
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Kabir, Muhammad Ashad; Han, Jun; Colman, Alan;
Yu, Jian

Title: SCaaS: a platform for managing adaptation in
collaborative pervasive applications

Year: 2013
Journal: Lecture notes in computer science: Proceedings of

the Confederated International Conferences 'On
the Move to Meaningful Internet Systems' (OTM
2013): CoopIS 2013, DOA-Trusted Cloud 2013,
and ODBASE 2013, Graz, Austria, 09-13
September 2013

Volume: 8185
Pages: 149-166
URL: http://doi.org/10.1007/978-3-642-41030-7_10

Copyright: Copyright © 2013 Springer-Verlag Berlin
Heidelberg.The final publication is available at
link.springer.com

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://doi.org/10.1007/978-3-642-41030-7_10

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

SCaaS: A Platform for Managing Adaptation in
Collaborative Pervasive Applications

Muhammad Ashad Kabir1, Jun Han1, Alan Colman1, and Jian Yu12

1 Faculty of Information and Communication Technologies,
Swinburne University of Technology, Melbourne, Australia

{akabir,jhan,acolman,jianyu}@swin.edu.au
2 School of Computing and Mathematical Sciences,
Auckland University of Technology, New Zealand

Abstract. In this paper, we present a social context as a service
(SCaaS) platform for managing adaptations in collaborative pervasive
applications that support interactions among a dynamic group of actors
such as users, stakeholders, infrastructure services, businesses and so on.
Such interactions are based on predefined agreements and constraints
that characterize the relationships between the actors and are modeled
with the notion of social context. In complex and changing environments,
such interaction relationships, and thus social contexts, are also subject
to change. In existing approaches, the relationships among actors are not
modeled explicitly, and instead are often hard-coded into the applica-
tion. Furthermore, these approaches do not provide adequate adaptation
support for such relationships as the changes occur in user requirements
and environments. In our approach, inter-actor relationships in an appli-
cation are modeled explicitly using social contexts, and their execution
environment is generated and adaptations are managed by the SCaaS
platform. The key features of our approach include externalization of
the interaction relationships from the applications, representation and
modeling of such relationships from a domain and actor perspectives,
their implementation using a service oriented paradigm, and support
for their runtime adaptation. We quantify the platform’s adaptation
overhead and demonstrate its feasibility and applicability by developing
a telematics application that supports cooperative convoy.

1 Introduction

Mobile computing has brought a wireless revolution in recent years, enabling
mobile internet access as an indispensable way of modern life. It has radically
changed the way people perform tasks, access information and interact with one
another. At the same time, the emergence of service-oriented technology and
interoperability standards (e.g., Web Services) has made it possible to develop
systems intended to support people’s social activities and organizations’ work.
This trend has paved the way of a new breed of software systems that can
mediate both tasks of individuals and collaborative tasks of a group in pervasive
environments [1].

We view a collaborative pervasive environment (CPE) as an interaction space
among users where users collaborate with each other towards a common objective
by sharing information that has been provided by other participating actors.
These actors could be users or services or sensors embedded in the environment.
Such collaboration is subject to the agreements and constraints relevant to the
relationships among actors, which are dynamic and need to adapt in response
to the changes in user requirements and environmental factors.

Collaborative pervasive applications (CPAs), raise major challenges in terms
of their development and management, including the dynamic aspect of them and
their environments. The use of services [15] offers the possibility to design, deploy
and manage these applications dynamically, providing the flexibility required.

Most of the approaches in the pervasive computing literature mainly focus
on tasks of individual users, and provide very limited support to collaborative
tasks of a group of actors [2]. Furthermore, existing approaches in developing
collaborative pervasive applications (e.g., [4–8]), and middleware architectures
and frameworks for pervasive computing [14] are limited in supporting the dy-
namic relationships between actors, which themselves are an important aspect of
context. In particular, there is a lack of support for managing the adaptation in
such relationships in response to changes in the requirements and environments.

This research explores the concept of social context as a means to represent
the relationships among actors and presents a platform to provide support for
adaptation by managing such social contexts and their changes, in a service-
oriented manner. Social context in computing is often used to refer to the people,
groups and organizations that an individual interacts with [3]. Taking this view,
we define social context as a representation of the interactions among the relevant
actors. That is, social context defines the constructed relationships between social
roles, and these relationships define and constrain the interactions between the
actors playing those roles. To model social context, we employ Role-Oriented
Adaptive Design (ROAD) [16] among many different approaches to design role-
based software systems using agent paradigm, as ROAD brings a number of
design principles that support flexible management and runtime adaptations.
One of the key principles of ROAD is separation of functional and management
operations. We model social context from two perspectives: domain-centric and
player-centric [12]. A domain-centric social context (DCSC) model captures a
collaborative view of the interaction relationships among the actors whereas a
player-centric social context (PCSC) model captures an actor’s coordinated view
of all its interactions (across domains).

In this paper, we present a SCaaS platform for developing collaborative per-
vasive applications from their high-level specifications (represented in terms of
DCSCs and PCSCs), and for managing their adaptations to cope with runtime
changes. Figure 1 presents an overview of the SCaaS platform. SCaaS takes the
DCSC and PCSC models (specified by an application designer) as inputs, and
instantiates these models by generating management and interaction interfaces
(as Web Services) for applications to invoke. Thus, using applications (running
on mobile devices) actors can interact with each other and manage their social

DCSC

DCSC

DCSC

Social

Context

models
PCSC

PCSC

Actors interacting

using applications SCaaS Platform

DCSCs and

PCSCs

(in XML format)

Application

designer

Functional Interaction

Management Interaction

Management Interface

Adaptation propagation

Changes in Environments

and Requirements

Instantiates Specifies

Interaction InterfaceOrganizer

Player

M
a

n
a

g
e

s

Fig. 1. Overview of the SCaaS platform

contexts. In particular, we focus on how the SCaaS platform supports runtime
adaptation in social contexts to cope with changes in the evolving user require-
ments and environmental factors. In relation to the SCaaS platform, this paper
makes the following four major contributions: (1) we identify different types of
changes and the various adaptations to cope with such changes, and we propose
management operations and present possible ways to perform adaptations using
these operations, (2) we introduce states of the social context and its elements
to enable adaptation in a safe manner, (3) we propose a protocol for adaptation
propagation from DCSCs to PCSCs, and (4) Finally, we implement a SCaaS
platform for creating the execution environment of social contexts and manag-
ing their runtime adaptations, and quantify the platform’s adaptation overhead.

The paper is organized as follows. Section 2 presents a scenario where ap-
plications need to interact, collaborate and adapt in pervasive environments.
After giving an overview of our social context models in Sect. 3, we present the
SCaaS platform for managing adaptations in social contexts in Sect. 4. Section 5
discusses its prototype implementation, while Sect. 6 presents the experimental
evaluation and a case study. After reviewing related research in Sect. 7, we con-
clude the paper in Sect. 8.

2 Application Scenario

Consider that two groups of tourists in two cars hired from two different rental
companies want to drive together from Melbourne to Sydney. The car rental
companies provide different types of support to their customers based on the cus-
tomers’ insurance policies, service availability, and so on. Let us assume that the
two cars, Car#1 and Car#2, are rented from Budget and AVIS respectively.

In a cooperative convoy, a vehicle interacts with other vehicles, service
providers and infrastructure systems to make the travel safe and convenient.
Through these interactions a vehicle can share information (acquired from the
service providers and infrastructure systems) with other vehicles. Such interac-
tions are subject to defined agreements and constraints among the entities (i.e.,

vehicle to vehicle, vehicle to service providers, and vehicle to infrastructure).
For instance, drivers of Car#1 and Car#2 want to form a cooperative convoy
to make their travel safe and convenient by collaborating and interacting with
each other. These two cars have access to different types of services: Car#1 has
access to a Travel Guide Service (TGS) while Car#2 has access to a real time
Traffic Management Service (TMS). In the cooperative convoy, they decide that
Car#1 is the leading car (LC) whilst Car#2 is the following car (FC). The two
cars follow the same route chosen by the leading car as it has access to a TGS.
In addition, the drivers of both cars agree on a number of issues. For instance,
they will always keep the distance between them less than 1000m. Car#2 (the
following car) will send road blocks information (obtained from its TMS) to
Car#1 (the leading car) if there is any. Car#1 gets the updated route plan
from its TGS by specifying its preferences (e.g., avoid the route with blocked
road) and notifies that route information to Car#2. Both cars notify each other
of their positions every 10 seconds. If either vehicle experiences mechanical
problems (e.g., flat tyre, engine issue) it needs to notify the other vehicle.

Applications facilitating the cooperative convoy need to fulfill two major
requirements. First, the applications should support interactions complying with
the agreed interaction relationships (i.e., constraints and obligations). For the
drivers to perform the additional tasks (e.g., forwarding information) may cause
distraction and have undesirable consequences. Thus, to facilitate collaboration
with less distraction, the applications need to provide a coordinated view of the
interactions, allow drivers to specify their coordination preferences and perform
the coordination in an automated manner. Second, the applications need to
support runtime adaptation as the interaction relationships evolve over time,
and need to adapt with the changes in requirements and environments. For
instance, a mechanical problem of the leading car may require it to handover
the leading car role to one of the following cars (assuming there are multiple
following cars). Because of heavy rain, the maximum distance may need to be
reduced from 1000m to 600m. A third vehicle could join when the convoy is on
the way; or the break-down of a following vehicle might result in its leaving the
convoy before reaching the destination.

To address the first requirement, in our previous work [12], we have pro-
posed an approach to modeling interaction relationships from both the domain
and player perspectives. The DCSC model allows the interactions associated with
a domain such as Budget or AVIS or Cooperative Convoy to be captured, while
the PCSC model provides an overall view of all the interactions of a particular
individual (e.g., driver of Car#1) and allows coordination among its interactions.

To address the second requirement, in this paper, we propose the SCaaS
platform where the DCSC and PCSC are the basis of this platform. At runtime,
the interaction relationships captured by DCSCs need to adapt with the changes
in user requirements and environments. However, the PCSCs are dependent
on DCSCs. The SCaaS platform manages both the DCSCs and PCSCs, and
their dependencies in a consistent manner by supporting the adaptations in the
DCSCs and the adaptation propagation from DCSCs to PCSCs as changes occur.

3 Social Context Models: An Overview

In this section, we briefly discuss the DCSC and PCSC, and illustrate how these
social context modeling perspectives allow us to capture the above cooperative
convoy scenario. A detailed discussion can be found in [12].

Rented Car Rented Car
R1

R3
R2

LeadingCar FollowingCar

Organizer

R4

Telematics (Car#2)Telematics (Car#1)

LeadingCar RentedCar

Organizer

FollowingCar RentedCar

Organizer

Coordination application

Coordination application

Rr1 Rr2 Rr3
Rr4

CoordinatorCoordinator

Organizer Role Social Role Relationship

Role-Player binding

Player/Actor
Management activity

Legend

Coordinator Role

Budget DCSC (a) AVIS DCSC

(b) (c)

Fig. 2. Social context models for a cooperative convoy: (a) ConvoyDCSC,
(b) Car#1PCSC, (c) Car#2PCSC

3.1 Domain-Centric Social Context Models

The Domain-Centric Social Context (DCSC) model captures the relationships
among social roles associated with a particular domain or environment such as a
company, a cooperative convoy, and so on. A DCSC model comprises of four key
elements: social role, relationship, player, and organizer role. A social role repre-
sents the expected functional interactions of a participating actor with respect to
the social context. Social roles are loosely-coupled elements and are modeled as
first class entities, and as such they are separated from their players (e.g., actors)
who play those roles. A relationship is an association between two social roles,
which represents the interactions and interdependencies between those roles (or
their corresponding players or actors). It mediates the interactions between so-
cial roles by defining what functional interactions can occur between the social
roles and the sequences of these interactions (named conversations). In addition,
a relationship also defines the non-functional requirements of the interactions in
terms of operational parameters and obligations (e.g., time constraints on inter-
actions) imposed on the players associated with that relationship. The organizer
role and its player provide the capability for managing and adapting a social

context to cope with changes in the requirements and dynamic environments.
While social roles, players and relationships are entities at the social context’s
functional layer, the organizer role and its player are entities at the social con-
text’s management layer.

In the above scenario, there are three domains that need to be modeled,
namely, the two car rental companies (Budget and AVIS) and the cooperative
convoy. According to the agreements between the drivers of the two cars, the
ConvoyDCSC model (see Fig. 2a) consists of two roles: LeadingCar (LC) and
FollowingCar (FC), and their interactions are captured in the R4 (LC-FC) re-
lationship (see Table 1) where an interaction is represented using a message
signature and a direction of the message (i.e., AtoB, BtoA or both). Figure 3
shows an XML representation of the i8 interaction. Also, there may be other
constraints and behavioral properties (e.g., conversations, obligations (e.g., o1
in Table 1)), but for simplicity we do not include all of them. As Car#1 plays the
leading car role, it is also designated to play the organizer role of the ConvoyD-
CSC model. So, by playing the organizer role (through an application interface),
the leading car driver can change the model (e.g., add, delete or update roles
and relationships) at runtime. In a similar way, we can also model BudgetDCSC
and AVISDCSC where Car#1 and Car#2 play the RentedCar role. Due to page
limit, we do not present the details of these models which can be found in [17].

Table 1. Partial description of R4 (LC-FC) relationship in ConvoyDCSC

Specification from scenario Notational representation

FC sends ahead road blocks information to
the LC

i7:{notifyRoadBlock, FCtoLC, ack}

LC updates the route information to the FC i8:{routeUpdate, LCtoFC, ack}
Both cars notify each other of their
positions every 10 seconds

i9:{positionUpdate}//bi-directional
o1:{i9,Time,periodic,=,10,seconds}

One car notifies mechanical problems to the
other car

i10:{notifyMechanicalIssue}

Either vehicle may leave the convoy i11:{leaveConvoy}
Maximum distance between the LC and FC
is 1000m

p1:{maxDistance=1000m}

Fig. 3. XML representation of the i8 social interaction

3.2 Player-Centric Social Context Models

In addition to the common view of a domain-centric social context model, an
actor may have its own perception or view of the domain with respect to the
role(s) it plays and the interactions it participates in that domain. Moreover, an
actor may operate in different domains. Thus, we also model the social context
from an actor’s perspective, namely Player-Centric Social Context (PCSC). The
PCSC model provides an overall view of all the interactions of an individual
(across different domains) and allows coordination of its interactions.

Fig. 2b and Fig. 2c show the player-centric models of Car#1 and Car#2
respectively (and how they relate to the domain models). Like a DCSC, a PCSC
contains social roles, actors/players and an organizer role. In addition, it contains
a coordinator role and role-centric relationships. In the PCSC, all social roles
are played by the actor (application) in question and are connected with the
coordinator role through the role-centric relationships. The coordinator role is a
means of achieving inter-domain coordination, i.e., interactions in one domain
can be used for interactions in another domain. An actor can coordinate its
interactions explicitly through the application’s user interface or it may define
some rules or use an intelligent application to coordinate its interactions on its
behalf [12]. A role-centric relationship is the aggregation of all the relationships
associated with a particular social role in a DCSC model, but localized in the
player-centric model. For example, the Rr2 role-centric relationship in the PCSC
of Car#1 is the aggregation of R1, R2 and R3 in the BudgeDCSC.

4 The SCaaS Platform

4.1 Social Context at Runtime

Social contexts are not just a modeling or design-time construct, and they are
also runtime entities that mediate runtime interactions between actors. Interac-
tions among an actor, its player-centric social context model, and the relevant
domain-centric social context models are loosely coupled and use a messaging
style. A (runtime) social context acts as a message router that (1) receives mes-
sages from an actor, (2) evaluates conditions specified in associated relationships,
and (3) passes the messages to another actor or a social context (as a player)
or notifies the actor(s) in case of any condition violation. For the PCSC, all the
incoming and outgoing messages are intercepted by the coordinator role which
is played by the actor’s coordination application. The application coordinates
messages on behalf of the actor based on her preferences.

SCaaS facilitates the runtime realization of social contexts for supporting
mediated interactions between collaborative actors, such as those of Car#1 and
Car#2. However, the requirements of such applications are subject to continuous
change. Thus, social contexts need to be managed and adapted to ensure the
proper functioning and evolution of the applications in which the social contexts
play a part. In the rest of this section, we discuss the management and adaptation
support provided by the SCaaS platform in offering social context as a service.

4.2 Types of Changes

In general, there are two types of changes that require adaptation in a social
context as well as across social contexts.

Changes in Environments. During convoy, it may start to rain heavily or
the cars may move from one jurisdiction to another which operates different
traffic management systems. Such changes cause social context adaptation and
are referred to as changes in environments.

Changes in Requirements. A third vehicle could join when the convoy is
already on the way; a broken-down following car might leave the convoy before
reaching its destination; or the leading car might have a mechanical problem
which requires to handover the leading car role to one of the following cars
(assuming multiple following cars). Such situations also cause adaptation and
are referred to as changes in requirements.

4.3 Adaptations in a Social Context

Runtime adaptation, often called dynamic adaptation, is a widely used term and
is extensively studied in multiple disciplines. In pervasive computing, this term is
used to denote any kind of modification at the running phase of the system [19].
In general, such runtime adaptation can be classified into two categories: parame-
ter adaptation and structure (compositional) adaptation [18]. The adaptation in
a social context to cope with the changes in user requirements and environments
also can be of these two types: structural (compositional) and parametric.

We achieve structural adaptation in two ways:

– Modifying topology – Adding and removing social roles, players and rela-
tionships are carried out. For instance, a third vehicle could join the convoy
when it is already on the way, or a broken-down following car leaves the con-
voy before reaching the destination. These situations lead to the addition or
removal of roles, players and relationships in the ConvoyDCSC.

– Modifying the binding between a social role and its player – The same social
role can be played by different players at different times. The binding be-
tween the role and the players is dynamic. For instance, in the AVISDCSC,
the traffic management role can be played by different traffic management
systems in the convoy at different times as the vehicle moves from one ju-
risdiction to another. Also due to a mechanical problem of the leading car
(Car#1), the Car#1PCSC needs to unbind from the leading car role in
the ConvoyDCSC and one of the following cars can be assigned to play the
leading car role by binding that car’s PCSC to the leading car role in the
ConvoyDCSC.

We achieve parametric adaptation through the modifying relationships where
adding, removing or updating interactions, obligations, conversations and op-
erational parameters are carried out. For instance, in the ConvoyDCSC, the
maxDistance parameter value in R4 relationship may be required to be reduced,
from 1000m to 600m because of heavy rain.

Management Operations and Adaptation Rules The organizer role pro-
vides the management capability of a social context. The principle of separation
between a role and its player is also applied to the organizer role. The orga-
nizer role is internal to a social context and allows its player to manage both
the structure and parameters of the social context. The organizer role presents
management rights over a runtime social context model, for example, to an ac-
tor who owns the runtime model. The organizer role exposes a management
interface that contains methods for manipulating the structure and parameter
of the runtime social context model such as addRole, deleteRole, addRelation-
ship (addRel), deleteRelationship, addInteraction, deleteInteraction, addConver-
sation, deleteConversation, addObligation, deleteObligation, addOperationalPa-
rameter, deleteOperationalParameter, bindRolePlayer, and unbindRolePlayer.

By playing the organizer role, a human can perform adaptation manually us-
ing a graphical interface. On the other hand, automatic adaptation can be defined
and performed through a computer program or an agent or a set of predefined
adaptation rules as a player of organizer. For example, the maxDistance pa-
rameter value can be reset to 600m using the following Event-Condition-Action
(ECA) rule:

adaptation-rule "Update maximum distance"

when

EnvironmentChangeEvent(name=="RainingStatusValueChanged") //Event

then

if(rainingStatus == HEAVY_RAIN) //Condition

callMethodInOrgInterface("updateOperationalParam("R4",maxDistance,600m)")

Social Context States and Safe Change To perform adaptation in a safe
manner without affecting the message flow and loss of messages, we maintain the
state of each entity, i.e., social role, relationship and runtime social context as a
whole. Figure 4 shows the states and their transitions. When a social context is
deployed all of its entities enter into Idle state. When a conversation is started,
the associated social roles and relationship move to the Active state and remain
there until the conversation completes. A social context enters into Active state
when any of its social roles or relationships becomes Active and remains there
until all of its roles and relationships become Idle. When an adaptation operation
(structural or parametric) starts, the entity enters into the Reconfiguration state.

The time when a change cannot be made is the moment when the entity is
in Active state. For instance, an adaptation operation cannot be performed in
a social role or relationship when a conversation (request/response) associated
with these entities is in progress. In that case, the adaptation request will be
buffered and executed in the future after the entities enter into the Idle state.

4.4 Adaptations across Social Contexts

As stated in the previous section, a PCSC provides a coordinated view of all the
interactions of an individual across different domains, and an individual plays

Start End

State

Transition

Idle

Active Reconfiguration

start adaptation
completed

deployed undeployed/deleted

x
y

For Social Role and Relationship, x = started conversation, y = completed conversation
For Social Context, x = exist at least one active role or relationship,
 y = no more active role and relationship

Fig. 4. State machine for Social Role, Social Relationship and Social Context

roles in multiple domains/DCSCs through her PCSC. Thus, an adaptation in a
DCSC should be propagated to its corresponding PCSCs. Figure 5 shows a basic
protocol for such propagation. In this protocol, the DCSC organizer triggers the
adaptation in a PCSC by invoking the following methods: triggerRoleAcquisition,
triggerRoleRelinquishment and triggerUpdateRelationship.

OrganizerPlayer(DCSC) OrganizerRole (DCSC)

bindRolePlayer(roleName,urlPCSC)

OrganizerRole (PCSC)

SOAP message

Method Call

return message

Legend

roleCRel

computeRoleCentricRel(sc,role)

triggerRoleAcquisition(role

Name,roleCRel)

triggerRoleRelinquishment(
roleName)

unbindRolePlayer(roleName)

roleAcquisition(roleName,

roleCRel)

roleRelinquishment(roleNa
me)

[any method to change relationship]

triggerUpdateRelationship(role
Name, updateType, data)

updateRelationship(roleNa
me, updateType, data)

Fig. 5. Cross-DCSC/PCSC adaptation propagation

The adaptations across social contexts have three aspects:

1. Binding a player to a social role in the DCSC – When a player binds to a role
in a DCSC, her PCSC should add that role and its role-centric relationship.
Thus, for the bindRolePlayer request, the DCSC invokes computeRoleCentri-
cRel method to compute the role-centric relationship of a particular social
role which is the aggregation of all the relationships associated with that

Algorithm 1 Computing Role-centric Relationship

1: procedure computeRoleCentricRel(sc, r) . r is a social role and sc is a
social context

2: roleCentricRel← empty . create an empty relationship
3: relList← getAllRel4Role(sc, r) . relationships connected to r
4: for all rel ∈ relList do . rel is a relationship in the relList
5: for all i ∈ rel do . i is an interaction in rel
6: roleCentricRel.addInteraction(i)
7: end for
8: for all c ∈ rel do . c is a conversation in rel
9: roleCentricRel.addConversation(c)

10: end for
11: for all o ∈ rel do . o is an obligation in rel
12: roleCentricRel.addObligation(o)
13: end for
14: for all p ∈ rel do . p is an operational parameter in rel
15: roleCentricRel.addOperationalParam(p)
16: end for
17: end for
18: return roleCentricRel
19: end procedure

social role in the DCSC (see Algorithm 1). Then the DCSC invokes the trig-
gerRoleAcquisition method in the PCSC organizer with the social role and
its role-centric relationship, as parameters. The PCSC organizer executes
roleAcquisition method to adapt its structure by adding a social role and
relationship based on the received information.

2. Unbinding a player from a role in the DCSC – When a player is unbound
from the DCSC, her PCSC should be adapted by removing that role and its
role-centric relationship. Thus, for the unbindRolePlayer request the DCSC
invokes the triggerRoleRelinquishment method with the social role name as
the parameter. The PCSC organizer executes roleRelinquishment method to
adapt its structure by deleting the social role, and the relationship between
that social role and the coordinator role, when those entities are in Idle state
(i.e., safe to delete).

3. Updating a relationship in the DCSC – All the updates in a relationship
and/or a social role in a DCSC should be propagated to the corresponding
PCSC(s). Thus, for any modification request in a relationship (i.e., to add,
delete or update an interaction, conversation or obligation), the DCSC or-
ganizer invokes the triggerUpdateRelationship method in the PCSCs which
are bound to the associated social roles in that relationship. Then the PCSC
organizer executes the updateRelationship method to reflect the changes.

4.5 Revisiting the Scenario

Let us consider a situation that requires management and adaptation in a social
context and across social contexts which can be addressed using the SCaaS
platform.

If the leading car (Car#1) breaks-down, the ConvoyDCSC organizer player
(the leading car driver) invokes (through a user interface) the unbindRolePlayer
method to unbind Car#1PCSC from the LC and then the ConvoyDCSC (orga-
nizer) invokes the triggerRoleRelinquishment(“LC”) method in Car#1PCSC. As
a result, the Car#1PCSC updates its structure by deleting the LC role and the
relationship between the LC and Coordinator role (see Fig. 6 a©). Furthermore,
to assign a following car (say Car#2) to play the leading car role, the Convoy-
DCSC organizer player invokes the unbindRolePlayer(“FC”, urlCar#2PCSC)
followed by bindRolePlayer(“LC”,urlCar#2PCSC) to first unbind Car#2PCSC
from the following car role and then bind it to the leading car role. As a result,
the ConvoyDCSC organizer invokes the triggerRoleRelinquishment and trigger-
RoleAcquisition methods respectively which ultimately updates the Car#2PCSC
by deleting the FC role and its associated relationship (see Fig. 6 a©) followed by
adding the LC role and its associated relationship (see Fig. 6 b©).

RC

Org

Car#1PCSC

a

Co RC

Org

Car#2PCSC

Co

FC

Org ConvoyDCSC

LC

LC FC

Org

Car#3PCSC

Co

FC2

FC2

X

XX

X

X
X

RC

Org

Car#1PCSC

b

Co RC

Org

Car#2PCSC

Co

FC

Org ConvoyDCSC

LC

LC

Org

Car#3PCSC

Co

FC2

FC2

Adaptation propagation Trigger adaptation Role-Player binding

triggerRoleRelinquishment triggerRoleRelinquishment

unbindRolePlayer

triggerRoleAcquisition

bindRolePlayer

X Deletion

Fig. 6. Runtime adaptation in social context models due to break-down of leading car

5 Prototype Implementation

We have implemented the SCaaS platform by adopting and extending the
ROAD4WS [13] which is an extension to the Apache Axis23 web service engine
for deploying adaptive service compositions. The SCaaS platform exploits
JAXB 2.04 for creating DCSCs and PCSCs runtime from their XML descrip-
tors. JAXB helps the generation of classes and interfaces of runtime models
automatically using an XML schema. The platform exposes each social role as a
service, the associated interactions of the role as operations of that service. The

3 http://axis.apache.org/
4 http://jcp.org/en/jsr/detail?id=22

1 6

Security
Policies

Msg Queue

…

2 3

Roles

4

Organizer Response Handler Request Handler

Relationships

5

Applications A1 (user1) A2 A1 (user2)

…

…

Running Social Context ……

SCaaS Middleware

External interactions Internal Interactions

Running Social Context

S
C

aa
S

 M
an

ag
em

en
t

7

8

9

A4

Fig. 7. The SCaaS platform architecture

conversation and obligations specified in the social relationship are evaluated as
event-condition-action rules and implemented using Drools5. Actors (players)
playing the roles invoke the operations which create messages. Such messages
are routed to other players who they are collaborating with. As illustrated in
Fig. 7, the SCaaS platform generates runtime social contexts which are able to
(1) handle requests received from players (i.e., applications); (2) check security
settings for authorized access; (3) allocate requests into a message queue; (4)
forward messages to corresponding social roles; (5) evaluate conditions specified
in the relationships; (6) send requests to relevant players. A runtime social
context also can (7) receive a management request (from a user/application)
and adapt itself accordingly, and (8) propagate the adaptation to other social
contexts as necessary. The SCaaS Management module handles (9) platform
level management requests such as create, delete, deploy and undeploy social
contexts as required by the user/application. Interactions between the run-
time models and their players (i.e., external interactions) are supported by
exchanging SOAP6 messages.

The runtime adaptations are supported by the Java reflection mechanism
and the Drools engine. To cope with the changes in environments and require-
ments, at runtime, Javassist7 allows generation of new classes and modification of
existing classes, which helps to add new social roles/relationships and change ex-
isting roles/relationships, respectively. Drools engine allows the SCaaS to inject
new rules and delete existing rules from the working memory which facilitates
the addition and deletion of conversations, obligations and parameters in the

5 http://www.jboss.org/drools/
6 http://www.w3.org/TR/soap/
7 http://www.jboss.org/javassist

relationships. This way of implementation provides flexible and easy runtime
adaptation in a particular entity of a social context without interrupting the
other entities of that social context.

6 Experimental Evaluation and Case Study

The goal of our experiment had to quantify the SCaaS platform’s adaptation
overhead. We installed the SCaaS platform on a machine with Core i3 2.2 GHz
CPU, 8GB RAM and Windows 7 OS. We used Java 1.6, Drools 2, Tomcat
7.0.21 and Axis2 1.6.1 in this experiment. As a case study, we also implemented
the motivating scenario as a proof-of-concept application, and measured the
application’s adaptation overhead in real-life experiment to demonstrate the
feasibility and applicability of the SCaaS-based application.

6.1 Adaptation Overhead

To evaluate the adaptation overhead, we deployed 100 DCSCs where each DCSC
is consisted of 10 roles connected in a ring topology using 10 relationships, and
each relationship is comprised 6 interactions, 6 conversations and 6 obligations.
Once we deployed 100 DCSCs to the SCaaS platform, SCaaS created 10 PCSCs
for 10 players where each player plays a role in each of the 100 DCSCs. Thus,
each PCSC contained 100 social roles and 100 role-centric relationships. We exe-
cuted each of the structural and parametric adaptation operations (e.g, addRole,
addConv) 1000 times over the 100 DCSCs. We measured the time from the mo-
ment the adaptation was requested, to the moment Axis2 updated the services.
The box plots in Fig. 8 show the summary of the results where the horizontal
line inside each of the boxes represents the median (average time). The results
show that the deletion operations (e.g., delRole, delRel, and unbindRP) take less
time compared to the addition operations (i.e., addRole, addRel, and bindRP).
Figure 8a shows the time required to perform different structural and parametric
adaptations in a social context. The results show that the structural adaptations
take more time than the parametric adaptations. Among the structural adap-
tation operations, adding a relationship (addRel) in a social context takes the
longest time, around 68 millisecond (ms) (on average), as it needs to update the
configuration of two social roles, where as deleting a social role (delRole) takes
the least time, around 5ms. For different parametric adaptation operations, the
required time is related to rule injections and deletions in the Drools engine and
lies between 162 and 486 microseconds.

The box plots in Fig. 8b illustrate the adaptation overhead results across a
DCSC and a PCSC. The leftmost figure shows the total time required for the
bindRP (bind role-player) and unbindRP (unbind role-player) structural adap-
tations. The middle figure shows the time required for each step in the bindRP
adaptation, including the time to add a URL to a social role (addURLtoSR),
to compute a role centric relationship (compRoleCenRel) using Algorithm 1, to

addRole addRel addInte delRole delRel delInte
0

20

40

60

80

100

Structural adaptation

Ti
m

e
in

 m
ill

is
ec

on
d

addConv addObl addOpParam delConv delObl delOpParam
100

200

300

400

500

600

700

Parametric adaptation

Ti
m

e
in

 m
ic

ro
se

co
nd

(a) Adaptation in a social context

bindRP unBindRP

40

60

80

100

120

Structural adaptation

Ti
m

e
in

 m
ill

is
ec

on
d

addURLtoSR compRoleCenRelsendReqToPCSC exeRoleAcqu

50

100

150

200

Steps in binding role-player adpatation

Ti
m

e
in

 m
ill

is
ec

on
d

delURL4SR sendReqToPCSC exeRoleRelq

5

10

15

20

25

Steps in unbinding role-player adaptation

Ti
m

e
in

 m
ill

is
ec

on
d

(b) Adaptation across social contexts

Fig. 8. Adaptation overhead

send a request to a PCSC (sendReqToPCSC), and to execute the role acquisi-
tion method (exeRoleAcq). The rightmost figure shows the time required for each
step in the unbindRP adaptation, including the time to delete an URL from a
social role (delURL4SR), to send a request to a PCSC (sendReqToPCSC), and
to execute the role relinquishment method (exeRoleRelq). The results show that
on average the bindRP and unbindRP operations take 100ms and 33ms, respec-
tively, which we believe is an acceptable overhead in collaborative applications.

6.2 Case Study

To demonstrate the real-world applicability and feasibility of our approach, we
have developed an adaptive collaborative application on top of the SCaaS plat-
form, called SocioTelematics that enables multiple cars to form cooperative con-
voys. This application allows the drivers to see each other’s positions on the
Google Maps. Using this application, drivers in the convoy can adapt and man-
age their social contexts and interactions. The SCaaS makes it easy to develop
this application based on their supposed interactions and without worrying about
the underlying message communication and the evaluation of the messages, as
the runtime support and adaptation of these social contexts and interactions
are externalized to and managed by the SCaaS platform. Moreover, the runtime
adaptation capability provided by the SCaaS platform allows the application
to respond to changes in requirements and environmental factors, without any
change in the application code.

We evaluated the application’s adaptation overhead using two cars in a co-
operative convoy over 50 kilometres of driving where the SCaaS platform was

deployed in the Amazon EC2 and the two client SocioTelematics applications
were running on two in-car Android Samsung Galaxy Tabs with 3G connections.
The results in Table 2 show that given the 1.12 second communication latency
between the application and the server, on average the time to add and remove a
car to and from the convoy at runtime take 1.33 sec (i.e., 1.121+0.209) and 1.167
sec, respectively, which we believe are acceptable times in a cooperative convoy.

Table 2. Time required to perform adaptation operations

Operations Time

Send an adaptation request from the SocioTelematics application to
the Amazon server over a 3G network

1.121 sec

Add a new car to the ConvoyDCSC at runtime, i.e., addRole, addRel
and bindRP

0.209 sec

Remove a car from the ConvoyDCSC at runtime, i.e., unbindRP, delRel
and delRole

0.046 sec

Change the o1 operational parameter in R4 relationship 0.422ms

7 Related Work

7.1 Platform for Collaborative Pervasive Applications

The need for supporting collaboration in pervasive computing environments has
emerged in recent years (e.g., [4], [8]). Such research has focused on collaborative
interactions between different types of actors such as user-user and device-device,
for various purposes. The SAPERE [4] middleware exploits social network graph
to establish collaboration for sharing data among spatially collocated users de-
vices. CoCA [5] is a ontology-based context-aware service platform for sharing
of computational resources among devices in a neighbourhood. Both SAPERE
and CoCA focus on collaboration among devices, where SCaaS focuses on col-
laboration among users. Similar to SCaaS, MoCA [6], a middleware architecture
for developing context-aware collaborative applications, focuses on collaboration
among users. But unlike SCaaS, the collaborations among users in MoCA are
not based on predefined goals or tasks, rather driven by spontaneous and occa-
sional initiatives. CASMAS [7] and UseNet [8] focus on collaborative activities
among users to achieve a common goal like SCaaS. But none of them explicitly
model the interactions among users.

Moreover, all of the above approaches lack support for managing the dy-
namicity and complexity of the social context as highlighted in this paper. The
relationships between actors and their adaptations are not modeled explicitly,
and instead are often hard-coded directly into the applications. To the best of

our knowledge, there is no work to date that addresses the runtime adapta-
tion of social context models in response to the changes in requirements and
environments.

7.2 Middleware Support for Runtime Adaptation

Much research has been carried out into middleware support for runtime adap-
tation in context-aware systems (e.g., MADAM [9] and 3PC [10]) and service-
oriented systems (e.g., MUSIC [11] and MOSES [20]). These middleware solu-
tions mainly target the tasks of individual users/applications and have focused
on reconfiguring applications’ settings (rather than interaction relationships)
based on physical context information (e.g., place, time)/quality of service re-
quirements (e.g., performance, reliability), rather than interaction relationships.
Moreover, their proposed runtime models are application-specific and cannot be
used to model interaction-relationships among collaborative actors.

In contrast to these solutions, the SCaaS platform targets collaborative per-
vasive applications, and focuses on executing adaptation by explicitly realizing
interaction relationships using social contexts and providing an organizer inter-
face to change such social contexts. On the other hand, SCaaS does not address
the monitoring of environment changes (i.e., physical context information), ana-
lyzing such information or making adaptation decisions. In that sense, the SCaaS
middleware is not a substitute for existing middleware solutions that manages
physical context information, rather can be built on top of those solutions as
appropriate, in order to manage (as a service) social interactions and context
adaptation for collaborative pervasive applications.

8 Conclusion

We have presented a novel Social Context as a Service platform for supporting
application-level adaptations and enabling mediated-interactions among actors
(individuals with their applications) in collaborative pervasive environments.
Our approach externalizes interaction-relationships from the application imple-
mentation, explicitly models the interactions in terms of social contexts, sepa-
rates functional interactions from management operations, and provides runtime
realization of social contexts. All these facilitate the systematic management of
dynamic interaction-relationships between actors and support their adaptation
to cope with the changes in user requirements and environments.

SCaaS facilitates both structural and parametric adaptations in social con-
texts which are realized through the management (organizer) interface of the so-
cial contexts. SCaaS also maintains the inherent dependencies among social con-
texts and keeps them consistent through coordinated cross-social context adap-
tation. Our model-driven approach and service-oriented implementation make it
easier to develop different adaptive collaborative applications on top of SCaaS.
We have quantified the adaptation overhead of the SCaaS platform through an
experimental evaluation and demonstrated its applicability with a cooperative
convoy telematics application.

References

1. Conti, M., et al.: Looking ahead in pervasive computing: Challenges and oppor-
tunities in the era of cyber-physical convergence, Pervasive Mob. Comput., 8(1),
2-21, 2012

2. Sancho, G., et al: What about collaboration in ubiquitous environments?, In Proc.
of 10th Int. Conf. on New Techn. of Distr. Syst(NOTERE), 2010

3. Endler, M., et al: Defining Situated Social Context for pervasive social computing.
In Proc. of PerCom Workshop, 2011

4. Castelli, G., Rosi, A., and Zambonelli, F.: Design and implementation of a socially-
enhanced pervasive middleware, In Proc. of PerCom Workshop, pp. 137-142, 2012

5. Ejigu, D., et al.: CoCA: A Collaborative Context-Aware Service Platform for Per-
vasive Computing, In Proc. of ITNG, pp. 297-302, 2007

6. Sacramento, V., et al.: MoCA: A Middleware for Developing Collaborative Appli-
cations for Mobile Users, IEEE Distributed Systems, 2004

7. Cabitza, F., et al.: CASMAS: Supporting Collaboration in Pervasive Environments,
In Proc. of PerCom, pp. 286-295, 2006

8. Rodriguez, I.B., et al.: A model-driven adaptive approach for collaborative ubiq-
uitous systems. In Proc. of the AUPC Workshop, 2009

9. Geihs, K., et al.: A comprehensive solution for application-level adaptation. Softw.
Pract. Exper., 39(4), 2009

10. Handte, M., et al.: 3PC: System support for adaptive peer-to-peer pervasive com-
puting. ACM Trans. Auton. Adapt. Syst., 7(1), 2012

11. Rouvoy, R., et al.: MUSIC: Middleware Support for Self-Adaptation in Ubiquitous
and Service-Oriented Environments. In Software Engineering for Self-Adaptive Sys-
tems, Cheng, B. H., et al. (Eds.). Lecture Notes In Computer Science, Vol. 5525.
Springer-Verlag, Berlin, Heidelberg 164-182.

12. Kabir, M.A., Han, J. and Colman, A.: Modeling and Coordinating Social Interac-
tions in Pervasive Environments, In Proc. of 16th Int. Conf. on Eng. of Complex
Compu. Syst. (ICECCS), pp.243-252, 2011

13. Kapurge, M., Colman, A., King, J.:ROAD4WS - Extending Apache Axis2 for
Adaptive Service Composition, In Proc. of the EDOC, 2011

14. Raychoudhury, V., et al.: Middleware for pervasive computing: A survey, Pervasive
and Mob. Comput, 2012

15. Papazoglou, M.P., and van den Heuvel, W-J.: Service-Oriented Architectures: Ap-
proaches, Technologies and Research Issues, VLDB J., vol. 16, no. 3, 2007

16. Colman, A. and Han, J.: Roles, Players and Adaptive Organisations, Applied On-
tology: An Interdisciplinary Journal of Ontological Analysis and Conceptual Mod-
eling, vol 2, IOS Press, pp. 105-126

17. Kabir, M. A., et al.: SocioTelematics: Leveraging Interaction-Relationships in De-
veloping Telematics Systems to Support Cooperative Convoys, In Proc. of Ubiq-
uitous Intelligence & Comput.,pp.40-47, 2012

18. McKinley, P. K., Sadjadi, S. M., Kasten, E. P. and Cheng, B.H.C.: Composing
adaptive software, Computer, vol. 37, pp. 56-64, 2004.

19. Kakousis, K., Paspallis, N. and Papadopoulos, G. A.: A survey of software adap-
tation in mobile and ubiquitous computing, Enterp. Inf. Syst., vol. 4, 2010.

20. Cardellini, V., et al.: MOSES: A Framework for QoS Driven Runtime Adaptation
of Service-Oriented Systems, IEEE Transactions on Software Engineering, vol. 38,
pp. 1138-1159, 2012.

