
Assigning Local Fixed-time Constraints in Grid Workflow Systems

Jinjun Chen, Yun Yang
CITR – Centre for Information Technology Research

Faculty of Information and Communication Technologies
Swinburne University of Technology

PO Box 218, Hawthorn, Melbourne, Australia 3122
 {jchen, yyang}@ict.swin.edu.au

Abstract

Many complex grid workflow processes often have only

one global fixed-time constraint at the last activity. Since
grid workflow execution normally lasts a long time, local
control is very important to ensure the overall temporal
correctness. With only one global fixed-time constraint, we
cannot control grid workflow execution locally in terms of
time. As a result, for any temporal violations, we must
handle them globally with the consideration of all
activities. This would impact the overall cost-effectiveness
of grid workflow execution. Therefore, in this paper, we
investigate how to assign local fixed-time constraints
within the global one so that we can control grid workflow
execution locally. Corresponding assigning and
verification methods are developed. With local fixed-time
constraints, we can achieve better cost-effectiveness.

1. Introduction

In the grid architecture, a grid workflow system is
facilitated to support large-scale sophisticated scientific or
business processes in a variety of complex e-science or e-
business applications such as climate modelling, disaster
recovery, medical surgery, high energy physics, or
international stock market modelling [1, 17, 22]. Such
sophisticated processes are modelled or redesigned as grid
workflow specifications at build-time stage which
normally contain a large number of computation or data
intensive activities [6, 16, 18], then, instantiated at run-
time instantiation stage [7, 14, 20], and finally, are
executed at run-time execution stage by facilitating the
super computing and data sharing ability of underlying
grid infrastructure [7, 19, 20].

In reality, complex scientific or business processes are
normally time constrained [2, 4, 5]. Consequently, when
they are modelled or redesigned as grid workflow
specifications at build-time stage, fixed-time constraints
are often set as well [1, 5, 9]. A fixed-time constraint at an
activity is an absolute time value by which the activity
must be completed [5, 9]. For example, a climate

modelling grid workflow must be completed by a
scheduled time [1], say 6:00pm, so that the weather
forecast can be broadcast on time at a later time. Here,
6:00pm is a fixed-time constraint. Temporal verification is
conducted to check if all fixed-time constraints are
consistent. Temporal verification is carried out at build-
time, run-time instantiation and run-time execution stages
[15, 22]. Especially at the run-time execution stage, some
checkpoints are often selected so that we only need to
conduct temporal verification at such checkpoints rather
than at all activity points [9, 10, 13, 25]. The detailed
discussion about checkpoint selection is outside the scope
of this paper and can be found in some other references
such as [9, 10, 13, 25]. Here, we simply assume that all
checkpoints have already been selected.

Many grid workflow processes such as climate
modelling often have only one global fixed-time constraint
[1]. A grid workflow execution normally lasts a long time
as it often contains hundreds of thousands of activities [1,
3, 24]. Correspondingly, local control is very important to
ensure the overall temporal correctness. With only one
global fixed-time constraint, the local time control cannot
be controlled easily. As a result, we may find the temporal
violation at the latest execution stage and it might be too
late to take any preventive actions. Then, the execution
results may be useless and the overall cost-effectiveness
would be impacted. Therefore, we must investigate how to
assign local fixed-time constraints within the global one so
that we can control grid workflow execution locally. Some
related work has been done on the reasoning about fixed-
time constraints. Al-Ali et al. [2] analyse QoS (Quality of
Service) including temporal QoS in distributed grid
applications including grid workflow applications. Buyya
et al. [5] discuss grid economy issues including the
temporal aspect in grid architecture. Chen et al. [9, 10, 13]
address the checkpoint selection issue for conducting
temporal verification. They also analyse temporal
dependency between fixed-time constraints in grid
workflow systems in [8]. Eder et al. [15] use a modified
Critical Path Method (CPM) to conduct temporal
reasoning. Marjanovic et al. [22] introduce minimum and

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

maximum durations to each activity in workflow
specifications. Based on this, they present a method for
dynamic temporal verification.

However, the above related work does not pay
sufficient attention to the assigning of local fixed-time
constraints in order to control grid workflow execution
locally. Therefore, in this paper, we systematically
investigate how to assign local fixed-time constraints
within the global one. We also develop corresponding
assigning and verification methods.

There is another type of temporal constraints named
upper bound constraints. An upper bound constraint
between two activities is a relative time value so that the
duration between them is less than or equal to it [15].
However, assigning local upper bound constraints is
different from assigning local fixed-time constraints. This
is because an upper bound constraint is relative while a
fixed-time constraint is absolute. All fixed-time constraints
have the same start point, i.e. the start activity of the grid
workflow, and are nested one after another. But different
upper bound constraints could have different start points
and may not be nested one after another. In this paper, we
focus on how to assign local fixed-time constraints. The
corresponding discussion for upper bound constraints
would be conducted somewhere else.

The remainder of the paper is organised as follows. In
Section 2, we represent some time attributes of grid
workflows. In Section 3, we discuss how to assign local
fixed-time constraints at build-time and run-time
instantiation stages. In Section 4, we investigate how to
verify and adjust local fixed-time constraints at run-time
execution stage. In Section 5, we conduct a simple
comparison to intuitively demonstrate that we can achieve
better cost-effectiveness with local fixed-time constraints
than only with the global fixed-time constraint. Finally in
Section 6, we conclude our contributions and point out
future work.

2. Timed grid workflow representation

According to [21, 23], based on the directed network
graph (DNG) concept, a grid workflow can be represented
as a DNG-based grid workflow graph, where nodes
correspond to activities and edges correspond to
dependencies between activities. In [21, 23], the iterative
structure is nested in an activity that has an exit condition
defined for iterative purposes. Accordingly, the
corresponding DNG-based grid workflow graph is
structurally acyclic1.

To represent activity time attributes, we borrow some
concepts from [22, 25] such as maximum or minimum
duration as a basis. We denote the ith activity of a grid
workflow gw as ai. We denote the expected time from

1 Refer to [23, 25] for more detail.

which the specification of grid workflow gw will come
into effect as Cie(gw). From Cie(gw), the specification of
grid workflow gw can be used. For each ai, we denote its
maximum duration, mean duration, minimum duration,
run-time start time, run-time end time and run-time
completion duration as D(ai), M(ai), d(ai), S(ai), E(ai) and
R(ai) respectively. M(ai) means that statistically ai can be
completed around its mean duration. Other time attributes
are self-explanatory. According to [22, 25], D(ai), M(ai),
d(ai) can be obtained based on the past execution history.
The past execution history covers the delay time incurred
at ai such as the setup delay, queuing delay,
synchronisation delay, network latency and so on. The
detailed discussion of D(ai), M(ai), d(ai) is outside the
scope of this paper and can be referred to [22, 25]. For a
specific execution of ai, the delay time is included in R(ai).
Normally, we have d(ai) ≤ M(ai) ≤ D(ai) and d(ai) ≤ R(ai) ≤
D(ai). If there is a fixed-time constraint set at ai, we denote
it as FTC(ai) and its value as ftv(ai). If there is a path from
ai to aj (i<j), we denote the maximum duration, mean
duration, minimum duration, run-time completion duration
between them as D(ai, aj), M(ai, aj), d(ai, aj) and R(ai, aj)
respectively. Normally we have d(ai, aj) ≤ M(ai, aj) ≤ D(ai,
aj) and d(ai, aj) ≤ R(ai, aj) ≤ D(ai, aj).

For convenience of the discussion, we only consider
one execution path in the acyclic DNG-based grid
workflow graph without losing generality. As to a selective
or parallel structure, each branch is an execution path.
Therefore, we can equally apply the results achieved in
this paper to each branch directly. In overall terms, for a
grid workflow containing many parallel, selective and/or
mixed structures, firstly, we treat each structure as an
activity. Then, the whole grid workflow will be an overall
execution path and we can apply the results achieved in
this paper to it. Secondly, for every structure, for each of
its branches, we continue to apply the results achieved in
this paper. Thirdly, we carry out this recursive process
until we complete all branches of all structures.
Correspondingly, between ai and aj, D(ai, aj) is equal to the
sum of all activity maximum durations, M(ai, aj) is equal to
the sum of all activity mean durations, d(ai, aj) is equal to
the sum of all activity minimum durations.

Besides the above time attributes, four temporal
consistency states have been identified and defined in [11,
12]. They are SC (Strong Consistency), WC (Weak
Consistency), WI (Weak Inconsistency) and SI (Strong
Inconsistency). We summarise their definitions in
Definitions 1, 2 and 3. The detailed discussion about the
four consistency states can be found in [11, 12].

Definition 1. At build-time stage, FTC(ai) is said to be
of SC if D(a1, ai) ≤ ftv(ai) - Cie(gw), WC if M(a1, ai) ≤
ftv(ai) - Cie(gw) < D(a1, ai), WI if d(a1, ai) ≤ ftv(ai) -
Cie(gw) < M(a1, ai), and SI if ftv(ai) - Cie(gw) < d(a1, ai).

Definition 2. At build-time stage, FTC(ai) is said to be
of SC if D(a1, ai) ≤ ftv(ai) - S(a1), WC if M(a1, ai) ≤ ftv(ai) -

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

S(a1) < D(a1, ai), WI if d(a1, ai) ≤ ftv(ai) - S(a1) < M(a1,
ai), and SI if ftv(ai) - S(a1) < d(a1, ai).

Definition 3. At run-time execution stage, at checkpoint
ap which is either before or at ai (p≤i), FTC(ai) is said to be
of SC if R(a1, ap) + D(ap+1, ai) ≤ ftv(ai) - S(a1), WC if R(a1,

ap) + M(ap+1, ai) ≤ ftv(ai) - S(a1) < R(a1, ap) + D(ap+1, ai),
WI if R(a1, ap) + d(ap+1, ai) ≤ ftv(ai) - S(a1) < R(a1, ap) +
M(ap+1, ai), and SI if ftv(ai) - S(a1) < R(a1, ap) + d(ap+1, ai).

For clarity and convenience of discussion, we depict
SC, WC, WI and SI in Figure 1.

Figure 1. Definitions of SC, WC, WI and SI for fixed-time constraints

In this paper, we focus on SC only. The corresponding

discussion for WC, WI and SI is similar as according to
Definitions 1, 2 and 3, their definition styles are similar to
that of SC.

3. Assigning local fixed-time constraints at
build-time and run-time instantiation stages

We denote the global fixed-time constraint at the last
activity as F and its value as ftv(F). At build-time stage, we
first should ensure F is of SC by verifying and adjusting it
according to Definition 1. Then, we consider how to assign

local fixed-time constraint within F. Based on the past
execution history, we can summarise at which activities
temporal violations often happen. Then, at such activities,
we must take special control in order to ensure overall
temporal correctness. Accordingly, at each of such
activities we should assign a fixed-time. We suppose there
are N such activities and we denote them as

1j
a ,

2j
a , ... ,

Nj
a respectively (j1<j2<...<jN). Correspondingly, we need

to assign N local fixed-time constraints at
1j

a ,
2j

a , ... ,
Nj

a
respectively. We denote them as F1, F2, ... , FN, and their

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

values as ftv(F1), ftv(F2), ... , and ftv(FN), i.e. Fi at
ij

a (i=1,
2, ..., N). When grid workflow gw is executed, it starts
from a1 and then reaches each fixed-time constraint
gradually during the execution. Correspondingly, we can
view a1 as the start point of each fixed-time constraint.
That is to say, F1, F2, ... , and FN have the same start point
[5, 9]. We suppose totally there are T activities covered by
F (N≤T). Then, if F is of SC, we have a time redundancy:
[ftv(F) - Cie(gw)] - D(a1, aT). This time redundancy can be
used to tolerate certain time deviation which might be
incurred by the grid workflow execution. By allocating this
time redundancy to activities covered by F so that each

activity can hold a time quota, we can derive F1, F2, ... , FN
as follows.

Among T activities covered by F, we first sort all D(as)
– M(as) (s = 1, 2, 3, ... , T) in ascending order.
Correspondingly, we will get a sorting list which contains
all D(as) – M(as) (s = 1, 2, 3, ... , T). We denote the list as
L and the items in L as L1, L2, ... , LT. If D(as) – M(as) is
ranked No. k in L, namely Lk, then we propose formula (1)
to allocate [ftv(F) - Cie(gw)] - D(a1, aT) to each of the T
activities. We denote the time quota allocated to as as
TQ(as).

)]()([
)],()()([)(

1

1
1

l

T

l
l

kT
Ts

aMaD

L
aaDgwCieFftvaTQ

−
−−=

∑
=

+− (1 ≤ k ≤ T) (1)

In (1), we allocate [ftv(F) - Cie(gw)] - D(a1, aT) to

activities covered by F based on the difference between
activity maximum duration and activity mean duration.
The activity with a bigger difference will be allocated a
smaller quota. This is because statistically, an activity can
be completed around its mean duration. Therefore, the
activity with a bigger difference between its maximum
duration and its mean duration has more time to
compensate the possible time deviation incurred by the

abnormal grid workflow execution. Hence, we should
allocate a smaller quota to it.

After we allocate [ftv(F) - Cie(gw)] - D(a1, aT) to
activities covered by F, we can derive the values of F1, F2,
... , and FN at

1j
a ,

2j
a , ... ,

Nj
a respectively. Suppose we

now considering Fi at
ij

a , we derive its value by formula
(2).

∑
=

+=
ij

s
ssi aDaTQFftv

1

)]()([)((i=1, 2, 3, ... , N) (2)

The basic relationships between F and F1, F2, ... , FN

are shown in Figure 2. We can see that they are nested one
after another. This is because all fixed-time constraints
including the global one has the same start point, i.e. the
start activity of the whole grid workflow.

At run-time instantiation stage, instances of grid
workflow gw are enacted. We will get absolute start time,
i.e. S(a1). S(a1) might be different from Cie(gw). As a
result, the overall time redundancy [ftv(F) - S(a1)] - D(a1,
aT) might be different from that of build-time stage, i.e.

[ftv(F) - Cie(gw)] - D(a1, aT). Therefore, we need to re-
assign the N local fixed-time constraints. The specific
assigning process is similar to that of build-time stage by
replacing Cie(gw) with S(a1). Hence, we simply omit
corresponding discussion.

Based on the above discussion, we can derive an
algorithm for assigning local fixed-time constraints at
build-time stage. The main part of the algorithm is
depicted in Algorithm 1.

Figure 2. Relationships between F and F1, F2, ... , FN

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

Algorithm 1. Assigning local fixed-time constraints at build-time stage

4. Verifying and adjusting local fixed-time
constraints at run-time execution stage

At run-time execution stage, when grid workflow
execution arrives at a checkpoint, say ap, we verify F1, F2,
... , FN and F. We derive Theorem 1 first which can ease
temporal verification.

Theorem 1. At ap, if a local fixed-time constraint Fs is
of SC, then, the consistency of F will not be affected by
the execution of ap.

Proof: According to Definition 3, if Fs is of SC, we
have: R(a1, ap) + D(ap+1,

sj
a) ≤ ftv(Fs)-S(a1). That is to

say, the possible time deviation caused by the execution of
ap can be counteracted within Fs, so it will not affect the
consistency of F.

Thus, the theorem holds. ▌

In addition, we discussed temporal dependency between
fixed-time constraints in [8]. The temporal dependency
between fixed-time constraints means that fixed-time
constraints are dependent on each other in terms of their
verification. We can derive the consistency of later fixed-
time constraints from the consistency of previous fixed-
time constraints. Correspondingly, we have Theorem 2.
The detailed discussion about temporal dependency can be
found in [8].

Theorem 2. At ap, if a local fixed-time constraint Fs is
of SC, then, all local fixed-time constraints after Fs must
also be of SC.

Proof: Refer to [8].
According to Theorems 1 and 2, we verify Fs firstly. If

it is of SC, it means that the time deviation caused by the
execution of ap can be counteracted within Fs. Therefore,
we need not verify and adjust any other local fixed-time
constraints after Fs as well as the global one, i.e. F.

Symbol Definitions:
ArrayTA: an array of all T activities covered by the global fixed-time constraint F;
ArrayFA: an array of all N activities where we need to set fixed-time constraints;
End Symbol Definitions
Input: ArrayTA, ArrayFA, maximum and mean durations of all activities involved in ArrayTA
and ArrayFA;
Output: temporary local fixed-time constraints;
While (not end of ArrayTA)

 // compute all D(as) – M(as) (s = 1, 2, 3, ... , T)
 Select current activity from ArrayTA to as (s = 1, 2, 3, ... , T);
 Compute D(as) – M(as);

End While
Sort all D(as) – M(as) (s = 1, 2, 3, ... , T) in the ascending order to ArrayLA where D(as) – M(as) is

ranked No. k in ArrayLA;
While (not end of ArrayTA)
 // allocate time quota to all T activities covered by F

 Select current activity from ArrayTA to as (s = 1, 2, 3, ... , T);
 Apply formula (1) to compute TQ(as) as follows;

)]()([
)],()()([)(

1

1
1

l

T

l
l

kT
Ts

aMaD

L
aaDgwCieFftvaTQ

−
−−=

∑
=

+−

End While
While (not end of ArrayFA)
 // assign local fixed-time constraints at the N activities respectively

 Select current activity from ArrayFA to
ij

a (i=1, 2, ..., N);
 Apply formula (2) to compute ftv(Fi) of Fi at

ij
a as follows;

 ∑
=

+=
ij

s
ssi aDaTQFftv

1
)]()([)(

End While

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

However, if Fs is not of SC, we need to verify F. There
are two situations. One is that F is of SC. This means that
the global fixed-time constraint can still be kept even if the
temporary local one Fs is violated. In this case, since Fs is
set by us to control grid workflow execution rather than
from user needs, we do not have to trigger any exception
handling to deal with the violation of Fs. We only need to
adjust Fs and other remaining local fixed-time constraints
based on the current available time redundancy of F. The
specific adjustment methods are similar to those assigning
ones of build-time stage, hence omitted.

The other situation is that F is violated, i.e. not of SC.
In this case, since Fs is also violated, we should try to
trigger exception handling to deal with the violation
locally within Fs because this will affect fewer activities.
Consequently, it would be more cost-effective. If we can
handle the violation within Fs, then, according to
Theorems 1 and 2, we need not adjust F and other
remaining local fixed-time constraints. However, if we
cannot handle the violation within Fs, we have to handle it
within F. In this case, after we adjust F, we need to adjust
all remaining local fixed-time constraints. The
corresponding adjustment methods are similar to those
assigning ones of build-time stage. The difference is that
here we only need to focus on those succeeding
unexecuted activities rather than all activities at build-time
stage.

Based on the above discussion, we can derive an
algorithm for dynamically verifying and adjusting local
fixed-time constraints at run-time execution stage within
the global fixed-time constraint. However, we simply omit
it as it can be derived straightforwardly from the above
discussion.

5. Comparison and discussion

In conventional verification work, we always verify the
global fixed-time constraint with the consideration of all
covered activities. We cannot control the temporal aspect
of grid workflow execution in a local range. As a result,
for any temporal violations, we must handle them globally
encompassing all activities. Comparing with existing
related work, the clear difference in this paper is that we
have investigated how to assign, verify and adjust local
fixed-time constraints. With local fixed-time constraints,
we can locally control grid workflow execution.
Especially, as stated in Section 4, when temporal
violations happen, we can try to handle them locally within
local fixed-time constraints rather than within the global
one. Local handling will affect fewer activities rather than
global handling. So, local handling would be more cost-
effective than the global handling. That is to say, we can
achieve much better cost-effectiveness with local fixed-
time constraints than only with the global fixed-time
constraint. In particular, handling of temporal violations is

costly, especially in the large-scale grid environments
because the handling may touch many different resources
spanning large-scale multi-organisations. We need to
negotiate with different resource providers with different
background to conduct the handling. So, the handling cost
is not just from handling itself. It is also partly incurred by
the dynamic negotiation process. And sometimes, we may
have to compensate some activities or even worse we may
need to change the workflow schema locally. In other
words, handling cost becomes a more prominent issue in
grid environments than in some traditional enterprise
environments. Therefore, by nature, it is worth for us to
assign local fixed-time constraints towards better cost-
effectiveness.

We can further conduct a quantitative analysis to
demonstrate the extent to which we can achieve better
cost-effectiveness by local fixed-time constraints. We are
investigating some simulation and experimental tools or
environments to select an appropriate one for further
reasoning about the benefits of our work.

6. Conclusions and future work

To control grid workflow execution locally in terms of
time for better cost-effectiveness, we have investigated
how to assign local fixed-time constraints within the global
one. We have developed corresponding assigning methods
at build-time and run-time instantiation stages. Then, at
run-time execution stage, we have further developed
corresponding verification and adjustment methods. The
brief comparison and discussion has intuitively shown that
we can achieve better cost-effectiveness with local fixed-
time constraints than only with the global one.

With the above contributions, we are working on how
to facilitate timed Petri-Net for timed grid workflow
representation and how to reason about the assigning of
local fixed-time constraints based on such representation.

Acknowledgements

The work reported in this paper is partly supported by
Australian Research Council Projects under grant No.
LP0562500 and grant No. DP0663841.

References

[1] D. Abramson, J. Kommineni, J.L. McGregor and J. Katzfey,
“An Atmospheric Sciences Workflow and its Implementation
with Web Services”, Future Generation Computer Systems, 2005,
21(1), pp. 69-78.

[2] R. Al-Ali, K. Amin, G.V. Laszewski, O. Rana, D. Walker, M.
Hategan, and N. Zaluzec, “Analysis and Provision of QoS for
Distributed Grid Applications”, Journal of Grid Computing,
2004, 2(2), pp. 163-182.

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

[3] G. Aloisio, M. Cafaro, G. Carteni, I. Epicoco, G. Quarta, A.
Raolil, “GridFlow for Earth Observation Data Processing”, In
Proc. of 2005 International Conference on Grid Computing and
Applications (GCA 2005), Las Vegas, Nevada, USA, June 2005,
pp. 168-176.

[4] I. Brandic, S. Benkner, G. Engelbrecht, R. Schmidt, “Towards
Quality of Service Support for Grid Workflows”, In Proc. of
European Grid Conference 2005 (EGC 2005), Springer-Verlag,
Amsterdam, The Netherlands, Feb. 2005, LNCS 3470, pp. 661-
670.

[5] R. Buyya, D. Abramson and S. Venugopal, “The Grid
Economy”, The Proceedings of The IEEE, 2005, 93(3), pp. 698-
714.

[6] J. Cao, S.A. Jarvis, S. Saini and G.R. Nudd, “GridFlow:
Workflow Management for Grid Computing”, In Proc. Of 3rd
IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 2003), IEEE CS Press, Tokyo, Japan, May
2003, pp. 198-205.

[7] D. Cybok, “A Grid Workflow Infrastructure”, Concurrency
and Computation: Practice and Experience, Special Issue on Grid
Workflow, 2006, to appear, http://www.cc-pe.net/CCPEweb
resource/c8545to872workflow/c856cybok/c856Grid_Workflow_
Paper_ggfFINAL.pdf, accessed on July 8, 2006.

[8] J. Chen and Y. Yang, “Temporal Dependency for Dynamic
Verification of Fixed-date Constraints in Grid Workflow
Systems”, In Proc. of 7th Asia Pacific Web Conference,
Springer-Verlag, Shanghai, China, Mar. 2005, LNCS 3399, pp.
820-831.

[9] J. Chen and Y. Yang, “An Activity Completion Duration
based Checkpoint Selection Strategy for Dynamic Verification of
Fixed-time Constraints in Grid Workflow Systems”, In Proc. of
2nd International Conference on Grid Service Engineering and
Management (GSEM2005), Erfurt, Germany, Sept. 2005, Lecture
Notes in Informatics P-69, pp. 296-310.

[10] J. Chen and Y. Yang, “A Minimum Proportional Time
Redundancy based Checkpoint Selection Strategy for Dynamic
Verification of Fixed-time Constraints in Grid Workflow
Systems”, In Proc. of 12th Asia-Pacific Software Engineering
Conference (APSEC2005), IEEE CS Press, Taiwan, Dec. 2005,
pp. 299-306.

[11] J. Chen and Y. Yang, “Flexible Temporal Consistency for
Fixed-time Constraint Verification in Grid Workflow Systems”,
In Proc. of 4th International Conference on Grid and Cooperative
Computing (GCC2005), Springer-Verlag, Beijing, China,
Nov./Dec. 2005, LNCS 3795, pp. 300-311.

[12] J. Chen and Y. Yang, “Multiple States based Temporal
Consistency for Dynamic Verification of Fixed-time Constraints
in Grid Workflow Systems”, Concurrency and Computation:
Practice and Experience, 2006, to appear,
http://www.it.swin.edu.au/personal/yyang/papers/temporal_states
_CCPE.pdf, accessed on July 8, 2006.

[13] J. Chen and Y. Yang, “Selecting Necessary and Sufficient
Checkpoints for Dynamic Verification of Fixed-time Constraints
in Grid Workflow Systems”, In Proc. of 4th International
Conference on Business Process Management, Springer-Verlag,
2006, LNCS, to appear, http://www.it.swin.edu.au/personal/
yyang/papers/BPM2006.pdf, accessed on July 8, 2006.

[14] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta and
K. Vahi, “Mapping Abstract Complex Workflows onto Grid
Environments”, Journal of Grid Computing, 2003, 1(1), pp. 9-23.

[15] J. Eder, E. Panagos and M. Rabinovich, “Time Constraints
in Workflow Systems”, In Proc. of 11th International Conference
on Advanced Information Systems Engineering (CAiSE99),
Springer-Verlag, Heidelberg, Germany, June 1999, LNCS 1626,
pp. 286-300.

[16] T. Fahringer, S. Pllana, A. Villazon, “A-GWL: Abstract
Grid Workflow Language”, In Proc. of 4th International
Conference on Computational Science, Part IV, Springer-Verlag,
Krakow, Poland, June 2004, LNCS 3038, pp. 42-49.

[17] I. Foster, C. Kesselman, J. Nick and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration”, Technical Report in 5th Global
Grid Forum Workshop (GGF5), Edinburgh, Scotland, July 2002,
http://www.globus.org/alliance/publications/papers/ogsa.pdf,
accessed on July 8, 2006

[18] C. Goble, “Building ad hoc (personal) workflows in an open
world: myGrid experiences”, Technical Report in 12th Global
Grid Forum Workshop (GGF12), Brussels, Belgium, Sept. 2004,
http://www.isi.edu/~deelman/wfm-rg/ggf12/GGF12goble.ppt,
accessed on July 8, 2006.

[19] Y. Huang, “JISGA: A JINI-BASED Service-Oriented Grid
Architecture”, The International Journal of High Performance
Computing Applications, 2003, 17(3), pp. 317-327.

[20] S. Krishnan, P. Wagstrom and G. von Laszewski, “GSFL: A
Workflow Framework for Grid Services”, Technical Report,
Argonne National Laboratory, Cass Avenue, Argonne, IL 60439,
U.S.A., 2002, http://www-unix.globus.org/cog/papers/gsfl-
paper.pdf, accessed on July 8, 2006.

[21] J. Li, Y. Fan and M. Zhou, “Timing Constraint Workflow
Nets for Workflow Analysis”, IEEE Transactions on Systems,
Man and Cybernetics - Part A: Systems and Humans, 2003,
33(2), pp. 179-193.

[22] O. Marjanovic, and M.E. Orlowska, “On Modeling and
Verification of Temporal Constraints in Production Workflows”,
Knowledge and Information Systems, 1999, 1(2), pp. 157-192.

[23] W. Sadiq and M.E. Orlowska, “Analysing Process Models
using Graph Reduction Techniques”, Information Systems, 2000,
25(2), pp. 117-134.

[24] D.R. Simpson, N. Kelly, P.V. Jithesh, P. Donachy, T.J.
Harmer, R.H. Perrott, J. Johnston, P. Kerr, M. McCurley and S.
McKee, “GeneGrid: A Practical Workflow Implementation for a

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

Grid based Virtual Bioinformatics Laboratory”, In Proc. of UK e-
Science All Hands Meeting (AHM04), Nottingham, UK,
Aug./Sept. 2004, pp. 547-554.

[25] H. Zhuge, T. Cheung, and H. Pung, “A Timed Workflow
Process Model”, The Journal of Systems and Software, 2001,
55(3), pp. 231-243.

Proceedings of the Fifth International Conference on
Grid and Cooperative Computing Workshops (GCCW'06)
0-7695-2695-0/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on November 5, 2009 at 23:07 from IEEE Xplore. Restrictions apply.

