fourth concession curve (β =?) is produced using random

β values. The β values used for the curve labeled β =? are the ones shown on the x-axis

of Figure 5.2b. It is obvious that with each different convexity, i.e., different β value,

the amount of the offered concession is different. Figure 5.2b shows three concession

curves generated with the set of β values shown on the x-axis at three different times
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(a) β values, different times (b) β values, time is fixed

Figure 5.2: The effect of different β values on the concession curve

where the deadline is assumed to be 20. The figure shows that at smaller times, the

amount of concession is always lower at all β values. However, at the same point of

time, different β values produce different amounts of concessions.

The idea behind the proposed coordination model (βC) is to change the value of β dur-

ing negotiation according to the collective behaviors of the in-negotiation opponents in

terms of their concessions. As mentioned is Section 4.3 and according to the assump-

tions of this thesis, there are two approaches (metrics) that can be used to evaluate the

behavior of an agent, the DIC and the LOU metrics. The DIC approach depends on the

difference in consecutive concessions of the opponents, whereas the LOU depends on

the utility value of the last offers.

When using the DIC measure to evaluate the behavior of each seller agent, the process

takes into consideration both, the concession of the seller agents and the concession

of their counterpart delegates. In some cases, the buyer’s delegates may behave dif-

ferently in terms of the amount of the concessions they are offering. Taking the be-

havior of a counterpart delegate into consideration to evaluate its opponent seller agent

is important to reach an agreement. For example, if a delegate is playing tough in

comparison to the other delegates and the opponent of that delegate is offering more

concessions than the concessions offered by the delegate but less in comparison to the

other seller agents’ concessions, then the delegate may have a slight chance of reaching

an agreement if the coordination mechanism does not consider the situation.

Ranking the seller agents according to their concessions is a possible way to compare

their behaviors, however, the problem is that ranking the seller agents can be of little

help in deciding the proper amount of concession that should be offered to each. To
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relate the concession offered by each opponent to the concessions offered by other

opponents, the normalization process of dividing the concession offered by each seller

agent by the total concessions offered by all seller agents provide a good overview

of the concession of each seller agent in relation to the concessions offered by other

agents. The normalization process also helps in automating the process of generating

counteroffers for the next negotiation round, see Algorithm 1.

The proposed model uses the first-order differences of each agent’s offers during the

current negotiation for the first measure, while it uses the utility of the last offers re-

ceived for the second measure. The function u(xtsi→di [j]) = (maxb−xtsi→di [j])/(max
b−

minb) is used to calculate the utility of a received offer, xtsi→di [j] is the offer from a

seller si to a buyer’s thread di at time t, minb and maxb are the reservation intervals of

the buyer agent’s negotiation issue. Since agents are negotiating over a single issue, j

rather than jl (see Section 3.2) is used in this chapter to refer to the negotiation issue.

Algorithm 1 (βC)
Require: Xt−1

di↔si
[j], i = 1, 2, ..., n

1: for (i = 1→ n) do
2: extract(Xt−1

di→si
[j]))

3: extract(Xt−1
si→di

[j])
4: end for
5: for (i = 1→ n) do . cf. Section 4.3
6: ∆si = (xt−1

si→si
[j]− xt−2

si→si
[j]), ..., (x1

si→si
[j]− x0

si→si
[j])

7: ∆di = (xt−1
di→di

[j]− xt−2
di→di

[j]), ..., (x1
di→di

[j]− x0
di→di

[j])
8: end for
9: for (i=1→ n) do

10: ∆Fi = ∆si −∆di
11: end for
12: ∆F = < ∆F1,∆F2, ...,∆Fn >

13: F
(t1,t2)
j = select(t1, t2,∆F )

14: vc = normalize(F
(t1,t2)
j )

15: Lut = u(Xt−1
S [j])

16: vu = normalize(Lut)
17: for (i = 1→ n) do
18: ψti = (1− γ)vc(i) + γvu(i) . γ ∈ [0, 1]
19: end for
20: for (i = 1→ n) do
21: βti = fβi

(ψti)
22: end for
23: Vβt = {βti}ni=1

24: Return (Vβt )
25: end algorithm
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Algorithm 1 (time complexity equals O(n)) summarizes the main steps of the algo-

rithm β coordination, βC. It evaluates the behavior of each seller agent relative to its

competitor seller agents’ behaviors at the current time t and determines the convexity

of the concession curve for each delegate accordingly. The βC strategy is executed at

the start of each negotiation round. Steps 1 to 13 in Algorithm 1 represent the data

preparation phase (see Section 4.3) that is necessary for the coordination process and

it is done at the start of every negotiation round. Steps 14 normalize the vector F (t1,t2)
j .

The Lut in line 15 in Algorithm 1 stands for the utility vector of the last offers. The

symbol X(t−1)
S [j] stands for the vector of the last offers received from the seller agents

in-negotiation at time (t − 1) over the issue j. The lines 17-19 find a value for each

seller agent represented by either vc or vu (vc, vu ∈ [0, 1]). The value of γ is determined

according to the importance of each measure. Steps 2 and 3 in Algorithm 1 are similar

to steps 1 and 7 in example 4.1 respectively. Steps 6 and 7 in Algorithm 1 are similar

to steps 2 and 8 in Example 4.1 respectively. Step 13 in Algorithm 1 is similar to step

17 in Example 4.1. The final output of the algorithm is the vector Vβt that has a new β

for each delegate.

A seller agent si with vtc(i) = 0 indicates that si is the most unfavorable agent in terms

of its relative concession at time t, whereas vtc(i) = 1 indicates that si is the most

favorable seller agent in terms of the amount of its relative concession at the current

time t. Accordingly, values near 1 indicate favorable seller agents and values near 0

indicate unfavorable seller agents. The same interpretation applies to the vector vu.

The function fβi(.) (line 21 in Algorithm 1) is realized in Equation 5.1. The output of

the function fβi(.), βti , is assigned to the delegate di at time t. The delegate di uses βti
to generate a counteroffer to be sent to the seller agent si at time t.

fβi(ψ
t
i) =

c− cψti , ψti ∈ [0, 0.5)

max[1− ψti , ρ], ψti ∈ [0.5, 1]
(5.1)

At the start of negotiation, the buyer agent decides the maximum β it can use during

negotiation and assign it to c. For example, in our experiments, we use c ∈ [1, 2].

For example, if ψti = 0.4, then βti = 2 − 2 ∗ 0.4 = 1.2. When β = 1.2, the buyer

agent concedes more than when β = 0.5, for example. If ψti = 0.7, it means that

the opponent is behaving favorably, then βti = max[1 − 0.7, 0.2] = 0.3. A 0.3 β
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value indicates that the delegate di is offering little concession at time t. The value

of the c has a significant effect on both, the utility rate and agreement rate. When the

situation is favorable to the buyer agent, the value of the c should be selected to be

small (e.g., 1 or less) to secure a high utility rate, otherwise, the value of c should be

higher to guarantee an agreement. The ρ value determines the minimum βi at time t

when ψti = 1. The value of ρ in the experiments is 0.1.

It is obvious from Equation 5.1 that the strategy choice exploits the situation and works

like a greedy algorithm. In addition, it considers both, maximizing the utility gain of an

agreement and maximizing the total number of agreements. The buyer agent chooses

to play tough with lenient opponents while playing lenient with tough opponents, see

Section 4.3. This decision reflects the buyer agent’s belief about the social behavior of

the seller agents. If the buyer has a different belief, the strategy updating mechanism

may change.

5.2.2 Experimental Results and Discussion

To evaluate the proposed βC coordination mechanism, different negotiation environ-

ments are designed to evaluate the performance of the proposed mechanism. In the

first set of experiments, the buyer agent is assumed to have the privilege of reneging

from an agreement without incurring a penalty, see Section 2.5.1. Unless stated to the

contrary, the seller agents use the (MTD) tactic (see Section 4.5.2) to generate their

offers.

The proposed strategy are benchmarked against four other strategies, namely, the des-

perate strategy (DE), the patient strategy (PA), the optimized patient strategy (OP) that

are proposed in [115] and the (eCN) strategy that is proposed in [106]. The eCN uses

historical data from previous negotiations and changes the negotiation strategy of a

buyer’s delegate after the corresponding opponent agent has been classified either as a

conceder or a non-conceder. The DE buyer agent accepts the first acceptable offer and

quits negotiation while the PA agent stays in negotiation until it reaches its deadline

then it selects the agreement with the highest utility, hence it does need to pay penalty

for reneging from all other temporary agreements. The OP buyer agent changes its

bidding strategy by changing its reservation value during negotiation. Once the OP

agent reaches a temporary agreement, it announces its new reservation value to all of
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its delegates since it will not accept any offer worse than the one it already has. Finally,

the eCN and the βC buyers change the convexity (by changing the β value) of their

concession curve during negotiation.

The buyer agents’ settings: five different buyer agents are being tested. Each buyer

uses a different negotiation strategy, the strategies are: βC, eCN, DE, PA and OP. All

buyer agents use the same initial settings including the deadline, the β value and the

reservation interval. In most experiments, one β value is selected randomly from the

same interval and assigned to all buyer agents. All buyer agents use the polynomial

function when adopting the time-dependent tactics to generate their counteroffers.

The minimum and the maximum values of the reservation interval of the buyer agents

are generated at the start of every negotiation instance. The minimum value is selected

randomly from the interval [5, 10] whereas the maximum value is selected randomly

from the interval [30, 50]. A negotiation instance refers to all the negotiation rounds

determined by the deadline. The end of a negotiation instance is marked by an agent

either accepting a proposal or quiting negotiation.

The seller agents’ settings: at the start of each negotiation instance, each seller agent

selects a random β value from the interval [0.5, 10]. Unless stated to the contrary, an

overlap percentage (Φj) is selected randomly from the interval [0, 1] for each seller

agent to determine the length of the overlap (agreement zone) between its reservation

interval and the reservation interval of its delegate counterpart, then the reservation

intervals are computed according to Equation 4.4.

In each negotiation instance, new five seller agents are created with different negoti-

ation parameters. All buyer agents negotiate with the same five seller agents concur-

rently. More specific negotiation settings for the buyer and the seller agents are stated

according to the objective(s) of the experiments in the following sections. Each ex-

periment is repeated 1000 times (encounters) for each buyer agent and the results are

averaged and plotted. The Mann-Whitney test [85] is used to ensure that the difference

between the βC and the best existing strategy is significant at 95% confidence level.

In addition, the error bars are shown.
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5.2.2.1 Testing under Different Deadline Lengths

This section tests the proposed bidding strategy under different deadline lengths: When

all agents (buyer and seller agents) have the same deadline, when the buyer agents have

shorter deadlines than their counterpart seller agents’ deadlines and when the buyer

agents have longer deadlines. The deadline intervals that are used in this section are

[5, 30] and [31, 50]. When all agents use equal deadlines, a random deadline is se-

lected in every negotiation instance from the interval [5, 30] and assigned to all agents.

When the buyer agents use shorter deadlines, a random deadline is selected in every

negotiation instance from the interval [5, 30] and assigned to all buyer agents, whereas

each seller agent selects a random deadline from the interval [31, 50]. Finally, when

the buyer agents use longer deadlines, a deadline is selected randomly from the inter-

val [31, 50] at the start of every negotiation instance and assigned to the buyer agents,

while each seller agent selects a deadline randomly from the interval [5, 30].

(a) Equal deadlines (b) Equal deadlines

(c) Buyer’s deadline is lower (d) Buyer’s deadline is lower

Figure 5.3: The effect of equal and shorter deadlines on the performance of different
bidding strategies.

Figure 5.3 shows the results of using equal deadlines for all agents (Figures 5.3a and

5.3b) and using shorter deadlines (Figures 5.3c and 5.3d) for the buyer agents. In all
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figures, A rate, U rate and BST stand for the agreement rate, the utility rate and the

buyer strategy, respectively. As Figure 5.3b shows, when all agents have the same

deadline, the agreements rate is 100% for all strategies. The reason is that all agents

offer their reservation values at their deadlines and since the agreement zones exist

between all agents, reaching an agreement is definite. When the buyer agents have

shorter deadlines, all achieve slightly lower agreement rates than in the previous case.

However, all agents achieve the same agreement rate, see Figure 5.3d. The reason is

that all buyer agents offer their reservation values (which are the same for all buyer

agents) at their deadlines and this results in achieving the same agreement rate.

Figures 5.3a and 5.3c show that the proposed βC strategy outperforms all other strate-

gies significantly in terms of the utility rate when the buyer agents and the seller agents

have equal deadlines and when the buyer agents have shorter deadlines. The eCN out-

performs the strategies OP, PA and DE significantly in terms of utility rate. The results

for the OP strategy is as expected. Since the OP buyer adjusts its reservation value

after reaching the first agreement, it is expected to reach an agreement with a higher

utility in the following negotiation rounds. Since the strategies DE and PA use the same

β value and do not change any of their negotiation parameters during negotiation, the

difference between them is not significant in terms of a utility rate. In case the buyer

agents use five different β values, the difference between the DE and the PA can be

spotted as shown in Figure 5.4.

When the buyer agents have shorter deadlines, they achieve lower utility rates than

the case when all agents have equal deadlines. The reason is that the buyer agents

offer their reservation values at their deadlines which means they offer their reser-

vation values before the seller agents do. However, the βC strategy outperforms all

other strategies significantly in terms of utility rate when the buyer agents have shorter

deadlines, see Figure 5.3c.

Figure 5.4 shows the results of testing the buyer agents’ strategies when the buyers

have longer deadlines, and when the deadlines are selected randomly for all agents. In

addition, the figure shows the results of an experiment when the buyer agents use five

different β values selected from the interval [0.5, 10] at the start of each negotiation

round. In the experiment, the same five β values are assigned to the buyer agents. The

experiment is conducted to test the difference between the DE and the PA strategies un-
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(a) Buyer has longer deadline (b) Buyer has longer deadline

(c) Deadlines are random (d) Deadlines are random

(e) Deadlines are random with dif-
ferent β values

(f) Deadlines are random with dif-
ferent β values

Figure 5.4: The effect of longer deadlines and randomly selected deadlines on the
performance of different bidding strategies.

der different settings since the previous experiments did not show a difference between

the two strategies.

It seems that longer buyer deadlines are disadvantageous (see Figure 7.4) to the eCN

in terms of an agreement rate. The reason is that the eCN strategy classifies the seller

agents according to their concessions into either a conceder or a non-conceder and

computes the β value for each group differently. If all seller agents are classified into

one group, then they will have the same β value which makes the strategy more rigid.

On the other hand, the βC strategy assigns a possibly different β value to each delegate

according to the behavior of its counterpart seller agent which reduces the chances of

missing an agreement in difficult negotiation environments. To rectify this problem,
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the eCN buyer agent needs to postpone applying its strategy until it secures the first

agreement as the OP does. Both, the βC and eCN strategies can be used on the top of

the OP strategy to improve both, the agreement rate and the utility rate.

Figures 7.3, 7.5 and 7.7 show that the results are consistent in terms of utility rate

where the βC strategy outperforms all other benchmark strategies. The agreement rate

for all buyer agents are similar when random deadlines are used, see Figures 7.6 and

7.8. The reason is that each buyer agent negotiates with five seller agents of different

deadlines which improves the chance of reaching an agreement between a buyer agent

and one of the five seller agents.

5.2.2.2 Testing Under Different Reservation Interval Overlaps

This section tests the proposed bidding strategy under three different agreement zone

lengths: small, medium and large. The length of an agreement zone is determined the

by value of Φj , see Equation 4.4. In all the experiments of this section, different types

of buyer agents use the same deadline selected randomly from the interval [5, 30] and

each seller agent selects a random deadline from the same interval, i.e., [5, 30]. All

seller agents use the MTD tactic to generate their offers.

Figure 5.5 shows the results of testing different negotiation strategies under three over-

laps: small, medium and large. For small overlaps, each seller agent selects a random

Φj value from the interval [0.7, 0.9]. The intervals for the medium and the large over-

laps are [0.4, 0.6] and [0, 0.3] respectively. Figure 5.5a shows that the βC strategy

achieves a higher utility rate in comparison to the other strategies when the agreement

zones between agents are large, i.e., large overlap between the reservation intervals

of agents. All different buyer agents achieve almost 100% agreement rate when the

agreement zone length is large or medium, figures are not shown. The strategy βC
achieves a similar or better utility rate (the p-value(βC,eCN )=0.04<0.05 in Figure 5.5b)

than the eCN startegy when the length of the agreement zone is medium, see Figure

5.5b. Small agreement zone lengths have a negative effect on the performance of all

strategies, see the utility rates of Figures 5.5a and 5.5c. The reason is that an agent

needs to approach its reservation value to achieve an agreement. However, the eCN

is the most affected amongst all strategies for the reasons stated in Section 5.2.2.1. In

figures 5.5c and 5.5d, the differences between the strategies βC and OP are not statis-
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(a) Large agreement zone (b) Medium agreement zone

(c) Small agreement zone (d) Small agreement zone

Figure 5.5: The effect of different overlap percentages on the performance of different
bidding strategies.

tically significant (p-value > 0.05) in terms of both utility rate and agreement rate. The

strategies βC and eCN can be used on the top of the OP strategy, a buyer agent can

apply either the βC strategy or the eCN strategy after the first agreement is achieved to

improve both, the agreement rate and the utility rate.

5.2.2.3 Testing under Other Negotiation Environmental Conditions

In all the above experiments shown in sections 5.2.2.1 and 5.2.2.2, the buyer agents are

given the opportunity to renege from an agreement without paying penalties. However,

in many real situations, either an agent needs to honor its agreement or pay a penalty

when reneging from an agreement. To test the performance of the βC strategy under

the condition where a buyer agent needs to honor its first agreement, experiments are

conducted to test three different strategies under random deadlines and random over-

laps. The PA and the OP strategies do not apply in this case. The strategies PA and

OP assume that a buyer agent has the privilege of reneging on an agreement(s) without

paying penalty.
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(a) (b)

Figure 5.6: The effect of selecting random deadlines and random overlaps on the per-
formance of different bidding strategies when agents must honor their agreements.

The three tested strategies are the βC strategy, the eCN strategy and the general strategy

(GS). The GS strategy refers to the strategy where an agent assigns different values to

the negotiation strategy parameters at the start of negotiation and does not change any

of them during negotiation. Figure 5.6 shows the results of the experiments. Each

buyer agent negotiates with the same five seller agents as before. The experiment is

repeated 1000 times for each agent. The results are averaged and plotted. Figure 5.6a

shows that the βC outperforms both, the eCN and GS strategies in terms of utility rate.

All strategies have the same performance in terms of agreement rate. In general, buyer

agents in the SSM coordination scenario do not have a serious problem in reaching

an agreement if the length of the agreement zone between agents are long enough

and the difference between their deadlines is not large. In addition, a buyer agent

who negotiates with a large number of seller agents has a high chance of reaching an

agreement.

To test the performance of the proposed strategy against different types of seller agents

who use a strategy that mixes between the time-dependent and the behavior-dependent

tactics to generate their offers, an experiment is designed to test three different buyers

against six types of seller agents using mixing strategies. The notations of the seller

agents’ strategies shown in Figure 5.7 are explained in Section 4.5.2.

The experiment is repeated 1000 times for each category of seller agents. For example,

to test the three buyer types (i.e., the βC agent, the eCN agent and the GS agent) against

the seller agents of type PCAS, the three buyers negotiate 1000 times with five seller

agents of type PCAS. In each negotiation instance, five seller agents are generated
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(a) (b)

(1→ βC, 2→ eCN , 3→ GS )

Figure 5.7: Seller agents mix between the time-dependent and the behavior-dependent
tactics where all agents need to honor their agreements.

randomly from the PCAS category and the three buyer types negotiate with the same

five agents. The results are averaged and plotted. Random deadlines and overlaps are

used at the start of each negotiation instance. All buyer agents have the same deadline

in every negotiation instance. Finally, a β value is selected randomly from the interval

[0.5, 10] and assigned to the three buyer agents. The same process is repeated for the

rest of the five categories of the seller agents.

Figure 5.7b shows that the three different buyer types record similar agreement rates.

On the other hand, the βC strategy outperforms (with significant statistical differ-

ence) the other two strategies in terms of the utility rate in all cases, see Figure 5.7a.

When the seller agents are selected from the PCAS and the PCAM categories, all buyer

agent types achieve lower utility rates than the utility rates achieved when the buyer

agents negotiate against the seller agents of the types PLAS, PLAM, PBAS, and PBAM.

The reason is that the seller agents in the PCAS and the PCAM categories are time-

dependent conceder types and since the contribution of the behavior-dependent is small

to medium (see Section 4.5.2), the sellers are conceding quickly which means that the

buyer agents reach agreements with higher utility rates. The experiments that consider

testing the different negotiation strategies against sellers using mixing strategies prove

that the proposed βC strategy is a dynamic strategy that responds to different negotia-

tion environments and different opponent types in an effective and robust manner.
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5.2.3 Testing Different Strategy Metrics

This section investigates the effect of both, the DIC and LOU measures on the per-

formance of the βC strategy, see Section 4.3. Five different types of βC is designed

and tested. Table 5.1 shows the five βC strategy variants determined by the DIC and

the LOU measures. In Table 5.1, RC means that βC uses only the recent concessions

as the only metric, the TC means that the βC uses the total concession to evaluate an

opponent. Total concession means that the buyer agent considers all concessions of a

seller agent since the start of negotiation. LU means the utility of the last offer is con-

sidered, i.e., the LOU measure. RU indicates that both, the RC and LU is considered

with equal weights. Finally, the TU means that both, the TC and LU are used with

equal weights. In all the experiments regarding testing different evaluation metrics,

all buyer agents use the same deadline (randomly selected) in each negotiation round.

In each negotiation instance, the five buyers using the five strategy variants negotiate

with same five seller agents. At the start of each negotiation instance, new five seller

agents are generated. Random deadlines and random overlaps are considered, see Sec-

tion 5.2.2.1. In addition the used c value is equal to 2, see Equation 5.1. When two

measures are used, each contributes 50% of the total evaluation of each opponent, see

Table 5.1. As before, the number of repetitions for each experiments is 1000 times, see

Section 5.2.2.3.

Table 5.1: Different βC strategy variants

Recent Concession Total Concession Last offer’s Utility

βC

RC X × ×
TC × X ×
LU × × X
RU X(50%) × X(50%)
TU × X(50%) X(50%)

Figure 5.8 shows the experimental evaluation results of the five different βC strategy

variants presented in Table 5.1. The βC strategy variants shown in Table 5.1 are cre-

ated to test the effect of using the DIC and the LOU metrics on the performance of

the βC strategy. In the first set of experiments, the five buyer types (named RC, TC,

LU, RU, TU) played against seller agents who mix between the time-dependent and the

behavior-dependent tactics to generate offers. The results in Figure 5.8a show that us-
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ing the recent concessions RC metric to evaluate an opponent produces the best utility

rates amongst all other variants when the seller agents are in the categories PCAS and

PCAM. In the categories PLAM and PBAM, the variants RC, LU, RU and TU perform

similarly since the difference amongst them are not significant. The LU variants out-

performed all other variants when the seller agents are in the PLAS category, whereas

the TU is the second best. The TC performance is the worse against most seller agents’

categories. The RC does not perform well when the seller agents are in the categories

PLAS and PBAS. The performance of the RU is second to best against the seller agents

in the categories PCAS and PCAM.

In summary, the variant RC outperformed other categories when the seller agents used

the mixing strategy to generate their offers. The RC variant produced the highest utility

rate or is amongst those variants who produced the highest utility rates in four out of

six seller agents’ categories and performed better than all other variants in two out of

six seller agents’ categories.

(a) (b)

(1→ RC, 2→ TC, 3→ LU , 4→ RU , 5→ TU )

Figure 5.8: Seller agents mix between the time-dependent and the behavior-dependent
tactics to generate their offers given that all agents must honor their agreements.

To test the DIC and the LOU metrics in case the buyer agents are negotiating against

seller agents using the time-dependent tactics to generate their offers, an experiment is

designed to test the different βC strategy variants (see Table 5.1) against two categories

of seller agents. The first category is the time-dependent (TD) tactics where each seller

agent selects a β value randomly from the interval [0.5, 10]. The second category of

the seller agents is when seller agents use the MTD tactics to generate their offers, see
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(a) (b)

(1→ RC, 2→ TC, 3→ LU , 4→ RU , 5→ TU )

Figure 5.9: Seller agents who use the time-dependent and the MTD tactics to generate
their offers given that all agents must honor their agreements.

Section 4.5.2. In each experiment, five seller agents are generated from a certain cate-

gory and each of the five buyer agent variants (see Table 5.1) negotiates with the same

five seller agents. Deadlines and overlaps are selected randomly as in the previous ex-

periments where all the five buyer agents have the same deadline, selected randomly -

as before - at the start of each negotiation instance.

The results of the experiments are shown in Figure 5.9. Figure 5.9b shows that all

types of buyer agent variants are similar with regards to the agreement rate. However,

the utility rate results show some variation, see Figure 5.9a. There are three main

observations in Figure 5.9a: the first one is that all buyer types achieve more utility rate

when negotiating against the TD agents than when negotiating against the MTD agents.

The reason is that the TD agents have a higher chance to receive a higher β value than

the β value received by the MTD agents. The agents using the MTD receive a β value

calculated as a weighted average of the three main types of the time-dependent tactics

(i.e., conceder, linear and Boulware) which moderates the β value and makes it in a less

conceding range, see Section 4.5.2. The second observation is that all buyer types have

similar performance against the TD seller agents. As mentioned before the TD agents

selects their β value from the interval [0.5, 10]. Most of the interval length represents

the conceder behavior (when β > 1) which means most of the randomly selected β

values define conceder agent types. A conceder agent offers large concessions at the

start of negotiation which results in achieving agreements with high utility from the

buyer agents’ side. In addition, the conceding behavior of the seller agent results in

similar utility rates achieved by the different buyer variants.
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The third observation is that when the buyer agent variants negotiate against the TD,

the RC performs better than the other variables while if the seller agents are of type

MTD, all buyer variants perform similarly.

In most cases, the RC metric is proved to be a better evaluation criterion than the TC

metric. The total concessions for two agents can be the same at a certain point in time

during negotiation even if the two agents are offering different amounts of concessions

at different times. For example, assume that agents a1 and a2 are in negotiation and

agent a1 concedes 2 units every round and agent a2 concedes 1 unit every round. After

9 negotiation rounds, the total amount of concessions of agent a1 is 18 units and the

total amounts of concessions of agent a2 is 9 units. At the next negotiation round,

agent a1 concedes 2 units and agent a2 concedes 11 units. The two agents offered

the same amount of concession in total in the negotiation round number 10. It can be

guessed that agent a2 is more desperate to reach an agreement than a1. In addition,

the recent concession metric is proved to be similar or better than the utility metric in

most cases. The reason is that the utility measures the current value of an opponent

agent without considering its previous behavior in terms of the concession offered. The

recent concession considers the most recent behaviors of all agents which can evaluate

them more accurately.

Even though the RU metric is used in the experiments of Section 5.2.2, the RU metric

performs better than all other benchmark strategies. In the future experiments, the RC

metric will be considered.

5.3 MSM Coordination Scenario

This section presents coordination mechanisms that are designed to coordinate the

bidding strategy for the MSM coordination scenario where a buyer agent is negotiating

with seller agents over multiple distinct objects given that each object has a single

negotiation issue and multiple providers, see Figure 5.10.

Procuring more than one negotiation object is a daily practice of buyers who use either

physical stores or virtual stores. We investigate the situation where a buyer agent is ne-

gotiating with multiple seller agents concurrently for the purpose of reaching multiple

agreements over multiple objects, i.e., one agreement per one object. For example, in
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service composition, a buyer agent may negotiate over multiple distinct services where

each service has multiple providers.

Figure 5.10: One-to-many negotiation over multiple negotiation objects of one issue

There are two levels of coordination shown in Figure 5.10. The first level is referred to

as global coordination while the second one is called local coordination. The global

coordination considers the overall situation of negotiation taking into consideration the

common factor(s) in the given coordination scenario. There are two common factors

in our scenario: the first one is that all objects have the same issue, i.e., the negotiation

issue is common amongst all objects, e.g., price. The second factor is that the agree-

ments are connected. Thus if a negotiation over an object results in failure regarding

any object, the whole negotiation process fails.

The local coordination indicates that the coordination mechanism(s) considers the ne-

gotiation situation with regards to a certain object without considering the negotiation

situation of other objects. The proposed coordination mechanism considers the num-

ber and behaviors of the seller agents of a certain object in terms of their concessions

in comparison to the concessions offered by their counterpart delegates. In all coordi-

nation mechanisms proposed in this thesis, only those sellers that are still negotiating

are considered. If a seller quits negotiation, it is dropped from the analysis process.

This section presents three coordination mechanisms classified according to the co-

ordination scope: a global MSM mechanism (GMSM), a local MSM mechanism

(LMSM) and finally a hybrid (MSM) mechanism (HMSM). In all the experimen-

tal results shown in this section, all agents honor their first agreement. Unless stated to

the contrary, all seller agents use the MTD tactic to generate their offers.
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5.3.1 Global MSM Strategy

The proposed global negotiation strategy considers assignment of possibly new lo-

cal reservation values (see Section 4.4) to the negotiation issue(s) in each negotiation

round. The assignment of a new local reservation value for each negotiation issue

of each object depends on both the values of consecutive offers received from each

provider of each object and their counterpart delegates’ consecutive counteroffers. Al-

gorithm 2 summarizes the main steps of the GMSM mechanism. Each object is as-

signed a weight that determines its issue’s local reservation value. For example, if

the weight vector for four objects is w = {0.3, 0.2, 0.4, 0.1} and the global reserva-

tion value is $100, then the local reservation values are {30, 20, 40, 10}. The initial

weight vector is assigned based either on domain knowledge or previous negotiation

experience.

The lines 1-5 in Algorithm 2 assign a zero weight for each procured object and then

recompute the weights for the remaining objects in line 6. The data preparation process

presented in lines 7-13 is similar to the data preparation process shown in Algorithm 1.

The difference is that the data process of Algorithm 1 considers one negotiation object

while the data preparation process shown in Algorithm 2 considers multiple objects

and m in the algorithm stands for the number of negotiation objects required by the

buyer agent, see Figure 5.10. Line 14 computes the mean vector for the vector F (t1,t2)
j

(see Section 4.3) while line 15 normalizes the mean vector that results in relating the

behaviors of the seller agent groups to each other by dividing the value of each member

in the vector by the sum of the vector. The normalization process in the given context

provides a value for each group of seller agents relative to the other seller agent groups.

An example of the vector F (t1,t2)
j , F (t1,t2)

j =< <1,2,3>,<-1,0,3>,<2,4>,<5> >. In this

case, the number of the required objects is 4. The element <1,2,3> represents the dif-

ference between the first order differences of the concessions offered by the providers

and the concessions offered by their counterpart delegates in the previous negotiation

round over the negotiation issue j of object 1.

The element < 2, 4 > represents the same information for two pairs of agents which

indicates that one of the object 3 providers withdrew from negotiation and only two

providers are left. For object number 4, there is only one provider left.
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Algorithm 2 GMSM algorithm
Require: global reservation value, g
Require: local reservation value weight vector, w
Require: < Xt−1

d1,1↔s1,1
[j], Xt−1

d1,2↔s1,2
[j], ..., Xt−1

d1,n1
↔s1,n1

[j] >, ...,

< Xt−1
dm,1↔sm,1

[j], Xt−1
dm,2↔sm,2

[j], ..., Xt−1
dm,mn↔sm,mn

[j] >
1: for k = 1→ m do
2: if (isProcured(k)) then
3: w(k) = 0
4: end if
5: end for
6: w = w/sum(w)
7: for i = 1→ m do
8: ∆di =< ∆di1 ,∆di2 , ...,∆din >
9: ∆si =< ∆si1 ,∆si2 , ...,∆sin >

10: ∆Fi = ∆si −∆di
11: end for
12: ∆F = < ∆F1,∆F2, ...,∆Fm >

13: F
(t1,t2)
j = select(t1, t2,∆F )

14: meanV ec = mean(F
(t1,t2)
j )

15: vm = meanV ec/sum(meanV ec)
16: minMax = minMaxPairs(vm)
17: for (i = 1→ size(minMax)) do
18: ϕ = minMax[i]

19: if (max(F
(t1,t2)
j (ϕ[1]))) <= 0 then

20: if (max(F
(t1,t2)
j (ϕ[2]))) > 0 then

21: w(ϕ[1]) = w(ϕ[1]) +w(ϕ[2]) ∗ γ . γ ∈ [0, 1]
22: w(ϕ[2]) = w(ϕ[2])−w(ϕ[2]) ∗ γ
23: end if
24: end if
25: end for
26: newLocalRes = g ∗w
27: Return(w, newLocalRes)
28: end algorithm

Line 16 shows the function minMaxPairs(.) that takes the normalized mean vector

vm as a parameter and returns the vector minMax that consists of elements of one

pair each. Each pair contains two object positions. The object in the first position of

every pair indicates a difficult negotiation situation for the delegates responsible for

procuring that object while the object in the second position indicates a favorable ne-

gotiation situation for the delegates responsible for procuring the one in the second

position. The algorithm minMaxPairs(.) repeats |vm|/2 iterations. For odd |vm|
values, the number of iterations is (|vm| − 1)/2. In each iteration, the positions of

the minimum and the maximum values in the vm vectors are joined in one pair. Once

the two members are joined, they are excluded from the next iteration. For exam-
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ple, assume that vm =< 0.1, 0.2, 0.4, 0.3 >, then the function minMaxPairs(vm)

returns the vector minMaxPairs(vm) =< (1, 3), (2, 4) >. The first pair (1, 3)

(ϕ = minMax[1] = (1, 3)) indicates that the buyers’ delegate group in position 1

(i.e., the group responsible for procuring the object in position 1) in the vector vm is

negotiating with the toughest seller agents group and the seller agent group in posi-

tion 3 are the most current favorable group. Now, there are only two groups left in

which the seller agent group in position 2 is the toughest and the seller agent group

in position 4 is the most favorable. The position numbers in the vm vector refer to

the objects: o1, o2, ..., om, see Figure 5.10. The GMSM negotiation strategy considers

only the seller agents for the objects that are to procure yet.

The idea behind the algorithm minMaxPairs(.) is to define a resource reallocation

mechanism during concurrent negotiation on the bases of need. The aim is to locate

the potential sources of resources and the possible targets for the redistribution of re-

sources. Once the vector of pairs minMax is determined according to the algorithm

minMaxPairs(.), a certain amount can be shifted from one local reservation value to

another. Lines 17-25 in Algorithm 2 show the process of shifting resources between

local reservation value weights given that some conditions exist. The process works

as follows: for each pair in the vector minMax, see line 17, the algorithm checks if

the maximum value in the vector F (t1,t2)
j (ϕ[1]) of element i in the vector minMax is

less than zero, see line 19. If this is true, it indicates that the chance of reaching an

agreement over the object in position ϕ[1] is small. In this case, the process checks

if the maximum value in the vector F (t1,t2)
j (ϕ[2]) is greater than zero, see line 20; if

so, it means that there is a chance for shifting some resources without jeopardizing an

agreement over the object in the position ϕ(2) of the element i in the vector minMax,

see lines 21 and 22.

The ϕ[1] stores one object position and ϕ[2] stores its partner. In our previous example,

when i = 1, ϕ[1] = 1, ϕ[1] = 3. In the previous example, F (t1,t2)
j (ϕ[1]) =< 2, 4 >.

The value γ used in the experiments is 10 − 15%, see lines 21 and 22. The value of

γ can be determined from the empirical evaluation or from prvious experience. To

accomodate for the situations where the difference between the initial local reservation

values are substatial, the mechanism needs to consider that by building a weight redis-

tribution matrix between different negotiation issues to control the amount of resource

shifting according to the values that relate issues to each other.

141



Chapter 5. A Single Negotiation Issue for One or Multiple Objects

Having said that, and in the context of the described coordination scenario, the process

of redistributing resources during negotiation is effective only under tough negotia-

tion environments where the agreement zone lengths between the buyer and the seller

agents are small. This condition applies to the proposed GMSM as well as to the sur-

plus redistribution (SR) mechanism [118]. In addition to the general strategy (GS), the

SR strategy is used as a benchmark for testing the proposed coordination mechanisms

in this section. The SR is considered as a global strategy where it changes the local

reservation values during negotiation.

5.3.1.1 Experimental Results and Discussions

In the following experimental results, the first agent uses the proposed GMSM strat-

egy, the second agent uses the SR strategy and the third agent uses GS. The SR waits

until one or more objects is/are procured then it redistributes extra resources (if any)

to the remaining delegate groups. For example, if the buyer agent is negotiating over 4

distinct objects and the local reservation value set for their issues is {60, 70, 80, 100},
then if during negotiation the delegate group responsible for procuring object number

1 is able to reach an agreement by paying only 54, then there are $6 surplus which will

be redistributed over the remaining delegate groups to help them reach agreements.

The redistribution of the surplus could be even which means that each delegate group

receives $2 and the new local reservation value set becomes {0, 72, 82, 102} or based

on the weights of the objects. Since each object contains only one negotiation issue,

the object’s weight and the issue’s weight are used interchangeably here. In the exper-

iments, the surplus redistribution is performed according to the weights of the objects;

the higher the weight, the higher the share. The weights of the objects for all buyer

agents are determined according to their initial issues’ local reservation values. Fi-

nally, GS establishes the various negotiation parameters (according to some domain

knowledge or previous experience) and keeps those parameters unchanged throughout

negotiation.

The specific negotiation settings for the results shown in Figures 5.11, 5.12 and 5.13

are as follows: in each negotiation round, all buyer agents use the same deadline that

is selected randomly from the interval [5, 30] and the same β value that is selected

randomly from the interval [0.5, 5]. All buyer agents start with same local reservation

values where the minimum value is selected randomly from the interval [5, 10] and the
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maximum value is selected randomly from the interval [40, 50] in every negotiation

round. Each seller agent selects a random deadline from the same interval, i.e.,[5, 30]

and a random β value from the interval [0.5, 10]. In addition, the percentages of over-

laps between the local reservation values of the agents’ issue are selected randomly

from the interval [0.9, 1] which means that any overlap percentage will be %10 or less,

see Equation 4.4. Unless stated to the contrary, the number of negotiation objects used

in the experiments of this section is 10.

(a) (b)

(1→ GMSM , 2→ SR, 3→ GS)
(The numbers above the graph bars refer to the number of seller agents per object)

Figure 5.11: Testing the strategies GMSM, SR and GS; number of seller agents varies

The first experimental results are shown in Figure 5.11. The numbers above the bars in

Figures 5.11 and 5.12 indicate the number of seller agents per object. For each distinct

number of agents, the experiment is repeated 1000 times and the results are averaged

and plotted. The experiment starts with 2 agents per object and the number increases

until it reaches 10 seller agents per object. The results show that when the number

of seller agents is relatively small, the proposed GMSM strategy outperforms the SR

strategy significantly in terms of agreement rate and equal or better in terms of utility

rate. Both, the GMSM and SR outperform GS significantly in all cases, see Figures

5.11a and 5.11b.

Anther set of experiments show that when the overlap percentages between the agents’

reservation intervals are %5 or less, the GMSM strategy proves to have even more sig-

nificant performance than the SR strategy in terms of agreement rate, see Figure 5.12b.

Figure 5.12a shows that the GMSM strategy performs better than the SR strategy in
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(a) (b)

(1→ GMSM , 2→ SR, 3→ GS)
(The numbers above the graph bars refer to the number of seller agents per object)

Figure 5.12: Testing the strategies GMSM, SR and GS; number of seller agents varies

terms of utility rate. However, the error bars in Figure 5.12a show overlaps in most

cases which means that the difference between the GMSM strategy and the SR strategy

is statistically insignificant in terms of utility rate.

The GMSM strategy is a more dynamic one than the SR strategy since the SR waits

until an agreement is reached over an object before it starts redistributing the extra

resources, if they exist. The GMSM strategy does not wait until reaching an agreement

to redistribute resources, it rather assesses the current situation and acts accordingly,

see lines 17-25 in Algorithm 2.

(a) (b)

(1→ GMSM , 2→ SR, 3→ GS)
(The numbers above the graph bars refer to the number of negotiation objects)

Figure 5.13: Testing the strategies GMSM, SR and GS; number of objects varies

On the other hand, Figure 5.13 shows the experimental results for the three buyer
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agents negotiating against 5 seller agents over different number of objects. The num-

bers above the bars in the figure indicate the number of negotiation objects. The num-

ber starts with 2 distinct objects and increases up to 10 objects. When the number of

objects increases, the GMSM strategy outperforms the other two strategies in terms of

utility rate and agreement rate, see Figures 5.13a and 5.13b. Both dynamic strategies

outperform GS in terms of utility rate and agreement rate when the number of objects

becomes large. When the number of objects becomes large, it becomes difficult for all

strategies to reach a large number of agreements. However, GMSM proved to be more

effective than the SR strategy especially when the number of objects becomes large.

Figure 5.14 shows the experimental results when the three buyer agents are negotiating

against seller agents who mix between the time-dependent tactics and the behavior-

dependent tactics to generate their offers, see Section 4.5.2. In most cases, the GMSM
outperforms the SR strategy in terms of utility rate and agreement rate, see Figures

5.14a and 5.14b. GS shows a better utility rate than the other two strategies in case the

seller agents are selected from the type PBAS. The reason is that the seller agents in

the type PBAS use the Boulware tactic to generate their offers which constitute large

portion of their final mixed offers, while the contribution of the behavior-dependent

strategy is small, see Section 4.5.2.

(a) (b)

(1→ GMSM , 2→ SR, 3→ GS)

Figure 5.14: Testing the strategies GMSM, SR and GS; the seller agents mix between
the time-dependent tactics and the behavior dependent tactics to generate their offers

When all the seller agents are of Boulware type, they offer little concessions throughout

negotiation until they approach their deadlines in which they offer large concessions.

In this case and because the two dynamic strategies shift resources during negotiation,
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the utility of an agreement is expected to be low. Figure 5.14b shows that the two

dynamic strategies outperform GS in terms of utility rate and significantly in all cases

in terms of agreement rate. The percentage of overlaps used in the experiments of

Figure 5.14 are selected randomly to be 30% or less. The rest of the experimental

settings are the same as in the experiments used to generate the previous results in this

section.

When the length of the agreement zone between agents is small, a small utility is ex-

pected for an agreement. The results of utility rate show this in all figures of this chap-

ter, e.g., Figures 5.11, 5.12 and 5.13. The reason is that, since the overlap percentages

between the reservation intervals of the buyer agents and the seller agents are small, all

agents need to approach their reservation values before reaching the agreement zone

which results in low utility rate outcomes for all agents.

5.3.2 Local and Hybrid MSM Strategies

The proposed local negotiation strategy (LMSM) considers only the negotiation situa-

tion regarding each object alone, hence the name local. The LMSM strategy does not

require the existence of common factors such as common issues. It interacts with the

providers of each object in isolation and aims at reaching a high utility agreement.

The strategy decides the convexity of the concession curve for each group of delegates

in each negotiation round taking into consideration the behaviors and the number of

seller agents of a certain object without considering the behaviors or the number of

seller agents for the other objects. The LMSM strategy depends on the number of the

existing seller agents who behave favorably in terms of their concessions compared to

their counterpart delegates’ concessions. If the number of favorable agents is beyond

a certain ε threshold, then the strategy chooses a tough negotiation stance or otherwise

it chooses either a linear or a conceder stance. Algorithm 3 outlines the proposed

mechanism. The algorithm iterates m times which is equivalent to the number of

negotiation objects. In each iteration the data preparation process is first executed (lines

1-6) then the conditional if-statement is used to count the number of existing seller

agents who offered more concessions than their counterpart delegates’ concessions in

the previous negotiation round, see lines 7-24.
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Algorithm 3 LMSM algorithm
Require: < Xt−1

d1,1↔s1,1
[j], Xt−1

d1,2↔s1,2
[j], ..., Xt−1

d1,n1↔s1,n1
[j] >, ...,

< Xt−1
dm,1↔sm,1

[j], Xt−1
dm,2↔sm,2

[j], ..., Xt−1
dm,mn↔sm,mn

[j] >
1: for i = 1→ m do
2: ∆di =< ∆di1 ,∆di2 , ...,∆din >
3: ∆si =< ∆si1 ,∆si2 , ...,∆sin >
4: ∆Fi = ∆si −∆di
5: end for
6: ∆F = < ∆F1,∆F2, ...,∆Fm >
7: for i = 1→ m do
8: count = 0
9: F

(t1,t2)
j i = select(t1, t2,∆Fi)

10: for k = 1→ size(F
(t1,t2)
j i) do

11: if (F (t1,t2)
j [i, k] > 0) then

12: count = count+ 1
13: end if
14: end for
15: if (count < ε) then
16: β = random(2, 5)
17: else if (count == ε) then
18: β = random(0.9, 1.1)
19: else
20: β = random(0.5, 0.89)
21: end if
22: count = 0
23: add(Vβt , β)
24: end for
25: Return (Vβt )
26: end algorithm

To decide the value of β for a group of delegates in the next negotiation round, the

decision making process is shown in lines 15-21. If the number of favorable agents

(count in the algorithm, see line 8) is less than ε, then the buyer agent needs to take a

lenient stance in order to not jeopardize reaching an agreement. In this case, the mech-

anism selects a β value randomly from a conceder space, i.e., β ∈ [2, 5]. When the

number of favorable seller agents is equal to ε, then a linear behavior is selected, see

line 18. Finally, when the number of favorable seller agents is greater than ε then the

situation for the buyer agent allows for taking a tough negotiation stance which may

guarantee an agreement with high utility, see line 20. The threshold value (ε) used in

the experiments is 3.
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5.3.2.1 Experimental Results and Discussion

To test the LMSM strategy, a few sets of experiments are designed and executed.

The experimental settings are the same as in the previous section. The percentage of

overlap between the agents’ reservation intervals in the experiments of Figure 5.15 is

25%. Figure 5.15a shows that the LMSM strategy outperforms the SR strategy when

the number of seller agents is 4 or more and performs similar to the SR strategy when

the number of seller agents is 3 or less. If the utility rate is calculated per agreement

rather than per negotiation instance, then the difference between the strategies LMSM
and SR will be greatly noticeable in the favor of the LMSMS strategy.

(a) (b)

(1→ LMSM , 2→ SR, 3→ GS)
(The numbers above the graph bars refer to the number of seller agents per objects)

Figure 5.15: Testing the strategies LMSM, SR and GS; number of seller agents varies

Since the agreement rate for the LMSM strategy is low when the number of seller

agents is equal or less then 4 when compared to the agreement rate of the SR strategy,

it is expected that its utility rate is negatively affected. However, for a large number of

seller agents, the gap between the LMSM strategy and the SR strategy becomes small

in terms of the agreement rate, see Figure 5.15b. The results regarding the agreement

rate is normal since the LMSM strategy does not have the overall (global) view of the

negotiation situation which makes it focus on reaching a valuable agreement over an

object without considering the situations of other objects.

It is obvious that the SR strategy is effective in terms of scoring a high agreement

rate when compared to GS. However, GS starts approaching the SR strategy in terms

of the utility rate when the number of the seller agents is 7 and outperforms the SR
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strategy beyond that. The reason is that when the number of the seller agents increases,

the gap between the agreement rates of the two strategies decreases which results in

more utility rate for GS, see Figure 5.15a. Finally, Figure 5.15 shows that the LMSM
strategy outperforms GS in both, utility rate and agreement rate, see Figures 5.15a and

5.15b.

Figure 5.16 shows the experimental results when the number of negotiation objects

varies. The numbers shown above the bars of the figure indicate the number of negoti-

ation objects. For each number of objects, the number of the seller agents is fixed and

is equal to five. The only difference in the experimental settings here is that the number

of negotiation objects varies. Figure 5.16 shows that the LMSM strategy outperforms

the other two strategies in terms of utility rate across all numbers of negotiation ob-

jects. In addition, LMSM outperforms GS in terms of the agreement rate across all

numbers of objects.

(a) (b)

(1→ LMSM , 2→ SR, 3→ GS)
(The numbers above the graph bars refer to the number of negotiation objects)

Figure 5.16: Testing the strategies LMSM, SR and GS; number of objects varies

The performance of the three strategies against seller agents who mix the time-dependent

and the behavior-dependent tactics to generate their offers is shown in Figure 5.17. The

number of seller agents in the experiment is 5. Figure 5.17a shows that the LMSM
strategy outperforms the other two strategies significantly in terms of utility rate. When

the seller agents are of PCAS or PCAM types, the LMSM strategy outperforms the SR

in terms of agreement rate. When the seller agents are of types PCAS and PCAM,

they tend to concede more which helps the LMSM to secure a high agreement rate.

For all other seller types, the SR strategy records a better agreement rate. The LMSM
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outperforms GS in terms of utility rate and agreement rate in all cases. The SR strategy

outperforms GS in terms of the agreement rate in all cases and performs equally or bet-

ter than GS in terms of the utility rate except when the seller agents are of type PBAS

in which case GS performs better than the SR strategy for the same reason explained

in Section 5.3.1 in Figure 5.14a.

(a) (b)

(1→ LMSM , 2→ SR, 3→ GS)

Figure 5.17: Testing the strategies GMSM, SR and GS; the seller agents mix between
the time-dependent tactics and the behavior dependent tactic to generate their offers

The hybrid MSM (HMSM) strategy is the combining of both, the GMSM and LMSM
strategies. In addition to the deadline, the HMSM strategy needs two pieces of infor-

mation to generate counteroffers. It needs the local reservation values for the negoti-

ation issues and the convexity of the concession curves, i.e., β values. The GMSM
mechanism (see Algorithm 2) provides the local reservation values while the LMSM
provides the β values, see Algorithm 3. The empirical results show that the HMSM
works best when the resource shifting is postponed until the buyer agent reaches an

agreement(s). The reason is that, when the delegate agents of a certain object are in a

difficult negotiation situation, the GMSM will probably shift some resources to help.

In addition, the LMSM strategy will probably use a lenient negotiation stance with

the providers of that object. It is obvious that the delegates in the difficult situation

receive help from the two strategies while the delegate group that is in the better nego-

tiation situation will be affected negatively in terms of reaching an agreement since the

GMSM strategy reduces its resources and the LMSM strategy assigns it a Boulware

β value.
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(a) (b)

(1→ HMSM , 2→ SR, 3→ GS)
(The numbers above the graph bars refer to the number of seller agents per objects)

Figure 5.18: Testing the strategies HMSM, SR and GS; number of seller agents varies

The results shown in Figure 5.18 indicate that the HMSM strategy outperforms both

the SR and GR strategies. The settings for the experiment used to generate the results

shown in Figure 5.18 are: 10% or less overlap between the reservation intervals of

the agents’ negotiation issue. The amount of resource shifting during negotiation is

0 and the number of agents varies while the number of objects is 10. The results

are interesting since the HMSM strategy shows good results in terms of both utility

rate and agreement rate that outperform the other two strategies signficaltly and in all

cases, see Figures 5.18a and 5.18b. When value γ used in Algorithm 2 is zero, then

the GMSM is the same as the SR strategy in this case.

(a) (b)

(1→ HMSM , 2→ SR, 3→ GS)
(The numbers above the graph bars refer to the number of negotiation objects)

Figure 5.19: Testing HMSM, SR and GS; number of objects varies

The settings of the experiment used to generate the results in Figure 5.19 are similar to

the settings of the experiment used to generate the results in Figure 5.18. The difference
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is that the experiment used to generate the results in Figure 5.19 vary the number of

objects while the number of seller agents used was 5. The results in Figure 5.19 show

that the HMSM strategy outperforms the other two strategies significantly and in all

cases, see Figures 5.19a and 5.19b.

The results shown in Figures 5.18 and 5.19 indicate that when the global coordination

and the local coordination are combined, they produce better results than using either

one alone. However, the HMSM strategy requires more computation since both the

global coordination and local coordination mechanisms need to be executed.

(a) (b)

(1→ GMSM , 2→ LMSM , 3→ HMSM )
(The numbers above the graph bars refer to the number of seller agents per object)

Figure 5.20: Testing GMSM, LMSM and HMSM; number of seller agents varies

To confirm the conclusion that the HMSM performs better than the two proposed

strategies, the HMSM strategy is tested against the strategies GMSM and LMSM.

Figure 5.20 shows the experimental results. The hybrid strategy outperforms the global

strategy and the local strategy in terms of utility rate and agreement rate. The other

results are consistent since the GMSM strategy outperforms the LMSM strategy in

terms of agreement rate while the LMSM strategy performs better than the GMSM
strategy in terms of utility rate per agreement.

It is noticed that the difference between the GMSM and LMSM strategies in terms of

agreement rate is high, see Figure 5.20b, while the difference between them in terms

of utility rate is relatively small. The reason is that the LMSM achieves a higher utility

rate per agreement while the GMSM achieves a lower utility rate per agreement. When

the number of agents increases, see Figure 5.20a when the number of agents is 10, the

LMSM strategy starts showing even a higher utility rate.
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(a) (b)

(1→ HMSM , 2→ SR, 3→ GS)

Figure 5.21: Testing HMSM, SR and GS. The seller agents mix between the time-
dependent tactics and the behavior dependent tactic to generate their offers

The results of testing the hybrid strategy against the seller agents who mix between the

time-dependent and behavior-dependent tactics are shown in Figure 5.21. Figure 5.21a

shows that the HMSM outperforms the other two strategies in terms of utility rate. In

addition, the hybrid strategies also outperforms the SR and GS strategies in terms of

the agreement rate, see Figure 5.21b.

5.4 Summary

This section investigates the coordination scenarios SMM and MSM and presents co-

ordination mechanisms that can be used in each scenario to coordinate the bidding

strategy of a buyer agent during negotiation. Any object in any of these scenarios con-

tains a single issue. Four novel coordination mechanisms are presented in this chapter.

The first mechanism is designed to coordinate the bidding strategy for a buyer agent in

the SSM scenario. The rest of the mechanisms targets the MSM scenario. In addition,

the chapter shows an empirical analysis for different techniques that can be used to

evaluate the behavior of a seller agent.

The coordination mechanism proposed for the SSM scenario depends on managing the

convexity of the concession curves for the different buyer’s delegates. The feedback

from the seller agents in terms of their consecutive offers are used to control the slop

of the delegates’s in every negotiation round. The experimental results show that the

proposed mechanisms outperforms (in most cases) the benchmark strategies in terms

of the utility rates and performs similar in terms of the agreement rates. The main
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benchmark strategy relies on historical data to determine the value of the next proposal

in every negotiation round.

Since the MSM scenario assumes multiple providers for each agent, two coordination

levels are defined: global coordination and local coordination. The global coordination

mechanism focuses on managing the local reservation values for the objects’ issues.

The global coordination mechanism changes the local reservation values by shifting

resources from one group of delegates to another according to their need. The local

coordination mechanism focuses on a given group of providers and manages the slop of

the concession curve for each group of delegates accordingly. The hybrid mechanism

combines both, the global and local coordination mechanisms. The experimental re-

sults show that the proposed global coordination strategy outperforms the global strat-

egy proposed in the literature in terms of the agreement rates and performs similar or

better in terms of the utility rates. The benchmark strategy reassigns new reservation

values when a certain negotiation is ended. On the other hand, the proposed global

strategy does not wait for a negotiation to finish before reassigning new reservation

values, it rather assigns new reservation values based on the current need of delegates.

The experimental results show that the proposed global strategy performs better than

the local strategy in terms of the agreement rates and vice versa in terms of the utility

rates. On the other hand, the local strategy performs better than the other strategies in

terms of the utility rates. It also outperforms the GS in terms of the agreement rates.

The hybrid strategy outperforms other strategies in terms of the utility and agreement

rates when the amount of resource shifting during negotiation is 0. However, the pro-

posed strategies work best when the overlap percentages between the reservation inter-

vals of issues are small. In other words, the proposed strategies work best under diffi-

cult negotiation environments. The same applies to the benchmark global coordination

strategy. Moreover, the results show that the recent concession measure performs equal

or better than the other measures when evaluating the behaviors of the opponents.

Most of the works in the literature address the single issue negotiation. This chapter

proposes a coordination method that performs better than a state-of-the-art coordina-

tion method. In addition, the state-of-the-art coordination mechanism requires histori-

cal data while the proposed coordination method requires no historical data. Moreover,

this chapter considers negotiations over multiple distinct objects while the work in the

literature rarely considers concurrent negotiations over multiple distinct objects.

154



Chapter 6

A Single Object with Multiple
Negotiation Issues

This chapter investigates the single object multiple issues and multiple providers (SMM)

coordination scenario where a buyer agent negotiates with multiple seller agents over

an object characterized by multiple issues. Firstly, a novel offer generation mecha-

nism, the Iterative Offer Generation (IOG), is introduced. The mechanism is used by

the buyer agent to generate counteroffers when it decides to use either a trade-off tac-

tic or a concession tactic. Secondly, a novel one-to-many meta-strategy coordination

mechanism is presented. The meta-strategy is based on the idea of alternating be-

tween a concession tactic and a trade-off tactic during negotiation when generating

counteroffers. The decision to use either tactic depends on the level of cooperation

by the seller agents in terms of their concession in the current negotiation. The ex-

perimental evaluation includes two parts: the meta-strategy evaluation part and the

IOG-concession evaluation part. In addition to the agreement rate and the utility rate

performance criteria, the social welfare and the fairness of the agreements criteria are

also considered.

6.1 Introduction

In real life, people need to consider more than one issue during negotiation. In spite

of the fact that the price is one of the most important issues in business negotiations,
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other issues such as reliability, delivery time and warranty time are also important.

This chapter extends the previous chapter by considering a more realistic negotiation

scenario where a negotiation object contains multiple issues. The SMM coordination

scenario can represent a case in any of the motivating scenarios presented in Chapter

1. For example, a cloud client might want to negotiate with cloud providers over

a service that has the issues price, size etc., see Section 1.2.1. In the supply chain

domain, a customer can negotiate with multiple suppliers over price, quantity, delivery

time and the quality of some raw material, see Section 1.2.3. Finally, a travel agent can

negotiate price and travel time of a certain journey.

When two agents negotiate over multiple issues, they can follow the sequential pro-

cedure, the simultaneous procedure or the package deal procedure. The sequential

procedure allows agents to negotiate issues in sequence, i.e., one after another. In the

simultaneous procedure, agents negotiate the issues simultaneously but independently

of each other. When agents use the package procedure, each agent proposes a value

for each issue (concurrently) in each negotiation round. The package deal is proven

to be the optimal procedure for each party [40]. Since we are dealing with concurrent

one-to-many negotiation, we assume that a buyer agent proposes a value(s) for each

issue of each object in the same time frame and receives offers from all seller agents

in the next time frame.

This chapter investigates the SMM coordination scenario where a buyer agent is nego-

tiating with multiple seller agents over an object characterized by multiple negotiation

issues, see Figure 6.1. Many possible application domains can be represented by this

form of negotiation, such as the supply chain domain, the task allocation and order

fulfillment problems [157]. For example, a manufacturer needs to procure raw materi-

als and in most cases, more than one supplier exists in the market. One of the possible

approaches for procuring raw materials is to negotiate with multiple potential suppliers

concurrently. In the service oriented domain for example, a client can negotiate with

multiple service providers concurrently over the SLAs for the purpose of procuring

one service or more [100].

The coordination approaches presented in the previous chapter were based either on

managing the convexity curve or managing the local reservation values during negoti-

ation. Since this chapter assumes multiple negotiation issues per object, the proposed
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Figure 6.1: One object with multiple negotiation issues

coordination mechanism is a meta-strategy that is based on alternating between trade-

off and concession negotiation tactics during negotiation. The main difference between

the concession tactics and the trade-off tactics is that a trade-off tactic generates dif-

ferent counteroffers on the buyer’s current iso-curve (indifference curve) that have the

same utility value, see Section 2.3.3.5. The buyer agent can stay on the same indiffer-

ence curve for several negotiation rounds which means that the buyer agent generates

different counteroffers that have the same utility of the indifference curve. On the other

hand, the concession mechanism generates counteroffers with lower utility values (i.e.,

provide more value to the opponents) in each negotiation round.

The trade-off is used when the buyer agent faces a favorable negotiation situation

where it keeps its current aspiration level (current utility value) unchanged and at the

same time attempts to generate counteroffers with better values for its opponents. On

the other hand, the concession strategy is used when the buyer agent faces unfavorable

negotiation situation and there is a risk of not reaching an agreement if it does not

concede. The main coordination problem in this approach is to answer the question

about when the buyer agent should leave its current iso-curve and move to another

lower utility iso-curve. In addition, the appropriate distance between the old iso-curve

and the new iso-curve is another problem. Moreover, if the buyer agent decides to use

a concession strategy, what would be the negotiation stance, i.e., Boulware, linear or

conceder? The proposed coordination approach in this chapter propose some answers

to these questions.

The proposed meta-strategy is not only competitive, but also cooperative. It is com-

petitive in the sense that it strives to achieve the best possible agreement for the buyer

agent and cooperative in the sense that it attempts to generate counteroffers that pro-

vide better values to the opponents. A trade-off tactic assumes that the agents have
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divergent preferences over issues. If the negotiating agents have convergent prefer-

ences over the negotiation issues, then the negotiation game becomes a zero-sum game

and the room for using the trade-off does not exist, see Section 2.3.3.5.

This work adapts the work in [34] [121] by considering a more complex situation

where one agent is negotiating with multiple agents concurrently. The work in [34]

[121] considers mainly a meta-strategy for bilateral negotiation where the decision

making process involves only two agents. In the next section, the proposed iterative

offer generation tactic introduced. The meta-strategy is introduced in Section 6.3.

6.2 Iterative Offer Generation Tactics

The iterative offer generation (IOG) tactic is a cooperative and competitive mechanism

for generating offers. The IOG strategy is designed to work in two cases. Firstly, when

an agent decides to use the trade-off technique to propose offers. Secondly, when the

agent decides to propose an offer using a concession strategy. First, the IOG-trade-off

is introduced, then the IOG-concession tactic is presented.

–IOG-trade-off:
When an agent decides to use the trade-off mechanism, the agent ranks the issues under

negotiation according to their importance from the opponent’s point of view. Second,

it concedes on the most important issue - the current most important issue (CMII) -

from the opponent’s point of view using, for example, a time-dependent tactic with a

conceding mode, i.e., β > 1. While keeping the values of other issues from the last

agent’s offer unchanged, Equations 3.2 and 3.3 (see Section 3.2) are used to calculate

a value for the least important issue - the current least important issue (CLII) - from

the opponent’s point of view that would keep the agent on its current iso-curve, i.e.,

Ud(xt+1
d→s

[Jq]) = Ud(xt
d→s

[Jq]). If the value reaches beyond the reservation limit of

the CLII, then the value of the CLII becomes its reservation limit and the agent needs

to update the second least important issue which becomes the CLII using Equations 3.2

and 3.3 . The process is repeated until the agent finds an offer with a utility equal to

the utility of its current iso-curve. Each iteration of the IOG-trade-off mechanism in-

volves modifying either one or two values: the CMII and/or the CLII. Figure 6.2 shows
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an illustration to the IOG-trade-off technique. The figure shows eight negotiation is-

sues ordered from the most important issue to the opponent in the far left to the least

important issue to opponent in far right. It also shows the reservation value of each

issue. The utility of the last offer is 0.6 which is the utility of the current iso-curve,

see figure 6.2. In the first iteration, the agent concedes on issue j1 which is the most

important issue from the opponent’s point of view by changing its value from 40 to 50.

This amount of concession changes the utility of the composite offer from 0.6 to 0.5.

In this case, the agent needs to modify the values of some other issue(s) to bring the

utility to 0.6. As the technique specifies, it uses Equations 3.2 and 3.3 to calculate a

new value for issue j8. Assume that the calculated value is 0 that is required to change

the utility of the offer from 0.5 to 0.6, see iteration 2. The problem here is that the

minimum value that can be assigned to issue j8 is 10. The issue j8 is assigned 10 and

the calculated utility become 0.55, see iteration 3. The next step is to move to the

second least important issue (j7) and modifies its value. Assume that Equations 3.2

and 3.3 assign the value 43 to j7 that makes the utility of the offer equals to 0.6. At

this point, the algorithm stops. In case changing the value of issue j7 does not bring

the utility to 0.6, then the algorithm moves to issue j6 etc. Finally, if it is not possible

to concede on issue j1 because the last value of the issue j1 was its reservation value,

then the algorithm concedes on the second most important issue from the opponent’s

point of view which is j2 in our example.

Figure 6.2: Illustration of the IOG-trade-off mechanism

It is assumed that an agent is capable of ranking the issues from its point of view, for

example, an agent is able to say whether money or delivery time is more important.

However, ranking the same issues from the opponent’s point of view is a nontrivial
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task and it is an important research matter, e.g., see [22]. The opponent’s issue ranking

mechanism proposed here works as follows: An agent finds the percentage of the

concession offered on each issue in the previously received two offers, then it ranks the

importance of the issues accordingly. For example, Table 6.1 shows offers exchanged

between two agents in two negotiation rounds for the price and quantity issues. The

percentage of the seller concession on the price is (100 − 10)/100 = 10 % while the

percentage of its concession on the quantity is (11 − 5)/11 = 54.54 %. It can be

detected that the price issue is more important to the seller agent than the quantity

issue, hence the buyer agent can rank the issues according to their importance from the

seller agent’s point of view: {price � quantity}.

Table 6.1: Example of exchanged offers over two negotiation issues

Price Quantity
round 1 seller 100 5

buyer 10 50
round 2 seller 90 11

buyer 30 48

An agent using the explained ranking method repeats the ranking process at the start of

each negotiation round since the assumption is that the opponent may change its men-

tal state and hence the importance of different issues may change during negotiation.

This ranking method is flexible since an agent can detect changes in its opponent’s

mental state by tracking the percentages of concessions offered on each issue in each

negotiation round. However, in many cases, an agent would have some experience or

domain knowledge that enables it from guessing the rank of negotiation issues from

its opponent’s point of view especially when the negotiating agents are of buyer and

seller types. As the issue ranking is not in the scope of this thesis, in the experimental

work, a buyer agent is assumed to have partial knowledge about the importance of the

issues from the sellers’ point of view.

As previously stated, one of the two important conditions that are necessary to apply

the trade-off mechanism effectively is that agents have divergent preferences over at

least one issue (see Section 2.3.3.5). It is obvious from Table 6.1 that the seller agent

is more sensitive towards the price when compared to the buyer agent, while the buyer

agent is more sensitive to the quantity when compared to the seller agent. In this

case, both agents have divergent preferences over the two issues and the buyer agent
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concedes more on the price (while staying on its indifference curve) while the seller

agent concedes more on the quantity issue while staying on its current indifference

curve assuming that both agents use the IOG-trade-off mechanism.

A second numerical example that represents a seller agent (∀ji ∈ J, IVji > RVji) uses

Equations 3.2 and 3.3 to find the next offer is given next. Assume J = {j1, j2, j3} and

the reservation intervals for the issues are j1 ∈ [10, 30], j2 ∈ [20, 40], j3 ∈ [15, 35].

Assume that the issues are ranked as follows:{j2 � j1 � j3} and the last proposed

composite offer was {j1 = 20, j2 = 30, j3 = 25}. Let the utility of the current indif-

ference curve be equal to 0.6 and the weight vector W = {0.5, 0.3, 0.2}. According

to the IOG-trade-off, an agent concedes first on the most important issue which is

j2. Assume that the agent decides to offer 22 on the issue j2 using a time-dependent

tactic with a conceder mode. Now, the value of j1 is kept as is for the current it-

eration and the objective is to find a value for the issue j3 using the equations 3.2

and 3.3 as follows. First, the uj3 needs to be found from equation 3.3 where 0.6 =

0.5∗((30−20)/(30−10))+0.3∗((40−22)/(40−20))+0.2∗uj3 . Solving the equation

results in uj3 = 0.4. The next step is the find the value of j3 that produces the utility

0.4 from equation 3.2 as follows: 0.4 = (35−xj3)/(35−15), solving for xj3 , xj3 = 27

which means that the next composite offer will be {j1 = 20, j2 = 22, j3 = 27}.

The above example required only one step since the value of the issue j3 that is needed

to keep the current indifference curve utility (i.e., 0.6) did not go beyond the reserva-

tion value of the issue j3. If the required value of the issue j3 to keep the current utility

level is, e.g., 37, then the value of the issue j3 is assigned 35 which is its reservation

value and the next iteration of the algorithm proceeds to find a new value for the issue

j1 (the current least important issue) that keeps the current utility unchanged. If this

step is also unsuccessful, then the value j2 = 22 needs to be changed, i.e., a higher

value needs to be proposed to keep the current utility of the indifference curve.

–IOG-concession:
The IOG-concession is a concession offer generation method where an agent needs

first to decide its current acceptable utility value that is less than its previous one. The

next step is to find a value for each issue in the composite offer to be proposed next.

The agent starts conceding on the CMII from the opponent’s point of view. The process

here is similar to the process of computing the value of a composite offer in case the
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agent uses the IOG-trade-off mechanism. The difference here is that the utility of the

current composite offer is lower than the utility of the previous composite offer.

It is true that an agent cares about the weighted average utility (when negotiation is-

sues are linearly dependent) which means that the agent may concede on any issue

that brings its utility to the designated utility level and the issues can be selected ran-

domly since the utility of the composite offer is the important criterion here. However,

adopting the IOG-concession mechanism has two benefits:

• In case agents have divergent preferences over issues, the IOG-concession mech-

anism can result in a better offer value for the opponent which may improve the

chance of reaching an agreement quickly. In addition to saving time by reach-

ing an agreement quickly, if an agreement is reached in the current negotiation

round, the conceding agent does not lose more utility if negotiation continues.

It can happen that the conceding agent may need to concede again in the next

negotiation round.

• The IOG-concession mechanism may improve social welfare when the propos-

ing agent provides more concessions on the issues that are more important for

the opponents first.

One way to determine the required aspiration level at any time during negotiation is to

use Equation 6.1 that depends on both, the time elapsed and the β value. If an agent is

in desperate need for an agreement, it uses large β values which means that the agent

is willing to accept low utility offers in exchange for reaching an agreement. The value

of β can cause a conceder, a Boulware or a linear behavior which is similar to the role

of β in the time-dependent tactics.

Ud(xt
d→s

[Jq]) = 1− (t/tdmax)
(1/β) (6.1)

In Equation 6.1, t is the current time, tdmax is the agent’s deadline. For example, at time

t = 0, the results of the equation (t/tdmax)
(1/β) equals 0, then the required aspiration

level equals 1. That is normal since an agent at the start of negotiation starts with high

aspiration level, then it concedes by reducing its aspiration level during negotiation.

In one-to-many negotiations, other factors can be used to determine the current re-

quired utility value such as the number of negotiation instances. More negotiation
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instances means more opponents and hence better bargaining power for the agent on

the ‘one’ side. In other cases, an agent chooses a fixed amount of concession in each

negotiation round. For example, an agent may concede 0.05 in each time it decides to

use a concession offering mechanism.

6.3 The Meta-Strategy Model

The proposed negotiation meta-strategy is a strategy that selects a certain offer genera-

tion technique from a predefined set of offer generation techniques during negotiation.

The selection criteria depends on the current negotiation situation in terms of the num-

ber and the behaviors of the current opponents. As mentioned in the solution approach,

see Section 4.3, the buyer agent may change its negotiation strategy by changing any

of its strategy components or their associated parameters. This chapter considers the

Θ strategy component which is the set of offer generation techniques and their asso-

ciated parameters. In particular, the proposed meta-strategy may use a different offer

generation mechanism in each negotiation round.

As mentioned in the introduction of this chapter, the buyer agent alternates between

a concession tactic and a trade-off tactic during negotiation. The buyer agent uses

the trade-off tactic whenever the situation is favorable, otherwise the buyer uses a

concession tactic. Deciding whether the buyer agent is in a favorable situation depends

on both, the number of opponents and their behaviors in terms of their concessions. If

the opponents are offering generous concessions then the situation is favorable for the

buyer agent, otherwise it is not. More opponents means the buyer agent has more

bargaining power and hence the situation is favorable.

Algorithm 4 summarizes the meta SMM strategy (MSMM). The data preparation steps

are similar to the data preparation presented in Chapter 4. The data preparation is

shown in lines 1− 7.

When considering the situation where the buyer agent has the privilege to renege from

a temporary agreement without paying a penalty, the approach works as follows: in

the first few negotiation rounds, the buyer agent classifies the seller agents into two

groups, a favorable group and unfavorable group depending on their relative behavior

(relative to the buyer’s behavior) by comparing the amount of concessions offered by
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each delegate di and its opponent si. The buyer agent uses the meta-strategy with the

favorable group, while using the concession strategy with the unfavorable group.

At this point, we have a few problems to deal with. The first one is how an opponent’s

behavior is measured? The second one is how much the buyer agent concedes when it

chooses to use the concession strategy? A third one is how the distance between two

indifference curves is determined when the buyer agent moves from one indifference

curve to another during negotiation where the distance is measured in terms of utility.

Algorithm 4 (MMSM)
Require: < Xt−1

d1,1↔s1,1
[j], Xt−1

d1,2↔s1,2
[j], ..., Xt−1

d1,n1
↔s1,n1

[j] >, ...,

< Xt−1
dm,1↔sm,1

[j], Xt−1
dm,2↔sm,2

[j], ..., Xt−1
dm,mn↔sm,mn

[j] >

1: for i = 1→ n do . see Section 4.3, n is the number of seller agents
2: Fi = Usi − Udi
3: end for
4: ∆F = < F1, F2, ..., Fn >

5: for all (Fi ∈ ∆F ) do
6: if (Fi > 0) then
7: add(fs, si)

8: else
9: add(fs

′
, si)

10: end if
11: end for
12: if (fs 6= ∅) then
13: NegoTatcic = trade-off

14: end if
15: if (fs

′ 6= ∅) then
16: NegoTatcic = time-dependent

17: end if
18: if (fs 6= ∅ and fs′ == ∅) then
19: set = sort(fs)

20: fs
′

= take(set, 1, |set|/2) . integer division
21: fs = take(set, |set|/2 + 1, |set|)
22: end if
23: if (fs == ∅ and fs′ 6= ∅) then
24: set = sort(fs)

25: fs
′

= take(set, 1, |set|/2) . integer division
26: fs = take(set, |set|/2 + 1, |set|)
27: end if
28: end algorithm
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In this chapter, the utility difference between consecutive offers is considered instead

of considering the difference in concessions for the purpose of evaluating the oppo-

nents. The reason is that the negotiation object is characterized by several issues and

it is difficult to consider the difference in concession between each pair of issues since

evaluating the behavior of an opponent becomes more difficult given that agents may

have different priorities over the negotiation issues. The utility difference evaluates the

opponent agents and works equally as well as the concession difference. The process

of using the utility difference is shown in lines 1-3 in Algorithm 4. In the algorithm,

Usi stands for the difference in utility between the last two offers proposed by the seller

agent si whereas Udi stands for the difference between the last two counteroffers pro-

posed by the delegate di. Lines 5-11 classify the current seller agents into either a

favorable set (fs) or unfavorable set (fs′) depending on the results in the utility differ-

ence shown in lines 1-3. If the difference in utility between the last two counteroffers

of a delegate di is more than the difference in utility between the two offers of seller

agent si (Fi in Algorithm 4) then the seller agent si is added to the favorable group

fs, otherwise it is added to the unfavorable group fs′ . The classification process is

performed at the start of negotiation. The buyer agent chooses to use a trade-off tactic

with the fs group and a concession tactic with the fs′ group.

It can happen that all the seller agents are classified in the set fs. In this case, if the

buyer agent chooses to use a trade-off tactic, it might jeopardize reaching an agreement.

To reduce the risk of not reaching an agreement, lines 18-20 sort the fs set ascendingly

and take the first half of the seller agents and assign it to a new fs
′ set and assign the

second half (the more favorable seller agents) to a new fs set. The algorithm uses the

meta-strategy with the new fs set and the concession strategy with the new fs
′ set.

If all seller agents are assigned to the fs′ set, then a similar procedure is applied to

ensure that the buyer agent does not use only a concession tactic with all seller agents,

see lines 23-26.

When the buyer agent uses a trade-off negotiation tactic, it needs to decide when to

move from one iso-curve to another during negotiation, since if it stays on the same

iso-curve for a long time, it might jeopardize reaching an agreement. The reason is that

the buyer agent could reach a point where it is difficult to propose new counteroffers

to the seller agents that have extra value for them. It means that the buyer agent is

not willing to concede anymore from the sellers’ point of view which might end the
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negotiation with a conflict outcome. On the other hand, since agents are negotiating

under incomplete knowledge, the buyer agent cannot tell when its current proposal

does not provide any added value to its opponent than the previous one. However,

since the buyer agent is negotiating with multiple seller agents, it can use the behaviors

of the seller agents with whom it uses the trade-off tactic to decide when to move from

one iso-curve to another. Deciding when to move from the current iso-curve to a new

iso-curve with lower utility is considered next.

The buyer agent needs to define a deadlock point where it should move to a new iso-

curve in the next negotiation round. There could be many signs for a deadlock point.

For example, if the seller agents start offering proposals with lower utility than the

previous ones, then this could be a sign for a deadlock. Since the seller agents in this

thesis are assumed to offer equal or more utility proposal values than the previously

offered ones, a different deadlock indicator needs to be considered. As a proposed so-

lution, the buyer agent finds the first-order utility difference (Su) from the last received

two offers by each member in the set fs and the first-order utility difference (Bu) from

the last two counteroffers proposed by their counterpart delegates. The buyer agent

subtracts Bu from Su, i.e., udiff = Su − Bu. If the maximum number in the set udiff
is less than or equal to 0, then the buyer agent reaches a deadlock point and needs to

move to a new iso-curve. It means that none of the seller agents in the set fs offers

more concession than the concession offered by its counterpart delegate in the last two

negotiation rounds which is considered unfavorable situation for the buyer agent.

When the buyer agent using the MSMM strategy decides to move to a new iso-curve

at time t, the distance between the old iso-curve and the new iso-curve is based on the

smallest first-order difference in the utility offered by any seller agent in fs in the last

two negotiation rounds. In other words, the buyer agent reduces its aspiration level by

the amount of the least utility difference offered by any seller agent in fs. The intuition

behind this decision is to imitate the concession of the most difficult opponent in fs

that improves the chance of reaching a valuable agreement for the buyer agent. Other

work in the literature [36] assumes a fixed distance between iso-curves. However, this

is a strong assumption since other factors need to be considered such as time, behaviors

of the opponents, etc.

166



6.4. Experimental Evaluation

6.4 Experimental Evaluation

This section shows the experimental results for testing both, the MSMM strategy and

the IOG-concession tactic. All the results are analyzed and discussed.

6.4.1 Experimental Settings

The buyer agent uses the time dependent-tactic to generate its first two counteroffers

then it uses either the MSMM strategy or the IOG-concession tactic to generate the

rest of the counteroffers. The MSMM strategy is tested against two buyer agents who

use different negotiation strategies to generate their counteroffers. Since the results

presented in Chapter 5 show that the eCN strategy proposed in [106] outperforms most

of the strategies in the literature, it is selected as a benchmark strategy. In addition, as a

base benchmark strategy, the general negotiation strategy (GS) is also used. The GS is

a strategy where the buyer agent does not change any of its negotiation variables during

negotiation and it can be either a patient strategy or a desperate strategy. As explained

in Chapter 5, the desperate strategy accepts the first acceptable agreement and quits

negotiation while the patient strategy keeps negotiating until it reaches its deadline or

all the seller agents quit negotiation. The general strategy used in this section uses

the patient technique since all the buyer agents are assumed to keep negotiating with

their opponents until they reach their deadlines or all the opponents quit negotiation.

When one of the these two conditions hold, each buyer agent selects agreement with

the highest utility. Since the IOG-concession tactic is a concession tactic, it is tested

against GS which is considered a concession tactic too.

In all the experiments of this chapter, when an agent decides to accept an offer, it first

checks for the utility of the received offer, if it is equal to its current aspiration level

or more, then the agent checks whether each value of each issue in the received offer

is more/less than its reservation value. If the answer is yes, then the offer is accepted,

otherwise the offer is rejected. Moreover, the experiments used to generate the re-

sults in this chapter assume that the buyer agents and the seller agents have divergent

preferences over the negotiation issues.

The following points highlights the general experimental settings:
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• Deadlines. If the system does not require a fixed negotiation time for all agents,

a deadline is randomly selected from the interval [5, 30] at the start of each ne-

gotiation instance for all seller agents. To study the performance of different

negotiation strategies under different deadlines. Experiments are designed to

test the performance of the different buyer strategies when the buyer agents have

both, shorter and longer deadlines than the seller agents’ deadlines. In all exper-

iments, the buyer agents have the same deadline that is selected randomly from

a chosen interval. In addition, the buyer strategies are also tested when all agents

(buyers and sellers) have equal deadlines.

• Agent types. An agent can be either time-dependent, behavior-dependent or

mixed type. The mixed type agent means that the agent mixes between the time-

dependent and the behavior-dependent tactics when generating its offers. Since

the benchmark eCN agent relies only on changing the convexity curve during

negotiation to generate its counteroffers, both eCN and GS buyer agents use

the time-dependent tactics to generate their counteroffers. At the start of each

negotiation instance, all buyer agents are assigned the same β value selected

randomly from the interval [0.1, 5]. At the start of each negotiation instance,

each seller agent selects a β value randomly from the same interval. In addition,

an experiment is designed to test the buyer strategies when the seller agents use

a mixed offer generation strategy.

• Length of the agreement zone. The performance of different strategies are

tested for different lengths of agreement zones, i.e., different percentages of

overlaps between the reservation intervals of negotiation issues of buyer agents

and seller agents, see Section 4.5.2.

• Number of agents and number of issues. The proposed MSMM and IOG-
concession strategies is tested with different number of seller agents and with

different number of negotiation issues per object. To test how different buyer

strategies are affected by the different number of seller agents, the experiment

starts with 2 seller agents then 3, 4, ..., 10 agents. While the number of seller

agents are changed, the number of issues is fixed. On the other hand, to test the

strategies against different number of issues, the experiment again starts with 2

issues then 3, 4, ..., 10 issues per object. While changing the number of issues,

the number of seller agents is fixed.
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6.4.2 Experimental Results and Discussion

This section shows the results of the experiments and discusses the results. First, the

performance of the MSMM strategy is tested when the buyers’ deadline is smaller,

larger or equal to the seller agents’ deadlines. Second, the strategy is also tested when

the length of agreement zones between the buyer agents and the seller agents are small

and large. In addition, the MSMM strategy is tested against seller agents who mix

between the time-dependent tactics and the behavior-dependent tactics to generate their

offers. On the other hand, the IOG-concession tactic is tested when all agents select

random deadlines from the same interval and when all agents have equal deadlines.

In the experiments, four evaluation criteria are considered: utility rate, agreement rate,

Nash product rate and utility difference rate. Nash product rate is used as a perfor-

mance criterion for the social welfare [104]. Large Nash product rate indicates better

social welfare. The utility difference rate is the absolute difference between the agree-

ment utility of a seller agent and its counterpart delegate. The utility difference rate

indicates the fairness of the agreements, the lowest utility difference rate the better.

As a reminder of the notation used in the figures of this section, the BST label of the x-

axis stands for the buyer strategies. Each y-axis label refers to a different performance

criteria: U rate is the utility rate, A rate is the agreement rate. Nash prod. is the Nash

product and the U diff. stands for the utility difference. The utility rates, the Nash

product rates and the utility difference rates shown in the figures of this chapter are

calculated per number of the agreements achieved.

In all the experimental results shown in this chapter, when the number of agents per

object varies, the number of issues per object is set to 5 and when the number of

issues per object varies, the number of seller agents per object is set to 5 too. For each

different number of seller agents per object or different number of issues per object, the

experiment is repeated 1000 negotiation rounds. The results are averaged and plotted.

6.4.2.1 Testing under Different Deadline Lengths

The specific experimental settings for testing the MSMM strategy when the buyer

agents have shorter deadlines, longer deadlines and equal deadlines to the seller agents’

deadlines are presented in Table 6.2.
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Table 6.2: Experimental settings of different deadline lengths

Agents or issues per object Deadline description
Buyers’

deadlines
sellers’

deadlines
Buyers’

beta value
sellers’

beta values Overlap
Figure
name

Number of agents varies
Buyers have

shorter deadlines [5-30] [31-50] [0.5-5] [0.5-10] [0%-100%] 6.3,6.4

Number of issues varies
Buyers have

shorter deadlines [5-30] [31-50] [0.5-5] [0.5-10] [0%-100%] 6.5

Number of agents varies
Buyers have

longer deadlines [31-50] [5-30] [0.5-5] [0.5-10] [0%-100%] 6.6

Number of issues varies
Buyers have

longer deadlines [31-50] [5-30] [0.5-5] [0.5-10] [0%-100%] 6.7

Number of agents varies
All agents have
equal deadlines - - [0.5-5] [0.5-10] [0%-100%] 6.8

Number of issues varies
All agents have
equal deadlines - - [0.5-5] [0.5-10] [0%-100%] 6.9

The overlap in Table 6.2 refers to overlap between the reservation intervals of the ne-

gotiation issues. The columns in Table 6.2 starting from “Buyer’s deadlines” to “Over-

lap” show intervals where a random number from each interval is selected randomly to

specify a certain negotiation parameter for each agent at the start of every negotiation

round. All buyer agents are assigned the same deadline and the same β value at the

start of every negotiation round. Random overlap percentages are selected from the

interval [0%− 100%] for each issue where the seller agents can have different overlap

percentages for the same issue. In addition, a deadline value and a β value are selected

randomly from the intervals shown in Table 6.2 for each seller agent at the start of

every negotiation round. For example in a certain negotiation round, seller agent 1 can

have 20 as a deadline value while seller agent 2 can have 25 as a deadline value etc.

The same applies for the other parameter values. This is to ensure that the seller are

different while the buyer agents are the same except for the bidding strategy they use.

The experimental results when the buyer agents have shorter deadlines than their oppo-

nents’ deadlines are shown in Figure 6.3. When the buyer agents have shorter deadline

lengths, they reach their reservation values before the seller agents do and the same

applies for the seller agents.

The results in Figure 6.3 show that the MSMM strategy outperforms the eCN and

GS strategies in terms of utility rates, see Figure 6.3a. The three buyer agents have no

problem in terms of the agreement rate as shown in Figure 6.3b except that the MSMM
strategy has lower agreement rates than the other two strategies when the number of

seller agents is small≤ 3. Consider the number of seller agents per object is small, e.g.,

2, the classification process in the MSMM strategy then assigns one seller agent to fs
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.3: The buyer agents have shorter deadlines than the seller agents’ deadlines
and the number of seller agents per object varies.

and another to fs′ . The classification process may change the positions of the seller

agents in the next negotiation round and since the buyer agent has lower deadline than

its opponents’ deadlines, it may have not enough time to adapt to the situation after

the new classification and consequently miss the agreement. The reason behind the

fact that the buyer agents do not have a problem in reaching near 100% agreement rate

in the given settings is that the buyer agents offer their reservation values before the

seller agents do. In addition, there are multiple providers and the chance of reaching

an agreement with at least one of them is high given the fact that agreement zones

between the buyer agents and the seller agents do exist.

The Nash product rates of the MSMM strategy is higher than the Nash product rates

of the other benchmark strategies, see Figure 6.3c. Because the MSMM strategy is

both competitive and cooperative, see Section 6.2. When the number of seller agents

per object increases, the Nash product rate increases for all strategies. The reason

is that the buyer agents achieve higher utility per agreement when the number of the
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sellers is high which increases the Nash product rates. The eCN strategy has the lowest

Nash product rates since it is a very competitive strategy and does not cooperate with

its opponents. The Nash product rates for GS is always higher than the Nash product

rates of the eCN strategy because GS offers more proposal values to its opponents

which increases the Nash product agreement value. When the number of seller agents

per object is high enough (> 10), GS approaches the MSMM in terms if Nash product

rates, see Figure 6.3c. The reason is that when the number of the sellers increases,

the buyer agent using GS has the opportunity to select a more valuable agreement. In

addition, GS offers proposals that have better utility values to its opponents in every

negotiation round. This results in improved Nash product rates.

The utility difference is shown in Figure 6.3d. The utility difference indicates the fair-

ness of an agreement. If the utility difference between two agreement utilities is 0, it

means that each opponent achieves the same utility from the agreement. If the utility

difference for a strategy is lower than the utility difference for another, then the first

strategy achieves an agreement that is more fair than the agreement archived by the

second strategy. In all cases shown in Figure 6.3d, GS has lower utility difference rates

than the other two strategies. The utility difference rates of the MSMM strategy is

higher than the utility difference rates of the eCN and GS strategies. Figure 6.3d shows

that the difference in utility difference between the eCN strategy and MSMM strate-

gies is relatively small when the number of seller agents per object is small. When the

number of seller agents becomes large, the MSMM strategy becomes more competi-

tive and secures high utility agreement when compared to the utility agreement of its

opponent.

The GS achieves the best results in terms of utility difference because GS is a conces-

sion strategy that keeps offering concessions throughout negotiation until it reaches an

agreement. In addition, the seller agents in this experimental settings use a conces-

sion strategy which makes them keep offering concessions throughout negotiation too.

Therefore, the buyer agent using GS and the seller agents using their own concession

strategy keep approaching one another in the offers/counteroffers they propose which

reduces the difference between the buyer’s utility agreement and the seller’s utility

agreement.

In all the experimental results shown for the strategy MSMM, the seller agents’ classi-
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.4: The buyer agents have shorter deadlines than the seller agents’ deadlines
and the number of seller agents per object varies.

fication process is repeated at the start of each negotiation round except for the results

shown in Figure 6.4. The results in Figure 6.4 show the results under the same experi-

mental settings used for the experiments of Figure 6.3 except that the MSMM strategy

classifies the seller agents at the start of the negotiation instance and do not update the

classification later. The difference between the two classification schemes in terms of

the utility rates is obvious, see Figures 6.3a and 6.4a. When the buyer agent reclassifies

the seller agents at the start of each negotiation round, it gains recent knowledge about

the new objectives and behaviors of the seller agents. In case the buyer agent classifies

the seller agents once at the start of negotiation, the knowledge it gains becomes old

and less effective as the negotiation process continues. Both classification schemes

achieve similar results in terms of the agreement rates, see Figure 6.4b. However, the

classification of the seller agents once at the start of negotiation results in better Nash

product rates and better utility difference rates, see Figures 6.4c and 6.4d. The utility

difference rates are similar to the utility difference rates produced by GS in most cases.
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When the buyer agent seeks to secure high utility results, it needs to classify the seller

agents at the start of every negotiation round. While if the buyer agent cares more

about the social welfare and the fairness of the agreements, it should classify the seller

agents once at the start of negotiation only. This conclusion applies when the seller

agents use the time-dependent tactics to generate their offers. In all the following ex-

perimental results regarding the MSMM strategy, the buyer agent classifies the seller

agents at the start of every negotiation round.

(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of issues per object)

Figure 6.5: The buyer agents have shorter deadlines than the seller agents’ deadlines
and the number of issues per object varies.

The results when the buyer agents have shorter deadlines than the seller agents’ dead-

lines and the number of issues per object varies are shown in Figure 6.5. The numbers

on the top of the figure indicate the number of issues per object. The numbers start with

2 issues per object and increases gradually until 10 issues per object. For the specific

experimental settings, see Table 6.2. As the number of issues per object increases, all

strategies achieve gradually lower utility rates since the agents need to wait and keep

174



6.4. Experimental Evaluation

conceding until they achieve the required utility for the object. However, Figure 6.5a

shows that the MSMM strategy outperforms the other two strategies in terms of utility

rate under all different number of issues per object. As before, the buyer agents have

no problem in reaching agreements under the specified settings, see Figure 6.5b.

The Nash product results are shown in Figure 6.5c. When the number of issues per

object is 2, the MSMS achieves lower Nash product rate than GS and similar to the

eCN strategy. However, as the number of issues per object increases, the MSMM
strategy outperforms the other two strategies. The reason is that when the number of

issues increases, the MSMM strategy starts offering more utility values to its oppo-

nents since the MSMM strategy considers that agents have divergent preferences over

issues when generating its counteroffers. The eCN strategy has the lowest Nash prod-

uct rates. Figure 6.5d shows the utility difference results. The GS performs the best

in terms of utility difference for the same reasons stated earlier. When the number of

issues per object becomes large enough (> 7), the MSMM strategy performs similar

or better than the eCN strategy since it starts offering its opponents more utility values

that reduces the absolute difference between their utility agreements.

The experimental results when the buyer agents have longer deadlines than their oppo-

nents’ deadlines are shown in Figure 6.6. Figure 6.6 shows the results when the number

of seller agents per object varies. Since the seller agents have shorter deadlines, the

seller agents approaches their reservation values before the buyer agents do. Accord-

ingly, the difference in the utility rates between different strategies are not expected to

be large, see Figure 6.6a. However, the MSMM strategy outperforms the other two

strategies in all cases. Since the deadlines for the seller agents are shorter than the

buyers’ deadline, the seller agents offer their reservation values and quit negotiation

before the buyer agents do. That can affect the agreement rates negatively, see Figure

6.6b. However, the MSMM strategy produces equal or better agreement rates than the

other two strategies. When the number of seller agents per object is small, the eCN

strategy performs the worst. The Nash product results show that the MSMM strategy

outperforms the other two strategies in all cases as well, see Figure 6.6c. The eCN

strategy produced the lowest Nash product rates because it is a competitive strategy

that does not show any cooperation with its opponents.

The utility difference results presented in Figure 6.6d show that GS performs the best.
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.6: The buyer agents have longer deadlines than the seller agents’ deadlines
and the number of seller agents per object varies.

In spite of the MSMM strategy outperforms the eCN strategy in terms of the utility

rates, in many cases, there is no significant difference between the MSMM and eCN

strategies in terms of the utility difference for the reasons stated earlier.

Figure 6.7 shows the experimental results when the buyer agents have longer deadlines

than the seller agents’ deadlines and the number of issues per object varies. As shown

before, when the number of issues per object increases, the general trend is that the

utility rates decreases for all strategies, see Figure 6.7. However, the MSMM strategy

outperforms the benchmark strategies in all cases, see Figure 6.7a. The results of

the agreement rates shown in Figure 6.7b are similar to the agreement rates shown in

Figure 6.6b except for the eCN strategy where its agreement rates decreases when the

number of issues per object increases. To a less extent, the same happens with GS

while the MSMM strategy shows stability in the agreement rates.

The MSMM strategy outperforms the other two strategies in terms of Nash product
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of issues per object)

Figure 6.7: The buyer agents have longer deadlines than the seller agents’ deadlines
and the number of issues per object varies.

rates, see Figure 6.7c. In addition, in many cases it performs similar to the eCN strategy

in terms of the utility difference, see Figure 6.7d.

The last set of the experiments in this section is when all agents have equal deadlines.

Starting with the results presented in Figure 6.8 where the number of seller agents

per object varies, Figure 6.8a shows that the MSMM strategy performs better than

the other two strategies and the eCN strategy comes next. Since all agents have equal

deadlines, all buyer agents achieve 100% agreement rates, see Figure 6.8b.

When the number of seller agents per object is small, the MSMM strategy performs

the best in terms of Nash product rates, see Figure 6.8c. When the number of seller

agents per object increases, the MSMM strategy starts producing lower Nash product

rates than the Nash product rates produced by GS. The reason is that when the number

of seller agents per object increases, the MSMM strategy becomes more competitive

and the result is lower Nash product rates. However, The MSMM produces better
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.8: All agents have the same deadline and the number of seller agents per
object varies.

Nash product rates than the ones produced by the eCN strategy in all cases shown in

Figure 6.8c.

The utility difference rates show that the MSMM strategy outperforms the eCN strat-

egy when the number of seller agents per object is small, see Figure 6.8d. However,

when the number of sellers per object increases, the MSMM strategy performs the

worst since it becomes more competitive in the given settings. The GS performs the

best in terms of the utility difference rates for the same reasons stated earlier.

Figure 6.9 shows the experimental results when the number of issues per object varies.

The utility rates show the same trend as before, see Figure 6.9a. The MSMM strategy

is also consistent to outperform the benchmark strategies. The results for the agree-

ment rates are as in Figure 6.8b where all buyer agents achieve 100% agreement rates

because all agents have equal deadlines and the agreement zones between the buyers

and sellers exist, see Figure 6.9b.
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of issues per object)

Figure 6.9: All agents have the same deadline and the number of issues per object
varies.

When the number of issues per object is large (> 6), the MSMM strategy outper-

forms both, the GS and eCN strategies in terms of Nash product rates, see Figure 6.9c.

The reason is the MSMM strategy offers its opponents more utility values when the

number of issues per object is large, as a result, the Nash product rates are improved.

Finally, the utility difference rates are shown in Figure 6.9d. When the number of is-

sues per objects becomes large enough (> 6), the MSMM strategy outperforms the

eCN strategy for the reasons stated earlier. In all cases, GS performs the best for the

reasons explained before.

6.4.2.2 Testing under Different Agreement Zone Lengths

The specific experimental settings for testing the MSMM strategy when the agents

have small and large overlap percentages between the reservation intervals of their

negotiation issues are presented in Table 6.3. The agreement zones and the overlap
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percentages are used interchangeably.

Table 6.3: Experimental settings of different agreement zone lengths

Agents or issues per object Overlap description
Buyers’

deadlines
sellers’

deadlines
Buyers’

beta value
sellers’

beta values Overlap
Figure
name

Number of agents varies Small overlap [5-30] [5-30] [0.5-5] [0.5-10] 5%-30% 6.10
Number of issues varies Small overlap [5-30] [5-30] [0.5-5] [0.5-10] 5%-30% 6.11
Number of agents varies Large overlap [5-30] [5-30] [0.5-5] [0.5-10] 70%-95% 6.12
Number of issues varies Large overlap [5-30] [5-30] [0.5-5] [0.5-10] 70%-95% 6.13

In Table 6.3, a small overlap percentage is considered between 5% and 30% and a large

overlap percentage is considered between 70% and 95%. When the overlap percentage

in samll then the agreement zone is small and vice versa. For more information, see

Section 4.5.2. When testing the performance of different strategies when the agreement

zones are small, random overlap percentages are selected from the interval [5%−30%]

for each issue where the seller agents can have different overlap percentages for the

same issue. When testing for large agreement zones, the same procedure is used except

that the interval of selection becomes [70%− 95%].

In every negotiation round, each seller agent selects two random values from the in-

tervals [5 − 30] and [0.50 − 10] for its deadline and β value respectively. In addition,

two random values are selected randomly from the same intervals at the start of each

negotiation round and assigned to the buyer agents as their deadline and β value re-

spectively.

The first experimental results for testing different negotiation strategies when using

small agreement zones between the buyer agents and the seller agents where the num-

ber of seller agents per object varies are shown in Figure 6.10. When negotiating agents

have small agreement zones, agents need to reach near their reservation values before

reaching an agreement. This results in low utility agreement rates for all agents. How-

ever, the MSMM strategy records better agreement rates than the other two strategies,

see Figure 6.10a. As Figure 6.10a shows, when the number of seller agents per ob-

ject increases, the buyer agents achieve higher utility rates. The negotiation strategies

MSMM and GS achieve similar agreement rates while the eCN has lower agreement

rates when the number of seller agents per object is small, see Figure 6.10b.

Even though the Nash product rates are small due to the low utility of an agreement

for both, the buyer agents and the seller agents, the MSMM strategy outperforms the

180



6.4. Experimental Evaluation

(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.10: Agents have small overlap between their reservation intervals and the
number of seller agents per object varies.

other two strategies significantly, see Figure 6.10c. The utility difference rates show

that the MSMM strategy performs the worst, see Figure 6.10d.

Figure 6.11 presents the experimental results when the number of issues per object

varies while agents have small agreement zones. The utility results show that MSMM
strategy outperforms the GS and eCN strategies in terms of utility rates as before,

see Figure 6.11a. While the utility rates increase gradually for the MSMM strategy

when the number of issues per object increases, the utility rates for the other strategies

either decrease slightly or stay stable. The agreement rates archived by the MSMM
strategy are similar to the agreement rates achieved by GS when the number of issues

per objects becomes high, i.e., > 8, see Figure 6.11b. The agreement rates achieved

by the eCN strategy are lower than the agreement rates achieved by the other strategies

in the given negotiation settings since the eCN strategy is a competitive one and may

not offer enough concessions which causes the presented results.
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of issues per object)

Figure 6.11: Agents have small overlap between their reservation intervals and the
number of issues per object varies.

The Nash product rates here are similar to the previous results, see Figures 6.10c and

6.11c. Since the number of seller agents is fixed here (see Section 6.4.2), the utility

difference rates are relatively stable across different number of issues per object for

all the buyer agents, see Figure 6.10d. In addition, the MSMM strategy shows higher

utility difference than the other two strategies in all cases.

The next two sets of experiments show the results when the agreement zone lengths

between buyers and sellers are large. Figure 6.12 shows the results when the number

of seller agents per object varies. Larger agreement zones indicate a better negotiation

environment. The buyer agents are able to achieve higher utility rates than in the

previous set of experiments, see Figures 6.12a and 6.11a. In all cases, the MSMM
strategy performs better than the other strategies in terms of utility rates, see Figure

6.12a. Since the agreement zones are large between agents, all the buyer agents have

no problem in the agreement rates, see Figure 6.12b.

182



6.4. Experimental Evaluation

(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.12: Agents have large overlap between their reservation intervals and the
number of seller agents per object varies.

When the number of sellers per object is less than 4, the MSMM strategy performs

better than the other strategies in terms of the Nash product rates, see Figure 6.12c.

However, when the number of sellers is beyond 4, the strategies MSMM and eCN per-

form similarly. The reason is that the MSMM strategy takes advantage of the situation

when the number of sellers is large. When the number of sellers increases, all strate-

gies produces lower Nash product rates. As Figure 6.12c shows, GS starts to perform

better than the other strategies when the number of sellers per object is more than 4.

Again, the MSMM strategy produces the highest utility difference rates in most cases,

see Figure 6.12d. As the case with the Nash product rates, when the number of seller

agents per object increases, all strategies produces higher utility difference rates. As

before, GS produces the lowest utility difference in most cases.

The last set of experiments in this section is presented in Figure 6.13 where agents have

large agreement zones and the number of issues per object varies. Since the number of
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seller agents per object is fixed in all experiments, results show some stability in their

behaviors. Figure 6.11 shows that the MSMM strategies performs better than the other

two strategies in terms of utility rates, the eCN strategy comes next. As in the previous

set of experiments, the buyer agents have no problem in the reaching agreements for

the same reasons stated before, see Figure 6.13b.

(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

(The numbers above the graph bars refer to the number of issues per object)

Figure 6.13: Agents have large overlap between their reservation intervals and the
number of issues per object varies.

The MSMM strategy performs better than the other strategies in terms of Nash product

rates when the number of issues per objects becomes more than 8. The reason is that

when the number of issues per object becomes large, the MSMM strategy starts to offer

their opponents proposals with higher values. When the number of seller agents per

object is less than 8, the MSMM strategy performs either similar to the eCN strategy

or to GS.

Finally, the MSMM strategy performs worse than the other strategies in terms of the

utility difference rates when the number of seller agents per object is less than 9, after
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that, it performs similar or better than the eCN strategy, see Figure 6.13d.

6.4.2.3 Testing Against Mixed-Tactics Dependent Seller Agents

This section tests the performance of the MSMM strategy when the seller agents mix

between the time-dependent tactics and the behavior-dependent tactics to generate their

offers, see Sections 2.3.3.4 and 4.5.2. This sections shows two sets of results. The first

one is when the number of seller agents per object is larger than the number of issues

per object. The second set has the opposite settings. For the two sets of experiments,

the following settings are used: at the start of each negotiation round, the deadlines and

beta values are selected randomly for each seller agent from the intervals [5, 30] and

[0.5, 10] respectively. Similarly, at the start of each negotiation round, two single values

are selected randomly from the intervals [5, 30] and [0.5, 5] and assigned to the buyer

agents as their deadline and β values respectively. Finally, random overlap percentages

are selected from the interval [0% − 100%] for each issue where the seller agents can

have different overlap percentages for the same issue. In the follwoing experimental

results, the SST label on the x-axis stands for the seller strategies.

The first letter in the names of the seller strategies (e.g., PCAS) that are shown on

the x-axis in following experimental results stands for the type of the time-dependent

function the seller agents use to generate the time-dependent part of the final offer,

P stands for polynomial. The second letter stands for the type of the time-dependent

tactic the seller agents use, it can be conceder (C), Boulware (B) or linear L. The

third letter indicates that the seller agents use large portions of the last opponents’

concession to generate the behavior dependent tactic, see Equation 2.9. The last letter

indicates whether the total offer contains small (S) portion of the generated behavior-

dependent offer in the final offer or medium (M) portion, for more information, see

Section 4.5.2

The first experimental results where the number of seller agents per object is 10 and

the number of issues per object is 5 are shown in Figure 6.14. Figure 6.14a shows that

the MSMM strategy performs better than the other strategies in three cases, when the

seller agents play PCAS, PCAM and PLAM while it shows similar utility rates as GS

when the seller agents play PLAS and PBAM since the difference between them are not

statistically significant.
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

Figure 6.14: The number of seller agents per objects is larger than the number of issues
per object.

When the seller agents play PBAS, the MSMM strategy performs similar to the eCN

strategy and less than GS. The eCN strategy shows the lowest performance in terms of

utility rates. The reason is that the eCN strategy can have a problem in classifying the

seller agents since the seller agents may show non-monotonic behavior when using the

behavior-dependent tactic, this causes the eCN strategy to classify each seller agent

as a non-conceder. The consequence of this classification is that the eCN strategy

selects high β values that results in high concessions offers and lower utility rates are

achieved. The reason that the MSMM strategy performs less than GS is also related to

the classification scheme. However, the classification scheme of the MSMM strategy

shows better performance than the classification scheme of the eCN strategy. With

regard to the agreement rates, the buyer agent has no problem in reaching agreements

in the given negotiation settings, see Figure 6.14b. The MSMM strategy shows a lower

rate than the other strategies when the seller agents use the PBAS strategy. However,

the agreement rate achieved by the MSMM strategy is still high (> 95%).
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The results for the Nash product rates show that the MSMM strategy outperforms the

other strategies in all cases except where the seller agents use the PCAM strategy, see

Figure 6.14c. In addition to the fact that the MSMM strategy offers its opponents

more utility for its proposed counteroffers, it achieves high agreement utilities which

improves the Nash product rates. The exceptional case in the results of the Nash prod-

uct rates can be related to the fact that when the seller agents use the PCAM strategy,

they offer large concessions in the offer generated by the time-dependent tactic which

contributes a medium portion in the final offer. It means that the sellers may reach an

agreement with a very small utility rate which affects the Nash product negatively.

Finally, Figure 6.14d shows the results for the utility difference rates. When the seller

agents use the strategies PCAS or PCAM, the MSMM strategy produces the highest

rates. When the seller agents use any of the other strategies, the MSMM strategies

performs similar to GS or lower where both have higher utility rates than the eCN

strategy. The reason is that the eCN concedes more than the other strategies for the

reason stated in the previous paragraph which makes the difference in the agreement

utilities between the buyers and the sellers small. Moreover, the utility difference

rates for all buyer agents decreases sharply when the seller agents use the any of the

following strategies: PLAS, PLAM, PBAS, PBAM. The reason is the seller agents tend

to offer lower concessions that make the difference in utility smaller than when the

seller agent use any of the other two strategies.

The second set of the experimental results where the number of seller agents per object

is 5 and the number of issues per object is 10 is shown in Figure 6.15. The results

in Figure 6.15 are better than the results shown in Figure 6.14a. The results of the

utility rates here show that MSMM outperforms the other strategies in most cases and

performs similar to GS in only one case, see Figure 6.15a. Since the number of issues

per object in this experiments is higher than the ones in the previous experiments, the

MSMM strategy can secure better utility rates. On the other hand, the MSMM strategy

shows lower agreement rates in few cases, see Figure 6.15b. The reason is that the

number of seller agents per object is lower than before which makes the classification

process used by the MSMM strategy less adaptive in the given negotiation settings.

Again, the agreement rates achieved by the MSMM strategy are still high (≥ 95%).

The Nash product rates here are similar to the Nash product rates shown in Figure
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(a) (b)

(c) (d)
(1→MSMM , 2→ eCN , 3→ GS)

Figure 6.15: The number of seller agents per objects is smaller than the number of
issues per object.

6.14c, see Figure 6.15c: the MSMM strategy outperforms the other strategies except

when the seller agents use the PCAM strategy in which GS records higher rates. The

reason for that is explained above. One can note that the Nash product rates shown in

Figure 6.15c are lower than the Nash product rates shown in Figure 6.14c. The reason

is that the number of the seller agents per object in Figure 6.14c is 10 whereas the

number of seller agents per object is 5 in Figure 6.15c. Consequently, the buyer agents

are able to secure higher utility rates when the number of seller agents is high since it

considered a favorable situation for the buyer agents.

Finally, the utility difference rates are shown in Figure 6.15d. The difference between

the utility difference rates of the MSMM strategy and the other strategies are increased

to some extent here when compared to the results shown in Figure 6.14d. Since agents

are assumed to have divergent preferences over issues, the MSMM strategy can gain

more utility per agreement and can also propose counteroffers with more utility to

the opponents in every negotiation round. However since the buyer agent using the
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MSMM strategy negotiates with multiple seller agents, it selects the best acceptable

offer which increases the difference between the agreement utilities of the buyer and

the seller agent.

6.4.2.4 Testing the IOG-conceder Agent

This section compares between the proposed IOG-concession tactic and GS. The GS

is a concession type tactic that concedes on all the issues equally. On the other hand,

the agent uses the IOG-concession tactic starts conceding on the CMII from the oppo-

nent’s point of view, see Section 6.2.

Table 6.4: Experimental settings

Agents or issues per object Deadline description
Buyers’

deadlines
sellers’

deadlines
Buyers’

beta value
sellers’

beta values Overlap
Figure
name

Number of agents varies Random deadlines [5-30] [5-30] [0.5-5] [0.5-10] 0%-100% 6.16
Number of issues varies Random deadlines [5-30] [5-30] [0.5-5] [0.5-10] 0%-100% 6.17
Number of agents varies Equal deadlines [5-30] [5-30] [0.5-5] [0.5-10] 0%-100% 6.18
Number of issues varies Equal deadline [5-30] [5-30] [0.5-5] [0.5-10] 0%-100% 6.19

Table 6.4 shows the experimental settings used to generate different results in this

section. It should be mentioned here that the buyer agent uses the IOG-concession
tactic and the buyer agent uses GS propose two counteroffers in every negotiation

round that have the same utility for both agents since they concede the same amount

in terms of utility every time they generate their counteroffers. However, the values of

the issues in the two composite counteroffers can be different, see Section 6.2.

Four sets of results are presented in this section (see Table 6.4) that represent different

negotiation environments. The first set is shown in Figure 6.16. The first set shows the

experimental results when the number of seller agents per object varies and the number

of issues per object is as before, fixed and equals 5. In addition, each seller agent selects

a random deadline from the interval [5, 30] at the start of every negotiation instance. A

deadline is also selected from the same interval at the start of each negotiation instance

and assigned to the buyer agents. The overlap percentage is selected for each issue

randomly form the interval [0%-100%] at the start of each negotiation instance too.

The β values are selected as before.

The above experimental settings are used for all the experiments in this section. The

difference between the settings of difference experiments are in the number of ob-
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(a) (b)

(c) (d)
(1→ IOG− concession, 2→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.16: The number of seller agents per object varies.

jects/issues per object and the deadline which can be either randomly selected as ex-

plained before or be equal for all agents.

The utility rate results are presented in Figure 6.16a. The difference between the two

negotiation tactics in the utility rates are obvious. The IOG-concession tactic per-

forms better than GS because the IOG-concession generates counteroffers with higher

utility values to its opponents than the counteroffers generated by GS. As a result, the

IOG-concession tactic can reach an agreement faster than GS. Both agents concede

at the same rate in terms of utility. If an agent can reach an agreement in negotiation

round, for example, 7, then it can secure a better agreement utility than if it reaches an

agreement at round 8. When the number of seller agents per object increases, the utility

rates for both negotiation tactics increase since more opponents means better oppor-

tunity for the buyer agents to reach agreements with better utilities. The agreements

rates for both buyer agents are the same, see Figure 6.16b.

The Nash product rates are shown in Figure 6.16c. The figure shows that the IOG-
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concession tactic outperforms GS in all cases. The reason for that is the IOG-concession
tactic gains higher utilities for the agreements than GS. In addition, the IOG-concession
tactic provides better counteroffer utilities to its opponents. Both factors increase the

Nash product rates for the IOG-concession tactic. Finally, the utility difference rates

are shown in Figure 6.16d. The figure shows that both tactics achieve similar utility

difference rates. From the results of the previous experiments, and in most cases, GS

shows better performance in terms of the utility difference rates and since the two tac-

tics are concession tactics, they are expected to achieve similar utility difference rates.

As a final observation on the utility difference rates, when the number of seller agents

per object increases, the utility difference rates for both buyer agents increase. When

the number of seller agents is large, they have a better chance to select an agreement

with a higher utility than when the number of seller agents per object is small.

The experimental results when the number of issues per object varies while the number

of seller agents per object is fixed and equals 5 are presented in Figure 6.17. The IOG-
concession tactic outperforms GS in terms of utility rates, see Figure 6.17a. When the

number of issues per object increases, both tactics tend to gain less utility rate. The

reason is that the buyer agents need to wait more time to reach the required utility for

the object. Waiting for more time for a concession tactic means less agreement utility

than before. However, when the number of issues per object increases, the difference

between the two utility rates increases since the IOG-concession tactic can benefit

from buyer agents and seller agents having divergent preferences over issues and not

waiting for a longer time before reaching an agreement. In other words, the buyer

agent using GS needs to wait more time than the IOG-concession tactic with every

time the number of issues per object increases. Consequently, it results in bigger gaps

between the utilities of the two tactics when the number of issues per object increases.

As before, both tactics has the same agreement rate which is near 100% in all cases,

see Figure 6.17b.

The Nash product rates are shown in Figure 6.17c. The figure shows that the IOG-
concession tactic outperforms GS for the same reasons explained before. As shown

in the figure, the Nash product rates decrease when the number of issues per object

increases for both agents. The reason is that all agents (buyers and sellers) need to wait

more time to reach an agreement which negatively affects the utility of the agreement

for all agents. As the case with the utility rates results, the gaps between the Nash
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(a) (b)

(c) (d)
(1→ IOG− concession, 2→ GS)

(The numbers above the graph bars refer to the number of issues per object)

Figure 6.17: The number of issues per object varies.

product rates for both buyer agents increase as the number of issues per object increases

for the same reasons explained in the utility rates case.

Since the number of seller agents per object is fixed here, the utility difference rates are

similar and stable for both tactics across the different number of issues per object, see

Figure 6.17d. When the number of seller agents per object varies, the utility difference

rates vary, see Figure 6.16d.

The third experimental set is shown in Figure 6.18 where all agents have equal dead-

lines and the number of seller agents per object varies. The results shown in Figure 6.18

are similar to the results shown in Figure 6.16, see figures (6.18a,6.16a), (6.18b,6.16b),

(6.18c,6.16c) and (6.18d,6.16d). There is little difference in the agreement rates be-

tween the Figures 6.16b and 6.18b. Figure 6.18b shows that the buyer agents achieve

100% agreement rates whereas the buyer agents in Figure 6.16b miss few number of

agreements because the negotiating agents can have different deadlines and conse-
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(a) (b)

(c) (d)
(1→ IOG− concession, 2→ GS)

(The numbers above the graph bars refer to the number of seller agents per object)

Figure 6.18: The number of seller agents per object varies.

quently, can miss reaching some agreements.

When all agents have equal deadlines, they offer their reservation values at their dead-

lines (like in Figure 6.18b) and since the agreement zone between agents exists for all

issues, they must reach 100% agreement rates.

The reason behind the similarity between the results shown in Figures 6.16 and 6.18 is

that when the deadlines for the agents are selected randomly in every negotiation in-

stance, there will be an equal probability for the buyer agents to have shorter deadline

than the seller agents’s deadlines in the half of the number of the negotiation encoun-

ters and for having longer deadline in the other half. That applies also for a given

negotiation instance, since the buyer agent may have longer deadline then half of the

seller agents and can have shorter deadline than the second half of the seller agents.

The overall results balance each other as if all agents have equal deadlines.

Finally, Figure 6.19 shows the results when all agents have equal deadlines and the
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(a) (b)

(c) (d)
(1→ IOG− concession, 2→ GS)

(The numbers above the graph bars refer to the number of issues per object)

Figure 6.19: The number of issues per object varies.

number of issues per object varies. Again, the results shown in Figure 6.19 are similar

to the results shown in Figure 6.17, see figures (6.19a,6.17a), (6.19b,6.17b), (6.19c,6.17c)

and (6.19d,6.17d) . The reasons for this result are the same reasons that are explained

in the previous paragraph.

6.5 Summary

This chapter investigates the coordination scenario where a buyer agent negotiates

with multiple seller agents over an object characterized by multiple negotiation is-

sues. Three main parts are presented in this chapter, the first part presents a novel offer

generation mechanism, the Iterative Offer Generation IOG, that is used to generate

counteroffers for one of the buyer agents in the experimental part. The second part is

the meta-strategy coordination model. The last part is the empirical evaluation section

that presents and analyzes the experimental results.
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The IOG mechanism includes two negotiation tactics, the IOG-trade-off tactic and

the IOG-concession tactic. Both tactics consider the preferences of the opponents

when generating counteroffers. While staying on the current iso-curve, IOG-trade-off
tactic offers more concessions on the issues that are believed to be more important to

the opponents than the others. On the other hand, the IOG-concession tactic concedes

in every negotiation round. It concedes more on the issues that are also believed to be

more important to the opponents than others.

The meta-negotiation model classifies the seller agents into two sets: favorable set and

unfavorable set. The model uses the IOG-trade-off tactic for generating counteroffers

to the favorable set and uses the IOG-concession tactic for generating counteroffers

to the unfavorable set. The IOG-trade-off tactic is used to reach an agreement with

high utility while the IOG-concession tactic is used to guarantee an agreement. The

buyer agent needs to move to a new iso-curve during negotiation when a deadlock

is detected. Once a deadlock is detected, the buyer agent needs to choose new iso-

curve with a lower aspiration level than before. Otherwise, the buyer agent can either

reach an agreement with low utility (via the IOG-concession tactic) or not reaching an

agreement at all.

The distance between the current ios-curve and the new iso-curve is determined by

the lowest first-order difference in the utility offered in the last two negotiation round

amongst the unfavorable group. The results show that when the buyer agent classifies

the seller agents at the start of every negotiation round, the buyer agent gains more

utility than if the seller agents were classified only once at the start of the negotiation

instance.

The last part of the chapter presents and discusses the experimental results. The meta-

strategy is tested with different deadline lengths and with different overlap percentages.

In addition, it is tested against seller agents who mix between the time-dependent tac-

tics and the behavior-dependent tactics when generating their offers.

The results show that the meta-strategy outperforms two benchmark strategies in terms

of the utility rates and the Nash product rates. It also performs equal or better than

the other strategies in terms of the agreement rates. In most cases, the meta-strategy

produces higher utility difference rates than the other two strategies. In addition, it

shows similar results when the seller agents use the mixed strategy to generate their

offers. Moreover, the experimental results show the effect of negotiating with different
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numbers of seller agents per object and with different numbers of negotiation issues

per object.

When the number of seller agents per object increases, all buyer agents produce higher

utility rates, higher agreement rates, higher Nash product rates and higher utility dif-

ference rates. On other other hand, the buyer agents produce the opposite results when

the number of issues per object increases.

The experimental results show that the IOG-concession tactic outperforms a bench-

mark concession negotiation tactic in terms of the utility rates and the Nash product

rates when all agents select random negotiation parameter values (from the same in-

tervals) including the deadlines. In addition, the experimental results show the same

thing when all agents use equal deadlines while other negotiation parameter values are

selected randomly from the same intervals. On the other hand, the two negotiation

tactics show similar results in terms of the agreement rates and the utility difference

rates. The experiments show similar results as before when the number of seller agents

per object and the number of issues per object increase. Moreover, the results show

that there is no significant difference in the results between using equal or random

deadlines for agents.

The meta-strategy negotiation is used in the literature in bilateral negotiation. This

section presents a novel negotiation mechanism that is effective in case of one-to-

many negotiation. The main benchmark strategy that is used to validate the proposed

meta-strategy depends on managing the convexity of the concession curves during

negotiation.
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Chapter 7

Multiple Objects with Multiple
Negotiation Issues

This chapter investigates the coordination scenarios where the number of negotiation

objects are multiple and the number of negotiation issues per object are multiple as

well. Two coordination scenario mechanisms are proposed in this chapter: the mul-

tiple objects multiple issues and single provider (MMS) coordination mechanism and

the global multiple objects multiple issues and multiple providers (MMM) coordina-

tion mechanism. Since there is a single provider per object in the MMS scenario, the

coordination approach is based on managing the local reservation values for the com-

mon issues. The mechanism is tested under different negotiation environments and for

different performance criteria. The experimental results prove that the proposed MMS

coordination mechanism is effective and robust. On the other hand, the global MMM

coordination mechanism populates the local reservation values based on the offers re-

ceived from the opponents in the previous negotiation round. The experimental results

show positive performance by the global MMM mechanism.

7.1 Introduction

Quality-of-service (QoS) attributes are the non-functional characteristics (e.g., through-

put) of a service that distinguish between functionally equivalent services. Providers

of functionally-similar services compete over the non-functional characteristics of ser-
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vices. A competitive criterion in the service oriented domain is the flexibility in the

number of possible QoS attribute options that are available for customers to choose

from. Consider a service with three customizable non-functional QoS attributes such

as throughput, execution time and availability. If that service provider assigns three

possible values for each attribute, then the total number of available configurations

for that service is 27. If the number of service attributes and/or the number of possible

values for each attribute increases then the number of possible service configuration in-

creases and could be intractable. To keep the number of possible service configuration

small, service providers assign small number of possible values for each service at-

tribute. In case of service composition, the possible number of combinations becomes

even larger and less attractable.

The current offer-based methods of QoS assignment show either little or no flexibility

in the possible number of service configurations. An advantage of adopting automated

negotiation as an approach for provisioning/procuring of services is that, when oppo-

nents exchange offers and counteroffers, they direct the search for possible QoS con-

figurations towards their desired preferences by explicitly asking for specific values for

the issues of each service.

Figure 7.1: One-to-many negotiation over multiple object with multiple issues

This chapter investigates the coordination scenario where a buyer agent seeks to pro-

cure multiple objects where each object has multiple issues and a single provider, the

MMS scenario. Figure 7.1 illustrates the MMS scenario. As explained previously, this

situation exists in monopolistic markets where there is a single provider that controls

the supply of a certain market item(s). Moreover, this chapter presents the coordination

scenario where the buyer agent seeks multiple objects with multiple issues and multi-

ple providers, which is a more common scenario than the MMS scenario. Figure 7.2
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Figure 7.2: Complex one-to-many negotiation

illustrates the MMM scenario. The MMM is the most complex coordination scenario.

Two coordination mechanisms are presented and validated: the MMS coordination

scenario and the global MMM coordination scenario (GMMM).

7.2 MMS Coordination Approach

This section describes the proposed dynamic bidding strategy for the scenario shown

in Figure 7.1, i.e., the MMS strategy. The buyer agent uses the information in each

negotiation thread (i.e., X t−1
dil↔sil [Ji]) in the decision making process of adjusting the

weights in the initial IW matrix, see Table 7.1.

Table 7.1: Local reservation value weights (IW)

Service A Service B Service C Service D Total
Price 0.40 0.25 0.2 0.15 1

Throughput 0.42 0.32 0 0.26 1
Response_time 0 0.4 0.25 0.35 1

Reliability 0.40 0.60 0 0 1

Table 7.2: Local reservation values (LR)

Service A Service B Service C Service D Global Reservation Values
Price 80 50 40 30 200

Throughput 21 16 0 13 50
Response_time 0 16 10 14 40

Reliability 8 12 0 0 20

The proposed coordination strategy is dynamic since it utilizes the different concession

behaviors (levels of cooperation) of the seller agents on each common issue (see Sec-

tion 2.4.2) of each object to adapt the local reservation values for the common issues
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in real time, i.e., during negotiation. The MMS strategy adjusts the initial reservation

value weights matrix that will be used to compute a possibly different local reservation

value for each common issue of each service.

The initial reservation value weights matrix (see Table 7.1) could be initialized ac-

cording to the initial reservation value of each issue. The initial reservation values are

usually obtained from domain knowledge or from previous negotiations.

The MMS strategy involves 4 repetitive steps that are repeated in each negotiation

round, see Algorithm 5.

Algorithm 5 MMS()
Require: < X t−1

d1,1↔s1,1
[j], X t−1

d1,2↔s1,2
[j], ..., X t−1

d1,n1↔s1,n1
[j] >, ...,

< X t−1
dm,1↔sm,1

[j], X t−1
dm,2↔sm,2

[j], ..., X t−1
dm,mn↔sm,mn

[j] >
1: while t <= tmax do
2: GroupJ();
3: Min_Max_Swap();
4: Adjust_Weights();
5: Adjust_Local_Res();
6: end while

In order to adjust the reservation value weights for the common issues dynamically

during negotiation, we first need to get the recent concession vectors, i.e., the F {t−1,t},

see section 4.3. The procedure GroupJ() returns the F {t−1,t} vector, where [t − 1, t]

is the CTI, see section 4.3. The F {t−1,t} will be used by the next method, i.e., the

Min_Max_Swap().

The buyer agent starts applying its dynamic negotiation strategy after the first two

negotiation rounds. After executing the GroupJ() algorithm, the MMS Algorithm

executes the Min_Max_Swap() method, see Algorithm 6.

The Min_Max_Swap() algorithm runs into a number of iterations equals to |Ki|/2 and

in each iteration, it swaps between the minimum and maximum values. In each new it-

eration, the previous exchanged values do not undergo a new exchange. In other words,

in each iteration, the algorithm compares between the values that are not swapped in

the previous iterations.

The idea behind the Min_Max_Swap() algorithm is to exploit the fact that different
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Algorithm 6 Min_Max_Swap()

Require: F {t−1,t}
1: for all (Ki ∈ F {t−1,t}) do
2: for l = 1→ (|Ki|/2) do
3: ∆K

′
i = Swap(Ki)

4: ∆Ki = K
′
i

5: end for
6: end for
7: return F {t−1,t}

seller agents can have different objectives. For example, some seller agents are desper-

ate for reaching an agreement quickly by offering large amount of concessions while

others prefer to reach an agreement that guarantees high utility and offer small amount

of concessions during negotiation. When the difference between the offers of any two

opponents is maximum, we exchange their values which guarantees that, in the next

negotiation round, the more conceding seller agent receives a counteroffer with less

concession than the counteroffer that will be generated for the less conceding seller

agent. The purpose of this strategy is two folds: first, for agents who are conceding

more, the buyer agent tries to secure an agreement with high utility, secondly, for the

less conceding opponents, the buyer agent tries to secure an agreement regardless the

utility gain as the main objective. The idea of the Min_Max_Swap() algorithm is

explained following example.

• Example: assume that the Ki vector on issue ji at time t is

Kt
i =< 60, 50, 55, 49, 45, 53, 65, 47 >

Now, we swap between the the minimum and maximum values in the set Kt
i

over 4 iteration (Kt
i |/2.) as follows:

– 1st iteration:

(Kt
i )
′
=< 60, 50, 55, 49,65, 53,45, 47 >

– 2ed iteration:

(Kt
i )
′′

=< 47, 50, 55, 49,65, 53,45,60 >

– 3rd iteration:

(Kt
i )
′′′

=< 47, 50,49,55,65, 53,45,60 >
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– 4th iteration:

(Kt
i )
′′′′

=< 47,53,49,55,65,50,45,60 >

The value of kti ((Kt
i )
′′′′) in fourth iteration in the previous example is used by the

Adjust_Weights() algorithm, see Algorithm 7. The coordination mechanism keeps a

copy of the IW unchanged since the original IW is needed to control the maximum

amount of change in the new generated local reservation value weights matrix (W). At

the start of every negotiation round, the W equals the IW.

Algorithm 7 Adjust_Weights()
Require: IW
Require: Kt

i

1: W = IW
2: THRESHW = IW − (IW ∗ ρ1) // in Exp., ρ1 = 0.3
3: for all (Ki ∈ F {t−1,t}) do
4: K

′
i = Ki/max(Ki) // normalize

5: Ki = K
′
i

6: end for
7: for i = 1→ g do
8: W[i, ] = W[i, ]− (∆Fji/ρ2) // in Exp., ρ2 = 2
9: end for

10: for i = 1→ g do
11: for l = 1→ m do
12: if (|W[i, l]− IW[i, l]| ≥ THRESHW [i, l]) then
13: W[i, l] = IW[i, l] + THRESHW [i, l]
14: end if
15: if (|W[i, l]− IW[i, l]| < THRESHW [i, l]) then
16: W[i, l] = IW[i, l]− THRESHW [i, l]
17: end if
18: end for
19: end for
20: return W

In every negotiation round, a possibly new W matrix is generated and used to pop-

ulate the local reservation value matrix for the common issues. The algorithm Ad-
just_Weights() normalizes the members of Kt

i and adjusts the weights in the W ma-

trix, see Algorithm 7. The IW matrix is the initial weight matrix which is populated

from domain knowledge or previous negotiation encounters. The IW matrix controls
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the maximum allowed change to the W matrix. Since different services can have differ-

ent valuations for their issues (attributes), there should be a threshold for the maximum

change. Once the new W is computed, the difference between the IW and W are ad-

justed. It is not expected that the initial IW varies beyond a certain amount in a given

negotiation encounter, which is a realistic assumption. The parameter ρ1 is used to

control the variation amount, see Algorithm 7. A small ρ1 value means a small varia-

tion is allowed and vice versa. In our experiment we use ρ1 = 0.3. The parameter ρ2
is used to determine the amount of change to each member in W.

Different ρ2 are tested to find a value that produces good results in the given settings.

As a result, the value of ρ in the experiments was chosen to be 2. The new generated W
matrix is adjusted before its final use, see lines 10− 19 in Algorithm 7. Lines 10− 19

in Algorithm 7 are important to make sure that the weight of each issue does not differ

from its value in IW beyond the threshold value.

The final step before generating the counteroffers by the buyer agent is to calculate the

new local reservation values by multiplying the global reservation value of each issue

by its new local reservation weight vector in the matrix W.

7.2.1 Experimental Results and Discussion

This section evaluates the coordination approach proposed for the MMS coordination

scenario (see Figure 7.1) where a buyer agent seeks to procure multiple distinct objects

(e.g., services) and each service has multiple issues while there are only one provider

per service. The data shown in Tables 7.1 and 7.2 are used in the experiments of this

section. Table 7.1 shows the local reservation weights for 4 services. Each service has

at least two negotiation issues. Table 7.2 shows the global reservation values for each

issue and the corresponding local reservation value for each issue using the weights in

Table 7.1.

The buyer agent needs to reach an agreement over each object (connected agreement)

to have a successful negotiation outcome. The buyer agents’ utility weight vector used

in the experiments is W =< 0.4, 0.25, 0.2, 0.15 > where the values of the vector

correspond to the following issues in order: 1) price 2) throughput 3) response time

4) reliability. The two types of the buyer agents (the buyer agent using the MMS
dynamic strategy and the buyer agent using the general strategy ) use the same utility
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weight vector. The utility weight vector for each seller agent is calculated in the start

of each negotiation encounter based on the reservation value of each issue, an issue

with high reservation value gets a high weight.

Some of the negotiation settings in this section are also used in the empirical evaluation

of Section 7.3. The negotiation environment of the experiments is described as follows:

• Offer generation tactics

1. time-dependent tactics:

All seller agents select a β value for the polynomial function [33] from the

same distribution, β ∈ [0.05, 10]. The range of β value covers the three

possible behaviors of an agent, i.e., Boulware where β < 1, linear where

β ≈ 1 and conceder where β > 1.

2. tit-for-tat tactic:

The random absolute tit-for-tat behavior-dependent tactic is used in the

process of generating the mixed offers by the seller agents, δ = 1 and

R(M) = 0 [33]. The percentages of mixing between the time-dependent

tactics and the random absolute tit-for-tat are presented later.

• the experiments compare between a buyer agent using one of the two proposed

coordination strategies (MMS or GMMM) and a buyer agent using the general

strategy (GS).

• at the start of each negotiation encounter which lasts for several rounds, both

buyer agent types are assigned new negotiation parameters, e.g., deadlines. The

non-strategic (i.e., GS) buyer agent keeps its negotiation parameters unchanged

during negotiation while the strategic buyer agent (either using MMS or GMMM)

adapts the local reservation values dynamically during negotiation according to

the behaviors of the current seller agents in terms of their concessions.

• in each negotiation encounter, the two types of the buyer agents play against the

same seller agents

• the error bars are shown for indicating the statistical significance of the results.

• if not stated, the used overlap percentages between the agents’ reservation inter-

vals are randomly selected from the interval [0, 1].
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The proposed MMS coordination strategy is tested under three different negotiation

environmental factors: deadline, convexity of the concession curve and the type of the

opponent.

7.2.1.1 Negotiation Deadline

Since negotiation deadline is an important negotiation factor given that negotiating

agents must either accept the last received offer/counteroffer or quit negotiation by

the end of their deadlines, deadlines can affect the negotiation outcome since they can

affect both the possibility of reaching an agreement and the utility of an agreement.

This section investigates the performance of the MMS strategy and GS under different

deadlines.

The settings of the experiments are summarized as follows:

• all agents use the time-dependent tactics to generate their offers/counteroffers.

• at the start of each negotiation instance, each seller agent selects a random dead-

line from the interval [5, 60].

• at the start of each negotiation instance, the two types of the buyer agents use the

same selected deadline and the same selected β value. The β value is selected

from the interval [0.05, 2].

The two types of the buyer agents are tested under 10 different deadlines and for

each deadline, the experiment is repeated 1000 times. The term negotiation encounter

here is used to indicate a negotiation attempt. For example, when the buyer agent

needs to procure 4 objects, it needs to start 4 negotiation instances and keeps in ne-

gotiation until an agreement is reached or its deadline is reached. This marks the

end of a negotiation encounter. It was important to clarify this point since the ex-

perimental results present most of the performance criteria as an average per agree-

ment and as an average per encounter. The deadline set used in the experiments is

{10, 15, 20, 25, 30, 35, 40, 45, 50, 55}. The deadlines are shown on the top of Figures

7.3 and 7.4. The chosen set of deadlines covers small, medium and large deadlines.

Two sets of experimental results are presented here. The first set is related to the utility

rates and agreement rates. The second set is related to the Nash product rates and

utility difference rates, see Section 6.4.2.
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Figure 7.3 presents 3 types of results: utility rates per agreement, utility rates per

encounter and agreement rates. As before, the BST label on the x-axis of the figures

stands for the buyers’ strategies.

(a) Utility rate (per agreement) (b) Utility rate (per encounter)

(c) Agreement rate

(1→MMS strategy, 2→ GS)
(The numbers above the graph bars refer to the buyer agents’ deadlines)

Figure 7.3: The effect of different deadlines on the utility rate and the agreement rate

Figures 7.3a and 7.3b show that the MMS strategy outperforms GS in terms of the

utility rate per agreement and the utility rate per encounter across all deadlines. When

the deadlines are short or large, the utility rates are relatively smaller than the utility

rates when the deadlines are in the middle of the interval for both buyer agents, i.e., for

the buyer agent uses the MMS strategy and the buyer agent uses GS. The reason is that

when the buyers’ deadlines are short or large, the seller agents’ deadlines are selected

short or large with small probabilities. As a consequence, the number of agreements

are smaller because agents may reach their deadlines and quit negotiations without

reaching an agreement. Since similar trends are shown in the following experimental

results, this explanation is valid for all the following similar results.
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(a) Nash product rate (per agreement) (b) Nash product rate (per encounter)

(c) Utility Difference rate (per agreement) (d) Utility Difference rate (per encounter)

(1→MMS strategy, 2→ GS)
(The numbers above the graph bars refer to the buyer agents’ deadlines)

Figure 7.4: The effect of different deadlines on the Nash product rate and the utility
difference rate

Since the MMS strategy outperforms GS in the number of agreements, see Figure 7.3c,

the total utility achieved by the MMS strategy is higher than the total utility achieved

by GS. Accordingly, when dividing the total utilities by the number of encounters

(1000 in our case), the differences in the utility rates per encounter between the MMS
strategy and GS (see Figure 7.3b) are higher than their differences in case of the utility

rates per agreement, see Figure 7.3a. The same explanation is valid when encountering

similar results in the following experimental illustrations. Finally, the trend shown in

Figure 7.3b is related to the results shown in Figure 7.3c.

The results shown in Figure 7.4 presents the Nash product rates and the utility dif-

ference rates. Figures 7.4a and 7.4b show the Nash product rate per agreement and

the Nash product rate per encounter respectively. It is obvious that the MMS strategy

outperforms GS across all different deadlines in terms of Nash product rate. The trend

shown in Figure 7.4b is related to the results shown in Figure 7.3c.
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The utility difference rate results are presented in Figures 7.4c and 7.4d. The MMS
strategy shows higher utility difference rates in both figures. The results indicates that

the fairness of the agreements is affected negatively when using the MMS.

The results above prove the effectiveness of the MMS strategy in managing the local

reservation values of the common issues under different deadlines to achieve positive

results in terms of the utility rate, the agreement rate and the Nash product rate.

7.2.1.2 Convexity of the Concession Curve

The convexity of a curve refers to the degree of its curvature. The convexity can affect

the amount of concessions offered. Changing the convexity of a concession curve dur-

ing negotiation affects the amount of concession offered at the next negotiation round.

Experiments are designed and implemented to test the effect of different concession

curve convexities on the performance of the buyers’ strategies.

The experimental setups here are similar to the ones in Section 7.2.1.1 except for the

buyers’ deadlines and the β values. Since the β value determines the convexity of the

concession curve, the two types of the buyer agents are tested under different β values.

The set of β values used in the experiments is {0.3, 0.6, 0.8, 1, 1.2, 1.5, 2, 3, 4, 5}which

appears on the top of Figures 7.5 and 7.6. The set covers wide range of concession

behaviors including tough, linear and conceder. A random deadline is selected from

the interval [5, 60] and assigned to the buyer agents at the start of every negotiation

instance.

In the start of each negotiation instance, the two buyer agents use the same β value

throughout negotiation and for each β value, the experiment is repeated 1000 times.

As the case before, two experimental sets are presented in this section. The first set

shows the utility rate and the agreement rate results while the second set shows the

Nash product rate and the utility difference rate results.

The first set of the results are shown in Figure 7.5. The utility rate per agreement and

the utility rate per encounter results are shown in Figures 7.5a and 7.5b respectively.

The results show that the MMS strategy outperforms GS in terms of utility rate across

all β values. Both buyer agents show lower utility rates when β values decrease. The

reason is that with the increase in the values of β, the buyer agent offers more and more

concessions. As a consequence, its utility per agreement gets smaller and smaller.
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Figure 7.5c shows that the MMS strategy outperforms GS in terms of agreement rates

across all β values.

(a) Utility rate (per agreement) (b) Utility rate (per encounter)

(c) Agreement rate

(1→MMS strategy, 2→ GS)
(The numbers above the graph bars refer to the buyers’ β values)

Figure 7.5: The effect of curve convexities on the utility rate and the agreement rate

The set experimental set is shown in Figure 7.6. Figures 7.6a and 7.6b show the Nash

product rate per agreement and the Nash product rate per encounter results respectively.

It is obvious that the MMS strategy outperforms GS in terms of Nash product rates

across all β values. The results’ trend in Figure 7.6b is related to the agreement rate

results, see Figure 7.5c. On the other hand, Figures 7.6c and 7.6d show that the MMS
strategy produces higher utility difference rates than GS. However, when the value of

β becomes higher, both strategies perform similarly.

As the case with the deadlines, the results are consistent and the MMS strategy out-

performs GS strategy in terms of utility rates and agreement rates across different con-

cession curve convexities.
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(a) Nash product rate (per agreement)
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(b) Nash product rate (per encounter)

(c) Utility Difference rate (per agreement) (d) Utility Difference rate (per encounter)

(1→MMS strategy, 2→ GS)

Figure 7.6: The effect of curve convexities on the Nash product rate and the utility
difference rate

7.3 MMM Coordination approach

This section investigates the scenario shown in Figure 7.2 where a buyer agent is nego-

tiating with multiple seller agents over multiple distinct objects given that each agent

has multiple issues and multiple providers. The situation for the buyer agent is more fa-

vorable in the case of the MMM scenario than the MMS scenario since there are many

seller agents competing for each object. Algorithm 8 summarizes the proposed global

coordination mechanism, the GMMM mechanism. The GMMM (global multiple ob-

jects, multiple issues and multiple providers) mechanism does not require an initial

W matrix (see Table 7.1) to start with in case the seller agents start proposing the of-

fers. The matrix W for the next negotiation round is defined dynamically based on the

received offers in the previous round.

The GMMM mechanism is explained as follows: first, it groups the last received
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Algorithm 8 GMMM()
Require: global reservation values vector, GRV
Require: < X t−1

d1,1↔s1,1
[j], X t−1

d1,2↔s1,2
[j], ..., X t−1

d1,n1↔s1,n1
[j] >, ...,

< X t−1
dm,1↔sm,1

[j], X t−1
dm,2↔sm,2

[j], ..., X t−1
dm,mn↔sm,mn

[j] >
1: for i = 1→ m do
2: Stoi =< xtsi,1→di,1 [J1], x

t
si,2→di,2 [J2], ..., x

t
si,ni→di,ni

[Jni ] >

3: end for
4: St =< Sto1 ,S

t
o2
, ...,Stom >

5: mv =<>;
6: for i = 1→ m do
7: mvi = findMeans(calMean(St[i])
8: add(mv,mvi)
9: end for

10: TotalMeans = sum(mv) // sum the means of each common issue
11: W = mv/TotalMeans
12: LRV = W ×GRV // LRV stands for the local reservation values
13: return LRV

offers from the seller agents over each object, see lines 1 − 3 in Algorithm 8. The

second step is to find the mean value of the received offers for each issue in each

group Soi , see lines 6 − 9. For example, consider that the buyer agent receives mul-

tiple offers for service A, see Tables 7.1 and 7.2, then the mechanism finds the av-

erage received offer values for price, throughput and reliability issues since they are

the issues that characterize service A. This procedure is performed on all the issues

of the other services. The total sums of the common issues’ means are calculated

in line 10. Since the W matrix consists of the issues’ weight vectors, the new vec-

tor weight for each common issue of each object is computed by dividing the mean

value for each common issue of each object by the total sum of the means of the

given common issue, see line 11. For example, if the total sum of the means for

the price issue across all objects is {20 + 30 + 43 + 60} = 153 where the num-

bers 20, 30, 43 and 60 are the mean values for the prices received by the buyer agent

from the providers of services A, B, C, and D respectively. The price weight vec-

tor for the negotiation objects in the next negotiation round is {20, 30, 43, 60}/153 =

{0.130719, 0.196078, 0.281046, 0.392157}. Finally, the new price local reservation

vector is multiplied by the remaining global reservation value of price. If the cur-

rent price global reservation value is $355, the new local reservation value for the

price in the previous example is {0.130719, 0.196078, 0.281046, 0.392157} ∗ 355 =
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{46.4052, 69.6078, 99.7712, 139.216}. The previous vector can be interpreted as: the

current price local reservation value for service A is $46.4052 and the current price

local reservation value for service B is $69.6078 etc. This process is repeated for the

other issues. As line 12 shows, the new W matrix is multiplied by the vector of the re-

maining global reservation values GRV. The local reservation (LR) matrix is returned

by the algorithm. Finally, the buyer agent uses possibly a new local reservation value

for each issues of each object in every negotiation round as the algorithm is repeated

at the start of every negotiation round.

Since the buyer agent receives multiple offers for each issue, then taking the mean

value for the received offers and then normalizes all the mean value vectors for all

issues provides a good approximation for the demand and importance of each issue

to a particular seller group. Consequently, the dynamic adaptation of the W matrix

responds to the behaviors of the seller agents in terms of their concessions on various

issues.

The proposed mechanism in Algorithm 8 is one of the possible ways for coordinating

the bidding strategy at the global level in the given scenario. However, other mech-

anisms that work under different assumptions need to be designed and tested. For

example, in case the buyer agent has an initial local reservation weight matrix and the

amount of resource shifting between delegates cannot go beyond a certain amount for

each issue, then the shifting of resources according to the behaviors of the seller agents

over the common issues amongst delegates is the suitable approach in this case. In

addition, a local coordination mechanism is essential for using a hybrid coordination

mechanism since the empirical results in Chapter 5 show that the hybrid coordination

mechanism outperforms other coordination mechanisms in terms of the utility rates

and the agreement rates.

7.3.1 Experimental Results and Discussion

This section tests the GMMM strategy under four negotiation variables: deadline,

convexity of the concession curve, number of available seller and finally length of the

agreement zone.
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7.3.1.1 Negotiation Deadline

The experimental settings here are similar to the settings mentioned in section 7.2.1.1.

The difference here is that the number of the seller agents per object is set to 5. The

numbers shown above bars in the following graphs indicate the buyer agents’ dead-

lines. The seller agents select their deadlines as explained in section 7.2.1.1.

(a) Utility rate (per agreement) (b) Utility rate (per encounter)

(c) Agreement rate

(1→ GMMM strategy, 2→ GS)
(The numbers above the graph bars refer to the buyer agents’ deadlines)

Figure 7.7: The effect of different deadlines on the utility rate and the agreement rate

The first set of results is shown in Figure 7.7. Figures 7.7a and 7.7b show that the

GMMM strategy outperforms GS significantly in terms of the utility rate per agree-

ment and the utility rate per encounter results. Since the number of the providers per

object are multiple, achieving a good agreement rate is not a problem for both strate-

gies, see Figure 7.7c. Since the number of the seller agents per object is multiple in

the MMM scenario, it is expected that the buyer agents benefit from the situation and

gain higher utility rates than in the MMS scenario, see Figures 7.3a and 7.7a.

The Nash product rate and the utility difference rate results are presented in Figure
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7.8. Figures 7.8a and 7.8b show that the GMMM strategy outperforms GS strategy in

terms of Nash product rates. The results’ trends shown in Figures 7.8a and 7.8b can

be justified by the fact that when the buyer agents have long deadlines, the agreement

rates can be affected negatively (as explained earlier) and the utility of the opponents

can be very small.

(a) Nash product rate (per agreement) (b) Nash product rate (per encounter)

(c) Utility Difference rate (per agreement) (d) Utility Difference rate (per encounter)

(1→ GMMM strategy, 2→ GS)
(The numbers above the graph bars refer to the buyer agents’ deadlines)

Figure 7.8: The effect of different deadlines on the Nash product rate and the utility
difference rate

The utility difference rate per agreement and the utility difference rate per encounter

results are presented in Figures 7.8c and 7.8d respectively. The utility difference rates

for the buyers increase when their deadlines increase. The reason is that when the

buyers’ deadlines are longer than the sellers’ deadlines, the gaps between their utilities

increase since the seller agents offer their reservation values before their counterpart

buyer agents. As before, the GMMM strategy shows higher utility difference rates

than GS does.
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7.3.1.2 Convexity of the Concession Curve

The settings here are similar to the setting in section 7.2.1. Again, the difference is

that buyer agents use a certain β value in each negotiation encounter while all other

parameters are selected randomly as explained earlier. Changing the convexity of the

concession curve affects the amount of concession offered at a particular round.

(a) Utility rate (per agreement) (b) Utility rate (per encounter)

(c) Agreement rate

(1→ GMMM strategy, 2→ GS)
(The numbers above the graph bars refer to the buyers’ β values)

Figure 7.9: The effect of different buyers’ β values on the utility rate and the agreement
rate

To test the effect of using different convexity degrees for the buyers’ concession curve,

we test the proposed strategy under different curve convexities. The value β in the time

dependent-offer generation tactic affects the convexity of the concession curve. The

values of β used in the experiments are shown on the top of Figures 7.9 and 7.10.

The results in Figure 7.9 show that the GMMM outperforms GS in terms of the utility

rate per agreement (see Figure 7.9a) and the utility rate per encounter, see Figure 7.9b.
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When the β values become large, the utility rates for the buyer agents decrease. How-

ever, the GMMM outperforms GS in all cases. Both strategies perform similarly in

terms of the agreement rate (see Figure 7.9c) since the number of the seller agents per

object is multiple and the chance of reaching an agreement is high. When the buyer

agents have very small β values, they miss some agreements since they concede in

very small amounts which makes reaching an agreement more difficult. However, the

GMMM performs similar or better than GS in all cases.

(a) Nash product rate (per agreement) (b) Nash product rate (per encounter)

(c) Utility Difference rate (per agreement) (d) Utility Difference rate (per encounter)

(1→ GMMM strategy, 2→ GS)
(The numbers above the graph bars refer to the buyers’ β values)

Figure 7.10: The effect of different buyers’ β values on the utility rate and the agree-
ment rate

The Nash product rate and the utility difference rate results are shown in Figure 7.10.

Figures 7.10a and 7.10b show that the GMMM outperforms GS in terms of the Nash

product rate per agreement and the Nash product rate per encounter.

When the β values becomes large, Nash product rate increases for both strategies since

a conceder agent tends to offer more concessions and hence the opponents gain higher
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agreement utilities. The utility difference rate results are shown in Figures 7.10c and

7.10d. As before, the GMMM strategy produces high utility difference rates when

compared to the utility difference rates produced by GS.

7.3.1.3 Number of the Seller Agents per Object

In this section, we investigate how the initial number of seller agents per a negotia-

tion object can affect the negotiation results. The experimental settings are similar to

the settings discussed in section 7.2.1. The two buyer agents use the same randomly

selected parameters such as deadline and β since we are testing only for the number

of seller agents per object. The numbers of the seller agents per object are shown on

the above of the bars in Figures 7.11 and 7.12. The experiments started with 2 seller

agents per objects and increased up to 11 seller agents per object.

(a) Utility rate (per agreement) (b) Utility rate (per encounter)

(c) Agreement rate

(1→ GMMM strategy, 2→ GS)
(The numbers above the graph bars refer to the number of seller agents per object)

Figure 7.11: The effect of different number of sellers on the utility rate and the agree-
ment rate
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Figure 7.11 shows experimental results for the utility rates and the agreement rates.

When the number of the seller agents per objects increases, both strategies perform

better in terms of the utility rates, see Figures 7.11a and 7.11b. However, the GMMM
strategy outperforms GS in all cases. Both strategies behave similarly in terms of the

agreement rates, see Figure 7.11c. However, the GMMM strategy performs similar or

better than GS in terms of the agreement rate under all numbers of the seller agents per

object.

It is noticed that when the number of seller agents per object is small, e.g., 2, the

agreement rate is about 20% lower than when the number of the seller agents per

object is greator than 4, see Figure 7.11c. Large number of seller agents per object is

considered favourable to the buyer agents.

(a) Nash product rate (per agreement) (b) Nash product rate (per encounter)

(c) Utility Difference rate (per agreement) (d) Utility Difference rate (per encounter)

(1→ GMMM strategy, 2→ GS)
(The numbers above the graph bars refer to the number of seller agents per object)

Figure 7.12: The effect of different number of sellers on the Nash product rate and the
utility difference

The results for the Nash product rate and the utility difference rate results are shown in
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Figure 7.12. The results for the Nash product rate per agreement and the Nash product

rate per encounter results are shown in Figures 7.12a and 7.12b respectively. The Nash

product rates show that the GMMM strategy outperforms GS significantly in both

graph results. When the number of the seller agents increases, the utility agreement of

the opponents can be lower which affects the Nash product rate, see Figure 7.12a.

The utility difference rate results are presented in Figures 7.12c and 7.12d. The re-

sults here are consistent as before. When the number of the seller agents per object

increases, both strategies tend to have larger utility rate differences. The reason is that

when the number of the seller agents are large, the buyer agents benefit from this situ-

ation and gain higher utility rates than when the number of seller agents per object is

smaller.

7.3.1.4 Length of the Agreement Zone

The length of the agreement zone between opponent agents can affect the negotiation

outcomes. This section tests the buyers’ strategies under different overlap percentages

(i.e., different agreement zone lengths) between the reservation intervals of the objects’

issues. For example, assume that the reservation interval for a buyer agent for price is

[5, 20]. It means the initial offer for that agent is $5 and the maximum price (reservation

value) is $20. If the opponent agent has the same reservation interval too, i.e., [5, 20]

where the starting offer is $20 and the minimum price (its reserve price) is $5, then

the two agents have 100% overlap and the agreement zone is the longest possible. To

see how the overlap percentage affect the negotiation results for the two strategies, the

follwoing experimental aresults are presented and discussed. For more information

about the overlap percenages, see Section 4.5.2.

Three types of overlap percentages are used in the experiments: small (5%- 25%),

medium (30%- 60%) and large overlap (70%- 100%). The results indicate that when

the overlap is large (i.e., the agreement zone is large), the negotaion outcome are posi-

tively affected and vice versa, see Figure 7.13 and 7.14.

Figure 7.13 presents the utility rate and the agreement rate results. The GMMM strat-

egy outperforms GS in terms of utility rates, see Figures 7.13a and 7.13b. In addi-

tion, the GMMM strategy outperforms GS in terms of the agreement rates in case the

agreement zones are small and medium, see Figures 7.13c. When the agreement zone
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(a) Utility rate (per agreement) (b) Utility rate (per encounter)

(c) Agreement rate

(1→ GMMM strategy, 2→ GS)

Figure 7.13: The effect of different agreement zone lengths on the utility rate and the
agreement rate

is large, both strategies perform similarly.

The Nash product rate and the utility difference rate results are presented in Figure

7.14. The results here are consistent with the results presented earlier. The GMMM
strategy outperforms GS in terms of the Nash product rates, see Figures 7.14a and

7.14b. As the case with the utility rates and the agreement rates, when the agreement

zone gets larger, both strategies perform better. In addition, the GMMM strategy

produces higher utility rate differences than the utility rate differences produced by

GS, see Figures 7.14c and 7.14d.

In general, when the agreement zones between agents increase, both strategies produce

better results.
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(a) Nash product rate (per agreement) (b) Nash product rate (per encounter)

(c) Utility Difference rate (per agreement) (d) Utility Difference rate (per encounter)

(1→ GMMM strategy, 2→ GS)

Figure 7.14: The effect of different agreement zone lengths on the Nash product rate
and the utility difference rate

7.4 Summary

This chapter investigates the coordination scenarios where the number of distinct ne-

gotiation objects is multiple and the number of negotiation issues per object is multiple

too. First, a coordination mechanism is proposed for the MMS coordination scenario

where each object has a single provider. This scenario exists in monopolistic markets

where there is a single provider that controls the supply of a certain market item(s). On

the other hand, a global coordination mechanism is proposed for the MMM coordina-

tion scenario where each object has multiple issues and multiple prospective providers.

The MMS coordination strategy manipulates the local reservation values for the com-

mon issues of the different objects. The seller agents’ concessions on the common

issues are analyzed and every common issue is assigned a possibly new reservation

value accordingly. The coordination mechanism is repeated at the start of every ne-

gotiation round. The mechanism is validated empirically under different negotiation
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environments. It is compared with the general negotiation strategy where the negoti-

ation variables are initialized at the start of every negotiation encounter and kept un-

changed. The MMS and general strategies are tested under different deadline lengths

and different concession curve convexities. The MMS strategy outperforms the gen-

eral strategy significantly in terms of the utility rates, the Nash product rates and the

agreement rates. The MMS strategy are proven to be effective and robust in the given

negotiation environments. Finally, it produces higher utility difference rates than the

utility difference rates produced by the general strategy.

To manage the bidding strategy for the MMM coordination scenario, a global coordi-

nation mechanism is proposed. The GMMM strategy manages the local reservation

values based on the values of the last opponents’ offers. The global strategy does

not require an initial local reservation value matrix if the seller agents start proposing.

At the start of the every negotiation round, the GMMM strategy constructs the local

reservation value matrix from the last sets of the received offers. An initial set of exper-

imental results are presented. The proposed strategy is tested under different deadline

lengths, under different concession curve convexities, under different numbers of seller

agents per object and under difference agreement zone lengths. The results show that

the GMMM strategy outperforms the general strategy in terms of the utility rates, the

Nash product rates and performs similar or better in terms of the agreement rates. As

in the MMS strategy case, the GMMM strategy shows higher utility difference rates

than the ones produced by the general strategy.

The GMMM strategy shows higher utility rates and lower Nash product rates than the

ones shown by the MMS strategy because the GMMM strategy benefits from existing

multiple providers per object. Finally, the proposed mechanisms are compared with the

general strategy because the coordination scenario presented in this chapter is rarely

investigated in the literature.
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Conclusion

This thesis investigates the bidding negotiation strategies in the one-to-many negotia-

tion where a buyer agent negotiates concurrently with multiple seller agents. The main

assumptions here are that the agents negotiate under incomplete knowledge where the

preferences over the outcomes, the utility structure, the offer generation tactics and the

deadlines are considered private information for each agent.

To classify different negotiations, the three main negotiation components and their

numbers are considered: the number of negotiation objects which is equivalent to the

number of the required agreements in our case, the number of negotiation issues per

object and the number of providers (seller agents) per object. Accordingly, the one-to-

many negotiation is classified into five different coordination scenarios, namely: SSM,
MSM, SMM, MMS, MMM, where S stands for single and M stands for multiple.

The first letter refers to the number of negotiation objects, the second letter refers to

the number of issues per object and the third letter refers to the number of providers

per object. For example, the SSM scenario indicates the situation where a buyer agent

seeks to procure a single object characterized by a single issue and there are many

available providers willing to provision that object. Each one-to-many coordination

scenario is investigated and one or more novel dynamic bidding mechanism(s) (dy-

namic negotiation strategy(s)) are proposed. Since the main problem addressed in this

thesis is to coordinate the bidding strategies for multiple concurrent negotiations dur-

ing negotiation, i.e, real-time coordination, the proposed solution approach base its

coordination decisions on the level of cooperation of the current opponents in terms of

their concessions in the current negotiation. The coordination mechanisms presented
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in this thesis do not consider any historical information since the negotiations are as-

sumed to be as a one-off type. Accordingly, all the proposed bidding strategies are

characterized by their dynamicity that depends only on the current behaviors of the

seller agents in terms of their concessions in the current negotiation. The proposed

coordination mechanisms for the one-to-many negotiation consider managing the ne-

gotiation variables (e.g., convexity of the concession curve) during negotiation. The

collection of the negotiation variables and their values represent the current negotiation

strategy for an agent. The proposed bidding strategies are empirically validated against

the state-of-the-art negotiation strategies. The next few paragraphs discuss briefly the

proposed mechanism(s) for each coordination scenario.

For the SSM coordination scenario, where a buyer agent seeks to procure a single ob-

ject (e.g., a service) characterized by a single issue (e.g., price) and many providers

for that object exist, a dynamic negotiation strategy is proposed to manage the buyer

agent’s concession curve convexities (each buyer’s delegate can have a different con-

cession curve convexity) during negotiation. The decision making mechanism for man-

aging the convexity curves during negotiation depend on the collective behaviors of

the current opponents. In each negotiation round, the behaviors of the current seller

agents are analyzed and a new convexity is assigned to each concession curve of each

delegate. The proposed negotiation strategy is tested against 4 different negotiation

strategies. One is a general strategy where its negotiation parameter values (e.g., con-

cession curve convexity) are initialized at the start of negotiation and stay without any

change throughout negotiation and quit negotiation as soon as it reaches an agreement.

The second strategy keeps negotiating until it reaches its deadline then selects the best

acceptable agreement. The last two strategies adjust either the convexity curve or the

reservation value during negotiation. All strategies are tested in different negotiation

environments. The experimental results show that the proposed negotiation strategy

outperforms the benchmark strategies in terms of the utility rates and performs similar

or better in terms of the agreement rates in most situations.

Different measures can be used to evaluate the behaviors of the current opponents dur-

ing negotiation: early concessions, most recent concessions and utilities of the last

offers. In addition, any combination between the measures can also be used to evalu-

ate the behaviors of the opponents. For example, the experiments that are conducted

to evaluate the proposed coordination mechanism for the SSM scenario evaluate the
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current opponents by using 50% from the utilities of the last offers measure and 50%

from the most recent concessions measure. A set of experiments are designed to eval-

uate each measure empirically. The experimental results show that (in most cases)

the recent concessions measure performs similar or better than the other evaluation

criteria.

The MSM coordination scenario is a negotiation scenario where a buyer agent seeks

to procure multiple distinct objects (e.g., multiple services) where each object has a

single issue (e.g., price) and multiple providers. Three coordination mechanisms are

proposed: global coordination mechanism, local coordination mechanism and hybrid

coordination mechanism. The global coordination mechanism manages the local reser-

vation value for each issue of each object during negotiation taking into consideration

the behaviors of all the seller agents, i.e., global view. The local coordination mecha-

nism manages the convexity of the concession curve for a set of delegates of a given

object. In other words, in the local coordination mechanism, the behaviors of the

providers of a certain object are analyzed without considering the behaviors of the

providers of other objects, hence the name local. Finally, the hybrid mechanism com-

bines both, the global mechanism and the local mechanism. To generate counterof-

fers in every negotiation round, the hybrid coordination mechanism receives new local

reservation values from the global strategy and receives the convexity of the conces-

sion curve for each set of delegates (of a given object) from the local strategies since

there would be local strategies equal to the current number of the negotiation objects.

Under tough negotiation environments where the length of agreement zones between

agents are small, the experimental results show that the global strategy outperforms

the general strategy and a state-of-the-art negotiation strategy (that manages the local

reservation values) in terms of the agreement rates and performs similar or better than

the state-of-the-art strategy in terms of the utility rates. The local strategy achieves

better utility rates than the benchmark strategies. The hybrid strategy outperforms all

strategies, including both, the global and local strategies, in terms of both, the utility

rates and the agreement rates.

Since the SMM coordination scenario considers a situation where a buyer agent seeks

to procure an object characterized by multiple negotiation issues and the number of

the providers is multiple, a meta-strategy model is proposed that alternates between a

concession tactic and a trade-off tactic during negotiation. In addition, a novel iter-
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ative offer generation mechanism is proposed and used to generate counteroffers for

the buyer agent. It includes two negotiation tactics, the IOG-trade-off tactic and IOG-

concession tactic. Whether the buyer agent decides to use the IOG-concession tactic

or the IOG-trade-off tactic, it starts offering concessions on the issues that are believed

to be more important to the opponent. This way of offering concessions helps reach an

agreement quickly and improves the social welfare of the system. The meta-strategy is

tested against two other benchmark negotiation strategies. The first one is the general

strategy (sometimes called tactic) and the second is a strategy that manages the con-

vexity of the concession curves. Four different performance criteria are considered in

the experiments: utility rate, agreement rate, Nash product rate and utility difference

rate. The Nash product rate measures the social welfare while the utility difference

rate assesses the fairness of an agreement. A set of experiments are designed and im-

plemented to evaluate the meta-strategy under different negotiation environments. The

experimental results show that the meta-strategy performs better than the benchmark

strategies in terms of the utility rates and the Nash product rates. It also performs sim-

ilar or better than the benchmark strategies in terms of the agreement rates. In most

cases, the meta-strategy shows equal or higher utility difference rates than the bench-

mark strategies. In addition, the experiments show that all strategies perform better

in terms of the utility rates, the agreement rates and the Nash product rates when the

number of the seller agents per object is large. On the other hand, the opposite re-

sults (except for agreement rates) are noticed when the number of the issues per object

is large. Moreover, a second set of experiments is dedicated to evaluate the IOG-

concession tactic against the general strategy that is considered as a concession tactic.

Under different deadlines, the IOG-concession tactic outperforms the general strategy

in terms of the utility rates and the Nash product rates. Both tactics perform similar in

terms of the agreement rates and the utility difference rates.

The coordination scenario MMS considers a monopolistic market where there is one

provider for each object. The scenario considers a situation where a buyer agent seeks

to procure multiple objects and each object is characterized by multiple issues and

there is a single provider for each object. Since each object in the given scenario is as-

sumed to have multiple issues, the coordination mechanisms proposed for this scenario

depend on the existing of the common issues between different objects. The proposed

coordination mechanism relies on the fact that different seller agents can have differ-

ent preferences over different issues. For each common issue amongst two or more
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objects, the coordination mechanism detects for possible differences in the importance

of each object’s issue from each object’s provider’s point of view. The second step is to

change the local reservation values by shifting some resources from the more lenient

provider(s) to the less lenient ones, that is to help the delegate agents who are negoti-

ating with difficult opponents to reach an agreement. This process is repeated for each

issue of each object. Since this scenario is rarely considered in literature, the proposed

mechanism is evaluated against the general strategy. The experimental results show

that the proposed mechanism outperforms the general strategy in terms of the utility

rates per encounter, the agreement rates and Nash product rates per encounter in all of

the considered negotiation environments.

The last coordination scenario is the MMM scenario where a buyer agent is negotiat-

ing with multiple seller agents over multiple distinct objects. Each negotiation object

is characterized by several issues and has multiple providers. The MMM scenario is

the most complex one. Since there are multiple objects and each object has multiple

providers, there would be two levels of coordination, as the case with the MSM sce-

nario, a global coordination and a local coordination. The global coordination mech-

anism uses the previous received offers to construct a new local reservation values

matrix in every negotiation round. The elementary experimental results show that this

method outperforms the general strategy in terms of the utility rates, the agreement

rates and provides better social welfare. However, more experimental work is needed

to further validate the mechanism. Moreover, further work is planned to design local

and hybrid coordination mechanisms.

Finally, a novel and general negotiation model that utilizes the notion of a negotiation

object is proposed. A negotiation object can represent either a physical item or a

nonphysical item. The model can be used to describe most negotiations including:

one-to-one, one-to-many and many-to-many negotiation. The model considers three

main criteria in any negotiation process: negotiation objects, negotiation issues and

negotiating agents. The numbers of the opponents on each of two negotiation sides

determine the form of negotiation. In the one-to-many negotiation, the number of the

negotiation objects, the number of issues per object and the number of providers per

object determine the type of the coordination scenario, see paragraph 2 in this section.
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8.1 Answers to the Research Questions

The main research question of this thesis that is stated in Section 1.3 is:

Can the bidding strategy for multiple concurrent one-to-many negotiations be
coordinated by adapting an agent’s negotiation strategy parameters during nego-
tiation?

The main research question is split into 4 different research questions, the questions

and the answers are listed in the following:

1- Can the approach of adapting the convexity of the concession curves during mul-

tiple concurrent negotiations be an effective method in improving one or more of the

negotiation performance criteria.

Managing the convexity of the concession curves for a buyer agent’s delegates ap-

proach is proven to be an effective coordination method. Coordination methods that

depend on managing the convexity of the concession curves for the delegates are pro-

posed in the coordination scenarios SMM and MSM. The experimental results that

are presented in Chapter 5 indicate that managing the convexity curves during nego-

tiation improves the utility rates. The proposed coordination mechanism significantly

outperforms the state-of-the-art coordination techniques in terms of the utility rates

without significantly affecting the agreement rates. The reason is that the proposed

coordination mechanism considers the collective behaviors of all the seller agents in a

given negotiation round to decide the slop of the concession curves in the next negoti-

ation round for one or a group of delegates. Managing the convexity of the concession

curves are mainly used with a single continuous issue. However, the approach can still

be used in the multiple issue case when the convexity of utility concession curve is con-

sidered instead of considering the concession curve of a certain issue. The convexity

of the concession curves are managed in a way to propose counteroffers with different

utility values in each negotiation round. The seller agent who is desperate to reach an

agreement usually offer more concessions than the non-desperate one. Accordingly,

the proposed coordination method proposes counteroffers with low utility values for

the desperate seller agents. It does the opposite with the non-desperate seller agents.

The aim of this strategy is to achieve valuable agreements (i.e., with high utility) and

at the same time, it does not jeopardize reaching an agreement.
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2- Can the approach of alternating between different negotiation tactics during mul-

tiple concurrent negotiations be an effective approach in improving one or more of the

negotiation performance criteria?

A meta-strategy is proposed for managing the bidding strategy in the one-to-many ne-

gotiation. It is used in the SMM coordination scenario. The meta-strategy alternates

between a concession tactic and a trade-off tactic. Before using either tactic, the seller

agents are classified into two groups: favorable group and unfavorable group. The

trade-off tactic is used with the favorable group while the concession tactic is used

with the unfavorable group. The favorable group contains the seller agents that offer

high concessions. The meta-strategy is tested empirically and the results are presented

in Chapter 6. The results show that the meta-strategy significantly outperforms the

benchmark strategies in terms of the utility rates, the Nash product rates and performs

similarly in terms of the agreement rates in most of the negotiation environments that

are used in the experiments. The meta-strategy produces higher utility difference rates

than the other strategies in most cases. The alternating between different negotiation

tactics approach are proved to be an effective negotiation method and provide positive

results for most of the performance criteria. The meta-strategy uses the proposed iter-

ative offer generation tactics to generate its counteroffers: the IOG-trade-off tactic and

the IOG-concession tactic. Both tactics are designed to offer more concessions on the

issues that are believed to be more important than the others from the seller agents’

point of view. This kind of knowledge can be domain knowledge or it can be extracted

from the current behaviors of the opponents or from historical data.

3- Can the approach of adapting the local reservation values during multiple concur-

rent negotiations be an effective method in improving one or more of the negotiation

performance criteria?

Managing the local reservation values for multiple concurrent negotiations is shown

to be an effective negotiation approach. Adopting the method of manipulating the lo-

cal reservation values as a coordination approach in the one-to-many negotiation is

based on the idea of existing common issues between different negotiation objects.

The other important point that supports using this approach is that the seller agents

can have different importance weights for different issues. The coordination approach

that considers managing the local reservation values needs to consider the differences

between the seller agents over the common issues. That helps in shifting the resources
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between different delegates appropriately during negotiation. The last condition for

using this approach is that the number of the distinct objects should be more than one

given that the objects have at least one common issue. Coordination mechanisms that

are based on managing the local reservation values are used in the coordination scenar-

ios MSM and MMS and they can also be used in the scenario MMM as well. For the

scenario MSM, the coordination mechanism is called global coordination mechanism

since it considers the collective behaviors of all the sets of the seller agents where each

set contains the seller agents that can provide one of the negotiation objects. The exper-

imental results presented in Chapter 5 show that the global coordination mechanism

outperforms the benchmark strategies in terms of the agreement rates and performs

equal or better in terms of the utility rates and in most of the used test cases when the

overlap percentages between the reservation values of issues are small. In addition, the

experimental results presented in Chapter 7 indicate positive performance for the pro-

posed coordination mechanism in terms of the agreement rates and the Nash product

rates without significantly affecting its performance in terms of the utility rates. The

described coordination mechanisms are dynamic ones since the changes in the local

reservation values are made after reaching an agreement over any object and before.

The values of different objects are taken into consideration before changing any local

reservation value. In addition, the delegates or group of delegates that require more

resources are selected based on who needs more.

4- Can the approach of managing negotiation strategies at both, the global level and
local level during multiple concurrent negotiations be an effective method in improving

one or more of the negotiation performance criteria?

When the coordination scenario involves multiple objects and multiple providers for

each object like the scenarios MSM and MMM, two levels of coordination can exist.

The first level manages the items that are shared between all negotiation objects such

as the common issues. The coordination at the global level involves managing the local

reservation values for the common issues. On the other hand, the process of procuring

each object is another domain of coordination since the behaviors of each set of the

seller agents that provide a given object can be used to coordinate the responses of

the buyer agent against that particular set of seller agents without considering the be-

haviors of the other sets. This is called the local coordination. The local coordination

mechanism involves managing the convexity of the concession curves for the set of
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delegates where each set is responsible for procuring one negotiation object. The local

coordination mechanism runs a number of times equal to the number of the current

negotiation objects. Again, the experimental results presented in Chapter 5 show that

the global coordination mechanism outperforms the benchmark strategies in terms of

the agreement rates and performs equal or better in terms of the utility rates. Simi-

lar results are shown in Chapter 7 except that the results in Chapter 7 show that the

global coordination mechanism outperforms the benchmark strategy in terms of Nash

product rates. The results presented in Chapter 5 show that the proposed local coor-

dination mechanism outperforms other mechanisms in terms of utility rates without

significantly affecting the agreement rates. When the two coordination mechanisms

are combined, a hybrid coordination mechanism is constructed. The hybrid mecha-

nism needs two pieces of information before generating its offers at the start of every

negotiation round. First, it needs the local reservation values which are taken from

the global coordination mechanism. Second, it needs the convexities of the concession

curves for each set of delegates which are taken from the local coordination mech-

anism. In the given negotiation environments, the experimental results presented in

Chapter 5 show that the hybrid coordination mechanism outperforms all strategies in-

cluding the global and local coordination strategies in terms of the utility rates and the

agreement rates.

The answers to the above four questions are collectively the answer to the main re-

search question. The proposed coordination mechanisms that are based on adapting an

agent’s negotiation strategy parameters during negotiation, are shown to be effective

mechanisms in managing the bidding strategy of the agent, by improving one or more

negotiation performance criteria.

8.2 Directions for Future Work

First of all, the work presented in Chapter 7 needs to be revisited. Given the fact that

one of the coordination scenarios presented in the chapter is the most complicated one,

more experimental work is needed to test the proposed coordination mechanism under

more experimental settings. The effect of the number of negotiation issues per object

and the number of seller agents per object need more analysis. In addition, the effect of

the number of common issues needs to be studied. It is expected that if the number of
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common issues increases, the proposed mechanisms perform better. Moreover, more

investigation for the proposed coordination mechanisms is required to study the effect

of using both, the trade-off tactic at the local coordination level and the hybrid strategy.

The works in this thesis consider agents in electronic markets representing buyers and

sellers. Other domains need to be investigated to study the potential of using negotia-

tion between agents to reach a certain goal. One of the main problems of the scheduling

algorithms is that they are static and depend on previous information and cannot ac-

commodate for new changes during the execution of the assigned tasks. In the task

assignment problem where agents may exchange proposals that carry certain argu-

ments that support their claim, agents can build their task schedule on the fly without

the need for any scheduling algorithms. Agents need only to be aware of the goal(s)

and constraints.

One of the important negotiation parameters is deadline. The effect of changing the

deadline length during negotiation is rarely considered in literature. One of the im-

portant factors that can affect managing the deadline length during negotiation is the

number of opponents in the current negotiation and the expected number of opponents

who may enter or leave negotiation in the future. When the number of opponents in

the current negotiation is large and/or the expected number of opponents to arrive is

more than the expected number of agents who may leave negotiation, the situation

for the buyer agent is considered favorable and it may increase the deadline length to

improve the chances of reaching a valuable agreement. On the other hand, if the num-

ber of current opponents is small and/or the number of expected opponents to arrive

is less than the expected number of opponents who may leave negotiation, the situa-

tion for the buyer agent becomes unfavorable and it may need to shorten the deadline

length which imply increasing the amount of concession offered in the next negotiation

rounds to guarantee reaching an agreement.

Although this thesis presents the solution for the coordination problem from a buyer

agent’s point of view, a seller agent can still use the proposed mechanism to coordinate

its actions when negotiating with multiple buyer agents. One of the possible dimen-

sions of investigation is the seller agent’s trust and reputation criteria. A seller agent

may consider its reputation an important factor especially if the identity of the seller

agent is easily identified or the seller agent purposely identifies its identity to help in

maximizing its sales. In such situation, the seller agent needs to balance between the
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expected gain from executing the proposed coordination mechanisms and the trust and

reputation it can gain/lose from executing those mechanisms.

The buyer’s delegates presented in this thesis are centrally controlled by the buyer

agent. When agents are distributed and independent, they may form coalition to

strengthen their stance. Using agent coalition as a way to improve the bargaining

power of a set of agents during negotiation is a potential track for future work. Agents

may also exchange some information during negotiation that benefits them. An agent

needs to select what information to convey, when and to whom. Exchanging relevant

information between agents in a coalition can affect the offer generation process in a

way that benefits all agents in the coalition.

The problem of inferring the preferences of an opponent over different issues is briefly

introduced in Chapter 6. The initial idea proposed in the chapter is to use the consecu-

tive amount of concessions offered on each issue during the course of negotiation as a

method of inferring the relative preferences of the opponent over different issues. This

needs to be investigated thoroughly using empirical and/or theoretical methods. Infer-

ring the preferences of opponents over the issues of negotiation allows the proposing

agent to manage its concessions on the different issues in a way that improves both,

the utility of an agreement and the social welfare of the system.

Finally, a user friendly e-market system that allows users to create buyer and seller

agents where the buyer/seller agents are able to select and use one of the proposed

coordination mechanisms during negotiation is the target of future work.
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