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Abstract 
 
Many complex grid workflow processes often have only 

one global fixed-time constraint at the last activity. Since 
grid workflow execution normally lasts a long time, local 
control is very important to ensure the overall temporal 
correctness. With only one global fixed-time constraint, we 
cannot control grid workflow execution locally in terms of 
time. As a result, for any temporal violations, we must 
handle them globally with the consideration of all 
activities. This would impact the overall cost-effectiveness 
of grid workflow execution. Therefore, in this paper, we 
investigate how to assign local fixed-time constraints 
within the global one so that we can control grid workflow 
execution locally. Corresponding assigning and 
verification methods are developed. With local fixed-time 
constraints, we can achieve better cost-effectiveness. 
 
1. Introduction 
 

In the grid architecture, a grid workflow system is 
facilitated to support large-scale sophisticated scientific or 
business processes in a variety of complex e-science or e-
business applications such as climate modelling, disaster 
recovery, medical surgery, high energy physics, or 
international stock market modelling [1, 17, 22]. Such 
sophisticated processes are modelled or redesigned as grid 
workflow specifications at build-time stage which 
normally contain a large number of computation or data 
intensive activities [6, 16, 18], then, instantiated at run-
time instantiation stage [7, 14, 20], and finally, are 
executed at run-time execution stage by facilitating the 
super computing and data sharing ability of underlying 
grid infrastructure [7, 19, 20].  

In reality, complex scientific or business processes are 
normally time constrained [2, 4, 5]. Consequently, when 
they are modelled or redesigned as grid workflow 
specifications at build-time stage, fixed-time constraints 
are often set as well [1, 5, 9]. A fixed-time constraint at an 
activity is an absolute time value by which the activity 
must be completed [5, 9]. For example, a climate 

modelling grid workflow must be completed by a 
scheduled time [1], say 6:00pm, so that the weather 
forecast can be broadcast on time at a later time. Here, 
6:00pm is a fixed-time constraint. Temporal verification is 
conducted to check if all fixed-time constraints are 
consistent. Temporal verification is carried out at build-
time, run-time instantiation and run-time execution stages 
[15, 22]. Especially at the run-time execution stage, some 
checkpoints are often selected so that we only need to 
conduct temporal verification at such checkpoints rather 
than at all activity points [9, 10, 13, 25]. The detailed 
discussion about checkpoint selection is outside the scope 
of this paper and can be found in some other references 
such as [9, 10, 13, 25]. Here, we simply assume that all 
checkpoints have already been selected.  

Many grid workflow processes such as climate 
modelling often have only one global fixed-time constraint 
[1]. A grid workflow execution normally lasts a long time 
as it often contains hundreds of thousands of activities [1, 
3, 24]. Correspondingly, local control is very important to 
ensure the overall temporal correctness. With only one 
global fixed-time constraint, the local time control cannot 
be controlled easily. As a result, we may find the temporal 
violation at the latest execution stage and it might be too 
late to take any preventive actions. Then, the execution 
results may be useless and the overall cost-effectiveness 
would be impacted. Therefore, we must investigate how to 
assign local fixed-time constraints within the global one so 
that we can control grid workflow execution locally. Some 
related work has been done on the reasoning about fixed-
time constraints. Al-Ali et al. [2] analyse QoS (Quality of 
Service) including temporal QoS in distributed grid 
applications including grid workflow applications. Buyya 
et al. [5] discuss grid economy issues including the 
temporal aspect in grid architecture. Chen et al. [9, 10, 13] 
address the checkpoint selection issue for conducting 
temporal verification. They also analyse temporal 
dependency between fixed-time constraints in grid 
workflow systems in [8]. Eder et al. [15] use a modified 
Critical Path Method (CPM) to conduct temporal 
reasoning. Marjanovic et al. [22] introduce minimum and 
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maximum durations to each activity in workflow 
specifications. Based on this, they present a method for 
dynamic temporal verification.  

However, the above related work does not pay 
sufficient attention to the assigning of local fixed-time 
constraints in order to control grid workflow execution 
locally. Therefore, in this paper, we systematically 
investigate how to assign local fixed-time constraints 
within the global one. We also develop corresponding 
assigning and verification methods.  

There is another type of temporal constraints named 
upper bound constraints. An upper bound constraint 
between two activities is a relative time value so that the 
duration between them is less than or equal to it [15]. 
However, assigning local upper bound constraints is 
different from assigning local fixed-time constraints. This 
is because an upper bound constraint is relative while a 
fixed-time constraint is absolute. All fixed-time constraints 
have the same start point, i.e. the start activity of the grid 
workflow, and are nested one after another. But different 
upper bound constraints could have different start points 
and may not be nested one after another. In this paper, we 
focus on how to assign local fixed-time constraints. The 
corresponding discussion for upper bound constraints 
would be conducted somewhere else. 

The remainder of the paper is organised as follows. In 
Section 2, we represent some time attributes of grid 
workflows. In Section 3, we discuss how to assign local 
fixed-time constraints at build-time and run-time 
instantiation stages. In Section 4, we investigate how to 
verify and adjust local fixed-time constraints at run-time 
execution stage. In Section 5, we conduct a simple 
comparison to intuitively demonstrate that we can achieve 
better cost-effectiveness with local fixed-time constraints 
than only with the global fixed-time constraint. Finally in 
Section 6, we conclude our contributions and point out 
future work. 
 
2. Timed grid workflow representation 
  

According to [21, 23], based on the directed network 
graph (DNG) concept, a grid workflow can be represented 
as a DNG-based grid workflow graph, where nodes 
correspond to activities and edges correspond to 
dependencies between activities. In [21, 23], the iterative 
structure is nested in an activity that has an exit condition 
defined for iterative purposes. Accordingly, the 
corresponding DNG-based grid workflow graph is 
structurally acyclic1.  

To represent activity time attributes, we borrow some 
concepts from [22, 25] such as maximum or minimum 
duration as a basis. We denote the ith activity of a grid 
workflow gw as ai. We denote the expected time from 

                                                        
1 Refer to [23, 25] for more detail. 

which the specification of grid workflow gw will come 
into effect as Cie(gw). From Cie(gw), the specification of 
grid workflow gw can be used. For each ai, we denote its 
maximum duration, mean duration, minimum duration, 
run-time start time, run-time end time and run-time 
completion duration as D(ai), M(ai), d(ai), S(ai), E(ai) and 
R(ai) respectively. M(ai) means that statistically ai can be 
completed around its mean duration. Other time attributes 
are self-explanatory. According to [22, 25], D(ai), M(ai), 
d(ai) can be obtained based on the past execution history. 
The past execution history covers the delay time incurred 
at ai such as the setup delay, queuing delay, 
synchronisation delay, network latency and so on. The 
detailed discussion of D(ai), M(ai), d(ai) is outside the 
scope of this paper and can be referred to [22, 25]. For a 
specific execution of ai, the delay time is included in R(ai). 
Normally, we have d(ai) ≤ M(ai) ≤ D(ai) and d(ai) ≤ R(ai) ≤ 
D(ai). If there is a fixed-time constraint set at ai, we denote 
it as FTC(ai) and its value as ftv(ai). If there is a path from 
ai to aj (i<j), we denote the maximum duration, mean 
duration, minimum duration, run-time completion duration 
between them as D(ai, aj), M(ai, aj), d(ai, aj) and R(ai, aj) 
respectively. Normally we have d(ai, aj) ≤ M(ai, aj) ≤ D(ai, 
aj) and d(ai, aj) ≤ R(ai, aj) ≤ D(ai, aj). 

For convenience of the discussion, we only consider 
one execution path in the acyclic DNG-based grid 
workflow graph without losing generality. As to a selective 
or parallel structure, each branch is an execution path. 
Therefore, we can equally apply the results achieved in 
this paper to each branch directly. In overall terms, for a 
grid workflow containing many parallel, selective and/or 
mixed structures, firstly, we treat each structure as an 
activity. Then, the whole grid workflow will be an overall 
execution path and we can apply the results achieved in 
this paper to it. Secondly, for every structure, for each of 
its branches, we continue to apply the results achieved in 
this paper. Thirdly, we carry out this recursive process 
until we complete all branches of all structures. 
Correspondingly, between ai and aj, D(ai, aj) is equal to the 
sum of all activity maximum durations, M(ai, aj) is equal to 
the sum of all activity mean durations, d(ai, aj) is equal to 
the sum of all activity minimum durations. 

Besides the above time attributes, four temporal 
consistency states have been identified and defined in [11, 
12]. They are SC (Strong Consistency), WC (Weak 
Consistency), WI (Weak Inconsistency) and SI (Strong 
Inconsistency). We summarise their definitions in 
Definitions 1, 2 and 3. The detailed discussion about the 
four consistency states can be found in [11, 12]. 

Definition 1. At build-time stage, FTC(ai) is said to be 
of SC if D(a1, ai) ≤ ftv(ai) - Cie(gw), WC if M(a1, ai) ≤ 
ftv(ai) - Cie(gw) < D(a1, ai), WI if d(a1, ai) ≤ ftv(ai) - 
Cie(gw) < M(a1, ai), and SI if ftv(ai) - Cie(gw) < d(a1, ai). 

Definition 2. At build-time stage, FTC(ai) is said to be 
of SC if D(a1, ai) ≤ ftv(ai) - S(a1), WC if M(a1, ai) ≤ ftv(ai) - 
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S(a1) < D(a1, ai), WI if d(a1, ai) ≤ ftv(ai) - S(a1) < M(a1, 
ai), and SI if ftv(ai) - S(a1) < d(a1, ai).  

Definition 3. At run-time execution stage, at checkpoint 
ap which is either before or at ai (p≤i), FTC(ai) is said to be 
of SC if R(a1, ap) + D(ap+1, ai) ≤ ftv(ai) - S(a1), WC if R(a1, 

ap) + M(ap+1, ai) ≤ ftv(ai) - S(a1) < R(a1, ap) + D(ap+1, ai), 
WI if R(a1, ap) + d(ap+1, ai) ≤ ftv(ai) - S(a1) < R(a1, ap) + 
M(ap+1, ai), and SI if ftv(ai) - S(a1) < R(a1, ap) + d(ap+1, ai). 

For clarity and convenience of discussion, we depict 
SC, WC, WI and SI in Figure 1.  

 

 
 

Figure 1. Definitions of SC, WC, WI and SI for fixed-time constraints 
 
In this paper, we focus on SC only. The corresponding 

discussion for WC, WI and SI is similar as according to 
Definitions 1, 2 and 3, their definition styles are similar to 
that of SC. 
 
3. Assigning local fixed-time constraints at 
build-time and run-time instantiation stages 
 

We denote the global fixed-time constraint at the last 
activity as F and its value as ftv(F). At build-time stage, we 
first should ensure F is of SC by verifying and adjusting it 
according to Definition 1. Then, we consider how to assign 

local fixed-time constraint within F. Based on the past 
execution history, we can summarise at which activities 
temporal violations often happen. Then, at such activities, 
we must take special control in order to ensure overall 
temporal correctness. Accordingly, at each of such 
activities we should assign a fixed-time. We suppose there 
are N such activities and we denote them as 

1j
a , 

2j
a , ... , 

Nj
a  respectively (j1<j2<...<jN). Correspondingly, we need 

to assign N local fixed-time constraints at
1j

a , 
2j

a , ... , 
Nj

a  
respectively. We denote them as F1, F2, ... , FN, and their 
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values as ftv(F1), ftv(F2), ... , and ftv(FN), i.e. Fi at 
ij

a  (i=1, 
2, ..., N). When grid workflow gw is executed, it starts 
from a1 and then reaches each fixed-time constraint 
gradually during the execution. Correspondingly, we can 
view a1 as the start point of each fixed-time constraint. 
That is to say, F1, F2, ... , and FN have the same start point 
[5, 9]. We suppose totally there are T activities covered by 
F (N≤T). Then, if F is of SC, we have a time redundancy: 
[ftv(F) - Cie(gw)] - D(a1, aT). This time redundancy can be 
used to tolerate certain time deviation which might be 
incurred by the grid workflow execution. By allocating this 
time redundancy to activities covered by F so that each 

activity can hold a time quota, we can derive F1, F2, ... , FN 
as follows. 

Among T activities covered by F, we first sort all D(as) 
– M(as) (s = 1, 2, 3, ... , T) in ascending order. 
Correspondingly, we will get a sorting list which contains 
all D(as) – M(as) (s = 1, 2, 3, ... , T). We denote the list as 
L and the items in L as L1, L2, ... , LT. If D(as) – M(as) is 
ranked No. k in L, namely Lk, then we propose formula (1) 
to allocate [ftv(F) - Cie(gw)] - D(a1, aT) to each of the T 
activities. We denote the time quota allocated to as as 
TQ(as). 

 

)]()([
)],()()([)(

1

1
1

l

T

l
l

kT
Ts

aMaD

L
aaDgwCieFftvaTQ

−
−−=

∑
=

+−         (1 ≤ k ≤ T)              (1) 

 
In (1), we allocate [ftv(F) - Cie(gw)] - D(a1, aT) to 

activities covered by F based on the difference between 
activity maximum duration and activity mean duration. 
The activity with a bigger difference will be allocated a 
smaller quota. This is because statistically, an activity can 
be completed around its mean duration. Therefore, the 
activity with a bigger difference between its maximum 
duration and its mean duration has more time to 
compensate the possible time deviation incurred by the 

abnormal grid workflow execution. Hence, we should 
allocate a smaller quota to it.  

After we allocate [ftv(F) - Cie(gw)] - D(a1, aT) to 
activities covered by F, we can derive the values of F1, F2, 
... , and FN at

1j
a , 

2j
a , ... , 

Nj
a respectively. Suppose we 

now considering Fi at 
ij

a , we derive its value by formula 
(2). 

 

∑
=

+=
ij

s
ssi aDaTQFftv

1

)]()([)(        (i=1, 2, 3, ... , N)                                              (2) 

 
The basic relationships between F and F1, F2, ... , FN  

are shown in Figure 2. We can see that they are nested one 
after another. This is because all fixed-time constraints 
including the global one has the same start point, i.e. the 
start activity of the whole grid workflow. 

At run-time instantiation stage, instances of grid 
workflow gw are enacted. We will get absolute start time, 
i.e. S(a1). S(a1) might be different from Cie(gw). As a 
result, the overall time redundancy [ftv(F) - S(a1)] - D(a1, 
aT) might be different from that of build-time stage, i.e. 

[ftv(F) - Cie(gw)] - D(a1, aT). Therefore, we need to re-
assign the N local fixed-time constraints. The specific 
assigning process is similar to that of build-time stage by 
replacing Cie(gw) with S(a1). Hence, we simply omit 
corresponding discussion. 

Based on the above discussion, we can derive an 
algorithm for assigning local fixed-time constraints at 
build-time stage. The main part of the algorithm is 
depicted in Algorithm 1. 

 
 

 
 

Figure 2. Relationships between F and F1, F2, ... , FN 
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Algorithm 1. Assigning local fixed-time constraints at build-time stage 
 

4. Verifying and adjusting local fixed-time 
constraints at run-time execution stage  
 

At run-time execution stage, when grid workflow 
execution arrives at a checkpoint, say ap, we verify F1, F2, 
... , FN and F. We derive Theorem 1 first which can ease 
temporal verification. 

Theorem 1. At ap, if a local fixed-time constraint Fs is 
of SC, then, the consistency of F will not be affected by 
the execution of ap. 

Proof: According to Definition 3, if Fs is of SC, we 
have: R(a1, ap) + D(ap+1, 

sj
a ) ≤  ftv(Fs)-S(a1). That is to 

say, the possible time deviation caused by the execution of 
ap can be counteracted within Fs, so it will not affect the 
consistency of F. 

Thus, the theorem holds. ▌ 

In addition, we discussed temporal dependency between 
fixed-time constraints in [8]. The temporal dependency 
between fixed-time constraints means that fixed-time 
constraints are dependent on each other in terms of their 
verification. We can derive the consistency of later fixed-
time constraints from the consistency of previous fixed-
time constraints. Correspondingly, we have Theorem 2. 
The detailed discussion about temporal dependency can be 
found in [8]. 

Theorem 2. At ap, if a local fixed-time constraint Fs is 
of SC, then, all local fixed-time constraints after Fs must 
also be of SC. 

Proof: Refer to [8]. 
According to Theorems 1 and 2, we verify Fs firstly. If 

it is of SC, it means that the time deviation caused by the 
execution of ap can be counteracted within Fs. Therefore, 
we need not verify and adjust any other local fixed-time 
constraints after Fs as well as the global one, i.e. F. 

Symbol Definitions: 
ArrayTA: an array of all T activities covered by the global fixed-time constraint F; 
ArrayFA: an array of all N activities where we need to set fixed-time constraints; 
End Symbol Definitions 
Input: ArrayTA, ArrayFA, maximum and mean durations of all activities involved in ArrayTA 
and ArrayFA; 
Output: temporary local fixed-time constraints; 
While (not end of ArrayTA) 

   // compute all D(as) – M(as) (s = 1, 2, 3, ... , T) 
   Select current activity from ArrayTA to as (s = 1, 2, 3, ... , T); 
   Compute D(as) – M(as); 

End While 
Sort all D(as) – M(as) (s = 1, 2, 3, ... , T) in the ascending order to ArrayLA where D(as) – M(as) is 

ranked No. k in ArrayLA; 
While (not end of ArrayTA)  
        // allocate time quota to all T activities covered by F 

   Select current activity from ArrayTA to as (s = 1, 2, 3, ... , T); 
   Apply formula (1) to compute TQ(as) as follows; 
 
  

)]()([
)],()()([)(

1

1
1

l

T

l
l

kT
Ts

aMaD

L
aaDgwCieFftvaTQ

−
−−=

∑
=

+−
 

End While 
While (not end of ArrayFA)  
        // assign local fixed-time constraints at the N activities respectively 

   Select current activity from ArrayFA to 
ij

a  (i=1, 2, ..., N); 
   Apply formula (2) to compute ftv(Fi) of Fi at 

ij
a as follows; 

  ∑
=

+=
ij

s
ssi aDaTQFftv

1
)]()([)(  

End While 
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However, if Fs is not of SC, we need to verify F. There 
are two situations. One is that F is of SC. This means that 
the global fixed-time constraint can still be kept even if the 
temporary local one Fs is violated. In this case, since Fs is 
set by us to control grid workflow execution rather than 
from user needs, we do not have to trigger any exception 
handling to deal with the violation of Fs. We only need to 
adjust Fs and other remaining local fixed-time constraints 
based on the current available time redundancy of F. The 
specific adjustment methods are similar to those assigning 
ones of build-time stage, hence omitted. 

The other situation is that F is violated, i.e. not of SC. 
In this case, since Fs is also violated, we should try to 
trigger exception handling to deal with the violation 
locally within Fs because this will affect fewer activities. 
Consequently, it would be more cost-effective. If we can 
handle the violation within Fs, then, according to 
Theorems 1 and 2, we need not adjust F and other 
remaining local fixed-time constraints. However, if we 
cannot handle the violation within Fs, we have to handle it 
within F. In this case, after we adjust F, we need to adjust 
all remaining local fixed-time constraints. The 
corresponding adjustment methods are similar to those 
assigning ones of build-time stage. The difference is that 
here we only need to focus on those succeeding 
unexecuted activities rather than all activities at build-time 
stage. 

Based on the above discussion, we can derive an 
algorithm for dynamically verifying and adjusting local 
fixed-time constraints at run-time execution stage within 
the global fixed-time constraint. However, we simply omit 
it as it can be derived straightforwardly from the above 
discussion. 
 
5. Comparison and discussion 
 

In conventional verification work, we always verify the 
global fixed-time constraint with the consideration of all 
covered activities. We cannot control the temporal aspect 
of grid workflow execution in a local range. As a result, 
for any temporal violations, we must handle them globally 
encompassing all activities. Comparing with existing 
related work, the clear difference in this paper is that we 
have investigated how to assign, verify and adjust local 
fixed-time constraints. With local fixed-time constraints, 
we can locally control grid workflow execution. 
Especially, as stated in Section 4, when temporal 
violations happen, we can try to handle them locally within 
local fixed-time constraints rather than within the global 
one. Local handling will affect fewer activities rather than 
global handling. So, local handling would be more cost-
effective than the global handling. That is to say, we can 
achieve much better cost-effectiveness with local fixed-
time constraints than only with the global fixed-time 
constraint. In particular, handling of temporal violations is 

costly, especially in the large-scale grid environments 
because the handling may touch many different resources 
spanning large-scale multi-organisations. We need to 
negotiate with different resource providers with different 
background to conduct the handling. So, the handling cost 
is not just from handling itself. It is also partly incurred by 
the dynamic negotiation process. And sometimes, we may 
have to compensate some activities or even worse we may 
need to change the workflow schema locally. In other 
words, handling cost becomes a more prominent issue in 
grid environments than in some traditional enterprise 
environments. Therefore, by nature, it is worth for us to 
assign local fixed-time constraints towards better cost-
effectiveness. 

We can further conduct a quantitative analysis to 
demonstrate the extent to which we can achieve better 
cost-effectiveness by local fixed-time constraints. We are 
investigating some simulation and experimental tools or 
environments to select an appropriate one for further 
reasoning about the benefits of our work.   
 
6. Conclusions and future work 
 

To control grid workflow execution locally in terms of 
time for better cost-effectiveness, we have investigated 
how to assign local fixed-time constraints within the global 
one. We have developed corresponding assigning methods 
at build-time and run-time instantiation stages. Then, at 
run-time execution stage, we have further developed 
corresponding verification and adjustment methods. The 
brief comparison and discussion has intuitively shown that 
we can achieve better cost-effectiveness with local fixed-
time constraints than only with the global one.  

With the above contributions, we are working on how 
to facilitate timed Petri-Net for timed grid workflow 
representation and how to reason about the assigning of 
local fixed-time constraints based on such representation. 
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