

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

 Kabir, M. A., Han, J., Yu, J., & Colman, A. (2012). SCIMS: a social context

information management system for socially-aware applications.

Originally published in J. Ralyte, X. Franch, S. Brinkkemper, & S. Wrycza (eds.)
Proceedings of 'Information Services', the 24th International Conference on

Advanced Information Systems Engineering (CAiSE 2012), Gdansk, Poland, 25–
29 June 2012.

Lecture notes in computer science (Vol. 7328, pp. 301–317). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/978-3-642-31095-9_20

Copyright © Springer-Verlag Berlin Heidelberg 2012.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

http://dx.doi.org/10.1007/978-3-642-31095-9_20
http://www.springerlink.com/

SCIMS: A Social Context Information
Management System for Socially-Aware

Applications?

Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

Faculty of Information and Communication Technologies,
Swinburne University of Technology,

Melbourne, Australia
{akabir,jhan,jianyu,acolman}@swin.edu.au

Abstract. Social Context Information has been used with encouraging
results in developing socially-aware applications in different domains.
However, users’ social information is distributed over the web and man-
aged by many different proprietary applications, which is a challenge for
application developers as they must collect information from different
sources and wade through a lot of irrelevant information to obtain the
social context information of interest. Combining the social information
from the diverse sources and incorporating richer semantics could greatly
assist the developers and enrich the applications.

In this paper, we introduce SCIMS, a social context information man-
agement system. It includes the ability to acquire raw social data from
multiple sources; an ontology based model for classifying, inferring and
storing social context information, in particular, social relationships and
status; an ontology based policy model and language for owners to control
access to their information; a query interface for accessing and utilizing
social context information. We evaluate the performance and scalabil-
ity of SCIMS using real data from Facebook, LinkedIn, Twitter and
Google calendar, and demonstrate its applicability through a socially-
aware phone call application.

Keywords: Social context, Online Social Networks, Social relationship,
Ontology, Access control, Information management.

1 Introduction

Recently we have witnessed an increasing number of efforts aimed at providing
socially-aware applications from such domains as pervasive computing, semantic
web and information retrieval. These applications exploit users’ social context in-
formation such as relationship, interaction history, and so on, to provide “smart”
services and capabilities [1]. For example, SmartObject considers the user’s re-
lationship information to turn on the audio player when friends are present [2].

? This research was supported in part by the Commonwealth of Australia, through
the Cooperative Research Centre for Advanced Automotive Technology (AutoCRC)

2 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

Review quality is quantified based on the interaction and social relationships of
reviewers in [5].

On the other hand, the popularity of Online Social Networks (OSNs) such as
Facebook, LinkedIn, Twitter and Google+ (being the prime examples) produce
an unprecedented amount of Social Context Information (SCI) as people specify
their relationships, update their status and share contents. This phenomenon
offers a unique opportunity for this information to be leveraged in creating more
intriguing socially-aware applications. As it is, however, the users social context
information is distributed all over the web, emerging from and fragmented across
many different proprietary applications. Combining this information from such
diverse sources could provide a more accurate representation of the users’ so-
cial world with semantically richer information, and enable a whole new set of
socially-aware applications.

Most of the existing works collect and manage social information within the
context of an application (as in the above examples), which has two major prob-
lems. First, it is a challenge for application developers as they must collect infor-
mation from different sources and wade through a lot of irrelevant information
to obtain the social context information of interest to the targeted functional-
ity. Second, it makes it extremely hard for information owners to control how
their information should be exposed to different users and applications. While
early context-aware applications relied on ad hoc architectures and representa-
tions, it has already been recognized that separating the process of acquiring
contextual information from actual applications is key to facilitating application
development and maintenance [7]. Nevertheless, managing users’ social context
information for supporting the development of socially-aware applications is still
a challenging task for several reasons:
– Consistent representation of SCI: There are different types of social

context information. One type is the “object-centric” relationship, identified
between people who have shown common interest (e.g., like/tag in Facebook)
or participated in common activities or become members of similar groups.
This type of relationship has been used in applications to infer preferences [8]
and incentives of resource sharing [3]. Another type is the “people-centric”
relationship, which is formal and declarative. For example, a person identifies
other persons as father, supervisor, school friend, etc. This type of relation-
ship can be used in a socially-aware phone call application as identified in [9].
The different types of social relationships need to be represented consistently
to facilitate application use.

– Inferring social relationships with SCI semantics: An application may
need social context information that is not directly available from the sources
but can be derived from basic information. For instance, users may want
to filter phone call based on relationship categories such as “family” and
“best-friends” that are not provided directly but can be inferred from other
available relationships. Thus, there is the need to define and obtain derived
relationships (at different abstraction levels) based on the basic relationships
(e.g., mother and school-friend) and their semantics (e.g., mother being in
family) and attributes (e.g., strength and trust).

SCIMS: Social Context Information Management System 3

– Preserving owner privacy by fine-grained access control over SCI:
The user’s social context information is inherently sensitive and can be fur-
ther used to infer sensitive information. The scenarios of emerging socially-
aware applications require users to share their information for greater ben-
efits but may also compromise their privacy. For example, allowing caller to
know the status of callee before calling might reduce interruptions [9], but
may also raise serious concerns regarding the privacy and access control over
users’ status and other data. Thus, users should be able to retain control
over who has access to their personal information under which conditions.
In addition, a user may want to fine-tune the granularity of the answer pro-
vided to a given query, depending on the context of that query such as who
is asking, what is asked for, user’s current status, etc. For instance, an em-
ployee may be happy that her boss knows her current status is “AtDesk”.
However, she may not be happy to let the boss know her status is “chatting
to friends via instant messaging”. Thus users should be able to control access
to their information at different levels of granularity.
A number of existing works have attempted to gather and manage users’

social data. However, they address the above issues in a very limited manner.
For instance, PocketSocial [10], Prometheus [11] and MobiSoC [12] each gather a
particular type of relationship information but without considering its semantics,
and as a consequence are not able to answer the relationship at different levels of
abstraction. While Yarta [13] does consider semantics and uses ontology in their
relationship representation, it does not consider the granularity in information
access in their policy model.

In this paper we introduce SCIMS, a social context information manage-
ment system for collecting, integrating, classifying, inferring and storing social
context information from diverse sources. SCIMS allows efficient access to this
information while respecting user privacy, in order to facilitate the development
of socially-aware applications. This research has three major contributions. First,
we propose an ontology based model for representing and storing both people-
and object-centric social relationships, and users’ status information. Second,
a rich set of social context information has been derived based on information
acquired from disparate sources. Third, we propose a way to preserving owners’
privacy by allowing the owners to fine-tune the granularity of information access
and to specify access control policies. In addition, we have developed a number
of adapters to fetch information from various sources and implemented a set of
query APIs for applications to access the context information. We have used the
semantic web technologies to implement the overall system and also performed
evaluations of SCIMS’s performance and scalability. A socially-aware phone call
application has been developed on top of SCIMS to demonstrate its applicability.

The paper is organized as follows. Section 2 reviews related research. An
overview of the proposed SCIMS is given in section 3. Section 4 introduces our
approach to modeling and inferring social context information. An access control
model to protect context information is described in section 5. Section 6 presents
a prototype implementation. Section 7 reports our experimental evaluation with
a case study, while section 8 concludes the paper and highlights future work.

4 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

2 Related Work

In the field of general context-aware system, there has been significant amount
of research effort for modeling and managing context of a physical nature such as
location, time, activity, and so on. Comparatively, there have been only limited
works concerning contexts of a social nature [2]. Some research efforts have
attempted to adopt and extend the Friend of a Friend (FOAF) [4] ontology
for representing social relationships [6][14]. They extend the foaf:knows object
property, the only option offered by FOAF ontology, with sub-properties such as
colleagueOf, and friendOf. However, representing relationships using such object
property suffers from generality for two main reasons: (i) it does not allow the
specification of different attributes such as strength and trust associated with a
relationship; (ii) as a consequence more abstract and rich context information
cannot be derived.

OSNs like Facebook, LinkedIn and so on, offer their native APIs [15][16]
for accessing their simple, unprocessed social data. These APIs do not provide
access to derived relationships like “best friend” or “Colleague of a Colleague”.
Instead, an application must explicitly crawl through the graph to obtain them.

Policy-based access control has been the subject of extensive research over the
past decade. Recent research efforts have tried to integrate semantic technologies
both in access control model and policy specifications, thus enabling automated
reasoning and policy enforcement over expressive access control specifications. In
particular, the ROWLBAC [17] and ReBAC [18] models have provided us with
useful insight for our socially-aware access control framework. Most policy mod-
els for social networking applications [19], and even those designed for pervasive
computing applications [20] consider either role or relationship in their access
control but not both. While the work [21] is very close to ours in protecting
user social context information, it does not consider role in their access control
model and therefore is not able to offer the advantages of role based access con-
trol. Moreover, they do not consider the obfuscation to support the access control
at different granularity level which is an important aspect for access control [28].

Socially-aware applications are often designed from scratch by embedding all
management functionalities into the application logic, providing an application-
specific data representation models, and acquiring data from one or a few specific
external sources (e.g., [2], [23]). In all of these cases, social knowledge has been
mined in the context of a single application. Some efforts have already recognized
the need to externalize the social context management functionalities and have
taken steps towards systematically managing users’ social context information.

Prometheus [11] collects user’s social data from different OSNs represents it
as multi-edged graphs, where vertices correspond to users and edges correspond
to interactions between users. The interactions are described with a label (e.g.,
“football”, “music”) and a weight specifies the intensity of an interaction, and
essentially represents an “object-centric” relationship. Prometheus implements a
set of inference functions to answer queries like social strength, proximity, and so
on, while enforcing user-defined access control policies. Like Prometheus, Pocket-
Social [10] also collects social data from different sources. But unlike Prometheus,

SCIMS: Social Context Information Management System 5

Information Acquisition Layer (Adapters)
Facebook …

KB (SCOnto)

Information
Management
Layer

Classifying & Reasoning

KB (SACOnto)

Privacy Policy Manager

Query Processing Manager

Query Interface

Socially-aware Applications

OSNs

Po
lic

y
In

te
rf

ac
e

LinkedIn Twitter Google Calendar

Calender Wearable sensors Fixed sensors Devices

Activity

Information
Owner

Fig. 1: Social context information management system architecture

it represents social data in JSON objects and supports only REST based APIs
like Facebook, and does not provide any inference functions. Neither Prometheus
nor PocketSocial represent both the object- and people-centric relationships with
their semantics, and as a consequence they are not able to infer richer informa-
tion or fine-tune the granularity of information access.

On the other hand, Yarta [13] adopts the FOAF ontology in their relationship
representation, which has the drawbacks as discussed above. However, it only
considers people-centric relationships and does not capture the object-centric
ones. Even though it does consider social context in its policy model, its access
control policy does not take into account granularity in information access. More-
over, its policy model is RDF-based which lacks in generality of OWL DL-based
models.

Our work significantly differs from the previously noted approaches in that it
not only collects users’ social relationship information from multiple sources and
stores it in ontologies, but also considers the owners’ status information and their
semantics, allowing information representation and derivation at different levels
of abstraction and consequently facilitating access control and query processing.

3 Overview of the SCI Management System

We introduce an SCI management system, SCIMS, to address the challenges
in developing socially-aware applications, as discussed in the introduction. Our
proposed architecture for the SCIMS (see Figure 1) comprises two layers: (i)
Information Acquisition and (ii) Information Management, and provides a plat-
form for accumulating, storing and managing social context information.

The information acquisition layer is responsible for accumulating social con-
text information from various sources such as OSNs, calendar entries, physical
sensors, and so on. A common interface is provided so that different adapters
can be built based on that interface to collect data from various sources.

For the information management layer, we propose an ontology based con-
text model to store the processed social data being collected. The ontology based
model provides the facilities of inferring and deducing more complex context in-
formation based on the processed data. We also propose a socially aware access

6 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

control mechanism to allow information owners to protect their information by
specifying privacy policy. Our policy model reflects the human way of thinking
by considering social relationship, social role and status information when defin-
ing privacy preferences. Moreover, to allow different applications to access the
social context information, we introduce a query interface so that application
developers can build applications without the need to deal with the details of
information representation schema and management. In the sections below, we
introduce the detailed capabilities of the components in this SCIMS architecture.

4 Modeling and Inferring Social Context Information

We adopt an ontology based approach to modeling and representing social
context information. Ontology based approaches have been evaluated as most
promising for context modeling in pervasive computing. It has two main ad-
vantages: (i) it creates a common knowledge and understanding of context in-
formation, and (ii) it allows context reasoning [24]. We use OWL 2 DL [30], a
sub-language of OWL 2, to model social context information. To date, OWL 2
DL has been the most practical choice for most ontological applications as it
supports maximum expressiveness while retaining computational completeness
and decidability [25].

Despite its intuitive anchoring in everyday life, social relationships or context
information may be very challenging to represent in a formal model. However,
at a certain level of abstraction, social relationships can be defined as a possible
form of “relational ties”, as most of the existing works have considered (e.g.,
[13]). We also take this view to model social relationships. However, we model
relationships as first-class entities rather than representing them as a generic
link between people. This way of modeling allows us to benefit from Description
Logic (DL) [26] in classifying and reasoning about relationships at different levels
of abstraction based on the properties of these relationships.

In order to provide a suitable trade-off between formal modeling and appli-
cation specific concepts, we define a set of basic concepts as building blocks for
the creation of socially-aware applications. Towards this goal, we propose both
upper and domain-specific (lower) ontologies. The upper-level ontology captures
the basic concepts, abstracted from the analysis of: (i) real-world use case sce-
narios, like the socially-aware phone call [6]; (ii) different sources of context
information, e.g., Facebook, LinkedIn, etc. Through a standard specification,
this upper ontology can be shared, reused, and adapted to others systems. This
can be customized to represent terms in different forms for different users. The
upper ontology is also extensible to allow for the incorporation of new concepts
and the specialization of concepts and constraints for a particular application,
which we refer as domain-specific ontologies.

4.1 Core Upper Ontology

Our upper ontology model, called Social Context Ontology (SCOnto), defines
four first-class entities, namely, Person, SocialRole, Relationship, and CurrentSta-

SCIMS: Social Context Information Management System 7

xsd:float

foaf:Person

hasRelationship

Relationship

=2 relates.Person

SocialRole

plays

class

hasStatus
is-a

isPlayedBy

People-

centric
CurrentStatus

Data property

xsd:float

Legend
trust stre

ngth

class type

classObject property

relatedTo

Object-

centric

is-a

Super class Sub classis-a

Fig. 2: Social context upper ontology – core classes and properties

tus. These entities can be organized into a hierarchy where the root of the hi-
erarchy is the term SCOnto. To define Person, we adopt and extend the FOAF
ontology. In the FOAF ontology, a person’s status is represented as literal. To
support reasoning over a person’s status at different granularity levels we change
the type of “status” from data property to object property (labeled “hasStatus”)
which links the Person and CurrentStatus class. The FOAF model also includes a
set of attributes that provide information about a person, such as name, email,
phone-number, gender and so on. In real-world, a person may have different
types of relationship as she plays various roles. To identify a person at such
a fine grained level, we introduce the concept of SocialRole which isPlayedBy
the Person. The core concept of our model is the (social) Relationship which
is a subclass of SCOnto and relates exactly two persons that can be defined in
OWL 2 using the DL [25] syntax as follows:

Relationship v SCOnto u = 2 relates.Person

where those persons should be different individuals (i.e., the relatedTo object
property type should be set to Irreflexive).

Figure 2 shows the SCOnto model that can be read as follows. A Person may
have Relationship(s); each Relationship can be classified as object- and people-
centric, relates exactly two Persons; thus through a Relationship a Person is
relatedTo another Person and plays a particular SocialRole; also a Person may
have a CurrentStatus. The set of concepts included in our ontology is obviously
non-exhaustive. However, we believe that this ontology can be profitably used
to model many application scenarios.

4.2 Domain-specific Ontologies

Based on the core ontology we define some domain-specific ontologies (Figure 3).
In particular, we propose a fine-grained relationship model for Family, Educa-
tionBasedFriend, Work, and CommonInterest relationships. Basically, we rely
on users’ Facebook information to deduce family relationships. Facebook allows
people to maintain a family list, where a user can annotate a person in his fam-
ily list as Brother, Father, Uncle and so on, which ultimately indicates the role
played by the person being annotated from the user’s point of view rather than
the specific relationship between the user and that person. For instance, if a user
annotates a person in his/her family list as “Father”, the relationship between

8 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

Fig. 3: Domain specific ontologies – an excerpt of different types of relationship

them could be a “Father-Son” or “Father-Daughter” relationship, which can be
inferred by utilizing the user’s gender information. In our ontology, we use DL
for defining such derived relationships. Some examples are shown below:

FatherSon v FatherChildu∃relates((Personu∃plays·Father)u(Meugender·male))
UncleNephew v Familyu∃relates((Personu∃plays ·Uncle)u (Meu gender ·male))

Here, Me is a subclass of Person that specifies the user from whose perspective
the relationship is computed. However, in some cases, we can deduce the rela-
tionship directly from the role name. For example, if a person is annotated as
“husband”, we can directly deduce the relationship as “husband-wife”; the same
applies for cousin and partner relationships.

Facebook is also a potential source of collecting friend information. A person
is an education-based-friend if he/she studied with the user, so we categorize Ed-
ucationBasedFriend as PrimarySchoolFriend, HighSchoolFriend, CollegeFriend,
and GraduateSchoolFriend. Such basic friendship information can be used to fur-
ther deduce and classify friendship relationships such as TopFriend, BestFriend
and so on. For instance, a user can define that a person is a top friend if he/she
is a HighSchoolFriend, CollegeFriend and GraduateSchoolFriend, as follows:

TopFriend ≡ HighSchoolFriend u CollegeFriend u GraduateSchoolFriend

Also, a person can be defined as a best friend if he/she is a top friend and has
relationship strength greater than a certain value (e.g., 0.8)

BestFriend ≡ TopFriend u ≥ 0.8 strength

This relationship strength information can be computed based on the user’s
interaction activities in OSNs [26].

We classify the work relationship for an educational organization as Student-
Teacher, Student-Supervisor, and Colleague relationships. From LinkedIn, we can
get current and past positions of a user and all the persons connected with that
user. Based on the institution name or id and the positions held by them, we
can deduce their work relationships. For instance, if two persons hold any of the
staff roles in an organization, we can deduce their relationship as being Colleague.
Based on the specific types of staff roles, we can further classify the relation-
ship as: AcademicStaff-AdminStaff, AcademicStaff-AcademicStaff, AdminStaff-
AdminStaff.

SCIMS: Social Context Information Management System 9

Fig. 4: An excerpt of current status ontology

Table 1: Granularity levels of classes in the CurrentStatus ontology

Granularity Level Classes
1 NotAvailable, Available
2 Busy
3 OutOfHome, OutOfOffice, NotInTraveling, NotInShopping
4 Shopping, Traveling, AtOffice, AtHome
5 NotAtDesk, AtDesk, WatchingTV
6 Lecture, Meeting, Seminar, UsingPC, OnPhone
7 TypingReport, Chatting

From Twitter we can obtain Following-Follower relationship, where Follow-
ing includes the person(s) whom the user is interested and following, and Fol-
lower includes person(s) who are following the user. LivingAddress based rela-
tionship can be acquired from Facebook and further categorized at Country and
City levels. CommonInterest includes the relationships with person(s) who like
the same Digital-Content (e.g., those people use “like” to express in Facebook),
are members of the same Group (e.g., soccer, cricket, and so on), are interested
in the same Event (e.g., conference), or have CommonResearchInterest which
can be collected from LinkedIn.

Figure 4 shows part of the CurrentStatus ontology by considering some ac-
tivities (both social activities (more than one person is involved) and individual
activities) in particular domains such as home, office, shopping and travel. Again,
the set of information defined in this ontology is obviously non-exhaustive and
can be further extended based on the need of the application or domain of in-
terest. We assume that we can collect a user’s raw status information from the
user’s diary, Facebook, LinkedIn, or Twitter status update. The user’s raw sta-
tus information will be one of the leaf nodes in the ontology. We can deduce the
status of being Available or NotAvailable for telephone call, or Busy based on
the raw information, as follows:

Busy ≡ Lecture t Meeting t Seminar t TypingReport

Available ≡ AtDesk u ¬OnPhone

NotAvailable ≡ OnPhone t NotAtDesk t OutOfOffice

10 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

Owner

defines

Policy

isDefinedBy

SocialRole

decision

pl
ay

s

asksFor

Requester

Person

is
-a

Resource

CurrentStatus

MetaInfo

Access

Relationship

is
-a

is
-a

Relationship

hasRelationshiphasRelatio

nship

relatedTo

is-a is
-a

CurrentStatus

hasStatus

Denied

Granted

GrantedInGL1

GrantedInGL2

is
-a

is-a

...

class

Legend

classObject property

Super class Sub classis-a

Fig. 5: Access control policy model

We have set the granularity level for each node/class in the ontology as an
increasing number from root to leaf nodes, as depicted in Table 1. Thus for a
given status, we can answer the current status of a user at different levels of
granularity. For instance, for a status “Meeting” with granularity level 4, we can
say that the user is “AtOffice”. Similarly, we also specify the granularity level
for relationship ontologies.

5 Preserving Privacy

5.1 A Socially-Aware Access Control Policy Model

For controlling access to SCI, we have proposed an access control policy model
to protect owners’ social context information based on the context information
itself. Thus our policy model, called Socially-aware Access Control Ontology
(SACOnto) (see Figure 5), reuses the concepts from core SCOnto model (shown
in shaded ellipse) to define under which conditions (i.e., the social context) a
given resource is accessible. The accessible resource could be any social context
information (e.g., relationship, status) including the meta-information related to
any relationship of a user such as the numbers of friends and colleagues.

Studies have revealed that users want to define policies that apply to all peo-
ple with certain relationships or roles rather than explicitly name each person
[20, 21]. Thus in access conditions, we consider both requester’s role and relation-
ships with information owner to reflect the way users tend to group similar sets
of people when deciding to share resources to other users. Therefore, our model is
able to represent existing policy models, such as popular role-based and recently
emerged relationship-based [16, 17], with enhanced expressive capabilities.

In addition, we consider the owner’s current status information which is an-
other important aspect of defining policies [20]. Furthermore, our model can be
easily extended to incorporate users’ physical context information such as loca-
tion, time, and so on, in making access decision. For the sake of brevity, however,
we do not consider it here. Users typically specify their policies using combina-
tions of the main dimensions driving access control decisions. For example,

– Who is requesting access and what is her relationship with the owner?

SCIMS: Social Context Information Management System 11

– What role is the requester playing?
– The current status of the owner when the request comes?
– What type of resource is being requested and what are its characteristics?

Our ontological model enables a user (owner) to specify logical relations be-
tween the above fundamental elements. In the owners’ conceptual model, such
who/what/when dimensions are typically interrelated. Our model (Figure 5)
captures these dimensions which can be read as follows: A Policy isDefinedBy
an Owner which specifies Access decision (Denied or Granted or GrantedInGL1
(granted in granularity level 1) and so on) for Requester(s) who plays a So-
cialRole, relatedTo Owner and hasRelationship with owner named Relationship,
asksFor a Resource, when the Owner hasStatus CurrentStatus. For instance,
consider this policy, “Any of my colleagues can access my current status when I
am in meeting” (policy #1). In such case, the owner’s access decision is based on
the relationship with the requester (who), the resource being accessed (what),
and the status of the owner at request time (when). While traditional approaches
generally consider these dimensions orthogonal, our model reflects the owner’s
way of thinking by supporting the cross dimensional definition of policies.

Another key feature of our model is the ability to specify access permissions
at different levels of granularity, i.e., disclosing information at a certain level
of abstraction by hiding the specific fact. For instance, “Upon being asked the
current status by supervisor, a student may want to state her status as being
‘AtDesk’ (granularity 5) while she is actually chatting with friends” (policy#2).

5.2 Policy Specification and Enforcement

We use DL to specify access control policies, as one of its main advantages is
that a DL reasoner can be used for automatic inconsistency detection both in
policy specification and enforcement. A graphical user interface can be provided
to the owner for specifying her privacy policies which can be easily transformed
to the DL format. The template of our policy rule in the DL is defined as follows:

Denied / Granted/GrantedInGL?n v Access u ∃decision(Requester u
∃ hasRelationship.?Relationship u ∃asksFor.?Resource u
∃ plays.?SocialRole u ∃relatedTo.(Owneru ∃hasStatus.?CurrentStatus))

where bold words with a preceding ‘?’ mark are variables that will be filled based
on the owner’s privacy preference statements. For example, we can represent the
above policy #2 as follows:

GrantedInGL5 v Access u ∃decision(Requester u ∃asksFor.CurrentStatus u
∃ hasRelationship.Student-Supervisor u
∃ relatedTo.(Owner u ∃hasStatus.Chatting))

Once the policy is transformed to the DL format, it is asserted to the owner’s
access control ontology. For instance, policy #2 will be asserted to the SACOnto
as an equivalent class of GrantedInGL5 class. When an access request or query

12 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

comes which basically corresponds to invoking a function from the access APIs
(see next section), some facts about the context of the query are temporarily
asserted to the ontology – namely the requester name and resource being re-
quested. In addition, an individual of Access class with a link to the requester
using decision property is asserted. After that the reasoner is fired which classi-
fies that individual of access class to one of its subclasses, i.e., Denied, Grante-
dInGL1, and so on, based on the defined policies. Query processing manager
considers this result for answering the query.

6 Prototype Implementation

We have implemented a prototype system for SCI management, SCIMS, in Java 2
Platform Standard Edition (J2SE). For managing the knowledge base (SCOnto
and SACOnto), we have used OWL API 3. We wrote adapters for Facebook,
LinkedIn, Twitter, and Google calendar using their native APIs for fetching
users’ social data, and follow the OAuth 2.0 protocol for authorization. For in-
ferring and policy execution, we have used reasoners compliant with OWL 2 DL.
In particular, for evaluation purposes, we have incorporated five different DL rea-
soners: Pellet 2.3.0, HermiT 1.3.5, TrOWL 0.8.1, Fact++ 1.5.2 and RacePro 2.0.

To aid developing socially-aware applications, we have implemented a set
of APIs exposed as Web services. Policy APIs allow owners to add, update
and delete their privacy preferences – addPRule, deletePRule, getPRule, up-
datePRule, and so on. Management APIs provide functionality (i) to manipu-
late ontologies, allowing inserting, editing and deleting both concepts and in-
dividuals, and (ii) to configure and execute information acquisition operations
– insertConcept, insertRelationship, updateCurrentStatus, startInfoAc-
qFromFB, and so on. Query APIs for accessing both context and meta-context
information – getCurrentStatus, whatIsMyRelWithB, getRelNameByGLevel,
isAhasRelRwithB, getNumberOfGraduateSchoolFriend, getColleagueOfACol-
league, and so on. Since most of the interface names are self explanatory, we do
not provide description of those APIs. Also due to page limit, we cannot give
the complete lists of the all types of APIs.

We adopt a DL based query language, named SPARQL-DL [28], for query
processing and have used the derivo 1.0 SPARQL-DL query engine with above
mentioned DL reasoners. Recently, SPARQL-DL was introduced as a rich query
language for OWL 2, which is a distinct subset of SPARQL (a RDF based
language), tailored to ontology specific queries. Therefore, different aspects of
context such as granularity can be answered easily and in simpler fashion. For
example, getStatusByGLevel(A,gLevel) can be realized in SPARQL-DL as
follows:

PREFIX sc:<http://www.ict.swin.edu.au/Ontology/SCOnto#>

SELECT ?status {

PropertyValue(A, sc:hasStatus, ?statIns)

DirectType(?statusName, ?statIns)

Annotation(strictSubClassOf(?statusName, ?status),

sc:granularityLevel, gLevel)}

SCIMS: Social Context Information Management System 13

0 U1(35) U2(171)U3(297)U4(337)U5(387)U6(580)U7(813)U8(5000)
5000

6000

7000

8000

9000

10000

11000

12000

13000

Facebook users (number of friends)

en
d-

to
-e

nd
 re

sp
on

se
 ti

m
e

(m
s)

(a) Fetching information from Facebook

0 U1(35) U2(171) U3(297) U4(337) U5(387) U6(580) U7(813)U8(5000)
10

100

1,000

Facebook users (number of friends)

Ti
m

e
in

 m
s

(lo
ga

rit
hm

ic
 s

ca
le

)

Pre-processing and storing time

(b) Inserting information into KB

Fig. 6: Time of acquiring social context information from Facebook

7 Experimental Evaluation and Case Study

The management system prototype is deployed and evaluated on a machine
with Core 2 Duo E8400 3 GHz processor, 3 GB RAM, WinXP professional
edition SP3, and Java 1.6. Our evaluation had three goals: (1) assess the systems
scalability in acquiring social information using different sizes of real social data
of multiple users; (2) measure the systems performance in executing a set of
queries over a large data set using different existing reasoners; (3) validate the
system by developing a case study social application on mobile phones.

Scalability Evaluation for Information Acquisition. To assess the scala-
bility of the system regarding information acquisition, we evaluate the time cost
of acquiring information using two metrics: (i) end-to-end response time – time
required to fetch information from different sources – Facebook, LinkedIn, Twit-
ter, and Google calendar – to quantify the network overhead; (ii) Preprocessing
and storing time – time required to extract the data of interest from fetched ob-
jects, transform it to the suitable format, and insert it into the knowledge base
(ontologies), to quantify the performance of inserting information into SCIMS.

In these experiments, we choose eight different Facebook users who have
increasing numbers of friends, including a user with 5000 friends which is the
highest number Facebook allows. These users gave us permission to collect their
social data. For each user, we run the experiment 50 times. Figure 6 shows
the result where error bars depict standard deviation. For the highest number
of friends (i.e., 5000), the average end-to-end response time was 12 sec (see
Figure 6a) and the average time for preprocessing and inserting information into
knowledge base (KB) was around 700 ms (see Figure 6b), which is an acceptable
result, since this information acquisition is usually performed off-line and might
not be required to update very frequently. Similarly, we have done experiments
using LinkedIn, Google calendar and Twitter users; however, due to page limit
those results are not included here.

14 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

Knowledge base (KB) in Kilobyte (logarithmic scale)

90 234 287 358410 616 829 4499

T
im

e
 i

n
 m

s
 (

lo
g

a
ri

th
m

ic
 s

c
a

le
)

100

1000

10000

100000

KB Loading time

QP (HermiT)

QP (Pellet)

QP (RacerPro)

QP (TrOWL)

QP (Fact++)

(a) Loading and QP time over various size
of KB using five different reasoners

HermiT Pellet RacerPro TrOWL Fact++

10
0

10
1

10
2

10
3

10
4

10
5

DL reasoners

Ti
m

e
in

 m
s

(lo
ga

rit
hm

ic
 s

ca
le

)

Query Execution
KB initialization and classifying

(b) Details of QP time for a particular
Knowledge-Base sized 829 kilobytes

Fig. 7: System performance on query processing (QP)

Performance Evaluation for Query Processing (QP). For measuring the
system performance on query processing, we use three metrics: (i) time required
to load KB, (ii) time for classifying KB, and (iii) time to answer a set of queries –
isAFamilyOfB, getAllRelationships and getStatusByGLevel. The KB that
has been built in previous experiments using users’ social context information
acquired from Facebook, LinkedIn, Twitter and Google calendar, is used for
performance measurement. Figure 7a shows the result (average of 50 runs) of
loading time which basically depends on the size of the knowledge base and not
associated with any reasoners. Figure 7a also shows the result of query processing
time (the sum of KB classification and query execution time) over various size of
KB using five different reasoners. The result of QP shows that for a small sized
KB, TrOWL performs very well. But as the size increases the computation cost
increases dramatically. However, Fact++ outperforms consistently from small to
large sized KBs. Figure 7b shows further details of query processing performance
(separating KB classification and query execution) of different reasoners for a
particular sized KB (i.e., 829 kilobytes – contains 953 relationship instances).

Case Study – A Socially-Aware Phone Call Application. To demon-
strate the real-world applicability of our approach, we have developed a proof-
of-concept application, called socially-aware phone call1. This application lever-
ages the social context information in SCIMS to decide whether to ring, vibrate,
reject, or reject and send status when a call comes. Thus for each incoming call,
the application invokes getMyCurrentStatus and whatIsMyRelwithB functions
to get the current status and the relationship information with the caller, re-
spectively, and acts based on the preference defined by the callee. On the other
hand, before calling, using the same application one can also obtain the status
of the intended callee by invoking getCurrentStatusOfB function to judge the
suitable time of making the call.

1 http://www.ict.swin.edu.au/personal/akabir/sphone/spcall.htm

SCIMS: Social Context Information Management System 15

The application is written in Java for mobile devices running Android OS
and was tested on LG Optimus One which communicates with SCIMS over a
3G network. We have tested meeting and seminar scenarios during a month
where a user defines her filtering preferences using the application as “(1) If
my status is meeting or seminar and a call comes from friend, action is reject;
(2) For family, action is reject and forward my status at granularity level 2
(Busy); (3) for colleague action is reject and forward status at granularity level 6
(i.e., meeting or seminar); and (4) for supervisor action is vibrate”. To forward
the status information of the callee (for case 2 and 3), application invokes the
getStatusByGLevel function with particular granularity level as an attribute
value (as specified in the filtering conditions). We also use policy #1 as user’s
privacy preference regarding access to her status information by caller (to judge
the suitable time of making the call) that SCIMS collects from user’s Google
calendar. We observe that the application acts well in its real-time constraint,
i.e., the application is able to acquire information from SCIMS and make decision
before the call is forwarded to the voice-mail of the callee.

8 Conclusions and Future Work

In this paper, we have presented a novel social context information management
system, SCIMS, to aid the development of complex socially-aware applications.
Our system utilizes existing OSNs to accumulate user’s social context informa-
tion; provides rich semantic support for representing and inferring SCI, particu-
larly social relationships and status; offers flexible policies for controlling access
to SCI based on owners’ preferences; provides a generic query interface for the
use of the SCI. In particular, our semantic based approach to modeling and man-
aging SCI provides the advantages of reusability and extensibility. The SCIMS
implements a set of adapters to retrieve social data from different OSNs, stores
information in an ontology-based knowledge base, and provides a number of in-
terfaces for accessing and managing this information. We have demonstrated the
efficacy and usability of the proposed system by conducting a performance and
scalability evaluation and by developing a socially-aware phone call application
running on Android phones.

We are currently extending the SCI management system along a number of
directions, including support of continuous query over SCI and system realization
in different platform settings (P2P, Cloud based and Mobile).

References

1. Kabir, M. A., Han, J., Colman, A.: Modeling and Coordinating Social Interactions
in Pervasive Environments. In: Proc. of the ICECCS, pp. 243–252 (2011)

2. Biamino, G.: Modeling social contexts for pervasive computing environments. In:
PerCom CoMoRea Workshop, pp. 415–420. (2011)

3. Li, J.,Dabek, F.: F2F: Reliable storage in open networks. In: P2P Workshop, (2006)
4. Friend of a Friend (FOAF), http://xmlns.com/foaf/spec/

16 Muhammad Ashad Kabir, Jun Han, Jian Yu, and Alan Colman

5. Lu, Y., Tsaparas, P., Ntoulas, A.,Polanyi, L.: Exploiting social context for review
quality prediction. In: Proc. of the 19th Intl. Conf. on WWW. pp. 691–700. (2010)

6. RELATIONSHIP. http://vocab.org/relationship
7. Dey, A.K., Abowd, G.D.,Salber, D.: A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications. Hum.-Comput.
Interact., 16(2), (2001)

8. Mislove, A., Gummadi, K.P.,Druschel, P.: Exploiting social networks for internet
search. In: Proc. 5th Workshop on Hot Topics in Networks. pp. 79–84. (2006)

9. Toninelli, A., Khushraj, D., Lassila, O.,Montanari, R.: Towards socially aware mo-
bile phones. In: 1st Social Data on the Web Wrokshop. Germany: CEUR. (2008)

10. Bo, X., Gronowski, K., Radia, N., Svensson, M.,Ton, A.: PocketSocial: Your dis-
tributed social context now in your pocket. In: PerCom Workshops, (2011)

11. Kourtellis, N., et al.: Prometheus: User-Controlled P2P Social Data Management
for Socially-Aware Applications. In: Middleware, pp. 212–231. (2010)

12. Gupta, A., Kalra, A., Boston, D.,Borcea, C.: MobiSoC: a middleware for mobile
social computing applications. Mobile Netw. and Appl., 14(1), 35–52. (2009)

13. Toninelli, A., Pathak, A.,Issarny, V.: Yarta: A Middleware for Managing Mobile
Social Ecosystems. In: Advances in Grid and Pervasive Comp, pp. 209–220. (2011)

14. Devlic, A., et al.: Context inference of users’ social relationships and distributed
policy management, In: PerCom Workshops, pp. 1–8. (2009)

15. Graph API – Facebook developers, http://developers.facebook.com/
16. LinkedIn APIs, https://developer.linkedin.com/apis
17. Finin, T., et al. :ROWLBAC: representing role based access control in OWL. In:

Proc. of the 13th SACMAT, pp. 73–82. (2008)
18. Fong, P.W.L., Siahaan, I.: Relationship-based access control policies and their pol-

icy languages. In Proc. of the 16th SACMAT, pp. 51–60. ACM (2011)
19. Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M.,Thuraisingham, B.:A

semantic web based framework for social network access control, In: Proc. of the
14th SACMAT, pp. 177–186. (2009)

20. Jagtap, P., Joshi, A., Finin, T.,Zavala, L.: Preserving Privacy in Context-Aware
Systems. In: Proc. of 5th Intl. Conf. on Semantic Computing, pp. 149–153. (2011)

21. Toninelli, A., Montanari, R., Lassila, O.,Khushraj, D.: What’s on Users’ Minds?
Toward a Usable Smart Phone Security Model. Pervasive Computing, 8(2), (2009)

22. Khalil, A.,Connelly, K.: Context-aware telephony: privacy preferences and sharing
patterns. In: Proc. of the 20th CSCW Conf., pp. 469–478. (2006)

23. Beach, A., et al.:Fusing mobile, sensor, and social data to fully enable context-
aware computing. In: Proc. of the Workshop on Mob. Comput. Sys & Appl. (2010)

24. Bettini, C., et al.: A survey of context modelling and reasoning techniques. Perva-
sive Mob. Comput., 6(2), 161-180. (2010)

25. Riboni, D.,Bettini, C.: OWL 2 modeling and reasoning with complex human ac-
tivities. Pervasive Mob. Comput., 7(3), 379-395. (2011)

26. Baader, F., The description logic handbook: theory, implementation, and applica-
tions. Cambridge Univ Press. (2003)

27. Xiang, R., Neville, J.,Rogati, M.:Modeling relationship strength in online social
networks. In: Proc. of the Intl. Conf. on World Wide Web, pp. 981-990. (2010)

28. Wishart, R., Henricksen, K.,Indulska, J.: Context Privacy and Obfuscation Sup-
ported by Dynamic Context Source Discovery and Processing in a Context Man-
agement System. In: Porc. of the UIC, pp. 929-940. (2007)

29. Sirin, E.,Parsia, B.: Sparql-dl: Sparql query for owl-dl. In: OWLED (2007)
30. OWL 2 Web Ontology Language, http://www.w3.org/TR/owl2-overview/

