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Abstract—In this paper, the conjugate gradient (CG) 

algorithm is modified using the RLS normal equation and new 
data windowing scheme. It is known that CG algorithm has fast 
convergence rate and numerical stability. However, the existing 
CG algorithms still suffer from either slow convergence or high 
misadjustment compared with the RLS algorithm. In this paper, 
the parameter β for CG algorithm is redesigned from the RLS 
normal equation and a general data windowing scheme reusing 
the data inputs is presented to solve these problems.  The optimal 
property of parameter α  is also analyzed using the control 
Lyapunov function (CLF) of the square deviation of weight error 
vector. The superior performance of the proposed algorithms 
over the RLS algorithm and the other existing CG algorithms is 
demonstrated by computer simulations. 

Keywords—Adaptive equalizer, conjugate gradient method, 
control Liapunov function (CLF), system identification. 

I.  INTRODUCTION 
Adaptive filtering algorithms have found many applications 

in adaptive equalization, system identification, linear 
predication, and noise cancellation etc [1]. For the various 
applications, the adaptive filtering algorithms are chosen based 
on the convergence rate, misadjustment, computational 
complexity and numerical stability.  The least-mean square 
(LMS) adaptive algorithm [2] based on stochastic steepest 
descent (SD) gradient method is simply implemented and 
numerically stable, but with slow convergence rate. Another 
fast adaptive algorithm with independent of the input 
conditions is recursive least square (RLS) adaptive algorithm 
[1]. However, it suffers from the problems of numerical 
stability and highly computational complexity for the 
requirement of matrix inverse. To overcome these limitations, 
many fast RLS algorithms have been proposed in the literature. 
However, the numerical stability problem still tends to occur in 
these fast RLS algorithms [3]. In recent years, many adaptive 
algorithms based on the conjugate gradient (CG) method have 
been reported for adaptive filtering [4] [5] [6] [7]. It is well 
known that the CG method can solve the equation 

=Rw b efficiently using the orthogonality of the residue 
directions for symmetric, positive-definite matrix R  [9]. For 
the adaptive filtering problem, the autocorrelation matrix and 
cross-correlation vector are estimated in some manner. The 
advantage of the CG method is that fast convergence rate and 
numerical stability can be achieved. However, the existing CG 
algorithms still suffer from either slow convergence rate or 
high misadjustment compared with the RLS algorithm. For 
example, the Boray-Srinath method [4] can converge fast, but 

introducing a trade-off between misadjustment and window 
size. To achieve comparable misadjustment with the RLS 
algorithm, a very large window size is required, thereby 
increasing computational complexity significantly.  In the 
Chang-Willson method [6], the scheme of finite sliding data 
window introduces the same problem as the Boray-Srinath 
method, and the scheme of exponentially decaying data 
window that has reduced the computational cost has slow 
convergence rate. The CG-CLF method [7] also has slow 
convergence property. 

To overcome above problems, we redesign the parameter β  
based on the RLS normal equation and introduce a general data 
window for the CG algorithm. The new design of parameter β  
can be considered as a new approach which minimizes the 
norm of the difference between the CG update direction and the 
RLS update direction. The new data window is considered as a 
combination of the finite sliding data window and the 
exponentially decaying data window by data reusing manner. 
We also show the optimal property of the parameter α by the 
CLF method [7]. The MSE property is also described. 

This paper is organized as follows. In section II, we will 
introduce the CG method briefly. The new data windowing 
scheme will be given. Section III derives the parameter β  
based on the RLS normal equation. Two new modified CG 
algorithms will be described. The optimal property of the 
parameter α is then analyzed using the CLF method [10] in 
section IV. Computer simulations are presented to show the 
superior performance of the proposed CG algorithms in Section 
V. Section VI draws conclusions for this paper. 

II. CG METHOD AND DATA WINDOWNING SCHEMES 
Considering the minimization problem for the following 

quadratic performance function  

1( ) .
2

T TJ = −w w Rw b w  (1) 

where R is N N× square matrix and positive definite, b and 
w are vectors with dimension N . To solve for the vector 
w that minimizes the quadratic performance function in (1), it 
can be simplified to the following linear equation after taking 
derivate of (1) with respect to w and setting to zero 

.=Rw b  (2) 
The direct way to solve (2) is to compute the matrix 
inverse 1−R . However, the inverting R requires the 
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computational complexity of 3( )O M . The adaptive algorithms 
can be viewed as an alternative way to iteratively solve for the 
optimal solution 1−R b . Compared with other algorithms, the 
algorithms based on CG method have the advantages of no 
computation of matrix inverse required and fast convergence. 
Even if R is not full rank, the CG algorithms can still be 
employed to search for the best solution. While the RLS 
method and the Newton method may diverge during 
computing 1−R . We give the basic CG algorithm described in 
[8] as follows: 

Initialize (0) 0,  (0) (0),  (1) (0)= = − =w g b Rw p g  

2

2

2

For 1,  2, , until convergence
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(3) 

 

where the parameter ( )kα is chosen to minimize the 
performance function ( ( 1) ( ) ( ))J k k kα− +w p along the update 
direction and ( )kβ is chosen to satisfy the current direction 
vector ( )kp is linearly independent and -conjugateR  to all the 
previous direction vectors (1),  (2),  , ( 1).k −p p p  Therefore, 
there is no redundant update to the vector ( )kw in each update 
direction. The vector ( )kw finally converges to the optimal 
solution 1−R b  in finite number of iterations [9]. 

When using the CG algorithm for adaptive filtering 
problem, the correlation matrix R and cross-correlation 
vector b are often not known and need to be estimated. There 
are two approaches reported in [6]. One is called shift finite 
sliding data window given below: 

1

1( ) ( ) ( )
k

T

j k M
k j j

M = − +
= ∑R x x  (4) 

1

1( ) ( ) ( )
k

j k M
k d j j

M = − +
= ∑b x  (5) 

The advantage of finite sliding data windowing method is that 
it allows the CG algorithms to process in block. Therefore, the 
convergence rate is fast and independent of the eigenvalue 
spread of R , whereas the disadvantage is that, the 
misadjustment is dependent on the window size M . Usually a 
large window size M N>  and N iterations per data update is 
required to achieve comparable misadjustment with the RLS. 
The result is that it will cost more storage and computation 
time [5] [6]. 

Another approach is called exponentially decaying data 
window which has the same form as used in the RLS algorithm 
given as follows: 

( ) ( 1) ( ) ( )
( ) ( 1) ( ) ( )

Tk k k k
k k d k k

λ
λ

= − +
= − +

R R x x
b b x

 (6) 
(7) 

where λ is the forgetting factor. For sample-by-sample 
processing, the gradient vector can be computed as 

( ) ( ) ( ) ( )
( 1) ( ) ( ) ( ) ( ) ( )

k k k k
k k k k e k kλ α

= −
= − − +

g b R w
g R p x

 (8) 

where ( )e k is priori output error for time index k . Since no 
past data are needed in the current update, this approach is 
much more efficient and less memory required. Moreover, the 
sample-by-sample processing approach reduces the 
computational cost using only one iteration for each 
coefficient and data update. However, in this approach, the 
update conjugate direction ( )kp loses -orthogonalityR and the 
convergence rate becomes slow. 

Based on the two data windowing schemes, we introduce a 
general data windowing scheme which combines both forms of 
the finite sliding data window and exponentially decaying data 
window. This new scheme can be considered as a data reusing 
manner for the estimation of correlation function and cross-
correlation function given as follows: 

1

0

1( ) ( 1) ( ) ( )
M

T

j
k k k j k j

M
λ

−

=
= − + − −∑R R x x  (9) 

1

0

1( ) ( 1) ( ) ( )
M

j
k k d k j k j

M
λ

−

=
= − + − −∑b b x  (10) 

where λ is again the forgetting factor and M is the finite length 
of data samples. From the general form (9) and (10), we can 
see that it can be modified to finite sliding data window by 
setting 0λ = and exponentially decaying data window by 
setting 1M = . Therefore, it is very flexible for the user to set 
the forgetting factor and number of reusing data M according 
to the input data characteristics and convergence requirement. 
It will be shown in the simulation results that using the general 
data window (9) and (10) for the CG algorithms, the superior 
performance over the RLS and other existing CG algorithms 
can be achieved for both sample-by-sample processing and 
block processing with relatively small value of M .  

III. CG ALGORITHMS FOR ADAPTIVE FILTERING 
Considering the following RLS normal equation in sample-

by-sample update case: 

( 1) ( ) ( 1)k k k− = −R w b  (11) 
where ( )kw is the estimate of the solution which minimizes the 
performance function (1) when the estimates of the 
autocorrelation ( 1)k −R and cross-correlation ( 1)k −b  are 
available. We have known that the solution of this normal 
equation for the 1k − data inputs is the least square estimate. 
For the CG algorithm, the step size ( )kα  can be easily derived 
from the normal equation (11). Substituting the weight update 
equation given in (3) into (11), after rearrangement we have 

( )( 1) ( 1) ( 1) ( ) ( )k k k k kα− = − − +b R w p  (12) 
Using the gradient vector ( 1) ( 1) ( 1) ( 1)k k k k− = − − − −g b R w  
for (12), we yield: 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 10, 2010 at 21:38 from IEEE Xplore.  Restrictions apply. 



         

( ) 1( ) ( ) ( 1) ( 1).k k k kα −= − −p R g  (13) 

Equation (13) shows that the optimal vector ( )kp is actually 
the transformed gradient vector ( 1)k −g by the matrix 

( ) 1( ) ( 1)k kα −−R . Premultiplying (13) by 1( ) ( 1)Tk k −−p R and 
through simple manipulations, the step size is obtained 

( ) ( 1)( ) .
( ) ( 1) ( )

T

T

k kk
k k k

α −=
−

p g
p R p

 (14) 

Notice that the result of the step size (14) has the same form as 
given in [6]. Therefore, it minimizes the following quadratic 
performance function along the searching direction ( )kp  

( ) 1( ) ( ) ( 1) ( ) ( 1) ( )
2

T TJ k k k k k k= − − −w w R w b w . (15) 

It can be shown that with the knowledge of the direction 
( )kp (13), we can reach the least square solution in one step. 

However, it may not be possible to get this direction without 
the matrix inverse. What the CG algorithm does is to divide 
this optimal direction into several orthogonal directions. When 
sample-by-sample update is performed, the orthogonality 
property is lost between the update directions. In that case, the 
direction vector needs to be reset to the true gradient 
periodically for the convergence of the algorithm, leading to 
slow convergence. A non-reset method called Polak-Ribiere 
method can be found in [8]. We now present a new non-reset 
method. Considering the update direction ( 1)k +p that 
minimizes the norm ( ) 1( 1) ( ) ( ) ( )k k k kα −+ −p R g . We design the 
parameter ( )kβ which is given by 

( ) 1

( )
( ) arg min ( 1) ( ) ( ) ( )

k
k k k k k

β
β α −

∈
= + −p R g , (16) 

where the direction ( 1)k +p is computed as: 

( 1) ( ) ( ) ( )k k k kβ+ = +p g p . (17) 
To solve for ( )kβ , substituting (17) into (16) and setting the 
derivative of the norm with respect to ( )kβ to zero, we obtain  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

T T

T

k k k k k kk
k k k k

αβ
α

−= p g g R p
p R p

. (18) 

The parameter (18) can be considered as a non-reset method 
since the best approximation of the true direction is always 
ensured. Now we summarize the new modified sample-by-
sample processing CG algorithm (referenced as CG1) with the 
general data windowing scheme (9) and (10) as follows: 

set (0) 0,  (0) (0) (0) (0),  (1) (0)= = − =w g b R w p g  

( ) ( 1)( ) .
( ) ( 1) ( )
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T

T
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(19) 

where η is a small constant with 0.5λ η λ− ≤ ≤ to ensure the 
convergence as stated in [6], and the error is computed as 

( ) ( ) ( ) ( 1)Tk j d k j k j kε − = − − − −x w . In the CG1, the finite 
1M − past data samples are required for the estimation of 

R and computation of errors ( )k jε − . The convergence rate of 
CG1 depends on the eigenvalue spread of R weakly and the 
dependence can be reduced by increasing the reusing data 
size .M  

The block processing allows the CG algorithms to converge 
faster than the CG algorithms with sample-by-sample 
processing. That is because the CG algorithm with block 
processing can run several iterations per data update. However, 
the block processing CG algorithms described in [4] and [6] 
has the output MSE dependent on the data window size. 
Usually a large length of data window must be used to achieve 
a misadjustment comparable to the RLS algorithm. The general 
data windowing scheme allows the CG algorithm to achieve as 
low misadjustment as the RLS algorithm independent of the 
data window size. In addition, the fast convergence is also 
ensured with independence of the eigenvalue spread R . 
Following the same approach used in [4] and [6], the new 
modified block processing CG algorithm (referenced as CG2) 
can be described as follows: 

Set initial condition: (0) 0.=w  
For each time instant k , compute: 

      Start: 
1

0

1

0

1( ) ( 1) ( ) ( )

1( ) ( 1) ( ) ( )

(0) ( ) ( ) ( 1),  (1) (0)

M
T

j
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j

k k k j k j
M

k k d k j k j
M

k k k

λ

λ

−

=

−

=

= − + − −

= − + − −

= − − =

∑

∑

R R x x

b b x

g b R w p g

 (20) 

      for 1n = to min( ,  ,  )k N M do: 

( ) ( 1)     ( ) .
( ) ( ) ( )

     ( ) ( 1) ( ) ( )
    ( ) ( 1) ( ) ( ) ( )

( ) ( ) ( )     ( )
( ) ( ) ( )

     ( 1) ( ) ( ) ( )

T

T

T

T

n nn
n k n

n n n n
n n n k n

n k nn
n k n

n n n n

α

α
α

β

β

−=

= − +
= − −

= −

+ = +

p g
p R p

w w p
g g R p

g R p
p R p

p g p

 

     after min( ,  ,  )k N M iterations, do: 
( ) ( )k n=w w , 1k k= +  

     goto Start. 
where ( )kR , ( )kb and ( )kx are assumed to be zero for 0k < . 
Notice that the parameter β  simplified in the block processing 
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CG2 algorithm since ( ) ( ) 0Tn n =p g has the same form as 
designed by the control Liapunov function (CLF) method [7]. 
At the beginning of the process, the number of data 
samples k is less than min( ,  )N M , so only k iterations are 
necessary to run. 

IV. ANALYSIS OF THE CG ALGORITHMS 
The optimality property of the step size ( )kα can be easily 

verified using the square deviation of weight error vector as the 
CLF 

2( ) ( )oV k kα = −w w , (21) 
where ow is the true weight vector to be estimated by adaptive 
filter. The difference is given by 

2 2

( ) ( ) ( 1)

( ) ( 1) .o o

V k V k V k

k k
α α α∆ = − −

= − − − −w w w w
  

(22) 

Substituting the weight update equation given in (3) into (22), 
the difference can be rewritten as 

( ) 22( ) 2 ( ) ( 1) ( ) ( ) ( )T
oV k k k k k kα α α∆ = − − − +w w p p . (23) 

The optimal value of ( )kα that makes ( )V kα as negative as 
possible is determined by calculating the derivative of (23) 
with respect to ( )kα and setting it to zero: 

( ) 2( )
2 ( 1) ( ) 2 ( ) ( ) 0

( )
T

o
V k

k k k k
k

α α
α

∂∆
= − − − + =

∂
w w p p  (24) 

From (24), the optimal step size ( )kα is then computed as  

( )
2

( ) ( 1)
( ) .

( )

T
ok k

k
k

α
− −

=
p w w

p
 (25) 

Inserting the value of ( )kα in (25) into (23), we have 

( ) 2

2

( ) ( 1)
( ) 0.

( )

T
ok k

V k
k

α

 − − ∆ = − <
p w w

p
 (26) 

That means the square deviation of the weight error vector will 
finally converge to zero according to the CLF method [10]. In 
addition, a bound can be found for the deviation of the weight 
error vector [11].  

To show the step size ( )kα in (21) approaches to the 
optimal one in (25), we rewrite (14) as 

( )( ) ( 1) ( 1) ( 1)
( ) .

( ) ( 1) ( )

T

T

k k k k
k

k k k
α

− − − −
=

−
p b R w

p R p
 (27) 

Assuming that there is no measurement noise, we have 
( 1) ( 1) .ok k− = −b R w  (28) 

Substituting (28) into (27) yields 
( )( ) ( 1) ( 1)

( ) .
( ) ( 1) ( )

T
o

T

k k k
k

k k k
α

− − −
=

−
p R w w

p R p
 (29) 

For sample-by-sample processing method, we assume that 
data input is stationary and the fluctuations in ( 1)k −R are 

small enough from one iteration to the next iteration. 
Therefore, we can justify approximating ( )kα in (29) as 

( )
2

( ) ( 1)
( ) .

( )

T
ok k

k
k

α
− −

≈
p w w

p
 (30) 

It is observed that for the larger time index k is, the step 
size (14) can be very close to the optimal one (25). The step 
size in (14) will eventually approach to the optimal step size 
when the algorithm converges.  

For the MSE of the proposed CG algorithms, the 
correlation and cross-correlation functions eventually 
approaches to the true values after enough data inputs are 
collected using the general data window. At that point and 
onwards, the estimated correlation and cross-correlation 
functions are varying very slowly. The CG algorithms can 
easily track the slow changes and a low misadjustment 
comparable to that of the RLS algorithm can then be achieved. 

V. SIMULATION RESULTS 
In this section, we implemented several simulations using 

the two basic configurations: adaptive equalization and system 
identification [1]. The performance of the modified CG1 and 
CG2 algorithms are compared to the CG-CLF algorithm [7], 
the Chang-Willson method [6] and the RLS method [6] [1]. All 
the simulation results were obtained by ensemble averaging 
200 independent Monte-Carlo simulation runs. 

A. Adptive Equalizer 
The example used in this section is as described in [1]. The 

input signal applied to the channel is a random Bernoulli 
sequence ( ) 1r k = ± , which has zero-mean and unit variance. 
The channel is corrupted by a zero mean white Gaussian noise 
of variance 2

vσ equal to 0.001. The equalizer with 11 taps was 
employed. The simulations were performed with the parameter 
W set to 2.9 and 3.5, which implied that the eigenvalue spread 
equal to 6.0782 and 46.8216, respectively. The parameters 
were chosen as 0.99λ η= = . Figure 1 shows the ensemble 
average MSE behaviors of the proposed CG1, the CG-CLF 
algorithm, the Chang-Willson method (CG1) and the RLS 
method. The number of reusing data was chosen such 
that 11M = for the proposed CG1. In this case, it can be 
observed that the proposed CG1 algorithm has the transient 
property better than the RLS method, and significantly 
improved over the CG-CLF algorithm and the Chang-Willson 
method (CG1). All the compared CG algorithms give MSE 
comparable with the RLS algorithm in steady state with 

31.7 10−× for 2.9W = and 21.4 10−×  for 3.5W = . Figure 2 
shows the effects of the number of reusing data on the learning 
curves of the proposed CG1 algorithm. We observed that when 
no past data is reused, the proposed CG1 uses an equivalent 
exponential decaying data window. In this case, its 
performance is comparable with the other CG algorithms. 
When the number of reusing data M increases, the 
convergence rate of the proposed CG1 becomes faster. 
Therefore, it provides the user with flexibility in the choice of 
the number of reusing data by considering convergence and the 
added computations. As stated in [4], chosen M in the range 
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Figure 2. Learning curves of the CG1 algorithm for adaptive transversal 
equalizer with 2.9W = and 1,  5, 11, 15M = . 

1 M N< < seems to provide reasonable convergence with an 
affordable computational complexity.  

B. System Identifcation 
An unknown time-invariant plant is to be identified, which 

has a finite time impulse response of order 20 and the FIR 
adaptive filters with the same length are designed. The 
correlated input ( )x k  is generated by the following random 
walk model [1]: 

( ) 0.98 ( 1) ( )x k x k f k= − +  

where ( )f k is independent Gaussian sequences with zero mean 
and unity variance. The measurement noise is zero-mean, white 
Gaussian sequences of variance 2

kσ equal to 0.01. In this case, 
the block processing of the CG algorithms were implemented 
and the data window size was chosen as 10M = for both the 
proposed CG2 and Chang-Willson CG2. Figure 3 shows the 
ensemble average MSE behaviors of the compared algorithms. 
It is observed that the proposed CG2 algorithm achieves the 
convergence which is faster than the RLS algorithm and 
Chang-Willson CG2. The proposed CG2 gives misadjustment 
comparable with the RLS algorithm independent of the 
window size. The Chang-Willson CG2 has fast convergence 
rate but with high misadjustment.  

VI. CONCLUSIONS 
In this paper, we have modified the CG algorithms for 

adaptive filtering problem using the RLS normal equation and 

general data windowing scheme. The parameter β has been 
redesigned from the RLS normal equation. The general data 
window has been presented which allows the designed CG 
algorithms to reuse the data inputs. In addition, this general 
data window can also be extended to other CG algorithms for 
fast convergence and low misadjustment. The advantage of the 
proposed CG algorithms can be observed from the simulations 
that fast convergence property and low misadjustment have 
been provided. 
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adaptive transversal equalizer. (Top) 2.9W = . (Bottom) 3.5W = . 
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Figure 3. Ensemble-average MSE behaviors of various algorithms for the 
system identification with SNR=20dB. 
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