
A Rationale-based Model for Architecture Design Reasoning

Antony Tang

A thesis

submitted in fulfillment of the requirement for the

degree of

Doctor of Philosophy

Faculty of ICT, Swinburne University of Technology

February 2007

Abstract

Large systems often have a long life-span and their system and software architecture design
comprise many intricately related elements. The verification and maintenance of these ar-
chitecture designs require an understanding of how and why the system are constructed.
Design rationale is the reasoning behind a design and it provides an explanation of the
design. However, the reasoning is often undocumented or unstructured in practice. This
causes difficulties in the understanding of the original design, and makes it hard to detect
inconsistencies, omissions and conflicts without any explanations to the intricacies of the
design. Research into design rationale in the past has focused on argumentation-based
design deliberations. Argumentation-based design rationale models provide an explicit
representation of design rationale. However, these methods are ineffective in communicat-
ing design reasoning in practice because they do not support tracing to design elements
and requirements in an effective manner.

In this thesis, we firstly report a survey of practising architects to understand their
perception of the value of design rationale and how they use and document this knowledge.
From the survey, we have discovered that practitioners recognize the importance of doc-
umenting design rationale and frequently use them to reason about their design choices.
However, they have indicated certain barriers to the use and documentation of design
rationale. The results have indicated that there is no systematic approach to using and
capturing design rationale in current architecture design practice. Using these findings,
we address the issues of representing and applying architecture design rationale.

We have constructed a rationale-based architecture model to represent design ratio-
nale, design objects and their relationships, which we call Architecture Rationale and
Element Linkage (AREL). AREL captures both qualitative and quantitative rationale for
architecture design. Quantitative rationale uses costs, benefits and risks to justify archi-
tecture decisions. Qualitative rationale documents the issues, arguments, alternatives and
tradeoffs of a design decision. With the quantitative and qualitative rationale, the AREL
model provides reasoning support to explain why architecture elements exist and what
assumptions and constraints they depend on. Using a causal relationship in the AREL
model, architecture decisions and architecture elements are linked together to explain the
reasoning of the architecture design. Architecture Rationalisation Method (ARM) is a
methodology that makes use of AREL to facilitate architecture design. ARM uses cost,
benefit and risk as fundamental elements to rank and compare alternative solutions in the
decision making process.

Using the AREL model, we have proposed traceability and probabilistic techniques
based on Bayesian Belief Networks (BBN) to support architecture understanding and

i

maintenance. These techniques can help to carry out change impact analysis and root-
cause analysis. The traceability techniques comprise of forward, backward and evolution
tracings. Architects can trace the architecture design to discover the change impacts by
analysing the qualitative reasons and the relationships in the architecture design. We have
integrated BBN to AREL to provide an additional method where probability is used to
evaluate and reason about the change impacts in the architecture design. This integration
provides quantifiable support to AREL to perform predictive, diagnostic and combined
reasoning.

In order to align closely with industry practices, we have chosen to represent the
rationale-based architecture model in UML. In a case study, the AREL model is applied
retrospectively to a real-life bank payment systems to demonstrate its features and appli-
cations. Practising architects who are experts in the electronic payment system domain
have been invited to evaluate the case study. They have found that AREL is useful in
helping them understand the system architecture when they compared AREL with tradi-
tional design specifications. They have commented that AREL can be useful to support
the verification and maintenance of the architecture because architects do not need to
reconstruct or second-guess the design reasoning.

We have implemented an AREL tool-set that is comprised of commercially available
and custom-developed programs. It enables the capture of architecture design and its
design rationale using a commercially available UML tool. It checks the well-formedness
of an AREL model. It integrates a commercially available BBN tool to reason about the
architecture design and to estimate its change impacts.

ii

Acknowledgements

I would like to thank my supervisor, Professor Jun Han, for his exceptional support,
patience and guidance to the completion of this thesis.

I am indebted to Professor T.Y. Chen who has introduced me to the wonderful journey
of research and has supported me along the way. It is my pleasure to have the oppor-
tunities to work with and learn from Dr. Yan Jin, Associate Professor Ann Nicholson,
Mr. Muhammad Ali Babar, Professor Ian Gorton and Dr. Pin Chen. Their suggestions,
critical comments and encouragements have been invaluable.

I would like to thank Sparx Systems and Norsys for providing the software tools in
this research. NCR and Guangzhou Electronic Banking Settlement Center have graciously
allowed me to use the Electronic Fund Transfer System as a case study and I am thankful
to them. I am grateful to Nikhil Alave who helped implement the AREL tool in VB.Net.
Finally, I would like to thank the many practising architects and designers who have
devoted their time to provide valuable inputs for the survey and the empirical study.

This work is dedicated to my wife Alice.

iii

Declaration

This thesis contains no material which has been accepted for the award of any other degree
or diploma, except where due reference is made in the text of the thesis. To the best of
my knowledge, this thesis contains no material previously published or written by another
person except where due reference is made in the text of the thesis.

Signed:

Dated:

iv

Contents

1 Introduction 1

1.1 Design rationale . 3

1.2 Research motivations and research questions 4

1.2.1 Motivations . 4

1.2.2 Research questions and research approach 6

1.3 Research outcomes . 7

1.4 Structure of the thesis . 8

I Problem Analysis 10

2 An industry’s perspective of design rationale in software engineering 11

2.1 Industry practice of design rationale . 12

2.2 Architecture frameworks and design rationale 14

2.2.1 Zachman Framework . 17

2.2.2 4+1 View . 17

2.2.3 Federal Enterprise Architecture Framework 18

2.2.4 Reference Model for Open Distributed Processing 19

2.2.5 The Open Group Architecture Framework 20

v

2.2.6 DoD Architecture Framework . 21

2.2.7 Architecture framework summary . 21

2.3 Summary . 23

3 Related work in design rationale 24

3.1 What is design rationale? . 25

3.2 Why do we need design rationale? . 26

3.3 Existing methods for capturing and representing design rationale 29

3.3.1 Issue-Based Information System (IBIS) and its variants 30

3.3.2 Questions, Options and Criteria (QOC) 32

3.3.3 Design Rationale Language (DRL) 33

3.3.4 Software Engineering Using Design RATionale (SeuRAT) 34

3.3.5 Architecture Decision Description Template (ADDT) 35

3.3.6 Views and Beyond (V&B) . 37

3.3.7 Quantitative reasoning methods . 38

3.4 Other related studies . 38

3.4.1 Requirements engineering . 39

3.4.2 Requirements traceability . 39

3.5 How well design rationale methods work? 42

3.6 Summary . 45

4 Research methodology and validation 46

4.1 Software engineering research methods . 47

4.2 The chosen research and validation methods 49

vi

4.3 Summary . 51

II Architecture Design Rationale Practice in the Software Industry 52

5 A survey of the use of architecture rationale 53

5.1 Architecture rationale in the software industry 55

5.1.1 Design rationale approaches in software engineering 55

5.1.2 Generic design rationale . 56

5.2 Survey methodology . 57

5.3 Survey findings . 59

5.3.1 Demographic data . 59

5.3.2 Job nature of architects / designers 60

5.3.3 Designer’s perception of the importance of design rationale 61

5.3.4 Using design rationale . 64

5.3.5 Documenting design rationale . 66

5.3.6 Comparing usage and documentation of design rationale 69

5.3.7 Design rationale and system maintenance 70

5.3.8 Risk as a design rationale . 73

5.4 Discussion of findings . 74

5.4.1 Different forms of design rationale 74

5.4.2 The role of an architect . 75

5.4.3 Designers’ attitude . 76

5.4.4 Necessity for design rationale documentation 76

5.4.5 Design rationale to support impact analysis 76

vii

5.4.6 Risk assessment in architecture design reasoning 77

5.4.7 Methodology support for design rationale 77

5.4.8 Tool support for design rationale . 77

5.5 Limitations . 78

5.6 Summary . 79

III The Representation and Applications of Architecture Design Ra-

tionale 80

6 Representing architecture design rationale 81

6.1 A conceptual model for design reasoning . 82

6.2 Architecture Rationale and Elements Linkage (AREL) 84

6.3 Architecture elements . 87

6.4 Architecture rationale . 89

6.4.1 Qualitative rationale . 91

6.4.2 Quantitative rationale . 92

6.4.3 Alternative architecture rationale . 93

6.4.4 Avoiding cyclic decisions in AREL models 93

6.5 The extended AREL . 96

6.6 A UML representation of AREL and eAREL 97

6.6.1 The architecture element stereotype 98

6.6.2 The architecture rationale stereotype 99

6.6.3 The architecture trace stereotype . 100

6.6.4 The AE and AR supersedence stereotypes 101

viii

6.6.5 AREL well-formedness in UML . 102

6.7 AREL usability . 102

6.8 Summary . 103

7 A case study of using the AREL model 105

7.1 The EFT system . 106

7.1.1 The EFT architecture overview . 106

7.1.2 Fault-resilient support . 109

7.1.3 Payment messaging . 111

7.1.4 Transaction integrity . 114

7.1.5 Specialised message control process 117

7.1.6 Centralised control . 118

7.1.7 Message sequencing . 119

7.1.8 Error reporting . 121

7.2 An empirical study to validate the AREL model 122

7.2.1 Objectives of the empirical study . 122

7.2.2 About the empirical study . 123

7.2.3 Selecting experts . 124

7.2.4 Empirical study results . 125

7.2.5 Limitations . 131

7.3 Summary . 132

8 The architecture rationalisation method 133

8.1 Background . 134

ix

8.2 The architecture rationalisation method . 136

8.2.1 Qualitative rationale . 137

8.2.2 Quantitative rationale . 138

8.3 Other applications of ARM . 143

8.3.1 Completeness of architecture design 143

8.3.2 Verifiability of architecture design 148

8.4 Summary . 149

9 Architecture rationale and traceability 150

9.1 Background . 152

9.1.1 Issues with design rationale . 152

9.1.2 Requirements and design traceability 152

9.2 Traceability of architecture rationale . 153

9.3 Traceability support . 155

9.4 AREL and eAREL traceability applications in a case study 156

9.4.1 Design rationale representation . 156

9.4.2 Forward and backward tracing . 159

9.4.3 Tracing architecture design evolution 163

9.5 Discussion . 165

9.6 Summary . 165

10 Architecture decision dependency and causality 166

10.1 Background . 166

10.1.1 Related work . 167

x

10.1.2 Introduction to Bayesian Belief Networks 168

10.2 Building a BBN to represent an AREL model 169

10.2.1 Nodes: Representing architecture elements and decisions 170

10.2.2 Edges: Representing causal relationships 171

10.2.3 Probabilities: Quantifying the causal relationships 172

10.3 Reasoning about change impact with AREL 177

10.3.1 An example . 177

10.3.2 Original beliefs modelled by AREL 181

10.3.3 Predictive reasoning . 182

10.3.4 Diagnostic reasoning . 184

10.3.5 Combining diagnostic and predictive reasoning 186

10.4 Discussions and limitations . 189

10.5 Summary . 190

11 Tool implementation 191

11.1 Capturing architecture design rationale . 192

11.2 Checking AREL models . 195

11.3 Tracing AREL models . 197

11.4 Analysing AREL with BBN . 199

11.5 Limitations . 201

11.6 Summary . 203

12 Conclusions 204

12.1 Summary . 204

xi

12.2 Contributions . 206

12.2.1 Design rationale survey . 206

12.2.2 Design rationale representation . 207

12.2.3 Design rationale applications . 208

12.2.4 Tool implementation . 210

12.3 Future work . 210

Bibliography 212

IV Appendices 227

A – AREL tool user manual 228

B – Creating stereotype package in Enterprise Architect 237

C – A survey questionnaire on architecture rationale 239

D – A questionnaire to validate the AREL model 247

List of related publications 255

xii

List of Figures

2.1 Conceptual Model of Architecture Description [70] 15

3.1 IBIS Design Rationale Model . 31

3.2 PHI Issues Hierarchy . 31

3.3 REMAP Model . 32

3.4 An Example of QOC Design Rationale . 33

3.5 A DRL Decision Graph . 34

3.6 A RATSpeak Design Rationale Model . 35

3.7 A Design Rationale Traceability Model . 41

6.1 An Architecture Rationale Conceptual Model 83

6.2 A Causal Relationship between AEs and an AR 85

6.3 An AREL Diagram of a reporting sub-system, in UML 86

6.4 A Composition of Architecture Elements . 88

6.5 Components of Architecture Rationale . 90

6.6 Illegitimate cyclic graph: (a) AE-cyclic case (b) AR-cyclic case 94

6.7 (a) Cyclic Design (b) Acyclic Design . 95

6.8 AE and AR evolution support in eAREL . 97

6.9 �AE� Stereotype to extend Architecture Drivers 99

xiii

6.10 �AR� and �AAR� Stereotypes . 100

6.11 �ARtrace� Stereotype . 101

6.12 �AEsupersede� and �ARsupersede� Stereotypes 101

7.1 A Use Case of the EFT System . 107

7.2 Processing Services of the EFT System . 108

7.3 Decisions that Support Fault-resilient architecture 109

7.4 Message Control Processing . 111

7.5 Intertwined Issues in the Architecture of MCP 112

7.6 General Payment Message Processing Sequence Diagram 115

7.7 Decisions to Support Transaction Recovery 116

7.8 MCP Connection Design . 117

7.9 Decisions to Support Centralised Control 119

7.10 Decisions to Idenify a Payment Message . 120

7.11 Decisions to Architect Error Catching and Reporting 121

8.1 Key Activities in Architecture Design . 135

8.2 Risk Assessments of Alarm Services . 146

9.1 Asynchronous message processing decision and its design impact 157

9.2 Details of the design rationale AR10 . 158

9.3 Forward tracing for impact analysis . 160

9.4 Backward tracing for root-cause analysis . 163

9.5 (a) MAC processing (b) Superseded architecture element 164

xiv

10.1 A medical example: (a) BBN nodes, arcs and CPTs; (b) BBN graph without
evidence; (c) patient has a cough (diagnostic reasoning); (d) patient has a
cough and a heavy smoker (both predictive and diagnostic reasoning). . . . 169

10.2 Basic Forms of AREL Relationship in the BBN 171

10.3 Payment Messaging Design: Asynchronous Message Processing 177

10.4 Payment Messaging Design: Security . 179

10.5 A BBN Representation with prior probabilities/CPTs of a Payment Mes-
sage Design: (a) Asynchronous Message Processing (b) Security 180

10.6 An Example BNN Shown with Beliefs Before Any Evidence is Entered . . . 182

10.7 Predictive Model . 183

10.8 A Diagnostic Model . 185

10.9 A BBN Model of Combined Reasoning . 188

11.1 The AREL Tool-set . 192

11.2 An Example of AE Tag Values . 193

11.3 An Example of AR Tag Values . 193

11.4 The AREL Constructs for Modelling . 194

11.5 A hierarchy of elements in an AR . 195

11.6 An Example of a Qualitative Rationale (QLR) 195

11.7 An Example of a Quantitative Rationale (QNR) 196

11.8 AREL Tool Menu Options . 197

11.9 AREL Tool Consistency Check Results . 197

11.10Window for Specifying AREL Trace Criteria 198

11.11An Example of AREL Trace Result . 199

11.12A Process to Extract AREL Model from UML into BBN 200

xv

11.13A Process to Synchronise Change between UML and BBN 202

xvi

List of Tables

2.1 The Zachman Framework . 17

3.1 An Analysis of the Usability Features of Design Rationale Methods 44

4.1 Research Questions and Research Methods 49

4.2 Case Study Verification . 50

5.1 Frequency of Reasoning about Design Choices 62

5.2 Importance of Design Rationale in Design Justification 62

5.3 Frequency of Considering Alternative Designs 62

5.4 Importance of Each Generic Rationale . 63

5.5 Design Rationale Frequency of Use . 65

5.6 Frequency of Documenting Discarded Decisions 66

5.7 Frequency of Documenting Generic Design Rationale 66

5.8 Reasons for Not Documenting Design Rationale 67

5.9 Design Rationale Usage . 69

5.10 Frequency of Revisiting Design Documentation before Making Changes . . 70

5.11 Tendency of Forgetting the Reasons for Justifying Design Decisions 71

5.12 Do Not Understand Design without Design Rationale if Not Original Designer 71

xvii

5.13 Design Rationale Helps Evaluate Previous Design Decision 71

5.14 Frequency of Performing Impact Analysis 72

5.15 Importance of Each Impact Analysis Task 72

5.16 Correlation between Use of Design Rationale and Impact Analysis Tasks . . 73

6.1 An Analysis of the Usability Features in AREL 103

7.1 Empirical study - Question 1 Results . 125

7.2 Empirical study - Question 2 Results . 126

7.3 Empirical study - Question 3 Results . 127

7.4 Empirical study - Question 4 Results . 127

7.5 AREL Usefulness in Supporting Architecture Design Reasoning 128

7.6 Experts’ Willingness to Use AREL . 128

8.1 A Comparison of the Architecture Costs and Benefits 140

8.2 The Expected Architecture Cost and Benefit Ratio 142

10.1 Volatility of Architecture Elements and Validity of Architecture Rationales
over a Sequence of Changes . 187

xviii

Chapter 1

Introduction

Software engineering has been maturing over the years as increasingly sophisticated meth-
ods become available to guide developers. A general progress is the increasing level of
abstraction to represent system models and implement them. The purpose is to handle
complexity. There are many such examples: the transition from assembly programming to
structured programming in high-level languages and then to object-oriented programming,
and the transition from program design to software architecture design.

Software architecture design provides a high-level abstraction of a system. It is an
important area of research in recent years because it lays the structural foundation of a
system. It allows designers to visualise that a design is viable and that it would satisfy
key requirements. When performing architecture design, architects consider both the
technical and non-technical aspects of a system. Aspects such as requirements, project
schedule, budget, information technology strategies and design trade-off are only some
of the considerations in architecture design. Such diversity of considerations makes it
challenging to balance the conflicting interests in an architecture design.

The question to address is how architects should organise and tradeoff between a wide
range of considerations to provide a quality design. It has been suggested that this aspect
is fundamental in architecture design for a system to succeed [47]. For instance, a software
architect cannot consider security without ensuring that the performance of the system
remains satisfactory. Similarly, an architect cannot design a system without considering
the IT budget and the legacy systems that are in place. But different architects have
different ideas on how to design based on individual experience and approach. Intuitively,
we know that the results and the quality of the architecture design may differ depending
on who the architect is. We may prefer to trust a more experienced architect with good
track records rather than an inexperienced architect. This highlights a fundamental issue

1

that architecture design is highly dependent on the person who performs it. Therefore,
the quality of the architecture design depends on an architect’s experience, knowledge and
decision making abilities [169].

Methodologies to support software architecture development have been proposed by
many such as [64, 8, 23]. There are also published standards for architecture design and
architecture frameworks [70, 164]. Although these methodologies support architecture
design, very few prescribe on how architecture design decisions could be made and verified,
and as such decision making is largely software architects dependent.

Software architects conveniently assume that they make the correct design decisions
based on their intuition of the problems and their understanding of the potential solu-
tions. The question of whether an architecture design is the most suitable one is vaguely
addressed. For instance, a set of requirements are given to two designers, we cannot pre-
dict how similar or different their design and design qualities might be. The differences
between two designs might be attributed to how contextual information are interpreted
in decision making. Good decisions result in high quality system design and bad deci-
sions result in poor quality design. Therefore, design decision is an important aspect in
architecture design.

Argumentation-based design rationale methods have been proposed to capture design
deliberations [93, 99, 97]. These methods have provided the initial research in design
rationale. Despite their efforts, there is little evidence that they have been adopted by the
software industry. Some have argued that these methods do not effectively capture and
communicate design rationale for practical use [139, 132]. But mostly design rationale are
not captured at all or they are not captured in a way that could be used effectively.

Without a systematic way to elicit and represent design rationale, the knowledge and
the understanding of the architecture design can be eroded over time [119, 11]. Further-
more, the documentation of design rationale as evidence to support architecture design
is usually not mandated, making it difficult to review and evaluate architecture design.
Such erosion of architecture design rationale has a number of implications on software
development. The understanding of a design can diminish over time and cannot be shared
across the organisation. As a result, architecture design cannot be justified, validated and
maintained easily. On the other hand, systematic capture of design rationale can provide
much insights into the architecture design, thereby supporting evaluation, verification,
traceability and maintenance of complex systems. Without design rationale, maintainers
could find it difficult to understand the design when the underlying assumptions, con-
straints and tradeoffs are missing, and the design reasoning of the architecture cannot be
traced.

2

1.1. Design rationale

In this thesis, we address the issue of the lack of design rationale in a number of ways.
First, we investigate the use and documentation of architecture design rationale in the
software industry by way of a survey. We conjecture and test that architecture design
often relies on the experience and intuitions of architects instead of using systematic
and objective methods for rational decision making. We then address the issue of an
appropriate representation and applications of architecture design rationale. The main
result of our work is a model, Architecture Design Rationale and Element Linkage (AREL),
for capturing and representing architecture design rationale. This model is aligned with the
industry architecture design practice to support its application. AREL facilitates design
reasoning by allowing architects to trace requirements to related design decisions and
design objects, and supporting the analysis of the underlying assumptions and constraints
that affect a design. This analysis can be carried out in a qualitative way to explore the
design justifications, or in a quantitative way to estimate the probability of change impact.

1.1 Design rationale

Design rationale is a reason or an intention in the act of designing. When design decisions
are made, what is considered as a reason or an intention? and how could a decision
be justified? There are different interpretations of design rationale. Moran and Carroll
suggested that design rationale are reasons to express the purposes of the designed artefacts
with their contextual constraints on realising the purposes [103]. According to Conklin
and Burgess-Yakemovic [24], design rationale can have the characteristics of recording
the history of how a design comes about through recording logical reasoning to support
future reference. Carroll and Rosson [18] suggested that design rationale can be viewed
as psychological claims that are embodied by an artefact whereby design deliberations
through evolution can be assessed. Maclean et.al [97] claimed that design rationale can
be a description of the design space and used to deliberate design decisions.

There is no lack of software architecture development methodologies in the industry,
then why do we need to consider design rationale? Researchers in this area have argued
that it can be used to improve the design decision making process by capturing, repre-
senting and reusing design knowledge lest that they might be lost. Perry and Wolf [119]
suggested that as architecture design evolves, the system is increasingly brittle due to
two problems: architectural erosion and architectural drift. Both problems may lead to
the violations of the architecture design over time because the underlying rationale is not
available to support the architecture design. Bosch suggested that architecture design
decisions are crossing-cutting and inter-twined, so the design is complex and prone to
erroneous interpretations without a first-class representation of design rationale [11]. As

3

1.2. Research motivations and research questions

such, the design could be violated and the cost of architectural design change could be
very high and even prohibitive. Kruchten et al. suggested that architecture knowledge
consists of the architecture design and its design rationale [86].

Despite the work by researchers such as [18, 24] and the standards organisations such as
[70, 164], the adoption of design rationale is sporadic. Design decisions still rely heavily on
the intuition and the experience of individual architects irrespective of the development
methodology being employed. The quality of an architecture design therefore largely
depends on the architecture decisions made by architects. Therefore the study of making
rational and objective design decisions is worthwhile.

1.2 Research motivations and research questions

Architecture design is one of the early steps and arguably one of the most important
steps in the software development life-cycle (SDLC). It provides a foundation to construct
a system. Architecture design decisions thus become early design commitments in the
SDLC. Activities of architecture design such as the procurement of platforms, determin-
ing interface standards, outlining system design structure and determining development
standards are decided and executed at an early stage of the design process that can be
difficult to change or reverse later. Hence it is important to ensure that the decisions
behind the architecture design are correct. In this section, we describe the motivations
and the research questions addressed by this thesis.

1.2.1 Motivations

The software engineering community has long been aware of the issue relating to the loss
of design rationalisation knowledge. This phenomenon is evident in a lack of architec-
ture design justification process that uses design rationale and a lack of design rationale
documentation [11]. Researchers have put forward many suggestions to address this is-
sue [14, 129, 33, 124, 94]. Argumentation-based design rationale methods address the
issue of deliberation but they face challenges in their implementation (see Chapter 3).
Methods such as ATAM, CBAM, and Views and Beyond to aid architecture design have
also been suggested [8, 23]. However, the software development industry does not seem
to have adopted such practices and it is unclear what methods are used instead, if any.
We conjecture that the following factors contribute to the difficulties in design rationale
implementation. We subsequently provide evidence through a survey to prove some of
them:

4

1.2. Research motivations and research questions

• the argumentation-based design rationale systems do not effectively capture and
communicate design reasoning;

• some of the design rationale methods are not practical in the industry setting because
they do not work effectively with the development process;

• practitioners are not aware of the benefits to explicitly justify and capture design de-
cisions, so they continue the traditional design practice without an explicit reasoning
process;

• lack of methodology and tool support.

If design rationale is not used systematically, and architects continue to practise un-
structured decision-making instead of an objective and verifiable reasoning process [156],
a number of issues may arise:

• architects may not have considered all the factors that influence a design, resulting
in a system with inferior quality;

• architecture decisions do not have to be justified in an objective way, therefore the
argumentation, analysis and tradeoffs about a decision could be incomplete or biased;

• the verification of the architecture design remain a subjective exercise and its quality
assurance ability questionable;

• the reasoning of the architecture decisions is not systematically captured and can
“evaporate” over time;

• change impact analysis during architecture design maintenance requires reasoning
support and the lack of such knowledge can lead to difficulties in understanding and
maintaining a system;

• unstructured design rationalisation may cause difficulties in future system enhance-
ments such that a minor change in requirement may cause a major architecture
design change, therefore increases the risks and costs of a project inproportionally.

These are fundamental issues which have not been studied in detail and they relate
primarily to architecture design rationale. Thus, we need to study the use and documen-
tation of architecture design rationale. In the next section, we discuss the related research
questions and the research approaches.

5

1.2. Research motivations and research questions

1.2.2 Research questions and research approach

Argumentation-based design rationale methods have mostly focused on design rationale
deliberation but they have largely omitted the relationships with design elements. These
methods are ineffective in the capture and communication of design rationale [139]. Given
these shortcomings, we aim to investigate the following questions in this thesis to provide
some improvements:

• In order to establish the usefulness of this research, the following background ques-
tions have been investigated:

– Is design rationale important in architecture development?

– Is design rationale important in system maintenance?

– What is the current state of practice of design rationale in the software industry?

• How to improve the representation of design rationale for architecture development?

• How to implement traceability between requirements, architecture design elements
and design rationale?

• How to quantify and estimate change impact analysis using architecture design ele-
ments and design rationale?

Since these research questions are inter-related, they need to be examined together
in a holistic way. Our research approach is to first establish the importance of design
rationale for this work to be meaningful. The perception that design rationale is useful
is supported only by anecdotal evidence. Empirical evidence is thus required to establish
that design rationale is indeed useful for architecture design and maintenance. We also
need to determine what are the key elements in design rationale. To this end, we have
conducted a survey involving architects and designers in the Asia Pacific region to study
the usefulness and applications of design rationale.

Secondly, we analyse the implementation issues that exist in current design rationale
methods. Using the analysis as a guideline, we designed the AREL representation scheme
to overcome those issues. We then validate the AREL method using an empirical study to
compare the effectiveness of AREL with traditional design specifications. Finally, we study
the impact analysis and the traceability aspects of design rationale to propose methods
for their applications. We use a case study based on an electronic payment system to
demonstrate the design rationale applications.

6

1.3. Research outcomes

1.3 Research outcomes

This section gives a summary of the research results. Firstly, the results of our survey have
established the current practice of using and documenting design rationale. We found that
most architects see the importance of design rationale. 85% of respondents told us that
design rationale is important or very important, but only 43.3% of them document design
rationale often. The ways they document design rationale vary and are not systematic.
In the survey, we have investigated different types of design rationale that are useful to
practising architects. The results indicate that there are no established methodologies for
capturing and using design rationale.

Secondly, we have developed the AREL model to address the issue of design rationale
representation. It represents architecture design rationale and their relationships with
architecture elements. AREL has three objectives: (a) it must effectively capture design
rationale to explain why design objects exist; (b) it must not interfere with the natural
process of architecture design during design rationale capture; (c) the retrieval of design
rationale is easy to achieve.

We use the Unified Modelling Language (UML) notation to represent the AREL model.
Architects can capture and document design rationale whilst they are designing and docu-
menting the system architecture in UML. Requirements, assumptions and constraints are
used as the architecture drivers. These inputs or drivers motivate decisions to be made
to create architecture design objects. Architecture design decisions are the results of the
tradeoffs between factors such as costs, benefits, risks and weakness. The AREL model
captures the design rationale during the decision process to provide a framework to explain
the architecture design reasoning.

Finally, different applications of AREL have been developed to enhance the use of
design rationale:

• Architecture development process - the Architecture Rationalisation Method (ARM)
is a design rationale centric process. By applying ARM, architects can make use of
AREL to facilitate decision making and exploring the design space until the archi-
tecture design is relatively risk free.

• Traceability to support design reasoning - we propose three traceability methods
(forward, backward and evolution) to support the traversal of design rationale. This
application allows architects to explain the dependency between requirements and
design objects qualitatively for verification and maintenance purposes.

• Quantitative Analysis - we use Bayesian Belief Networks to quantitatively analyse

7

1.4. Structure of the thesis

the change impacts of a system. This application provides a way to assess the
likelihood of change, in terms of probabilities, in various parts of the system when
requirements or design are changing.

We use a central bank electronic payment and settlement system as a case study to
demonstrate AREL modelling and its applications. In an empirical study to evaluate the
usefulness of AREL, experts were involved to compare the original design specifications
and the AREL model for their effectiveness in explaining the design. The empirical study
has shown that the majority of design rationale are recalled from architects’ memory or
are deduced by them. This is because design rationale is not completely documented in
traditional design specifications. The empirical study has also shown that AREL serves
well in capturing design rationale to help the experts understand the design reasoning.

A set of tools have been created to capture design rationale and support its applica-
tions, as currently existing design tools lack the abilities to link design objects to their
rationale. A standard UML tool, Enterprise Architect, has been enhanced to support
design rationale capture. We have developed the AREL Tool to check AREL model con-
sistency and to support design reasoning analysis and tracing. We have made use of
Netica to analyse impact analysis using Bayesian Belief Networks. The integrated tool-set
demonstrates the applications of AREL in a practical industry setting.

1.4 Structure of the thesis

The thesis is organised as follows:

Chapter 1 gives an introduction and a context for the subsequent chapters of the
thesis. In this chapter, the research background, research questions and the results are
briefly described.

Chapter 2 describes the application of design rationale from an industry perspective.
It provides a background on how the software industry in general deals with design ratio-
nale. Different architecture frameworks are examined in particular for their treatments of
design rationale.

Chapter 3 explores the related work of design rationale published in the literature.
In this chapter, different design rationale methods are described. A comparison is made
to highlight the merits and limitations of these methods. Other work which is related to
the application of design rationale are also cited and discussed.

8

1.4. Structure of the thesis

Chapter 4 describes the research methodologies used in this thesis.

Chapter 5 describes a survey of practising software architects. The results of this sur-
vey has not only provided proofs to motivate the research in this area, it has also provided
directions for formulating the architecture design rationale model and its applications.

Chapter 6 describes the Architecture Rationale and Elements Linkage Model (AREL)
which is used to capture and represent design rationale. The elements and the structure
of AREL are discussed in details.

Chapter 7 uses a case study to demonstrate how AREL is used in capturing and
communicating architecture design rationale. The case study is about a central bank
electronic payment and settlement system called Electronic Fund Transfer System (EFT).
This system has been in production since 1998. AREL is used retrospectively to capture
the design rationale of the system. In an empirical study, experts have evaluated the
AREL representation using the case study as an example.

Chapter 8 describes the Architecture Rationalisation Method (ARM) which is a
design rationale centric method to facilitate architecture development. This chapter de-
scribes how ARM helps architects construct an architecture design using qualitative and
quantitative design rationale.

Chapter 9 describes the traceability application of the AREL model. Three types of
traceability applications are shown. They describe how qualitative design rationale can
be used to help understand the design reasoning. The case study is used to demonstrate
design rationale traceability in AREL.

Chapter 10 describes change impact analysis using AREL and a quantitative method
called Bayesian Belief Networks. A detailed discussion of the causality between architec-
ture design rationale and architecture elements are made. Using this relationship, archi-
tects can estimate the likelihood of change across a system. An application of this method
is demonstrated by using the case study.

Chapter 11 reports the implementation of the AREL tool-set to support AREL
applications.

Chapter 12 concludes this thesis by outlining the major contributions and benefits
of this work. It also discusses the areas where further research is required.

9

Part I

Problem Analysis

10

Chapter 2

An industry’s perspective of

design rationale in software

engineering

Designers working in the software industry often use intuition and experience to rationalise
their design decisions. Their design reasoning are generally carried out implicitly. The
drawback of such an implicit approach is that the quality of decisions would heavily depend
on the experience and expertise of the individuals. It has been established that design
rationale play an important role in the design decision making process [33, 12], it would
be useful to ascertain if the software industry adopts a structured and effective design
rationalisation process and if they capture and manage design rationale.

There are a number of methods that offer design reasoning support, examples are
ATAM [8], CBAM [4], View and Beyond [23], Use Case Driven Software Development [33]
and SeURAT [14]. However, it seems that they have not been adopted by the software
industry generally. The lack of guidance in design decision making means that personal
experience plays a large role in design activities. Hence, designers with less experience
could make less than optimal or even erroneous design decisions. This could be one of the
reasons why the success of projects are related to the capabilities of technical personnel
[74].

In this chapter, we examine the software industry practice of design. We discuss
architecture design methodologies and how they make use of design rationale. Finally, we
discuss the implications of lacking design rationale to enterprise systems.

11

2.1. Industry practice of design rationale

2.1 Industry practice of design rationale

Software engineering research is often motivated by problems which arise in the production
and the use of real-world software systems [138], therefore it is necessary to examine the
real-world to provide a context of the problems being addressed in software engineering
research. Architecture design plays a prominent role in software and system develop-
ment. Its necessity is due to the highly complex and integrated systems which are typical
of today’s enterprise system environment. Such systems usually have sub-systems and
components which are intricate and interdependent. They require continuous mainte-
nance, enhancements and integration during their long life-span. Insufficient attention to
architecture design may result in poor quality systems which are difficult and costly to
maintain.

Projects or systems may fail because of poor architecture design. There have been a
number of reports on such failures. The Standish Report [165] showed that there was an
alarmingly high percentage of projects that either do not complete successfully, do not
meet project objectives or have significant cost and schedule overrun. May at Crosstalk
[98] reported that most of the project failure causes originate before the first line of code
has been written. Poor user inputs, stakeholder conflicts, vague requirements and poor
architecture are some of the failure reasons named in the report. In Jones’s report [74],
many ways were suggested to tackle project issues. An example is to reduce the costs
and the risks of software development by producing quality and reusable software arte-
facts. Peter Neumann’s column [106] on risks regularly reports IT system failures due to
various reasons. Despite reporting of project and system failures over many years, and
recommendations for remedying the problems, there is no shortage of such failures. Why?

Development methodologies are well adopted by the IT industry. Quality systems
such as Integrated Capability Maturity Model (CMMI) for software and system develop-
ment [16] and Six Sigma Total Quality Management [144] are receiving more acceptance by
large organisations such as IBM, NCR General Electric and Lockheed. IEEE and ISO have
issued standards such as Software Requirements Specification [69], Software Life-cycle Pro-
cesses [67, 68], Architecture Development [70] and Reference Model for Open-Distributed
Processing [71] to guide software development. Software and service providers such as
IBM and Accenture also have their proprietary methodologies and tools to support soft-
ware and system development. Most IT organisations employ some forms of development
standards and methodologies. With so many methodologies and standards in place, why
are there still quality issues, cost overrun and project failures? Are practitioners not fol-
lowing the methodologies and standards, or are the methodologies and standards lacking
in any way, or simply the project failure measurements are inaccurate [35]? There may

12

2.1. Industry practice of design rationale

be more than one answer and most likely the answers are non-trivial. However, there is
something fundamental that underlies such project issues - the soundness of the design
decisions.

Software engineering practices mostly focus on the design of concrete and visible arte-
facts and either omit or treat the decision making documentation as separate [43]. Design
rationale is commonly ignored and undocumented. Most of the time they are not man-
dated as part of the software deliverable. Even though architecture design is thought to
be a very important stage in the development process, the architecture design rationale
are usually not rigorously tested in the design review process. The treatment of those
factors which influence the design decisions are usually implicit and ad hoc. For instance,
architecture decisions would make assumptions on factors such as delivery schedule, level
of expertise in the development team and platform stability, but these assumptions are
mostly implicit. Designers could be biased toward personal preferences and agenda that
would affect the objectivity of the design decisions.

Given that design decisions are predominantly an implicit process, it is possible and
quite common that a series of incorrect decisions can escape quality checks set out by
development methodologies and standards, resulting in project failures. Thus we posit
that improving the decision making process can help minimise mistakes and failures. Along
with many other researchers [11, 12, 124], we argue that making quality decisions is an
essential part of software development. High quality design requires that each decision is
rational and that all relevant factors which influence the decision are well considered. As
such, the system design process will improve if a methodology to enhance design decision
making is available.

In a successful project, planning and architecture design are two of the crucial steps
[154]. These two factors are interrelated in that the project plans set the constraints for
the architecture design, and the architecture design dictates the resources required in a
project. For instance, design decisions made during the architecture design dictate the
resources required to develop the system. Even though the role of architecture design is
very important in a project, its decisions are often not sufficiently justified. Less than
optimal decisions could be made and risk could arise when decisions are not justified
systematically. The author has numerous encounters of such incidents and some real-life
examples are illustrated below:

• Design for the Future - arguing for reusability or flexibility, the architects make
architecture design overly complex and costly without delivering additional benefits.
The reusable or flexible features are actually never required or necessary [15].

13

2.2. Architecture frameworks and design rationale

• Schedule Constraints - management may have a budget and schedule constraint on
the project. In view of such constraints, architecture designs are compromised to
meet the schedule. The opportunity cost incurred is that the future enhancements
are more costly [98].

• Platform Selection - selecting a software platform such as a database system is
sometimes influenced by reasons that are not technical or financial in nature. It
could be due to political reasons. As such, non-functional requirements such as
performance, security and features that are essential to satisfy system requirements
can be overlooked and compromised [98].

• Design Choices - the choice of a technical design may be influenced by architects’
familiarity with certain technologies. It may be a subjective opinion based on what
designers are comfortable with rather than an objective rationale to measure the
effectiveness of a solution. On the other hand, some architects may choose to use a
new technology not because it is a suitable solution but because the architects want
to gain experience in such technologies.

Mystical software architectures without justified design decisions are quite common
[170]. Creators of such architectures seem to want the project stakeholders to take many
things on faith. There are many assumptions about the architecture that it could satisfy
the business drivers, deliver the requirements and are implementable. Defects might be
entrenched in the architecture design unknowingly. Existing quality and software engi-
neering methodologies might not be able to detect these defects because design decisions
are unjustified and undocumented. Design rationale are implicit in the design process and
are probably not captured systematically, so they do not persist and can be lost over time.
In order to address the issue of design knowledge evaporation, we study the process of
architecture design rationalisation and the retention of design rationale.

2.2 Architecture frameworks and design rationale

Software systems are becoming more complex as more components are used in their con-
struction, thus the organisation of the overall system - the software architecture - presents
a new set of design problems [46]. With that complexity, changes in an architecture are
more difficult because they would affect a large part of the system [105]. To manage the
complexity in architecture design, a number of architecture frameworks [21, 31, 30] and
research work [119, 46, 147, 90, 85] have been devoted to this subject.

A common approach to organising system components in an architecture is by using

14

2.2. Architecture frameworks and design rationale

viewpoints. Architecture viewpoints represent different perspectives of a system. A per-
spective or a view of an architecture focuses on a related set of concerns of a system such as
requirements, information and software design. Industry practices, especially at the enter-
prise level, often employ architecture frameworks to standardise their architecture repre-
sentations and processes. The IEEE Recommended Practice for Architecture Description
of Software-Intensive Systems (IEEE 1471-2000) [70] provides a guideline to documenting
architecture as shown in Figure 2.1. It suggests that a System has an Architecture and the
Architecture is described by its Architectural Description. The Architectural Description
should provide the Rationale and organised by Views and Models.

Figure 2.1: Conceptual Model of Architecture Description [70]

From a process perspective, architecture design is the early decision-making in the
design and modelling of information systems. It plays an essential role in shaping the
high-level design of the system. The IEEE 1471-2000 standard defines the architecture as
“the fundamental organization of a system, embodied in its components, their relationships
to each other and the environment, and the principles governing its design and evolution”
[70]. There are a number of reasons why this upstream architecture design process is

15

2.2. Architecture frameworks and design rationale

important:

• The impact of the architecture design is high. Early architecture decisions are com-
mitments which are difficult to reverse or change once they have been made. This
is because a simple change of the architecture design later could involve major cost
and schedule impact to the project [7]. For instance, a change in the technology
platform (i.e. an architecture design change) at the time when the system is being
deployed would have a large impact on the schedule and the cost of the project.

• The complexity of the architecture design is high. Architecture decisions are con-
cerned with satisfying goals and requirements whilst dealing with technical and
project issues. Compromises and tradeoffs between competing issues and require-
ments are common. The process to reach a set of balanced decisions which are
acceptable by all stakeholders can also be difficult.

• Potential risks of architecture design is relatively high. Architecture design often
involve integrating and utilising multiple system and software components. The
behaviour of the final outcome before implementation is sometimes unclear. There-
fore, careful considerations and rationalisation of the combined behaviour of system
components are required to mitigate the risks.

• Architecture design requires communication and coordination. Large scale systems
often involve multiple stakeholders who need to communicate and coordinate with
each other [27]. Failure to communicate essential knowledge such as design reasoning
could affect the quality of the design decisions.

• Knowledge retention is low. If careful decision making process in architecture design
is important, then the retention of this reasoning knowledge is equally important
[124]. This is because architects who have to maintain the system would require
such design rationale to support architecture enhancements in the future.

Architecture frameworks provide a structured approach to designing system and soft-
ware architecture. Some of them have provisions to support design rationale. These
architecture frameworks provide features similar to the architecture description standard
[70]. Notable examples are 4+1 View [84], The Open Group Architecture Framework
(TOGAF, [164]), Federal Enterprise Architecture Framework (FEAF, [21]), Open Dis-
tributed Processing - Reference Model (RM-ODP, [71]), Department of Defence Archi-
tecture Framework (DoDAF, [31]) and the Zachman Architecture Framework [148]. The
following sections describe these industry-based architecture frameworks.

16

2.2. Architecture frameworks and design rationale

2.2.1 Zachman Framework

The Zachman Framework (ZF) for Enterprise Architecture [176] is one of the earliest works
in this area. It divides the architecture into a number of perspectives to represent different
views of the system. ZF’s key goals are for enterprise architecture analysis and modeling
and it is also concerned with perspectives of constructing an information system. As shown
in Table 2.1, a perspective is a row in a table representing how a stakeholder in a project
team would view the system. The various stakeholders are Planner, Owner, Designer,
Builder and Subcontractor. Each perspective would produce their respective outcomes
such as Scope Document, Enterprise or Business Model, System Model, Technology Model
and Components.

Table 2.1: The Zachman Framework

What How Where Who When Why
(Data) (Function) (Network) (People) (Time) (Motivation)

Planner Business Business Business Major Major Business Major Goal
Things Process Locations Organisation Event/Cycle Strategy

Owner Semantic Business Business Workflow Master Business
Model Process Model Logistic System Model Schedule Plan

Designer Logical Application Distribute Human Interface Processing Business
Data Model Architecture System Arch. Architecture Structure Rule Model

Builder Physical System Technology Presentation Control Rule
Data Model Design Architecture Architecture Structure Design

Sub- Data Program Network Security Timing Rule
contractor Definition Architecture Architecture Definition Specification
Functioning Data Function Network Organisation Schedule Strategy
System

The framework specifies, for each perspective, different types of information that are
characterized by (a) what - information and data; (b) how - function and process; (c)
where - location of hardware / software; (d) who - people in terms of allocation of work
and authority; (e) when - timing requirements of business process; (f) why - motivation.
The why in the Zachman Framework provides the the context of the requirements, i.e.
what motivates the requirements or the design. This type of reasoning is different to
design rationale that explains why design decisions are made, i.e. why do I choose this
design option but not another one.

2.2.2 4+1 View

The 4+1 View Model of Architecture is a framework for modelling software architecture
[84]. It represents the logical, process, development, physical and scenario views of the
system. The goals of 4+1 View Model is for architecture analysis and modelling of software
systems. The framework uses four viewpoints to represent architecture models and a
scenario view for discovery and verification.

17

2.2. Architecture frameworks and design rationale

• Logical View - represents the functional requirements of the system

• Process View - this view facilitates partitioning of software into independent software
tasks that represent running processes and their inter-process communication in a
distributed environment, taking into account non-functional requirements

• Development View - this view focuses on the organization of software modules

• Physical View - this view denotes mapping of software to hardware nodes

• Scenarios - scenarios or instances of use cases are used to discover and test the
architecture design

The 4+1 View Model provides an iterative approach of architecture design through
analysis and decomposition of design issues. It uses the UML notation for representing
the models. Although the model mentions using design decisions, there is little details on
how they should be documented and used.

2.2.3 Federal Enterprise Architecture Framework

The US Federal Government issued a standard Federal Enterprise Architecture Framework
(FEAF) version 1.1 [21, 22] to guide architecture development in government agencies.
FEAF is a framework issued by the US CIO Council to promote shared development for
common US Federal processes, interoperability, and sharing of information among Federal
Agencies and other Government entities. The framework is organized in 4 levels.

Level I is the highest level view which deals with architecture drivers or external
stimulus and strategic direction of architecture. It facilitates the transformation of the
current architecture to the target architecture through applying architecture standards
and managing the architecture process. Level II provides more details by analysing the
business drivers and design drivers of an architecture. The outcome of this process is the
target business architecture and the target design architecture.

Level III expresses the architecture in more details by using business, data, applications
and technology views to model the target architecture. Level IV uses a combination of ZF
and Spewak’s Enterprise Architecture Planning (EAP) methods [151]. ZF columns of data,
functions and network are used to represent Data Architecture, Application Architecture
and Technology Architecture. Again, architecture design is represented in the FEAF
model but the decision making process and the design justifications are omitted.

18

2.2. Architecture frameworks and design rationale

2.2.4 Reference Model for Open Distributed Processing

The International Standards Organization (ISO) in conjunction with the International
Telecommunication Union (ITU-T) issued a Reference Model for Open Distributed Com-
puting (RM-ODP) for architecture development of distributed systems [71]. The ISO
RM-ODP Standards are a set of international standards with four parts. Part 1 (ISO
10746-1/ITU-T X.901) provides an overview and a guide to the use of the reference model.
Part 2 and Part 3 (ISO 10746-2/ITU-T X.902 and ISO 10746-3/ITU-T X.903) provide a
foundation of concepts and they prescribe concepts, rules and functions for the modelling
of ODP systems. Part 4 (ISO 10746-4/ITU-T X.904) is the architectural semantics which
provide a formal description technique for Part 2 and Part 3. The primary objective is
to allow the benefits of distribution of information processing services to be realized in an
environment of heterogeneous IT resources and multiple organization domains.

RM-ODP uses five viewpoints to represent different aspects of a system. The Enterprise
Viewpoint states high-level enterprise requirements such as (a) purpose and objectives of
systems, (b) community or users of system and (c) business policies, guidelines, flows and
constraints and (d) actions performed. The Information Viewpoint focuses on information
semantics and information structures.

The Computational Viewpoint focuses on the decomposition of the system and on
the constraints of the objects and their interactions. The objects specified and modelled
can be computational, service support or infrastructure objects. Interactions between
the objects are connected through interfaces. The Engineering Viewpoint focuses on the
mechanisms and functions that support interactions between distributed objects. The
Technology Viewpoint specifies the choice of technology, including products, standards
and technology objects, selected to support the implementation.

RM-ODP provides the standards to define transparencies for the support of distributed
processing. Transparencies are architecture patterns that are defined in the Engineering
Viewpoint. An example of a transparent function is access transparency which masks dif-
ferences in data representation and invocation mechanism to enable different heterogeneous
objects to work together. RM-ODP primarily focuses on ODP architecture development.
Architecture rationale and tradeoffs are not documented as part of the model. RM-ODP
is formal and it provides a complete and consistent model for the specification of system
architecture design.

19

2.2. Architecture frameworks and design rationale

2.2.5 The Open Group Architecture Framework

The Open Group, an industry standard organization, issued The Open Group Archi-
tectural Framework (TOGAF) version 8.1 in 2003 [164] to guide enterprise architecture
development. TOGAF’s goals are to provide a framework for the design, evaluation and
building of architectures for enterprises. A key element of TOGAF is TOGAF Archi-
tecture Development Method (ADM) which specifies a process for developing enterprise
architecture. The Enterprise Continuum is a virtual repository of all architecture assets
that include models, patterns and architecture descriptions. The TOGAF Resource Base
is a set of resources, guidelines, templates and background information to assist in the use
of TOGAF. TOGAF ADM is a generic method which specifies an iterative approach for
architecture development. ADM is not prescriptive on the breadth of coverage, the level
of details, the extent of time horizon or the architectural assets to be leveraged. These
can be determined by the architects to suit a particular project. The phases defined by
ADM are the following.

• Preliminary Framework and Principles to define the baseline of the architecture
within an enterprise

• ADM Cycle defines the architecture development cycle

• Requirements Management process is central to the ADM Cycle where it identifies,
stores and interfaces requirements with all phases of the ADM Cycle.

The TOGAF Enterprise Continuum specifies a Technical Reference Model (TRM).
TRM is a model that represents a system in terms of the Application, the Application
Platform and the Communication Infrastructure and their inter-connectivity. TRM also
describes Service Qualities provided by the system. TOGAF ADM is a comprehensive
methodology that addresses architecture at the enterprise level as well as the individual
system level. Its methodology supports the architecture evolution through using Enter-
prise Continuum as its knowledge base. Activities in each phase of the ADM framework
are well defined but it leaves the implementation flexibility to practising architects to de-
termine what is required for the system from a defined set of possible outcomes. TOGAF
recommends the documentation of design rationale to trace design and architecture de-
cisions. However, it does not elaborate as to what and how design rationale should be
documented.

20

2.2. Architecture frameworks and design rationale

2.2.6 DoD Architecture Framework

The US Department of Defense released the DoD Architecture Framework (DoDAF) ver-
sion 1.0 [31] for DoD architecture compliance. DoDAF Version 1.0 is developed specifically
for the US DoD to support its war-fighting operations, business operations and processes.
It was developed from and superseded the previous architecture framework C4ISR Archi-
tecture Framework Version 2.0.

Architecture development techniques have been provided in DoDAF to specify the pro-
cesses for scope definition, data requirements definition, data collection, architecture objec-
tives analysis and documentation. DoDAF uses Core Architecture Data Model (CADM)
for architecture documentation. CADM is a standardized taxonomy to define views and
their elements in a database. All Views provide an overview, summary and integrated dic-
tionary of the architecture; Operational Views describe the business and the operations
of the architecture, they describe the operation nodes, nodes connectivity, information
exchange, organization relationship, operation rules, event-trace and logical data model;
System Views describe the system and its components; Technical Views describes the
current standard profile and the future technical standards forecast.

The DoDAF framework is specifically designed to support defense operations and there-
fore some of its processes and taxonomies are domain dependent. CADM is a well defined
schema to support the documentation of architecture models in this domain. Using CADM
and traceability matrix, operational requirements and design decisions can be traced in
the architecture. DoDAF does not have provisions to record architecture rationale.

2.2.7 Architecture framework summary

Architecture frameworks use viewpoints to represent different perspectives. The inter-
pretation of viewpoints are slightly different to suit the objectives of each framework.
However, the viewpoints can be generalised by their common concerns:

• Business Viewpoint - represents the owners and stakeholders’ requirements. Some
frameworks broaden the interpretation to not only include functional requirements,
but non-functional requirements and business environments.

• Data Viewpoint - represents the information and data that are kept within the sys-
tem. Such information can include the data within the database and other informa-
tion repositories; some frameworks extend their definitions to include all information
that are kept and exchanged between systems.

21

2.2. Architecture frameworks and design rationale

• Applications Viewpoint - the software design of the system. It represents the high-
level design of the system. Some frameworks have further classifications such as a
software configuration model and a model representing process execution.

• Technology Viewpoint - the technologies which support the system. This represents
the hardware and software platforms and their organisations in the architecture.

Although some of the frameworks specify the processes and the methodologies that
are used in the construction of these viewpoints, for instance, DoDAF have suggested to
use design tradeoffs [31] and TOGAF specifies the capture of design rationale [71, 164]
in their models, there is still very little considerations on the decision making process
which underpins and justifies the architecture. In an earlier study to compare architecture
frameworks [160], it was found that these architecture frameworks do not mandate ratio-
nale capture nor do they specify how rationale should be represented or used. Without
a proper guideline, architecture design rationale is probably not captured in these large
enterprise systems. There are three implications:

• Lack of Justifications - A lack of design rationale documentation in large enter-
prise systems development implies that stakeholders would have to assume that the
architecture design decisions that are made are comprehensive and correct.

• Knowledge Loss - The knowledge that is required to support maintenance in the
long-term may be lost because the rationale behind the architecture design are gone
when original designers are no longer available.

• Quality Depends on Designer Experience - Without a systematic design ratio-
nalisation process, architecture design and its quality would have a high dependency
on the level of experience of the designer.

Although the IEEE 1471-2000 standard [70] and some of the architecture frameworks
discuss the importance of design rationale, none of them provide much guidance in the
use, the capture or the representation of design rationale. This does not necessarily mean
that the architecture design are inferior, but the lack of an objective decision-making
framework would place a higher reliance on the experience and the quality of the decision
makers whereas a well-defined decision making approach can provide a systematic way to
ensure architecture design qualities.

22

2.3. Summary

2.3 Summary

There are many software development standards and methodologies to improve the qual-
ity of the system and better the chance of success in IT projects. However, IT project
failures are still frequently experienced. There are many reasons for such failures. One
of those reasons is a lack of a structured approach to making and validating decisions in
architecture design. The existing practice of loosely or not documenting design rationale
hamper the decision making and validation process. Although architecture frameworks
have acknowledged the need for design rationale capture, the practice of systematic design
rationalisation is uncommon and an investigation into this area is required.

23

Chapter 3

Related work in design rationale

Information system design is a process of creating tangibles artefacts to meet the needs of
business and organisations. During this process, designers create or design tangible solu-
tions to meet intangible goals. Such creations involve creative thinking, design knowledge
as well as the designer’s interpretation and preferences. The nature of the design process
is not how things are, as in natural science, but is concerned with how things ought to
be with devising artefacts to attain goals. Goals are satisficed by better or worse designs
through searching and selecting from a set of alternatives which are not“given” but must
be synthesised [141].

Rittel and Webber [134] viewed deign as a process of negotiation and deliberation.
They suggested that design is a “wicked problem” in which it does not have a well-defined
set of potential solutions. Even though the act of design is a logical process, it is subject
to how a designer handles the wicked problem. Singley and Carroll [143] suggested five
distinct ways of bringing psychological constraints to bear on the design process. They
analysed the positive psychological effects a design promotes and the negative effects it
mitigates by using this taxonomy of design reasoning.

The choices a designer makes are a result of a design reasoning process. This design
reasoning process may differ from designer to designer, and probably would change over
time. It is often just intuitively used by designers. In order to understand this design
reasoning process, one has to examine how synthesised artefacts satisfice their design
goals. This in turn requires relevant design rationale to be made explicit for examination.

In this chapter, we examine the nature of design rationale and how it works for design
and maintenance. We summarise the current design rationale methods and discuss their
capabilities and shortcomings.

24

3.1. What is design rationale?

3.1 What is design rationale?

According to the Cambridge dictionary [127], a rationale is a reason or an intention for a
particular set of thoughts or actions. When architects and designers make design decisions,
what do they consider as a reason or an intention? Should a requirement or a constraint be
considered a reason for a design? Or is it some generic justification that allows designers
to judge that a design is better than its alternatives? There are many ways to interpret
design rationale. A common understanding is using design rationale to explain“why”
design artefacts exist.

An interpretation of design rationale depends on the perspectives of the researchers.
Moran and Carroll suggested that design rationale are reasons to express the purposes of
the designed artefacts with their contextual constraints on realising the purposes [103].
Design rationale are the logical reasons to justify a designed artefact. According to Conklin
and Burgess-Yakemovic [24], design rationale can have the characteristics of recording
the history of how a design comes about through recording logical reasoning to support
future reference. Carroll and Rosson [18] suggested that design rationale can be viewed
as psychological claims that are embodied by an artefact whereby design deliberations
through evolution can be assessed. Maclean et al. [97] claimed that design rationale can
be a description of the design space and used to deliberate design decisions.

Depending on the information need and how that need is to be satisfied, design ratio-
nale can exist in many different forms [33]. One way of looking at design rationale is by
its level of use:

• No Explicit Rationale - the design reasoning process is not employed in a conscious
and systematic way. Instead, it is intuitive to the designer. In this case, design
rationale are not captured. When asked to explain the design, designers either re-
member the rationale from the past or reconstruct the design rationale by deduction
[157, 53].

• Informal Rationale - this technique is used by designers to capture design reasoning
in an unstructured way such as notes. The choice of which rationale to record is
ad-hoc and the level of details of the documentation varies [33, 157].

• Template Based Rationale - design rationale is captured in a systematic manner using
pre-defined templates incorporated in the design process. Examples are Architecture
Decision Description Template [170] and Views and Beyond [23].

• Argumentation Based Rationale - design decisions are rationalised by using argu-
ments for each alternative. Argumentation-based models focus on how the ideas and

25

3.2. Why do we need design rationale?

their relations are to be represented [72]. Examples of such models are PHI [99],
gIBIS [26] and DRL [94].

• Quantitative Rationale - another type of model is by way of quantifying costs and
benefits of design alternatives in the decision making process. Examples of such
techniques are CBAM [4] and AHP [152].

As the level of sophistication of design rationale changes, so are the amount of infor-
mation captured, the complexity of its implementation and the associated costs. It would
therefore be important to examine the reasons for capturing design rationale to assess
their usefulness.

3.2 Why do we need design rationale?

Researchers in the area of design rationale have argued that there is a need to improve
the design decision making process to capture, represent and reuse design rationale lest
that they might be lost. Perry and Wolf [119] suggested that as architecture design
evolves, the system is increasingly brittle due to two problems: architectural erosion and
architectural drift. Both problems may lead to the violations of the architecture design
over time because the underlying rationale is not available to support the architecture
design. Bosch suggested that architecture design decisions are crossing-cutting and inter-
twined, so the design is complex and prone to erroneous interpretations without a first-class
representation of design rationale [11]. As such, the design could be violated and the cost
of architectural design change could be very high and even prohibitive. Kruchten et al.
suggested that architecture knowledge consists of the architecture design and its design
rationale [86]. They identified a number of use cases for design rationale in the architecture
design process.

The reasons for capturing and using design rationale are twofold: using design rationale
to support the design process; and using design rationale to support the maintenance
activities. The following is a summary of why design rationale can be useful:

Supporting the Design Process

• Deliberating and Negotiating Design - by making explicit the main decision making
elements, Dutoit and Peach suggest that design rationale facilitates negotiations
among developers by systematically clarifying the issues and possible options, and
evaluating them against a well-defined criteria [33]. Olson et al. have shown that

26

3.2. Why do we need design rationale?

descriptive categories based on general design rationale schemes can be useful in
analysing activities in design meetings [112].

• Justifying Design Decisions - a rationale may explicate tacit assumptions, clarify
dependencies and constraints, and justify a design decision by reasoning why a choice
is made by selecting from amongst the alternatives [53]. There are many reasoning
perspectives and hence many reasoning methods for justifying the design decisions,
these methods are discussed in the next section.

• Supporting Tradeoffs Analysis - a design decision often involves resolving conflict-
ing requirements where they cannot be fully satisfied simultaneously. Therefore,
tradeoffs analysis method such as ATAM are used to provide ways to prioritise re-
quirements and obtain a compromised decision [8].

• Structured Design Process - design rationale provides a design practice which is
structured and accountable compared with the ad-hoc design practice. It provides a
pertinent understanding of the context, the users, the tasks, the technologies and the
situations in the project space [18]. With design reasoning, designer has a specific
focus (so-called turtle-eye’s view) to raise issues about a specific artefact in a design
[122].

• Design Verification & Review - design rationale provides a record of why certain de-
sign decisions have been made. This provides a trail for design validation and review
in which independent assessment of the design can be supported [159]. Reviewers
can also validate the design through inspecting whether design alternatives are con-
sidered, design can be traced to requirements and sufficient reasons are provided in
a design alternative [14].

• Notational Support - the semi-formal notations record the deliberation of design
reasoning. They provide uniform notations to represent key rationale elements such
as design issues (or questions), design alternatives (options or positions) and argu-
ments. Methods such as gIBIS [26], QOC [97] and DRL [94] each have their own
notational support.

• Communication and Knowledge Transfer - the knowledge about a system design
needs to be shared amongst different interested parties. Information such as the
current state of the design, any unresolved issues and what to do next can be captured
by the design document and the design rationale. Conklin and Burgess-Yakemovic
found that design rationale is most useful in knowledge transfer in an industrial case
at NCR when some designers leave the design team and the knowledge needs to be
transferred to new members of the team [24].

27

3.2. Why do we need design rationale?

Supporting the Maintenance Activities

• Retaining Knowledge - in the design process, assumptions are made, constraints are
considered and priority is assigned. These elements shape the design decisions. Often
the only documentation available to the maintainers are the design specifications.
If the designers who maintain and enhance a system are not the same person who
created the system, which is often the case, the maintainer would have to second-
guess these intangible rationales. Failure to retain such knowledge might cause
violations and inconsistencies in a system [33]. It was found in a survey that most
designers cannot remember the reasons of their design [158]. If the maintainers are
not the original designer, then design rationale as a source of knowledge would be
very useful [157]. Such retained knowledge could save costs because engineer’s time
to recover lost rationale is reduced [25].

• Capturing Design Alternatives - as Parnas and Clements pointed out that the ideal
design document which consists of all the details is impractical [114]. Therefore,
recording key design rationale information such as design alternatives and why they
have been rejected can answer many questions about the design.

• Understanding Decision Dependency - design decisions sometimes are inter-twined
and cut across a number of issues. Changing a decision may trigger a series of side
effects to the other parts of the system through the ripple effect [59]. Designers could
potentially omit necessary changes caused by the inter-dependent decisions in the
design space. Some design rationale methods could address this issue by providing
linkages between dependent decisions to facilitate traceability [97, 162].

• Improving Design Understanding - in one of the experiments, Brathall et al. showed
that a group of designers equipped with the design rationale can work faster and
identify more changes that are required in a system maintenance exercise than a
control group without the design rationale [12]. Burge showed that using the design
rationale, those designers with moderate and some experience in Java perform their
work better than the designers without the design rationale [14].

• Predicting Change Impact - design rationale could be used to assist the maintainer
to predict which part of the system is subject to change. This kind of predictive
and diagnostic capabilities provide quantitative analysis to assist decision makers on
predicting the change impact in a system [162].

• Providing Traceability - when the design rationale is associated with the design arte-
facts, maintainers would be able to trace how design artefacts satisfy requirements
in a system with some reasoning support [129].

28

3.3. Existing methods for capturing and representing design rationale

• Detecting Reasoning Inconsistencies of Design Decisions - in one study, a tool called
SEURAT was built to verify the consistency and completeness of the design ratio-
nalisation [14]. This could help maintainer trace design rationale and identify any
reasoning gaps in the design for maintenance purposes.

Even though design rationale have many uses in supporting the design and maintenance
processes, capturing design rationale is still uncommon. It was suggested that the lack of
short-term payoffs might be one of the causes [24]. Another reason was that the tools and
the methods used in design rationale capture are not closely aligned with existing design
processes therefore resulting in higher cost of design rationale capture [24]. In the following
sections, we will examine some of the design rationale methods, the tools availability and
their potential benefits and drawbacks.

3.3 Existing methods for capturing and representing design

rationale

A simple explanation of design rationale is the explicit representation of the design rea-
soning. There are other different aspects of design reasoning. A design reason could be
an intention to motivate the creation of a design artefact. It could also be a constraint or
an assumption that influence a design artefact, a tradeoff between requirements, a judge-
ment to select from a number of design options and an argument for or against a design
proposition.

There are different approaches to design reasoning. One approach is by way of ar-
gumentation. The basic argumentation-based representation is to use nodes and links to
represent knowledge and relationships. It dates back to Toulmin’s argumentation represen-
tation using datums, claims, warrants, backings and rebuttals [168]. In Toulmin’s schema,
examples of a node are a datum or a claim, which represent an observation and a conclu-
sion respectively. A link type such as “so” can be used to connect the nodes to show the
inductive relationship. Since Toulmin, many similar argumentation-based approaches such
as Issue-Based Information System (IBIS) [87] and Design Rationale Language (DRL) [92]
have been invented. They fundamentally show the issue, the argument and the resolution
of design argumentation.

A different approach to capturing design rationale is to use template-based methodolo-
gies. These methods make use of standard templates which is incorporated into the design
process to facilitate design rationale capture. Contrary to argumentation-based methods,
practitioners using the template-based methods do not construct argumentation diagrams

29

3.3. Existing methods for capturing and representing design rationale

for deliberation but instead they capture the results of the reasoning. This approach is
oriented towards the practical implementation of design rationale in the industry. Exam-
ples of this approach are Architecture Decision Description Template [170] and Views and
Beyond [23].

Argumentation-based reasoning is sometimes insufficient to justify a decision from
amongst the alternatives. A design decision could be influenced by many factors and
requirements. Some of them have higher importance or priority than others. Quantitative
methods were proposed to rank the priorities, the costs and the benefits in the decision
making process. Examples of this approach are Cost Benefits Analysis Method (CBAM)
[4] and ArchDesigner [2].

In this section, we will describe a number of design rationale methods, what they
intend to achieve and how they work.

3.3.1 Issue-Based Information System (IBIS) and its variants

The Issue-Based Information System (IBIS) is a method for structuring and documenting
design rationale [87]. Its approach is based on issue deliberation. Similar approach has
been used in other design areas such as building architectural design and town planning.
The key design aspect of IBIS is the articulation of questions. Each question or issue is
followed by positions or answers that respond to the issue. A position can be supported or
objected by arguments. A position derives or has ramifications to an artefact. Figure 3.1
is a diagram which shows such relationships. The various issue deliberations are connected
by relationships such as “similar-to”, “replaces”, “temporal successor of” etc.

From 1970 to 1980, many attempts have been made to use IBIS but none of these
systems got past the pilot project stage [43]. It was concluded that two types of information
was omitted from IBIS: inter-related issues such as sub-issue cannot be represented by IBIS
as dependency and hence it is difficult to model some of the deliberations; the pros and
cons of alternative answers are not deliberated.

In order to overcome these limitations, McCall developed the Procedural Hierarchy
of Issues (PHI) to document design rationale [100]. PHI uses a broader definition of
the concept issues and it uses a new principle for linking issues together. In IBIS, issues
denote a design question that is deliberated but PHI counts issue as every design questions,
deliberated or not. PHI simplifies the inter-issue relationship in IBIS by a general serve
relationship. Issue A serves issue B if and only if the resolution of A influences the
resolution of B. As such, the dominant type of serve relationship in PHI is sub-issue.
PHI is therefore a simple quasi-hierarchical structure connecting issues only by the serve

30

3.3. Existing methods for capturing and representing design rationale

Figure 3.1: IBIS Design Rationale Model

relationships as shown in Figure 3.2.

Figure 3.2: PHI Issues Hierarchy

Similar to IBIS, PHI provides the dependency relationships between issue resolutions
and it records the pros and cons of alternative answers. PHI has only had limited success
in its adoption for industrial use [132].

gIBIS enhances IBIS by allowing “other” node type for incorporating external materials
[26]. It supports aggregation of the issue-position-argument (IPA) trees into a compound
IPA node. A graphical representation of gIBIS was implemented at MCC. The graphical
layout of gIBIS composes of a global network view, a local network view, an index view
showing an hierarchy of issues and arguments, a node view showing the contents and
attributes of the selected node and a control panel view.

The Representation and Maintenance of Process knowledge (REMAP) system is based
on the IBIS method [128]. It extends the basic IBIS constructs of issue, position and
argument with requirements, constraints and design objects. This extension provides a

31

3.3. Existing methods for capturing and representing design rationale

Figure 3.3: REMAP Model

linkage between requirements and design objects to design rationale (see Figure 3.3).
It can capture the history about design decisions in the development-cycle as process
knowledge. Issues are raised and resolved during the requirement phase when design
objects are created. This issue deliberation process is supported by a graphical user
interface tool.

3.3.2 Questions, Options and Criteria (QOC)

QOC is a semiformal notation which represents the design space analysis of an artefact.
It explains why a design artefact is chosen from the space of possibilities. The main
elements of QOC are the questions that identify the key design issues, the options that
provide possible answers to the questions, and the criteria for assessing and comparing
design options [97].

The QOC representation is accompanied by Design Space Analysis. MacLean et al.
argue that designers are naturally capable of analysing and reasoning with QOC when
designing artefacts in the design space [97]. Thus design rationale analysis are simply
co-products of the design. Figure 3.4 is a QOC representation that shows an example of a
screen object design. The question is whether the screen object should be wide or narrow.
If the object is wide, it uses up screen real-estate but is easy to hit with a mouse. If it is

32

3.3. Existing methods for capturing and representing design rationale

narrow, it saves screen real-estate but is difficult to hit with a mouse. Since the rationale
is based on argument and not proof, MacLean et al. argue that the elements in QOC
should be used to justify a design even though they may be subject to further arguments
[97]. As such, QOC can be expanded into any arbitrary level of elaboration. Designers
using QOC should select areas where these arguments serve the purpose of contentious
design but not expand into every possible detail because it is not useful to do so.

Figure 3.4: An Example of QOC Design Rationale

QOC supports the development of a space of alternatives. It enables designers to
consider criteria which could dictate viability of options. Unlike IBIS, PHI and REMAP
which capture the history of design deliberation, QOC focuses on design options.

Dutoit and Peach proposed the Rationale-based Use Case Specification method which
combines use case specification to the QOC method of argumentation [34]. The argumen-
tation for the use cases which comprised of functional and non-functional requirements
are then captured in an enhanced QOC model. This method provides a better integration
between requirement specification, design specification and the design rationale.

3.3.3 Design Rationale Language (DRL)

DRL records design rationale by describing how an artefact serves or satisfies expected
functionalities. DRL is an expressive language which represents the qualitative elements
in the reasoning spaces around decisions [94]. In DRL, the possible design options are
contained in the alternative space, and the arguments to support or contradict a design
is contained in the argument space, each design possibility is evaluated and the results
are contained in the evaluation space, the evaluation is performed according to certain
criteria which is contained in the criteria space, the issues which are made explicit and
containing the alternatives, evaluations and criteria are contained in the issue space. The
fundamental object types in DRL are goal, question, claim and alternative. The structure
of a decision graph using these elements is shown in Figure 3.5.

A goal represents the criteria that needs to be satisfied. An alternative represents

33

3.3. Existing methods for capturing and representing design rationale

Figure 3.5: A DRL Decision Graph

an option that is being considered. Its relationship with the goal is whether it is a good
alternative. A question is an issue which arises out of a goal to be answered. A claim is
an answer to the question. A claim may or may not achieve a goal.

The argumentation of a design in DRL is constructed from these basic elements. They
are in turn grouped into different design and argumentation spaces. DRL is implemented
by a system called SIBYL [91]. User can edit and browse the argument space to explore
the claims contained within.

3.3.4 Software Engineering Using Design RATionale (SeuRAT)

Burge developed a system, Software Engineering Using Design RATionale (SeuRAT), to
support the use of design rationale during software maintenance by associating rationale
with the code and by performing a series of inferences over the rationale to ensure design
rationale consistency and completeness [14].

A design rationale representation system, RATSpeak, is created to support SeuRAT.
RATSpeak design rationale representation is a modification of DRL. Figure 3.6 shows the
elements represented in RATSpeak. A key difference between RATSpeak and DRL is that
RATSpeak represents the concept of requirements instead of goals. Requirements compose
of both functional and non-functional requirements. A decision problem is mapped to the
requirements to support the argument for solution alternatives. The argument ontology
is a hierarchy of common argument types that serve as types of claims. They provide a

34

3.3. Existing methods for capturing and representing design rationale

common vocabulary required for inferencing.

Figure 3.6: A RATSpeak Design Rationale Model

SeuRAT supports syntactic and semantic rationale inferences. Syntatic inferences
are concerned with the validity of the structure of the rationale graph. For instance, if
there is an alternative (i.e. potential solution) for a decision (i.e. problem), then the
alternative must have a supporting argument (i.e. justification). Semantic inferences
require examining the content of the rationale. For instance, identify selected alternative
which is not as well supported as another alternative by comparing their rationales.

Using the captured rationale, SeuRAT enables maintainers to retrieve and check ra-
tionale for maintenance activities. Burge found that SeuRAT provided better results in
test subjects who are not experts in Java than their respective control group in identifying
problems and completing tasks [14].

3.3.5 Architecture Decision Description Template (ADDT)

Tyree and Akerman have proposed a pragmatic approach to capturing design rationale
[170]. Instead of focusing on the deliberation of the design rationale and the representation
model, they provide a template to capture decision rationale.

The decision description template contains a number of key elements, they are sum-
marised below:

• Issue - describe the architecture issue being addressed

35

3.3. Existing methods for capturing and representing design rationale

• Decision - state the final architecture decision (i.e. position being selected)

• Status - decision status are pending, decided or approved

• Grouping - a grouping of architecture decisions by types such as integration, presen-
tation and data. This ontology is used to help organise the set of decisions

• Assumptions - underlying assumptions which affect the decision

• Constraints - constraints that the decision might pose to the environment

• Positions - viable options to address the issue

• Argument - the reasons to support the position

• Implications - the implications of a decision might introduce a need to have other
decisions, introduce new requirements, pose new constraints etc.

• Related Decisions - relationships which are interdependent

• Related Requirements - objectives or requirements that are related to a decision

• Related artefacts - related architecture, design and scope documents

• Related principles - agreed set of design principles which the decision is aligned with

• Notes - ideas that have been socialised by the team as additional information

The information captured in this template is comprehensive. They provide knowledge
support during and after the architecture design process. Tyree and Akerman argue that
this information is what needs to be socialised with the rest of the organisation [170].
There are no specific reasoning and deliberation methods in ADDT to guide the design
reasoning process.

In the implementation of ADDT, they found that this method has several advantages
[170]. It helped them to clearly identify systems which are affected by architectural change.
It also conveyed risks and issues that arose out of the decisions. Team members could trace,
read and understand the architecture decisions. By explicitly focusing on architecture
decisions, they found that they could convey change more clearly. The reasons, options
and implications of the solutions are more transparent and traceable.

36

3.3. Existing methods for capturing and representing design rationale

3.3.6 Views and Beyond (V&B)

Views and Beyond is a collection of methods proposed by Clements et al. to document
software architecture [23]. It proposes a number of view types to represent software ar-
chitecture: Module Viewtype, Component-and-Connector Viewtype and the Allocation
Viewtype. Each viewtype gives a different perspective of the structure of the system. For
instance, the module viewtype has several representation styles such as decomposition of
code and layering of modules.

As well as documenting what the architecture is, they argue that it is important to
document why the architecture is what it is. Many decisions are made in a design and not
all decisions need to be justified. A number of principles to guide decision documentation
are suggested:

• Design team have spent significant time evaluating the options for the decision

• Decision is critical to the achievement of the requirement/goal

• Decision requires considerations of non-trivial background information

• Issues in a non trivial decision

• Decision has a widespread implication to the rest of the architecture design and will
be difficult to undo

• It is more cost-effective to document the decision now rather than later

Similar to ADDT, they take a pragmatic approach to documenting design rationale.
Instead of documenting the deliberation relationship, the following information, which is
centric to a decision, is documented:

• Decision - a summary of the decision

• Constraints - key constraints that rule out possibilities

• Alternatives - options that have been considered and the reasons of ruling them out

• Effects - the implications and ramifications of the decision

• Evidence - any confirmation that the decision was a good one

This list of design rationales can be easily mapped to the ADDT template. ADDT
provides a more comprehensive classification to assist designers to capture all the design
rationale. The V&B template is more general and easier to implement.

37

3.4. Other related studies

3.3.7 Quantitative reasoning methods

Architecture design involves the selection of an optimal solution by eliminating inferior
design alternatives. One way to facilitate such selection process is to quantify the design
options in some ways. There are a number of methods which use quantitative analysis
as a mean in the selection process. Architecture Tradeoff Analysis Method (ATAM) is a
method to use tradeoffs to justify architecture design decisions [8]. ATAM method does
the following:

• Identify the quality attributes as goals in a decision

• Assign relative priority to the goals

• Identify the architecture approaches (i.e. options)

• Create an utility tree to list the quality attributes, their attribute refinements and
the scenarios

• Carry out an analysis of the alternative approaches by investigating the sensitivity
points (i.e. which quality attributes are affected), the tradeoff points (i.e. compro-
mise required in order to satisfy the quality attributes), risks and non-risks

Cost Benefit Analysis Method (CBAM) considers the costs and benefits which are as-
sociated with the decisions. The method calculates the expected return of an architecture
strategy by weighing up the benefits and the costs. The benefits and the costs are com-
puted by calculating the weighted benefits and the weighted costs of all related scenarios.
This weighted method provides a quantifiable justification for making decisions [4].

ArchDesigner involves stakeholders to prioritise the quality attributes. Architects
would elicit the impact of different architecture design options on the quality attributes.
Then using the Analytical Hierarchy Process (AHP) to compute the value scores, they
select the optimal design alternative to satisfy the goal [2].

3.4 Other related studies

A number of studies in the other areas of software engineering are relevant to design ra-
tionale. Design rationalisation is an integral part of the the design process which uses
requirements to drive decision making. Therefore, some studies in the requirements engi-
neering and non-functional requirements domains are relevant to this work. When design

38

3.4. Other related studies

rationale is captured, its relationship with the requirements and the design objects is im-
portant. It is not useful to the designers and maintainers if the knowledge cannot be
effectively traced. The traceability of design rationale to requirements and design objects
is essential in design rationale applications.

3.4.1 Requirements engineering

There were a number of studies on how to elicit requirements and decompose design
[110, 56, 130]. Some of them combine rationale and scenarios to refine requirements
during the elicitation process [126, 61].

Architecture Frame [130] uses problem frame for decomposing and recomposing design
by using architecture styles in the solutions space to guide the analysis of the problem
space. The KAOS [28] method uses a meta-model to analyse goals, actions, agents, entities
and events for acquiring and modelling requirements. The elements considered in this
method act as inputs in the decision process. Nuseibeh [109] argues that architectural
positions are taken during the requirements specification process and the crosscutting of
requirements therefore implicitly drives the architecture design. This is especially relevant
in the case of non-functional requirements because of their interrelated nature. Chung and
Mylopoulos represent non-functional requirements as soft-goals [20, 104]. The soft-goals
are satsisficed or operationalised in the model through a decomposition process.

Ali-Babar et al. provided a data model to capture design rationale and related artefacts
called The Data Model for Software Architecture Knowledge (DAMASK) [3]. DAMASK
captures architecture design patterns, scenarios, design options, design decisions and de-
sign rationale.

These methods generally use key inputs such as goals and soft-goals to systematically
specify requirements and create design objects. They are relevant because they have
identified different basic elements that are essential in the design process. Some of these
elements are treated as motivational reasons and business drivers in our work.

3.4.2 Requirements traceability

The support for requirements traceability has long been recognised as important in the
software development life-cycle. A survey of a number of systems by Ramesh and Jarke
[129] indicates that requirements, design and implementation should be traceable. It is
noted by Han [58] that traceability “provides critical support for system development and

39

3.4. Other related studies

evolution”. The IEEE standards recommend that requirements should be allocated, or
traced, to software and hardware items [67, 68]. During the software development life-
cycle, architects and designers typically have available to them business requirements,
functional requirements, architecture design specifications, detailed design specifications,
and traceability matrix. A means to relate these pieces of information together helps the
designers maintain the system effectively and accurately. It can lead to better quality as-
surance, change management and software maintenance [149]. There are different aspects
of traceability in the development life-cycle: (a) tracing requirements to design; (b) tracing
requirements to source code and test cases; (c) tracing requirements and design to design
rationale; (d) tracing evolution of requirements and design. Example methods to support
requirements traceability are [120, 129], and an example of traceability automation is [38].

Requirements traceability is the ability to describe and follow the life of requirements,
in both a forward and backward direction. Gotel and Finklestein [51] distinguish two types
of traceability: pre-requirements specification (Pre-RS traceability) and post-requirements
specification (Post-RS traceability). They argue that wider informational requirements are
necessary to address the needs of the stakeholders. This is an argument for representing
contextual information to explain requirements and design. An example of such contextual
information is to support tracing requirements to stakeholders to support the analysis of
knowledge contribution and use [52] .

Pinheiro and Goguen [120, 121] proposed TOOR, a tool to trace object-oriented re-
quirement to design documents, specifications, code and other artefacts through user-
definable relations. It supports the tracing of objects through their evolutions. The
method uses regular expression to provide a context for the selected information. This
allows pattern matching and restriction of the scope of the trace to certain parts of the
project.

Huges and Martin [66] suggested that traceability needs to involve requirements and
designs. They explained that considerations must be given to relevant project and design
constraints for tracing why designs are created. They explained that information might
be lost if the information is captured at the end of the project, therefore the traceability
process must be an interactive part of the design process.

Domges and Pohl [32] suggested that the adaptation of trace capture should be tai-
lored to project-specific needs for achieving a positive cost-benefit ratio. They provided
an architecture framework to support this course. Using this framework, project man-
ager would define project-specific trace definitions and application engineer would capture
traces based on trace-definitions. Spanoudakis et al. [149] proposed a rule-based approach
that supports automatic generation of traceability relations between textual documents

40

3.4. Other related studies

that specify uses cases and requirement statements. The approach employs rules to match
keywords in the documents and the object models during the generation process. Another
approach of traceability is to connect architecture decision to requirements using design
decision tree [136]. Design decision tree reflects the dependency between the decisions to
support traceability of the design to requirements.

Egyed [38, 39] has proposed an approach to generate trace dependencies between model
elements and source code using test scenarios and execution foot-prints. This approach
automates traceability at the source code level to discover common requirements and
potential conflicts.

Some traceability approaches incorporate the use of design rationale in a limited way.
Haumer et al. [60] suggested that the design process needs to be extended to capture and
trace the decision making process through artefacts such as video, speech and graphics.
Since such information is unstructured, making use of it can be challenging. A refer-
ence model for traceability was proposed by Ramesh and Jarke [129]. It adopts a model
involving four traceability link types. The first group of two traceability links are product-
related. They describe properties and relationships of design objects in which high-level
objects are goals or constraints that are satisfied by low-level objects, and low-level ob-
jects are dependent on each other by way of links to depict relationships such as part-of,
supports etc. The second group of two traceability links are process-related. A link type
connects design object that evolves from one version to another and its evolution is sup-
ported by the link type rationales. The rationale and evolution link types are introduced
to capture the rationale for evolving design elements. The rationale link type (see Figure
3.7) is intended to allow users to represent the rationale behind the objects or document
the justifications behind evolutionary steps. The limitation of using rationale for design
evolution in this approach is that other types of design reasoning are omitted.

Figure 3.7: A Design Rationale Traceability Model

Some of the traceability methods such as [120] and [38] try to automate the traceability
relationships between requirements, design and source code. A key perspective of these
methods is to trace the implementation of related objects based on how a system is realised.

41

3.5. How well design rationale methods work?

There is an implicit assumption that such traceability can provide the explanatory power
to help designers understand the system. However, design reasoning is missing and needs
to be reconstructed even though source code or design objects can be traced back to
requirements. Additionally, implicit assumptions and constraints cannot be traced by
such methods. As such, the traceability of design rationale requires further investigation.
A more detailed discussion on design rationale traceability is in Chapter 9.

3.5 How well design rationale methods work?

Although researchers have different ideas of what and how to represent design rationale,
they basically agree on the importance of retaining design rationale, and it is concurred
by practising software architects [157]. With such common view, why then are design
rationale methods not widely adopted by the software industry?

Shipman III and McCall suggested that neither the argumentation nor the communi-
cation perspective of argumentation-based design rationale has been generally successful
in practice [139]. From the argumentation perspective, the issue has been the ineffective
capture of rationale. From the communication perspective, design rationale cannot be
retrieved effectively. Regli et al. [132] have a similar argument that design rationale must
have three qualities: ease of input, effective view and activeness. That means the rationale
capture process must least interfere with the natural progression of design activities.

Gruber and Russell [55] examined a set of empirical studies of people requesting,
communicating and using information associated with design rationale. They found two
basic uses for information explicitly related to decisions. First, decisions serve as loci
for considering alternatives and linking dependent elements. Second, a designer would
evaluate a design or a sub-design to predict the potential impacts on criteria. For design
rationale to be successful, it must be captured as a by-product of the design process using
software tools to make the effort worthwhile.

Buckingham Shum and Hammond [13] examined two claims made by argumentation-
based design rationale approaches: (a) expressing design rationale as argumentation is
useful and (b) designers can use such notations. However, they found no evidence to
support argumentation-based schemas being useful as a record of previous argumentation.
Also, they concluded that argumentation-based schemas assume that designers would be
able to directly express rationale in terms of the argumentation-based structures, which
could not be proven. They also concluded that there was a tendency for some of these
semi-formal methods to move to an informal textual rationale. In another study, Shum
[140] investigated the cognitive dimensions of design rationale. It was found that problem

42

3.5. How well design rationale methods work?

arises when the design rationale system forces users to encode ideas before they are ready
to make the decision thereby causing a premature commitment. Argumentation-based
tools require users to either encode the deliberation when the ideas are still premature
causing subsequent changes to be made. Otherwise, the users would have to recall the
deliberation process and then record the full argumentation after a final decision has been
made. Neither way is convenient to practitioners.

In an empirical study, it was suggested that the design rationale constructed using
the QOC method is insufficient [76]. A number of design rationale issues were identified:
(a) not all information was captured because analysts had not reported the facts; (b)
QOC lacked weighted assessments since there is no quantitative analysis to indicate why
a solution is better than its alternatives; (c) users of QOC have misconceptions of the
captured information. In conclusion, it was found that some designers extensively use
design rationale but less than half of the design rationale questions could be answered by
the QOC-based documents.

Herbsleb and Kuwana [62] pointed out that the why question may often be used to
establish the context of the design when it is unclear. However, in the current practice
the why question are seldom asked because they generally cannot be answered using the
current tools.

Although design rational methods have laid the foundation for design reasoning, most
of them still have issues from a usability perspective. Learning from these issues, a set of
criteria for a successful design rationale implementation are summarised below:

• Effective Capture of Design Rationale - the argumentation-based models capture
both the reasoning and the design rationale argumentation structure. The argumen-
tation structure is time-consuming and difficult to trace. Therefore, it should be
simplified without losing key design rationale information.

• Effective Communication of Design Rationale - designers want to know the issues, the
justifications, the potential alternatives and what design elements a decision affects.
The necessity to replay the deliberation process as suggested by the argumentation-
based models is thus reduced. The issues in argumentation-based models are the
over representation of deliberation and under representation of its relationship with
design artefacts.

• Design Artefact Focus - requirements and design objects specifications are used
to support system evaluation and maintenance. Therefore, design rationale must
explain design artefacts contained in these specifications in order to be useful.

43

3.5. How well design rationale methods work?

• Traceability and Impact Analysis - a primary use of design rationale is to help
designers understand the justifications and the issues of a design in order to perform
maintenance activities. One such activity is the change impact analysis. Design
rationale methods must support analysis of the ripple effects using traceable design
rationale to explain the design dependency.

• Comprehensive Design Rationale - design rationale is composed of many types of
information. Reasoning can be based on argumentation or it can be based on quan-
titative analysis. Therefore, design rationale methods must be comprehensive and
flexible to capture these different types of reasoning.

• Common Tool Support - software designers always face a very tight development
schedule. Using a different tool to capture design rationale would increase the over-
head of documentation and segregate the design knowledge. Design rationale should
be captured as a by-product, and in the same way and by the same tool as require-
ments and design objects.

In this thesis, our objective is to capture design rationale in a convenient way to support
software architecture design and maintenance. We aim to incorporate the design rationale
method with current architecture design practices in the software industry. From this
perspective, we analyse the usability of existing design rationale methods (see Table 3.1)
using the criteria set out above. Each method is rated according to whether it satisfies
the criteria in full, in part or not.

Table 3.1: An Analysis of the Usability Features of Design Rationale Methods

gIBIS PHI REMAP QOC DRL SeuRAT ADDT V&B
Effective capture of
design rational No No No No No No Yes Yes
Effective communication of
design rational No No No No No No Yes Yes
Design Artefact Focus Part Part Yes No Part Yes Part Yes
Traceability and
Impact Analysis No No Part No No Part Part No
Comprehensive Design Rationale No No No No No No Part Part
Common Tool Support No No No No No No Yes Yes

ADDT and V&B’s aim are to provide design rationale methods for practitioners.
Therefore they have a more pragmatic approach than the other methods. In terms of
the design rationale capture and communication, their structure is less formal than the
other methods. Because of that, they could be implemented using different types of soft-
ware tools and can be adopted by an organisation easily. However, the limited graphical
representation in these two methods restricts their ability to provide rationale computation
and traceability.

44

3.6. Summary

Other methods are research-oriented and there are issues in their effectiveness to cap-
ture and communicate design rationale. A design rationale method that supports com-
prehensive rationale computing (e.g. for rationale traceability and inference) might be in
conflict with the ease of design rationale capture and communication. One of our objec-
tives is to find a compromise where sufficient design rationale could be captured easily,
and its payoffs outweigh the costs.

3.6 Summary

This chapter reports the state of the research in design rationale and its application in ar-
chitecture design. We have reviewed various design rationale methods and how researchers
propose to use them to deliberate design and support maintenance. We have examined
past work on argumentation-based design rationale methods as well as other kinds of design
rationale methods. We have discussed their purposes for deliberating design, capturing
knowledge, supporting maintenance and inferencing design.

We have reviewed the applications of these design rationale methods and have found
some issues. The key issues are the cost of capturing design rationale and the difficulties in
communicating such knowledge. A number of other usability issues are also summarised
in this chapter. They give us a guide to develop a new method.

45

Chapter 4

Research methodology and

validation

The discipline of software engineering is concerned with all aspects of software produc-
tion. It provides a systematic and organised approach to guide software development and
implementation so that it is effective in delivering high-quality software [146].

There are two general approaches to systematically building up software engineering
knowledge. Both of these approaches are useful and complementary. The first approach
is described as the natural characterisation of maturing software technology [131]. Soft-
ware technologies can be invented through a process of asking basic research problems,
formulating ideas and concepts, developing and generalising those ideas through to their
commercialisation [138]. In the initial stages of problem identification and concept for-
mulation, it is relatively difficult to prove that a concept can eventually be practical and
useful. This is because a technology depends heavily on the context of the environment
where they are applied. Although some software technologies referred to as research-in-the-
small can be tested in the laboratory, many software engineering techniques rely heavily
on real-life situations which are not always easy to verify in an experimental setting [41].

A second approach is to apply software engineering processes through practice and re-
finement in real-life projects. In other words, the prime expectation is to improve quality
and productivity at an organisation level. A typical example is the application of quality
systems such as Integrated Capability Maturity Model (CMMI) [1, 16] or Six Sigma Total
Quality Management [144] in an organisation. The CMMI process specifies that software
development organisations can continuously monitor and improve their software develop-
ment process by capturing process and product measures quantitatively, set performance
objectives based on these measurements and optimise the performance. An organisation

46

4.1. Software engineering research methods

employing such an approach would select methodologies and technologies which initially
appear to be suitable for their environment, and continuously improve and fine tune them
to improve their software engineering practices. Although this approach is scientific in its
own way, most often than not the knowledge or insights gained would remain within the
organisation and the results are not reported.

When new ideas are created, the arguments for their early stage development are
usually supported by persuasion [138]. Examples of such models include [46, 119]. As
time passes, continuous refinement and improvement will prove or disprove their validity.
The following sub-sections describe some software engineering research methods. Based
on these research methods, the appropriate validation techniques are selected for this
research.

4.1 Software engineering research methods

Software engineering is still a maturing discipline. Therefore, it is not surprising that many
researchers are still debating on how software engineering research should be conducted
(e.g. [41, 166, 125, 172]). As reported by Adrion in [167] and by Glass in [49], software
engineering research problems have different characteristics and thus different research
methods are employed accordingly:

• Scientific Method - Scientists develop a theory to explain an observed phenomenon.
They propose a model or a theory of behaviour, and validate the hypotheses of the
model or theory through experimentation.

• Engineering Method - Engineers observe existing solutions and propose new improve-
ments. They measure or analyse the improvements until no further improvements
are possible.

• Empirical Method - Researchers observe a phenomenon and put forward some hy-
potheses. They then collect data to test the model using statistical methods or case
studies. These data and their analysis are used to support or refute a hypothesis.

• Analytical Method - Researchers propose a formal theory or a set of axioms, then
derive results from the theory and if possible compare the results with empirical
observations.

Part of the problem with software engineering research methodology is that the bound-
aries of the field is not clearly defined. As a result, methodological conflicts arise when

47

4.1. Software engineering research methods

there is a cross boundary situation. For instance, a situation where engineering and man-
agement issues are to be considered together, then what research method should be used?

Additionally, the maturation of software technology over time [138] adds another di-
mension to software engineering research. Different kinds of problems require different
research paradigms. Different research settings also post different research questions.
Hence, the methods and techniques used would vary accordingly. A summary of these
research settings are listed:

• Feasibility - Is there a X, and what is it? Is it possible to accomplish X at all?

• Characterisation - What are the characteristics of X? What do we mean by X? What
are the varieties of X and how are they related?

• Methods/Means - How to accomplish X? What is a better way to accomplish X?
How can I automate doing X?

• Generalisation - Is X always true of Y? Given X, what will Y be?

• Selection - How do I decide between X and Y?

Given different research settings, the answers that are sought would be quite different
in nature. The techniques that are required to validate those answers would also vary
[138]. A summary of these techniques are listed below:

• Persuasion - use arguments to support the ideas that have been put forward by going
through an example.

• Implementation - use a prototype or a case study to demonstrate the idea.

• Evaluation - compare different objects of research using a check-list of criteria. The
comparison of measurements forms the basis of the evaluation. This approach can
use expert-opinion an a basis for evaluation.

• Analysis - analyse the facts and the consequences through derivation and proof of
a formal model, or use empirical methods such as statistical methods to carry out
analysis in a controlled situation.

• Experience - a subjective evaluation based on personal experience and observations
about the use of the result in actual practice.

Since case study research are often validated using anecdotal evidence which can be
subjective, careful justifications of the evidence would be necessary. Yin described six

48

4.2. The chosen research and validation methods

different sources of evidence that can be used in case studies [174]: documentation, archival
record, interviews, direct observations, participant observation and physical artifacts. Each
type of evidence represents some observations, the convergence of multiple evidences would
lead to the conclusions and the facts. Other researchers use expert opinions to validate
software engineering process [9], conduct review process [36], analyse accuracy of several
methods of estimating project effort [81].

In summary, researchers should identify the nature of the problem so that it is founded
on a well-defined research setting(s). The research settings help to determine what research
methods to use. Appropriate validation techniques could then be selected to validate the
results.

4.2 The chosen research and validation methods

This research has a number of objectives, each of them has one or more corresponding
questions that need to be answered. Different research methods have been used to address
the questions, and the research results have been validated by different validation tech-
niques. Table 4.1 is a summary of the research problems and the corresponding research
methods that have been used.

Table 4.1: Research Questions and Research Methods

Research Research Research Validation
Questions Settings Method Techniques
1. Is design rationale important Feasibility Empirical Evaluation
in architecture development?
2. Is design rationale important
in system maintenance?
3. What is the current state of practice of
design rationale in the software industry?
4. How to improve the representation Characterisation / Analytical / Evaluation
of design rationale in architecture development? Methods / Means Empirical
5. How to implement traceability between requirements, Methods / Means Analytical Persuasion
architecture design elements and design rationale? and Implementation
6. How to estimate change impacts using Methods / Means Analytical Persuasion
architecture design elements and design rationale? and Implementation

A summary of the evidence collected in this thesis to support the research questions
are shown in Table 4.2:

Research questions 1 to 3 are used to ascertain that design rationale is important in
the design and maintenance phases of development. This is carried out empirically and
validated by collecting statistics from a survey.

Research question 4 investigates the representation of design rationale in architec-

49

4.2. The chosen research and validation methods

Table 4.2: Case Study Verification

Research Questions Evidence Collected
1. Is design rationale important Statistical Results
in architecture development?
2. Is design rationale important
in system maintenance?
3. What is the current state of practice of
design rationale in the software industry?
4. How to improve the representation Evaluation Results
of design rationale in architecture development? Expert Opinion
5. How to implement traceability between requirements, Demonstration / Implementation
architecture design elements and design rationale?
6. How to estimate change impacts using Demonstration / Implementation
architecture design elements and design rationale?

ture design. The resulting method characterises the relationship between design elements
and design rationales. A proof-of-concept tool set has been developed to accompany the
method and it overcomes the usability issues identified in Table 3.1. Using an empirical
study, this new method is compared with using the traditional design specifications to
examine their effectiveness in design reasoning. Domain experts are asked to evaluate
the two methods to determine whether design rationale could help them understand and
reason with the system design. The case study used in this research is an Electronic Fund
Transfer System (EFT) which processes inter-bank fund transfers for The People’s Bank
of China in Guangzhou (PBC-GZ). The system was in production between 1998 and May
2006. It was originally designed by the author who led a team of architects and designers
using traditional waterfall software development methodology. A rationale-based model is
reconstructed for the EFT system to capture the missing design rationale. Its validation
is reported in Chapter 7.

For questions 5 and 6, we resolve the problems using traceability and Bayesian Belief
Networks methods. Based on the case study examples, we demonstrate the applications
in both research questions.

The architecture design rationale models presented in this thesis are early conceptual
models to integrate design rationale into architecture development. As such, the research
settings are to test the feasibility of the research concepts, characterise the design rationale
problem and then propose methods to address the issues. The validity of the conceptual
models is therefore limited to demonstrating that such an approach is feasible and likely to
be useful. Like most software engineering research projects, the real success of this work
can only be tested and validated through its continuous applications and improvements
in industrial projects, which is beyond the scope of this thesis.

50

4.3. Summary

4.3 Summary

Design rationale research has been ongoing for over two decades but its adoption by the
industry is still questionable. As such, software engineering research in this area is still in
the early stages of problem identification and concept formulation. In this thesis, we have
identified six research questions. The current state of the industry (questions 1,2 and 3)
are validated by using a survey method and a statistical analysis.

The methodology to address the effectiveness of architecture design rationale repre-
sentation (question 4) is validated in an empirical study by comparing it with traditional
design specifications. The other two research questions on the application of architec-
ture design rationale (questions 5 and 6) are implemented and demonstrated by using an
industry example.

51

Part II

Architecture Design Rationale

Practice in the Software Industry

52

Chapter 5

A survey of the use of architecture

rationale

Design rationale captures the knowledge and reasoning that justify the resulting design.
This knowledge describes how the design satisfies functional and quality requirements, why
certain design choices are selected over alternatives and what type of system behaviour is
expected under different environmental conditions [54, 93]. Despite the growing recogni-
tion of the need for documenting and using architecture design rationale by researchers and
practitioners [8, 11, 27], there is a lack of appropriate support mechanisms and guidelines
on what are the essential elements of design rationale, and how to document and rea-
son with design rationale during decision making. The recently adopted IEEE standards
(1471-2000) for describing architecture [70] and the architecture documentation methods
like Views & Beyond (V&B) [23] raise the awareness of the necessity to documenting
design rationale, limitations on their applications still exist.

The need to improve the capture and the use of design rationale in system design and
maintenance has been reported by several researchers [11, 170, 14]. They have alluded to a
perception that architects generally do not realize the critical role of explicitly documenting
the contextual knowledge about their design decisions. Lack of empirical evidence makes
it difficult to support or refute these claims. We believe that understanding the current
industry practice of design rationale is one of the most important steps towards that goal.
Presently, there is little empirical research that studies what practitioners think about
design rationale, how they document and reason with design rationale, and what factors
prevent them from documenting design rationale.

In order to improve our understanding of the state of reasoning practice in the software
industry, we have gathered evidence from practising architects who design architectures

53

on a regular basis. Their inputs have provided insights into the practice of applying design
rationale. This chapter reports the findings of a survey of practising architects in the Asia
Pacific region. The findings of this survey have shed light on how design rationale are
used, documented, and perceived by designers and architects working in this region.1 The
objectives of the study are:

• To understand the architects’ perceptions about architecture design rationale and the
importance of the different elements of design rationale (such as design constraints,
design strengths and weaknesses).

• To determine the frequency of documenting and reasoning with different elements
of design rationale, the main reasons for not documenting design rationale, and the
common methods, techniques, and tools used to document design rationale.

• To identify the potential challenges and opportunities for improving the use and
documentation of design rationale in practice.

During this study, we have encountered several interesting findings which enabled us
to identify a set of research questions for further investigations. Since a theory explaining
the attitude and behaviour toward the use of design rationale does not exist, this study
employs an inductive approach (i.e., using facts to develop general conclusions) as an
attempt to move toward such a theory.

The chapter makes three significant contributions to the Software Architecture (SA)
discipline:

• It presents the design and results of the first survey-based empirical study in archi-
tecture design rationale practices.

• It provides information about how practitioners think about, reason with, document
and use design rationale.

• It identifies the problems and contradictions of current design rationale practices.
As a result, we propose a research agenda that aims to explore and enhance current
architecture design rationale practices.

We discuss the current approaches to using design rationale in Section 5.1. We present
our survey methodology in Section 5.2. Section 5.3 presents the results of the survey. A
discussion of our findings and their limitations are in Sections 5.4 and 5.5 respectively.

1This chapter is based on our work published in [157, 158, 6]. Han, Ali Babar and Gorton have suggested
questions in the questionnaire and have contributed to the writing of the papers.

54

5.1. Architecture rationale in the software industry

5.1 Architecture rationale in the software industry

Despite the growing recognition of the need for documenting and using architecture de-
sign rationale by practitioners [8, 11], there is a lack of understanding of how decisions are
made, reasoned and justified in day-to-day architecture design. As described earlier, the
software industry is not employing systematic rationalisation methods in any significant
way. Hence, understanding the current industry practice of design rationale is one of the
first steps towards providing a systematic approach to address the problems. However,
there is little empirical research that studies what practitioners think about design ratio-
nale, how they reason with and document design rationale, and what factors prevent them
from documenting design rationale.

5.1.1 Design rationale approaches in software engineering

Early work emphasizing the importance of design rationale in software design can be found
in [114, 124]. Since then, the software engineering community has experimented with
several design rationale approaches such as Issue Based Information Systems (IBIS) [87],
Questions, Options, and Criteria (QOC) [97], Procedural Hierarchy of Issues (PHI) [99],
and Design Rationale Language (DRL) [94]. Most of these methods have been adopted
or modified to capture the rationale for software design decisions [124] and requirements
specifications [34, 92, 128]. Other approaches (e.g. [123, 126]) combine rationale and
scenarios to elicit and refine requirements.

Design rationale have been considered an important part of software architecture since
Perry and Wolf [119] laid the foundation for the evolving community of software archi-
tecture. In the following years, researchers have emphasized the need for documenting
design rationale to maintain and evolve architectural artifacts and to avoid violating de-
sign rules that underpin the original architecture [8, 11]. The growing recognition of the
vital role of documenting and maintaining rationale for architectural decisions has resulted
in several efforts to provide guidance for capturing and using design rationale such as the
IEEE 1471-2000 standard [70] and the Views and Beyond (V&B) approach to document
software architecture [23].

However, both of these are deficient in several ways. For example, the former provides
a definition of design rationale without further elaborating on their nature and how they
might be captured. The latter method provides a list of design rationales without justifying
why they are important and how the information captured is beneficial in different design
context. Moreover, it is unclear if the list of design rationales are complete.

55

5.1. Architecture rationale in the software industry

Different approaches tend to characterize design rationale with different information.
For example, [170] provides a template that captures certain types of information as design
rationale; the V&B [23] approach considers other types of information such as information
cross-cutting different views as design rationale. Thus, there is clearly a need for a common
vocabulary or standard guidance so that practitioners understand the issues in reasoning
with and consistently documenting design rationale.

5.1.2 Generic design rationale

The nature of design rationale is different for different design activities. The architecture
decision process is different from the detailed design decision process. Brathall et al. [12]
suggested that architectural level design addresses decisions with system-wide implications.
Lassing et al. [89] suggested that architecture decisions have a large influence on the
quality of the resulting system. Eden and Kazman [37] suggested that factors that separate
architecture design activities from other design activities are: (a) architecture is concerned
with the selection of architecture elements, their interactions and the constraints, where-
as design is concerned with the modularisation and detailed interfaces of design element;
(b) architecture is concerned with issues beyond algorithms and data structures of the
computations; (c) architecture focuses on the externally visible properties of the software
components. Since architecture design is at a higher level of abstraction and considers an
array of different inputs, the complexity of the design reasoning is generally higher than
the detailed design of a localised software component. Therefore, the design rationale for
the two levels of design would be quite different. Given the complexity of architecture
design, the types of design rationale and the way they influence architecture decisions are
not very well understood, hence we are motivated to examine this area.

In this survey, we used nine types of generic design rationales selected from various
references to test if and how our respondents perceive and use them. This set of generic
rationale characterizes different aspects in which reasons can be portrayed and compared.
Their selection is based on the templates or methods proposed by researchers to capture
design rationale [23, 170, 8, 159]. A generic design rationale is an abstract grouping of
the reasons for justifying decisions that are made in the design process. We used common
terminologies so that practitioners could relate to them. Since this is an exploratory study,
the list of generic design rationales (below) is comprehensive but not exhaustive.

1. Design constraints are the limitations placed on the design. They can be business
or technical in nature [23].

2. Design assumptions are used to describe what are otherwise unknown factors that

56

5.2. Survey methodology

affect the design [170, 88].

3. Weakness of a design describes what the design cannot achieve, which may be func-
tional or technical in nature [8].

4. Benefit of a design describes what benefits the design can deliver to satisfy the
technical or functional requirements [10, 159].

5. Cost of a design describes the explicit and implicit costs to the system and the
business [10, 159].

6. Complexity of a design is a relative measure of the complexity of the design in terms
of implementation and maintenance [42, 159].

7. Certainty of design, i.e. the design would work, is a measurement of risk that the
design would meet its requirements [19, 159].

8. Certainty of implementation, i.e. the design is implementable, is a measurement of
risk that the development team has the skill and the resources, in terms of schedule
and cost, to implement the design [19, 159].

9. Tradeoffs between alternative designs is a mechanism to weigh and compare alterna-
tives given each alternative design has its supporting design rationale and priorities
[8].

Although the above list of design rationales have been suggested by various researchers
and common sense tells us that they are useful, no empirical studies have been carried out
to show that they are actually used in the software industry. In this survey, we asked our
respondents to rank these rationales according to their usefulness and how often they are
being used and documented. The results are reported in Section 5.3.

5.2 Survey methodology

Research method: Considering the objectives of our research and available resources,
we decided to use the survey research method to understand architects’ perception of, and
current practices in architecture design rationale. A survey research method is considered
suitable for gathering self-reported quantitative and qualitative data from a large number
of respondents [80]. Our survey design was a cross-sectional, case control study. Survey
research can use one or a combination of data gathering techniques such as interviews,
self-administered questionnaires and others [95]. We decided to use a questionnaire as a

57

5.2. Survey methodology

data collection instrument because we wanted to obtain the information from a relatively
large number of practitioners, many of whom we would not be able to contact personally.

Survey instrument construction: Having reviewed the published literature on
design rationale, we developed a survey instrument consisting of 30 questions on the
understanding and practice of design rationale and 10 questions on demographics (e.g. age,
experience, gender, education and others) of the respondents. Some of the demographic
questions were designed for screening the respondents and identifying the data sets to be
excluded from the final analysis. The questions were placed in different sections, namely
design rationale importance, design rationale documentation, design rationale usage, and
demographic information. Questions on demographics were put in the last section as it
is considered good practice [80]. In addition, a coversheet explaining the purpose of the
study and defining various terms was attached to the questionnaire (see Appendix C).

Instrument evaluation: The questionnaire underwent a rigorous review process for
the format of the questions, suitability of the scales, understandability of the wording,
the number of questions, and the length of time required to complete by experienced
researchers and practitioners in the software architecture domain. We ran a formal pilot
study to further test and refine the survey instrument. The pilot study was conducted
with eight people who were considered strongly representative of the potential participants
of our survey research (i.e. practitioners with more than three years software design
experience). Data from the pilot study was not included in the analysis of the main
survey.

Instrument deployment: We decided to use an online web-based survey, as this is
usually less expensive and more efficient in data collection [142]. In order to implement
the survey, we used the web-based tool Surveyor [111]. Participants accessed the survey
through a URL.

Target population: The inclusion criteria was a software engineer with three or more
years of experience in software development and who has worked or is working in a design
or architect role. We did not have a formal justification for the amount of experience
required of valid respondents. We based this on our extensive experience in designing
architectures for large systems that made us believe that people with three or more years
of experience in software development would be able to give reliable answers to the type
of questions we had.

Sampling technique: The study needed responses from likely time-constrained soft-
ware engineers, who we expected were less likely to respond to an invitation from unfamil-
iar sources. This made it hard to apply random sampling. Consequently, we decided to
use non-probabilistic sampling techniques, availability sampling and snowball sampling.

58

5.3. Survey findings

Availability sampling operates by seeking responses from those people who meet the in-
clusion criteria and are available and willing to participate in the research. Snowballing
requires asking the participants of the study to nominate other people who would be will-
ing to participate. The major drawback of non-probabilistic sampling techniques is that
the results cannot be considered statistically generalizable to the target population [80],
in this case software designers/architects. However, considering the exploratory nature of
our research, we believe that our sampling techniques were reasonable.

Invitation mechanics: We used two means of contacting potential respondents:
personalized contact and professional referrals. The invitation letters were sent to a pool
of software designers/architects drawn from the industry contacts of the four investigators
and past and current students of the postgraduate information technology courses offered
by the Swinburne University of Technology and the University of New South Wales. We
requested the invitees to forward the invitation to others who were eligible for participation
and provide us the contact for the forwarded invitation.

Data validation: For access control and data validation purposes, the survey URL
was sent via email. Moreover, the responses gathered in the survey provided another
mechanism of checking the validity of the respondents as genuine software engineering
practitioners. For example, only one of the 81 respondents did not provide a job title
and all other respondents had relevant job titles. A large number of respondents (55%)
provided quite insightful and detailed comments to several open-ended optional questions.

5.3 Survey findings

The survey questionnaire was divided into eight main parts. Some of the key areas are
the perception of the importance of design rationale; the use of design rationale; the
documentation of design rationale. The profile of the respondents and the survey results
are discussed and analyzed in this section.

5.3.1 Demographic data

We directly sent survey invitations to 171 practitioners. Our invitation was forwarded to
376 more people by the original invitees, meaning 547 invitations were sent. We received
a total of 127 responses, which corresponds to 23% response rate. Anonymity and lack
of resources did not allow us to contact non-respondents. Out of the total responses, we
decided to exclude 46 responses from the analysis as they were incomplete or the respon-
dents did not meet the work experience criteria (minimum 3 years software development

59

5.3. Survey findings

experience).

In summary, 80.2% of our respondents were male and 19.8% are female. The Office of
Technology Policy uses Census figures to estimate that women represent 26.9% of computer
systems analysts in the United States [101]. An Australian report found that 24% of
undergraduate students in Information Technology in 2003 are women [17]. Although
there is no statistics for the gender distribution of architects and designers for the Asia
Pacific region, the reference information suggests that the ratio of gender distribution in
this survey is reasonable. 67.9% of the respondents live in Australasia, 28.4% reside in
Asia and 3.7% did not specify the region of their residence.

The respondents’ experience in the information technology industry varies between 4
years and 37 years with an average of 17.12 years and a median of 15. The respondents have
worked as a designer or architect for 9.75 years on average and a median of 8 years. These
results show that the average respondents are experienced in design and architecture.

The average length of time an architect work with an organization (current or previous)
is 7.65 years (a median of 6 years). This profile indicates that the respondents have had
relatively stable jobs and they are likely to be familiar with the development standards
within their organisations.

The average number of co-workers on the current (or last) project is 25 people (a
median of 15 people). Although we cannot directly identify the size of the projects our
respondents are involved in by the amount of software development such as source line of
codes or development effort such as man months, this profile gives an indication of the
relative size of the projects. 85.2% of the respondents have received an IT related tertiary
qualification. This question is aimed to clarify the level of IT training received by the
respondents.

The demographic data gives us confidence that our respondents are practitioners who
are experienced in software architecture and design. Despite not being able to apply
systematic random sampling because of the reasons described in Section 5.2, the results
resemble the characteristics of architects and designers that we expect.

5.3.2 Job nature of architects / designers

In the survey, we asked respondents to tell us the primary tasks they perform as a de-
signer/architect. A primary task is a task in which they spend at least 10% of their time
on. The objective is to find out the scope of their job role. A summary of the percentages
of respondents who perform those primary tasks are listed below:

60

5.3. Survey findings

• overall system design (86.4%)

• requirements or tender analysis (81.5%)

• non-functional requirements design (64.2%)

• software design and specification (58%)

• project management tasks (50.6%)

• IT planning and proposal preparation (49.4%)

• data modelling (44.4%)

• implementation design (42%)

• program design and specification (35.8%)

• test planning and design (29.6%)

• training (19.8%)

Our typical respondent’s main efforts are spent in the early project phases including
requirements and tender analysis, overall design, high level design, non-functional design
and software design. Most of them also have management responsibilities such as project
management and IT planning. To a lesser extent, they perform detailed design and im-
plementation activities.

We asked our respondents if their projects or organisations recognise software architect
roles. 43.2% of respondents said software architects are formally recognized across all
projects in the organization, while 48.1% said only some projects in the organization
recognized the use of architects. This may be due to the organization structure or the
nature of the projects. It has been found that software architects would be involved in
projects under the following circumstances: new projects (23.5%); mission critical projects
(25.8%); high risk projects (27.2%); high cost projects (18.5%).

5.3.3 Designer’s perception of the importance of design rationale

As there is little empirical evidence on how important design rationale are considered
by designers, we posed a number of questions to this end. Respondents were asked to
indicate how often they reason about their design choices and whether they think that
design rationale are important to justify their design choices.

61

5.3. Survey findings

Table 5.1: Frequency of Reasoning about Design Choices

Never Always
1 2 3 4 5

No of Respondents 0 1 8 34 38
Percentages 0 1.2 9.9 42 46.9

Table 5.2: Importance of Design Rationale in Design Justification

Not Very
Important Important

1 2 3 4 5
No of Respondents 0 1 11 30 39
Percentages 0 1.2 13.6 37 48.1

The responses to those questions revealed (Table 5.1 and 5.2) that the majority of
designers frequently apply reasoning to justify their architectural choices and they also
consider that design rationale are important to justify their design choices.

We also asked the respondents about the frequency of considering alternative architec-
ture designs (explanation for alternative architecture designs was provided) during their
design process, as this is another indicator of the awareness of reasoning about design
choices and the rigour that needs to be employed during this process. The responses to
this question are provided in Table 5.3. The result indicates that the majority of re-
spondents compare between alternative designs before selecting a particular architectural
design among available alternatives.

Table 5.3: Frequency of Considering Alternative Designs

Never Always
1 2 3 4 5

No of Respondents 0 1 15 31 34
Percentages 0 1.2 18.5 38.3 42

We asked the respondents to rank the importance of each of the nine generic design
rationales listed in the survey. This ranking reflects the perception of respondents towards
how useful a given design rationale is in design. Since decision making is something our
respondents do on a regular basis, their perception of design rationale’s importance should
reflect the reasoning process that is performed intuitively. Table 5.4 presents the responses
to this question. The majority of respondents considered that all nine design rationales
are important.

The responses for all rationales are skewed towards the very important end. Benefits
of design, design constraints and certainty of design received the highest support with
combined level 4 and 5 percentages of 90.12%, 87.65% and 85.19% respectively. All other
rationales are also considered important with the majority of respondents selecting level

62

5.3. Survey findings

Table 5.4: Importance of Each Generic Rationale

Not Very
Important Important

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)
Design Constraints 0.0 1.2 11.1 38.3 49.4
Design Assumptions 3.7 7.4 14.8 44.4 29.6
Weakness 2.5 7.4 28.4 43.2 18.5
Costs 0.0 7.4 14.8 43.2 34.6
Benefits 1.2 1.2 7.4 54.3 35.8
Complexity 0.0 2.5 25.9 46.9 24.7
Certainty of Design 0.0 3.7 11.1 29.6 55.6
Certainty of Implementation 2.5 4.9 16.1 32.1 44.4
Tradeoffs 0.0 4.9 30.9 44.4 19.8

4 or 5. This shows that most designers perceived that these rationales are important in
reasoning about design decisions. Apart from the above-mentioned nine generic rationales,
we also asked the respondents to add other rationales that they use for making architec-
tural design choices. A significant number of the respondents (twenty eight), mentioned
additional types of factors that influence their design choices. We have classified those
factors into three broad categories. They are:

63

5.3. Survey findings

Business Goals Oriented

1. Enterprise strategies, technical directions and organizational standards

2. Management preferences and acceptance

3. Adherence to industry standards

4. Vendors relationship

Requirements Oriented (functional/non-functional)

5. Fulfill functional and non-functional requirements

6. Satisfy client business motivations

7. Buy vs. build decisions

8. Maintenance and expected life-cycle of products

Constraints and Concerns

9. Viability of solutions

10. Consideration of existing architecture constraints

11. Current IT architecture and capabilities

12. Compatibility with existing systems

13. Prior use of the design and how successful

14. Availability of technology and tools

15. Prototype and staged delivery

16. Time to market

17. Available time

18. Risk

These rationales show a variety of factors that influence the design decision making
process. They also provide the context to enable architects and designers to trade-off
conflicting goals by argumentation.

5.3.4 Using design rationale

Another important area of the survey was how frequently design rationale are used. An
objective of the study is to discover whether respondents’ perceived importance of design
rationale (i.e. what they think) and their behaviour (i.e. what they do) are consistent.
Therefore, the same set of design rationale we presented and discussed in the previous
sections were used to query our respondents. In this section, we present the results of a

64

5.3. Survey findings

multi-item question on how often they use the generic rationales to reason about architec-
tural decisions. Most respondents say that they frequently or always use the nine generic
design rationale listed in the questionnaire. Table 5.5 summarizes the frequency of how
respondents think they use the different types of rationales.

The results show that the design constraint rationale is used most frequently. The
reason for the high usage could be that designers are usually expected to explore the
solution space using certain business and technical constraints. These constraints are
probably prominent in their minds and must be taken into account from the beginning of
a project.

Table 5.5: Design Rationale Frequency of Use

Never Always
1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

Design Constraints 0.0 0.0 12.3 42.0 45.7
Design Assumptions 2.5 2.5 30.9 33.3 30.8
Weakness 1.2 8.6 34.6 37.0 18.6
Costs 1.2 9.9 19.8 38.3 30.8
Benefits 1.2 1.2 12.3 49.4 35.9
Complexity 0.0 2.5 27.2 34.6 35.7
Certainty of Design 2.5 1.2 11.1 32.1 53.1
Certainty of Implementation 3.7 3.7 16.0 33.3 43.3
Tradeoffs 0.0 6.2 29.6 42.0 22.2

Other frequently used rationales are benefits of design, certainty of design and certainty
of implementation. The combined usage frequencies (level 4 and 5) of these rationales are
85.3%, 85.2% and 76.6% respectively. We suspect that designers frequently use these types
of rationales because they have to make a business case for their architectural choices to
the management. They also have to justify their design choices using technical arguments
to architecture reviewers and technical stakeholders such as programmers, implementers
and maintainers. So they use those rationales more often to help them justify their archi-
tectural decisions.

On the other hand, respondents are less likely to use those rationales that can highlight
the weaknesses of their design decisions. The combined usage frequencies (level 4 and 5)
reported by respondents are relatively lower: design weakness (55.6%), costs (69.1%) and
complexity (70.3%). This tendency of designers to pay relatively less attention to the
weaknesses of their design decisions is similar to Lassing et al.’s warning against gathering
scenarios to evaluate an architecture by the designers themselves, as it is highly likely
that they would come up with the scenarios that have already been addressed by the
proposed architecture [90]. Thus, we hypothesize that designers unknowingly look for
those positive rationales to support the design decisions and pay less attention to those
negative rationales.

65

5.3. Survey findings

5.3.5 Documenting design rationale

Several arguments have been made about the importance of documenting key architecture
decisions along with the contextual information [114, 170]. It is important that design
rationale are documented to a sufficient extent in order to support the subsequent imple-
mentation and maintenance of systems. With regards to design rationale documentation
attitude and practice, we paid special attention to the frequency of documenting discarded
design decisions, frequency of documenting each of the generic rationales, the reasons for
not documenting design decisions (barriers to design rationale documentation), and meth-
ods and tools used for documenting design rationale. Table 5.6 presents the breakdown of
the responses to the question on documenting discarded design decision.

Table 5.6: Frequency of Documenting Discarded Decisions

Never Always
1 2 3 4 5

No of Respondents 11 18 17 19 16
Percentages 13.5 22.2 21 23.5 19.8

About 44% of the respondents (level 4 and 5) document discarded decision very often.
About 36% of the respondents (level 1 and 2) do not document discarded decisions. This is
likely because designers are under pressure to produce design specifications on schedule. At
this stage, we are not aware of any software development or project management method-
ology that mandate the documentation of discarded decisions or methodically schedule
time for such activities to take place. However, documenting the discarded decisions can
help newcomers to the project understand the reasons for discarding design alternatives
and expedite such understanding during the maintenance phase of the project.

Table 5.7: Frequency of Documenting Generic Design Rationale

Never Always
1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

Design Constraints 1.2 2.5 13.6 19.7 63.0
Design Assumptions 3.7 3.7 13.6 25.9 53.1
Weakness 3.7 23.5 37.0 14.8 21.0
Costs 7.4 16.0 30.9 21.0 24.7
Benefits 2.5 9.9 18.5 32.1 37.0
Complexity 3.7 9.9 35.8 30.9 19.7
Certainty of Design 18.5 14.8 19.8 24.7 22.2
Certainty of Implementation 18.5 17.3 24.7 22.2 17.3
Tradeoffs 6.2 18.5 25.9 32.1 17.3

Respondents were also asked to indicate the overall frequency of documenting design
rationale. 62.9% of the respondents replied that they completely document design ra-
tionale, which is an encouraging finding considering the common perception of design
rationale not being widely documented.

66

5.3. Survey findings

We also investigated the frequency of documenting each of the generic rationales.
Table 5.7 summarizes the frequency of documentation for each of the nine generic design
rationales used in this research. The results show that design constraints and design
assumptions are documented very frequently but the level of documentation is relatively
lower for other types of rationale. 27.2% of the respondents replied that they never or
seldom document design weakness. Similarly, 33.3% of respondents said they never or
seldom document certainty of design. 35.8% of them said they never or seldom document
certainty of implementation. These findings appear to agree with our previous assertion
that negative rationales receive relatively less attention.

Based on these results, it appears that design rationale are commonly documented by
software designers and architects. However, it also appears that the reasons about why a
design alternative is chosen and why it is better than other alternatives are usually not
documented. We do not have any theoretical grounds for explaining this phenomenon.

While the level of documentation is relatively high, the survey results give us no in-
sight as to whether the rationales are sufficiently documented so that other designers can
understand the architecture design without additional assistance. This raises two issues
worthy of further investigation, namely:

• identify the rationales documented by architects and evaluate their effectiveness in
explaining the design;

• identify how the documented rationales are used in the development life-cycle.

Barriers to documenting design rationale

We were also interested in identifying and understanding the reasons for not documenting
design rationale. We believe that it is important to identify those factors that undermine
efforts in documenting and maintaining design rationale. The respondents were given a
list of reasons that are thought to be common causes of non-documentation in software
engineering such as perceived usefulness, project budget and lack of time. The respondents
were given a text box to provide additional reasons.

Table 5.8: Reasons for Not Documenting Design Rationale

Topic of Questions Percent of Respondents Number of Respondents
No standards 42 34
Not aware of 4.9 4
Not useful 9.9 8
No time/budget 60.5 49
No suitable tool 29.6 24

67

5.3. Survey findings

Table 5.8 summarizes the responses to the reasons for not documenting design ra-
tionale. These results reveal that lack of time/budget (60.5%) is considered the most
common cause of not documenting design rationale. There is also a lack of appropriate
standards (42%)and tools (29.6%)to support the documentation process. Only 4.9% of
the respondents were not aware of the need to document design rationale, while 9.9% of
the respondents said that documenting design rationale is not useful. A few respondents
also provided several other reasons for not documenting design rationale. These reasons
are:

• Lack of formal review process

• Not required for non-complex solutions

• Afraid of getting into a long cycle of design review

• Not required for low impact solution

• The dynamic nature of technology and solutions make it useless to document design
rationale.

• It is not required for high level decision making

In summary, the reasons for not documenting design rationale can be classified into
these groups: (a) the lack of standards and processes to guide why, how, what and when
design rationale should be documented; (b) the time and budget constraints of projects; (c)
the question of whether the cost and benefit of rationale documentation can be justified.
These reasons are analogous to those concerning requirements traceability documentation
in immature software development organizations [129]. Since the sample population is
not specific to an industry or capability maturity level, the results may indeed reflect the
general architecture design practice.

Methods and tools for documenting design rationale

An important part of any task in the software development life-cycle is the availability
of process support and suitable tools to enhance productivity. It is important to identify
what type of support is available to designers to improve design rationale practices. Hence
the survey included a question on the methods and tools used for documenting design
rationale. Twenty respondents provided comments to this question. We list the methods
and tools used by the respondents to document design rationale below:

68

5.3. Survey findings

• Apply organization standards and templates to document using Word / Visio / Excel
/ Powerpoint

• UML tools

• IBM GS Methodology

• Document architecture decisions using formal method and notation

• Internally developed tools

• QMS Design Template document

• Requirements Traceability Matrix

• Architecture tool CORE

Our respondents used proprietary tools, proprietary templates, the Microsoft Office
suite or UML design tools to document design rationale. As we suggested earlier, there
is little awareness about the standards like IEEE 1417-2000 and methodologies like V&B.
Design rationale tools like gIBIS [26] are not used. Although these results are anecdotal
evidence, they point to the lack of industry standards as well as proper tools to capture,
maintain and trace design rationale during the development life-cycle.

5.3.6 Comparing usage and documentation of design rationale

Given that design rationale are recognized by our respondents as important, it is revealing
to compare the survey results concerning importance, use and documentation of each of
the nine generic rationales. Table 5.9 presents the combined results from the last three
sections. The scale is condensed by combining level 4 and level 5 (See the scale in the
previous sections to interpret the results).

Table 5.9: Design Rationale Usage

Level of Frequency of Frequency to
Importance (%) Use (%) Document (%)

Benefits of Design 90.1 85.3 69.1
Design Constraints 87.6 87.6 82.7
Certainty that Design would work 85.2 85.2 46.9
Cost of Design 77.7 69.1 45.7
Certainty that design is implementable 76.5 76.5 39.5
Design Assumptions 74.0 64.1 79.0
Complexity of Design 71.6 70.3 50.6
Tradeoffs between alternatives 64.2 64.2 49.4
Weakness 61.7 55.6 35.8

69

5.3. Survey findings

We used Spearman’s Rank Order Correlation (rho) to test the correlations between the
Level of Importance and the Frequency of Use for the nine generic design rationale. This
revealed that they are all correlated with r values all above 0.5 with the exception of design
complexity, and all of them tested significant with p < 0.01. This indicates that there is
a strong relationship between what respondents believe and what they practice. We also
observe that across most design rationale, the usage frequency is less than the perception
of importance, and the documentation frequency is less than the usage frequency. The
lower frequency of documentation may be caused by the reasons put forwarded by the
respondents (Section 5.3.5). This result may provide an explanation for the claims of
design knowledge vaporization [11, 170].

5.3.7 Design rationale and system maintenance

In the survey, we asked the respondents about the use of design rationale in relation to
carrying out impact analysis during system maintenance. To this end, we asked how often
they revisit design documentation and specifications to help them understand the system
before performing enhancements. Table 5.10 presents their responses, which indicate that
the majority of the respondents consult design documentation frequently while perform-
ing maintenance or enhancement tasks. These results show that if design rationale are
sufficiently documented and provided to the software maintainers, they are more likely
to use the design rationale. These results are also consistent with the findings reported
in [137], which conclude that system documentation, if available, is frequently used when
performing maintenance tasks. It is also found that if the knowledge leading to design
is available, a maintainer can effectively perform modification tasks by consulting that
knowledge [57].

Table 5.10: Frequency of Revisiting Design Documentation before Making Changes

Never Always
1 2 3 4 5

No of Respondents 0 8 9 20 30
Percentages 0.0 11.9 13.4 29.9 44.8

We asked our respondents how often they think they forget the reasons underpinning
their design decision after a period of time. Table 5.11 shows the results to this question.
The responses show that 40.9% of respondents (levels 4 and 5) forget the reasons concern-
ing design decisions. This finding should provide a strong reason for regularly documenting
and maintaining design rationale to support architecture maintenance and evolution. As
mentioned earlier, some of the reasons could be reconstructed through inspecting available
design specifications, but some reasons will inevitably be lost if the design is complex and
the system was developed some time ago.

70

5.3. Survey findings

Table 5.11: Tendency of Forgetting the Reasons for Justifying Design Decisions

Never Always
1 2 3 4 5

No of Respondents 2 15 22 22 5
Percentages 3.0 22.7 33.3 33.3 7.6

Often the architect who is responsible for maintenance is not the same person who
originally designed the system. In such circumstances, we asked respondents whether
they know why existing designs were created without documented design rationale. The
results are shown in Table 5.12. Most respondents (80%) either agree or strongly agree
with the statement that without design rationale, they may not understand why certain
decisions are made in the design.

Table 5.12: Do Not Understand Design without Design Rationale if Not Original Designer

Strongly Strongly
Disagree Agree

1 2 3 4 5
No of Respondents 1 3 9 23 29
Percentages 1.5 4.6 13.8 35.4 44.6

When respondents were asked about the usefulness of design rationale to help under-
stand past design decisions to assess potential modification, a majority of the respondents
find design rationale helpful in this regards (see Table 5.13). Hence, we concluded that
there is evidence to support the claims that design rationale are an important source
of effective reasoning during architectural modification. It is also stressed that if the
knowledge concerning the domain analysis, patterns used, design options evaluated, and
decisions made is not documented, it is quickly lost and hence unavailable to support
subsequent decisions in the development lifecycle [11]. Software maintenance experts also
agree that many facts may be lost to the project, either because the developers may no
longer be available to the project or the limitations on a human’s ability to memorize
detailed facts [75].

Table 5.13: Design Rationale Helps Evaluate Previous Design Decision

Strongly Strongly
Disagree Agree

1 2 3 4 5
No of Respondents 0 3 10 21 33
Percentages 0.0 4.5 14.9 31.3 49.3

Finally, when respondents were asked how often they do impact analysis during main-
tenance. Table 5.14 shows that a large number of respondents perform impact analysis
before making any changes. Since impact analysis may consume a significant amount of
resources and 80.6% of designers (levels 4 and 5) consider it to be useful in evaluating

71

5.3. Survey findings

previous design decisions (Table 5.13), it can be argued that the availability of design
rationale can improve this process. Design rationale is considered an important input to
impact analysis because if the knowledge about the factors that may have influenced the
original design decisions is available, designers do not have to spend a large amount of time
to understand the existing design and the potential ramifications of any changes [128].

Table 5.14: Frequency of Performing Impact Analysis

Never Always
1 2 3 4 5

No of Respondents 0 4 13 29 19
Percentages 0.0 6.2 20.0 44.6 29.2

We were also interested in determining the importance of the tasks performed in im-
pacts analysis, some of which require design rationale support. The importance of such
tasks during impact analysis can be considered as an indicator of the need or usefulness
of design rationale to improve this activity and subsequently the maintenance process. To
investigate this issue, there was a multiple-items question on the importance of various
tasks. Table 5.15 shows what the respondents think of the importance of the factors. In
carrying out impact analysis, most respondents trace requirements. They analyse the de-
sign and design rationale based on the available design specifications. In the analysis, they
are concerned about the feasibility of the implementation, its costs and risk. They are
also concerned that the new design is consistent with the constraints and the assumptions
of the existing system.

Table 5.15: Importance of Each Impact Analysis Task

Not Very
Important Important

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)
(a) Analyse and trace requirements 1.5 0.0 10.3 39.7 48.5
(b) Analyse specifications of previous design 1.5 10.3 19.1 35.3 33.8
(c) Analyse design rationale of previous design 1.5 11.9 32.8 32.8 21.0
(d) Analyse implementation feasibility 1.5 1.5 8.8 41.2 47.0
(e) Analyse violation of constraints and assumptions 1.5 8.8 25.0 41.2 23.5
(f) Analyse scenarios 1.5 7.6 16.7 36.4 37.8
(g) Analyse cost of implementation 0.0 10.3 13.2 30.9 45.6
(h) Analyse risk of implementation 0.0 4.4 5.9 32.4 57.3

Given the results, it is obvious that architects and designers often have the need to
refer to design documentation for impact analysis. Some of information that they use
require design rationale support such as understanding design assumptions, constraints,
cost and risk. However, this information are not necessarily organised in a way that can
be easily used for impact analysis. Additional factors that have been discovered in this
survey can contribute to the difficulties in impact analysis: (a) architects can forget the
reasons behind the design; (b) the person doing the maintenance may not be the original
designers.

72

5.3. Survey findings

We further analyse the survey data and correlate the the importance of impact analysis
tasks with the use and documentation of design rationale. This correlation is performed
to check that those respondents who carry out impact analysis tasks also use and docu-
ment design rationale. The correlation results are shown in Table 5.16. The correlation
analysis found that items (a), (b), (c) and (e) are positively correlated with the overall
level of design rationale documentation, they are also positively correlated to using de-
sign rationale to justify design decisions. The presence of correlation indicates that those
respondents who analyse and trace requirements are also the people who prepare design
rationale documentation thinking that they are important. Similarly, those who believe
that design specifications, design rationale and constraints are important in impact anal-
ysis also value the importance of design rationale to justify their design decisions. That
means for those designers who document design rationale, it seems likely that they will
use this information during impact analysis. Moreover, it also indicates that the designers
who trace requirements and design specifications value the importance of design rationale.
These findings provide evidence to support the usefulness of design rationale for system
maintenance.

Table 5.16: Correlation between Use of Design Rationale and Impact Analysis Tasks

Impact Analysis Task Use of Design Rationale Correlations
(a) Analyse and trace requirements Level of documentation [r(67) = +.297, p <0.05]

Use design rationale to justify decisions [r(67) = +.333, p <0.01]
(b) Analyse specifications of previous design Level of documentation [r(67) = +.267, p <0.05]

Use design rationale to justify decisions [r(67) = +.279, p <0.05]
(c) Analyse design rationale of previous design Level of documentation [r(67) = +.251, p <0.05]

Use design rationale to justify decisions [r(67) = +.351, p <0.01]
(e) Analyse violation of constraints and assumptions Level of documentation [r(67) = +.295, p <0.05]

Use design rationale to justify decisions [r(67) = +.306, p <0.05]

5.3.8 Risk as a design rationale

When an architecture design is committed, designers may not necessarily have full knowl-
edge of whether the implementation could fully satisfy the requirements. For instance,
the performance of a system cannot be easily determined. Additionally, it is difficult to
estimate how the architecture would cope with future changing technologies and require-
ments, so architects would make assumptions and assessments to support their decisions
[88]. Examples are “the likelihood of this technology not being supported in the next five
years is low” or “the performance should be okay because we don’t expect any database
contention”. In such cases, the architecture design cannot be fully tested until much later
in implementation or even after it has been deployed. This aspect of the architecture
design is quite different to designing a software module to satisfy a set of functional re-
quirements. Detailed design which deals with localised issues can be unit-tested more
easily.

73

5.4. Discussion of findings

Since there are uncertainties in architecture design, architects make risk assessments
either implicitly or explicitly based on their beliefs. As such, ATAM suggested that risks
and non-risks should be documented [8]. Two types of risk assessments are suggested for
architecture design reasoning [159]: the architecture design can successfully deliver the
required benefits; the development team is capable of delivering the design.

This survey asked the respondents to indicate if they do risk assessments and if so,
what is an acceptable risk level. 24.7% of the respondents said they always explicitly
quantify risks. 35.8% of the respondents said they sometimes explicitly quantify risks.
42% and 49.4% of the respondents indicated that they are quite certain and most certain,
respectively, that their design can deliver the results and their team can implement the
design. These results indicated that risk assessment is an important part of architecture
design reasoning.

Given that risk assessment is frequently used in architecture design, the respondents
were asked to identify an acceptable level of risk. 23.5% said that a 30% risk level was
acceptable, 18.5% said that a 40% risk level was acceptable. However, 14.8% of respon-
dents said that a 70% risk level was acceptable and 13.6% said that a 80% risk level was
acceptable. There was no consensus on what is an acceptable level of risk.

5.4 Discussion of findings

Based on the survey, there is evidence to support that design rationale are an important
part of the design documentation, and practitioners believe that design rationale should
be documented. There is also a general perception that methodology and tool support
for design rationale is lacking and there are barriers to design rationale documentation.
These findings lead to a number of areas that require further investigation.

5.4.1 Different forms of design rationale

In addition to the nine generic design rationales reported in the survey, respondents had
indicated that they consider other types of design rationale during design. Examples of
the other design rationales they consider are management preferences, vendor relationship
and maintenance and expected life-cycle (see Section 5.3.3 for a complete list). This list
of rationales appeared to be different in nature from the ones that were proposed in the
survey.

Except for constraints and assumptions, seven of the nine generic design rationales we

74

5.4. Discussion of findings

listed can be quantified in some ways. For example, costs (i.e. specific values) of design
alternatives can be compared (i.e. high / low) and used in the selection.

Along with constraints and assumptions, the design rationales suggested by the re-
spondents are contextual in nature. These rationales provide a context and a motivation
to justify and reason about their design decisions. For example. the flexibility and user-
friendliness requirements for the design of a system’s user interface may present a conflict,
i.e., a design cannot satisfy both simultaneously. As such, the architect might seek addi-
tional information and agreement on the priorities of these requirements from stakeholders
in order to make a compromised decision, e.g. first user friendliness and later flexibility.
The argumentation which is used to arrive at a decision would rely on a clear understand-
ing of the underlying reasons (i.e. the context and the motivation) and the priorities of
each of the requirements. Therefore, the context and the motivation of such reasoning
play a major role in the decision reasoning.

Quantitative methods such as [4], [2] and argumentation methods such as [94], [97] have
provided supporting technologies to capture design rationale in different ways. However,
they have not addressed the fundamental issue of how design occurs and what the intrinsic
reasoning process is. As such, further research to investigate how practitioners make use of
various types of design rationales and the roles these rationales play in the decision making
process would provide a foundation for design reasoning and design rationale capture.

5.4.2 The role of an architect

The survey results reported in Section 5.3.2 indicate that architects work on a variety
of tasks such as requirements analysis, tender analysis, architecture design and software
design. They also have management responsibilities. Program design and test planning
is a much smaller part of their job. We interpret this result as an indication of the
activities involved in the architecture design. As well as designing software, architecture
design would also deal with: (a) high level issues such as planning and management;
(b) constraints and assumptions arising from the information technology environment and
the organisational environment; (c) the complexity of the decision making arising from the
competing technical and non-technical aspects in a project. Of the architects surveyed,
48.1% said that not all projects require an architect’s involvelment. Projects that are either
new, mission critical, high risk, high cost, complex or have high impacts on other systems or
organisations require architects. The results clearly indicate that architects are involved in
a broad array of tasks across the whole project scope. Given that the architecture decision
making process is complex and there are many technical and non-technical considerations
that influence architecture decision making, it is important to identify the design rationale

75

5.4. Discussion of findings

or considerations that influence architecture decision making, assess how they inter-relate
in the decision process, and generalise their use into architecture design patterns [3].

5.4.3 Designers’ attitude

Respondents frequently use design rationale to justify design choices. When we examine
the list of design rationales they use, it appears that those design rationale that positively
justify the design receive more attention than those negative rationales that explain why
the design may have issues. That leads us to suspect that there might be a tendency to
present good news rather than bad news during the design process. An analogous finding
[79] may give us some insights to this behaviour. In many industry scenarios that we have
encountered, some architects have a tendency to promote a design based on the benefits
of new technologies. However they often do not explain the potential negative impacts
of the new approach. Establishing if such a bias is commonly exhibited in architecture
would be useful, because awareness of this phenomenon would help architects to be more
objective in the assessment and selection of design choices.

5.4.4 Necessity for design rationale documentation

The survey found that there is a strong justification to document design rationale due to
the tendency of the architects’ forgetting their own design or the need for architects to
modify systems designed by other architects. However, not every system requires compre-
hensive design rationale documentation because design rationale can be reconstructed for
non-complex systems. The extent to which design rationale are documented also depends
on the relative benefits it might deliver.

5.4.5 Design rationale to support impact analysis

Impact analysis requires the knowledge of dependency between design components [44].
The positive correlation between impact analysis tasks and the use and documentation
of design rationale indicates that the respondents realize the connection between the two
tasks at different stages of the development life-cycle. This finding indicates that there is a
need to capture and maintain design rationale as a first-class entity to facilitate traceability
during maintenance activities. The absence of design rationale may result in the violation
of constraints or assumptions in a design. That is why we argue that the availability of
design rationale can facilitate systematic reasoning to minimize the risks associated with
system enhancements. Collectively these results indicate that there is a necessity to use

76

5.4. Discussion of findings

of design rationale in various aspects of impact analysis.

5.4.6 Risk assessment in architecture design reasoning

Two major differences exist between architecture design and detailed software design.
Firstly, architecture design has a global impact, in terms of modifiability and correctness,
to the system whilst the software design of a local module has a lower impact. Secondly,
there are more certainty and testability in designing a software module than an architec-
ture. The survey showed that architects often carry out risk assessments in architecture
design. Over half of the respondents explicitly quantify risks. However, when they were
asked what risk level would be acceptable, there was no consensus. This implies that
there is no common understanding on how to measure risks. Is an 80% uncertainly in the
architecture design acceptable? 13.6% of architects seemed to think so. Since architecture
cannot be fully tested at the early stage of the development cycle, it is probably better
to have a lower risk architecture design which is more likely to succeed. However, the
risk assessment process in architecture design is not well understood and so there is much
room for further investigations in this area.

5.4.7 Methodology support for design rationale

Some of the reasons for not documenting design rationale are budget constraints and lack of
methodology. Given that most respondents consider design rationale important and their
documentation useful, there needs to be guidelines under which the use and documentation
of design rationale will provide greater benefits than the costs involved. This means that
the need for design rationale documentation should be context dependent. For instance,
a non-complex system may require little design rationale documentation since it can be
reconstructed easily [27]. Our literature review shows that there is no comprehensive
methodology to guide how we should use rationale-based techniques to design systems.
Therefore, further studies of the use and documentation of design rationale to provide a
methodology would be most beneficial.

5.4.8 Tool support for design rationale

At present, tool support for design rationale capture and retrieval is inadequate. The
various tools that respondents reported using, including word processors and UML-based
tools, do not have traceability features to support systematic design rationale description
and retrieval. Therefore, it is important to understand how best to capture, represent

77

5.5. Limitations

and use design rationale and then develop such tools to provide a design rationale enabled
development environment.

5.5 Limitations

Our study has several shortcomings. Like most surveys in software engineering, our study
faced reliability and validity threats. For example, contrary to the common perception
that there is a lack of documentation of architecture design rationale, our finding shows
that a large number of respondents document their design rationale. This result could
be biased because there might be a tendency for the respondents to respond according
to what they think is a good idea instead of what they actually practise. Following the
guidelines provided in [80], we put certain measures in place to address the validity and
reliability issues. For example, the research instrument underwent rigorous evaluation by
experienced researchers and practitioners, all the questions were tested in a pilot study,
and respondents were assured of anonymity and confidentiality. However, completely
eliminating the possibility of bias error is difficult.

Most software engineering surveys also suffer from the problem of non-response error
when members of the targeted sample do not respond to a survey. In our case it is
possible that those who do not believe in the value of documenting architecture design
rationale may have opted not to respond to the survey, which would have biased the results.
Unfortunately, given the anonymous nature of the responses, we are unable to identify
those participants who did not respond, hence, it is difficult to assess the representativeness
of the sample.

Another limitation of the study is the non-existence of a proven theory of design-
ers/architects’ attitude towards documenting design rationale to guide our research. That
is why we considered our research in understanding the practitioners’ attitude and prac-
tices of design rationale documentation and usage as exploratory. Through the survey, we
aimed at gathering facts in the hopes of drawing some general conclusions to help us and
the software architecture community to identify research directions, and to facilitate the
development of a theory on design rationale documentation and usage.

Geographical location of the respondents, mainly in the Asia Pacific region, is another
limitation as the findings cannot be generalized globally. Though, Australian and Asian
software engineering practitioner are internationally renowned for technical competency
and high standards, the only way to test the findings for regional bias is to replicate the
study in geographical regions such as the US and Europe.

78

5.6. Summary

5.6 Summary

The survey has gathered invaluable information about how designers use design rationale,
through which we have gained important insights into the issues of design rationale use and
documentation in the software industry. We found that practitioners see design rationale
as important. When design rationale are available, they use design rationale to support
maintenance and impact analysis. However, the level of documentation and the use of
design rationale are lower than the perception of its importance. We found that architects
have many roles and some of them are high-level planning and management. Architects
who take on these roles might have other perspectives and considerations in their decision
making in addition to technical considerations. Although risk assessment is something
that architects view as important, there is no consensus as to what is an acceptable level
of risk in architecture design. Respondents reported that there is a lack of methodology
and tool support for the capture and application of design rationale.

Using the results of the survey, we have established the need for using design rationale
in system design and maintenance activities. We have identified a number of areas for
further investigations: (a) establish an architecture rationale representation that could
effectively capture and communicate design reasoning; (b) provide the associated methods
to support effective traceability of design reasoning in impact analysis; (c) provide a quan-
titative method to assess the risks or probabilities of change impacts in an architecture
design. These works are described in the following chapters.

79

Part III

The Representation and

Applications of Architecture

Design Rationale

80

Chapter 6

Representing architecture design

rationale

In the previous chapter, we have obtained the findings from a survey to support the capture
and use of architecture design rationale. Similar arguments have been suggested by many
others for different reasons. First, the design of a large system involves collaboration of
designers who specialise in different aspects of the system. Design rationale can serve as a
tool to clarify issues and assumptions that are tacit and implicit [88, 135]. Second, design
rationale help to deliberate and justify system designs, such designs should be carefully
considered, objective and unbiased [103]. Third, the tacit design knowledge of a system
may be eroded when it is not captured [119]. Designers who understand the design may not
be available for consultation. This can be very costly to system maintenance. Retaining
tacit design knowledge could save time, reduce long-term cost, and help deliver software
of better quality because designers would not have to second-guess the rationale behind
the design [33].

Architecture design rationale is not very useful by itself. It is more useful when it
relates requirements to design objects. This relationship is the basis to model architecture
design rationale. Architecture Rationale and Elements Linkage (AREL) is created for this
purpose. In Section 6.1, we look at the meaning of a design reason, which may have many
interpretations. We discuss two types of design reasoning and their relevance in design
decisions. We describe the concept of architecture design decision and its relationships with
architecture elements in a conceptual model. We then develop the AREL representation
for modelling architecture design rationale (in Section 6.2). 1

1This chapter is based on our work published in [161].

81

6.1. A conceptual model for design reasoning

AREL comprises two fundamental elements, Architecture Rationale (AR) and Archi-
tecture Elements (AE). AR represents the design justification at a decision point. AE

represents the design artefact which participates in a decision as an input or an outcome.
They are described in details in Sections 6.4 and 6.3, respectively.

6.1 A conceptual model for design reasoning

When architects and designers make design decisions, what do they consider as a reason
or an intention? Should a requirement or a constraint be considered a reason for a design?
Or is it some generic justification that allows designers to judge that a design is better
than its alternatives? Design is a process of synthesising through alternative solutions
in the design space [141]. Reasoning to support or reject a design solution is one of the
fundamental steps in this process.

The concept of a reason has many dimensions. We argue that design reasoning come
in two forms: motivational reasons and design rationale. Motivational reasons are the
reasons which motivate the act of making a design and providing a context to the design.
They are goals to be achieved by the architecture design, or they are factors that constrain
the architecture design. An example is a requirement. Although a requirement by itself
is not a reason, but the need of requirement is the reason for the design. There are a few
aspects to a motivational reason:

• Causality - a motivational reason is an impetus to a design issue. As such, it is a
cause of a design decision.

• Goal - a motivational reason can be a goal or a sub-goal to be achieved.

• Influence - a motivational reason can influence a decision by ways of supporting,
rejecting or constraining a decision.

• Factuality - a motivational reason can represent information that is either a fact or
an assumption.

A motivational reason can be a requirement, a goal, an assumption, a constraint or
a design object exerting some influence on the architecture. It is important to represent
motivational reasons explicitly as inputs to the decisions so that they are given proper
attention in the decision making process. As suggested by [135], in order to have a deep
understanding of software systems, undocumented assumptions have to be re-discovered.

82

6.1. A conceptual model for design reasoning

Garlan et al. [48] found that conflicting assumptions which are implicit lead to poor-
quality system architecture. As it is difficult to draw the line between requirements,
assumptions and constraints [135], we take an all-inclusive approach and conjecture that
missing motivational reasons (including assumptions, constraints and requirements) can
affect the decision making process adversely and can result in inferior design solutions
because of ill-informed decisions.

With motivational reasons come the design issues that need to be resolved to create a
design solution. An architect would resolve the issues by evaluating the relative benefits
and weaknesses of the available options to select the most suitable design. The arguments
and the reasoning are captured as a result of the decision, i.e. the design rationale. To
depict the relationship between motivational reasons, design rational, and design objects,
we present a conceptual model for design process in Figure 6.1, based on which we will
develop the rationale-based architecture model AREL. The conceptual model capturing
design reasoning relies on the distinction between motivational reasons and design ratio-
nale. There are two important aspects of such a conceptual model:

• Entity - it identifies the information that needs to be represented, namely architec-
ture design rationale and architecture design elements.

• Relationship - it relates the architecture design rationale to the architecture elements
in a structured way to explain how a decision is made and what the outcomes are.

Figure 6.1: An Architecture Rationale Conceptual Model

A motivational reason acts as an input to a decision. It motivates and/or constrains a
decision. A motivational reason should be explicitly represented in an architecture design,

83

6.2. Architecture Rationale and Elements Linkage (AREL)

as an architecture element, to show its influence on a decision. This is similar to a goal in
DRL.

A decision creates and is justified by the architecture design rationale, similar to the
argument in REMAP. The architecture rationale encapsulates the details of the justifi-
cation. It contains a description of the issues addressed by the decision, the arguments
for and against an option, and the alternative options that have been considered. Once
a decision is made, the result of a decision is a design outcome or solution. A design
outcome should be explicitly represented in the architecture design as an architecture
element. Although this conceptual model has similarities, such as the representation of
design rationale and design issues, to other design rationale models, it is unique because
it simplifies the argumentation aspect and strengthens the linkage between motivational
reasons, design rationale and design elements. This subject is further discussed in Section
6.2.

6.2 Architecture Rationale and Elements Linkage (AREL)

The AREL model is an implementation of the conceptual model using the UML notation
[118, 113]. AREL is an acyclic graph which relates architecture elements AEs to archi-
tecture rationale ARs using directional links ARtrace. An AE is an architecture element
that participates in a decision as an input (i.e. motivational reason) or an outcome (i.e.
design outcome). They are stereotyped by �AE�. An AR encapsulates the architecture
design justification of a decision. ARs are stereotyped by �AR�. Since AR has a one-
to-one relationship to justify a decision, AR can therefore represent a decision point in
AREL modelling. The relationships between an AE and an AR are connected by a direc-
tional association stereotyped �ARtrace�. It is also referred to as a links in the AREL
definition below. The �ARtrace� stereotype is used to represent the causal relationships
between AEs and ARs. A causal relationship is a relationship between two entities where
AE is a cause and AR is the effect. For instance, a motivational reason causes a decision
to be made. Alternatively, AR is a cause and AE is an effect. For instance, a decision
causes a design object to be created as an effect.

Definition 1 An Architecture Rationale and Element Linkage (AREL) model is a tuple
(AE,AR, PL), where AE is a set of nodes representing architecture elements, AR is a set
of nodes representing architecture rationales, and PL ⊆ (AE ×AR)∪ (AR×AE) is a set
of directed links between the nodes, such that

1. all rationale nodes must be associated by links with at least one cause and one effect:

84

6.2. Architecture Rationale and Elements Linkage (AREL)

∀r ∈ AR, there exists a cause e ∈ AE such that (e, r) ∈ PL and an effect e′ ∈ AE

such that (r, e′) ∈ PL;

2. no subset of links in PL form a directed cycle.

According to Definition 1, an AR is connected to a minimum of two AE nodes through
links, one from a cause AE and one to an effect AE. As such, the links to the AEs then
represent the cause and the effect of the design decision represented by AR. Clause 2 of
Definition 1 specifies that insertion of a link is not allowed if it would result in a directed
cycle of links. Essentially, this means that the links maintain the integrity of the causal
modelling whereby something cannot be the cause of itself, directly or indirectly.

Using Definition 1, a basic form of the model construct is {AE1, AE2, ...} → AR1 →
{AEa, AEb, ...} where AE1, AE2 etc. are the inputs or the causes of a decision AR1,
and AEa, AEb etc. are the outcomes or the effects of the decision. Figure 6.2 shows a
UML representation of the AREL model of the relationship between a motivational input
AE, a decision AR and a resulting AE. The cardinality in the relationship shows that
the motivational AE and the resulting AE must be a non-empty set linked by the single
decision AR. The uniqueness constraint in the diagram specifies that each instance of AE

in the relationship cannot appear more than once.

Figure 6.2: A Causal Relationship between AEs and an AR

The directional links of �ARtrace� represents the causal relationships in Figure 6.2.
An AE causes AR by motivating or constraining the decision, and the AR results-in an
outcome AE by having a design rationale to justify the design. Conversely, an outcome
AE depends on AR which in turn depends on an input AE. The causal relationship is the
basis for forward tracing and the reverse is the implied dependency relationship which is
the basis for backward tracing. Together they provide a means to navigate and explain the
architecture design. This causal relationship simplifies and replaces similar relationships
such as “creates” and “achieves”’ in argumentation-based methods (see Chapter 3). This
is advantageous because the model becomes simpler and the complexity of traversal for
knowledge retrieval is reduced.

85

6.2. Architecture Rationale and Elements Linkage (AREL)

An AE can be both an input and an outcome when it is involved in two decisions.
As an input, it can be a requirement, a use case, a class or an implementation artefact.
As an outcome, it can be a new or a refined design element. Since an AR contains the
justifications of a design decision, designers can find the reasons of the decision and what
alternatives have been considered.

Figure 6.3: An AREL Diagram of a reporting sub-system, in UML

Figure 6.3 shows an example AREL diagram of a high-level design of a reporting sub-
system in a typical sales and accounting system. The functional requirement Sales Report
and the non-functional requirement Response Time are represented by two �AE� nodes.
AR1 justifies the design by de-normalising the Sales Table so that external joins can be
eliminated to improve efficiency, and use a generic reporting function to produce standard
report formats. As a result, two design objects De-normalised Sales Table and Generic
Reporting Function are created. In the next part of the design, a decision is required to
determine how the SQL statement is to be implemented. In the AREL decision graph,
three input AEs are the required inputs to decision AR2:

86

6.3. Architecture elements

1. SQL Lookup is a class to locate a SQL statement based on the required business
function;

2. Generic Reporting Function specifies the format of report; and

3. De-normalised Sales Table supplies the data.

Together these AEs influence the decision AR2 such that the optimal way to imple-
ment the design is to use embedded SQL statements in stored procedures. This design
process continues as architects make design decisions by following design principles to
satisfy requirements and create data models, design objects or implementation artefacts.
The relationships between AEs and AR are connected by �ARtrace� links.

6.3 Architecture elements

In AREL, architecture elements AEs are artefacts that form part of the architecture
design. They comprise the business requirements to be satisfied, the technical and organ-
isational constraints on the architecture design, the assumptions that need to be observed
and the design objects that are the results of the architecture design.

Architecture elements can be classified by a related set of concerns called viewpoints
[70]. The purpose of such classification is to have a focus on the different perspectives
of architecture design. Although there may be many ways to model viewpoints based on
specific sets of perspectives [82, 63, 89], there are common viewpoints which are general
to most software architectures. Using TOGAF as an example [164], we have selected four
generic viewpoints (Business, Data, Applications and Technology) to classify AEs.

Figure 6.4 is a UML diagram which outlines the basic classification of the architecture
elements and their viewpoints. The Business Viewpoint contains architecture elements
such as functional and non-functional requirements, business, system and technology en-
vironments. These are the main drivers of the architecture design. Design objects are
architecture elements classified by the Data, Application or Technology Viewpoints. An
architecture element can be a motivational reason (i.e. an input) to a decision or an
outcome of a decision or both.

87

6.3. Architecture elements

Figure 6.4: A Composition of Architecture Elements

Architecture Element as a Motivational Reason

1. Requirements - they are goals to motivate the design of the system. Examples
are functional and non-functional requirements.

2. Assumptions - explicit documentation of the unknowns or the expectations pro-
vides a context to decision making.

3. Constraints - they are the limitations to what can be achieved. They may be of
a technical, business, organisational or other nature.

4. Design Objects - the way one design object behaves may influence architecture
design in other parts of a system by limiting the available design options.

Architecture Element as a Design Outcome

1. Design Objects - a design object is a result of an architecture decision to satisfy
the motivational reasons.

2. Refined Design Objects - design objects can be refined as a result of a decision.

In the TOGAF framework, requirements are classified by the business viewpoint. We
generalise the idea of the business viewpoint to include requirements and environmental
factors. We call them architecture design drivers. We create five categories in the business

88

6.4. Architecture rationale

viewpoint to provide a logical sub-grouping based on how they influence the architecture
design (see Figure 6.4). System Requirement is comprised of functional and non-functional
requirements. Environmental Factor is comprised of business environments, information
system environments and technology environments. Such classification allows architects
to trace design reasoning to specific classes of root causes during analysis. For instance,
an architect may want to analyse all non-functional requirements which affect a particular
design object.

Architecture design elements are the results of the design process to realise and im-
plement a system. They are classified by the following viewpoints: (a) Data Viewpoint
- the data being captured and used by the applications; (b) Application Viewpoint - the
processing logic and the structure of the application software; (c) Technology Viewpoint -
the technology and the environment used in the system implementation and deployment.
Their classification facilitates change impact analysis when architects want to focus on a
specific aspect of a system. For instance, an architect may wish to find out how a change
in requirement may affect the design objects in the application viewpoint.

6.4 Architecture rationale

In AREL, an AR comprises three types of justifications (Figure 6.5): qualitative ratio-
nale, quantitative rationale and alternative architecture rationale [159]. Qualitative design
rationale (QLR) represents the reasoning and the arguments, in a textual form, for and
against a design decision. These architectural arguments and assessments can only be rep-
resented in an informal and textual way. Quantitative rationale (QNR) uses the indices to
indicate the relative costs, benefits and risks of the design options. This is an attempt to
quantify design rationale for systematic comparisons and future analysis. These two types
of rationale are described in sections 6.4.1 and 6.4.2 respectively. An AR also contains the
Alternative Architecture Rationale (AAR) which documents the discarded design options
(see Section 6.4.3). Often AAR provides an insight as to whether sufficient options have
been considered when a decision is made. Some of these discarded design options may
actually become useful as the context of the requirements and the project changes in the
future.

The way AR is represented in AREL addresses a number of existing issues with the
argumentation-based design rationale methods. Firstly, it is a cognitive burden to capture
the complete explanations initially as designers who want to make use of this knowledge
at a later stage most likely need not to replay the deliberation process as it was captured
[53]. A second issue is that the design objects being discussed do not appear in the

89

6.4. Architecture rationale

Figure 6.5: Components of Architecture Rationale

representation itself and are not linked to it in a defined way [122]. For designers who have
to maintain a system, it is the design objects that are the focal point of investigation. For
instance, a designer may ask “If a requirement is changed, which classes and data models
might be affected and how?”. A third issue is that decisions are often inter-linked and
inter-dependent but such relationships are implicit. A different approach to encapsulate
and relate architecture rationale to design objects is adopted by AREL:

• Simplification - the AR entity records the key design issues, argumentation and de-
sign alternatives without explicitly capturing the design deliberation relationships.
This approach simplifies the capture process by only capturing the results or jus-
tifications of the decisions without the overhead. It also provides a much simpler
graphical representation when compared with methods such as gIBIS, PHI, QOC,
DRL and SEURAT.

• Encapsulation - design rationale are encapsulated in an AR. In this way the de-
cisions can be incorporated into the design process naturally to show the causal
relationships between the design objects without over-complicating its representa-
tion. Should designers require more details about a decision, the details can be
revealed by exploring the AR package. Our implementation in UML supports this
feature (see Chapter 11 for details). This feature is more practical when compared
with methods such as gIBIS, PHI, REMAP, QOC and DRL because the formal re-
lationships offered by these methods are replaced by the qualitative rationale in a

90

6.4. Architecture rationale

textual form which is easier to enter and understand.

• Causal Relationship Chain - since AR acts as a connector between the cause architec-
ture elements and the resulting architecture elements, we can construct a graphical
representation showing direct dependencies between architecture elements and deci-
sions in a chain. Such relationships can then be analysed to understand the design
reasoning. This is an improvement over template-based design rationale methods
because they do not link the design artefacts to design rationale in a chain of causal
relationships. It is also an improvement over some of the argumentation-based meth-
ods such as gIBIS and QOC where design artefacts are not represented.

The encapsulation of architecture rationale in AR provides reasoning support to help
architects understand a design decision and allow them to verify the decision. Relating AR

to architecture elements AE provides the knowledge about the inter-dependency between
architecture elements. It solves the problem of not being able to understand the design
because of implicit assumptions and constraints.

6.4.1 Qualitative rationale

During the deliberation of design decisions, a number of factors have to be considered.
Issues surrounding a decision need to be specified and alternative options to solving the
issues are considered. Each alternative is assessed for its strengths and weaknesses. Some
tradeoffs might be necessary in the decision making process. QLR is a template within AR

to capture such qualitative design rationale. There has been substantial research on this
subject by [94, 97, 23, 170, 3], we utilise some of their results as a basis for the qualitative
design reasoning of QLR. Additionally, we have verified the design rationale elements
through the survey reported in Chapter 5. The following information are contained in
QLR:

• issue of the decision - the issue specifies the concern of this decision.

• design assumptions - they document the unknowns that are relevant to this decision.

• design constraints - the constraints that are specific to this decision.

• strengths and weaknesses of a design.

• tradeoffs - they document the analysis of what is a more appropriate alternative by
using priorities and weightings.

91

6.4. Architecture rationale

• risks and non-risks - they are considerations about the uncertainties or certainties
of a design option.

• assessment and decision - they summarise the decision and the key justifications
behind the selection or exclusion of a design.

• supporting information - decision maker(s), stakeholder(s), date of decision, revision
number and history.

The information contained in QLR provides the qualitative rationale to justify a de-
cision. It helps architects and designers to understand the reasons and the justifications
behind a decision.

6.4.2 Quantitative rationale

For most architecture design, the decision making process is based on the experience and
the intuition of architects. Design tradeoffs are often not explicitly quantified. The lack
of a quantifiable justification makes it very difficult to subsequently assess the quality
and accuracy of design decisions using quality approaches such as CMMI. Quantitative
rationale enables systematic estimates of the expected return of design alternatives. The
expected return of a decision is represented by the architect’s estimate of the Cost Benefit
Ratio (CBR) at a decision point.

The QNR approach is based on three elements - cost, benefit and risk. It is measured
by an index rating. The reasons for using an index instead of money terms are because (a)
some of the assessment cannot be expressed in money terms for they may be intangible
or difficult to estimate; (b) there may be multiple factors in which their benefits or costs
values cannot be easily combined; (c) the comparison between design options can be made
using the same scale; (d) it provides a uniform measure for reviews and verification. The
quantitative measures comprises of the following items:

• Architecture Cost Index (ACI) - measures the relative cost of a decision with a rating
between 1 and 10.

• Architecture Benefits Index (ABI) - measures the relative benefit of a decision with
a rating between 1 and 10.

• Outcome Certainty Risk (OCR) - measures the risk that the outcome would not
satisfy the intended goal(s) with a probability between 0 and 1.

92

6.4. Architecture rationale

• Implementation Certainty Risk (ICR) - measures the risk of not achieving the im-
plementation with a probability between 0 and 1.

• Cost Benefit Ratio (CBR) - measures the ratio between expected benefits to the
expected costs of the design decision

These estimates are used to assess the options at each decision point. They are the
quantifiable justifications for selecting a design option. We have provided a brief intro-
duction to QNR here. A detailed descriptions of their formulations and applications are
described in Section 8.2.2.

6.4.3 Alternative architecture rationale

In terms of the argumentation-based design rationale approach, an alternative design is
referred to as an option or a position. The association to support or refute an option
is modelled explicitly. This leads to complicated decision models. The AREL model
simplifies this by encapsulating the options and their arguments within the decision. In
other words, zero or more alternative design options (i.e. AAR) are contained within an
AR. AAR itself may contain entities such as arguments, design objects and behavioural
diagrams (see Figure 6.5). This information allows architects to understand and verify the
discarded design options, their relative merits and demerits, which have been considered
in the decision process.

Both AR and AAR are implemented by the package entity in UML. An AR is a
container of AAR. This multi-level structure hides the complexity of a decision and
makes it easy for searching and retrieval. The multi-layered information is exposed only
when they are required.

6.4.4 Avoiding cyclic decisions in AREL models

During the design process, architects may inadvertently cause a reasoning cycle to form as
design decisions are incrementally made. For instance, this could happen when different
teams of architects are designing simultaneously. Figures 6.6(a) and 6.6(b) show two cyclic
examples which violate the AREL definition (Section 6.2). In Figure 6.6(a), we can see
that if AR3 was to be created and added to the AREL model, with AE3 as an input
and AE1 as an outcome, this would create a directed cycle in the graph. The dotted
arrows denote the illegitimate �ARtrace� that would result in a cyclic graph, i.e. from
AE3 through to AR3, AE1, AR1, AE2, AR2, and back to AE3. Similarly, Figure 6.6(b)

93

6.4. Architecture rationale

depicts a cyclic graph created if AR5 was modified to take AE7 as an input, i.e. from
AR5 through to AE6, AR6, AE7, and back to AR5.

(a) (b)

Figure 6.6: Illegitimate cyclic graph: (a) AE-cyclic case (b) AR-cyclic case

We do not allow cycles of design rationale links in AREL because they create ambiguity
and inconsistency regarding the primary cause of decisions.2 Using Figure 6.3 as an
example, we consider a new requirement FR-Support Custom Made Report Format in
Figure 6.7(a). We need to design a new element D-Custom Report Design. D-Custom
Report Design would make use of the generic report template for customisation and some
enhancements need to be made to D-Generic Reporting Function as well. As part of the
decision, we use D-Embedded SQL as input to AR3 because the design of D-Custom Report
Design uses embedded SQL heavily. In this case, we have created a cyclic argument. Is
D-Generic Reporting Function a primary cause or D-Embedded SQL a primary cause?
The relationship is ambiguous.

Let us consider an alternative way to reason about the design. Figure 6.7(b) shows
that the decision making process should take into account all the relevant functional
requirements in AR1. It adds to the justification for sharing generic report templates
between the two reporting functions. At this stage, the AR3-SQL Implementation is not
the issue in focus. It is AR2-SQL Implementation which decides how D-Embedded SQL
should cater for both requirements. There are two implications in the elimination of cyclic
decisions:

2Furthermore, a cyclic model inhibits Bayesian Belief Networks (BBN) based change impact analysis.
The application of BBN to AREL is discussed in chapter 10.

94

6.4. Architecture rationale

(a)

(b)

Figure 6.7: (a) Cyclic Design (b) Acyclic Design

• Identify the root goal of the design - the important goals behind a decision are
identified. In this case, relevant requirements such as FR-Sales Report and NFR-
Response Time should be considered (as shown in Figure 6.7(b)) because they affect
the implementation of D-Custom Report Design. Figure 6.7(a) does not have these
relationships. Should there be a change in the performance requirements, it would
not be able to trace this change to D-Custom Report Design.

• Avoid ambiguity - if we were to modify D-Embedded SQL to support remote database
access (in Figure 6.7(a)), it would be ambiguous and difficult to determine whether
D-Embedded SQL or D-Generic Reporting Function is the cause of the decision re-
lationship.

95

6.5. The extended AREL

To prevent cycles from occurring in AREL, we provide an AREL Tool to carry out
consistency checking to detect directed cycles (see Chapter 11). The AREL Tool warn
architects about the directed cycles in a model. Human reasoning would be required
to modify the structure of the architecture design reasoning to resolve such reasoning
anomalies.

6.5 The extended AREL

Software architecture design evolves over time due to changes in the business requirements
or in the business environment. As the architecture design evolves, the original design and
their design rationale can be lost. An architect who is not exposed to the passage of events
often cannot understand the convoluted architecture design due to past changes [157].
This may often prevent sound design decisions to be made during system maintenance
and enhancements. To address this issue, we define an extended version of AREL called
eAREL below to capture the evolution history.

Definition 2 An extended AREL model eAREL is a tuple (AE,AR, PL, SP), where AE,
AR and PL are sets of architecture elements, architecture rationales and directed links,
respectively, and SP is a bijective supersedence function between architecture elements or
between architecture rationales, such that

1. let AEc ⊆ AE, ARc ⊆ AR and PLc ⊆ PL ∩ ((AEc × ARc) ∪ (ARc × AEc)) be
the sets of architecture elements, rationales and directed links present in the current
architecture design, respectively, then (AEc, ARc, PLc) is the AREL model for the
current architecture design;

2. let AEh = AE \AEc and ARh = AR \ARc be the sets of architecture elements and
rationales stored for previous architecture designs, respectively, then the supersedence
function satisfies SP : (AE → AEh) ∪ (AR → ARh), and it is a bijective function.

In an eAREL model, both AR and AE have one current version and one or more
historical versions. The current versions of AR and AE are denoted by ARc and AEc,
respectively, and the historical versions of AR and AE are denoted by ARh and AEh,
respectively. When an AR or an AE is superseded by a current version, the superseded
elements are kept in superseded elements ARh and AEh. If multiple supersedence exists,
they are linked in a linear list. This supersedence chain represents the direct supersedence
relationship between different versions of architecture elements and rationales. The super-

96

6.6. A UML representation of AREL and eAREL

sedence link of AR is stereotyped by �ARsupersede� and the supersedence link of AE

is stereotyped by �AEsupersede�. Figure 6.8 shows the relationship in UML.

Figure 6.8: AE and AR evolution support in eAREL

In the eAREL model, the �ARtrace� links between superseded architecture elements
and rationales are also kept to retain their relationships, i.e. PL \ PLc. This supports
a historical trace of previous architecture design decisions. The traceability of historical
design and design decisions is discussed in Chapter 9.

6.6 A UML representation of AREL and eAREL

AREL and eAREL models are implemented using the UML notation [118]. They use UML
stereotype to represent their semantics. We make use of tagged values in stereotype to
capture information for AREL and eAREL. The choice of using UML for implementation
is due to a number of reasons:

• UML is already very popular in software design. Architects can use the same repre-
sentation and tool to carry out architecture design and record architecture rationales
during the design process;

• UML has sufficient expressive power to support the rationale-based architecture
modelling;

• UML is a standard graphical representation understood and used by many software
development organisations;

• UML has a wide variety of tools which could be used to support the capture and
the traversal of the model.

Our implementation is built on a UML tool Enterprise Architect [150]. It allows us
to extend the semantics of the UML notation by using the profile package to define new

97

6.6. A UML representation of AREL and eAREL

stereotypes and tagged values for capturing architecture elements and rationales as well
as their relationships. This profile is downloadable from [153]. The details of the UML
implementation to support AREL and eAREL are described in the following sections.

6.6.1 The architecture element stereotype

We define the AE stereotype as �AE� to extend the UML constructs such as object and
class to support architecture traceability. An extension of the UML construct means that
additional attributes and characteristics can be added to the existing UML constructs to
help design reasoning. The �AE� attributes for traceability are implemented as tagged
values:

• elementID - an unique identification of an AE.

• elementVersion - an integer number to identify a version of an element, the highest
number is the most recent version. elementID and elementVersion together uniquely
identify a version of an element. This is used in eAREL implementation.

• elementType - classification of the architecture viewpoints (e.g. business viewpoint).
This is used for architecture tracing.

• elementSubType - sub-classification within an architecture viewpoint. For instance,
the Functional Requirement within the Business Viewpoint. This is used for archi-
tecture tracing.

• currFlag - the latest version has the flag set to ’Y’ and archived versions have the
flag set to ’N’. This is used in eAREL implementation.

• lastUpdateDateTime - date and time of last modification.

• author - name(s) of the author(s).

• documentLocation - the location of any external documents that describe the AE, it
could be an URL or a filename with document section references.

During architecture tracing, elementType and elementSubType can be used to limit
trace results to those defined types that are of interest to architects. The lastUpdateDate-
Time and author tags are used for audit trail purposes. The elementVersion and currFlag
tags support traceability of evolving AEs.

98

6.6. A UML representation of AREL and eAREL

Figure 6.9: �AE� Stereotype to extend Architecture Drivers

To model the business viewpoint that contains requirements, environmental factors,
constraints and assumptions, we use the �AE� stereotype to extend UML model ele-
ments Class, Object, Artifacts and Use Case. These extended UML model elements as
shown in Figure 6.9 can create architecture models in different architecture viewpoints.
For instance, a Use Case can capture system interaction, and Artifacts and Objects can
capture requirements and constraints in the Business Viewpoint.

Architecture design elements that are represented by the Data Viewpoint, Applica-
tion Viewpoint and Technology Viewpoint as shown in Figure 6.4 also use the �AE�
stereotype to extend their UML meta classes. The UML design elements that have been
extended include Class, Object, Package, Component, Artifact, Table and Deployment ;
and behavioural diagrams that have been extended are Use Case, Communication Dia-
gram, Analysis Diagram, Activity Diagram, State Chart and Sequence Diagram. With the
stereotyping, these UML constructs can capture the additional information as shown in
Figure 6.9.

6.6.2 The architecture rationale stereotype

AR is implemented by a UML stereotype, denoted by �AR�, to extend the Package
metaclass. It contains a number of attributes:

• arID is the unique identifier of an instance of AR.

• currFlag is a boolean flag to indicate whether the AR instance records a current or
superseded rationale. Only the latest version of a decision has a truth value.

• lastUpdateDateTime - date and time of last modification.

• author - name(s) of the decision maker(s).

99

6.6. A UML representation of AREL and eAREL

Figure 6.10 shows the �AR� and �AAR� stereotypes. Their implementation is
built on the UML Package meta class. �AR� and �AAR� both contain a �QLR�
and a �QNR�, where �QLR� and �QNR� contain the attributes that characterise
the architecture rationale (see Section 6.4 for details of the attributes). An AR can
contain zero or more AAR depending on the number of discarded design alternatives. If
there is no design alternative, then there is no instance of an AAR. The containment of
all relevant design rationale within an AR reduces the complexity in traceability without
compromising the information it contains.

Figure 6.10: �AR� and �AAR� Stereotypes

The stereotype �AAR� provides a template to document alternative architecture
designs that have been discarded. Since an AAR contains the element Alternative Model,
which is implemented as a �package�, it can contain UML constructs such as use case,
class diagrams, artifact, object or other UML diagrams. Architects can retain any docu-
mentation about the discarded design in the Alternative Model that might be useful.

6.6.3 The architecture trace stereotype

In Definition 1, we provide a directional causal dependency for tracing the links in AREL.
We implement these links by a UML association stereotype �ARtrace�. The direction

100

6.6. A UML representation of AREL and eAREL

of an �ARtrace� indicates causality. The reverse direction indicates the implied de-
pendency. This relationship is used for traceability (described in Chapter 9) and impact
analysis (described in Chapters 9 and 10).

Figure 6.11: �ARtrace� Stereotype

Figure 6.11 shows the �ARtrace� stereotype which extends the UML Association
relationship. Using a relationship AE1-AR1-AE2, for instance, there are two causal links
or ARtraces depicted by ARtrace1 and ARtrace2. ARtrace1 has a cause of AE1 and
an effect of AR1. ARtrace2 has a cause of AR1 and an effect of AE2. The currFlag
indicates whether this link is current or if it has been superseded.

6.6.4 The AE and AR supersedence stereotypes

Systems naturally evolve during the development and maintenance phases of their life-
cycles. AREL provides the as-is view of the architecture design and decisions. A historical
trace is provided by eAREL to capture evolving elements. Figure 6.12 shows the UML
stereotypes �AEsupersede� and �ARsupersede�, that extend UML Association to link
current AE and AR to historical AE and AR, respectively.

Figure 6.12: �AEsupersede� and �ARsupersede� Stereotypes

The �AEsupersede� stereotype provides an association between different versions of
an AE over time. A new evolution of the architecture element is a new entity identified
uniquely by the same elementID together with a new version number in elementVersion.
An architecture element contains a history of all its previous versions through a chain of
�AEsupersede� relationships. A current AE has a current �ARtrace� link with an
AR. Superseded AEs are stored as historical records and they are linked to the current

101

6.7. AREL usability

AE by �AEsupersede� links. As mentioned in the last section, all �ARtrace� links in
a superseded AE are made non-current.

Similarly, �ARsupersede� link connects current AR to superseded AR. Non-current
or superseded ARs retain historical links (i.e. ARtrace.currFlag=FALSE) to AEs so that
past �ARtrace� relationships are not lost. The replacement or the current AR would
maintain the current �ARtrace� links (i.e. ARtrace.currFlag=TRUE) to all AEs.

The introduction of eAREL in the architecture model creates complexity in the model
because multiple versions of AR and AE and their relationships are kept. However, it
is possible to manage this complexity through proper tool implementation by selectively
showing or hiding the information as required. When architects need to trace architecture
evolution, the hidden relationships can be exposed through specific tool functions.

6.6.5 AREL well-formedness in UML

Given that AREL relies on UML extension, of which there is no support for checking
model well-formedness, we require some methods to check the integrity of AREL so that
any mistakes can be detected. In particular, the following well-formedness rules of AREL
must be validated:

• Architecture decision - each architecture rationale AR must have an input AE and
an outcome AE. A decision node AR can neither be a root node nor a leaf node in
the AREL model.

• Architecture element - an architecture element AE cannot be linked to another
architecture element AE without an architecture rationale AR.

• Acyclic graph - the graph must be acyclic.

The AREL Tool carries out consistency checking to ensure that the AREL model is
well-formed. This is described in details in Chapter 11.

6.7 AREL usability

As discussed in Chapter 3, there are challenges in creating a design rationale method that
can easily be used by practitioners. The existing design rationale methods that we have
reviewed do not have all the required features (see Table 3.1). We intend to overcome these

102

6.8. Summary

issues with AREL. In Table 6.1, we recapitulate these usability features and describe how
AREL has been implemented to fulfil them.

Table 6.1: An Analysis of the Usability Features in AREL

AREL Implementation Notes
Effective capture of Yes Design rationale can be captured in ARs during the design process,
design rational and AEs are captured as part of the architecture design.
Effective communication of Yes AREL uses a UML graphical representation to communicate
design rational the causal relationships between design rationale and design objects.
Design Artefact Focus Yes AE can represent requirements, assumptions, constraints,

and design objects. They are classified by different architecture viewpoints.
Traceability and Yes AREL provides tool support to carry out tracing and
Impact Analysis impact analysis.
Comprehensive Design Rationale Yes AR contains qualitative and quantitative design

rationale as well as alternative design options.
Common Tool Support Yes A commercially available UML tool can be used to support AREL.

The way AREL is structured is simpler than the argumentation-based methods because
design deliberations are not captured. Instead, design rationale are encapsulated in an AR
node and the various kinds of design reasoning are captured with templates. Therefore,
it is simpler for architects to record and use them. The usefulness of the design rationale
captured by AREL is further explored in an empirical study in Chapter 7. Other usability
features are discussed as follows: traceability in Chapter 9, impact analysis in Chapter 10
and tool implementation in Chapter 11.

6.8 Summary

In this chapter, we have introduced the AREL model to represent the architecture design
rationale, architecture design elements and their causal relationships. We use a conceptual
model to describe the high-level requirements of AREL. We distinguish between motiva-
tional reasons and design rationale. The AREL model is characterised as follows:

• Architecture element - an architecture element is an input and/or an output of an
architecture decision. It can be a motivational reason to a decision, and it can also
be an outcome of the architecture decision. Architecture elements are classified by
viewpoints.

• Architecture rationale - an architecture rationale represents the reasons behind an
architecture decision. It contains the qualitative rationale, the quantitative rationale
and alternative designs.

• Directional link between architecture elements and rationale - architecture elements
that are used as inputs into the decision and the architecture elements which are
created as the outcome are linked to the architecture rationale

103

6.8. Summary

The AREL model is extended by eAREL to support the capture of design history.
Both AREL and eAREL are implemented using UML. The AREL representation is an
improvement over the argumentation-based design rationale methods because it simpli-
fies the design rationale representation, design rationale therefore are easier to capture
and communicate, and UML support is more readily available. Using the AREL model,
applications such as design reasoning, traceability and impact analysis can be carried out.

104

Chapter 7

A case study of using the AREL

model

The case study described in this chapter serves two purposes. It presents an industry
case to demonstrate the application of AREL and it uses an empirical study to compare
the reasoning capabilities of AREL with traditional design specifications. We choose to
use an industry case because laboratory cases do not have the architecture complexity to
demonstrate the AREL model. The system used in the case study is a central bank elec-
tronic payment system called Electronic Fund Transfer System (EFT). The EFT system
processes high-value payment instructions between a central bank and the participating
member banks to transfer and settle payment instructions. It is the backbone of the finan-
cial system in the South China region. As such, the EFT system has to be reliable, secure
and efficient. The EFT system was operational from 1998 for 6 years. It is administered
by the Guangzhou Electronic Banking Settlement Center, which is a division of the central
bank in China.

The EFT System took about two years to design, develop and test, employing over
thirty designers and developers. At the time of its development, China was in the process
of developing a national payment system standard, so the EFT system architecture had
to be adaptable to changes based on the national standards. The system had extensive
design specifications to document how it had been designed. In this case study, we have
selected a number of key requirements in the functional and non-functional areas to report.
We have retrospectively implemented the AREL model to document the design decisions
for the EFT system. This retrospective capture of design rationale is possible because the
author was the lead architect of the system.

In order to validate if the AREL model could facilitate the understanding of design

105

7.1. The EFT system

reasoning, a comparison of the original specifications and the AREL model was made in
consultation with payment system design experts. The experts who participated in this
study are familiar with the design of electronic payment systems. The original specifica-
tions were presented and the experts were asked about the design of the system. Answers
were obtained based on the design specifications and their prior knowledge of payment
systems. These were compared with the answers obtained after the AREL model had been
presented later to check if additional understanding could be gained.

In this chapter, we discuss the case study in Section 7.1. In Section 7.2, we use the
empirical study to validate the AREL method.

7.1 The EFT system

The People’s Bank of China Guangzhou branch (PBC-GZ) is a central bank branch which
is responsible for the financial monitoring and inter-bank payment and settlement of the
financial centre Guangzhou and its neighbouring cities. The Electronic Fund Transfer
System (EFT) was built by the author and his team to transfer and settle high value
payments between all the commercial and specialised banks in the provincial and neigh-
bouring cities. It serves an area with a population of over ten million people in Southern
China. The EFT system also acts as a gateway to connect these local banks to the national
payment network. The EFT system comprises the High Value Payment System (HVPS)
and Settlement Account Management System (SAM). The backbone of the system is the
architecture design which provides the processing services infrastructure for the on-line
fund transfers between the member banks and the central bank.

Being a mission critical system, the EFT system was carefully designed, thoroughly
tested and documented. Although it comprises extensive specifications and documenta-
tion, the design rationale was either buried in the text of the specifications or they were not
captured. Therefore it might be difficult to understand its intricate design when designers
have to analyse the system to make changes.

7.1.1 The EFT architecture overview

In this case study, we present the system and software architecture of selected key areas
of the EFT system. In particular, the message processing and exchange mechanism is
described. This area of the architecture is selected because it involves intertwining non-
functional requirements such as performance, reliability, recovery and security. Due to
confidentiality and security reasons, detailed descriptions of the internal mechanisms of

106

7.1. The EFT system

how each component is implemented is not disclosed.

Figure 7.1 is the high-level use case of the system. The system is connected to all
member banks in Guangzhou and its neighbouring cities. Local payment instructions
which can be settled within the area are processed by the EFT System. Non-local payment
instructions such as remittance of funds to other parts of China are forwarded to the
Electronic Interbank System (EIS) system, which is a satellite link to the national payment
centre in Beijing. The EFT system interface to the China National Automated Payment
System (CNAPS) system was part of the plan but it had not been implemented.

Figure 7.1: A Use Case of the EFT System

A payment instruction is either a credit instruction to pay or a debit instruction to
request payment. Inter-bank payment instructions are settled by the central bank. It
means that the central bank acts as an agent to ensure that participating member banks
have enough funds to cover their financial positions. A key application of the EFT system is
the High Value Payment System (HVPS) which is a real-time gross settlement application.
It settles high value payment instructions in real-time to ensure banks could settle their
financial obligations. This is crucial for the stability of any financial system by mitigating
systemic risks.1 The Settlement Account Management (SAM) is an accounting system
which keeps track of the balances of member banks’ settlement accounts and monitoring
settlement activities.

1Similar Real Time Gross Settlement (RTGS) systems are implemented in various countries such as
Australia [133].

107

7.1. The EFT system

The processing services and the communication services are the backbone of the EFT
system. They handle the transmission and the processing of payment messages. Since the
EFT system was intended to act as a gateway to the EIS system and the CNAPS system,
multiple messaging protocols support are required. In the case study, we illustrate the
processing services and specifically the payment message processing layer to outline some
of its architecture design and design rationale.

Figure 7.2: Processing Services of the EFT System

Figure 7.2 illustrates the key functionality of the processing services. External par-
ties such as member banks and EIS systems connect to the EFT system using different
communication and messaging protocols. The communication service layer is responsible
for handling different communication protocols that are used by different external parties.
Messages are passed onto the processing services layer where a payment message would
be decrypted, checked for authenticity and processed. When a message has passed all the
validation checks, it is passed to the central bank applications for payment queuing and
settlement.

108

7.1. The EFT system

7.1.2 Fault-resilient support

The selection of the system and software architecture platform is one of the most funda-
mental architecture issues. A key driver of an electronic payment system is the reliability
of the system. The risk of having an unreliable payment system would be damaging to the
infrastructure of the financial system as well as the reputation of the central bank. This
issue was paramount in the the architecture design of the EFT system.

Figure 7.3 shows the reasoning support for the selection of the architecture platforms
to support the no single point of failure feature in the system (R2 5 4). There are four
key issues to be addressed in this example.

Figure 7.3: Decisions that Support Fault-resilient architecture

The first issue is the choice of a system that provides continuous processing with little
chance of failing. There are two possible choices for a reliable machine. One of them is a
fault-resilient system where there is always a system standing by to take over if a system
node fails. AR51 was a decision to choose this option because the proposed platform
had fulfilled the reliability requirements of the central bank. Another option was to use a
fault-tolerant system which had in-built backup processing modules. This alternative was

109

7.1. The EFT system

not chosen because of cost considerations. As a result of the decision, other associated
platform products were required to maintain the 99.95% uptime. They included a dual-
node UNIX configuration (T1 0 1), a set of disk array with backup controllers and RAID
configuration (T1 0 2), middleware Top End2 which load-balance services across multiple
nodes (T1 0 4), and a node failure detection and switch over mechanism (T1 0 3).

Another reliability requirement states that the system, during market opening hours,
cannot be down for more than a minute. Therefore the platform has to work coherently
in order to provide such guarantee. The system needs to be designed and configured to
recover from any failures within a short time. Decision AR54 investigates a combination
of recovery strategies using the platform environment. As a result, the topology of the
servers monitored by Top End must distribute key processing services across both nodes
to maintain services if one of the nodes fails. The LifeKeeper software checks the health
of the system at a more frequent interval and would restart Oracle and key services if
a system failure is detected. The EFT system provides the Control Server to carry out
recovery at the payment transaction level.

A second issue is network reliability. At the time of development, broadband com-
munication was not available in the city. The most reliable communication service was
a frame-relay link. Therefore, this was chosen for network communication (AR52). A
back-up communication service is to allow dial-in from member banks through the public
switched telephone network (PSTN). An alternative option that was discarded was to use
another frame-relay line as backup, but it was deemed uneconomical and the same means
of communication is also more risky because the backup frame-relay line might fail as well.

A third issue is power failure. This possibility is almost imminent as power supply
failures and power surges were quite common in Chinese cities. There are two alternatives
to provide secondary power supply. One option was to use uninterrupted power supply
(UPS) which was the chosen decision (AR53). Alternatively, power generator could be
used but this would require a higher budget that could not be justified.

The final issue is to cater for natural disaster such as earthquake or fire which could
damage the entire processing centre. One alternative was to have a remote site which
could take over processing. At that time, there was no budget to allow for such an
option, therefore the contingency was to have manual procedures to cater for such situation
(AR55).

2Top End is a NCR middleware product that supports two-phase commit protocol in transaction pro-
cessing and it monitors distributed processing

110

7.1. The EFT system

7.1.3 Payment messaging

When designing the architecture, one of the fundamental decisions was the scope of re-
sponsibility of a payment process. A single process (i.e. an UNIX process) could be
responsible for all of the application processing, message processing and communication.
It could also be divided into multiple processes which work together collaboratively.

Figure 7.4 depicts the decisions in the EFT system. It was decided that the Message
Control Process (MCP) should be an independent process (AR6) because it has to sup-
port multiple message formats simultaneously (Requirements R2 1 3 and R2 8 1). Most
important of all, this is what the national payment standard had dictated (R2 1 1 and
R5 1 0). It was envisaged that the EFT system would evolve into the national payment
system (assumption R3 2 6). This assumption formed a constraint that basically influ-
enced the design philosophy of the system. As such, the architecture design of EFT was to
cater for a software product that could be configured to suit different payment applications
instead of a single customer solution.

Figure 7.4: Message Control Processing

As a result of decision AR9, two additional layers of processing were required. They
were the application layer (C9 0 0) and the communication layer (C4 3 0). These layers
of software would exchange information with MCP (C4 2 0)through interfaces.

111

7.1. The EFT system

Figure 7.5: Intertwined Issues in the Architecture of MCP

The design of the MCP process involved many requirements. Figure 7.5 is a diagram
which illustrates some of the key decisions. In the design process, one of the key issues was
the way payment messages are to be composed and decomposed. At the time of the design,
an initial draft of the national payment message standard was specified in the Request for
Proposal (R2 1 3). This format was used as a basis for the EFT system since the EFT
system was aimed at becoming a product which could be reused at the national level. As
such, it was anticipated that the message format would be adaptable. As a result, the
design of the message format was entirely definition-driven instead of hard-coding. This
decision justifications are contained in AR11.

The message exchange protocol was another key decision which had to be made. Re-
quirement R2 3 5 specifies that a bank can have multiple connections to the payment
processing centre. This is so that large volume of transactions can be sent through multi-
ple bank branches settling through the same settlement account. There were two options

112

7.1. The EFT system

to address the issue: asynchronous message processing and synchronous message process-
ing. Either model has technical and implementation constraints. An asynchronous model
implies that payment messages can be out of sequence and the system needs to process
and recover them even when the payment messages are out of sequence or missing. The
disadvantage of such a design is that the processing logic would be more complicated but
the upside of the design is its reliability and flexibility.

A synchronous model implies that a process would be blocked for incoming messages.
Thus, dual-channels would be required to support bi-directional message exchange because
both the member banks and the EFT system can initiate payment messages. This model
is easier to implement but the performance was considered to be poorer. After weighing
the pros and cons of the two models, the asynchronous model was chosen for its support
of better performance and reliability (AR10).

The selection of the asynchronous messaging model means that a number additional
design requirements to support this model must be in place. Therefore, new constraints
had automatically been introduced to the architecture design. These constraints were (a)
messages need to be sequenced to guarantee that none are missing during transmission or
processing; (b) a legal acknowledgement mechanism needs to be in place to ensure that
both parties of a payment transaction agree that a payment instruction has been sent
and received properly. So in decisions AR14 and AR13, message sequencing and missing
payment message detection are decisions to guarantee message integrity.

A payment acknowledgement should arrive shortly after a payment has been sent. But
acknowledgement may be missing due to various reasons such as a network error. So there
ought to be a timer function to alert the processing unit if an acknowledgement does not
come on time. AR15 is a decision to implement an Alarm Service to notify any overdue
acknowledgement.

AR12 is the justification for checking the integrity of a payment message, i.e. the
payment message has not been tampered with. This is to ensure that no one has been
able to modify the payment message during its transmission. AR17 is a decision on how to
check the authenticity of the message to assure the bank that a message is authentic. This
mechanism forms the basis to prove the legal obligations of participating banks. Since
the sequence number in a payment message is part of the authenticity check, it requires
the design of the C4 2 6 to check for duplicating and missing sequence numbers. The
reasoning and implied constraints are contained in AR13.

In this example, security, performance and reliability concerns were intertwined in the
EFT architecture design. The set of decisions are inter-related because they mutually affect
each other. The performance consideration of the asynchronous model created a need for

113

7.1. The EFT system

sequence checking, which inter-relates with the security mechanism. It also created the
need for a time-out mechanism, which inter-relates with the reliability of messaging.

7.1.4 Transaction integrity

One of the key issues in designing payment systems is to ensure that no payment transac-
tions would be lost (R2 5 1) and no payment transactions would be processed more than
once (R2 5 2). In order to achieve that, when payment messages are received, they would
be captured in a durable storage and tracked during their processing life-cycle. As such,
system failures could not cause any loss of payment transactions.

Figure 7.6 is a sequence diagram showing the life-cycle of a payment message from
the sending bank to the receiving bank through the EFT system. When a message is
passed between two entities such as a member bank or a process within the EFT system,
there ought to be some guarantee that the message has been received properly when
the communication takes place. For instance, when a member bank exchanges payment
messages with the EFT system in either direction, acknowledgements would always be
returned to confirm the receipt of messages.

As shown in Figure 7.6, a sending bank sends a payment message. The message is
acknowledged by the Communication Process (CP) connected via TCP/IP to the sending
bank. CP then forwards it to the Message Control Process (MCP) using the middleware
Top End. Top End commits the message to the message queue as well as the Oracle
database in a two-phase commit protocol so that the message is consistent and recoverable
in case that the system fails. It guarantees the ACID state of the payment message. MCP
takes over payment processing to authenticate and validate the payment message. Once
the payment message checks out, it is passed to the HVPS application server for processing.
When the payment is settled by HVPS, two notifications are sent, one to the sending bank
and the other to the receiving bank.

Unless transaction processing or some reliable handshaking is used between processes,
there is a possibility that a payment transaction can be lost when the system or com-
munication fails and the payment message would end up in a “zombie” state that is not
recoverable. Therefore, there is a need to architect the system to overcome this issue.
Figure 7.7 is a diagram showing the design rationale to support payment transaction
durability and recovery.

Two key requirements that specify the no loss of data (R2 5 1) and no duplicate of
data (R2 5 2) are the main drivers of the architecture design. Together they are the
common constraints on how payment messages could be processed. A number of design

114

7.1. The EFT system

Figure 7.6: General Payment Message Processing Sequence Diagram

issues have arisen because of these requirements.

The first issue is to deal with missing messages between a member bank and the EFT
system. The two requirements R2 5 6 and R2 5 8 specify that payment messages should
be retransmitted when no acknowledgement has been received. In this case, we have to
devise a mechanism to detect missing acknowledgements in real-time. In AR19, a decision
was made to use an alarm clock for sending a timer event to the server to check for
such scenario. This is the most efficient way to handle processing because the alternative
would be to poll a remote system regularly. A delay of the acknowledgement might be due
to a slow response of the remote system. However, it might also be a loss of the original
transmission. We err on the side of duplicate transmission rather than missing payment by
resending the original message. As a result, duplicate payment message would be ignored
if it has been received more than once (AR21) and this mechanism uses a database table
(i.e. I2 0 1 MsgFlowLog table) to record the processing statuses of payment messages.

The second issue is the failure of the machine or the software service during processing.
In this case, all servers must be able to recover from their previous states. Decision AR20

115

7.1. The EFT system

Figure 7.7: Decisions to Support Transaction Recovery

is used to justify a method which is most appropriate for such processing. In this decision,
all services must have their status logged in Oracle in a Process Table I2 0 2. If any one
of them terminates exceptionally for any reason, it could recover when brought back to
service again. This is to ensure that any abnormality would trigger a system self-check to
ensure that there are no left-behind payment transactions. As a result of the decision, the
Control Server has to be created to coordinate such check and recovery activities. When
the servers recover, they would investigate the incomplete units of work at the time of
their failure and recover from that point. This decision is related to the next issue of how
payment messages are kept in a consistent and durable state.

The third issue is to ensure the database ACID properties of a payment message. A
server such as MCP could be in the middle of a transaction when it is interrupted. In order
to ensure the atomicity of the transaction, a mechanism is required to support persistent
inter-process communication (IPC). It means that no transaction could be lost during
process-to-process communication. The decision was to use a two-phase commit where
the transaction is logged in the MessageFlowLog Oracle table (I2 0 1) capturing the state
of processing as well as putting the payment into a message queue for the next process in
line. This will ensure that the payment transaction can never be in an inconsistent state.
An example is the communication between MCP and HVPS.

116

7.1. The EFT system

In this example, we can see that the reliability requirements are realised by a number
of related design decisions. The design rationale for these decisions are intertwined in that
they influence each another in the implementation of design elements. For instance, the
MsgFlowLog table (I2 0 1) is a result of two decisions (i.e. AR18 and AR21), and those
decisions are based on common requirements R2 5 1 and R2 5 2.

7.1.5 Specialised message control process

In the architecture design of the EFT system, a consideration was given to the process-
ing scope of MCP. Should a MCP process be a generic single-instance server to process
payments for all the banks, or should there be multiple instances of MCP in which each
instance is responsible for a single bank only? In the former case, a generic MCP process
would take payment messages from any bank for processing. In the latter case, a MCP
process is dedicated to a single bank connection.

Figure 7.8 shows the design reasoning of the decision. The inputs into the decision
require that each message exchanged between the member bank and the system must be
uniquely identifiable. The assumption is that the bank must have logged on successfully
before payment messages can be exchanged. This assumption puts a constraint on the
design such that payment messages cannot be exchanged if the bank has logged off, either
voluntarily or by the EFT system.

Figure 7.8: MCP Connection Design

117

7.1. The EFT system

Therefore, in assessing whether MCP could process all payment transactions, there is
a need to check if the bank is still legitimately logged on to the EFT system when the
transaction is received. AR22 provides two alternative solutions. If there is a dedicated
MCP server for each connection, as documented in the QLR in the AR, the server process
can keep the login state in memory, hence perform much better because the login state is
already kept. Alternatively, if MCP is generic, then every payment that is processed by
it would need to be checked for bank login state. This is achieved either via the database
or via a central authorisation server. This is documented in AAR. An individual MCP
instance which is responsible for a dedicated bank connection gives a better performance
for checking the message security, thus we choose this design.

As a result of the decision, the MCP design needs to employ a state machine. Messages
passing through it would set its state according to the events such as the successful login
of a bank. Top End has to be configured to support the start-up of multiple MCPs, one
for each connection. The message header would need a data element, in particular the
connection session identifier, to identify a connection.

7.1.6 Centralised control

The requirements R5 2 0 and R5 2 1 specify that the EFT system has to broadcast the
settlement window timetable and the shutdown notification to member banks. These
requirements would mean that special messages need to be sent through MCPs to all
those banks that are on-line at the time.

There were two relevant issues in considering the architecture design. Firstly, what
mechanism should be used to notify the banks and secondly which banks should be notified.
Figure 7.9 shows the motivational reasons and the design reasoning of this design.

AR23 was a decision to use a centralised server to carry out the messages distribution.
There was no alternative option in this decision because there is only one viable mechanism,
i.e. a single process to coordinate its execution. A user would use an user interface C9 0 1
to order a message distribution such as system shutdown. The order would be sent to the
Control Server (C8 0 0) to execute. The Control Server would determine which banks
are currently logged into the EFT system and then distribute the message to the banks.
When designing the control server, a parallel issue was to determine how to detect bank
login states. The decision in AR24 was to make use of Session tables which logged the
states of current bank connections (I2 0 4 and I2 0 5).

It is common that a number of indirectly related decisions may exist in parallel in
an architecture design. The decisions arising from the issues usually have common mo-

118

7.1. The EFT system

Figure 7.9: Decisions to Support Centralised Control

tivational reasons. In this case, the decisions are AR23 and AR24 and the common
motivational reasons are R5 2 0 and R5 2 1. The result of the inter-related issues in this
case is C8 0 0. Although the two decisions themselves are independent, their causes and
their effects can be common. This example shows that a requirement may cause multi-
ple issues and decisions, and a design element may depend on multiple decisions. This
multi-way relationships are often difficult to represent in textual specifications.

7.1.7 Message sequencing

One key requirement about payment messages is that every single message must be trace-
able and audit logged. This implies that each individual payment message must be
uniquely identifiable (R2 2 3). There are many ways to assign an identifier to a pay-
ment message. The decision to be made is to decide which way is most appropriate to the
EFT system. Two alternatives were considered. One alternative is to use a contiguous
sequence number and the other way is to use a non-contiguous number. In either case,
the messages from the EFT system and the messages from the bank must each have its
own number sequence for their unique identification.

Figure 7.10 shows that two decisions are required. Decision AR25 considers that the
sequencing must be contiguous because a non-contiguous sequencing would make message
reconciliation and auditing most difficult. If gaps were allowed, the system could not tell
if a message is missing or if there was a gap in the sequence number. In this case, the only

119

7.1. The EFT system

Figure 7.10: Decisions to Idenify a Payment Message

way of reconciliation would be to include another mechanism acting as a reconciliation
report to double-check what has been sent and received at each end.

A second decision AR26 considers that the sequence number must be related to a bank
connection. This is because each bank may send messages actively, and they have to assign
their sequence number independently from the EFT system. Therefore, the architecture
design is that a session identifier is created by the Control Server C8 0 0 for each bank
connection. A bank may have multiple connections to the EFT system simultaneously with
different session identifiers. For each session, a unique sequence number with a defined
range is used to identify a message in that session. Therefore, the composite key is a
combination of session identifier and sequence number to uniquely identify a message.

Both the Control Server C8 0 0 and MCP C4 2 16 are the results of the two inter-
related decisions. These decisions dictate their design through issues which are relevant to
both of them. Hence, if the requirements or a decision has to change, the possible changes
to these two inter-related components could be identified.

120

7.1. The EFT system

7.1.8 Error reporting

The catching and reporting of errors is one of the most important aspects in a system
architecture. Exceptions and errors are imminent in any system. The timely reporting
of errors enables remedial actions to correct the exception sooner rather than later. The
requirement of the EFT system is to be able to log all errors and classify them by severity
(requirements R5 3 1 and R5 3 2). The classification of the errors define the severity
level of the errors and hence the urgency of the responses to handle the error.

Figure 7.11: Decisions to Architect Error Catching and Reporting

Figure 7.11 shows that in order to cater for the errors, the design had to reason about
where the errors would be reported. Since the system architecture is a dual-node system
and it could expand to a quad-node system, logging errors in a local device would mean that
administrators might not have a timely and centralised view of the error logs. Decision
AR27 considered that the error log should be centralised. It means that all software
modules must be able to send errors to the Error Server (C6 0 1) through a standard

121

7.2. An empirical study to validate the AREL model

module C6 0 2. The error server would log errors from remote processes and report them
through an administrative terminal to the administrator. The justification in AR27 is to
produce a single error log for ease of access. The alternative AAR in AR27 suggests that
errors can be logged in a computer where the error occurs. In a large distributed system
environment, this design does not support diagnostic efficiently when inter-related errors
span more than one computer.

There is, however, an assumption (R5 4 2) that the network might fail and the error
message could not be sent to the Error Server. In this particular case, a decision has to
be made to handle such potential failure. The creation of a design object C6 0 1 raises
a subsequent design issue that needs to be addressed. There are two possible design
alternatives to address this issue, as documented in AR28. If the network communication
is down, there are two design alternatives: no reporting or local reporting. The decision in
AR28 is to log the errors locally if the network has failed. We chose to use local reporting
because it is mandatory to report errors. The alternative AAR is not to log the error,
which is not acceptable.

7.2 An empirical study to validate the AREL model

The main objective of the AREL model is to capture and represent architecture design
rationale. In the previous section, we have demonstrated this method by using a real-life
system. In this section, we use an empirical study to validate the effectiveness of the
AREL model.

Our intention is to validate that AREL facilitates the understanding of architecture
rationale. The empirical study involves expert designers from the software industry to
assess and validate the AREL method. We choose not to use student projects or small
software development projects because the architecture complexity are often limited and
the architecture rationale can easily be reconstructed. An industry example such as the
EFT system is useful in the validation because it can demonstrate the architecture decision
making process of a complex application.

7.2.1 Objectives of the empirical study

As stated in Chapter 4, one of the research questions to ask is “How to improve the repre-
sentation of design rationale in architecture development?”. We need to ask this question
because practising software architects have told us that design rationale representation is
important (see Chapter 5). Therefore, we need to test the usefulness of the AREL method.

122

7.2. An empirical study to validate the AREL model

Using the EFT system, a comparison is made between the original design specifications
that do not contain structured design rationale, and the AREL model. The comparison is
to validate that the AREL representation is effective in facilitating the understanding of
the architecture design of this case study. Although this validation cannot be generalised
to all kinds of architecture design at this stage due to the single case limitation, it gives
an indication of its potential.

7.2.2 About the empirical study

The validation of the AREL representation and its effectiveness is done by way of using
expert opinions. Expert-opinion elicitation is defined as a heuristic process of gathering
information and data or answering questions on issues or problems of concerns [5]. This
type of validation has been applied to validating requirement process improvement model
by a panel of experts [9]. We sought expert opinion instead of using students as test
subjects because the experts have experiences in the domain area as well as architecture
design. Their knowledge can provide a more reliable feedback to support our study.
Furthermore, experts have a much wider exposure to different design methodologies and
tools and can provide valuable insights towards this study.

We call on experts to mock carrying out design changes to the EFT system. Through
this exercise, we gather the evidence to test whether or not AREL provides useful archi-
tecture design rationale to aid the understanding of system and software architecture. In
a number of face-to-face interviews, the experts were asked about the design and design
reasoning of the EFT system, with and without the AREL model. Then, the answers were
analysed. The experts were also asked to comment on the usefulness of the the AREL
method for capturing design rationale. The steps that were taken in the empirical study
are listed below:

1. The design rationale for parts of the EFT system are retrospectively modelled using
the AREL modelling method. The EFT design using AREL modelling is described
in Section 7.1.

2. Original specifications are presented to the experts without the support of AREL.

3. Experts are asked four sets of design questions.

4. Answers from the experts are recorded. The experts would indicate whether the an-
swers come from searching the specifications, memorising, deducing, guessing or any
of the combinations.

123

7.2. An empirical study to validate the AREL model

5. Present the AREL model to the experts and discuss the design reasoning captured by
AREL.

6. Compare the two sets of answers (with and without AREL support) to see if additional
understanding are obtained with the use of the AREL model.

7. Interview the expert to obtain additional comments on advantages and disadvantages
of AREL modelling.

7.2.3 Selecting experts

Experts who were associated with the EFT system were asked to participate in this re-
search. Use of expert opinion is dependendable because of the domain knowledge they
possess [96]. We invited nine experts to participate (3 female and 6 male), all of whom
have been working in this area for many years and can provide reliable assessment. On
average, the experts have 16.6 years of IT experience (a maximum of 24 years and a min-
imum of 12 years), an average of 10.8 years of experience as an architect and designer (a
maximum of 16 years and a minimum of 5 years), and an average of 7.7 years of experience
in designing payment systems (a maximum of 18 years and a minimum of 1 year).

The expert panels are selected for their experience with architecture design and their
working in the electronic payment system field for a number of years. They are charac-
terised by the following:

• They have participated in the design, development and testing of the EFT systems
or similar types of systems. Therefore, they were familiar with the functionality of
such payment systems.

• They have had extensive design and development experience.

• They are willing to commit needed time and effort.

• They are willing to provide evaluations and interpretations of the new approach.

Owing to the specialised background knowledge required and the confidentiality of the
system, there is a limitation as to who can be recruited. Consequently, we decided to
use non-probabilistic sampling techniques and convenience sampling method instead of
random sampling [80]. Availability sampling operates by seeking responses from those
people who meet the inclusion criteria. They are available and willing to participate in
the research. The major drawback of non-probabilistic sampling techniques is that the
results cannot be considered statistically generalisable to the target population, in this
case software architects.

124

7.2. An empirical study to validate the AREL model

7.2.4 Empirical study results

In this section, we describe the results of the study. The empirical study relies on a
panel of experts to reason about the architecture with and without the aid of the AREL
model. The experts may use the original design specifications, recall from memory, make
deduction or make guesses to answer the questions. After the initial analysis of the design
reasoning, a comparison is made to see if additional reasoning could be gained with the
AREL model.

Experts were asked questions in four areas of the architecture design. These areas are
described in the case study sections of this chapter. The following sections discuss each
set of questions and the answers that have been provided by the experts.

Question 1 - Fault resilient support

This question asks about the fault-resilient feature of the EFT system and the reasons for
having this design. The design reasoning is described in Section 7.1.2. Table 7.1 presents an
analysis of how experts recall the design rationale. The column on documentation indicates
that some of the information comes from a documented source such as specifications.
Memory indicates that the experts remember the reasons. This source of information is
not as reliable because the experts may remember wrongly or incompletely. Deduction
is what the experts reconstruct as design rationale based on documented and memory
sources. Guessing is what the experts suspect of the reasoning based on experience.
There are no facts to support the reasoning of guesses. An expert may use more than one
means to reason about the design.

Table 7.1: Empirical study - Question 1 Results

Documentation Memory Deduction Guess
Responses 6 3 4 2

In 7.1, 6 experts could find the answers from the specifications that describe what
fault-resilient mechanisms are provided by the system. This is because the mechanisms
are clearly documented in the design specifications. Based on which, most experts have
deduced and guessed the design rationale without much trouble. The experts were able to
describe application recovery, dual-node support for fault resiliency and communication
backup mechanisms. The AREL model presented to the experts confirmed their answers.
AREL provided additional items which have been missed by most of the experts. Examples
are the power failure and site failure of the system.

125

7.2. An empirical study to validate the AREL model

Question 2 - Software layering

Question 2 asks why there are three layers of software in the EFT design and whether
this is important to the architecture design. This design is described in Section 7.1.3 of
the case study. Most experts could not find the relevant description in the architecture
design specification (see Table 7.2). However, most experts could recall or deduce that the
layering of software is due to the modularity and flexibility requirements of the software.
Some experts mentioned the separation of concerns would help maintenance and produce
a “cleaner” design.

Table 7.2: Empirical study - Question 2 Results

Documentation Memory Deduction Guess
Responses 1 5 6 3

When the experts were asked as to why there are three different UNIX processes
with each process supporting a separate software layer, none of the experts could find
a reason in the documentation. They deduced that it was due to the need to support
different communication protocols. Some of the experts queried the legitimacy of this
design. AREL was shown to the experts to explain that the original design was influenced
by an external factor. The EFT system was meant to be a product to eventually support
national payment systems, and an international panel of experts at the time dictated that
the three layers of software have to be physically separate and hence the EFT design
followed such architecture.

Using the architecture design reasoning approach, some experts have pointed out that
this design is not necessarily the best approach. This is because having three physi-
cal UNIX processes means that two different communication protocols are required to
support them. This necessarily increase the complexity of the EFT system without ad-
ditional benefits. It would have been better if the messaging and communication layers
are combined to form a single process. As such, both flexibility and the performance are
maintained. The architecture design would be simplified. In this case, the AREL architec-
ture rationale have facilitated discussions and arguments for the purpose of architecture
design validation.

Question 3 - Asynchronous messaging

We ask the experts what the reasons are for selecting asynchronous communication instead
of synchronous communication, in which the design is described in Figure 7.5. All experts
suggested that this is somehow due to performance reason.

126

7.2. An empirical study to validate the AREL model

Table 7.3: Empirical study - Question 3 Results

Documentation Memory Deduction Guess
Responses 1 4 4 5

Table 7.3 shows that most experts could not find the answers from the documentation
but instead they make guesses and deduction of why the system was designed this way.
Most experts commented that this is a complex issue which involved a number of inter-
twined design. Some of the experts recalled the design features of this part of the system
from memory and deduction.

When the AREL diagram was shown to them, some experts noted that this design
might have been overly complicated. Some of them suggested that perhaps a synchronous
approach should be reconsidered to see what the system architecture could look like and
make comparisons with the the existing design to check their relative benefits. One expert
noted that the complexity issues might arise with the synchronous design and further
architecture explorations are required to assess the two alternatives.

The responses from the experts have highlighted the fact that although the system had
been in production for many years, there are no consensus as to whether this design is the
most appropriate one. This is because the reasons for choosing the asynchronous design
instead of the synchronous design had not been explored or tested fully. It was suggested
by the experts that AREL could provide added value to the architecture design process
through its explicit reasoning representation in that comparisons could be made to check
and verify the design.

Question 4 - MCP connection

We ask the expert why a single MCP process handles a single bank connection only. The
design reasoning is described in Section 7.1.5. The experts found in the design specification
some description of how this part of the system was designed, which gave some hints of
the reason behind the design. The experts made guesses (see Table 7.4) based on the hints
they gathered and what they thought might have been the reasons. The experts guessed
that it was to do with the simplification of the design and security issues. None of the
answers were specific.

Table 7.4: Empirical study - Question 4 Results

Documentation Memory Deduction Guess
Responses 3 4 1 6

127

7.2. An empirical study to validate the AREL model

When the AREL diagram was shown to the experts. It was immediately obvious that
the online banking requirement is the driver of this decision and that the security checking
is an important factor in this design decision. As such, AREL serves its purpose well by
explicitly depicting the motivational reasons of the design and the design rationale.

Expert assessment of AREL

The last part of the interview is to have the experts assess the AREL model. The intention
is to seek qualitative opinion on whether AREL would be useful in practice, which is one
of the primary objectives of this thesis. Two questions were asked to see whether the
experts would consider using the AREL for modelling architecture design decisions. The
first question asks the experts whether AREL is useful in helping the experts reason with
the EFT design. Table 7.5 shows the responses. Out of the 9 experts, 44.4% think that
AREL is very useful (rating 5), another 44.4% think that it is useful (rating 4), 11.1% is
neutral (rating 3). The result indicates that the experts find that AREL can help them
understand the design reasoning.

Table 7.5: AREL Usefulness in Supporting Architecture Design Reasoning

1 2 3 4 5
Not Helpful Very Helpful

Responses 0 0 1 4 4
Percentages 0 0 11.1 44.4 44.4

The next question asks the expert whether they would capture design rationale with
AREL given reasonable project schedule and resources. The results are shown in Table 7.6.
55.6% of the experts indicated that they would capture design rationale with AREL. 44.4%
of the experts indicated that they would possibly capture design rationale with AREL.
The result shows that there is a very strong intention for the experts to capture design
rationale. There are none who indicated that they wouldn’t capture design rationale and
there were none that do not know if they would capture design rationale. It means that
all of the experts find AREL useful and are willing to use it in practice.

Table 7.6: Experts’ Willingness to Use AREL

No Don’t Know Possibly Yes
Responses 0 0 4 5
Percentages 0 0 44.4 55.6

The experts were then asked to provide comments, both positive and negative, about
the AREL method. The experts commented on AREL with respect to designing systems
and they also commented on the other issues that are design knowledge related. The
following are the comments gathered in the interviews.

128

7.2. An empirical study to validate the AREL model

Traceable Design

1. Design specifications do not connect requirements to design, making it difficult to understand
where the requirements come from initially. This lack of traceability in specification means
that the designer has to search through the document in order to understand a design.

2. General grouping of requirements for traceability is required.

3. AREL can make explicit hidden relationship and allow architects to verify design with explicit
reasoning.

4. AREL presentation is direct and easy to follow.

5. AREL can help architects to focus on a specific part of the design very quickly to start tracing
interdependent requirements and design.

Design Rationale Support

6. AREL can facilitate the design thought process in a conscious way.

7. AREL provides a structure to apply common sense.

8. AREL enforces a design process in which architects have to justify why they design things in a
certain way.

9. AREL can provide a high-level understanding of the system before designers start reading
detailed specifications.

10. Architecture design should be at a reasonably high-level and AREL implementation should
not go into too much details.

11. AREL provides a methodology to capture the knowledge from the design process through the
requirement, design and implementation cycle.

Software Development Support

12. AREL provides a development “standard” which ensures that architecture rationale is cap-
tured.

13. AREL can highlight design complexity before implementation. This enables architects to have
a better understanding of the problem, the associated costs and complexity of the design
before committing to development.

14. AREL complements design specifications very nicely.

15. Graphical representation in AREL is useful for showing complex relationship which is hard to
trace with textual specifications.

16. AREL facilitates verification by peer review and stakeholders review.

17. AREL is necessary to support maintenance activities in large projects.

From the above comments, there are three general areas where the experts have com-
mented positively about AREL: (a) the traceability features in AREL help them un-
derstand the system; (b) the design rationale support helps decision making, knowledge

129

7.2. An empirical study to validate the AREL model

retention and comprehension; (c) the existence of a design reasoning process generally
helps the development and maintenance of software systems. This is a very positive result
because it shows that AREL can play an important role in software architecture.

On the other hand, the experts have some reservations about the implementation of
AREL:

• with AREL, architects still need to be thorough with identifying assumptions and
constraints or the design might still be inadequate.

• the completeness of the design rationale depends on the person doing it.

• the recording of the design reasoning would depend on individual author and this is
a subjective matter.

• the graphical structure of AREL might be hard to manage when the design becomes
very complex.

• the cost of building the AREL model is uncertain.

• cost of updating AREL may be high during the design phase.

• the practice needs to be standardised in an organisation so that it is repeatable.

• it may not be suitable for small project because the cost cannot be justified.

• certain decisions may not be documented deliberately due to politics.

Their reservations mainly surround how designers may use AREL and whether AREL
would be cost effective. Since this pilot study is a small scale study on a specific system,
and the tool used in the study is only a proof-of-concept, the real benefits of AREL’s
applications in real-life systems are yet to be proven.

Given what has been demonstrated to the experts during the interview sessions, experts
were asked how AREL can be improved. A number of suggestions have been made to
enhance AREL. The experts indicated that tool implementation is essential in AREL’s
application. Therefore, a lot of suggestions focus on how AREL should be implemented.

• because of the complexity of architecture design, tool support is critical in its suc-
cessful implementation.

• if a template model for a certain type of design is available in AREL representation,
architects can easily use it to adapt to a similar design

130

7.2. An empirical study to validate the AREL model

• tools should be available to generate traceability report based on designers’ enquiry.

• in order to make full use of AREL, the requirements have to cross-reference design
specifications.

• there should be keyword search in AREL to find the design rationale, requirements
and design.

• enable cross-reference of multiple projects sharing similar architecture design.

• different types of search results should be shown in different colours to highlight
search path.

In summary, the responses given by the experts clearly support the retention of design
rationale knowledge using the AREL method. The experts see that AREL can help archi-
tecture design, verification and maintenance. The experts, however, are concerned with
the cost and implementation of AREL. These two issues are related in that the cost can
be minimised if suitable and usable tools are available to support the AREL applications.

7.2.5 Limitations

During the study, experts employ different techniques to analyse the problems when they
were given the design specifications. Some experts would first read the specifications and
then discuss the issues, especially for those who had involved in the related design of this
system. Others would briefly read the specifications, then make deduction and guesses and
seek discussions. The time it took each expert to reach their conclusions vary depending
on the techniques as well as personal style. Additionally, the experts were not familiar with
the AREL methodology and it took time to explain the AREL diagrams. Therefore, it was
found that the time measured vary greatly depending on the familiarity of the expert on
this particular aspect of the design. As such, the time cannot be used to gauge how quickly
AREL could provide design reasoning compared with traditional design specifications.

There are differences in the level of experience between experts on certain subjects.
Some experts are more familiar with the software design at the communication level, and
some more familiar with the message composition design. In general, all of the experts had
provided correct answers to the questions, the level of details in the answers given by the
experts varied depending on their level of expertise in that area. Therefore, the usefulness
of the AREL is inversely related to how familiar they are to the topic of discussion. The
more familiar they are with the subject, the less they have to refer to design specifications
or the AREL models.

131

7.3. Summary

The case study is specific to a particular industry which requires expertise of someone
who understands electronic payment system. This criterion has placed a limitation on
who can participate in the empirical study. Random sampling of architects does not apply
in this case. Additionally, with a single case study, the claim that a method can be
generalised is limited [174, 115]. So we cannot claim that the AREL method can generally
benefit all types of architecture design because many more cases are required to reach
such a conclusion. However, the validation by the experts does provide limited evidence
to support that AREL is potentially beneficial to the understanding of architecture design
rationale.

7.3 Summary

In this chapter, we have demonstrated how to apply AREL to capture and represent
architecture design rationale in a case study. We have used a real-world electronic payment
system, the EFT system, as our case study. We have presented various parts of the EFT
system design to show how AREL captures architecture design rationale and how they are
linked to the motivational reasons and design objects.

In order to validate that AREL can be useful in practice, we carried out an empirical
study using 9 experts to study the design reasoning of the EFT system. All experts have
extensive experience in system design and in payment systems. They were asked questions
that required them to use design specifications and other means to reason with the EFT
architecture design. Their answers were compared with the architecture rationale captured
by AREL. They found that AREL provides a more explicit and direct way to document
design rationale. The experts have indicated that AREL is useful in practice and they
would use it if tools are available.

132

Chapter 8

The architecture rationalisation

method

Methodologies such as the object-oriented analysis and design provide useful processes and
methods for designing systems and software. However, their successful implementation
relies on the designers who use them. Firstly, the designers interpret how a methodology
is to be applied in a specific environment where many design decisions are made. As
such, the correctness and appropriateness of these decisions become fundamental success
factors. Secondly, when different designers are given identical requirements, they might
come up with different design outcomes with varying qualities. This could be attributed
to the differences in interpreting their design environment. Since reasoning and decision
making have a direct bearing on the design outcome, therefore it is necessary to examine
these processes in architecture design.

As shown in a survey [157], architects not only have to consider technical design but
they also have to consider a broad range of issues such as management and planning. This
expanded scope requires architects to make decisions based on a combination of factors
such as business strategies, requirements, project constraints and technologies. The quality
of the results may depend on how well the architects understand the situation surrounding
the design and how well they make the decisions.

So far there is insufficient understanding on how architecture decisions affect the qual-
ity of architecture design. We assume that good decisions would lead to high quality
architecture design. We further assume that good decisions are based on two conditions:
(a) the information to support decision making is available, comprehensive and accurate;
and (b) the analysis used in decision making is objective and sound.

133

8.1. Background

Based on these assumptions, we seek to improve decision making by structuring the
decision process. Such an approach can provide some discipline to the architecture design
process where it currently relies heavily on individual experience and intuition. Such ap-
proach can also help less experienced architects to systematically make decisions to design
better. Using the AREL model as a basis, we propose the Architecture Rationalisation
Method (ARM) as a process to systematically reason about design decisions during archi-
tecture construction.1 Section 8.2 describes how ARM works. Section 8.3 describes how
ARM can be applied to various aspects of architecture design and system maintenance.

8.1 Background

The process of architecture design is a systematic decomposition of problems using re-
quirements as a basis to drive design objects creation. The key focus of the architecture
process is to create a design structure for the system. During this process, requirements
analysis and clarifications may be performed. Although requirements elicitation and anal-
ysis are relevant, they are not the key outcomes of architecture design. There has not been
a commonly agreed scope for architecture design process. Researchers [8, 119, 46, 84] and
industry consortia [21, 31, 164] hold different views of the scope of architecture activities
ranging from enterprise systems strategic planning to detailed software design.

Existing requirements engineering methods mainly focus on the elicitation, modelling
and refinement of business goals. In particular, it articulates high-level business goals
to become systems requirements. For example, graphical notations for requirements de-
composition using AND / OR reduction links have been proposed [28, 61]. Mylopoulos
et al. [104] present a framework for representing non-functional requirements and pro-
posed decomposition methods to satisfy non-functional goals. Dijkman et al. [30] use a
separation-of-concerns or multiple-viewpoint approach to relate the enterprise viewpoint
(i.e. requirements) to the computational viewpoint (i.e. design). These methods provide
different ways to transform requirements into design. The level of transformation required
to reach the necessary design details is often not defined clearly.

In Figure 8.1, we outline a generic high-level system development process to define the
scope for system and software architecture design activities.

• Business requirements elicitation stage - business analysts or designers gather busi-
ness goals and produces system requirements. This activity is mainly concerned with
requirements gathering and therefore is outside the scope of architecture design. Its

1This chapter is based partially on our work published in [159].

134

8.1. Background

Figure 8.1: Key Activities in Architecture Design

outcomes, i.e. the elicited business and functional requirements, are inputs into the
architecture design process.

• Requirements refinement stage - architects and designers gather architecture related
information such as technical environment, information strategies and project envi-
ronment. This information is analysed and refined with respect to the functional
requirements. Any implicit assumptions about the requirements are clarified and
documented at this stage.

• Architecture design stage - architects and designers create the high-level architecture
design by using refined requirements as inputs.

• Detailed design stage - based on the architecture design, designers produce detailed
design and program specifications. Since detailed designs usually are not concerned
with the fundamental structure of the system, they are outside the scope of the
architecture design process.

Depending on the development approach, the activities in an architecture life-cycle
may take place in different orders. Examples are waterfall, iterative and agile method-
ologies. However, the relationship between these activities are still relevant. The arrows
between the generic activities indicate the inherent relationships between the products
within each stage. For instance, elicited requirements are inputs into the architecture de-
sign process and yet the architecture design process could change the requirements. Thus,
the development process from requirements elicitation to detailed design has a feedback
loop where the activities are influential in a bidirectional way (see Figure 8.1). Similar
discussion can be found in software engineering texts such as [146].

Some researchers argue that early-phase requirements modelling and reasoning sup-
port can facilitate the requirements elicitation and refinement cycle [175, 108]. Some
researchers propose methodologies to tightly relate requirements in the architecture pro-
cess [56, 130]. But requirements might still change when design constraints or unclear
requirements are uncovered in the downstream development process. Such modifications
to requirements may be unavoidable because the issues are not obvious previously. The

135

8.2. The architecture rationalisation method

scope of architecture design is thus required to cover requirements refinement as well as
architecture design.

Using general software engineering design principles, we examine how architects and
designers make design decisions. As discussed in [171], decision analysis deals with un-
certainties. An architect deals with uncertainties by collecting evidence, analysing the
possible outcomes and seeking ways to minimise such uncertainties in a design. During
this process, an architect would attempt to find all viable design options, i.e. eliminating
options that are not viable. Then the architect would try to select a design that maximises
the benefits and minimises the risks and costs. In other words, the architect would try to
get the best values out of an architecture design and at the same time to ascertain that
the design is achievable. Such acts by designers are reported in our survey (see Chapter
5) where architects agree that costs, benefits and risks are important elements in design
decision making. The ARM method is an attempt to make this intuitive mental process
explicit in the architecture design process.

8.2 The architecture rationalisation method

The Architecture Rationalization Method (ARM) is a method to help architects make de-
sign decisions during the architecture process. ARM uses the AREL structure to represent
the architecture design and the architecture rationale. The outcomes of ARM is an AREL
model. The reason for having ARM is to provide a method to guide software architects
in their approach to development. Using the rationale-based approach, requirements and
architecture design may influence each other through causal effects. The ARM method
provides three focal points to help assess these effects: cost, benefit and risk. These focal
points can be integrated with a development process in reasoning with a design.

An architect can use ARM together with other development methods such as iterative,
prototyping or agile. ARM supports them in the decision making realm by using qualita-
tive and quantitative rationale. The two types of architecture design activities we focus
on are:

• Requirements Refinement - an architecture design process often leads to the
refinement of functional requirements due to conflict resolutions or requirements
clarifications. Architecture design clarifies and defines non-functional requirements
or quality of services such as system reliability and performance. Refining or defin-
ing functional and non-functional requirements takes place when contemplating an
architecture design. A functional requirement may have implications on, say, the

136

8.2. The architecture rationalisation method

usability of the system. With clarifications and tradeoffs, stakeholders may agree
to change the requirement. Similarly, non-functional requirements are analysed and
refined iteratively in the architecture process [20, 29, 102]. Constraints and assump-
tions can be uncovered and explicitly stated. ARM uses decision reasoning as a
catalyst to refine and define functional requirements, non-functional requirements,
assumptions and constraints.

• Architecture Design - the architecture design process is in general a top down
approach where high level decisions are usually needed before the details of the design
are considered. This is done so that the structure of the system is in place prior to
addressing the design details. This process would continue until the increasing level
of details provided by the architecture design are in place and satisfy all the major
requirements.

ARM design rationalisation is an explicit process to support decision making. It pro-
vides a structure to support architecture design by ways of reasoning qualitatively and
quantitatively. Design decisions are often interrelated in that one decision may have an
impact on other decisions. This kind of inter-relationship amongst decisions require the
architects to consider decisions in groups and tracing them to understand the design.
Thus, the capturing of design rationale and reasoning relationships in AREL can be useful
in supporting such analysis.

8.2.1 Qualitative rationale

The argumentation-based design rationale methods suggest that the design reasoning
should be based on fundamental elements such as issues, arguments and positions (see
Chapter 3). In AREL, the design reasoning is encapsulated in qualitative design reason-
ing or QLR to provide a template for investigating and capturing a decision (see Chapter
6). Architects first need to articulate the issue of a decision, this is done by drawing all
the motivational reasons which contribute to the forming of this issue. For instance, an
architect needs to decide on a programming language for the project. This is an issue.
The motivational reasons to be considered might be the suitability of the language for the
job, the skill set of the developers, the available compiler, the direction of the company
etc.

A number of options might be available, say C++, Java and Visual Basic. Before
reaching a conclusion, motivational reasons that influence the decision have to be clearly
outlined and assessed. Each of them would exert certain constraints and influence to the
decision in its own way. The architect would make a balanced assessment in order to reach

137

8.2. The architecture rationalisation method

a decision.

This approach allows architects and designers to justify a decision based on the explicit
representation of motivational reasons and design rationale. It provides a structure to
support an objective decision making process. However, the assessment could still be
biased if the architect is subjective and opinionated towards one solution. The qualitative
reasoning mandated by ARM would encourage an architect to consider the options and
their relative benefits. Additionally, the recording of such reasoning could be used for
architecture verification. As such, it will reduce the chance of undesired biases.

8.2.2 Quantitative rationale

There are a number of methods to support quantitative analysis for decision making.
Notable examples are CBAM [4] and AHP [2]. These methods commonly use priority, costs
and benefits for assessing different options to make a decision. This may be justifiable for
some of the key architecture decisions where a group of stakeholders are gathered together
in the assessment process. It would be quite a costly process to always make decisions
with a group of stakeholders. For most typical architecture decisions, however, only one
architect or a small group of architects would be responsible after consultation with the
stakeholders concerned.

In ARM, decision making requires the evaluation of the costs, benefits and risks of
design options, and such evaluations are the quantitative rationale QNR for comparing
and selecting design options. For instance, when two options are considered in a decision,
their relative costs, benefits and risks can be compared in an explicit way to justify a
decision. In a survey, we have asked practising software architects if they think these
design rationale are useful. Their responses suggested that such design rationale are
indeed very useful in justifying the design options (see Section 5.3.4). Furthermore, A
quantitative approach could be more effective in characterising the decision, costing the
design and improving the design process [42].

Expected costs and benefits

If there are different ways to design a system to achieve a set of goals, we can assume
that an experienced and logical designer would attempt to select a viable design. To
achieve this, an architect would first eliminate those options that would not work. Then
the architect would find a design which maximises the benefits of the outcomes whilst
minimises its cost. If more than one option is available, this exercise can be quite complex

138

8.2. The architecture rationalisation method

since the architect has to decide on the trade-off between options.

ARM provides a quantitative method to characterise the cost and the benefit of a
decision. The quantitative rationale is captured in QNR. The Architecture Cost Index
(ACI) is assigned an index to weight the cost of implementing the decision. ACI is an
index (between 1 and 10) where 1 is the least cost and 10 is the highest cost. ACI is
an index that takes into consideration a multitude of cost factors to provide a relative
cost index between alternative rationales. The considerations for ACI weighing are the
following:

• Development costs - this cost takes into account the cost of development and training
requirement.

• Platform costs - this cost takes into account the cost for platform support such as
hardware and software.

• Maintenance costs - this cost takes into account routine operational maintenance
and support, software maintenance, software modifiability and portability.

• Potential costs - security, legal and other costs that may arise from the design should
also be considered.

The Architecture Benefits Index (ABI) is an index (between 1 and 10) where 1 is
the least benefits and 10 is the highest benefits. It represents the relative benefits an
architecture decision or design would deliver to satisfy the concerned requirements. If
compromises need to be made between competing requirements, then the architect would
make a judgement on the relative priority of requirements and the level of satisfaction
the architectural design provides to meet the requirements. Similar assessments would be
made for alternative designs for comparisons.

Example 1: A decision needs to be made on which database system to use for a
Customer Relationship Management (CRM) system with 2 million customers, 30 million
transactions per annum (data will be on-line for 5 years) and 100 on-line users. There are
two options being contemplated: MySQL or Oracle.

Table 8.1 shows a list of factors being considered and the relative weightings that have
been assigned to a database system with regards to this application. There are five factors
to consider in each of the cost and benefit category. Given that each of the five factors
have equal weighting, each can have a score of up to 2. The five factors together sum up
to 10, which is the highest cost or benefit index. We use a five points scale (0, 0.5, 1, 1.5,
2) to weigh each factor. 0 being the lowest cost or benefit and 2 being the highest cost or

139

8.2. The architecture rationalisation method

Table 8.1: A Comparison of the Architecture Costs and Benefits

Factors MySQL Oracle
Costs
License Fees 0 2
Maintenance Fees 0.5 2
Training 1 1
Implementation 1 1
Integration 1 1
ACI 3.5 7

Benefits
Performance 1 2
Flexibility 1 2
Reliability 0.5 2
Scalability 0.5 2
Security 0.5 1
ABI 3.5 9

benefit. In the above example, we see that the cost of MySQL license fee is 0 and the cost
of Oracle is 2 because of the differences in licensing fee charges.

When we sum up the cost factors, the ACI of MySQL and Oracle are 3.5 and 7
respectively indicating that MySQL has a lower cost than Oracle. The ABI of MySQL
and Oracle are 3.5 and 9 respectively indicating that Oracle provides a higher benefits
than MySQL. This rating reflects the opinion of the architect and is contextual given the
background of a specific project and organisation. The actual cost and benefits information
such as the annual maintenance fees are gathered, analysed and documented in qualitative
rationale QLR for future references.

Architecture risks

Charette [19] suggested that risk is an uncertainty about the future, and since the future
involves changes, the person facing the future will have to make a choice to accommodate
the uncertainties. He suggested that risk analysis and management in software engineering
share this same characteristic about risk. In order to assess the uncertainties, subjective
probabilities are often used to estimate the risk [10].

When architects make a decision in architecture design, he/she faces a similar kind of
uncertainties about the design. The explicit representation of uncertainties will provide a
focal point for architects to deal with them. For instance, if an architect is uncertain that
a design is implementable, then a more detailed analysis and design is required to reduce
or remove that uncertainty. In ARM, we apply the risk assessment principle to measure
the uncertainty of a decision or a choice for a design decision.

ARM represents uncertainties with a ratio ranging between zero and one, where zero

140

8.2. The architecture rationalisation method

indicates no risk and one indicate total risk. Outcome Certainty Risk (OCR) measures
the risk or the uncertainty level of the architectural design meeting the desired outcome,
represented by the Architecture Benefits Index (ABI). Basically it indicates the level of
risk of not meeting the desired outcome by the architecture design at a decision point. In
other words, it indicates if motivational reasons are satisfied by the architecture decision.

Implementation Certainty Risk (ICR) measures the risk or the uncertainty that there
are no unexpected issues in the implementation of the architectural design. In other
words, ICR represents the architect’s assessment of the uncertainty that issues may occur
during the design, development or implementation phases, thus affecting the Architecture
Cost Index (ACI). For instances, does the team have the knowledge to carry out the
implementation? Is the technology stable enough to support this implementation?

Using example 1 as an illustration, the architect feels that the OCR for MySQL is
higher than Oracle, hence MySQL is given the OCR risk 0.4 and Oracle is given the OCR

risk 0.2. This assessment basically is an estimation that the architect feels that there is
a higher chance that there be some issues with MySQL. The ICR risk of MySQL is 0.3
and Oracle is 0.2. This indicates that when it comes to implementation, Oracle has less
risk than MySQL because developers are more familiar with Oracle and there are more
documentation provided by Oracle and various sources including Oracle local technical
support to guide the developers.

Evaluation of risks is an important and useful method for architecture modelling be-
cause it provides a means to discover and identify uncertainties. We further argue that it
should be done as an ongoing and incremental activity during the architecture construction
process. Some research work suggests that software architecture risk is evaluated when
a model is relatively complete [50], we suggest that risk analysis should be carried out
during the entire decision making process. Designers can investigate the decision issue in
more details if they feel that there are major uncertainties in the decision. Risk awareness
helps designers to be mindful of assumptions and unknowns that might affect the design.

Architecture cost-benefit ratio

Although the costs, benefits and risks give us some measurements to understand the
different perspectives of a design alternative, it is difficult to make comparisons between
alternative design. As such, we require a utility function to allow us to compute an index
to compare alternative designs. The cost-benefit ratio in ARM provides a value to each
design alternative to help decision making. The calculation takes into account the risks
that are involved in each design option.

141

8.2. The architecture rationalisation method

Quantitative rationalization using these metrics may be used at each decision point
during architecture design. It can be supported by qualitative arguments that are captured
in QLR. The Expected Benefit (EB) is the Architecture Benefit Index (ABI) discounted
by the potential impact of not meeting the benefits which is represented by OCR. As
such, the benefit is discounted by its risk, i.e. 1 − OCR. The expected Benefit (EB) is
therefore:

EB = (1−OCR) ∗ABI

Expected Cost (EC) is the Architecture Cost Index (ACI) amplified by the risk of design
implementation which is represented by ICR. As such, the cost increases according to the
risk, i.e. 1 + ICR. The expected Cost (EC) is therefore:

EC = (1 + ICR) ∗ACI

Quantitative rationale evaluation uses Cost-Benefit Ratio (CBR) to measure the ratio of
expected benefits to costs at a particular decision point. Cost-Benefit Ratio (CBR) is
expressed as follows:

CBR =
EB

EC
=

(1−OCR) ∗ABI

(1 + ICR) ∗ACI

Given the CBR is represented by benefits over cost, thus the higher the CBR ratio,
the better the expected benefit ratio. Given two alternative architectural designs that deal
with the same set of requirements, the design that has a higher CBR ratio is necessarily
the better option because the architect expect a higher return from choosing this option.
CBR is an index to indicate expected returns of each design, architects need to assign the
ratings using a uniform scale to make comparisons possible between options.

Table 8.2: The Expected Architecture Cost and Benefit Ratio

ABI OCR EB ACI ICR EC CBR
MySQL 3.5 0.4 2.1 3.5 0.3 4.55 0.46
Oracle 9 0.2 7.2 7 0.2 8.4 0.85

Using example 1, the expected benefit rating of MySQL and Oracle are 2.1 and 7.2
respectively. Similarly, the expected cost of MySQL is lower than Oracle, 4.55 and and
8.4 respectively (see table 8.2). Using the expected return formula, the CBR of MySQL
and Oracle are 0.46 and 0.85 respectively. Since Oracle has a higher expected return, it
can be chosen as the platform for implementing the CRM system.

The quantitative approach using QNR has three merits: (a) architecture rationale
is quantified at each decision point; (b) CBR takes into account risks or uncertainties in
architecture modelling; (c) the soundness of each architecture decision can be assessed and
measured for evaluation and verification. Using this approach, a quantitative comparison

142

8.3. Other applications of ARM

of architecture design options can be performed.

The estimations or the expectations given by architects are subjective in nature. EC

and EB are subjectively expected utilities because the cost, benefit and risk measure-
ments are all subjective assessment by an architect. CBAM [4] and ArchDesigner [2]
provide a similar quantitative approach to rank important decisions. ARM differs to these
approaches in that the quantitative rationale in ARM is risk-based. Although ARM’s
assessment is subjective in nature, we posit that experienced architects could improve risk
estimation because analysis methodology such as CMMI can be performed to refine their
estimations over many projects. This feedback loop could improve the decision making
process and identify areas where design estimations are inferior.

8.3 Other applications of ARM

As discussed earlier, ARM can assist architects to reason with decisions by exploring,
assessing and documenting design options. It can be used to supplement design method-
ologies such as object-oriented modelling and database modelling techniques.

With ARM, two other applications to support software development are now possible:
(a) the scope of architecture design can be ambiguous because it is difficult to determine
when architecture design is complete and when other design activities should take over.
Section 8.3.1 describes how ARM is used to delineate architecture design activities from
detailed design activities; (b) using architecture rationale, the architecture design can be
verified by examining the design reasoning. This is described in 8.3.2.

8.3.1 Completeness of architecture design

Software architecture is concerned with the structure of a software system. Its objectives
and activities are different to that of detailed software design. The need for such distinction
lies in the role of the architects and the need for its verification. There is currently no
agreed definition on the amount of details that are required in architecture modelling in
order to satisfy the objectives of constructing an architecture. Instead of using Intensional
and Non-local properties [37] to distinguish architecture activities, we propose a method
for distinguishing architecture activities from detailed design activities based on the level
of risks. The level of risks represents the uncertainty of the architecture model to meet its
requirements [19]. The less uncertainty in an architecture design the more confident an
architect is about the design.

143

8.3. Other applications of ARM

As discussed in Section 8.2.2, architects provide estimates for Outcome Certainty Risk
(OCR) and Implementation Certainty Risk (ICR) at each decision point. OCR represents
the uncertainties of meeting the outcome objectives set out in the functional or non-
functional requirements. This risk may arise because of a number of reasons:

• Functional or non-functional requirements may be ambiguous and need to be clarified
or redefined.

• A design may have an impact on certain aspects of some non-functional requirements
and the extent of that impact is unknown.

• Certain external environmental factors may have an impact on the implementation
of the requirements and the extent of that impact is unknown.

• Assumptions need to be made about different aspects of the system such as business
requirements, project environment or technologies.

ICR represents the uncertainties in implementing the design. This risk may arise for
the following reasons:

• Technical feasibility of the implementation.

• Uncertainty due to the complexity of the design.

• Uncertainty due to a lack of experience, knowledge or skills of the development team.

These two types of risks may be resolved through iterations of refinement and architec-
ture design. ARM records and analyses these risks by using quantitative design rationale
OCR and ICR. The risks can be estimated and progressively reduced to an acceptable
threshold as architecture design progresses and design details become available. The cer-
tainty that the architecture model could satisfy the requirements would increase. When
this certainty level reaches a pre-defined threshold for all architectural requirements and
designs, we regard that the architecture model is complete.

Different requirements in the system post different levels of risks. The level of design
details required in various parts of an architecture model vary depending on the level of
risk. For instance, a reusable item with a well defined behaviour and interface does not
require additional in-depth architecture design. On the other hand, requirements which
are complex in nature or have extensive non-functional requirement implications may need
further investigation into its technical feasibility and explore more details of the design

144

8.3. Other applications of ARM

to ascertain its feasibility and cost. Requirements that need architectural investigations
are called architectural level requirements. Requirements that do not require architectural
investigations because their risks are low, become the concern of detailed system design
activities.

OCR and ICR depict the levels of uncertainties of a design in meeting its objectives.
So they can be used to help determine whether further architecture design is required for
the particular design area. Since the determination of OCR and ICR are semi-objective
in nature, the acceptable level of risk becomes a semi-objective assessment and could
be set to a defined acceptable level depending on projects. We choose to use 30% as a
guide. Should either OCR or ICR be above this threshold, investigation or modelling at
a more detailed level is required until the risk is reduced. Therefore, the following are the
necessary conditions for the completeness of an architecture model:

• All known non-functional requirements have been identified through requirements
refinement.

• All known architecture level requirements, functional and non-functional require-
ments, have corresponding linkages to design components through AR, directly or
indirectly.

• All design components have corresponding linkages through AR.

• For each AR, OCR and ICR are below a defined threshold.

Example 2: This is an example from the EFT system to illustrate how to complete an
architecture design using risk assessment. This example follows from the payment message
design illustrated in Figure 7.5. When the Alarm Service C6 0 0 is designed as a result of
AR15, there is a hidden assumption that it would work for the peak loading scenario. This
assumption has a risk associated with it. If the assumption is wrong, the design might not
work. We quantify the risk factors using OCR. Also, there is also a gap in terms of how
this mechanism could be implemented. In order to record multiple alarms, each alarm has
to be identified using a unique key so that it could be associated with an expired payment
message. The uncertainty of the design is a risk highlighted by ICR. Figure 8.2 shows this
example and its design decision process based on risk assessments.

The UNIX system call signal(2) and UNIX function call alarm(3) support the setting
of a single clock alarm only, but we need multiple alarms to be set simultaneously. Further-
more, we want to be able to identify a payment message when an alarm has sounded. These
two design issues indicate implementation uncertainties that need to be investigated. We
found that Top End middleware provides a timeout mechanism that would resolve these

145

8.3. Other applications of ARM

Figure 8.2: Risk Assessments of Alarm Services

two issues. Top End can handle multiple alarm settings and when a timeout is reached,
Top End can return an identifier that is associated with the timeout message. Therefore
in the architecture decision AR35, we create a Alarm Receiver design (i.e. C6 0 1). In
this design object, we have a function to set the alarm through a Top End call, passing
the process identifier, the object identifier and the event identifier as parameters. We also
design a function to cancel the alarm, a function to handle the alarm when it has sounded,
and a function to log the alarm into the database for persistent storage. At this stage, it is
clear that the architecture design is implementable without much risks. ICR is therefore
set to 10%.

The assumption that we initially make in AR15 is that the Alarm Services is capable of
handling the performance requirements. Since we don’t know for sure, we have associated
a risk factor in AR15. As shown in AR15, the outcome certainty risk is high (i.e. OCR =
40%) because we expect each service call would involve setting a Top End timeout call as
well as inserting a record into the Oracle database. At this stage, we do not know whether
there would be any performance issue. In order to reduce the risk that the design outcome
is acceptable, we need to investigate further into the design. In decision AR35, we use
requirement R2 3 2 peak load as an input to guide the decision. In order to ascertain
that the use of a database table is a viable, a feasibility test was performed to ensure that
5000 records can be inserted and 5000 alarms can be set and reset by the Alarm Receiver
within one hour. The feasibility test can simply be done by a prototype. The feasibility
test demonstrated that such design should not create any performance problems. The
OCR of AR35 is therefore set to 10%.

146

8.3. Other applications of ARM

We are now certain that the Alarm Services can be supported by table insertions and
the Top End calls. As such, the OCR and ICR of AR15 can also be reduced. This is
reflected in the adjustments of EB, OCR and ICR in AR15 in Figure 8.2. If the outcome
certainty OCR at AR15 cannot be reduced, it means that we don’t know whether the
design would work or not. If the risk of AR35 is not at an acceptable level, we would
not be certain that this design would need more investigation and design decomposition.
Now that we are fairly certain that the design would work, i.e. the risk is low, then we
do not need to go into further architecture design. The architecture design of this part of
the system can be considered complete.

When architects design a system, OCR and ICR risk values are assigned to the AR

nodes, usually along a top-down fashion. There are usually more uncertainties in the
initial stage when architecture design is at the high-level because details of whether the
decisions are valid are yet to be confirmed. As architecture design progresses, and more
details become available, architects are more confident about the validity of the lower-level
decisions. This confirmation from having more details requires that architects readjust the
OCR and ICR at the higher-level decisions. Therefore, the risk level of a high-risk decision
can now be updated to a lower risk level. This re-adjustment process serves to confirm
the architecture design.

All requirements which involve high risk decisions, as indicated by OCR and ICR,
should be part of architecture level requirements and need to be a part of the architecture
design. Low risk functional requirements do not require architectural design because they
do not have structural impact on architecture. Non-functional requirements usually have
higher risk factors because (a) Non-functional requirements usually cut-across a large part
of the system; (b) Non-functional requirements are usually competing with other non-
functional requirements; (c) the impact of a design to satisfy a non-functional requirement
requires more design attention. Therefore, all non-functional requirements should be con-
sidered in architecture modelling. This mechanism provides a way to define the scope
of the architecture activities and allow measurement of completeness of the architecture
outcomes.

We have chosen an arbitrary guide to establish a yardstick for determining an accept-
able risk. In order to get a common consensus on an acceptable risk level, we undertook
a survey [158]. Architects were asked as to what is an acceptable level of risk. 23.5% said
that a 30% risk level was acceptable, 18.5% said that a 40% risk level was acceptable.
However, 14.8% of respondents said that a 70% risk level was acceptable and 13.6% said
that a 80% risk level was acceptable. It shows that either architects genuinely believe in a
high risk architectrue or they are inexperience with risk assessment in architecture design
and with the impact risk may have on design quality. More research is required in this

147

8.3. Other applications of ARM

area.

8.3.2 Verifiability of architecture design

Architecture verification or evaluation is a quality assurance process to assess the sound-
ness of an architecture design. A number of evaluation methods such as ATAM [78],
SAAM [77] and ALMA [90] have been designed for such purposes. The need to verify
architecture is recommended by IEEE standards [67]. They check different aspects of a
software architecture to ensure its quality. During this process, architects are required to
supply information, answer questions and justify the architecture design.

A common practice of verification in the industry is through peer review of design
specification. Since design rationale is not systematically captured, architects who de-
signed the system need to be present to support the verification process. However, it was
found in our survey that 74% of architects could also forget the reasons behind the design
[158]. Another issue is that architecture decisions should be verifiable during or after de-
velopment, with or without the presence of the original architects. Architecture rationale
is therefore vital in supporting such verification process. Some of the information that are
captured in the AREL model and can be used to support architecture design verification
are:

• Specifications of architecture drivers and motivational reasons.

• Specification of the architecture design objects.

• Documented architecture rationale to explain why the design can satisfy the require-
ment(s).

• Documentation of assumptions and constraints of architecture design.

• Traceable architecture rationale and elements.

• Documentation of design alternatives.

Architecture verification is supported by documented motivational reasons and design
rationale. They can overcome the issue that architecture design cannot be verified easily
because the design reasoning has not been captured. The documentation of design al-
ternatives also support verification because it demonstrates that architects have explored
different design options and assessed their appropriateness before selection.

148

8.4. Summary

8.4 Summary

In this chapter, we have presented the ARM method for architecture decision making.
ARM complements other design methodologies by addressing the process to carry out
design reasoning. This is a fundamental area that has often been omitted in architecture
design. ARM requires architects to use qualitative and quantitative rationale to justify
their decisions. Qualitative design rationale explores issues, arguments and options of
a decision. Quantitative rationale quantifies the costs, benefits and risks of options. It
enables architects to delineate architecture design from detailed design by way of obtaining
acceptable risk levels in the architecture design. A number of advantages can be derived
using ARM:

• Quantifies the choice of architecture decisions by explicitly compare the costs, ben-
efits and risks of alternative design options.

• Define the scope of architecture design using risks as a guide.

• provide a means to support architecture verification.

As well as being useful to architecture development and verification, ARM facilitates
the documentation of design rationale to support the maintenance process. Other uses of
the AREL model are discussed in later chapters.

149

Chapter 9

Architecture rationale and

traceability

In this chapter, we introduce the traceability methods to support change impact anal-
ysis and root-cause analysis for AREL. Through these traceability methods, we explore
the reasoning support provided by AREL to explain why design objects exist and what
assumptions and constraints they depend on. The results enable software architects to
better understand and reason about an architecture design. Three traceability methods
are discussed in this chapter and the EFT case study is used to demonstrate their appli-
cations1.

System and software architecture design often involves many implicit assumptions
[135] and convoluted decisions that cut across different parts of the system [109]. A
change in one part of the architecture design could affect many different parts of the
system. A simple shift of an implicit assumption might affect seemingly disparate design
objects and such change impacts could not be identified easily. This intricacy is quite
different from detailed software design where usually the design or program specifications
are self-explanatory. At the system and software architecture level, there are a multitude
of influences that can be implicit, complex and intractable. Without traceable design
rationale, the implicit relationships between the design objects might be lost, therefore
creating potential problems:

• The reconstruction of the design rationale through analysis might be expensive.

• Design criteria and environmental factors that influence the architecture might be
unclear.

1This chapter is based on our work published in [161].

150

• Business goals and constraints might be ignored.

• Design integrity might be violated when intricately related assumptions and con-
straints are omitted.

• Tradeoffs in decisions might be misunderstood or omitted.

• The impact of the changing requirements and environmental factors on a system
could not be accurately assessed.

Many of the argumentation-based design rationale methods represent the deliberations
of design decisions [93, 26, 100] but they do not support effective design rationale retrieval
and communication [139]. An effective design rationale model should support easy retrieval
of the design rationale to explain why the associated design elements are created. It means
that design rationale and design elements should be traceable.

Using the AREL model, two types of tracing are possible: (a) tracing an architecture
design to understand the design dependency and reasoning; and (b) tracing the history
of an evolving architecture design. Together they offer a number of advantages in system
development and maintenance, which might otherwise be unattainable:

• It helps architects and designers to understand the reasoning of an architecture
design.

• It allows architects and designers to analyse the change impacts of a design through
forward tracing.

• It allows architects and designers to analyse the root-causes of a design through
backward tracing.

• It supports design verification and maintenance.

• It retains design and decision history to help understand how and why a system has
evolved.

Section 9.1 discusses relevant requirements and related design traceability work. Sec-
tion 9.2 outlines the need for design rationale traceability and Section 9.3 proposes trace-
ability techniques to address those needs. Section 9.4 provides examples to demonstrate
how traceability techniques are applied.

151

9.1. Background

9.1 Background

In this section, we examine the needs for a better way to recover design rationale to
support design reasoning. We analyse existing design-rationale methods and requirement
traceability methods to identify the challenges. From the perspective of a practising
architect, we identify a number of uses cases for traceable design rationale.

9.1.1 Issues with design rationale

Researchers in the area of design rationale have argued that there is a need to improve the
process to capture, represent and reuse design rationale. Perry and Wolf [119] suggested
that as architecture design evolves, the system is increasingly brittle due to two problems:
architectural erosion and architectural drift. Both problems may lead to architecture de-
sign problems over time if the underlying rationale is not available. Bosch suggested that
as architecture design decisions are crossing-cutting and inter-twined, the design is com-
plex and prone to erroneous interpretations without a first-class representation of design
rationale [11]. As such, a design could be violated and the cost of architectural design
change could be very high and even prohibitive. As discussed in earlier chapters, design
rationale is important to support knowledge retention and facilitate the understanding of
the architecture design. The form of design rationale representation is also important for
it has to support structured and automated tracing.

9.1.2 Requirements and design traceability

Requirements traceability is the ability to describe and follow the life-cycle from require-
ments to their implementation, in both a forward and backward direction. For example,
given a requirement, an architect might wish to find the design objects that realise the
requirement in forward tracing. Gotel and Finklestein [51] distinguish two types of trace-
ability: pre-requirements specification (Pre-RS traceability) and post-requirements specifi-
cation (Post-RS traceability). They argue that wider range of informational requirements
are necessary to address the needs of the stakeholders. This is an argument for represent-
ing contextual information to explain requirements and design. A survey of a number of
systems by Ramesh and Jarke [129] indicates that requirements, design and implemen-
tation ought to be traceable. It is noted by Han [58] that traceability “provides critical
support for system development and evolution”. The IEEE standards recommend that
requirements should be allocated, or traced, to software and hardware items [67, 68].

In the development life-cycle, architects and designers typically have available to them

152

9.2. Traceability of architecture rationale

business requirements, functional requirements, architecture design specifications, detailed
design specifications, and traceability matrix. A means to relate these pieces of information
helps the designers maintain the system effectively and accurately. It can lead to better
quality assurance, change management and software maintenance [149]. There are different
aspects of traceability in the development life-cycle: (a) tracing requirements to design;
(b) tracing requirements to source code and test cases; (c) tracing requirements and design
to design rationale; (d) tracing evolution of requirements and design. Example methods
and approaches to support requirements traceability are TOOR [120, 121], DOORS [145],
Ramesh and Jarke [129], Huges and Martin [66], and Egyed [38].

Some traceability approaches incorporate the use of design rationale in a limited way.
Haumer et al. [60] suggested that the design process needs to be extended to capture and
trace the decision making process through artefacts such as video, speech and graphics.
Since such information is unstructured, making use of it can be challenging. Ramesh
and Jarke [129] proposed a reference model for traceability. It adopts a model involving
four traceability link types, two of which are relevant here. The rationale and evolution
link types are introduced to capture the rationale for evolving design elements. The
rationale link type is intended to allow users to represent the rationale behind the objects
or document the justifications behind evolutionary steps. Since its focus is on evolving
design, other kinds of design reasoning such as the design tradeoffs are not considered.

The traceability methods and approaches described here make a fundamental assump-
tion that traceable requirements could have the explanatory power to help designers un-
derstand the system. We argue that this is insufficient. Design rationale that are implicit
to the decision process are absent. Thus, design rationale such as assumptions and con-
straints would need to be reconstructed even though source code or design objects can be
traced back to requirements.

9.2 Traceability of architecture rationale

Being able to trace design and requirements to design rationale helps architects to under-
stand, verify and maintain architecture design [173]. It supports the conscious reasoning
of architecture design. There are many use-cases of traceable architecture design rationale
in the software development life-cycle [86]. The following cases describe how traceable
architecture design and design rationale support the software development life-cycle.

• Explain Architecture Design - the reasoning and the decisions behind a design can be
traced because they are linked to the design objects through a causal relationship.

153

9.2. Traceability of architecture rationale

As such, the being of a design object can be explained by its associated design
rationale.

• Identify Change Impacts - when a requirement or a decision is subject to change,
the ripple effect of such a change should be traceable in order to analyse the change
impacts to various parts of the system.

• Trace Root Causes - when there is a software defect in a system, it might be due to
many reasons and the root causes have to be analysed and identified. Some of the
causes might be to do with conflicting requirements, constraints or assumptions, it
requires design rationale to help explain and identify them.

• Verify Architecture Design - the retention of traceable design knowledge supports
independent verification of an architecture design. It supports the verification of the
architecture design without the presence of the original designers.

• Trace Design Evolution - when decisions were made to enhance the system, the design
rationale of each subsequent change could explain the evolution of the design object.
Such a reasoning history is useful because design assumptions and constraints are
explicitly represented and can be used as a context for previous and current decisions.

• Relate Architecture Design Objects - architecture design objects, which are seem-
ingly disparate, may be related by a common requirement, constraint or assumption.
For instance, the friendliness of a user interface design may be compromised because
of a constraint on embedding a security feature. If the rationale of the compromise
is not explicitly stated, an update to the security feature might not trigger a revisit
to the design of the user interface.

• Analyse Cross-cutting Concerns - architecture deals with cross-cutting concerns es-
pecially in non-functional requirements. These concerns often require tradeoffs at
multiple decision points. The reasons behind such tradeoffs explain a lot as to why
and how the decisions have been made. A traceable architecture with design ratio-
nale could relate otherwise disparate requirements and design objects that are part
of the cross-cutting concerns.

There is currently a lack of traceability methods to accomplish all these tasks. The
“why such a design” question cannot be answered because the current methods do not
relate design objects to design reasoning effectively [62]. On the other hand, common
industry practice relies heavily on the reconstruction of design rationale and the manual
tracing of design specifications. This situation can be improved by a traceable AREL
model.

154

9.3. Traceability support

9.3 Traceability support

General traceability provides a means to retrieve related development artefacts such as
system requirements and design objects. However, architecture verification and enhance-
ment are better served if design rationale is traceable as well. Without design rationale,
implicit assumptions, constraints and design reasoning can only be derived by second-
guessing, or they might be overlooked altogether, and as such the risk that architects are
not able to correctly verify or maintain the architecture design exists.

The AREL model provides a mean to represent the causal and the dependency rela-
tionships between design rationale and design objects. Such representation provides an
additional perspective to understand the relationships between design objects and their
design rationale. The tracing is therefore characterised by the inter-connections of design
rationale and design objects using these causal relationships. Constraints, assumptions,
decisions and tradeoffs can be traced to disparate parts of a system that they influence.
There are three possible tracing techniques: forward tracing, backward tracing and evolu-
tionary tracing. They rely on the AREL and eAREL links �ARtrace�, �AEsupersede�
and �ARsupersede�.

• Forward Trace - the purpose of this trace is to support the impact analysis of the
architecture design. For example, an architect might use forward trace to find all the
design objects that originate from a requirement, and the reasons behind their de-
sign. Given an architecture element AE1, all architecture rationale and architecture
elements that are downwardly caused and impacted by AE1 can be traversed.

• Backward Trace - the purpose of this trace is to support the root-cause analysis
of the architecture design. For example, an architect may use it to analyse what
requirements and factors influence a design object and the reasons why. For a given
architecture element AE1, all decisions and other architecture elements that AE1

depends on, directly or indirectly, are traced and retrieved. This enables architects
and designers to retrieve the root causes such as requirements and assumptions of
AE1, and to understand and analyse design justifications leading to AE1.

• Evolution Trace - the purpose of this trace is to support the analysis of the evolution
of a decision or an architecture element. Given a AR1 or AE1 node, the history
containing previous versions of the node is retrieved.

The traceability support based on the AREL model has two characteristics. Firstly, it
provides an automated mechanism to support forward and backward tracing. An architect
could specify the source of the trace (i.e. an AE), and the system would traverse all related

155

9.4. AREL and eAREL traceability applications in a case study

elements in the AREL model. Enterprise Architect [150] is the UML design tool we use
to capture the AREL model, the results of a trace are created as UML diagrams.

Secondly, traceability can be selective based on architecture elements’ classifications.
Using the classification of the architecture elements by viewpoints and business drivers (see
Section 6.3), architects could limit the trace results to the specified types of architecture
elements. For instance, a trace could traverse only those AEs that are specific to the
data viewpoint. The classification-based traceability could reduce information overload
when analysing trace results. This is an initial attempt to implement the traceability
scoping with classified architecture elements. It demonstrates that classification is useful
in restricting the scope of the trace results.

9.4 AREL and eAREL traceability applications in a case

study

Using the case study as a basis, we demonstrate the advantages of being able to explain
and trace the architecture from the design reasoning perspective. It provides important
information that are missing from most design specifications in which the focus is on design
organisation, interface and behaviour. In the demonstration, we choose the processing
services and specifically the payment message processing layer to illustrate the rationale-
based architecture model and its traceability below. We demonstrate the traceability
with the AREL tool-set. The tool-set comprises of an UML-based tool called Enterprise
Architect and a tool for AREL tracing. A detailed description of the tool implementation
is in Chapter 11.

9.4.1 Design rationale representation

This section recapitulates an example from the case study in Chapter 7 to demonstrate the
traceability techniques. The EFT system had extensive design specifications to document
what had been designed. However, they do not systematically document the assumptions,
constraints and rationale of the design. Its specifications document the design of the soft-
ware modules, their interfaces and behaviour. Designers who were not originally involved
in the design would find it difficult to understand the design intentions. Thus, when sys-
tem modifications are required, it would be hard to determine which parts of the system
are affected. We use the payment messaging mechanism as an example to illustrate how
a traceable AREL model captures this knowledge.

156

9.4. AREL and eAREL traceability applications in a case study

Figure 9.1: Asynchronous message processing decision and its design impact

Figure 9.1 is an example chain of decisions. In this case, the architect was to choose
a payment messaging protocol to support payment message exchange between the central
bank and the participating banks. At this decision point (i.e. AR10), the issue is to choose
between synchronous and asynchronous messaging protocols. The motivational reasons
specify that the decision has to take into considerations: (a) the handling of message
acknowledgement; (b) the processing of at least 8000 payment messages per day, 50%
of which would come from one bank; and (c) the system has to scale to process a much
higher volume and so the processing unit must be able to handle multiple bank connections
simultaneously.

The reasons or justifications to have chosen asynchronous over synchronous message
processing are encapsulated in AR10. The QLR contained within AR10 captures the

157

9.4. AREL and eAREL traceability applications in a case study

details of its design rationale as shown in Figure 9.2. When an asynchronous payment
message is sent to the receiving party, an acknowledgement message from the receiving
party is not expected immediately but eventually. The acknowledgement should come
from the receiving party to indicate whether the message has been received correctly.
Therefore, there is no blocking between the two communicating processes and they can
continue with other work. Synchronous message processing requires the sender to block
and wait for the remote party to respond. The concurrency of such a design is lower.
This explanation is captured in AAR within AR10. By comparing the two methods, it
was decided that asynchronous messaging would provide better processing efficiency than
synchronous messaging. As a result of the decision AR10, the component C4 2 4 was
created.

Figure 9.2: Details of the design rationale AR10

The constraint or the implication of the C4 2 4 design is that all messages must have
a mandatory, unique and sequential message identifier. The design has to deal with a
scenario where messages must not go missing even though they can be out of order. As a
result, a number of decisions (i.e. AR13, AR14 and AR15) have to be made to deal with
this new constraint.

The choice of this design addresses the issue of payment processing efficiency and it
has implications on different aspects of the system such as complexity and reliability.
These intricate design relationships could be easily understood if design rationale are
explicitly recorded and linked. Trying to reconstruct this relationship without captured
design rationale can be difficult if the designer does not have in-depth knowledge of the
system. AREL uses AR and �ARtrace� to capture the knowledge so that designers can
understand the motivational reasons, the design rationale and the design outcome.

158

9.4. AREL and eAREL traceability applications in a case study

9.4.2 Forward and backward tracing

Architects often need to analyse change impacts and root-causes to understand the de-
sign during system enhancements. They rely on tracing the design to the requirements,
assumptions and constraints to explain why and how the design is constructed. If this
information is implicit, its influence could be omitted or misinterpreted because (a) the
motivational reasons which influence disparate parts of the design would not be apparent;
(b) the design rationale that justifies inter-related design objects would be missing. We
resolve this issue by providing a tool to do forward tracing for analysing change impacts
and backward tracing for analysing root causes.

Forward tracing

In this section, we discuss the methods for forward tracing in AREL and demonstrate how
to carry out forward tracing. Forward tracing in AREL is the traversal of the AREL graph
to produce a subset of the resulting AREL graph forward from a specified AE node. The
following steps are involved in the forward tracing of AREL:

1. Specify a source AE node, say AE1, where tracing is to begin.

2. Specify the scope of the result set using the viewpoint classification (e.g. Application
Viewpoint).

3. For all the descendants of the source node AE1, traverse the AE and AR nodes
recursively to all the leaf nodes by following the ARtrace links. Since the AREL
model is an acyclic graph, the traversal will terminate when all leaf nodes have been
traversed.

4. All the AE nodes with the specified viewpoint classification(s) will be retained in
the result set.

5. All the AE nodes that are not specified in the classification, but are located between
AE1 and its descendant AE nodes that are in the classification are retained. This
is because if these unspecified nodes are not traversed, then the causal chain will
be broken and some of the required AE nodes downstream from them would be
omitted.

For example, we want to investigate what the change of requirement R4 1 3 would do
to the architecture design and why. So we select the source of the trace (i.e. R4 1 3) and
carry out tracing from the source. All the �ARtrace� links that are connected to R4 1 3

159

9.4. AREL and eAREL traceability applications in a case study

are traversed and the connected AR and AE nodes downwards from it are retrieved. We
use an automated tool to implement the traceability method and its results are created in
a UML repository (see Chapter 11). Figure 9.3 is the result of the forward tracing based
on the case study.

Two decisions that are directly affected by R4 1 3 are AR10 and AR11. AR11 is
a decision about how payment messages are to be composed and decomposed for trans-
mission. AR10 is a decision about which messaging protocol should be used with the
key issue being performance. As discussed above, asynchronous messaging protocol was
selected over synchronous messaging protocol.

Figure 9.3: Forward tracing for impact analysis

The selection of the asynchronous mechanism means that a number of constraints and
requirements to support the design must be in place. The criteria are (a) messages need
to be sequenced and (b) a protective mechanism is available to guarantee that there is
no loss of payment messages. Following the �ARtrace� link from AR10, we find AR14

160

9.4. AREL and eAREL traceability applications in a case study

and AR13 which consider message sequencing and missing payment message detection
respectively.

Normally a payment acknowledgement should arrive shortly after a payment has been
sent, but if it does not arrive within the allowed elapsed time, there ought to be a time-out
function to indicate that the acknowledgement is missing. AR15 is a decision to implement
such an Alarm Server to notify any overdue acknowledgement.

This example of forward tracing shows the impacts of a requirement to all the design
objects and decisions that are affected by it. The design decision AR10 creates a chain
effect on the resulting design branching out into many decisions and design outcomes.
AREL forward tracing has a number of characteristics:

• Impact analysis - when an architecture element AE1 is specified, the architecture ra-
tionale (AR) and the architecture elements (AE) that depends on AE1 are retrieved.
Since AREL is a causal model, it implies that all resulting architecture decisions and
elements are directly or indirectly impacted by AE1.

• Selection by viewpoints - the classification of architecture elements by architecture
viewpoints allows architects to hone in on specific results by specifying what is
required.

• Graphical representation - since AREL is implemented in UML, trace results are
also represented in UML diagrams.

Backward tracing

In this section, we discuss the methods for backward tracing in AREL and demonstrate
how to carry out backward tracing. Backward tracing in AREL is the traversal of the
AREL graph to produce a subset of the resulting AREL graph backward from a specified
AE node. The following steps are involved in the backward tracing of AREL:

1. Specify a source AE node, say AE1, where tracing is to begin.

2. Specify the scope of the result set using the viewpoint classification (e.g. Business
Viewpoint).

3. For all the ancestors of the source node AE1, traverse the AE and AR nodes recur-
sively to all the root nodes by following the reverse direction of the ARtrace links.
Since the AREL model is an acyclic graph, the traversal will terminate when all root
nodes have been traversed.

161

9.4. AREL and eAREL traceability applications in a case study

4. All the AE nodes with the specified viewpoint classification(s) will be retained in
the result set.

5. All the AE nodes that are not specified in the classification, but are located between
AE1 and its ancestor AE nodes that are in the classification are retained. Similar to
forward tracing, if these unspecified nodes are not traversed, then the causal chain
will be broken and some of the required AE nodes downstream from it would be
omitted.

Using the example from the previous section, we demonstrate backward tracing of
the root-causes of the alarm server. Consider the Alarm Server C6 0 0, if we want to
understand why it is there, and what requirements have motivated the architects to create
it, then we trace backwards from it. The resulting AREL graph is shown in Figure 9.4. It
shows all the requirements, design elements and design decisions that lead to the creation
of C6 0 0.

The reason for the creation of C6 0 0 is due to the need of a timer mechanism (AR15)
to support asynchronous error detection C4 2 7. The timer would time-out and send a
notification if a payment message has not been acknowledged within a specified time. The
justification in AR15 specifies that this ought to be a separate server process because there
is a technical constraint to implement time-out in the payment processing process itself.
By tracing further backwards, we understand that the need for such implementation is
due to the No Loss of Payment Transaction requirement. This requirement comes from
R2 5 1 as well as the implementation of C4 2 4. C4 2 4 is in turn concerned with the
performance issue of the payment system.

If an architect wants to assess the possibilities of enhancing the timer server, the first
task is to understand the causes of such a design. These causes are intricate because
there are underlying constraints and assumptions in a chain of dependency. In this case,
the multitude of constraints are performance (AR10), reliability(AR14) and technical
implementation(AR15). A change in the design must address all these inter-connected
causes and constraints at the same time.

Similar to forward traceability, backward traceability supports results scoping by view-
points. The resulting trace is a subset of the AREL model. Backward traceability supports
root-cause analysis by retrieving architecture rationale and architecture elements for which
the design element in question directly or indirectly depends on.

162

9.4. AREL and eAREL traceability applications in a case study

Figure 9.4: Backward tracing for root-cause analysis

9.4.3 Tracing architecture design evolution

Since architectures can have a long live-span and are subject to enhancements and adapta-
tions over time, the view of the current architecture design does not necessarily provide all
the information required for decision making. We use eAREL as a supporting mechanism
for evolution tracking. It provides a means to track changes of the design and the decision
making over time. Let us consider architecture element C4 2 5 for MAC Processing. In
Figure 9.5(a), assuming I1 1 5 and R2 4 6 are the new requirements to support authentic-
ity of the payment message using an encryption mechanism. The implementation requires
the MAC code to be encrypted with a secret key to prove its authenticity. So the original
design C4 2 5, which only supports clear-text MAC, would require some modifications.
We decide to keep its original design history.

A copy of the original design, i.e. version 1 of C4 2 5 is archived and a relationship
of the stereotype �AEsupersede� links it with version 2 of the C4 2 5, which is in the
current AREL model. This is shown in Figure 9.5(b). Since version 1 of C4 2 5 MAC has
now been replaced, its �ARtrace� links to AR12 and AR13 are now obsolete, therefore
these links are made non-current. New �ARtrace� links are created to be related to

163

9.4. AREL and eAREL traceability applications in a case study

(a)

(b)

Figure 9.5: (a) MAC processing (b) Superseded architecture element

AR12 and AR13 for version 2 of the C4 2 5.

In the above example, we have demonstrated how a design can be superseded by its
replacement. The supersession of AR works in the same way. eAREL can be useful in
many cases. For instances, an architect may wish to investigate the extent of design
changes in a particular release, or investigate the impact of a historical change, or simply
understand the design history as background information. The architect can follow the
�AEsupersede� links to recover the previous designs. The tracing of historical changes to
the architecture design begins from an initial AR or AE in AREL, and then trace through
its history using �ARsupersede� or �AEsupersede� links to the older versions of AR
or AE. Finally, the inter-relationships between historical elements and rationale can be
traced through non-current �ARtrace� links.

164

9.5. Discussion

9.5 Discussion

In the empirical study (Section 7.2.4), it was found that the ability to trace architecture
design and its design reasoning are important in software architecture. It enables an archi-
tect to reason with complex design and to support software maintenance if the knowledge
cannot be remembered.

As commented by the experts who participated in the empirical study, the usefulness
of this method depends largely on the cost-benefit of its implementation and how well an
organisation adopts it. The cost of capturing the traceability relationships must be kept as
low as possible, and the capture process itself must not impede the design process. This is
yet to be tested in large-scale projects but it is anticipated that the benefit would exceed
the cost in such projects. There is a major assumption in employing this method: the
traceability relationships are captured perfectly and the design reasoning are documented
thoroughly. This assumption depends on how well an organisation adopts the method and
if the architects involved believe in design knowledge retension and use it diligently.

9.6 Summary

In this chapter, we have discussed the need for traceable design reasoning. We have iden-
tified three ways to trace an AREL model. Forward tracing supports impact analysis.
Given a requirement, the design objects and design rationale that are directly and in-
directly depended on and impacted by it can be traversed. Backward tracing supports
root-cause analysis. Given a design element, its causes such as requirements, assump-
tions, constraints and design rationale can be traversed. Evolution tracing supports the
traceability through the evolution of an architecture element or an architecture rationale.
These methods facilitate the understanding of architecture design by allowing architects
to trace the design with reasoning support.

AREL and its traceability are supported by the AREL Tool and the UML tool, En-
terprise Architect (see Chapter 11 for details). The architecture viewpoints which classify
the architecture elements in AREL can be used to scope the trace results. Using the EFT
system as a case study, we have demonstrated how the architecture design can be traced.

165

Chapter 10

Architecture decision dependency

and causality

Research into design rationale in the past has focused on argumentation-based design de-
liberations. These approaches cannot be used to support change impact analysis effectively
because the dependency between design elements and decisions are not well represented
and cannot be quantified. In earlier chapters, we have described change impact analysis
using qualitative and traceability methods. In this chapter, we extend the AREL model
to represent quantifiable causal relationships between architecture design elements and
decisions. We apply Bayesian Belief Networks (BBN) to AREL, to capture the probabilis-
tic causal relationships between design elements and decisions. We employ three different
BBN-based reasoning methods to analyse design change impact: predictive reasoning, di-
agnostic reasoning and combined reasoning. These methods support the prediction and
diagnosis of change impacts in the architecture design in a quantitative manner [83]. 1

We illustrate the application of the BBN modelling and change impact analysis methods
by using the case study illustrated in Chapter 7.

10.1 Background

As discussed in early chapters, design rationale has many benefits and it can be used
to verify and trace the design of a system as well as to support its enhancements. The
approach outlined in this chapter is to represent quantitatively the sensitivity to changes

1This chapter is based on our work published in [162, 163]. Nicholson has contributed to applying BBN
in AREL as well as the writing in the papers. Han and Jin have contributed to the development of the
papers.

166

10.1. Background

and the dependencies between architecture elements and architecture rationale in an AREL
model.

10.1.1 Related work

Fenton and Neil [40] believe that management decision support tools must be able to
handle causality, uncertainty and combining different (often subjective) evidence. Hence
they suggest to use a solution based on BBNs. BBNs have been used in many applications
(see [83] for a recent survey) including a causal model to detect user interactions with
user interface in safety-critical systems which are prone to human errors [45]. A design
reasoning approach has been proposed by Zhang and Jarzabek to use BBN to reason about
architecture design decisions on quality attributes [177]. The purpose of this work is to
use BBN as an aid to evaluate the architecture design for decision making.

BBNs [116, 73] are graphical models for probabilistic reasoning, which are now widely
accepted in the AI community as practical and intuitively appealing representations for
reasoning under uncertainty. Given the BBN representation of AREL, we show how BBN
reasoning algorithms can be used to reason about change impacts. More specifically,
architects can use BBN to undertake what-if analysis, to predict and diagnose impacts
given complex combinations of requirement and design changes. This approach has the
following advantages:

• We represent the AREL model as a BBN. The BBN graphical structure models and
quantifies the causal relationship between architecture design decisions and archi-
tecture elements.

• Based on the AREL causal relationship in a BBN model, we employ three different
probability-based reasoning methods to carry out change impact analysis:

– Predictive Reasoning - predict what design elements and how likely they might
be affected if one or more architecture elements are to change (e.g. require-
ments).

– Diagnostic Reasoning - if one or more architecture elements (e.g. design object)
are to change, diagnose what might be the causes of such change and the extent
of their influence.

– Combined Reasoning - by combining the use of predictive reasoning and di-
agnostic reasoning, reason about the ripple effect of the likely changes to the
system through diagnosing the causes and predicting the effects.

167

10.1. Background

10.1.2 Introduction to Bayesian Belief Networks

Bayesian Belief Networks (BBNs) are a well established method in the Artificial Intel-
ligence community for reasoning under uncertainty, using (i) a graphical structure to
represent causal relationships and (ii) probability calculus to quantify these relationships
and update beliefs given new information.

A BBN is a directed graph with edges connecting nodes with no cycles (i.e. a directed
acyclic graph). Its nodes represent random variables and its edges represent direct de-
pendencies between variables. In theory, variables can be discrete or continuous, but in
this work we construct models with discrete variables only. Nodes representing discrete
variables have two or more discrete states, representing the possible values the variable
may take. For instance, a discrete Boolean node may represent whether or not a patient
has lung cancer with the two states True and False. Nodes without parents are called
root nodes and have an associated prior probability distribution. Each node with parents
has a conditional probability table (CPT), which, for each combination of the values of the
parents, gives the conditional probability of its taking these values. Thus the CPT can be
considered to quantify the strength of the causal relationships.

Let us illustrate these basic elements of a BBN – the nodes, arcs and prior and condi-
tional probabilities – with a very simple example from the medical domain [83]. Suppose
that a physician wants to reason about the chance that a patient presenting with a cough
has lung cancer. The first relevant causal factor needing to be established would be
whether the patient is a light, heavy or non-smoker. A possible diagnostic tool would
be to take an Xray of the lungs. Figure 10.1(a) shows a BBN model for this example.
The example illustrates that a heavy smoker has a higher probability of contracting lung
cancer than a non-smoker. If a person has lung cancer, than there is a high probability
that the person would cough, and there is a high probability that the lung cancer would
be detected by the X-ray.

Once a BBN model has been constructed, posterior probabilities – often referred to as
beliefs – can be computed. Figure 10.1(b) shows the physician’s prior beliefs before any
observations or evidence are taken into account. The marginal probability distribution is
represented by the bars in the diagram. Users can set the values of any combination of
nodes in the network and this newly inserted evidence propagates through the network
through computing their marginal probabilities, producing a new probability distribution
over all the variables in the network. An explanation on the computation of marginal
probabilities can be found in [83, 73, 117]. There are a number of efficient exact and ap-
proximate inference algorithms for performing this probabilistic updating [117], providing
a powerful combination of predictive, diagnostic and explanatory reasoning. For example,

168

10.2. Building a BBN to represent an AREL model

Figure 10.1(c) shows the physician’s beliefs after diagnostic reasoning given that the pa-
tient has a cough, while Figure 10.1(d) shows how the chance of the patient having lung
cancer (and hence a positive lung x-ray) increases substantially if the patient is a heavy
smoker (an example of predictive reasoning).

(a) (b)

(c) (d)

Figure 10.1: A medical example: (a) BBN nodes, arcs and CPTs; (b) BBN graph without
evidence; (c) patient has a cough (diagnostic reasoning); (d) patient has a cough and a
heavy smoker (both predictive and diagnostic reasoning).

The reader is referred to [83] for a more detailed introduction to the fundamentals of
BBNs. The following sections explore how AREL models can be represented by a BBN
(Section 10.2) to provide causal reasoning under uncertainty for change impact analysis
(Section 10.3).

10.2 Building a BBN to represent an AREL model

Representing an AREL as a BBN enables prediction and diagnosis of change impact to
the system when certain elements of the architecture have changed. For our modelling
purposes, we are interested in the causal relationships between variables representing ar-
chitecture design rationales and elements. It is generally accepted that building a BBN
for a particular application domain – commonly called “knowledge engineering” – involves
three tasks [83]:

169

10.2. Building a BBN to represent an AREL model

1. identification of the important variables, and their values, which become the nodes
and their states in the BBN;

2. identification and representation of the relationships between nodes, which means
deciding which nodes should be connected by the directed edges; and

3. parameterization of the network, that is to determine

(a) the prior probabilities for each root node in the network and

(b) the conditional probability tables associated with each non-root node, which
quantify the relationships between nodes.

We now show how to build a BBN to represent an AREL model by looking at each of
these steps in turn.

10.2.1 Nodes: Representing architecture elements and decisions

Recall that an AREL model contains two types of components, Architecture Element
(AE) and Architecture Rationale (AR). There is a direct mapping from these AREL
components to the two types of nodes in the BBN, also called AE and AR nodes.

In an architecture design, we require the initial inputs into the design. These inputs are
the motivational reasons such as the functional requirements, non-functional requirements,
assumptions or constraints. These AE nodes are represented as root-nodes in AREL. The
AE nodes which are the results of the design decisions are either the branches or the leaf
nodes in AREL. The AR nodes represent the decisions made in the architecture design,
and they cannot be root-nodes nor leaf-nodes.

The BBN implementation for AREL uses probability to represent the possible change
impact to the architecture design. If a design decision is to change, then it is probable
that those design elements which depend on the validity of this design decision are likely
to become unstable and subject to change as well. In order to represent dependency, first
we have to represent the states of the AE and AR nodes. Both the AE and AR nodes in
the BBN have two states each. The two states of an AE node represent whether or not
the AE node is stable or likely to change:

• Stable – AE is not subject to change

• Volatile – AE is subject to change

170

10.2. Building a BBN to represent an AREL model

If an AE becomes volatile, then the decision which uses the AE as an input may
not be as reliable because it is probable that a change in the underlying AE input could
invalidate the design decision. As such, we need to represent the possible validity of the
AR decision. The two states of an AR node are:

• Valid – the decision is valid

• Invalid – the decision is invalid

10.2.2 Edges: Representing causal relationships

Each �ARtrace� link in an AREL model is represented by an edge in the BBN. As
AREL links are defined to preclude directed cycles, this means that the corresponding
BBN is valid, i.e. it is a directed acyclic graph. When an AREL model is formed, it is
based on interconnected nodes with the fundamental structure of AEi → ARj → AEk.
This structure represents the directional causal relationship between the nodes starting
from AEi. AEs as motivational reasons drive decisions to create high-level design. The
high-level design are refined and decomposed into finer-grained architecture design objects
through making further decisions for the different aspects of the architecture such as data
models, application models and technology models. This process of making decisions,
creating and modifying architecture elements is carried out in a progressive way until the
architecture is complete [159].

Figure 10.2: Basic Forms of AREL Relationship in the BBN

The three basic forms of relationships that are present in the BBN representation of
the AREL model are shown in Figure 10.2: 2

2In the BBN literature, (A) and (C) are referred to common effect structures, while (B) is a common
cause structure. We distinguish between (A) and (C) here because of the difference for our purposes
between the AE and AR nodes as a common effect.

171

10.2. Building a BBN to represent an AREL model

A. AEs as causes of an AR : AE1 and AE2 are converging inputs of AR1 ;

B. AEs as effects of an AR : AE4 and AE5 are effects of AR1 ;

C. Multiple ARs as causes of an AE : AE5 depends on both AR1 and AR2.

The fundamental AEi → ARj → AEk structure reflects the fact that a decision (rep-
resented by an AR node) depends on its input AEs, and in turn can affect other AEs as
the outcomes of the decision. At this stage, we can see intuitively that the edges in the
BBN can represent the important causal relationships between AEs and ARs, such as:

• while the input AE nodes are stable, a decision will probably remain valid;

• if the input AE nodes have changed, then it is likely that the conditions under
which the decision was made are no longer valid and a reassessment of the inputs is
necessary to validate the decision;

• the validity or otherwise of an AR node affects the stability of a consequent AEs.

These relationships are defined and quantified through the specification of the CPTs.
We describe this aspect of the BBN knowledge engineering process next, first for the root
nodes, and then for non-root nodes in relationships A, B and C above.

10.2.3 Probabilities: Quantifying the causal relationships

Root Nodes

Each root node in a BBN (i.e. nodes without parents) has an associated prior probability.
As mentioned above, in a BBN representation of an AREL model, all root nodes must be
of type AE, and represent either functional or non-functional requirements, basic designs
or systems constraints. The architect must therefore estimate the prior probabilities for
the different types of AE nodes. Prior probabilities assigned to the AE root nodes indicate
the likelihood of change of these primary requirements, design or constraints.

If the AE is a requirement, one could estimate whether this requirement is volatile or
stable by assessing whether the requirement is likely to change over time. For instance,
an industry standard or a regulation is not negotiable and therefore the probability of
its being stable is 100% and the probability of its being volatile is 0%. Another example
is the requirement to produce data through different interface file formats such as XMI,

172

10.2. Building a BBN to represent an AREL model

csv etc. The list of interface formats is likely to be extended as the system evolves, so
the architect may estimate that the probability of this requirement being stable is 80%
and the probability of its being volatile is 20%. Design elements which are root nodes in
the BBN also need their volatility characteristics to be estimated by prior probabilities.
For instance, general purpose library classes and routines are less dependent on changing
requirements and so they tend to be more stable.

Obviously the volatility of different AEs will be highly domain dependent and hence
the estimation of this volatility by providing prior probabilities for root nodes is part of
the knowledge engineering task for the architect when building the AREL model.

Non-Root Nodes

Each non-root node in a BBN (i.e. nodes with incoming arcs) has an associated condi-
tional probability table (CPT). These BBN conditional probabilities in the AREL context
quantify the extent in which an architecture element influences the validity of a decision,
or the extent in which a decision may change a resulting architecture element. All AR

nodes and all non-root AE nodes in the BBN representation of AREL are assigned CPTs,
which quantify the causal dependency on their parents. These probabilities are assigned
by the architects using their past organisational experience and their assessment of the
current situation.

Given the fundamental structure of AEi → ARj → AEk, AEi is either a root node
with an assigned prior probability P (AEi), as described above, or a non-root node with a
CPT. The probability of ARj is conditionally dependent on the event that has occurred
to AEi, represented by P (ARj |AEi). The probability of AEk is conditionally dependent
on the event that has occurred to ARj , represented by P (AEk|ARj). The joint probability
is therefore the product of multiplying probability tables of AEk, ARj and AEi. This cal-
culation is called marginalisation and the resulting probability is the marginal probability
[83].

An example of the simplest AE1 → AR1 → AE2 substructure might be when a
decision (AR1) of using a .Net framework (i.e. output AE2) depends on the basis that
the Microsoft Windows is the operating system platform (i.e. input AE1). If this decision
is based only on the single input, this is represented by the CPT entries

• P(AR1 = valid|AE1 = stable)=1

• P(AR1 = invalid|AE1 = volatile)=1

173

10.2. Building a BBN to represent an AREL model

• P(AE2 = stable|AR1 = valid)=1

• P(AE2 = volatile|AR1 = invalid)=1.

In this extreme case, a change in the input AE1 to a Linux operating system would
completely invalidate the AR1 decision, which in turn renders the use of the .Net frame-
work, represented by AE2, 100% volatile.

Of course, in real designs there are interactions between multiple AEs and ARs, and
hence the BBN structures are more than chains. Also, the nature of the relationships may
be more complex and less deterministic, which can be represented by probabilities other
than just 0 and 1 in the CPTs. We will now look at how to quantify such more complex
relationships, by considering in turn the three basic forms of relationships identified above
in Figure 10.2.

Relationship A

If an AE is an input (i.e. a cause) to a decision and an AR is dependent upon it,
any changes in the AE will affect the probability of the AR’s validity. Figure 10.2 shows
an example of a type A relationship where both AE1 and AE2 are architecture elements
that influence the decision AR1. The inputs in this relationship can be generalised to one
or more causes (AEs). If any of the input AEs of a decision (AR) changes, then there
is a possibility that the decision will no longer be valid. In this example, the conditional
probability of AR1 can be denoted by P(AR1|AE1, AE2). As all nodes are binary in
states, there are 4 possible combinations to consider for AR1 being valid.

• P(AR1 = valid|AE1 = stable, AE2 = stable).

• P(AR1 = valid|AE1 = volatile, AE2 = stable).

• P(AR1 = valid|AE1 = stable, AE2 = volatile).

• P(AR1 = valid|AE1 = volatile, AE2 = volatile).

Note that in each case P(AR1 = invalid)= 1−P(AR1 = valid). For the situation
where all the AE causes are stable and not subject to change, the CPT entry for P(AR1 =
valid) reflects the confidence in the correctness of the original rationale for the architecture
decision. We would expect in most cases it would be set to 1, or very close to 1. Conversely,
the CPT entry for P(AR1 = valid) would be lowest in the situation where all the AE

causes are volatile.

174

10.2. Building a BBN to represent an AREL model

For the intermediate situations where one or more, but not all, of the AE causes are
subject to change, the CPT entries must be chosen carefully to reflect the relative weight
of the individual causes on the architecture decision. For example, if there are two AE

causes and both were of equal weight, say x, when making the decision, the CPT entries
would be the same.

• P(AR1 = invalid|AE1 = stable, AE2 = volatile) = x

• P(AR1 = invalid|AE1 = volatile, AE2 = stable) = x

The actual value of x must then reflect the causal impact a single volatile AE is
expected to have on the decision; x close to 1 means the decision will become invalid even
with the single volatile cause, 0.5 means a fifty-fifty chance, while x close to zero means
the decision is reasonably robust if only one AE cause is volatile. A more dominant (AE2)
and less dominant (AE1) cause combination might be represented by:

• P(AR1 = invalid|AE1 = stable, AE2 = volatile)=0.8

• P(AR1 = invalid|AE1 = volatile, AE2 = stable)=0.3

In this example, if AE1 is stable and AE2 is volatile, the probability of AR1 being
invalid is higher than if AE2 is stable and AE1 is volatile. It indicates that AE2 is more
influential to AR1 than AE1 because when AE2 becomes volatile, there is a higher chance
that AR1 will become invalid.

Relationship B

When an architecture decision is made, an AR is created to record the rationale and
linked with one or more resulting AEs. During architecture design, if a requirement
changes then it is possible that the AR depending on it will be invalidated and so all
resulting designs from that AR are more likely to be volatile and subject to change. Note
that there is no direct relationship between those AEs that are caused by the same AR,
so we need only consider the effect of the AR on each AE individually. In Figure 10.2, for
example, even though AE4 and AE5 are both dependent on AR1, they are independent
of each other given AR1. So the CPT P(AEi|AR) for each AEi is specified as follows:

• P(AEi = volatile|AR = valid)

• P(AEi = volatile|AR = invalid)

175

10.2. Building a BBN to represent an AREL model

Note that in each case P(AEi = stable) = 1− P(AEi = volatile). In most cases, while
the AR is valid, we would not expect the AE to change, hence P(AEi = volatile|AR =
valid) would be close to 0. Conversely, if the AR is invalid, the AE is much more likely to
change. The more an AE depends on an AR, the more likely it is subject to change when
AR becomes invalid, and hence P(AEi = volatile|AR = invalid) becomes closer to 1. If
an AE depends only very loosely on an AR, then P(AEi = volatile|AR = invalid) might
be set much lower than 1. In Figure 10.2, AR1 → AE4 and AR2 → AE6 are examples of
relationship B.

Relationship C

It is possible that an AE is the result of multiple separate decisions (ARs). For
example, in Figure 10.2, AE5 is the result of two separate decisions AR1 and AR2. The
conditional probability of AE5 can then be defined as P(AE5|AR1, AR2). Since AE5 is
dependent upon both decisions AR1 and AR2 simultaneously, estimates for the CPT can
be expressed as:

• P(AE5 = volatile|AR1 = valid, AR2 = valid)

• P(AE5 = volatile|AR1 = valid, AR2 = invalid)

• P(AE5 = volatile|AR1 = invalid,AR2 = valid)

• P(AE5 = volatile|AR1 = invalid,AR2 = invalid)

The causal relationship being modelled in this CPT is essentially an additive one: the
more decisions that are invalid, the higher the probability that the common resultant AE

will be volatile. While all of the decisions are still valid, the CPT entry for P(AE5 =
volatile) will be close to zero, and if all the decisions are invalid, it will be close to 1. For
the intermediate situations where one or more, but not all, of the AR decisions are invalid,
the CPT entries must be chosen carefully to reflect the relative weight of the individual
decisions on the resultant AE. Assuming AR1 has more influence on AE5 than AR2 in
the example, the cause combination could be represented as:

• P(AE5 = volatile|AR1 = invalid,AR2 = valid) = 0.8

• P(AE5 = volatile|AR1 = valid, AR2 = invalid) = 0.3

These CPT entries mean that the combination where AR1 is invalid and AR2 is valid
is quite likely to cause AE5 to be volatile (probability 0.8). Conversely, when AR1 is
valid and AR2 is invalid, the probability that AE5 is volatile is lower (0.3), signifying less
influence by AR2. In other words, AR1 has a larger impact on AE5 ’s volatility than AR2.

176

10.3. Reasoning about change impact with AREL

10.3 Reasoning about change impact with AREL

10.3.1 An example

In this section, we build on the example of designing the message processing module
to illustrate how to use quantifiable change impact analysis with BBN. This example is
explained in the case study in Section 7.1.3. As discussed previously, one of the key
issues in payment messaging design is to optimise its performance, and a key factor is
whether payment messages are processed synchronously or asynchronously. In this case,
asynchronous messaging was selected and a chain of architecture design decisions and
design objects were formed (see Figure 10.3). When considering the payment messaging
design, security issues such as authenticity and privacy must be considered as well. It is
because security features could influence the software architecture, especially in the areas
of exception handling and acknowledgement processing. In the following, we will consider
the payment messaging design together with its security features.

Figure 10.3: Payment Messaging Design: Asynchronous Message Processing

Payment messages are transmitted over different networks and some parts of those

177

10.3. Reasoning about change impact with AREL

network may be vulnerable to attack. It is possible to tamper with the payment messages
by intruding the networks or the computers. So security protection of payment messages
is a key issue in designing payment system. The following are three additional security
requirements that need to be considered in message processing:

• R2 4 3 Privacy of Payment Message - payment messages are encrypted to protect
the privacy and confidentiality of the transaction.

• R2 4 1 Payment Message Authenticity - when a payment message is authenticated,
it means that the system recognises that this payment message can only be sent
by the authorised person or organisation. The non-repudiation characteristic of
payments thus forms the legal basis of a payment system.

• R2 5 7 Payment Message Integrity - this mechanism ensures that the payment mes-
sage has not been modified in any way during its transmission. It is used to protect
the payment message from hackers and transmission errors.

In Figures 10.4, we show the security design decisions using the AREL representation.
Decision AR29 is about the implementation for the privacy requirement, it was decided
that a software algorithm would be used to implement this feature. Similarly, AR17
and AR12 are decisions to implement design objects to cater for both the authenticity
requirement and the message integrity requirement using a software module C4 2 5. This
module basically calculates a Message Authentication Code (MAC) which is based on a
special key shared between the sender and the receiver only. If the code checks out, then
it proves that the message is originated from a specific sender and no one else. It also
proves that the message has not been tampered with during its transmission.

Now that a software algorithm to guarantee payment messages’ privacy and authen-
ticity is used, one must be certain that the security keys used in the calculation cannot
be compromised. Thus, decision AR30 is made to manage the security keys for such
purposes. At the time of the decision, PKI was not commercially available in the chosen
platform and so this alternative was not implementable.

As part of the validation, we need to decide on how to manage the processing sequence
(i.e. AR13). The sequence number ensures that the payment message to guarantee that
there are no gaps in a series of messages. If the check fails, then the payment message is
rejected, this is achieved by C4 2 9.

Figures 10.5(a) and 10.5(b) show the BBN representation of an AREL model for the
system with probability tables showing the prior probabilities and CPTs of the payment

178

10.3. Reasoning about change impact with AREL

Figure 10.4: Payment Messaging Design: Security

message design. In Figure 10.5(a), requirement R2 3 5 specifies that the system has to
handle multiple bank connections and requirement R4 1 3 specifies that payment messages
must be properly acknowledged. These requirements cannot be compromised or changed
and so their prior probabilities are set to 1 (or 100%) 3. Similarly, requirements 2 5 1
and R2 5 2 specify no loss and no duplicate processing is allowed, their prior probabilities
are set to 1. Requirements R2 3 1 specifies that the daily transaction is 8000 high-value
payment messages per day, this can change over time and its prior probability is set to
0.6.

3The probability can be represented by a number between 0 to 1 or its equivalent in percentage point
between 0% to 100%

179

10.3. Reasoning about change impact with AREL

Decision AR10 depends on four requirements (i.e. R2 3 1, R2 3 4, R2 3 5 and R4 1 3).
From the conditional probability table (CPT), R4 1 3 is more influential to AR10 than
the other three requirements because when it becomes volatile, the probability that AR10
is valid drops to 0.2. (i.e. P (AR10 = V |R2 3 1 = S, R2 3 4 = S, R2 3 5 = S, R4 1 3 = V)
= 0.2) The influence is due mainly to whether acknowledgement message should be pro-
cessed asynchronously or not.

(a)

(b)

Figure 10.5: A BBN Representation with prior probabilities/CPTs of a Payment Message
Design: (a) Asynchronous Message Processing (b) Security

AR14 depends on requirements R2 5 1, R2 5 2 and design C4 2 4. However, C4 2 4

180

10.3. Reasoning about change impact with AREL

is most influential because if we change the fundamental design of asynchronous process-
ing, say to synchronous, then the assumption of how to detect loss of acknowledgement
messages would change and the subsequent design would also be different. This is reflected
in the CPT of AR14 where the probability of C4 2 4 being volatile whilst the other re-
quirements being stable is 0.3. C4 2 4 also affects decisions AR13 and AR16, their CPTs
are shown in Figure 10.5(b).

Figure 10.5(b) shows the prior probabilities and the CPTs of the security design for
payment message processing. There are a number of key decisions, AR13 is a decision on
the processing steps of MCP. It is influenced by C4 2 17 because it must be decrypted
before the message can be processed. It is influenced by C4 2 5 because the message
must then be validated. If validation fails, the message is sent back to the originator with
a negative acknowledgement immediately. The decision is influenced by C4 2 4 because
this decision is based on the assumption that the treatment of acknowledgement is asyn-
chronous, therefore MCP must be stateful, i.e. MCP has to remember the status of a
payment message so that when the acknowledgement is returned at some point in the
future, it could be matched to the original message.

AR16 is a decision on processing acknowledgement. It depends on a number of factors
including C4 2 4, C4 2 5 and C4 2 17. The decision relies heavily on C4 2 4 in that if
the acknowledgement processing model changes, it is highly likely that the decision will
become invalid.

10.3.2 Original beliefs modelled by AREL

The AREL model in Figure 10.6 is a representation combining the illustrations in Figure
10.5(a) and 10.5(b) without the details of the prior probabilities and CPTs. It shows the
marginal probability distribution when no evidence (i.e. change) has been added. The
specific visualisation format is provided by Netica [107] BBN software. The visualsation
includes the name of each node across the top, the state names are on the left hand side
of the nodes (valid/invalid for AR nodes and stable/volatile for AE nodes). Marginal
probabilities are shown as percentages (e.g. 85.6% and 14.4% for AR10) by the two
horizontal bars. The marginal probabilities, for instance, of a leaf-node such as C4 2 9,
are calculated based on its own CPT and the CPTs and prior probabilities distributions
of its ancestors. For instance, the marginal probability of C4 2 9 indicates that based
on the current requirements and design, there is a probability of 0.70 (shown as 70% in
Figure 10.6 by Netica) that the design is stable.

181

10.3. Reasoning about change impact with AREL

Figure 10.6: An Example BNN Shown with Beliefs Before Any Evidence is Entered

10.3.3 Predictive reasoning

As the requirement or the environment in the system changes, we want to predict their
effect in terms of possible architecture design changes. Being able to identify the areas
that are likely to change would improve both the accuracy and efficiency of architecture
enhancements. Recall from Section 10.2 that reasoning in a BBN means users first set
the values of certain nodes in the network to indicate evidence that has been gathered
about the system. For the AREL BBN model, setting values means that change takes
place in the system. These changes are then propagated through the network, producing
a new probability distribution over the remaining variables in the network [83], showing
the what-if scenarios of the impact of change. Multiple changes could be introduced
simultaneously. Let us consider how we can do this type of predictive reasoning in the
BBN representation of AREL.

To add one or more likely changes as evidence to the AREL model, an architect would
instantiate the BBN with evidence that an AE is “volatile”, i.e. volatile state is et to 100%.
The BBN belief updating algorithms would then compute the posterior probabilities for
AR and AE nodes which are affected by the additional evidence in the network. The
architect can assess the change impacts based on the posterior probabilities. In particular,
which decisions (AR nodes) are more likely to be invalid and which architecture elements
(AE nodes) are more likely to be volatile.

182

10.3. Reasoning about change impact with AREL

Figure 10.7: Predictive Model

Let us assume that the bank wants to enforce a stronger privacy policy. It means that
the requirement R2 4 3 would change and become volatile. This change is inserted as
evidence to set the volatile state of R2 4 3 to 100% (see highlighted node in Figure 10.7).
Given this evidence, we can do a what-if analysis and predict that there is a 90% chance
that the decision AR29 will be invalid leading to a 82% chance that design decision C4 2 17
will be volatile. This prediction is based on the strength of the relationship, represented
by CPT, between architecture design reasoning and its motivational reason, as well as the
strength of the relationship between the design outcomes and the design reasoning. We
predict that if R2 4 3 is to change, there is a 82% chance that C4 2 17 would be affected
and subject to change.

This volatility also ripples through AR16, C4 2 9, AR13, C4 2 6, AR30 and C4 2 18.
This is because all these nodes are indirectly and conditionally dependent on R2 4 3. For
the ARs, the probabilities of their validity have decreased. For the AEs, the probabilities
of their volatility have increased. Note that apart from these nodes, the rest of the BBN
network remain unchanged. This is because those nodes are conditionally independent of
R2 4 3 and its descendants. That is, a change in R2 4 3 has no effects on them. This
phenomenon is called direction-dependent separation or simply d-separation (see [73, 83]
for details).

BBN enables architects to predict the likelihood of change impact in the related parts

183

10.3. Reasoning about change impact with AREL

of the architecture design when a modification(s) is introduced to the system architecture.
The quantification provides a means by which architects can assess how likely the system
are to be affected.

10.3.4 Diagnostic reasoning

Another use of BBN reasoning in AREL is to diagnose possible causes and influences in
architecture design. As shown in the preceding section on predictive reasoning, changes in
the high-level requirements or design objects might affect the decisions and architecture
elements which depend on them. Conversely, given an architecture element, an architect
might want to discover what influences this architecture element, and the reasoning is
based on the requirements and decisions that it depends on and the strength of that
dependency. When a dependent design object is subject to change, the reasons of the
change might be due to changes in its ancestor objects such as requirements. 4 The
BBN can be used to diagnose these possible causes or influences by identifying changes
in the posterior probabilities of the ancestor nodes. Note that such diagnostic reasoning
propagates “backwards” against the direction of the edges, which represent the causal
relationships.

In AREL modelling, such diagnostic reasoning might take place if evidence is inserted
into a non-root AE. For instance, the current alarm service requires that for every payment
message that is entered into the system, an alarm needs to be set using the UNIX signalling
method (i.e. signal(2)) and the alarm is recorded in the database for recovery purpose. If
an acknowledgement does not arrive in time, the alarm will sound to trigger the follow-up
actions. This mechanism is processing intensive and complex.

Let us analyse the scenario of changing the Alarm Service design C6 0 0. The reason
for this analysis is so that we can discover which AEs the design object is depended on.
First, we set C6 0 0 ’s volatile state to 100% (see Figure 10.8), we observe that the posterior
probabilities of decisions AR15, AR14, AR10, AR13, AR30 and AR16 will change to
become less valid. Also, the posterior probabilities of the root nodes that C6 0 0 depends
on have had their volatility increased. As such, we diagnose that the requirements R2 3 1
and R2 3 4 influence the design. Requirements R2 3 5, R4 1 3, R2 5 1 and R2 5 2 are
also root nodes of C6 0 0, indirectly. However, they have their stable state set to 100%
because these requirements cannot be altered, thus their volatility have shown no change.

The posterior probabilities of design objects C4 2 4, C4 2 7, C4 2 6, C4 2 18 and
4Changes might also be caused by new external elements, i.e. external causal intervention. As such,

new root-nodes can be used to model the change.

184

10.3. Reasoning about change impact with AREL

Figure 10.8: A Diagnostic Model

C4 2 9 have had their volatility increased. In particular, C6 0 0 depends indirectly on
C4 2 7 and C4 2 4. The volatility of C4 2 7 has increased from 18.8% to 56%. C6 0 0 is
affected by C4 2 7 because the purpose of the alarm service is to notify the error processing
unit that an error has occured. Tracing backwards, this design is in turn caused by
C4 2 4 where asynchronous acknowledgement mechanism has been chosen. The volatility
of C4 2 4 has increased from 18.0% to 35.6%. The increase in the volatility indicates the
level of dependency between the AE node in question and the nodes in which that AE

node depends on.

Out of the eight AE nodes and six AR nodes that are affected by a change in C6 0 0,
only four AE nodes and three AR nodes are ancestor nodes of C6 0 0. They are circled
in Figure 10.8. The rest of the affected nodes are conditionally dependent on C4 2 4 but
C6 0 0 does not depend on them. When evidence is inserted into C6 0 0, the reasoning
process diagnoses the dependency on its ancestor nodes. This chain of reasoning is per-
formed in a backward direction. Notice that a change of posterior probabilities in C4 2 4
has triggered an update of its dependent nodes (i.e. AR13, AR16 and their descendant
nodes). This mechanism highlight possible changes in these nodes if C4 2 4 is to change.
As such, the ripple effect of architecture changes can be high-lighted through their depen-
dent relationships. This is an enhancement to the manual traceability methods described
in the last chapter.

Such diagnostic reasoning is useful because, before any changes are introduced to the

185

10.3. Reasoning about change impact with AREL

system, architects can investigate the possible causes (i.e. both architecture elements and
decisions) which contribute to the being of the design object. As such, considerations of
these causes could be made to ensure the design consistency.

10.3.5 Combining diagnostic and predictive reasoning

When an architecture is subject to impact analysis in a real-life project, it is often necessary
to understand the relationships between the design object which is undergoing modification
and other design objects which might be affected by such modification. The side-effects of
a modification may come from a few areas: (a) design objects which are directly affected
by the modification; (b) requirements, constraints or assumptions which are in conflict
with the modification; (c) other design objects that may be indirectly affected when the
requirements, constraints or assumptions are compromised.

Using BBN’s diagnostic and predictive reasoning, architects may use posterior proba-
bilities to guide the traversal of the AREL network to quantify likely changes within the
network. Based on the message processing example shown in Figure 10.6, we investigate
the changes that are likely to happen to the design of the system if we are to modify
C4 2 9.

C4 2 9 is responsible for sending acknowledgement messages to a bank that originates
a payment message. It is also responsible for receiving acknowledgement from a bank after
sending it payment messages. In either case, only when an acknowledgement is received
or sent would a payment message be considered legally binding. With the current design
of the system, the system has to reconcile what acknowledgements have not been sent
or received using a signalling mechanism. The design seems complicated and resource
intensive. We are to investigate what-if this mechanism is to change and which parts of
the system would be impacted.

Using the BBN network, we set the evidence and quantitatively analyse the likelihood
of change. Table 10.1 illustrates a sequence of reasoning steps to find out how setting
the evidences for C4 2 9 and other architecture elements could affect the validity of ar-
chitecture rationales and the volatility of architecture elements. This combined reasoning
process involves using both the BBN diagnostic reasoning and predictive reasoning. The
leftmost column in Table 10.1 shows the name of the BBN node (grouped by the AE nodes
in the upper set, and the AR nodes in the lower set). Each of the remaining columns shows
the change that is being investigated at each step, corresponding to the evidence being
entered into the BBN, by setting the appropriate AE volatility to 100%.

The following is a description of the reasoning steps that are illustrated in 10.1:

186

10.3. Reasoning about change impact with AREL

Table 10.1: Volatility of Architecture Elements and Validity of Architecture Rationales
over a Sequence of Changes

BBN Node Step 1 Step 2 Step 3 Step 4
Modify Modify Modify Modify
C4 2 9 C4 2 4 C4 2 7 C6 0 0

AE nodes – Volatile State
C4 2 9 Ack Processing 100%
C4 2 4 Asyn Msg Processing 41.9% 100%
R2 3 1 8000 HVPS 45.6% 59.2%
R2 3 4 1 Bank =50% vol 45.6% 59.2%
C4 2 5 Mac Processing 25.4% 18.4%
R4 2 6 MCP Driver 38.9% 51.5%
R4 2 18 Key Management 33.1% 31.2%
C4 2 7 Error Detect 30.5% 59% 100%
R6 0 0 Alarm Service 33.2% 51.2% 77% 100%

AR nodes – Invalid State
AR16 75% 96.4%
AR30 28.9% 26.5%
AR13 36.1% 51.8%
AR10 32.4% 76.2%
AR14 29.3% 70% 94.9%
AR15 31.4% 51.3% 80% 98.7%

• Step1 – evidence is inserted in C4 2 9 (i.e. its volatility is set to 100%) to reflect that
the module has to change. The change triggers probabilities to be updated in the
network as shown in the column (step 1) of table 10.1. At this juncture, we try to di-
agnose the requirements and design which are closely related to the acknowledgement
processing. Traversing backwards from C4 2 9, we can see that two requirements
R2 3 1 and R2 3 4 are shown to be the possible causes of this change(i.e. inserting
evidence in C4 2 9 increases R2 3 1 and R2 3 4 ’s volatility from 40.0% to 45.6%).
The increased volatility helps us to reason that the performance requirements play
a part in the design. The change in the posterior probability of C4 2 4 from 18.0%
to 41.9% indicates that it is sensitive to a change in C4 2 9, so this architecture
element is subject to a major impact in the design change.

• Step 2 – We insert the evidence in C4 2 4 (i.e. its volatility is set to 100%) to
contemplate that it is being changed, and we examine what change impacts it may
have on the rest of the system. At this point, we reason that the complexity of
the acknowledgement process is due to the choice of asynchronous processing. This
design requires to store the status of each payment message so that the acknowl-
edgements can match up with the payment messages. This is a cumbersome and
ineffcient mechanism. Assuming we change it to a synchronous processing mecha-
nism and set the volitility of C4 2 4 to 100%, there is an impact on the node C4 2 7
that depend on it. Its volatility increase from 30.5% to 59%. Another part of the
system affected by this change is C4 2 6 and its volatility has increased from 38.9%
to 51.5%, indicating that the processing sequence might have to change.

187

10.3. Reasoning about change impact with AREL

• Step 3 – evidence is inserted in C4 2 7 (i.e. its volatility is set to 100%) to reflect
that the design object has to change. This is because when the asynchronous mes-
saging design changes, its error detection mechanism would have to change as well.
The MCP process will handle error processing immediately. In this way, the error
detection in C4 2 7 must change.5 The change in C4 2 7 has an impact on C6 0 0
further down the network in that alarms would no longer be needed to be set for
each payment message. The volatility of C6 0 0 thus rises from 51.2% to 77%.

• Step 4 – evidence is inserted in C6 0 0 to indicate changes in the alarm setting
processing. Since there are no other architecture design that depends on it, there is
no further change impact analysis that is required. As a result of this change, the
posterior probability of the invalidity of AR15 has increased from 80% to 98.7%.

Figure 10.9 shows the posterior probabilities of the full network after all predictive and
diagnostic reasoning have been performed, i.e. combining all the evidence for nodes C4 2 9,
C4 2 4, C4 2 7 and C6 0 0. Note that the posterior probabilities would be the same
regardless of the order in which the evidence was added, or if evidence for all five nodes
were added together. The change in the probabilities over the sequence of reasoning steps
is clearly crucial to supporting the human reasoning by the architect who is performing
the what-if analysis.

Figure 10.9: A BBN Model of Combined Reasoning
5C4 2 8 error recovery and all its associated architecture decisions and design are part of the original

architecture design. A change in C4 2 9 will affect this part of the system. The change impacts are not
shown here to simplify the illustration.

188

10.4. Discussions and limitations

This example demonstrates that in impact analysis, it is necessary to use both diag-
nostic and predictive reasoning in combination to help determine the change impacts. One
modification to the architecture often triggers a ripple effect where multiple modifications
are required.

10.4 Discussions and limitations

The BBN representation of AREL requires architects to supply the probabilities of the
AREL nodes. This relies on the architects’ experience and intuition. These estimates are
semi-objective in nature where different architects may provide different estimates given
the same design scenario. However, in the longer-term architects should be able to sup-
ply consistent and accurate estimates because feedbacks of any inaccuracies would help
architects to refine their estimates. Having to provide an accurate probability value to
a fine degree of granularity, say one percentage point, would be difficult and probably
meaningless. One possible way to overcome this granularity issue is to specify the proba-
bilities with a qualitative verbal scale. For instance, the volatility of an AE node could be
specified as very high, probable, fifty-fifty, improbable and impossible. These ordinal cat-
egories can then be mapped into probabilities, and tests can be undertaken to determine
the calibration of that mapping to obtain the desired outcomes of such modelling. We
argue that although the approximation may not be as accurate, it provides some useful
information to assist architects in their analysis. A similar risk assessment categorisation
has been suggested by [19]. A Netica-compatible software tool [65] for such qualitative
elicitation of probabilities and verbal maps already exists. Interested readers are referred
to [83] for a comprehensive discussion of the subject.

BBN provides an estimation for architects to quantify change impacts, which is an
evidence to investigate into certain parts of the architecture deisgn that might be subject
to change. The usefulness of this method will be enhanced if the costs and the risks of the
possible changes are quantified. This is the goal of our future research.

A survey has indicated that architects carry out impact analysis by tracing require-
ments, analysing the design rationale and considering constraints and assumptions of the
design (see Section 5.3.7). Such activities can be supported by the traceability approach
described in Chapter 9. However, there are two challenges if this approach is used alone.
Firstly, the strength of the relationships between architecture decisions and elements can-
not be quantified. BBN overcomes this issue by using quantitative reasoning to estimate
the likelihood of the change impacts to an architecture design. Secondly, a change in the
architecture design may create a ripple effect that cannot be traced easily. A change in a

189

10.5. Summary

design object may cause a change in a requirement, and the impact on the requirement
may have an impact on other disparate design elements. In this instance, forward and
backward tracings may not be sufficient to uncover all change impacts. On the other hand,
BBN can compute the likelihood of change that ripple through the network. Therefore,
these two approaches are complementary to each other in supporting design reasoning and
system maintenance activities.

It is obvious that not all system designs need to apply BBN to AREL, smaller systems
that are easy to trace and understand will gain very little from it. We suggest that large,
complex and long life-span systems that contain intricate design decisions to cater for
extensive non-functional requirements are candidates to use AREL with BBN.

The assignment of probabilities to AREL nodes individually can be laborious, it might
be a cost-saving measure to automatically assign CPTs. To make this possible, architecture
design patterns with pre-assigned probabilities are required. Architecture design patterns
can represent common ways in which decisions are made to deal with certain aspects of
a design. An example would be a security design in a system. Such architecture design
patterns would capture the essence of a design and the probabilities of change impacts.
When architecture design is carried out using design patterns, its repeated use would help
improve the accuracy of the probability estimation for change impact analysis.

10.5 Summary

In this chapter, we enhance the AREL model to provide a quantifiable reasoning structure
using the Bayesian Belief Networks. It enables architects to quantify change impacts to
architecture decisions and elements using probabilities. We have identified three different
reasoning methods in which change impacts can be analysed: (a) predictive reasoning;
(b) diagnostic reasoning; and (c) combined reasoning. With these methods, architects
can carry out quantitative analysis to predict the probability of change in an architecture
design. These methods are complementary to the traceability and qualitative analysis
methods presented in earlier chapters.

190

Chapter 11

Tool implementation

In the previous chapters, we have described the AREL representation and its applications
to support architecture design and maintenance. This chapter describes the tools used
supporting these activities. The AREL tool-set captures AE, AR, AAR and their rela-
tionships described in Chapter 6. It can be used to support the ARM process since it
captures the QLR and QNR (see Chapter 8). It supports the traceability methods (see
Chapter 9) and change impact analysis using BBN (see Chapter 10).

In an empirical study described in Section 7.2.4, expert designers have indicated that
the success of AREL would depend on its tool implementation. First of all, they think that
a graphical tool is important to represent such relationships. They suggest that without a
graphical tool, it would be ineffective to use AREL because of the complex relationships
that might exist in a large system architecture. They further suggested that the tool must
be able to retrieve the information by allowing architects to specify the selection criteria
for information retrieval.

In addressing these needs, we have established four objectives when building the tool-
set to support AREL implementation: (a) the design tool should use commercially sup-
ported software so that it can integrate with architecture design processes in the software
industry; (b) the graphical notation must be an industry standard and as such we have
chosen to use UML; (c) a tight integration of the tool-set for easy learning and application;
(d) the tools must support the key features of the AREL applications.

The tool-set to support the AREL applications comprises of three components, Enter-
prise Architect [150], Netica [107], and our custom-built AREL Tool. Together they form
the AREL tool-set. Their relationship is shown in Figure 11.1. The three components
of the AREL tool-set exchange information via the Enterprise Architect repositories and

191

11.1. Capturing architecture design rationale

Netica repositories.

Figure 11.1: The AREL Tool-set

The key features of the tool components are as follows:

• Enterprise Architect - a UML tool that supports the design of a system. We have
enhanced it to support architecture rationale capture and to relate architecture ra-
tionale with architecture design.

• AREL Tool - this is our custom-developed program to support consistency checking
of the AREL models and to support AREL model tracing. It also converts UML
models into Netica models.

• Netica - a BBN tool to support the capture of prior probabilities and CPTs. It
computes the posterior probabilities when evidence is inserted into the BBN.

A detailed description of the tool implementation to support AREL and its applications
are provided in the following sections.

11.1 Capturing architecture design rationale

Previous research in the area of design rationale has indicated that there are two usabil-
ity criteria for design rationale systems. Capturing design rationale must have minimal
interference with the design process [132] and the users of design rationale must be able
to retrieve the reasons to answer their “why such-a design” questions [62]. Therefore,
the tool set should be able to support both the architecture design process and the design
reasoning process. We address these issues in AREL by integrating commercially available
tools to our custom-developed programs to provide the functionality.

The tool to capture AREL models is a UML tool, Enterprise Architect (version
5.00.767). Since AREL is meant to be a part of the architecture development process

192

11.1. Capturing architecture design rationale

where UML modelling is done, therefore using the same notation to represent architecture
rationale provides consistency for the architecture design representation.

Since standard UML does not support the AREL extension, we have to enhance it
with stereotypes (see Section 6.6). In Enterprise Architect, a facility using Stereotype
Package is available to enable us to custom-define new stereotypes. The new stereotype
is an extension of the standard UML constructs with added definitions. In AREL, the
additional information that we need to capture are contained in architecture elements,
architecture rationale and their trace relationships. For instance, we create a stereotype
�AE� for a standard UML class. Additional information can be captured in an AE with
tagged values (see Figure 11.2). These values are encapsulated in an architecture element.

Figure 11.2: An Example of AE Tag Values

Similarly, the architecture rationale stereotype �AR� encapsulates additional infor-
mation. This is shown in Figure 11.3.

Figure 11.3: An Example of AR Tag Values

In order to make use of these stereotypes extension, the AREL stereotype package has
to be imported into Enterprise Architect. This package can be downloaded from [153]. The
installation instructions are contained within the downloaded package. Once the package
has been successfully installed, the user will see the AREL model elements that can be
used for capturing design rationale. This is shown in Figure 11.4. On the left hand side
is a list of AREL model elements that can be used for creating an AREL model.

Users can drag an AREL model element such as an AEclass icon from the list and
then drop them on the design canvas to the right hand side to create an instance of it.

193

11.1. Capturing architecture design rationale

Figure 11.4: The AREL Constructs for Modelling

This works similarly for design rationale AR. When the user needs to relate the AE to
the AR, the user has to click on ARtrace icon and drag the arrow from AE to AR. This
action creates the causal link between them to indicate that the AE is the motivational
reason for the AR decision. Similarly, AEsupersede and ARsupersede icons can be used
to connect superseded architecture elements and architecture rationale, respectively.

A key feature of AREL is capturing design rationale in AR and AAR. By using the
stereotype extension in Enterprise Architect, we provide a convenient way to input design
rationale using the design rationale capture templates. After creating an AR on the design
canvas, users need to drop QNR, QLR and AAR to manually create them within an AR.1

An AR contains information in a hierarchy as shown in Figure 11.5. Since AR is
implemented as a UML package, it can contain AAR, QLR and QNR. AAR is also
implemented as a UML package and it can contain QLR, QNR and the alternative design.

The design rationale captured in QLR and QNR are implemented using tagged values.
Users can enter the information through the pre-defined templates, one for each type of
design rationale. A sample of qualitative rationale QLR is shown in Figure 11.6 and a
sample of quantitative rationale QNR is shown in Figure 11.7.

1Unfortunately, we cannot automatically create the hierarchical structure in AR because we cannot
modify Enterprise Architect to integrate this feature. Please see Section 11.5 on the limitations of the tool.

194

11.2. Checking AREL models

Figure 11.5: A hierarchy of elements in an AR

Figure 11.6: An Example of a Qualitative Rationale (QLR)

11.2 Checking AREL models

The structure of the AREL model has been defined in a particular way so that architecture
rationale can be related to the architecture elements in a causal relationship. Its definition
is contained in Section 6.2. We had to implement a custom checking program called the
AREL Tool for a number of reasons: (a) we are not able to modify Enterprise Architect
to verify the AREL structure, we have developed the AREL Tool to read the Enterprise
Architect repository and to check the AREL model directly; (b) OCL is not implemented
in Enterprise Architect to support model checking; (c) although AREL model requires an
acyclic graph, users can still create a UML model that is recursive, as such the model
checking program must be a trigger to traverse the entire model and it must terminate,

195

11.2. Checking AREL models

Figure 11.7: An Example of a Quantitative Rationale (QNR)

hence a separate program is required. The AREL Tool is developed in Microsoft .Net and
runs on the Windows XP platform.

The consistency checking of the AREL model follows a number of rules:

• Detect any directed cycles in the AREL model. An error is shown when it happens.

• Detect any improper model construct which violates the AREL definition. The
anomalies are: two AEs are linked directly by �ARtrace� without an AR; two
ARs are linked directly by �ARtrace� without an AE; the leave node is an AR;
the root node is an AR. The tool reports these as errors.

• Detect any isolated items such as an AE or an AR which are not connected to any
other elements. The tool reports these as warnings.

The AREL Tool is contained in a program (i.e. EAModelProjectUI.exe). It is a stand-
alone program and can be downloaded from [155]. The installation of the program is done
by running Setup.exe. When the program starts up, the user has to specify the Enterprise
Architect repository that contains the AREL model. Then the AREL Tool would open
the repository and a number of options are displayed in a window for the user to select.
This is shown in Figure 11.8.

The user can click the Check Model button to start the consistency checking. When
checking is complete, the tool displays a screen to show any errors or warnings which are
present in the AREL model in a pop-up window. If any error is reported, then the result
would indicate that the AREL model is inconsistent. An example of the window is shown
in Figure 11.9. A detailed error report is also produced and it is located in the same
directory as the Enterprise Architect repository. If errors are present, users will need to
update the AREL model to correct them and re-run the AREL Tool to check that they
have been fixed. The user manual of the AREL Tool is contained in Appendix A and so
its operations are not described in details here.

196

11.3. Tracing AREL models

Figure 11.8: AREL Tool Menu Options

Figure 11.9: AREL Tool Consistency Check Results

11.3 Tracing AREL models

As discussed in Chapter 9, the tracing of architecture rationale and architecture elements
is important to help architects understand architecture design reasoning. The AREL Tool
enables architects to specify and trace an AREL model. Architects can select the Trace
Model button to activate tracing (see Figure 11.8) and a new window would be displayed
(see Figure 11.10).

Architects then input a valid architecture element AE which is where tracing will
begin. Architects then select the Element Type(s) and the Element Subtype(s) to spec-
ify those elements that are required. There are four different viewpoint types classified
in AREL: Business, Information, Application and Technology. Each of them provides a
perspective to represent the architecture. There are five sub-viewpoints in the Business
Viewpoint, they specify different types of drivers which motivate the creation of an archi-
tecture. These sub-viewpoints are functional requirements, non-functional requirements,
information system environment, business environment and technical environment. Ar-

197

11.3. Tracing AREL models

Figure 11.10: Window for Specifying AREL Trace Criteria

chitects may select all of the viewpoints or only those viewpoints that are interesting to
them .

Architects also need to specify the trace actions. The trace actions dictate whether the
traceability is to be forward tracing, backward tracing or both. In forward tracing, only
those AEs and ARs which are forwards from the specified AE are retrieved (i.e. same
direction as ARtrace links). In the backward tracing, only those AEs and ARs which
are backwards from the specified AE are retrieved (i.e. opposite direction as ARtrace

links). When both actions are specified, then all forwards and backwards AEs and ARs

are retrieved.

The AREL Tool starts tracing from the specified AE element to the root nodes in a
backward tracing, and to the leaf nodes in a forward tracing. If the architecture elements
do not belong to the specified element type or element sub-type in the scope of tracing,
then normally these unwanted elements will not be retrieved in the result. However, there
is an exception. If the unwanted elements (i.e. those elements which types have not been
specified) are part of a causal relationship between an AE where tracing starts and AEs

which are part of the desired results, then the unwanted elements are retrieved. This
is because if these unwanted elements are not retrieved, the chain of causal relationship
would be broken.

The results of the trace is created within the Enterprise Architect repository in a

198

11.4. Analysing AREL with BBN

separate diagram called Traceability Graph. A sample of a result is shown in Figure 11.11.
Through Enterprise Architect, architects can access the results of the tracing, explore the
design rationale contained in the ARs and so on.

Figure 11.11: An Example of AREL Trace Result

11.4 Analysing AREL with BBN

As noted earlier, Enterprise Architect does not contain any functionality to capture or
compute the probabilities required in a BBN. The reason for it is because we cannot build
this facility into Enterprise Architect without implementing all the BBN functionalities.
It would be a highly complex exercise. Therefore, we rely on another program to perform
the BBN functionalities. Netica (version 2.17) [107] provides the BBN functionalities that
allow us to implement the AREL-BBN modelling and it has the flexibility to interface
with other packages as well.

The nodes and links in an AREL model is constructed with Enterprise Architect, and
it has to be an acyclic graph to be used for BBN computation. The probability capture
is performed by Netica. As such, the information which are captured by the two packages
need to be merged together.

The steps to create and merge this information are described below (also see Figure
11.12):

199

11.4. Analysing AREL with BBN

• Step 1 - construct the design objects and capture the design decisions using Enter-
prise Architect.

• Step 2 - use the AREL Tool to convert the AREL model in the UML notation
into the Netica repository format (i.e. Netica .dne extension). This is achieved by
clicking the Export BBN button to export the AREL model to Netica.

• Step 3 - Netica reads the exported file and designers can assign prior and conditional
probabilities to AEs and ARs for BBN computation.

Figure 11.12: A Process to Extract AREL Model from UML into BBN

As designers continue to make decisions and modify the decision structure over the life-
span of a system, the AREL model (in UML) would change accordingly. These changes
need to be reflected in Netica without having to re-enter all the probabilities previously
assigned. This would happen when the following design changes take place:

• AE and AR nodes are added - prior or conditional probabilities need to be captured
for the new nodes.

• AE and AR nodes are deleted - those nodes which depend on the deleted nodes
should have their CPTs adjusted.

200

11.5. Limitations

• new links are added or existing links deleted - the CPTs of affected nodes need to
be adjusted.

Given that the UML repository contains the most current version of the AREL model,
and the BBN model already contains some assigned probabilities, the BBN model needs
to be updated and synchronised with the current AREL model. Figure 11.13 shows an
example of how to synchronise them.

• Step 1 - the AREL model has been updated.

• Step 2 - the AREL model in UML is converted to the Netica format using the AREL
Tool. This is achieved by clicking the Export BBN button to export the AREL model
to Netica.

• Step 3 - since there already exists a BBN representation of the AREL model prior
to the update in Step 1 and we want to retain the probabilities that have already
been entered, so we merge the probabilities from the original BBN representation
with the newly exported model. This is achieved by using the Merge BBN button to
merge the two files. The result of the merge is to create a new BBN model with the
latest AREL structure and the probabilities from the previous BBN model merged
with the new model.

• Step 4 - after merging the two sources, the BBN model now reflects the new AREL
structure. However, the nodes in this model which have been affected by any changes
require probabilities assignment and/or adjustments. The probabilities can be en-
tered using Netica.

Using a combination of Enterprise Architect, AREL Tool and Netica, we provide the
necessary tools to automate the design rationale capture, retrieval, traceability, change
impact analysis and BBN reasoning.

11.5 Limitations

As noted at the beginning of this chapter, we have set ourselves a number of objectives
when constructing the AREL tool-set and most of them have been achieved. However,
there are a number of limitations. First, AREL operations cannot be tightly integrated
with Enterprise Architect. For instance, the AREL operations cannot be directly activated
from the Enterprise Architect menu options to fully integrate AREL functionalities into

201

11.5. Limitations

Figure 11.13: A Process to Synchronise Change between UML and BBN

Enterprise Architect. This is because of a software incompatibility between Enterprise
Architect and the Microsoft SOE at the university. The only option that we had at the
time was to develop a program to access the Enterprise Architect repository to provide
a similar functionality. The usability is compromised because of this restriction. As a
prototype to demonstrate the concept, the tool provides sufficient functionality to carry
out the key tasks.

Second, we have no access to the source code of either Enterprise Architect or Netica,
therefore there cannot be a seamless integration where prior probabilities and conditional
probability tables can be captured and computed within the UML tool. The integration
of the two tools can only be achieved by using our custom-developed programs to access
their respective repositories and creating intermediate files for their integration.

Finally, although most of the AREL features described in this thesis have been im-
plemented, the AREL tool-set is a proof-of-concept and it is immature for real-life ap-
plications. This is because a number of usability features must be implemented if it is
to be widely used in a commercial setting. For examples, automatic creation of an AR

package; the ability of the UML tool to provide multi-perspective views. Users want to be

202

11.6. Summary

able to show, hide and search architecture decisions, elements and relationships based on
the perspectives that are sought. Also, the automation and usability features to support
eAREL are not implemented. However, such features can be realised in a commercial
implementation quite easily.

11.6 Summary

In this chapter, we have described the tool-set to support the capture and applications
of the AREL model. The tool-set comprises three elements: Enterprise Architect is a
commercially available tool for drawing UML diagrams and performing object oriented
design; Netica is a commercially available tool for computing BBN; the AREL Tool inte-
grates them together.

We have enhanced Enterprise Architect to enable architects to capture quantitative
and qualitative design rationale. The AREL Tool supports the traceability of the AREL
model. It creates trace results in UML for analysis by architects. The AREL Tool checks
AREL models to ensure that they are consistent and error free. Since the application of
BBN requires data inputs from both Enterprise Architect and Netica, the two sources of
information have to be merged. This function is performed by the AREL Tool.

203

Chapter 12

Conclusions

12.1 Summary

A fundamental issue of architecture design presently is a lack of systematic approach to
design reasoning. The quality of system and software architecture design can be highly
dependent on the person who designs it. How architecture is designed depends on an
architect’s experience, knowledge and decision making abilities. As such, the reasoning of
design decisions directly affects the architecture design and its quality. Design reasoning
is an intuitive process that is performed by all designers, but little attention is paid to
its explicit deliberation, verification or documentation. As a result, it affects architecture
design in three ways: first, the reasoning behind an architecture design might be incorrect
or incomplete but there is no explicit information or design rationale for its verification;
second, once the system development has been completed, the architecture design can be
costly and difficult to change at that stage if it is incorrect or not optimal; finally, it is
sometimes difficult to understand the architecture design for maintenance purposes if the
design rationale is not documented.

In this thesis, we have investigated the use and documentation of architecture design
rationale in the software industry to understand the current practice. Based on the results,
we have proposed ways to improve the representation and the use of architecture design
rationale. In summary, we have addressed the following research questions in this thesis:

• Explore the use and documentation of architecture design rationale in the software
industry. The objective of this investigation is to establish a basis for the follow-on
research. A number of questions have been explored:

204

12.1. Summary

– Is design rationale important in architecture development?

– Is design rationale important in system maintenance?

– What is the current state of practice of design rationale in the software industry?

• How to improve the representation of design rationale for architecture development?

• How to implement the traceability between requirements, architecture design ele-
ments and design rationale?

• How to quantify and estimate change impacts using architecture design elements
and design rationale?

As a result of addressing these research questions, we have achieved the following.
Firstly, we have conducted a survey to establish the current practice of using and docu-
menting design rationale. We have found that most architects see the importance of design
rationale but the ways they document design rationale vary and are not systematic. Sec-
ondly, we have developed the Architecture Rationale and Element Linkage (AREL) model
to represent design rationale. The AREL model represents a causal relationship between
architecture rationale and architecture elements, which provides an explanation of how
requirements, assumptions and constraints can be related to architecture design objects.
Architecture rationale captures both qualitative and quantitative rationale. Together they
explain the architecture decision by recording the design issues, arguments, assumptions,
design alternatives, costs, benefits and risks. Thirdly, we have developed the Architec-
ture Rationalisation Method (ARM) to guide the architecture design process in decision
making. Finally, we have developed different applications of AREL for traceability and
change impact analysis. Their purposes are to support architecture development and
maintenance.

We have conducted an empirical study to test the viability of AREL based on inter-
viewing experts who develop electronic payment systems. Experts who participated in the
empirical study indicated that AREL can be very useful in helping architects understand
the design of a system. Based on an operational Electronic Fund Transfer System, we have
demonstrated how to capture and represent architecture design rationale using AREL. We
have also demonstrated how to apply traceability methods and BBN methods to support
change impact analysis.

We acknowledge that we have not quantified the cost effectiveness of using AREL,
which is context dependent on factors such as the system life-span, system complexity
and developers’ familiarity with the system. Despite all that, we have demonstrated and,
through the empirical study, obtained positive confirmation on the viability of this design

205

12.2. Contributions

reasoning methodology. We believe that the AREL model and the ARM process have
provided a new and systematic approach for architects to design systems.

12.2 Contributions

This thesis has presented a new approach, called Architecture Rationale and Elements
Linkage (AREL), to capturing and encapsulating the design reasoning of system and
software architecture. This is an improvement over the current software industry practice.
It is also an improvement over the argumentation-based design rationale methods. There
are a number of areas where this thesis has contributed to the knowledge of software
engineering.

12.2.1 Design rationale survey

We have conducted a survey on the use and documentation of design rationale. This
survey is important because it has established the need for having design rationale in
architecture design. From the survey, we have obtained evidence to support that design
rationale is an important part of the design documentation. Practitioners believe that de-
sign rationale should be documented. There is also a general perception that methodology
and tool support for design rationale is lacking and they are barriers to design rationale
documentation.

We have identified nine generic design rationales and the respondents have indicated
additional types of design rationale that are useful for design reasoning. Together they
form a basis for grouping and capturing design rationale. The survey results have indicated
that architects work on a variety of tasks such as requirements analysis, tender analysis,
architecture design and software design, as well as having management responsibilities.
Program design and test planning is a much smaller part of their job. In the survey,
we have found indications that there might be a tendency to present “good news” rather
than “bad news” during the design process. It is because of this likely bias, there is a
need to use design rationale to support the verification of the architecture design. The
survey has found that there is a strong justification to document design rationale due to
the architects’ tendency to forget their own design. It is also useful when architects have
to understand systems that are designed by the others.

The survey has shown that architects often carry out risk assessments in architecture
design. Over half of the respondents explicitly quantify risks. However, when they were
asked what risk level would be acceptable, there was no consensus. This implies that there

206

12.2. Contributions

is no common understanding on how to measure risks, and the risk assessment process in
architecture design is not well understood. It suggests that further investigation in this
area is required.

It has been found that the methodology and tool support for design rationale capture
and retrieval is inadequate. The various tools that have been reported, including word
processors and UML-based tools, do not have traceability features to support systematic
design rationale description and retrieval. Therefore, it is important to understand how
best to capture, represent and use design rationale and then develop tools to provide a
design rationale enabled development environment.

In summary, the survey has allowed us to gain an in-depth understanding of the appli-
cation of design rationale in the software industry. It has confirmed that even architects
consider them to be useful, there is little in terms of methodology and tools to support
their applications. The survey has established the need to further study architecture de-
sign rationale, and clarified a number of important research questions that we address in
this thesis.

12.2.2 Design rationale representation

In this thesis, we have introduced a rationale-based architecture model (AREL) to repre-
sent architecture design rationale. The AREL model uses two types of reasoning support:
motivational reasons and design rationale. Motivational reasons induce architecture is-
sues that need to be resolved. Architecture design decisions are justified by architecture
design rationale which is comprised of qualitative rationale, quantitative rationale and
alternative design options. In an architecture design, intricately inter-dependent design
objects often have common requirements, assumptions, constraints and decisions. They
can be explicitly related and reasoned in AREL models. This reasoning support comple-
ments the documentation of design structures and interfaces commonly appeared in design
specifications.

AREL captures two types of design rationale: qualitative design rationale QLR and
quantitative design rationale QNR. QLR represents the reasoning and the arguments,
in a textual form, for and against a design decision. QNR uses indices to indicate the
relative costs, benefits and risks of design options. Together they can help architects justify
architecture decisions. This representation is an improvement over the argumentation-
based methods because it simplifies the representation of qualitative argumentation, and
provides quantification to justify why a design is chosen over its alternatives. The AREL
model is extended by eAREL to support design evolution. Both AREL and eAREL

207

12.2. Contributions

implementations use UML for easy adoption by the software industry.

The AREL model representation is an improvement over existing types of design ra-
tionale methods described in Chapter 3 because it: (a) provides a structured approach to
capturing architecture rationale; (b) provides comprehensive reasoning that encompasses
both qualitative and quantitative design rationale; (c) associates architecture rationale to
architecture elements in reasoning. We have demonstrated the application of the AREL
model in a real-world system using an electronic payment system. In an empirical study,
expert architects in the area of electronic payment system have been asked to compare
traditional design specifications and the AREL model. They have found that the AREL
model complements the design specifications to provide a better explanation of the design
reasoning of the system.

12.2.3 Design rationale applications

Architecture design completeness

One of the issues in software architecture is the the difficulty of articulating what is a
complete architecture design. This issue directly affects how much design details architects
have to carry out to be certain that the architecture is viable and complete. Using AREL
as a basis, we have introduced Architecture Rationalisation Method (ARM) to facilitate
the architecture design process. ARM uses the risk indices in QNR to guide architecture
decomposition. By considering the implementation risks (ICR) and outcome certainty
risks (OCR), architects can determine that an architecture is complete when these risks
are at an acceptable level and all major requirements have been addressed. This process
of using risk levels to guide architecture decisions has the benefit of assessing whether the
requirements can be fulfilled and the architecture design can be implemented. It allows
the architects to focus on these two aspects of architecture design until such time that
they are achievable.

Using the Cost-benefit Ratio (CBR) that is defined in QNR, architects can compare
the relative benefits of design alternatives quantitatively. Together with QLR, they can
help architects make and justify their decisions during architecture design, and these
decisions can be verified independently by assessing the architecture rationale.

208

12.2. Contributions

Architecture rationale and design tracing

Understanding an architecture design often requires knowing the motivations and the rea-
soning of the design. This is important if architects have to verify or maintain the system.
The AREL model can capture the necessary knowledge to attain such goals. However,
the retrieval of such knowledge becomes an issue if the design is complex. Therefore, we
have applied different traceability methods to support the traversal of architecture design
rationale, requirements (as motivational reasons) and design objects.

Three type of tracing can be applied to AREL and eAREL. Forward tracing supports
impact analysis. Given a requirement, the design objects and the design rationale that
are impacted can be traversed. Backward tracing supports root-cause analysis. Given
a design element, its causes such as requirements, assumptions, constraints and design
rationale can be traversed. Evolution tracing supports the traceability through the design
evolution of an architecture element or an architecture rationale. The implementation of
AREL and its traceability are supported by the AREL Tool and Enterprise Architect.

We have used a partial architecture design of the Electronic Fund Transfer system as
a case study. During this exercise, we have recovered and recaptured their architecture
rationale. With the case study, we have demonstrated the application of AREL traceability
in a number of examples to trace the architecture rationale in supporting maintenance
activities.

Architecture design change impact analysis

AREL overcomes the issue of relating design decisions to design elements by joining them
in causal relationships. This is an improvement over argumentation-based design rationale
systems. However, when an architecture is subject to a change, the change can ripple
through the architecture design and cause other changes. This is because inter-related
requirements, constraints and assumptions might have been affected by the initial change.
Another issue in managing change is that the change impact is often difficult to quantify,
making it difficult for the architect to make an initial assessment of where in the design
and how much change is involved.

We have addressed these two issues by applying Bayesian Belief Networks (BBN) to
AREL. BBN is used to quantify the strength of the causal relationship between architecture
elements and architecture rationale. This strength is represented by the probability that
an architecture element is stable, and the probability that an architecture decision is
valid. They quantify the likelihood of change impact based on the dependency between

209

12.3. Future work

architecture decisions and elements. We have identified three different reasoning methods
in which change impact can be analysed: (a) predictive reasoning; (b) diagnostic reasoning;
and (c) combined reasoning. These methods allow the architects to trace the ripple effect
using quantifiable probability values.

12.2.4 Tool implementation

The experts who have participated in the empirical study tell us that tool support is key
to the successful implementation of AREL. As such, we have created a tool-set which is
aimed at demonstrating the viability and usefulness for the software industry.

We choose to use an industry standard notation UML supported by a commercial
tool, Enterprise Architect. This means that the designers can design the architecture and
capture the design rationale using the same tool. We have implemented the AREL Tool
to support consistency checking and to integrate the Enterprise Architect repository with
the BBN tool. We have made use of Netica to support our BBN implementation and
analysis of AREL. Netica is integrated with the Enterprise Architect without redundant
data re-entry. It reduces the efforts required to capture design rationale for analysing
change impacts.

12.3 Future work

In this thesis, we have proposed to use risk assessments for evaluating the completeness
of an architecture design. In the BBN analysis, we also use probabilities, as a kind of
uncertainties, to measure the validity of decisions. Although architects are aware that
risk assessment is something that is important, there does not seem to be a commonly
acceptable method to apply them. This has been demonstrated by the survey that we have
conducted. Therefore, even when we suggest that AREL is useful, its success can depend
on the way architects assess risk. An objective assessment would consider all the available
facts, but it is easy to be biased when an architect interpret the facts differently. So does
it come down to the abilities of an individual? We think not. First, a design reasoning
approach such as AREL will make architects more aware of the necessity to assess risk.
Second, an architect’s ability and objectivity to assess risk should be measured over a
longer term, and not by a few decisions. Therefore, we think that further research could
help us understand the psychology of architects when designing a system, and thereby
provide a better way to minimise risks and improve the chances of a successful architecture.

The survey has given us many insights into how design rationale is used and doc-

210

12.3. Future work

umented, but the survey does not allow us to observe the actual capture process that
practising architects go through. We plan to design and execute a large scale field study
into the software design process. This study will consist of multiple case studies, as de-
scribed by [174] and successfully demonstrated by [27]. Some of the techniques we plan
to use include studying practitioners’ attitudes towards design rationale use and docu-
mentation. We will conduct in-depth interviews and examination of design specifications.
We expect these experimental techniques will enable us to discover the answers to many
questions regarding the behaviour of architects during design.

Although we can show AREL’s explanatory and reasoning power to help understand
an existing system with the empirical study, we cannot demonstrate AREL’s reasoning
capabilities to support a new system’s development in this thesis. It is our intention to
test this aspect of AREL in the future. In a new experiment, we will apply AREL to the
architecture design process to assess its performance on the effectiveness of capture and
its usefulness in supporting architecture design. The results will allow us to further refine
AREL.

The experts from the empirical study have reacted positively towards the AREL ap-
proach, but they have also questioned the cost-effectiveness of the method. A cost-benefit
analysis on AREL’s applications would be necessary. Different perspectives could be taken
in this analysis: (a) the cost and benefit of using AREL and ARM in different phases of
the software development life-cycle; (b) the cost and benefit of applying each of the tech-
niques such as traceability, risk analysis using QNR, and impact analysis using BBN; (c)
the cost and benefit of applying these techniques to specific domains or different project
scales.

The AREL tool-set is only a proof-of-concept, its effectiveness in practice requires a
formal evaluation. The tool-set itself also requires better integration between UML mod-
elling and BBN computation. Design rationale capture using AREL and ARM relies very
much on architects recording the information diligently. Any automated design ratio-
nale capture to enhance this process would be an improvement. Ideas such as language
processing, white board capture tool can be expolored.

In this thesis, we have provided a high-level classification of the architecture elements
by viewpoints. This classification supports the scoping of traceability results. We think
that further classifications are required because it will provide further scoping of the trace
results when using the AREL traceability methods.

The application of BBN to AREL has provided a foundation for change impact anal-
ysis. Some further research opportunities in architecture design and software engineering
are possible: (a) to predict the cost of change impact to architecture enhancements; (b)

211

12.3. Future work

to examine the complexity of the system through analysing the dependency between ar-
chitecture elements and decisions; (c) to consider using Dynamic Bayesian Networks for
temporal analysis as systems evolve over time; (d) to derive from AREL a more abstract
and concise model that represents the associations between decisions.

212

Bibliography

[1] D. Ahern, A. Clouse, and R. Turner, CMMI distilled : a practical introduction to
integrated process improvementn. Boston, USA: Addison-Wesley, 2004.

[2] T. Al-Naeem, I. Gorton, M. A. Babar, F. A. Rabhi, and B. Benatallah, “A quality-
driven systematic approach for architecting distributed software applications.” in
Proceedings 27th International Conference on Software Engineering (ICSE), 2005,
pp. 244–253.

[3] M. Ali-Babar, I. Gorton, and B. Kitchenham, “A Framework for Supporting Ar-
chitecture Knowledge and Rationale Management,” in Rationale Management in
Software Engineering. Springer, 2006, pp. 237–254.

[4] J. Asundi, R. Kazman, and M. Klein, “Using Economic Considerations to Choose
Amongst Architecture Design Alternatives,” Carnegie Mellon University, Tech. Rep.
CMU/SEI-2001-TR-035, ESC-TR-2001-035, December 2001.

[5] B. Ayyub, “A Practical Guide on Conducting Expert-Opinion Elicitation of Prob-
abilities and Consequences for Corps Facilities,” Technical Report IWR Report 01-
R-01, Institute for Water Resources, Alexandria, VA, USA, Tech. Rep., 2001.

[6] M. Babar, A. Tang, I. Gorton, and J. Han, “Industrial Perspective on the Useful-
ness of Design Rationale for Software Maintenance: A Survey,” in Proceedings 6th
International Conference on Quality Software (QSIC 2006). IEEE, 2006.

[7] R. Balzer, T. E. C. Jr., and C. C. Green, “Software technology in the 1990’s: Using
a new paradigm.” IEEE Computer, vol. 16, no. 11, pp. 39–45, 1983.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Boston:
Addison Wesley, 2003.

[9] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel
to validate a requirements process improvement model.” Journal of Systems and
Software, vol. 76, no. 3, pp. 251–275, 2005.

213

BIBLIOGRAPHY

[10] B. W. Boehm, Software Engineering Economics. New Jersey: Prentice Hall PTR,
1981.

[11] J. Bosch, “Software Architecture: The Next Step,” in Proceedings 1st European
Workshop on Software Architecture (EWSA), St Andrews, UK., 2004, pp. 194–199.

[12] L. Bratthall, E. Johansson, and B. Regnell, “Is a Design Rationale Vital when
Predicting Change Impact? A Controlled Experiment on Software Architecture
Evolution,” in Second International Conference on Product Focused Software Process
Improvement, 2000, pp. 126–139.

[13] S. Buckingham Shum and N. Hammond, “Argumentation-Based Design Rationale:
What Use at What Cost?” International Journal of Human-Computer Studies,
vol. 40, no. 4, pp. 603–652, 1994.

[14] J. Burge, “Software Engineering Using design RATionale,” Ph.D. dissertation,
Worcester Polytechnic Institute, 2005.

[15] S. Bushell, “It is the Business, Stupid.” http :
//www.cio.com.au/index.php/id; 719608738; pp; 1; fp; 16; fpid; 0, 2006.

[16] Carnegie Mellon Software Engineering Institute, “CMMI SE/SW Version 1.1,”
http://www.sei.cmu.edu/cmmi/models/model-components-word.html, 2002.

[17] Carrington, K. and Pratt, A., “How Far Have We Come? Gender Disparities in the
Australian Higher Education System,” 2003.

[18] J. Carroll and M. Rosson, “Deliberated Evolution: Stalking the View Matcher in
Design Space,” in Design Rationale: Concepts, Techniques and Use, T. Moran and
J. Carroll, Eds. Lawrence Erlbaum Associates, 1996, ch. 4, pp. 107–146.

[19] R. Charette, Software Engineering Risk Analysis and Management. New York:
McGraw-Hill Book Company, 1989.

[20] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements in
software engineering. Boston: Kluwer Academic, 2000.

[21] CIO-Council, “Federal Enterprise Architecture Framework version 1.1,”
http://www.cio.gov/archive/fedarch1.pdf, 1999, last accessed: May 21, 2004.

[22] ——, “A Practical Guide to Federal Enterprise Architecture version 1.0,”
http://www.cio.gov/archive/bpeaguide.pdf, 2001, last accessed: May 21, 2004.

[23] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford, Documenting Software Architectures : Views and Beyond, 1st ed. Ad-
dison Wesley, 2002.

214

BIBLIOGRAPHY

[24] E. Conklin and B.-Y. K.C., “A Process-Oriented Approach to Design Rationale,”
in Design Rationale: Concepts, Techniques and Use, T. Moran and J. Carroll, Eds.
Lawrence Erlbaum Associates, 1996, ch. 14, pp. 393–427.

[25] J. Conklin, “Design Rationale and Maintainability,” in Proceedings of the 22nd In-
ternational Conference on System Sciences, 1989, pp. 533–539.

[26] J. Conklin and M. Begeman, “gIBIS: A hypertext tool for exploratory policy discus-
sion,” in Proceedings ACM Conference on Computer-Supported Cooperative Work,
1988, pp. 140–152.

[27] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design process
for large systems.” Commun. ACM, vol. 31, no. 11, pp. 1268–1287, 1988.

[28] A. Dardenne, A. Van-Lamsweerde, and S. Fickas, “Goal-directed Requirements Ac-
quisition,” Science of Computer Programming, vol. 20, pp. 1–36, 1993.

[29] M. Denford, J. Leaney, and T. O’Neill, “Non-Functional Refinement of Computer
Based Systems Architecture,” in The 11th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems, 2004, pp. 168–177.

[30] R. Dijkman, D. A. Quartel, L. F. Pires, and M. J. van Sinderen, “A Rigorous
Approach to Relate Enterprise and Computational Viewpoints,” in Proceedings 8th
IEEE International Enterprise Distributed Object Computing Conference (EDOC),
2004.

[31] DoD, “Department of Defense Architecture Framework version 1.0 - Vol-
umn 1 definition and guideline and Volumn 2 product descriptions,”
http://www.aitcnet.org/dodfw, 2003, last accessed: April 1, 2004.

[32] R. Domges and K. Pohl, “Adapting traceability environments to project-specific
needs,” Communications of the ACM, vol. 41, no. 12, pp. 54–62, 1998.

[33] A. Dutoit and B. Paech, “Rationale Management in Software Engineering,” in Hand-
book of Software Engineering and Knowledge, Nov. 30 2000.

[34] A. H. Dutoit and B. Paech, “Rationale-Based Use Case Specification,” Requirements
Engineering, vol. 7, no. 1, pp. 3–19, 2002.

[35] T. Dyba, B. Kitchenham, and M. Jorgensen, “Evidence-based software engineering
for practitioners,” IEEE Software, vol. 22, no. 1, pp. 58–65, 2005.

[36] T. Dyb̊a, “An instrument for measuring the key factors of success in software process
improvement.” Empirical Software Engineering, vol. 5, no. 4, pp. 357–390, 2000.

215

BIBLIOGRAPHY

[37] A. Eden and R. Kazman, “Architecture, Design, Implementation,” in International
Conference for Software Engineering, 2003, pp. pp 149 – 159.

[38] A. Egyed, “A Scenario-Driven Approach to Traceability,” in Proceedings 23rd Inter-
national Conference on Software Engineering (ICSE), 2001, pp. 123–132.

[39] ——, “A Scenario-Driven Approach to Trace Dependency Analysis,” IEEE Trans-
actions on Software Engineering, vol. 29, no. 2, pp. 116–132, 2003.

[40] N. Fenton and M. Neil, “Software Metrics: Roadmap,” in Proceedings 22nd Inter-
national Conference on Software Engineering (ICSE), may 2000, pp. 357–370.

[41] N. E. Fenton, S. L. Pfleeger, and R. L. Glass, “Science and Substance: A Challenge
to Software Engineers,” IEEE Software, vol. 11, no. 4, pp. 86–95, July 1994.

[42] Fenton, Norman and Pfleeger, Shari Lawrence, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing, 1996.

[43] G. ‘Fischer, A. Lemke, and R. McCall, “Making Argumentation Serve Design,” in
Design Rationale: Concepts, Techniques and Use, T. Moran and J. Carroll, Eds.
Lawrence Erlbaum Associates, 1996, ch. 9, pp. 267–294.

[44] M. Fyson and C. Boldyreff, “Using Application Understanding to Support Impact
Analysis,” Journal of Software Maintenance: Research and Practice, vol. 10, pp.
93–110, 1998.

[45] J. Galliers, A. Sutcliffe, and S. Minocha, “An Impact Analysis Method for Safety-
Critical User Interface Design,” ACM Transactions on Computer-Human Interac-
tion, vol. 6, no. 4, pp. 341–369, 1999.

[46] D. Garlan and M. Shaw, “An Introduction to Software Architecture,” in Advances
in Software Engineering and Knowledge Engineering, V. Ambriola and G. Tortora,
Eds. World Scientific Publishing Co., 1992, pp. 1–40.

[47] D. Garlan, “Software architecture evaluation and analysis session report.” in Pro-
ceedings 5th IEEE/IFIP Working Conference on Software Architecture, 2005, pp.
227–228.

[48] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch or why it’s hard
to build systems out of existing parts.” in Proceedings 17th International Conference
on Software Engineering (ICSE), 1995, pp. 179–185.

[49] R. L. Glass, “The Software-Research Crisis,” IEEE Software, vol. 11, no. 6, pp.
42–47, 1994.

216

BIBLIOGRAPHY

[50] K. Goseva-Popstojanova, A. E. Hassan, A. Guedem, W. Abdelmoez, D. E. M. Nas-
sar, H. H. Ammar, and A. Mili, “Architectural-Level Risk Analysis Using UML,”
IEEE Trans. Software Eng., vol. 29, no. 10, pp. 946–960, 2003.

[51] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the Requirements Trace-
ability Problem,” in Proceedings International Conference on Requirements Engi-
neering (RE), 1994, pp. 94–101.

[52] O. Gotel and A. Finkelstein, “Extended Requirements Traceability: Results of an
Industrial Case Study,” in Proceedings 3rd IEEE International Symposium on Re-
quirements Engineering (RE), Annapolis, MD, USA, 1997, pp. 169–178.

[53] T. Gruber and D. Russell, “Generative Design Rationale: Beyond the Record and
Replay Paradigm,” in Design Rationale: Concepts, Techniques and Use, T. Moran
and J. Carroll, Eds. Lawrence Erlbaum Associates, 1996, ch. 11, pp. 323–350.

[54] T. R. Gruber and D. M. Russell, “Design Knowledge and Design Rationale: A
Framework for Representing, Capture, and Use,” Knowledge Systems Laboratory,
Standford University, California, USA, Tech. Rep., 1991.

[55] T. Gruber and D. Russell, “Derivation and Use of Design Rationale Information as
Expressed by Designers,” Stanford University, Tech. Rep. KSL-92-64, 1992.

[56] J. Hall, M. Jackson, R. Laney, B. Nuseibeh, and L. Rapanotti, “Relating Software
Requirements and Architectures Using Problem Frames,” in IEEE Joint Interna-
tional Conference on Requirements Engineering, 2002, pp. 137–144.

[57] M. Hamada and H. Adachi, “Recording Software Design Processes for Maintain-
ing the Software,” in Proceedings of the 17th Computer Software and Applications
Conference, 1993.

[58] J. Han, “TRAM: A Tool for Requirements and Architecture Management,” in Pro-
ceedings 24th Australasian Computer Science Conference. Gold Coast, Australia:
IEEE Computer Society Press, 2001, pp. 60–68.

[59] ——, “Designing for Increased Software Maintainability,” in Proceedings Interna-
tional Conference on Software Maintenance. IEEE Computer Society Press, 1997,
pp. 278–286.

[60] P. Haumer, K. Pohl, K. Weidenhaupt, and M. Jarke, “Improving Reviews by Ex-
tended Traceability,” in Proceedings 32nd Hawaii International Conference on Sys-
tem Sciences, 1999.

[61] W. Heaven and A. Finkelstein, “UML profile to support requirements engineering
with KAOS,” IEE Proceedings - Software, vol. 151, no. 01, 2004.

217

BIBLIOGRAPHY

[62] J. D. Herbsleb and E. Kuwana, “Preserving knowledge in design projects: What
designers need to know,” in Proceedings of the Conference on Human Factors in
computing systems. New York: ACM Press, Apr. 24–29 1993, pp. 7–14.

[63] R. Hilliard, “Viewpoint modeling,” in Proceedings of 1st ICSE Workshop on De-
scribing Software Architecture with UML, 2001.

[64] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture. Reading,
Massachusetts: Addison Wesley, 2000.

[65] L. Hope, A. Nicholson, and K. Korb, “Knowledge engineering tools for probability
elicitation,” Technical report, School of Computer Science and Software Engineering,
Monash University, Tech. Rep., 2002.

[66] T. Hughes and C. Martin, “Design traceability of complex systems,” in Proceedings
4th Annual Symposium on Human Interaction with Complex Systems, 1998, pp.
37–41.

[67] IEEE, “IEEE/EIA Standard - Industry Implementation of ISO/IEC 12207:1995, In-
formation Technology - Software life cycle processes (IEEE/EIA Std 12207.0-1996),”
1996.

[68] ——, “IEEE/EIA Guide - Industry Implementation of ISO/IEC 12207:1995, Stan-
dard for Information Technology - Software life cycle processes - Life cycle data
(IEEE/EIA Std 12207.1-1997),” 1997.

[69] ——, “IEEE Recommended Practice for Software Requirements Specifications
(IEEE Std 830-1998),” 1998.

[70] ——, “IEEE Recommended Practice for Architecture Description of Software-
Intensive System (IEEE Std 1471-2000),” 2000.

[71] ISO/ITU-T, “Reference Model for Open Distributed Processing (ISO/ITU-T 10746
Part 1 - 4),” 1997.

[72] A. Jarczyk, P. Loffler, and F. Shipman III, “Design Rationale for Software Engi-
neering:A Survey,” in Proceedings of the 25th Hawaii International Conference on
System Sciences, 1992, pp. 577–586.

[73] F. Jensen, Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.

[74] C. Jones, “Software Engineering: The State of the Art in 2005,”
http://www.spr.com, Software Productivity Research LLC, Tech. Rep., 2005.

[75] M. Kajko-Mattsson, “A Survey of Documentation Practice within Corrective Main-
tenance,” Empirical Software Engineering, vol. 10, no. 1, pp. 31–55, 2005.

218

BIBLIOGRAPHY

[76] L. Karsenty, “An Empirical Evaluation of Design Rationale Documents,” in CHI,
1996, pp. 150–156.

[77] R. Kazman, L. J. Bass, M. Webb, and G. D. Abowd, “SAAM: A Method for Ana-
lyzing the Properties of Software Architectures,” in Proceedings 16th International
Conference on Software Engineering (ICSE), 1994, pp. 81–90.

[78] R. Kazman, M. H. Klein, M. Barbacci, T. A. Longstaff, H. F. Lipson, and S. J.
Carrière, “The architecture tradeoff analysis method,” in ICECCS, 1998, pp. 68–78.

[79] M. Keil, H. J. Smith, S. Pawlowski, and L. Jin, “’Why didn’t somebody tell me?’:
climate, information asymmetry, and bad news about troubled projects,” SIGMIS
Database, vol. 35, no. 2, pp. 65–84, 2004.

[80] B. Kitchenham and S. L. Pfleeger, “Principles of Survey Research, Parts 1 to 6,”
Software Engineering Notes, 2001-2002.

[81] B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan, “An empirical study of
maintenance and development estimation accuracy.” Journal of Systems and Soft-
ware, vol. 64, no. 1, pp. 57–77, 2002.

[82] H. Koning and H. van Vliet, “A method for defining IEEE Std 1471 viewpoints,”
The Journal of Systems and Software, vol. 79, pp. 120–131, 2005.

[83] K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence. Chapman and
Hall / CRC, 2004.

[84] P. Kruchten, “The 4+1 View Model of Architecture,” IEEE Software, vol. 12, no. 6,
pp. pp 42–50, 1995.

[85] ——, “Software Architecture-A Rational Metamodel,” in Joint proceedings of the
second international software architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software development (Viewpoints ’96) on SIG-
SOFT ’96 workshops, 1996.

[86] P. Kruchten, P. Lago, H. v. Vliet, and T. Wolf, “Building up and Exploiting Architec-
tural Knowledge,” in Proceedings 5th IEEE/IFIP Working Conference on Software
Architecture, 2005.

[87] W. Kunz and H. Rittel, Issues as Elements of Information Systems. Center for
Planning and Development Research,University of California at Berkeley, 1970.

[88] P. Lago and H. van Vliet, “Explicit assumptions enrich architectural models,” in
Proceedings 27th International Conference on Software Engineering (ICSE), 2005,
pp. 206–214.

219

BIBLIOGRAPHY

[89] N. Lassing, D. Rijsenbrij, and H. V. Vliet, “Viewpoints on Modifiability,” Interna-
tional Journal of Software Engineering and Knowledge Engineering, vol. 11, no. 4,
pp. 453–478, 2001.

[90] N. H. Lassing, P. Bengtsson, H. van Vliet, and J. Bosch, “Experiences with ALMA:
Architecture-Level Modifiability Analysis,” Journal of Systems and Software, vol. 61,
no. 1, pp. 47–57, 2002.

[91] J. Lee, “SIBYL: A Tool for Managing Group Decision Rationale,” in Proceedings of
the Conference on on Computer-Supported Coopoerative Work, 1990, pp. 77–92.

[92] ——, “Extending the Potts and Bruns Model for Recording Design Rationale,” in
13th International Conference on Software Engineering, 1991, pp. 114–125.

[93] ——, “Design Rationale Systems: Understanding the Issues,” IEEE Expert, vol. 12,
no. 3, pp. 78–85, 1997.

[94] J. Lee and K. Lai, “What’s in Design Rationale,” in Design Rationale: Concepts,
Techniques and Use, T. Moran and J. Carroll, Eds. Lawrence Erlbaum Associates,
1996, ch. 2, pp. 21–52.

[95] T. C. Lethbridge, “Studying Software Engineers: Data Collection Techniques for
Software Field Studies,” Empirical Software Engineering, vol. 10, no. 1, pp. 311–
341, 2005.

[96] M. Li and C. Smidts, “A ranking of software engineering measures based on expert
opinion.” IEEE Trans. Software Eng., vol. 29, no. 9, pp. 811–824, 2003.

[97] A. Maclean, R. Young, V. Bellotti, and T. Moran, “Questions, Options and Criteria:
Elements of Design Space Analysis,” in Design Rationale: Concepts, Techniques and
Use, T. Moran and J. Carroll, Eds. Lawrence Erlbaum Associates, 1996, ch. 3, pp.
53–106.

[98] L. May, “Major Causes of Software Project Failures,” http :
//www.stsc.hill.af.mil/crosstalk/1998/07/causes.asp, 1998.

[99] R. McCall, “PHIBIS: Procedural Hierarchical Issue-Based Information Systems,” in
Proceedings Int’l. Congress on Planning and Design Theory, 1987.

[100] ——, “PHI: A conceptual foundation for design hypermedia,” Design Studies,
vol. 12, no. 1, pp. 30–41, 1991.

[101] C. Meares and J. Sargent, “The digital work force: building infotech skills at the
speed of innovation,” http : //www.technology.gov/reports/techpolicy/digital.pdf ,
1999.

220

BIBLIOGRAPHY

[102] M. Moore, R. Kazman, M. Klein, and J. Asundi, “Quantifying the value of archi-
tecture design decisions: lessons from the field,” in Proceedings 25th International
Conference on Software Engineering (ICSE). Piscataway, NJ: IEEE Computer
Society, May 3–10 2003, pp. 557–563.

[103] T. Moran and J. Carroll, “Overview of Design Rationale,” in Design Rationale:
Concepts, Techniques and Use, T. Moran and J. Carroll, Eds. Lawrence Erlbaum
Associates, 1996, ch. 1, pp. 1–19.

[104] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using Non-functional
Requirements: A Process-Oriented Approach,” IEEE Transactions on Software En-
gineering, vol. 18, no. 6, pp. 483–497, 1992.

[105] J. Nedstam, E.-A. Karlsson, and M. Höst, “The architectural change process.” in
ISESE, 2004, pp. 27–36.

[106] P. Neumann, “Risks to the Public in Computers and Related Systems,” http :
//www.csl.sri.com/neumann.

[107] Norsys Software Corp, “Netica - Application for BBN and Influence Diagrams User’s
Guide,” http://www.norsys.com/dl/NeticaMan Win.pef.zip, 1997.

[108] B. Nuseibeh, “Weaving Together Requirements and Architecture,” IEEE Computer,
vol. 34, no. 3, pp. 115–119, March 2001.

[109] ——, “Crosscutting requirements,” in Proceedings 3rd international conference on
Aspect-oriented software development, 2004, pp. 3–4.

[110] B. Nuseibeh, J. Kramer, and A. Finkelstein, “ViewPoints: meaningful relationships
are difficult!” in The 25th International Conference on Software Engineering, 2003,
pp. 676–681.

[111] ObjectPlanet Inc., “Surveyor: Web-based Survey Application,”
http://www.sharewareconnection.com/surveyor.htm, 2002.

[112] G. Olson, J. Olson, M. Storrosten, M. Carter, J. Herbsleb, and H. Rueter, “The
Structure of Activity During Design Meetings,” in Design Rationale: Concepts,
Techniques and Use, T. Moran and J. Carroll, Eds. Lawrence Erlbaum Associates,
1996, ch. 7, pp. 217–239.

[113] OMG, “UML 2 Infrastructure Final Adopted Specification,”
http://www.omg.org/cgi-bin/doc?ptc/2003-09-15, 2003.

[114] D. Parnas and P. Clements, “A Rational Design Process: How and Why to Fake
It,” IEEE Transactions on Software Engineering, vol. 12, pp. 251–257, 1985.

221

BIBLIOGRAPHY

[115] D. L. Parnas, “The limits of empirical studies of software engineering.” in ISESE,
2003, pp. 2–7.

[116] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan
Kaufmann, 1988.

[117] ——, Causality: models, reasoning, and inference. Cambridge University Press,
2000.

[118] P. Pender, UML Bible. Wiley Publishing Inc., 2003.

[119] D. E. Perry and A. L. Wolf, “Foundations for the Study of Software,” ACM SIG-
SOFT, vol. 17, no. 4, pp. 40–52, 1992.

[120] F. A. C. Pinheiro, “Formal and Informal Aspects of Requirements Tracing,” in
Workshop em Engenharia de Requisitos, Brazil, 2000, pp. 1–21.

[121] F. A. C. Pinheiro and J. A. Goguen, “An object-oriented tool for tracing require-
ments,” IEEE Software, vol. 13, no. 2, pp. 52–64, 1996.

[122] C. Potts, “Supporting Software Design: Integrating Design Methods and Design
Rationale,” in Design Rationale: Concepts, Techniques and Use, T. Moran and
J. Carroll, Eds. Lawrence Erlbaum Associates, 1996, ch. 10, pp. 295–322.

[123] ——, “ScenIC: A strategy for inquiry-driven requirements determination,” in Pro-
ceedings: 4th IEEE International Symposium on Requirements Engineering. IEEE
Computer Society Press, 1999, pp. 58–65.

[124] C. Potts and G. Burns, “Recording the Reasons for Design Decisions,” in 10th
International Conference on Software Engineering, 1988, pp. 418–427.

[125] C. Potts, “Software-engineering Research Revisited,” IEEE Software, vol. 10, no. 5,
pp. 19–28, Sept. 1993.

[126] C. Potts, K. Takahashi, and A. I. Antón, “Inquiry-Based Requirements Analysis,”
IEEE Software, vol. 11, no. 2, pp. 21–32, 1994.

[127] C. U. Press, “The Cambridge Dictionary Online,” http :
//dictionary.cambridge.org/, 2006.

[128] B. Ramesh and V. Dhar, “Supporting Systems Development by Capturing Delib-
erations During Requirements Engineering,” IEEE Transactions on Software Engi-
neering, vol. 18, no. 6, pp. 498–510, 1992.

[129] B. Ramesh and M. Jarke, “Towards Reference Models for Requirements Traceabil-
ity,” IEEE Transactions on Software Engineering, vol. 27, no. 1, pp. 58–93, 2001.

222

BIBLIOGRAPHY

[130] L. Rapanotti, J. Hall, M. Jackson, and B. Nuseibeh, “Architecture-driven problem
decomposition,” in 12th IEEE International Conference on Requirements Engineer-
ing, 2004, pp. 73–82.

[131] S. Redwine and W. Riddle, “Software Technology Maturation,” in Proceedings of the
8th International Conference on Software Engeneering (ICSE). IEEE Computer
Society, 1985, pp. 189–200.

[132] W. C. Regli, X. Hu, M. Atwood, and W. Sun, “A Survey of Design Rationale
Systems: Approaches, Representation, Capture and Retrieval,” Engineering with
Computers, no. 16, p. 209235, 2000.

[133] Reserve Bank of Australia, “The Australian High Value Payment System,” http :
//www.rba.gov.au/PublicationsAndResearch/F inancialStabilityReview/Mar2004/Pdf/fsr03041.pdf ,
2004.

[134] H. W. J. Rittel and M. M. Webber, “Dilemmas in a general theory of planning,”
Policy Sciences, vol. 4, no. 2, pp. 155–169, 1973.

[135] R. Roeller, P. Lago, and H. van Vliet, “Recovering architectural assumptions,” The
Journal of Systems and Software, vol. 79, pp. 552–573, 2005.

[136] J. Savolainen and J. Kuusela, “Framework for Goal Driven System Design,” in
Proceedings of the 26th Annual International Computer Software and Applications
Conference (COMPSAC’02), 2002.

[137] C. B. Seaman, “The Information Gathering Strategies of Software Maintainers,”
in Proceedings of the International Conference on Software Maintenance, 2002, pp.
141–.

[138] M. Shaw, “The Coming-of-Age of Software Architecture Research,” in Proceedings of
the 23rd International Conference on Software Engineering (ICSE). Los Alamitos,
California: IEEE Computer Society, May12–19 2001, pp. 656–665.

[139] F. Shipman III and R. McCall, “Integrating different perspectives on design ratio-
nale: Supporting the emergence of design rationale from design communication,”
Artificial Intelligence in Engineering Design, Analysis, and Manufacturing, vol. 11,
no. 2, 1997.

[140] S. Shum, “Cognitive Dimensions of Design Rationale,” in People and Computers VI:
Proceedings of HCI’91, 1991, pp. 331–344.

[141] H. Simon, The Sciences of the Artificial. MIT Press, 1981.

223

BIBLIOGRAPHY

[142] Z. Simsek and J. Veiga, “A Primer on Internet Organizational Survey,” Organiza-
tional Research Methods, vol. 4, no. 3, pp. 218–235, 2001.

[143] M. Singley and J. Carroll, “Synthesis by Analysis:Five Modes of Reasoning That
Guide Design,” in Design Rationale: Concepts, Techniques and Use, T. Moran and
J. Carroll, Eds. Lawrence Erlbaum Associates, 1996, ch. 8, pp. 241–265.

[144] Six Sigma Academy, “Six Sigma Process Improvement Methodology,”
http://www.6-sigma.com/, 2005.

[145] W. Smith, Best Practices: Application of DOORS to System Integration. 1999
So. Bascom Av., Suite 700, Cambell, CA 950008, USA: QSS Quality Systems and
Software, 1998.

[146] I. Sommerville, Software Engineering, 7th ed. England: Addison-Wesley, 2004.

[147] D. Soni, R. L. Nord, and C. Hofmeister, “Software architecture in industrial appli-
cations,” in The 17th international conference on Software Engineering, 1995, pp.
196–207.

[148] J. Sowa and J. Zachman, “Extending and formalising the framework for Information
Systems Architecture,” IBM Systems Journal, vol. 31, no. 3, 1992.

[149] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause, “Rule-based genera-
tion of requirements traceability relations,” The Journal of Systems and Software,
vol. 72, no. 2, pp. 105–127, July 2004.

[150] Sparx Systems, “Enterprise Architect V5.00.767,” http://www.sparxsystems.com/,
2005.

[151] S. H. Spewak, Enterprise Architecture Planning. John Wiley & Sons, 1992.

[152] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson, “A quality-driven
decision-support method for identifying software architecture candidates.” Interna-
tional Journal of Software Engineering and Knowledge Engineering, vol. 13, no. 5,
pp. 547–573, 2003.

[153] A. Tang, “An UML Profile Extension to Support Archi-
tecture Decision Traceability using Enterprise Architect,”
http://www.ict.swin.edu.au/personal/atang/ArelStereotypePackage.zip, 2005.

[154] ——, “Managing project risks with architecture modelling,” Australian Project Man-
ager - Journal of the Australian Institute of Project Management, vol. 15, no. 2, pp.
13–14, 2005.

224

BIBLIOGRAPHY

[155] ——, “An AREL tool for traceability and validation,”
http://www.ict.swin.edu.au/personal/atang/AREL-Tool.zip, 2006.

[156] A. Tang, M. Babar, I. Gorton, and J. Han, “A Survey on Architecture Design
Rationale,” Swinburne University of Technology, Tech. Rep. SUTICT-TR2005.02,
2005.

[157] ——, “A Survey of the Use and Documentation of Architecture Design Rationale,” in
Proceedings 5th IEEE/IFIP Working Conference on Software Architecture. U.S.A.:
IEEE, 2006, pp. 89–98.

[158] ——, “A Survey of Architecture Design Rationale,” Journal of Systems and Soft-
ware, 2006, doi:10.1016/j.jss.2006.04.029.

[159] A. Tang and J. Han, “Architecture Rationalization: A Methodology for Architec-
ture Verifiability, Traceability and Completeness,” in Proceedings 12th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Sys-
tems (ECBS ’05). U.S.A.: IEEE, 2005, pp. 135–144.

[160] A. Tang, J. Han, and P. Chen, “A Comparative Analysis of Architecture Frame-
works,” in 1st Asia-Pacific Workshop on Software Architectures and Component
Technologies, APSEC 2004, Korea, 2004.

[161] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” Journal of Systems and Software, 2006,
doi:10.1016/j.jss.2006.08.040.

[162] A. Tang, Y. Jin, J. Han, and A. Nicholson, “Predicting Change Impact in Architec-
ture Design with Bayesian Belief Networks,” in Proceedings 5th IEEE/IFIP Working
Conference on Software Architecture. U.S.A.: IEEE, 2006, pp. 67–76.

[163] A. Tang, A. Nicholson, Y. Jin, and J. Han, “Using Bayesian Belief Networks for
Change Impact Analysis in Architecture Design,” Journal of Systems and Software,
2006, doi:10.1016/j.jss.2006.04.004.

[164] The Open Group, “The Open Group Architecture Framework (v8.1 enterprise edi-
tion),” http://www.opengroup.org/architecture/togaf/#download, 2003.

[165] The Standish Group, “2004 Third Quarter Research Report,” http :
//www.standishgroup.com/sampleresearch/PDFpages/q3− spotlight.pdf , 2004.

[166] W. F. Tichy, “Should Computer Scientists Experiment More?” Computer, vol. 31,
no. 5, pp. 32–40, 1998.

225

BIBLIOGRAPHY

[167] W. F. Tichy, N. Habermann, and L. Prechelt, “Summary of the Dagstuhl workshop
on future directions in software engineering,” SIGSOFT Software Engineering Notes,
vol. 18, no. 1, pp. 35–48, 1993.

[168] S. Toulmin, The Uses of Argument, 2nd ed. Cambridge University Press, 2003.

[169] J. Tyree, “Architectural design decisions session report.” in Proceedings 5th
IEEE/IFIP Working Conference on Software Architecture, 2005, pp. 285–286.

[170] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying Architecture,”
IEEE Software, vol. 22, no. 2, pp. 19–27, 2005.

[171] von Winterfeldt, Detlof and Edwards, Ward, Decision Analysis and Behavioral Re-
search. Cambridge University Press, 1986.

[172] R. J. Walker, L. C. Briand, D. Notkin, C. B. Seaman, and W. F. Tichy, “Panel:
empirical validation: what, why, when, and how,” in Proceedings of the 25th In-
ternational Conference on Software Engineering (ICSE). Piscataway, NJ: IEEE
Computer Society, 2003, pp. 721–722.

[173] R. Watkins and M. Neal, “Why and how of requirements tracing.” IEEE Software,
vol. 11, no. 4, pp. 104–106, 1994.

[174] R. Yin, “The Abridged Version of Case Study Research,” in Handbook of Applied
Research Methods. Sage Publications, 1998, ch. 8, pp. 229–259.

[175] E. Yu, “Towards modelling and reasoning support for early-phase requirements en-
gineering,” in Proceedings 3rd IEEE International Symposium on Requirements En-
gineering (RE), Washington D.C., USA, 1997.

[176] J. Zachman, “A framework for Information Architecture,” IBM Systems Journal,
vol. 38, no. 2 & 3, 1987.

[177] H. Zhang and S. Jarzabek, “A bayesian network approach to rational architectural
design.” International Journal of Software Engineering and Knowledge Engineering,
vol. 15, no. 4, pp. 695–718, 2005.

226

Part IV

Appendices

227

Appendix A

AREL Tool User Manual

1 Introduction

The capture and the representation of architecture design rationale has often been
omitted by practising software architects. As part of the research on this subject, a
model to support design rationale representation has been proposed. It is called the
Architecture Rationale and Elements Linkage (AREL). This is a user manual of the
AREL tool to support the AREL implementation.

This tool is part of a tool-set which comprises two other pieces of software. They are
Enterprise Architect (version 5.00.767) and Netica (version 2.17). Enterprise Architect
is an UML tool for capturing UML diagrams. Netica is a Bayesian Belief Networks
(BBN) tool for capturing BBN diagrams and computing Bayesian probabilities.

The AREL tool supports five key functionalities:

• Perform AREL model checking for
o Ensuring acyclic graph
o Detecting erroneous AREL constructs

• Perform traceability of AREL models
• Export Enterprise Architect UML models to Netica
• Merge Enterprise Architect UML models with Netica Models
• Create and delete Architecture Design Decision Graphs (ADDG)

2 Installing the AREL Tool

To install the AREL tool, first download it from http://www.ict.swin.edu.au/personal/atang/AREL-Tool.zip.
Unzip the installation files in the directory where you save the zip file. Run Setup.exe to
install the tool into Program Files.

Please ensure that you follow the instructions provided in the README.txt file to
ensure that you setup the Windows environment correctly.

 228

http://www.ict.swin.edu.au/personal/atang/AREL-Tool.zip

3 Starting the AREL Tool

Once the tool has been installed, you can execute it like any other Windows
programs. Double click the executable file (i.e EAPModelProjectUI) to start the
program.

As soon as the software starts up following screen would appear (Figure 1).

Figure 1 – Opening an Enterprise Architect model

To open an AREL Model enter path of desired Enterprise Architect repository file
(i.e. EAP file) or click the Browse button to navigate to the file. Click Next when
the file has been specified. Click Exit to exit the application.

4 AREL Tool Options

Upon opening an EAP file, the following screen (Figure 2) will be displayed. It has
a number of buttons for supporting the AREL functionalities.

Figure 2 – AREL Tool Main Menu

 229

4.1 AREL Check Model

When the Check Model button is clicked, the tool would progress to check the
AREL model that is currently opened for any errors. The model checking is to
verify the AREL rules:

• Every root elements must be an architecture element (AE)
• Every leaf elements must be an architecture element (AE)
• Every non leaf architectural element (AE) must be connected to another

architectural rationale element (AR).
• No two same types of AREL elements must be connected. Therefore, no

AR-AR or AE-AE connections are allowed.
• There are no acyclic graph presents in the model.

Some correct models are shown below.

Figure 3a and 3b – examples of correct AREL models

Some incorrect models are shown bellow.

Figure 4a and 4b – examples of incorrect AREL models

When the model checking operation is complete, the following screen (Figure 5) is
displayed to show if any errors or warnings have been detected. Errors indicate that

 230

the AREL model is incorrect and has violated the rules described above. A warning
indicates that there is an element within the EAP file that is not part of the AREL
model. For instance, all stand-alone architecture elements are highlighted as
warnings. When the user has finished with the error window, clicking the OK
button would close this window and transfer control to the AREL Model Checking
screen.

Figure 5 – AREL checking result screen

If there are any errors or warnings as shown above, they are logged in the same
directory as the EAP file. The name of the log file is the same as the EAP file name
with a “.eapError.txt” extension.

If there are any errors, the user cannot perform any other functions like Trace
Model, Create ADDG Graph, Export BBN graph or Merge BBN graph.

 231

4.2 AREL Model Tracing

AREL model tracing can be used to help architects retrieve specific parts of the
AREL model for traceability purposes. When this option is selected, the AREL tool
would first check that the AREL model is correct before the trace menu is
displayed. A message is shown at the bottom of the menu window to indicate that
the checking is in progress (i.e. The message is Processing…). A window showing
a summary of the errors and warnings would be displayed. Users should click OK
to close the window after viewing the information.

The model checking ensures that the trace would not end up in an infinite cycle
should the AREL model had an error such as a cyclic model. If the model is
consistent, then the traceability screen would be displayed (Figure 6) to specify
trace criteria.

Figure 6 – AREL trace specification screen

This screen is used for specifying the trace criteria. The user has to input a valid
architecture element (AE) name. As shown in the diagram above, this name must
be identical to what is stored in the EAP file.

Next, the user has to specify the Element Type and the Element Subtype. These two
categories specify what types of AEs to be retrieved.

There are four different viewpoint types classified in AREL: Business, Information,
Application and Technology. Each of them specifies a perspective of the
architecture. There are five sub-viewpoints in the Business Viewpoint, they specify
different types of drivers which motivate the creation of an architecture. These sub-

 232

viewpoints are functional requirements, non-functional requirements, information
system environment, business environment and technical environment.

Users may select all of the viewpoints or selected viewpoints. The AREL tool
would retrieve only those elements which viewpoints have been included.

The trace actions dictate whether the traceability is to be forward tracing, backward
tracing or both. In forward tracing, only those AEs and ARs which are downwards
from the specified AE element are retrieved. In the backward tracing, only those
AEs and ARs which are upwards from the specified AE are retrieved. When Both
are specified, then all upwards and downwards AEs and ARs are retrieved.

On completion of the trace the following screen is displayed (Figure 7).

Figure 7 – message screen after tracing is complete

The result of the tracing is to create an UML graph which is stored in the same
EAP repository as the AREL model. The trace results are located in the Use Case
Package under Use Case Model with the name of Traceability Graph.

Figure 8 – An example of an AREL model

If Figure 8 is the original AREL model, a downward trace of AE2 would result in a
graph such as the one in Figure 9. An upward trace of AE2 would result in a graph
such as the one in Figure 10. Traceability of both directions would result in a graph
such as the one in Figure 11.

 233

Figure 9 – result of downward trace Figure 10 – result of upward trace

Figure 11 – result of both upward and downward trace

4.3 Exporting Graph to Netica

The AREL tool supports the integration between Enterprise Architect and Netica.
This is done by using the AREL tool extracting the UML model and then
transforming the model in a format which the Netica software can read.

Since the AREL model is an acyclic model, it can be imported by Netica. When the
Export BBN button is clicked, the AREL tool would first check that there are no
errors in the model. It will then create the Netica file with file extension dne. The
name of the file would be the name of the UML model plus the date and time when
the dne file was generated. For instance, an Enterprise Architect model called ABC
would have the filename ABC (20 July 2006(12-37 PM)).dne.

 234

Once this file is generated, Netica can open it directly. A user would enhance the
data in this file. The following data entry and graphics manipulation are probably
necessary:

• Reorganise the graph and position the AEs and ARs for better visibility
• Assign prior and conditional probabilities to the nodes

4.4 Merging Enterprise Architect Graph with Netica

After exporting the AREL model from the Enterprise Architect repository (in
UML) into the Netica format, it is possible for the models in both notations to
change. The design in the UML model might change because of design changes.
For the Netica model, the probabilities and the positioning of the Netica model
elements might be enhanced. As such, there is a need to merge the two models
together to synchronise the changes. This can be achieved by using the Merge BBN
button.

The end result is an updated Netica file which has all the elements and relationships
of the UML model, but preserves the positioning and the probabilities of the Netica
model. The basic assumption of this function is that the elements and the
relationships in the AREL model are defined by the Enterprise Architect repository.
So if there are additions, deletions or modifications in the repository, it would be
reflected in the merged Netica form.

This function will prompt the user to enter the Netica file name which is to be
merged with the UML model, this is shown in Figure 12.

Figure 12 – Specify the Netica file to merge with

When the filename is specified, user can use the Merge button to start the merging
process. The end result will be stored in a file called ABC merge (20 July 2006(3-
11 PM)).

4.5 Create ADDG Graph

Based on the AREL model which consists of AEs and ARs, an Architecture Design
Decision Graph (ADDG) can be created. This is an UML graph created in the
Enterprise Architect which only shows the relationships between the ARs and filter
out all the AEs in the graph. The purpose of this tool is to highlight the
relationships between architecture decisions.

 235

To initiate the graph’s creation, click on the Create ADDG button. When the
ADDG graph is successfully created in the Enterprise Architect repository, the
following pop-up window will be displayed.

Figure 13 – confirmation of ADDG creation

The ADDG graph is created in the same repository under Use Case View, Use Case
Model and ADDG Graph.

4.6 Delete ADDG Graph

Since there can only be one ADDG graph at one time in the repository, the AREL
tool provides the facility for an user to remove the graph. This can be done by using
the Delete ADDG button.

4.7 Use another Enterprise Architect Repository

If the user wants to specify another Enterprise Architect repository, one could use
the Back button to navigate to the open model screen (see Figure 1) to open another
UML model.

4.8 Exit the AREL tool

This button ends the execution of the AREL tool.

 236

Appendix B

Creating Stereotype Package in Enterprise
Architect

This section describes the step to create the stereotype package that can be used in
Enterprise Architect version 5.00.767.

Step Procedure Comments and Questions

 Creating Stereotypes Note: You do not need to carry out
steps 1 – 8 because they have been
performed and the results are
contained in the XML file

1 Drag Profile icon from the Toolbox menu
onto a diagram to create a profile package
called StereotypePackage.

I specified UML2.0 in Workspace
Perspective

2 Open StereotypePackage
3 Drag Stereotype from the Toolbox menu to

create stereotype class called EA
All default values are used except
changing the class name to EA

4 Highlight EA and press F9 to create
attributes

Attributes created are Version and
ElementID

5 Drag Metaclass from Toolbox onto the
Profile diagram and choose types from the
dialogue.

Chosen types are class, objects,
package etc.
See figure 1

6 Use the Extension to point from EA to the
Metaclasses

7 Save the project
8 From the Project View, right-click on

<<profile>>StereotypePackage, do Save
Package as UML profile

Name of profile is
StereotypePackage.

 Importing AREL Stereotypes into

Enterprise Architect

9 Select Resource View
10 Select UML Profiles
11 Right-click to import UML profiles Select the exported UML profile

StereotypePackage. Package
appears under UML Profiles.

12 Right-click StereotypePackage to select
Show Profile in UML Toolbox

StereotypePackage appears in the
Toolbox menu.

 Using the Stereotype to support AREL

13 Drag a stereotype EA from Resource View

 237

onto the diagram
14 Assign values to tags according to

stereotype <<AE >> or <<AR>>

15 Click Stereotype <<ARtrace>> and connect
<<AE>> node to <<AR>> node

Figure 1 – Defining Stereotypes

Figure 2 – Using Extended Profiles in AREL

 238

Appendix C

A Survey Questionnaire on Architecture
Rationale

The following is the questionnaire used in the architecture design rationale survey. It
has been implemented on a web site using three static web pages.

An Investigation into Architecture Design Rationale
(A Joint Research Project by Swinburne University of Technology and

NICTA)

Disclosure Statement

The purpose of this survey is to study the practices of the architecture design rationale.
In order to collect the appropriate data for the research, the participants should be
system and software architects and designers with at least 3 years of experience. This
survey would provide insights on what industry practitioners see as important in
reasoning about architecture decisions. The data will enable us to verify the theory on
architecture rationalisation. This survey contains 42 questions, mostly multiple choice,
and will take 30 minutes to complete.

Your participation in this research is not anonymous due to the recording of your e-mail
address. This survey will also collect your personal information towards the end. They
include your e-mail address, gender, city of residence and information relating to your
position. You may opt not to answer these questions. Should you choose to receive the
final research report, I will e-mail you the research report when all the statistical
information are analysed and conclusions are drawn. All data collected in this survey
will be kept for 5 years in accordance with the Australian government regulations.

Thank you for your support.

Privacy Protection

Only investigators listed below will have access to your responses. Your e-mail address
is collected for the sole purpose of sending you the final research report. Your e-mail
address will be kept confidential and will not be disclosed. We will not use your e-mail
address in any way other than sending you the research report. Information collected in
this survey, except your e-mail address, may be disclosed in research reports and will be
used for research purposes only.

 239

Useful Definitions

The following are some useful definitions that are used consistently in the survey and
will help you answer the questions in the survey:

• Architecture is the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles governing its design and evolution (IEEE Std 1471-2000).

• Architecture design is the process of constructing the architecture of a system.
• Architecture rationales are reasons to justify an architecture design.
• Architecture rationalisation is the process of reasoning about architecture design

decisions.

How to fill in the questionnaire

• Please answer all questions. You may skip optional questions if they are not
applicable to you.

• Please complete this questionnaire in a single attempt. This tool does not have
the intelligence to recognise individual users to allow subsequent updates.

• Please do not use the browser BACK button because it could confuse the
application server. If you like to revisit the definitions during the survey, just
start another window to view this page again.

• You may withdraw from the survey by scrolling to the end of the questionnaire
and check the withdrawal checkbox.

• According to university policies, you are advised to print a copy of the
complaint form after you complete the questionnaire.

Investigators

This research is carried out jointly by the Centre of Component Software and Enterprise
Systems, Swinburne University of Technology and National ICT Australia. The
following are the investigators:

• Antony Tang, PhD Candidate, Faculty of ICT, Swinburne University of
Technology. E-mail: atang@it.swin.edu.au

• Ian Gorton, Senior Principal Researcher, Empirical Software Engineering
Group, NICTA. E-mail: Ian.Gorton@nicta.com.au

• Muhammad Ali Babar, Research Scientist, Empirical Software Engineering
Group, NICTA. E-mail: Muhammad.Alibabar@nicta.com.au

• Jun Han, Professor, Faculty of ICT, Swinburne University of Technology.
E-mail: jhan@it.swin.edu.au

Consent Form

If you agree to participate in this research, please tick the following boxes and press
Start on the web page. Enjoy the questionnaire.

 240

mailto:atang@it.swin.edu.au
mailto:atang@it.swin.edu.au
mailto:atang@it.swin.edu.au

 I agree to participate in this activity, realising that I may withdraw at
any time. I agree that the research data collected for this study may
be published or used by the investigators for research purposes.

 I would like to receive a copy of the research report when it becomes

available.

[Continue]

Questions

__

1. As a designer/architect, the following are my job’s primary tasks. (Tick any task
if you spend at least 10% of your time on that task in a project)

a) Project Management Tasks
b) IT Planning or Proposal Preparation
c) Requirements Analysis or Tender Analysis
d) Overall Design of System
e) Software Design and Specification
f) Data Modelling
g) Program Design and Specification
h) Test Planning and Design
i) Design of Non-functional Requirements (security, performance,

interoperability, flexibility, standards, usability etc.)
j) Implementation Design (capacity planning, system environment,

platforms etc.)
k) Training

2. The role of software architect is formally recognised in my organisation for:

(Please tick the appropriate choice)
a) All projects across the organisation
b) Some projects only
c) Not at all

3. If your answer to the last question is for some projects only, the criteria that

dictate whether the project needs an architect are: (Please tick all appropriate
choices)

a) New systems
b) Mission or business critical systems
c) Systems which are considered high-risk
d) Systems which are over certain budget
e) Other criteria, please specify: ____________________(text 256 char)

4. The organisation that I work with carries out software architecture reviews by

architects external to the project for : (Please tick the appropriate choice)
a) All projects across the organisation

 241

b) Some projects only
c) Not at all

5. If your answer to the last question is for some projects only, the criteria that

dictate whether the project requires external architect review are: (Please tick all
appropriate choices)

a) New systems
b) Mission or business critical systems
c) Systems which are considered high-risk
d) Systems which are over certain budget
e) Other criteria, please specify: ____________________(text 256 char)

6. I consider the appropriateness of alternative architecture designs during the
design process before I make a decision (Note: an alternative design is a design
that you have considered.): (Frequency of occurrence)

7. I document discarded alternative designs : (Frequency of occurrence)

8. When making architecture design decisions, the importance of each of the
following design rationales play in my decision making process is : (Note:
design rationales are reasons to justify the design.) (Level of Importance)

a) Design constraints
b) Design assumptions
c) Weakness of a design
d) Cost of a design
e) Benefit of a design
f) Complexity of a design
g) Am I certain that this design would work
h) Am I certain that I or the team could implement it
i) Tradeoffs between design alternatives

9. This is an optional question. The other design rationales I also consider but are

not listed above are ___
text(256)

10. I use the following design rationales to reason about my architecture design:

(Frequency of occurrence)
a) Design constraints
b) Design Assumptions
c) Weakness of design
d) Cost of design
e) Benefit of design
f) Complexity of design
g) Certainty that design would work
h) Certainty that you could implement it

 242

i) Tradeoffs between alternatives

11. I document these types of architecture design rationales: (Frequency of
occurrence)

a) Design constraints
b) Design Assumptions
c) Weakness of design
d) Cost of design
e) Benefit of design
f) Complexity of design
g) Certainty that design would work
h) Certainty that you could implement it
i) Tradeoffs between alternatives

12. On an overall scale, the level of documentation of architecture design rationales

that I do is: (Level of Documentation)

13. If I do not document architecture design rationale, the reasons are as follows.
(Please tick applicable reasons.)

a) There are no standards or requirements in the project or organisation
to do so

b) I am not aware of the need to document it
c) Documenting design rationale is not useful
d) Time / budget constraints
e) Absence of appropriate tools for documenting design rationale
f) Other reasons, please specify : _______________(text 256 chars)

14. This is an optional question. If and when I document architecture design

rationale, these are the tools, procedures or methods that I use
___(text 256 chars)

15. When I design a system or software architecture, I reason about why I make
certain design choices. (Frequency of occurrence)

16. I think it is important to use design rationales to justify design choices.. (Level

of agreement)

17. In my education or my professional training, I have been trained to make use of
design rationales explicitly to justify design choices. (Level of Training)

__

18. I sometimes design architectures to enhance existing systems. Yes / No (if No,
go to question 28)

 243

19. I revisit architecture design documents and design specifications to help me
understand the design of the system for making system enhancements.
(Frequency of occurrence)

20. Design rationales of existing systems are important to help me understand

previous designs and assess my options in system enhancements and integration.
(Level of Agreement)

21. I forget the reasons that justify my designs after a period of time. (Level of

forgetfulness)

22. If I am not the designer of an architecture, I may not know why existing designs
are created in a certain way without documented design rationale or someone
who can explain the design. (Level of Agreement)

23. I do architectural impact analysis during system enhancements and integration to

assess how new changes might affect the existing system. (Note: architectural
impact analysis is used to analyse the extent and impact of changes to the
structure of the system.) (Frequency of occurence)

24. The following items are important when I carry out architectural impact

analysis. (Level of Agreement)
a) Analyse and Trace Requirements
b) Analyse Specifications of Previous Design
c) Analyse Design Rationale of Previous Design
d) Analyse Feasibility of Implementation
e) Analyse Violation of Constraints or Assumptions of Previous Design
f) Analyse Scenarios
g) Analyse Cost of Implementation
h) Analyse Risk of Implementation

25. This is an optional input. Other additional steps that I will take when carrying

out impact analysis are
___ text(256)

__

26. When I design, I am relatively certain (i.e. I consider the risk factor) that the
resulting design will work and I or my team are capable of implementing it.
(Level of Certainty)

27. I explicitly quantify the risk of implementation when I design. (Frequency of

occurrence)

28. Different potential architecture designs have different degrees of uncertainty, or
risk, to achieve the desired business outcomes. (Level of Agreement)

 244

29. There might be different degrees of uncertainty, or risk, in implementation
depending on the capability of the design/development team. (Note: The
capability refers to the experience and knowledge of particular technology used
in the implementation.) (Level of Agreement)

30. The level of risk of an architecture design¸ i.e. before detailed design and

implementation, that I consider acceptable for an important project is: (Level of
Risk Scale)

31. My E-mail address : __________________________(text 128)

32. Sex : Male (M) / Female (F)

33. City of residence : ____________________________(text 40)

34. No of years I have been in the IT industry : XX

35. No of years I have been a designer / architect : XX

36. No of years I have been with the current (or last) organisation : XX

37. My current (or last) job title : ____________________________ (text 40)

38. I have used at least one Software Development Methodology or Standard in a
project in the past. Yes / No.

39. The number of co-workers in my current or last project team, including project

managers, architects, designers, programmers and testers, is: XXXX

40. I have obtained a tertiary qualification in an IT related field such as Computer
Science, Information Technology etc. Yes / No

41. For your privacy protection, you may withdraw from this survey any time. If

you have decided not to participate in this survey anymore, you can withdraw by
checking the following box. <Withdraw participation>

< END OF SURVEY>

We will send you the research report if you have chosen to receive it. Should you have
any queries, please do not hesitate to contact us. Thank you for your participation.

• Antony Tang (atang@it.swin.edu.au)
• Ian Gorton (Ian.Gorton@nicta.com.au)
• Muhammad Ali Babar (Muhammad.Alibabar@nicta.com.au)
• Jun Han (jhan@it.swin.edu.au)

 245

mailto:atang@it.swin.edu.au
mailto:atang@it.swin.edu.au
mailto:atang@it.swin.edu.au

Complaint Procedure

If you have any complaint about this survey and the way it is conducted, please
contact:

The Chair
Human Research Ethics Committee
Swinburne University of Technology
PO Box 218
Hawthorn Vic 3122
Phone: +613 92145223

Please make a copy of this page for your reference.

 246

Appendix D

A Comparison of Design Specifications and
Architecture Rationale and Elements
Linkage (AREL) Using Expert Opinions

Project Title

A Comparison of Design Specifications and Architecture Rationale and Elements

Linkage (AREL) Using Expert Opinions
 (A Research Project by Swinburne University of Technology)

Investigators

This research is carried out by Antony Tang (E-mail: atang@it.swin.edu.au) and Prof.
Jun Han (jhan@ict.swin.edu.au), Swinburne University of Technology.

Disclosure Statement

The purpose of this study is to investigate the effectiveness of the AREL model
representation of design rationale in comparison with traditional design specifications.

This empirical study is carried out by way of interviewing experts. It is expected that
the interview session would take up to 90 minutes. The interview questions presented in
this questionnaire may require referencing the Electronic Fund Transfer System (EFT)
design specifications and the AREL model. Participants are invited to use them to
answer the questions as if engaging in a real design session.

Although participants are asked to provide answers, the answers could be sourced from
past memory of the design, reconstructing design reasoning, deducing or the
documentation supplied. Time would be kept to compare the effectiveness of different
documentation formats, time 1 for using design specifications and time 2 for using the
AREL model. The accuracies and completeness of the answers are also compared
qualitatively.

Your participation in this research is not anonymous due to the recording of your e-mail
address. This survey will collect some personal information. They include your e-mail
address, gender and information relating to your position. You may opt not to answer
these questions. All data collected in this survey will be kept for 5 years in accordance
with the Australian government regulations.

Thank you for your support.

 247

mailto:atang@it.swin.edu.au

Privacy Protection

Only investigators listed above will have access to your responses. Your e-mail address
is collected if any further correspondence or clarifications are required. Your e-mail
address will be kept confidential and it will not be disclosed. Information collected in
this survey, except your e-mail address, may be disclosed in research reports and will be
used for research purposes only.

Who are the Participants

The participants are experts who know how to design electronic payment systems, their
participation is by invitation from the investigators. It is expected that about seven
experts will be invited to participate.

Information provided to experts during the interview

• The EFT System Design – System Architecture Overview
• The EFT System - Network Architecture
• An introduction to AREL modelling
• An AREL model of the EFT System (selected design)

 248

Questions

A. About the participant.

1. E-mail address : ___

2. Gender : Male (M) / Female (F)

3. No of years I have been in the IT industry : ______________

4. No of years I have been a designer / architect : ______________

5. No of years I have spent designing / developing electronic payment systems :

 249

B. Exploring design reasoning.

1. What are the key fault resilient
features supported by the EFT
system? Why do we need it?

Time 1 : ____________
Answer 1 :

Document Deduction
Memory Guess

Time 2 : ____________
Additional Answer 2 :

 250

2. Why are there three layers of
software (application, messaging and
communication) in the design? Do
you think the reasons are important to
the architecture design?

Time 1 : ____________
Answer 1 :

Document Deduction
Memory Guess

Time 2 : ____________
Additional Answer 2 :

 251

3. Why does the system use
asynchronous messaging and what
are the implications of such design?

Time 1 : ____________
Answer 1 :

Document Deduction
Memory Guess

Time 2 : ____________
Additional Answer 2 :

 252

4. Why does a MCP process handle
one bank connection only? Can I
change it to handle multiple bank
connections simultaneously? What
are the implications if I do?

Time 1 : ____________
Answer 1 :

Document Deduction
Memory Guess

Time 2 : ____________
Additional Answer 2 :

 253

C. General Comments on AREL Modelling.

1. Do you think that the AREL model is useful to help you reason with the EFT
design?

(Not Helpful) 1 2 3 4 5 (Very Helpful)

2. Given you have reasonable project schedule and resources, would you capture

design rationale with AREL?
Yes / Possibly / Don’t Know / No

3. What are your comments and observations of AREL (both positive and negative

feedbacks)?

4. Is there anything in AREL which can be improved?

__

< END OF QUESTIONNAIRE>

 254

List of related publications

M. Ali Babar, A. Tang, I. Gorton and J. Han. Industrial Perspective on the Use-
fulness of Design Rationale for Software Maintenance: A Survey. Quality Software
International Conference 2006 (QSIC 2006), pp. 201-208. IEEE Computer Society
Press.

A. Tang, Y. Jin and J. Han. A Rationale-based Architecture Model for Design Trace-
ability and Reasoning. Journal of Systems and Software, accepted for publication
on 21 August 2006, 17 pages. Elsevier.

A. Tang, M. Ali Babar, I. Gorton and J. Han. A Survey of Architecture Design
Rationale. Journal of Systems and Software, vol. 79, no.12, pp. 1792-1804. Elsevier.

A. Tang, A. Nicholson, Y. Jin and J. Han. Using Bayesian Belief Networks for
Change Impact Analysis in Architecture Design. Journal of Systems and Software,
vol. 80, no.1, pp. 127-148. Elsevier.

A. Tang, Y. Jin, J. Han and A. Nicholson. Predicting Change Impact in Archi-
tecture Design with Bayesian Belief Networks. In Proceedings of the Fifth Working
IEEE/IFIP Conference on Software Architecture (WICSA 5), pp. 67-76. IEEE
Computer Society Press.

A. Tang, M. Ali Babar, I. Gorton and J. Han. A Survey of the Use and Docu-
mentation of Architecture Design Rationale. In Proceedings of the Fifth Working
IEEE/IFIP Conference on Software Architecture (WICSA 5), pp. 89-98. IEEE
Computer Society Press.

A. Tang and J. Han. A Methodology for Architecture Verifiability, Traceability and
Completeness. In Proceedings of the 12th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS05), pp. 135-
144. IEEE Computer Society Press.

A. Tang and J. Han. A Comparative Analysis of Architecture Frameworks. In
Proceedings of the 2004 Asia-Pacific Software Engineering Conference, pp. 640-647.

255

IEEE Computer Society Press.

A. Tang, Managing project risks with architecture modelling. In Australian Project
Manager - Journal of the Australian Institute of Project Management, June 2005,
Vol 25(2). pp. 13-14. Australian Institute of Project Management.

256

	02whole.pdf
	03appendices.pdf
	AppendixA-ARELToolUserManual.pdf
	Introduction
	Installing the AREL Tool
	Starting the AREL Tool
	AREL Tool Options
	AREL Check Model
	AREL Model Tracing
	Exporting Graph to Netica
	Merging Enterprise Architect Graph with Netica
	Create ADDG Graph
	Delete ADDG Graph
	Use another Enterprise Architect Repository
	Exit the AREL tool

