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Abstract

Conventional biometric systems store the biometric features in unprotected templates.

Once these templates are compromised, the raw biometric data can be easily recovered

and used maliciously, such as identity fraud. Biometric template protection provides

a tangible solution to this critical issue by performing a specially designed transfor-

mation to shield the biometric template. Ideally, the protected template is generated

in the way that it is mathematically impossible to derive the raw biometric data from

the template. Besides, it is made revocable. Therefore, the adversary would not learn

anything valuable even if the protected template is compromised. Two categories of

biometric template protection include cancellable biometrics and biometric cryptosys-

tems. One greatest challenge of designing a biometric template protection scheme is

that the recognition performance after transformation should not deteriorate. It is also

important to close the gap between theory and practice from various aspects, including

performance, security and privacy, and computational complexity.

Among the many biometric identifiers, fingerprint is most widely used due to its high

distinctiveness and collectability. In this thesis, a comprehensive framework of generat-

ing cancellable templates from fingerprints is proposed. In addition, a hybrid biometric

template protection scheme is also demonstrated by applying the proposed cancellable

fingerprint on existing biometric cryptosystem. The entire cancellable fingerprint gen-

eration scheme is divided into four phases.

With the minutiae already extracted from the fingerprint, the first phase is to convert

the raw minutiae template defined by the International Organization for Standardiza-

tion into minutia vectors through the multi-line code algorithm. Multi-line code is a

minutia descriptor which describes a reference minutia based on the distribution of

the neighbouring minutiae. Viewed from the three dimensional space (x-coordinate,

y-coordinate and ridge orientation), the neighbouring minutiae are covered by multi-

ple fixed-radius cylinders constructed on multiple straight lines to provide a thorough

sweep on the vicinity. The multi-line code fingerprint template is invariant to transla-

tion and rotation and is, to certain extent, robust against scaling and non-linear local

distortions.
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After that, the variable-size and unordered multi-line code template is transformed

into a fixed-length and ordered vector through minutiae set to feature vector (set-to-

vector) transformation. Two distinct set-to-vector transformation methods, namely the

kernel subspace analysis method and the bag-of-minutiae method, are introduced in

this doctoral work. The former exploits the unique non-linear property of kernel prin-

cipal components analysis and a specially designed kernel function that is adaptable to

multi-line code template; the latter borrows the concept of bag-of-words modelling to

perform vector quantization on the minutiae.

In order to fulfil the revocability attribute of biometric template protection, the finger-

print feature vector is then subjected to cancellable transformation. This phase allows

the fingerprint template to be reissued by assigning a new user-specific key when the

protected template is compromised. Although two cancellable transforms from bio-

metric salting, viz. permutation and random projection, are available, random projec-

tion is found to be more superior than permutation in most aspects.

Finally, the fourth phase involves converting the real-valued template into bit-string.

Two main streams of biometric template binarization are to be investigated, including

static quantization and dynamic quantization. Static quantization assigns all vector

components with the same number of bits, while its dynamic counterpart allocates

different number of bits to each vector component depending on the discriminability

of the component.

By applying the above described four-phase cancellable fingerprint generation frame-

work with the fuzzy extractor biometric cryptosystem, a hybrid biometric template

protection scheme, referred to as the cancellable fuzzy extractor, is constructed. It fur-

ther enhances the security of biometric template protection while demonstrating the

applicability of the proposed cancellable fingerprint.

Experimental results are presented based on four Fingerprint Verification Competition

datasets to analyze the practicality of the proposed framework. Each of the phases

discussed above are evaluated from the aspect of recognition accuracy, security and

privacy, and computational complexity.
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CHAPTER 1

Introduction

1.1 Biometric Authentication System

Biometric authentication refers to recognizing or authenticating individuals using their

personal characteristics, called the biometric traits or biometric identifiers. These char-

acteristics are selected for authentication purpose based on their distinctiveness, uni-

versality, permanence and collectability. In general, biometric traits can be categorized

into physiological traits and behavioural traits. Some commonly used physiological

biometric traits are fingerprint, palm-print, face and iris; while behavioural traits in-

clude signature, voice, gait and keystroke. Additionally, soft biometrics [3] such as

body weight, height, gender and eye colour can also be used to assist the authentica-

tion of individuals.

Generally, a biometric authentication system includes an enrolment process and an

authentication process, as depicted in Fig. 1.1. The common steps involved in both of

the processes are:

1. Pre-processing: The main purpose of the pre-processing step is to eliminate noises

in the raw data. One or more image or signal processing techniques may be used,

such as contrast stretching, filtering, segmentation and alignment.

2. Feature extraction: This step extracts useful information that represents the user’s

biometrics from the pre-processed data. These features vary depending on the

biometric trait used, for example, singular points and minutiae are extracted from

fingerprints, while freckles and crypts are possible features in irises.

3. Template generation: Template generation converts the biometric features ex-

tracted into vector or set of vectors representations, in either real, complex or bi-
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Figure 1.1: A general framework of a biometric authentication system.

nary form. Again, the method used depends on the biometric traits and features

chosen. In some biometric recognition algorithms, such as correlation-based fin-

gerprint recognition and principal components analysis- (PCA-) based face recog-

nition, feature extraction and template generation are merged.

Finally, the templates generated in the enrolment process are stored in the biometric

template database and are retrieved for matching upon authentication.

Biometric authentication offers numerous advantages over the conventional token-

based and knowledge-based authentication such as RFID and PIN. First of all, it uti-

lizes biometric traits which are part of the user’s physical body or behaviour, thus

is more convenient than conventional authentication cards and passwords which are

easily lost, forgotten or stolen. Consequently, biometric authentication provides better

security as it requires user to be present upon authentication. Unlike cards and pass-

words which may have duplicates, biometric traits are unique to individuals. There-

fore, it can be used for not only verification but also person identification, especially in

forensic and security access applications.

On the other hand, some security and privacy concerns have been raised against bio-

metric authentication. One of the major threats in such systems is the compromise of

the biometric template database. Conventional biometric template databases store the

unprotected biometric features. These biometric features contain information about the

raw biometric data and hence can be reversed to obtain the original images or signals

of the biometric data effortlessly. Since biometric traits are permanent and irrevocable,

2



CHAPTER 1: INTRODUCTION

only one biometric template can be produced per trait per person. Once the biometric

template is compromised, it can be used maliciously against the user, for instance, to

access any biometric authentication system which employs the same biometric trait by

presenting the compromised template to the matcher.

Furthermore, the recognition rate of biometric authentication depends on various fac-

tors, viz. the distinctiveness of the features extracted, the environmental and physi-

cal conditions upon authentication and the robustness of the template matching algo-

rithms. For example, a genuine user may be rejected by a fingerprint recognition sys-

tem (false rejection) due to new scars on his finger; or in another case, an impostor may

be accepted by the system (false acceptance) if his features are similar to the genuine

user’s. Research works have been done to address other issues in biometric authentica-

tion, including detection of fake biometrics [4–6] and face recognition of monozygotic

twins [7, 8].

An example of the application of biometric authentication is the Malaysian government

multi-purpose card (also known as MyKad). MyKad is a national smart card which

stores the thumbprint data of the owner on an embedded microchip and is designed

with the following functions: identification, automated teller machine (ATM) trans-

actions, passport information, health information and e-cash function [9]. However,

these personal information, including the biometric data, could be easily accessible

with a microchip scanner. Therefore, the greatest challenge of implementing MyKad is

the privacy issues — in the context of this project, the privacy of the biometric data.

In a nutshell, according to the current stage of development, biometric authentication

has yet to replace the conventional authentication methods as there exists drawbacks

which hinder its usage in real-life applications. Research works to provide solutions to

the issues are still on-going.

1.2 Fingerprint Recognition

Fingerprints are the most commonly used biometric trait for authentication, in both se-

curity and forensic applications, due to its high distinctiveness and collectability. Fin-

gerprint features are divided into three levels as shown in Figure 1.2. The level 1 fin-

gerprint features consists of ridge orientation field and ridge frequency map in global

sense. Subsequently, singular points such as cores and deltas and five different classes
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Figure 1.2: Three distinct levels of fingerprint features.

of ridge patterns [10] can be observed based on the level 1 features as depicted in Figure

1.3. The level 2 features are also called the minutiae, indicating the end points of ridges

(terminations) and the points where ridges split (bifurcations). Minutiae are observed

at the local level, thus are finer features compared to ridge orientations and frequen-

cies. They are the most prevalent features used for fingerprint recognition. Viewing

fingerprints at the finest level, the level 3 features capture even smaller details of the

ridges, inclusive of sweat pores, shape of ridges, incipient ridges, creases, warts and

scars. These features were proven to provide significant performance gain in finger-

print matching when combined with the previous levels of features [11]. However,

level 3 fingerprint features can only be extracted from high resolution (≥1,000 ppi) im-

ages and thus, are not applicable in standard fingerprint authentication systems, where

the fingerprint resolution is 500 ppi.

Prior feature extraction, the fingerprint images, obtained in gray-scale, are usually put

through some image enhancement processes to improve the quality of the fingerprint

features, as illustrated in Figure 1.1. These pre-processing steps may include one or

more of the followings:
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Figure 1.3: Five classes of fingerprint patterns derived from different positioning of
the singular points, where© indicates core and4 indicates delta. [1]

• Contrast stretching: to increase the gray-scale intensity variation between the

darker pixels and the lighter pixels so that the ridges (darker) can be well-separated

from the background (lighter). Contrast stretching techniques include histogram

equalization, adaptive histogram equalization and image normalization.

• Ridge orientation field: to estimate the direction of the ridges as shown in Fig-

ure 1.2a. The ridge orientations also indicate the minutiae orientations, which

is one of the important properties of the minutiae. Various methods have been

proposed to estimate the orientation field of fingerprints, including the gradient-

based method [12–16], model-based method [17, 18], spatial frequency content-

based method [19] and estimation by ridge projection [20]

• Ridge frequency estimation: to measure the average distance between two ridges.

The ridge frequency may be observed from the pixel intensity values across the

line perpendicular to the ridge orientation [21].

• Filtering: to remove noises from the fingerprint image. Several filtering tech-

niques have been used in the context of fingerprint image enhancement, includ-
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ing Wiener filtering [22] and directional filtering such as Gabor filter [21, 23, 24],

modified Gabor filter [25] and Log-Gabor filter [26] in either spatial, frequency or

wavelet domain.

• Fingerprint segmentation: to locate the fingerprint region, or also known as the

region of interest (ROI), in the image by evaluating the block-wise variance of the

pixel values [14, 27]. A more extensive method for fingerprint region estimation

was proposed by Hong et al. [21] by classifying image blocks based on ridge am-

plitude, ridge frequency and pixel variance within the blocks. Besides, Chikkerur

et al. [28] employed thresholding on energy map for fingerprint segmentation.

Fingerprint matching algorithms are categorized into two major approaches, namely

minutiae-based matching and correlation-based matching. Minutiae-based matching,

as the name suggests, utilizes mainly the minutiae (level 2 features) in fingerprint

matching. After the pre-processing steps, minutiae can be extracted from the enhanced

fingerprint image through direct gray-scale methods [29, 30] or skeleton image-based

methods [14, 31, 32]. The latter requires image binarization and thinning prior minu-

tiae detection. The minutiae are represented in the three-dimensional (x-coordinate,

y-coordinate and orientation) format (also known as the ISO template) and can be used

for direct fingerprint matching or further template generation. On the other hand,

correlation-based matching exploits the correlation of each image pixel in fingerprint

matching. Algorithms proposed by the researchers for both fingerprint matching ap-

proaches are further discussed in section 2.1.

1.3 Biometric Template Protection

Biometric template protection (BTP) is one of the promising solutions to mitigate the

aftermaths due to the compromise of biometric template database mentioned in sec-

tion 1.1. For example, Cappelli et al. [33] have shown that it is possible to reconstruct

fingerprint image from the ISO template. The idea of BTP is to transform the conven-

tional unprotected biometric template into a protected template so that the adversary

is not able to retrieve any useful information about the original biometric data from

the protected template. In general, BTP schemes are designed to fulfil the following

objectives [34]:
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• Irreversibility: it should be computationally difficult to reconstruct the original

biometric template from the protected template. Irreversibility and non-invertibility

are interchangeable in this thesis.

• Revocability/diversity: different protected templates can be generated based on

the same biometric features for different applications. One version of protected

template should not match any of the other versions.

• Performance: the scheme should not deteriorate the recognition accuracy.

BTP schemes are categorized into cancellable biometrics and biometric cryptosystems.

Cancellable biometrics apply systematic distortions to the biometric features to ob-

tain the protected template so that a new template can be reissued by altering certain

parameters in the transformation. In this case, biometric templates are compared in

the transformed domain. On the contrary, biometric cryptosystems are helper data-

based schemes which either generate a secret key from the biometric template (key-

generation) or bind a secret key to the biometric template (key-binding). In biometric

cryptosystems, a public helper data is stored without compromising the secret key and

the biometric template. The secret key is released only if the query biometric data is

close enough to the enrolled biometric data. Specific BTP schemes are discussed in

section 2.2.1 to section 2.2.3.

1.4 Research Problems, Objectives and Contributions

As fingerprint biometrics is becoming more common in security applications such as

national IDs, immigration systems, door access systems and secret data access sys-

tems, the possible security and privacy threats have drawn much concern from the

researchers. BTP is an emerging concept of securing biometric data which is also one

of the promising countermeasures against security and privacy breaches when the bio-

metric template database is compromised. As cancellable biometrics [35] and biometric

cryptosystems [36] were first introduced less than a couple of decades ago, there still

exists challenges in the deployment of BTP schemes in real-life biometric authentica-

tion systems.

According to an on-line evaluation system for fingerprint recognition algorithms known

as FVC-onGoing [37], the recognition performance of secured fingerprint templates has

not caught up with that of unprotected templates. Hence, FVC-onGoing has included
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secure template fingerprint verification as one of the benchmarks for accuracy and effi-

ciency evaluation and comparison to encourage studies in this area. From the aspect of

system security and user’s privacy, existing BTP techniques are, to certain extent, vul-

nerable to one or more of the known attacks, viz. zero-effort attack, hill climbing attack,

masquerade attack, reverse attack and brute-force attack. The aforementioned chal-

lenges deal with the main objectives of designing BTP schemes as discussed in section

1.3. Furthermore, BTP techniques often introduce increased computational complexity

to template generation process and thus, require longer run-time during fingerprint

enrolment and authentication.

This thesis proposes a hybrid BTP scheme by combining both cancellable biometrics (or

specifically cancellable fingerprint) and biometric cryptosystems to provide a security-

, privacy- and performance-oriented solution for biometric template database attacks.

The fact that biometric cryptosystems do not require the storage of the biometric tem-

plate is an advantage to the users’ privacy of a biometric system. The main goal of this

study is to create a cancellable fingerprint generation scheme that can be integrated into

biometric cryptosystems. Except the requirements of BTP schemes listed in section 1.3,

another criterion of applying a fingerprint template in some biometric cryptosystems,

such as secure sketch and fuzzy extractor, is that the template must be a bit-string.

The major contributions of this thesis are declared as follows:

1. A minutiae-based non-invertible transform known as the multi-line code (MLC)

is presented. MLC is a minutia descriptor which transforms the original ISO

representation of minutiae into a high-dimensional minutia vector in such a way

that the transformation is irreversible. The matching of MLC-based fingerprint

templates (hereafter referred as MLC templates) does not require fingerprint pre-

alignment, hence reduces the computational complexity during authentication.

An efficient algorithm for MLC template generation is also presented to speed up

the process.

2. The proposed MLC template is an unordered set of minutia vectors and its size

depends on the minutiae extracted from the input fingerprint image. In order to

adapt to biometric cryptosystems such as fuzzy commitment [36], secure sketch

and fuzzy extractor [2], the biometric template needs to be in the form of a global
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fixed-length vector 1. In this thesis, we propose two novel minutiae set to feature

vector (S2V) conversion methods to convert the MLC template into an ordered

and global fixed-length vector including the kernel PCA- (KPCA-) based method

and the bag-of-minutiae (BoM) modelling method. In the KPCA-based method,

a new kernel is derived to suit the input template; in BoM modelling, the concept

of bag-of-words (BoW) modelling is slightly modified to describe minutiae sets

from the aspect of vector quantization.

3. Two cancellable transformations are used to realize the revocability of MLC tem-

plate, namely permutation and random projection (RP).

4. Two alternatives of biometric template binarization, namely static quantization

and dynamic quantization (DQ), are adopted to generate bit-string from the pro-

posed fingerprint template.

5. A hybrid BTP scheme is demonstrated by combining the proposed cancellable

fingerprint with fuzzy extractor.

1.5 Thesis Organization

This section provides an overview of the rest of the chapters in this thesis. Chapter 2 re-

ports the existing works on both fingerprint matching and BTP schemes in categories.

In Chapter 3, the MLC template generation algorithm is presented, alongside with

two cancellable transformations, to create a cancellable fingerprint. After that, the two

aforementioned S2V transformation methods are presented in Chapter 4 (KPCA-based

method) and Chapter 5 (BoM modelling) respectively. The cancellable fixed-length fin-

gerprint template is then converted into bit-string through static quantization and DQ

in Chapter 6. The amalgamation between cancellable fingerprint and biometric cryp-

tosystems is established in Chapter 7. In each of these chapers, a table explaining the

nomenclature of important symbols used is provided for the convenience of referenc-

ing. To complete the thesis, Chapter 8 summarizes the contents and results obtained in

the previous chapters and proposes some possible future works for this study.

1Note that some methods in the literature, such as minutia cylinder code (MCC) [38], produce local
fixed-length vector, that is, all minutia vectors possess the same length, but the size of the fingerprint
template varies in global sense.

9



CHAPTER 2

Literature Review

2.1 Fingerprint Matching

Figure 2.1 shows the various categories and subcategories of fingerprint matching al-

gorithms. Existing methods are discussed according to the corresponding category or

subcategory in this section.
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Figure 2.1: Hierarchy of categorization of fingerprint matching algorithms.
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2.1.1 Minutiae-Based Fingerprint Matching

Descriptor-Based Algorithms

One common approach toward minutiae-based fingerprint matching is by minutia de-

scriptor. Minutia descriptor refers to the methodology of extracting a multi-dimensional

vector by capturing distinguishing information that is unique to individual minutia.

The resulting vector is coined as the minutia vector. Multiple minutia vectors can be

produced from a fingerprint and are used for matching. Minutia descriptors are subdi-

vided into minutiae-based descriptor and texture-based descriptor. The former exploits

the neighbouring minutiae while the latter utilizes the surrounding ridge patterns to

describe the reference minutia.

Jiang and Yau [39] presented a nearest-neighbour approach to describe a minutia us-

ing the relative distance, radial angle, relative orientation, ridge counts and minutia

types of the neighbouring minutiae. Lee et al. [40] adopted the same technique but

included an additional feature — ridge frequency of the neighbouring minutiae. Sim-

ilarly, Jea and Govindaraju [41] used the relative distance, relative orientation and the

angle between the segments connecting the two nearest neighbours and the reference

minutia as the features. In these methods, minutia descriptor is used for fingerprint

alignment and the aligned minutiae are then matched globally in the three-dimensional

(x-coordinate, y-coordinate, orientation) domain.

Chikkerur et al. [42] defines a novel nearest neighbour-based descriptor that utilizes

k minutiae in the neighbourhood as a k-plet. The measurements included in a k-plet

are identical to those used in other nearest neighbour-based descriptors [39–41], how-

ever the minutiae are selected so that a nearest neighbour is chosen in each of the four

quadrants sequentially. Moreover, no fingerprint alignment is required in this tech-

nique; dynamic programming and newly proposed coupled breadth first search are

used for fingerprint matching and local matches consolidation.

Furthermore, the local relative location error descriptor (LRLED) was proposed by

Tong et al. [43] to match fingerprints using the relative location error (RLE) of the minu-

tiae. In this method, the ISO template of fingerprints are stored and used for LRLED

evaluation upon authentication. After searching for the potential corresponding minu-

tiae set based on merely the distance between pre-aligned minutiae, the RLE of the

corresponding minutiae pairs are computed and matched. This method requires ad-
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ditional computational power in the authentication process, where pre-alignment and

descriptor generation are executed.

The minutia descriptors discussed above are nearest-neighbour minutiae-based de-

scriptors. Such technique is sensitive to missing and spurious minutiae as a missing

or spurious minutia may result in significant difference in the minutia vector extracted.

An alternative to the nearest-neighbour approach is the fixed-radius approach.

Hrechak and McHugh [44] proposed a feature descriptor which captures the occur-

rence of different types of features within a fixed radius from the central feature. Be-

sides the minutiae (ridge terminations and bifurcations), other features including dots,

islands, spurs, crossovers, bridges and short ridges are also taken into account. These

features are difficult to identify as some are actually formed due to distortions in the fin-

gerprint image and thus, are not reliable. Wahab et al. [45] proposed a similar method,

of which five minutiae within a predefined radius that are nearest to the central minu-

tia are selected. The attributes stored include the minutia type, x-coordinate and y-

coordinate of the central minutia and the minutia type, distance, relative angle and the

ridge count of the neighbouring minutiae. Correlation matching [46] is used to match

two fingerprints, both locally and globally. Another fixed-radius minutiae-based de-

scriptor named minutia vicinity was presented by Bringer and Despiegel [47]. In each

minutia vicinity, all minutiae within the radius are aligned according to the central

minutia. The neighbouring minutiae are matched to obtain the micro-scores. The local

score between two vicinities and subsequently the global score between two finger-

prints are obtained by applying the Hungarian algorithm [48] twice.

A state-of-the-art minutiae-based descriptor coined as the minutia cylinder-code (MCC)

was proposed by Cappelli et al. [38]. A tessellated cylinder is constructed centring at

each minutia on the three-dimensional space. In order to address the close-to-border-

minutiae problem of fixed-radius method, a radial basis function (RBF) is used to cal-

culate the contribution of neighbouring minutiae to the cells. MCC is, by far, the best-

performing minutiae-based representation of fingerprint with equal-error rate (EER) of

0.15% on FVC2006 datasets.

All the minutia descriptors mentioned above are minutiae-based descriptors, in which

a minutia is described by using the information of other minutiae. Tico and Kuosma-

nen [49] introduced a texture-based descriptor based on circular pattern around the

reference minutia. Sampling points are marked on circles of different radius centred
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at the reference minutia and the orientation difference between the reference minutia

and the sampling points are recorded to form the minutia vector. A similar method

was presented by Qi and Wang [50], of which multiple lines of different direction are

constructed on the reference minutia to sample the neighbourhood orientation instead

of circles. The same concept was adopted by Wang et al. [51] to form OrientationCode

and additionally, PolyLines, which observe the curvature of the ridges connecting to

the minutiae. Moreover, another texture-based minutia descriptor which captures the

information of the ridges attached to the neighbouring minutiae was proposed [52].

On top of the single-type descriptor-based algorithms, Feng [53] introduced the hybrid

descriptor combining texture-based descriptor [49] and fixed-radius minutiae-based

descriptor. Besides, 17 distinct features are proposed to offer more accurate matching

score calculation and support vector machine (SVM) is applied for fingerprint classi-

fication. Furthermore, a scale-invariant feature transformation- (SIFT-) based minutia

descriptor was proposed by Zhou et al. [54,55]. A histogram-based descriptor was pro-

posed by Aggarwal et al. [56] which captures the gradient histogram of the sub-regions

in every minutia block.

Graph-Based Algorithms

A novel minutiae graphing-based fingerprint matching technique based on Delaunay

triangulation was first introduced by Bebis et al. [57]. Invariants such as the length of

three edges and the cosine of the three angles of each triangle are used for matching.

In addition to that, Parziale and Niel [58] and Liu et al. [59] used the orientation of the

vertices and the direction of the edges to perform alignment and fingerprint matching.

Yang et al. [60] took an extra step to eliminate unmatched triangles and provide ro-

bust minutiae matching by introducing the N-layer Delaunay triangulation net check

(NDTC) algorithm. Besides, Xu et al. [61] performed fingerprint matching by fusing

Delaunay triangles.

Another graph-based method is by using Voronoi diagram [62]. Fingerprint alignment

is done by matching the central cell and the aligned minutiae are matched globally

in the three-dimensional space. A fingerprint matching algorithm incorporating both

Delaunay triangulation and Voronoi diagram has also been presented [63] and has es-

tablished lower EER than both individual graph-based methods.
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The advantage of using graph-based fingerprint matching is that the attributes of the

shapes (triangles or polygons) generated are rotation- and translation-invariant. How-

ever just like nearest-neighbour minutia descriptors, minutiae graphing is implemented

based on the positional correlation among minutiae and thus, is susceptible to missing

and spurious minutiae.

Other Minutiae-Based Algorithms

Another widely researched area in minutiae-based fingerprint matching is minutiae

matching with pre-alignment. Fingerprint pre-alignment techniques include core point-

based pre-alignment [64, 65], orientation field-based pre-alignment [66, 67] and ridge-

based pre-alignment [14, 68]. Hybrid systems such as pre-alignment using orientation

field, ridge frequency and ridge curvature [69] and combination of phase-only corre-

lation and core point-based pre-alignment [70] have also been proposed. However in

general, fingerprint pre-alignment is time-consuming and is not able to address local

distortions. As such, the performance of fingerprint matching through pre-alignment

cannot match with that of the descriptor-based methods.

In order to avoid pre-alignment, Bazen and Gerez [71] introduced a new intrinsic co-

ordinate system (ICS) that partitions the fingerprint into four regions based upon the

ridge patterns. The minutiae positions are redefined and matched according to the ICS.

2.1.2 Texture-Based Fingerprint Matching

One of the pioneering texture-based fingerprint matching method is the FingerCode

[23, 72]. Eight directional Gabor filters are applied on the radially tessellated sectors

centred at the reference point to obtain the FingerCode. The reference point is defined

as the point of maximum curvature of the concave ridges in the fingerprint image,

hence the method is translation-invariant. Another advantage of this method is that

it is able to produce fixed-length fingerprint template, which is desirable in biometric

cryptosystems. Sha et al. [73] improved the method by considering the orientation

information to provide a rotation-invariant FingerCode. Other variants of FingerCode

include the square-tessellation-FingerCode (STF) [27], the interpolation-based STF [74]

and the minutiae-based FingerCode [75].

Teoh et al. [76] proposed a fingerprint matching technique based on wavelet and Fourier-

Mellin transform (WFMT) to address common errors in fingerprint feature detection
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caused by translation, rotation and scaling. The low frequency sub-band of the finger-

print image is first obtained using wavelet decomposition and subjected to fast Fourier

transform (FFT) and log-polar transform to generate the WFMT features. Other similar

techniques based on time-frequency analysis are the multi-resolution discrete wavelet

transform (DWT) [77, 78] and discrete cosine transform (DCT) [79]. On the other hand,

local binary pattern (LBP) features [80] and Hu’s invariant moments [81, 82] has also

been used for texture-based fingerprint matching.

2.1.3 Other Fingerprint Matching Algorithms

A ridge-based matching was proposed by Xie et al. [83] by extracting ridges from

the skeleton image and comparing neighbouring ridge information. Short ridges and

closed ridges caused by pixel glitches in the fingerprint image may cause deterioration

in the performance of this ridge matching method. Therefore, Feng et al. [84] employed

a post-processing step to regularize the ridge pattern to eliminate ill-formed ridges.

Instead of using the minutiae, Park et al. [85] used SIFT points and the gradient infor-

mation [56] around the points to perform fingerprint matching. The results showed

that although using SIFT points alone does not improve the EER, the fusion between

SIFT points matcher and minutiae matcher yield better accuracy than each individual

matcher.

The combination of singular points (cores and deltas) and orientation field has also

been used to provide translation- and rotation-invariant fingerprint matching [86–88].

However, such method is not suitable in cases where no singular point is detected due

to poor fingerprint image quality, partial fingerprint or unique fingerprint pattern (arch

class as shown in Figure 1.3). Besides, level 3 fingerprint features [11, 89–91] has been

incorporated in fingerprint matching.

2.1.4 Summary

In general, minutiae-based matching is more robust than texture-based matching against

local non-linear distortions as it considers local structural details without neglecting

global uniformity and continuity. Besides, minutiae carry most of the fingerprint dis-

criminatory information [34]. Among the minutiae-based algorithms discussed, fixed-

radius minutia descriptor-based matching is able to handle missing and spurious minu-

tiae better than the others. Also, most of the descriptor-based methods introduce
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translation- and rotation-invariant features and thus, eliminate the hassle of fingerprint

pre-alignment.

However in the case of partial fingerprints, texture-based and other non-minutiae feature-

based methods are more superior than minutiae-based methods as the number of ex-

tractable minutiae may be extremely small and insufficient for the generation of defini-

tive feature vector. In addition, poor quality fingerprints such as latent fingerprints

may affect the reliability of the minutiae extracted and subsequently, the accuracy of

minutiae-based fingerprint matching.

2.2 Fingerprint Biometric Template Protection (BTP)

2.2.1 Cancellable Biometrics

Since cancellable biometrics stresses on two imperative attributes namely non-invertibility

and revocability, the categorization of cancellable biometric schemes depends on the

these enabling mechanism behind the attributes. Two main categories of cancellable

biometrics include non-invertible transforms and biometric salting [92]. The former

category applies non-invertible transform function to the biometric data so that the

original biometric data cannot be reconstructed even if the cancellable template and

transform method are compromised. The revocability of this approach is realized by

modifying the parameters of the transform function. On the other hand, biometric

salting applies transform which may be invertible [93] if the user-specific secret key is

compromised. In this case, the biometric template subjected to the transform may be

extracted through a non-invertible method. The secret key assures the uniqueness of

the transformed template between users and has to be presented upon authentication.

In this subsection, the instances of cancellable biometric schemes are discussed in the

context of fingerprint biometrics according to each belonging category.

Non-invertible Transforms

Most of the non-invertible transforms involve spatial perturbation of the minutiae.

Such perturbation can be further divided into projection-based perturbation, function-

based perturbation and block remapping. Projection-based perturbation projects the

minutiae onto a predefined two-dimensional plane with randomized position and di-

rection; function-based perturbation derives a mathematical function with randomized
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parameters to alter the original minutiae space; lastly, block remapping divides the

minutiae space into multiple blocks and scrambles the positions of the blocks. All the

perturbation methods are designed in the way that they are many-to-one mapping.

Ang et al. [94] presented a geometric transform based on the reflection of minutiae.

In this approach, a line passing through the core point is drawn, and the minutiae

below the line are reflected while the minutiae above remain. The gradient of the line is

determined by a user-specific key ranges from 0 to π. Confusion occurs when dealing

with fingerprints with no core point (i.e. arch) and with more than one core points

(i.e. whorl). Also, since only one side of the minutiae are reflected, the final template

still retains a part of the original minutiae set and thus weakens the security. Other

geometric projection-based methods [95, 96] which project the minutiae onto a circle

have also been proposed.

On function-based perturbation, Tulyakov et al. [97] used symmetric hash functions to

convert the minutiae into hash values. In this algorithm, a minutia is represented by

a complex number ci. For each minutia in the fingerprint, a triplet (ci, cj, ck) is formed

with its two nearest neighbouring minutiae and is hashed using predefined hash func-

tions. A secret key is introduced to seed the choices and order of hash functions for

different fingerprints. This work was extended by combining more than one hash func-

tions during implementation to increase the security of the template [98]. Also, k-plets

of minutiae were used instead of triplets, where k can be more than three. Although it

is impossible to reverse the hashed data, a large number of high power hash functions

are needed to ensure the revocability of the template, which leads to high complexity.

Lee et al. [99] proposed an alignment-free cancellable fingerprint generation method by

extracting invariant features following the same fashion used by Tico and Kuosmanen

[49]. Together with a user-specific PIN, the invariant features are used to parametrize

two changing functions which contribute to the perturbation of the minutiae, namely

the distance-changing function and the orientation-changing function. Another can-

cellable template utilizing invariant features based on triplets was proposed by Farooq

et al. [100]. The features measured are the length of the three sides, the orientations of

the three vertex minutiae and the height of the longest side of a triplet. The template is

a binary string of quantized feature values, so it requires less database storage.

Ratha et al. [101] proposed three kinds of non-invertible transforms including Carte-

sian transform, polar transform and functional transform. Cartesian transform and
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polar transform divide the fingerprint space into cells of equal size and rearrange the

minutiae according to the cell they belong to on a many-to-one mapping basis. Func-

tional transform applies a spatial distortion to the fingerprint space using Gaussian

kernels so that the position of the minutiae are translated and rotated in the same way.

The first two transforms are instances of block remapping while the third method is a

function-based perturbation. However, researchers pointed out that these transforms

are vulnerable to attacks as most of the transformed minutiae are possible to be re-

versed to their original locations [102].

As one of the best-performing fingerprint representations, MCC [38] has been elevated

to protected MCC (p-MCC) [103] as a template protection scheme to enhance the se-

curity of MCC. However, p-MCC is not revocable. Zhang et al. [104] proposed a can-

cellable fingerprint template generated based on MCC by sectioning and remapping

the original MCC, assisted by a random MCC-like structure called the random plate.

This method inherits the accuracy of MCC and is able to achieve <0.1% EER even in

stolen-key scenario.

Besides, Yang et al. [105] performed polar-based block remapping on Delaunay trian-

gles. Since the Delaunay triangles are represented by the invariants [58], this method

provides better security than direct polar-based transform on the minutiae [101]. Wang

and Hu [106] also developed an alignment-free cancellable fingerprint using minutiae

pairs and curtailed circular convolution.

Other than the spatial perturbation approach, a unique histogram-based method was

presented by Sutcu et al. [107]. It is also called a local point aggregation approach which

constructs random cuboids on a three-dimensional space (x-coordinate, y-coordinate

and orientation) and count the numbers of minutiae within the cuboids. The length

of the feature vector is determined by the number of cuboids generated. The final bit-

string is obtained through median-based thresholding. The template is revocable as

different sets of random cuboids can be used to generate multiple distinct templates

from one fingerprint. One notable advantage of this method over aforementioned

methods is that it produces fixed-length representation for fingerprints. However, fin-

gerprint pre-alignment is required prior template generation. This work was extended

by Nagar et al. [108], in which more discriminative features within the cuboids were

used, such as the distance from minutiae to the nearest boundary, the average and

standard deviation of minutiae coordinates.
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Furthermore, a combination of projection-based spatial perturbation and histogram-

based method was introduced by Ahmad et al. [109]. In this method, the minutiae are

projected onto a line crossing the core point with its slope determined by a user-specific

key. The projected minutiae are partitioned into groups to generate a histogram-like

vector.

Biometric Salting

Two major technique used for biometric salting are random projection (RP) and per-

mutation. As mentioned before, while these two techniques may be invertible, the

fingerprint features can be extractable in the way that it is infeasible to reconstruct the

original biometric data.

BioHashing (or particularly known as FingerHashing for fingerprint biometrics) [110,

111] is one of the pioneers in RP-based biometric salting. It is a two-factor transform

that employs the WFMT features of fingerprints [76] and a user-specific tokenized

key to seed the random matrix for projection. User-dependent multi-state discretiza-

tion [112] was used in the generation of binary bit-string to improve the performance

of FingerHashing specifically for stolen-token scenario. Since WFMT produces a fixed-

length feature vector, FingerHashing, in the same nature, produces a fixed-length vec-

tor while being a cancellable fingerprint generation scheme.

Another RP-based method was presented by Wang and Hu [113] known as the densely

infinite-to-one mapping approach. In this method, the invariant features of every

minutiae pair are quantized and a histogram is generated. The histogram is then con-

verted into a complex vector by using discrete Fourier transform (DFT). The DFT fea-

tures are subjected to RP for revocability. This approach excels in security, even when

the template and the parametric key are stolen.

Jin et al. [114] presented a graph-based cancellable fingerprint, dubbed as the random-

ized graph-based Hamming embedding (RGHE). RGHE embeds a set of randomized

invariant features generated by minutiae vicinity decomposition (MVD) [115] and RP

into a Hamming space to obtain a bit-string for each minutiae vicinity. Although Ham-

ming embedding has been found to preserve the accuracy of MVD, RGHE yields much

higher EER for lower fingerprint image quality.

On the permutation side, a novel bit-string representation of fingerprint template was

introduced by Lee and Kim [116], in which each minutia is described by a three dimen-
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sional array. The width and height of the three dimensional array is the x-y plane of

the fingerprint image, whereas the depth represents the orientation of minutiae. The

array is divided into cells of equal size, and the number of minutiae in the cells form

the final bit-string via zero-thresholding. It provides high revocability by using simple

permutation, which might be easily reversed if the permutation order is exposed. A

similar approach was presented where a polar grid instead of a cuboid was used to

quantized the neighbouring minutiae [117].

Moreover, Jin et al. [118] utilizes the invariant features in minutiae pair representa-

tion to generate fixed-length vector. These invariant features are then quantized and

indexed to obtain a single integer per minutiae pair. The final vector is a permuted

histogram generated based on the indexed minutiae pairs.

Yang et al. [119] has suggested dynamic random projection to enhance the security of

the conventional RP used by FingerHashing. The idea is to construct a random matrix

dynamically, depending on the biometric feature vector itself.

In addition, a unique fingerprint salting approach was proposed by [120]. The transfor-

mation utilizes chip matching algorithm [121] based on correlation-invariant random

filtering (CIRF). It first extracts chip images centred at the minutiae from the finger-

print image and transform these chip images using CIRF to generate the template. The

method stresses on the security and privacy of cancellable fingerprint template. The

mathematical properties of CIRF were further investigated by [122] to derive a new al-

gorithm for cancellable biometrics that establishes better security without affecting the

accuracy.

By combining the concept of FingerHashing and FingerCode, Belgeuchi et al. [123]

presented a minutiae-based fingerprint salting scheme. The proposed method extracts

the FingerCode for every minutia and applies FingerHashing on the FingerCode to

produce a protected minutia template, coined as BioCode. Furthermore, minutiae k-

plets are used as additional information in template generation [124,125]. Another can-

cellable fingerprint scheme utilizing the FingerCode, referred as BioPhasor [126] was

also introduced. In this method, the FingerCode is binarized according to quantization

level determined by a tokenized pseudo-random number.
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2.2.2 Biometric Cryptosystems

Biometric cryptosystems are classified into biometric key-generation and biometric

key-binding schemes. The former aims at deriving a cryptographic key and helper data

from a given biometric template; as opposed to that, biometric key-binding schemes

use a biometric template to secure a chosen key and helper data is derived from both

the key and the biometric template. In this subsection, examples of biometric cryp-

tosystems, specifically for fingerprint biometrics, are discussed.

Key-Generation Biometric Cryptosystems

Dodis et al. [2] introduced two biometric cryptographic key-generation models, namely

secure sketch (SS) and fuzzy extractor (FE). A FE can also be defined as a combination

of a SS and a strong randomness extractor as depicted in Figure 2.2. It is able to address

both error tolerance and non-uniformity in the biometric data. Three main techniques

were proposed for building a SS scheme, viz. constructions for Hamming distance,

set difference and edit distance. Among the three SS builds, constructions for set dif-

ference, for example the notable PinSketch which is constructed based on syndrome-

based coding, are suitable for variable-size fingerprint template. SS constructions for

Hamming distance are further categorized into code-offset construction and syndrome

construction.

Arakala et al. [127] proposed a set distance-based FE scheme which consists of both

local and global quantization and representation of fingerprint minutiae. The local

features used are based on nearest neighbour descriptor whereas the global quantiza-

tion is performed in a polar coordinate system centred at the core point. Furthermore,
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Figure 2.2: A general framework of FE [2]. In the diagram, w and w′ denotes the orig-
inal and query biometric data respectively, r1 denotes the randomly chosen codeword
for sketch construction where applicable, r2 is the randomness of the extractor, s is the
sketch constructed and R represents the cryptographic key generated.
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Arakala et al. [128] implemented SS using the Voronoi neighbors representation [62] of

the fingerprint.

A SS based on code-offset construction [2] was proposed by Chang and Roy [129].

This method takes the minutiae counts on the left and right of numerous randomly

drawn straight lines as the fingerprint representation. PCA is then applied to obtain

the feature vector. The final bit-string is generated based on zero-thresholding. While

using the same feature vector extraction method, Li et al. [130] performed components

grouping and combination to improve the robustness of the system. The disadvantage

of these methods is that they require the fingerprint images to be pre-aligned. Besides,

the feature used is less discriminatory than previous examples [127, 128]. In order to

achieve better accuracy, Liu et al. [131] proposed the combined feature-based sketch by

fusing minutiae-based features and image-based features.

All the SS and FE implementations discussed above are based on the models pro-

posed by Dodis et al. [2]. On the other hand, robust FE [132] and fully robust FE [133]

were designed to increase the robustness of the cryptographic key generated by pre-

authenticating the helper data during reconstruction.

Key-Binding Biometric Cryptosystems

As a contribution to key-binding biometric cryptosystems, Juels and Wattenberg [36]

proposed a framework called fuzzy commitment. A random codeword from an error-

correcting code is chosen. The hashed codeword and the difference between the code-

word and the unprotected biometric template are stored as the helper data. Upon au-

thentication, the recovered codeword is hashed and compared to the original hashed

codeword. Tong et al. [134] demonstrated a practical use of the fuzzy commitment

scheme on FingerCode [23] and showed a better result than using FingerCode alone.

In addition, Nandakumar [135] implemented fuzzy commitment with minutiae phase

spectrum [136, 137] to realize a fingerprint cryptosystem.

Another instance of key-binding biometric cryptosystem is the fuzzy vault scheme

[138]. It is an order-invariant version of fuzzy commitment as it does not require the

input biometric features to be ordered and fixed-length vector. The idea is to derive a

polynomial from the minutiae set while adding some random chaff points which do

not lie on the polynomial to conceal it. Error-correcting coding is used to reconstruct

the original polynomial, provided that the query minutiae set is largely correlated with
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the enrolled set. The number of chaff points added offers a trade-off between the secu-

rity and the robustness of the biometric cryptosystem.

Clancy et al. [139] implemented the fuzzy vault scheme by directly using the Cartesian

coordinates of the minutiae to generate the polynomial. Uludag et al. [140] employed

the same fingerprint features in fuzzy vault, except that cyclic redundancy check was

used instead of error-correcting coding due to difficulties of applying error-correcting

on biometric data. However, fingerprint alignment is less discussed in the aforemen-

tioned literature. Uludag and Jain [141] used the invariant features of minutiae pairs

for fingerprint alignment based on a voting system. The minutiae pairs between the

enrolled set and the query set are matched and only possible correspondences gen-

erate votes for the relative alignment. Alignment using the most reliable minutiae

pair has also been proposed [142]. Other fingerprint alignment techniques used with

fuzzy vault include high curvature points-based technique [143], core point-based tech-

nique [144], alignment using geometric hash tables [145], alignment using local struc-

tures [146] and alignment based on minutiae orientation histograms [147].

On the other hand, an alignment-free fuzzy vault scheme was proposed by Li et al.

[148], where orientation-based [49] and nearest neighbours-based minutia descriptor

[39] were adapted. The first fuzzy vault is generated based on Huffman coding while

the second vault is generated by polynomial construction using the two minutia de-

scriptors respectively. Three score-level fusion strategies are used to provide the final

matching decision.

Moreover, several attempts have been made to improve the accuracy and/or security of

key-binding biometric cryptosystems such as password hardening [149], combination

of fuzzy vault with fuzzy commitment [150,151], fuzzy vault using multiple polynomi-

als [152], multi-biometric fuzzy vault and fuzzy commitment [153] and improved chaff

points generation for fuzzy vault [154].

2.2.3 Hybrid BTP

In this thesis, we define hybrid BTP as the amalgamation of one of the models in can-

cellable biometrics with one of that in biometric cryptosystems to formulate a tangible

solution towards BTP. With the intention to strengthen the security of fuzzy vaults

against cross-matching of multiple vaults from the same user (linkability attack), Feng

et al. [155] proposed an approach of incorporating cancellable fingerprint with fuzzy
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vault scheme. The cancellable template is realized by applying a random Butterworth

low pass filter on the fingerprint features. Another cancellable fuzzy vault scheme was

presented by Xu and Wang [156], where the original minutiae are shifted based on a

Gaussian function with random magnitude. Although these methods have improved

the unlinkability of fuzzy vaults, the cancellable fingerprint schemes used can be easily

reversed if the user-specific random number is known to the adversary.

Besides, Bringer et al. [157] proposed to apply secure sketches to cancellable finger-

print. A bit-string is extracted from the fingerprint based on Gabor response and re-

liable bits selection [158]. The revocability of the fingerprint template is realized via

permutation of the bit-string. Finally, the sketch is a product code constructed from

two binary Reed-Muller codes following a unique coding scheme described by Bringer

et al. [159].

As literature of hybrid BTP using fingerprint is limited, we also look into its practicality

in other biometric modalities. Using the concept of cancellable biometrics, Kanade et

al. [160, 161] implemented a hybrid BTP on iris and face by shuffling the biometric

template prior inputting it to a fuzzy commitment scheme. With the same shuffling

technique applied on iris template, Fouad et al. [162] presented a cancellable fuzzy

vault. Albeit revocable, the shuffling process is completely reversible if the shuffling

key is compromised.

A more sophisticated hybrid BTP was demonstrated by Feng et al. [163] by combin-

ing cancellable face with fuzzy commitment scheme. The cancellable face template

is generated through random projection and a unique template binarization method

coined as the discriminability-preserving transform, of which the user-specific quanti-

zation thresholds are pre-trained with data clustering technique to maximize the dis-

criminability of the resulting bit-string.

Additionally, Leng and Zhang [164] proposed a cancellable palmprint cryptosystem by

embedding two-dimensional Palmprint Phasor that is similar to BioPhasor [126] into

a key-binding biometric cryptosystem. Besides the random key for Palmprint Phasor

generation, a second key is used for scrambling transformation [165, 166] to increase

the randomness of the cancellable palmprint template.
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2.2.4 Summary

Unless invariant features are used [99, 100, 104–106], non-invertible transforms by spa-

tial perturbation requires pre-alignment of fingerprints [94–98, 101] and it usually im-

plies loss in performance due to the difficulty in absolute pre-alignment. Besides, non-

linear local distortions are not addressed in such schemes. On the contrary, permu-

tation and RP used by biometric salting have been proven to be able to maintain the

recognition performance of biometric templates with the downside of weaker security

under stolen-key scenario. Therefore, incorporating non-invertible fingerprint feature

extraction with biometric salting can be a promising solution towards the trade-off be-

tween performance and security.

For biometric cryptosystems, the key length is a major concern in the security mea-

sure [167]. It directly affects the entropy of the system and the probability of the se-

cret key to be guessed. Another concern of a biometric cryptosystem is whether the

helper data leaks critical information about the biometric data. Both the key length

and the biometric data leakage are two important factors in determining the perfor-

mance trade-off of a biometric cryptosystem. Besides, biometric cryptosystems which

utilize error-correcting codes such as code-offset construction for SS and fuzzy commit-

ment have low revocability as there are limited number of codewords can be chosen

from the error-correcting codes. This leads to the exploration of hybrid BTP.

The existing hybrid BTP schemes for fingerprints [155,156] have succeeded in employ-

ing variable-size cancellable template with fuzzy vault. As fuzzy vault is susceptible

to linkability attack, the non-invertibility of the cancellable template chosen plays an

important role in determining the security of the system. Unfortunately, none of the

cancellable fingerprint generation techniques used in the existing hybrid schemes are

safe in the case where the random key is compromised. The application of cancellable

fingerprints, especially those with the nature of producing variable-size template, in

key-generation biometric cryptosystems remains undiscovered.

25



CHAPTER 3

Multi-line Code: Minutiae-Based

Cancellable Fingerprint Template

3.1 Introduction

Minutiae-based methods for fingerprint recognition utilize the ISO format of minutiae

in the fingerprint to generate a biometric template. While features robustness and al-

gorithm complexity are the two major concerns of designing a conventional fingerprint

template, cancellable fingerprint template considers two additional properties — irre-

versibility and revocability, as discussed in section 1.3.

Inspired by Qi and Wang’s [50] minutia descriptor constructed by taking samples from

multiple lines centring at the reference minutia, we introduce a novel non-invertible

minutia descriptor namely the multi-line code (MLC). However, instead of a texture-

based descriptor, MLC describes a minutia based on fixed-radius vicinity at the sample

points. On top of that, two revocation techniques, that is, permutation and random

projection (RP), are used to realize the revocability property of the fingerprint template.

In this chapter, the complete procedure of the cancellable template generation scheme

is elaborated. The security and performance of the proposed scheme are also evaluated.

Part of this work has been published [168, 169].
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3.2 Nomenclature

Symbol Description

P(i) = [x(i), y(i), θ(i)] the ith minutia extracted from a fingerprint

with its x-coordinate, y-coordinate and local

ridge orientation

Pr = [xr, yr, θr] a reference minutia for MLC generation

Nm number of minutiae extractable from a finger-

print

ϕ(i) orientation difference between the reference

minutia and the ith neighbouring minutia

Nϕ number of orientation levels in MLC construc-

tion

∆ϕ quantization width of each orientation level

l length of lines for MLC construction

Nl number of lines for MLC construction

Ns number of sample points taken for each line

θl direction of a line in MLC generation

d distance between two sample points

r radius of circles centring at the sample points

ω ∈ Z
Dm
≥0 or ω ∈ R

Dm
≥0 minutia vector (MLC) of a minutia generated

by either MLCN or MLCD algorithm

Dm dimension of a MLC

Ds dimension of a single-line code

Ω ∈ Z
Nm×Dm
≥0 or Ω ∈ R

Nm×Dm
≥0 MLC template of a fingerprint

Mα direction mask for efficient MLC generation

M̂α rotated direction mask

M̃α direction indicator mask

Ps = [xs, ys] coordinates of a sample point in MLC

Mβ distance mask for efficient MLC generation

κc user specific key for revocation

ω′ normalized minutia vector (MLC)

Ω′ normalized MLC template

Ω̂ ∈ RNm×Dr cancellable MLC template
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Symbol Description

Dr dimension of the minutia vectors of cancellable

MLC template

R ∈ RDm×Dr , R⊥ ∈ RDm×Dr random matrix and orthonormalized random

matrix for RP

Sl local similarity matrix between two MLC tem-

plates

τs local similarity threshold to determine if two

minutiae are matchable

Sg global similarity between two fingerprints

3.3 Multi-Line Code: Non-invertible Minutia Descriptor

3.3.1 Formulation of Multi-Line Code

Multi-line code (MLC) is a minutia descriptor constructed based on the spatial dis-

tribution of the neighbouring minutiae within a fixed radius. However, unlike some

fixed-radius approaches [44, 45, 47], MLC does not create the circumference to only

centre at the reference minutia itself but also at the sample points extended from the

reference minutia. The formulation of MLC inspects the fingerprint in a three dimen-

sional aspect which include the Cartesian plane (x-coordinate and y-coordinate) and

the orientation dimension. Let {P(i)} be the minutiae set extracted from the fingerprint,

where P(i) = [x(i), y(i), θ(i)] is an ISO representation of a minutia for i ∈ [1, Nm] and Nm

is the total number of minutiae extracted. Taking a reference minutia, Pr = [xr, yr, θr]

(Pr ∈ {P(i)}) as an instance, the steps to generate a MLC are as follows:

1. Except for Pr, other minutiae in the minutiae set {P(i)} are quantized into Nϕ

levels according to the difference between the orientation of the minutiae and the

orientation of the reference minutia as illustrated in Figure 3.1. The orientation

difference, ϕ(i) is computed so that it ranges from 0 to 2π, as follow:

ϕ(i) =


θ(i) − θr, if θ(i) ≥ θr;

2π + (θ(i) − θr), otherwise.
(3.3.1)
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Therefore, the quantization width for each orientation level is ∆ϕ = 2π/Nϕ.

2. At each orientation level, construct a straight line of length, l in the same direction

as θr and take Ns sample points equally distributed along the line, separated by

a distance, d with each other. Thus, the relationship between l, Ns and d is Ns =

l/d + 1, of which d must be a factor of l.

3. A circle of radius, r is then drawn on the sample points marked in the previ-

ous step. For each circle, the i) number of minutiae; or the ii) mean of distances

between the sample point (also the centre of the circle) and the minutiae, in the

left and right semi-circles, separated by the straight line, are taken as the feature

code. The two aforementioned MLC types are hereafter referred to as MLCN and

MLCD respectively. The feature codes for all semi-circles on the line and for all

orientation levels are concatenated to form a single-line code.

4. Repeat step 2 and step 3 for lines of different direction with equal angle in be-

tween each other. Suppose Nl lines are created, the possible directions of the

lines, θl are θr, θr +
π
Nl

, θr +
2π
Nl

... θr +
(Nl−1)π

Nl
respectively. A MLC, which is also

a minutia vector, is formed by concatenating the Nl single-line codes. Therefore,

the minutia vector generated for Pr using MLC algorithm can be expressed as

ω ∈ Z
Dm
≥0 (for MLCN) or ω ∈ R

Dm
≥0 (for MLCD), where Dm = DsNl is the total

dimension of the vector and Ds = 2NsNϕ is the length of a single-line code.

Finally, a MLC fingerprint template is obtained by iterating the steps elaborated above

through all minutiae in {P(i)} and can be represented as Ω ∈ Z
Nm×Dm
≥0 or Ω ∈ R

Nm×Dm
≥0 .

Since Z≥0 and R≥0 are subsets of R (Z≥0 ⊂ R≥0 ⊂ R), a MLC template, let it be MLCN

or MLCD, is henceforth generalized as Ω ∈ RNm×Dm for the convenience of denotations.

Since the straight lines constructed are derived from the position and orientation of the

reference minutia, the code is computed based on the relative location and angle be-

tween the reference minutia and the neighbouring minutiae. In this way, MLC is made

alignment-free as the codes extracted are invariant to global translation and rotation.

Although the MLC algorithm is not completely scale-invariant, the parameters can be

adjusted so that it is less sensitive to scaling, e.g. the radius of the circles must be large

enough to address local translation of minutiae due to linear scaling. This also applies

to perturbation of minutiae caused by local non-linear distortions. In addition, unlike

nearest neighbour-based minutia descriptors where missing or spurious minutiae may
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r 

Figure 3.1: An illustration of the formulation of MLCN. The parameters (l, d and r)
are labelled accordingly. The orientation levels which the minutiae belong to are dif-
ferentiated by the markers of the minutiae. The graphic shows a straight line drawn
across the reference minutia (Pr) and a circle drawn centring at one of the marked
sample points. In each orientation level, the number of minutiae in the left and right
semi-circles (ω(i)) are taken as the feature code.

significantly alter the output minutia vector, the fixed radius-based minutia descrip-

tor used is more robust against missing and spurious minutiae as the effect may be

averaged by other minutiae within the radius.

3.3.2 Efficient MLC Generation

A direct approach of finding neighbouring minutiae that are within a fixed radius, r

from a sample point is to evaluate the distance of every minutiae in the fingerprint

from the sample point and select those with distance less than r. The process involves

repetitive and redundant calculations for point-to-point distance, hence is inefficient.

In this thesis, we suggest a simplified method of finding neighbouring minutiae, spe-

cially designed for MLC generation, which eliminates unnecessary calculations and

consequently, reduces computational complexity of the entire algorithm.

The proposed simplified method utilizes a pre-defined mask to obtain the number of

minutiae (MLCN) within the two semi-circles centring at a sample point. The pre-

defined mask, also known as the direction mask, is a (2r + 1) × (2r + 1) matrix, Mα,

in which the elements with distance more than r from the central element are assigned

with 0’s while the value of the remaining elements are determined by their direction

from the central element in the four quadrants basis, ranging from 0 to 2π, i.e. Mα ∈
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{R ∩ [0, 2π]}(2r+1)×(2r+1). The elements at zero degree are assigned with the value

2π so that they are distinguishable from the elements outside the circumference. An

example of the direction mask is shown in Figure 3.2a.

(a) A 51× 51 direction mask used for
MLC generation. The angle values
ranging from 0 to 2π are represented
in grayscale with 0 and 2π corre-
sponding to pure black and pure
white respectively.

(b) A 51× 51 distance mask used for
MLC generation. The distance values
ranging from 0 to 25 are visualized in
full grayscale colormap.

Figure 3.2: Two types of pre-defined masks used for simplified generation scheme of
MLC when r = 25.

Given the ISO template of a minutiae set, Nϕ minutiae maps can be constructed. Each of

these minutiae maps corresponds to the minutiae in different orientation levels. They

are essentially binary matrices with the size same as that of the fingerprint image and

with 1’s indicating the locations of the minutiae. Figure 3.3 shows the graphical illustra-

tion of obtaining the number of minutiae within two semi-circles given the pre-defined

direction mask (Mα), a minutiae map, the position of a sample point (Ps = [xs, ys])

and the direction of the straight line (θl). First, subtract θl from Mα to get the rotated

direction mask, M̂α = Mα − θl . Then, the mask is converted into an indicator matrix,

M̃α ∈ {1,−1}(2r+1)×(2r+1) with 1’s indicating the left semi-circle area and -1’s the right

semi-circle area following the conditions below:

M̃α(ij) =


1, if 0 ≤ M̂α(ij) < π;

−1, otherwise,
(3.3.2)

where M̃α(ij) and M̂α(ij) are the element at the ith row and jth column in M̃α and M̂α

respectively.
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Figure 3.3: Masking technique to obtain MLC feature code at a given sample point.

Finally, a (2r + 1)× (2r + 1) area from the minutiae map centring at (xs, ys) is cropped

out and element-wise multiplied with the indicator matrix (M̃α). If the cropped area

exceeds the boundaries of the minutiae map, 0’s are padded onto the missing part. The

number of 1’s and -1’s in the resulting matrix represents the number of minutiae on the

left and right semi-circles.
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For MLCD however, an additional distance mask, Mβ ∈ R(2r+1)×(2r+1), is required to

obtain the distance of the minutiae within the semi-circles from the sample point. The

value of the elements in Mβ is equivalent to its distance from the central element, except

that the elements falling outside the circumference are assigned 0’s, as shown in Figure

3.2b. In order to get the MLCD code, the cropped minutiae map is element-wise multi-

plied with both M̃α and Mβ. The mean of positive distances in the resulting matrix is

the code for the left semi-circle, whereas the mean of negative distances contributes to

the right semi-circle.

3.4 Cancellable Template Generation

In this thesis, we utilize two distinct techniques to generate revocable MLC template,

namely permutation and random projection (RP). Revocable transformation of MLC

template is performed at the minutia vector level via a user-specific key, κc. In the case

of permutation-based transformation, κc is used to generate a random permutation or-

der. Since MLC template is unordered and variable-size, the randomly generated per-

mutation order is universal to all minutia vectors. The minutiae vectors are re-arranged

according to the new order and the resulting cancellable MLC template is denoted as

Ω̂ ∈ RNm×Dr , where Dr = Dm in the case of permutation-generated templates.

On the other hand, RP-based transformation uses κc as the seed to generate a pseudo-

random projection matrix following the steps below:

1. Use κc to generate a set of pseudo-random numbers R ∈ RDm×Dr from theN (0, 1)

distribution, where Dr is the desired output dimension and Dr ≤ Dm.

2. Apply the Gram-Schmidt process (see Appendix A) to orthonormalize R into

R⊥ ∈ RDm×Dr so that R⊥RT
⊥ = I and ‖R⊥‖2 = 1, where I is the identity ma-

trix and ‖ · ‖2 denotes the `2 norm.

Prior the transformation, the minutiae vectors in the original MLC template (Ω) is nor-

malized, resulting in Ω′, with ω′(i) = ω(i)/‖Ω‖2 denoting the ith normalized minutia

vector. The final RP-based cancellable MLC template is simply calculated as

Ω̂ = Ω′R⊥, (3.4.1)

with Ω̂ ∈ RNm×Dr .
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3.5 MLC Template Matching Algorithm

Unlike fixed-length representations of which one template can be directly compared

with another template using desired metrics, the matching of MLC templates involve

two phases, viz. local and global matching. Local matching compares the minutia

vectors among two templates and find the matchable minutiae pairs; whereas global

matching uses the matchable pairs found to conclude the similarity of two fingerprint

templates. The details of each matching phase are explained in this section and is sum-

marized in algorithm 3.1.

Algorithm 3.1: MLC template matching

1 Function MLCMatch(Ω̂E, Ω̂Q, τs)
2 NmE ←− size(Ω̂E)

3 NmQ ←− size(Ω̂Q)
4 Sl , A←− 0
5 for i ∈ [1, NmE] do
6 MLC1←− Ω̂E[i] // ω̂E(i)

7 for j← 1, NQ
m do

8 MLC2←− Ω̂Q[j] // ω̂Q(j)

9 Sl [i, j]←− Dice(MLC1, MLC2) // local matching, refer to
(3.5.1)

10 end
11 end

/* local similarities filtering, refer to (3.5.2) */
12 enrolledMax←− max(Sl , 2)
13 queryMax←− max(Sl , 1)
14 for i ∈ [1, NmE] do
15 for j ∈ [1, NmQ] do
16 A[i, j]←− (enrolledMax[i] == queryMax[j])
17 end
18 end
19 Sl ←− Sl .∗A
20 Sg ←− sum(Sl)/min(NmE, NmQ) // global matching, refer to (3.5.3)
21 return Sg

22 end

3.5.1 Local Matching

Given a minutia vector, ω̂E(i) taken from the enrolled fingerprint template (Ω̂E ∈

RDr×NmE ) and a minutia vector, ω̂Q(j) taken from the query fingerprint template (Ω̂Q ∈

RDr×NmQ ), where NmE and NmQ are the number of minutiae in Ω̂E and Ω̂Q respectively.
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The similarity between ω̂E(i) and ω̂Q(j) signifies the likelihood of ω̂E(i) in Ω̂E being a

correspondence to ω̂Q(j) in Ω̂Q.

In this thesis, we use Dice’s coefficient as the similarity measure between two minutia

vectors, calculated as

Sl(ij) =
2〈ωE(i), ωQ(j)〉

‖ωE(i)‖2
2 + ‖ωQ(j)‖2

2
(3.5.1)

where 〈·, ·〉 denotes the inner product between two vectors. The value of Sl(ij) ranges

from 0 to 1, of which 0 indicates a total mismatch between ωE(i) and ωQ(j), whereas 1

indicates a perfect match between them.

3.5.2 Global Matching

When dealing with two fingerprint templates, each minutiae vector in Ω̂Q is cross-

matched with the ones in Ω̂E so that we have a similarity matrix containing similarity

scores among all minutia vectors between two templates. Each element in the similarity

matrix is then re-evaluated with the following criterion to eliminate double-matching:

Sl(ij) =

 Sl(ij) Condition 1;

0 otherwise.
(3.5.2)

Condition 1 implies that Sl(ij) ≥ τs and Sl(ij) must be the maximum among all values of

Sl(ej) (for e ∈ [1, NmQ]) and Sl(iq) (for q ∈ [1, NmE]), that is, Sl(ij) must be the maximum

among the elements in its row and column. τs is the lowest similarity threshold to

conclude that a pair of minutia vectors are matchable.

To determine the overall similarity between Ω̂E and Ω̂Q, a global matching score is

used to measure the likelihood of them being two instances of the same fingerprint.

With the processed similarity matrix, we calculate the matching score with the follow-

ing formula:

Sg =

NmE

∑
i=1

NmQ

∑
j=1

Sl(ij)

min(NmE, NmQ)
(3.5.3)
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3.6 Experiments and Analyses

3.6.1 Datasets and Testing Protocol

Four public fingerprint datasets including FVC2002 DB1, FVC2002 DB2 [170], FVC2004

DB1 and FVC2004 DB2 [171] are used to examine the proposed MLC in this thesis.

FVC2004 datasets yields higher difficulty than FVC2002 datasets due to exaggerated

perturbations such as non-linear distortion, dryness and wetness. The minutiae are

extracted from the fingerprint images via VeriFinger SDK [172] so that the results ob-

tained are comparable to the results in the literature 1. Some statistical information of

the fingerprint datasets are tabulated in Table 3.2.

Table 3.2: Statistical information of the fingerprint datasets used for experiments.

Dataset
Image dimensions

(in pixels)

Average ROI
dimensions (in

pixels)

Average number of
minutiae extracted

FVC2002 DB1 388 × 374 196 × 278 33
FVC2002 DB2 296 × 560 229 × 402 42
FVC2004 DB1 640 × 480 200 × 318 38
FVC2004 DB2 328 × 364 200 × 277 33

Each of the datasets consists of fingerprints from 100 users with 8 samples per user.

In the experiments, the first sample of every user’s fingerprint is used as the enrolled

template while the remaining samples are treated as queries. As a result, there are

700 genuine matchings and 69300 impostor matchings for each dataset. Furthermore,

since the RP-based experiment in section 3.6.3 involves randomly generated matrix, the

experiment was executed ten-fold with different random seed assigned to each user in

every trial to obtain an average measure of the performance.

3.6.2 MLC Parameters Tuning

In this section, we perform exhaustive search through multiple MLC parameters com-

binations to determine the best-performing parameters for each dataset. There are three

manipulated parameters in the formulation of MLC, viz. the length of the straight lines,

l, the distance between two sample points, d and the radius of the circles, r, while num-

ber of orientation levels, Nϕ and the number of lines, Nl are fixed to 6 and 3 respectively.

Three l values are chosen inclusive of 240, 280 and 320, while r ranges from 15 to 30

1Note that minutiae extraction in our previous publications [168,169] follows a different method [173],
hence the results shown are different.
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Table 3.3: Length of the minutia vectors produced by MLC (both MLCN and MLCD)
with different parameter values.

l d Dm

240

6 1476
8 1116
10 900
12 756
15 612
16 576
20 468
24 396

280

7 1476
8 1296
10 1044
14 756
20 540
28 396

320

8 1476
10 1188
16 756
20 612
32 396

with a step size of 5. The values of d are chosen so that they are factors of l and that

they range from l
40 to l

10 . The resulting length of minutia vectors (Dm) with different

parameters are shown in Table 3.3.

Tables 3.4 to 3.7 show the performance of MLC applied on four different fingerprint

datasets. The best EERs for MLCN are 2.25%, 1.94%, 8.20% and 8.05%, whereas the

lowest EERs achieved by MLCD are 2.32%, 1.65%, 7.54% and 7.82% for FVC2002 DB1,

FVC2002 DB2, FVC2004 DB1 and FVC2004 DB2 respectively. Overall, MLCD performs

slightly better than MLCN. MLCN records the number of minutiae in the semi-circles

regardless of the position of the minutiae, while MLCD renounces the information

about the number of minutiae and describes the average distance of the minutiae from

the centre. The results show that average distance is a more distinctive feature than

minutiae count for a fixed-radius descriptor.

The performance shows no linear relationship with any one parameter but is correlated

with all parameters. From the aspect of r, the EERs are lower at r = 20 and r = 25. This

is because when r is too small (r = 15), the semi-circles formed are not sufficient for cap-

turing the neighbouring minutiae at the sample points. While the semi-circles created

are meant for capturing local information, excessively large r (r = 30) introduces high
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Table 3.4: EER (in %) of MLC using FVC2002 DB1.

l d
MLCN MLCD

r r
15 20 25 30 15 20 25 30

240

6 3.69 2.54 2.38 3.00 3.61 2.55 2.32 2.38
8 3.49 2.94 2.56 3.19 3.51 3.16 2.47 2.35
10 4.39 2.77 2.25 2.80 4.75 4.09 2.60 2.59
12 5.14 2.76 2.39 3.03 6.84 3.19 2.60 2.52
15 4.27 2.85 2.29 3.28 8.20 3.88 2.76 2.87
16 6.05 3.24 2.88 3.29 5.28 3.39 3.64 2.37
20 5.28 2.94 3.27 2.99 5.03 5.72 3.15 2.71
24 6.39 2.82 3.63 3.75 5.27 3.74 5.92 3.62

280

7 3.97 2.68 2.86 3.19 5.17 3.14 2.55 2.68
8 4.39 3.09 2.71 3.14 4.19 3.77 2.86 2.64
10 4.01 2.86 2.50 2.96 4.36 3.92 2.54 2.72
14 5.65 2.78 3.15 3.00 9.44 2.81 3.09 3.05
20 4.33 3.00 3.14 3.32 4.93 5.86 2.95 2.95
28 7.09 3.59 2.57 4.16 6.77 3.75 3.76 4.64

320

8 3.22 3.07 3.05 3.30 3.50 3.10 2.99 2.78
10 4.01 2.97 2.71 2.97 4.19 4.20 2.81 2.67
16 3.83 2.78 2.73 3.23 4.37 3.76 3.05 2.65
20 4.58 3.03 3.02 3.41 4.89 5.80 3.18 2.73
32 7.86 3.45 3.07 3.60 7.44 4.30 4.13 3.82

Table 3.5: EER (in %) of MLC using FVC2002 DB2.

l d
MLCN MLCD

r r
15 20 25 30 15 20 25 30

240

6 3.29 2.22 2.01 2.52 4.26 2.38 1.88 1.79
8 3.62 2.21 2.06 2.48 3.20 2.55 1.81 1.86

10 3.82 2.85 2.10 2.50 4.57 3.04 2.04 1.59
12 4.67 2.39 2.49 2.34 6.65 2.33 2.28 2.00
15 5.22 2.94 2.43 2.69 10.27 3.37 1.99 1.94
16 6.02 2.96 2.96 2.50 5.82 2.29 3.20 1.71
20 5.51 2.70 2.73 2.68 3.72 5.90 3.20 1.99
24 7.08 3.00 3.36 2.95 5.45 2.76 4.91 2.76

280

7 3.38 2.19 2.32 2.67 4.26 2.05 2.10 1.94
8 4.12 2.39 2.29 2.85 4.44 2.82 1.95 1.86

10 3.44 2.68 2.00 2.71 4.26 3.06 1.95 1.71
14 4.95 2.68 2.41 2.71 8.23 2.52 1.91 1.81
20 5.27 2.76 2.63 2.59 3.42 5.53 3.21 2.10
28 8.15 3.25 2.72 3.30 5.18 3.02 2.37 3.98

320

8 3.24 2.74 1.94 2.84 3.74 2.42 2.07 1.89
10 3.52 2.58 2.16 2.86 4.35 3.25 1.65 1.98
16 3.81 2.75 2.33 2.64 3.56 3.75 2.01 2.19
20 4.40 2.69 2.83 3.07 3.31 5.29 2.85 1.98
32 8.34 3.10 2.58 3.04 6.08 3.78 2.88 2.29
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Table 3.6: EER (in %) of MLC using FVC2004 DB1.

l d
MLCN MLCD

r r
15 20 25 30 15 20 25 30

240

6 12.97 9.24 8.20 8.58 13.82 10.15 8.96 7.79
8 12.25 9.79 8.60 8.33 13.93 10.89 8.64 7.54
10 13.45 10.53 8.64 8.85 14.90 12.19 9.52 8.33
12 14.66 10.01 9.18 9.11 16.82 10.40 9.42 8.29
15 14.26 10.68 9.38 8.86 19.06 12.12 9.45 8.76
16 15.53 10.61 9.36 8.72 15.25 11.13 9.88 8.48
20 15.43 11.69 8.93 8.91 16.11 14.60 10.56 9.05
24 16.64 11.20 10.33 9.54 17.05 12.86 13.43 9.20

280

7 11.63 9.75 8.99 8.51 15.41 10.48 9.33 7.60
8 13.54 10.26 9.02 8.59 15.23 11.57 9.04 7.69
10 13.28 9.98 9.23 8.95 15.11 12.66 9.70 8.79
14 15.03 9.62 9.29 8.88 18.07 11.05 10.35 8.45
20 14.11 11.37 9.23 8.99 16.29 15.72 11.05 8.26
28 18.31 11.61 9.45 10.19 17.14 13.26 11.39 11.10

320

8 12.21 9.73 9.29 9.63 14.11 10.38 9.24 8.78
10 13.32 10.64 8.91 9.67 15.38 12.35 9.67 9.05
16 13.14 10.85 9.53 9.42 15.63 11.65 10.03 9.37
20 14.50 11.23 8.88 9.08 16.30 15.45 10.13 8.76
32 19.04 11.54 10.46 9.97 19.19 13.19 11.96 10.34

Table 3.7: EER (in %) of MLC using FVC2004 DB2.

l d
MLCN MLCD

r r
15 20 25 30 15 20 25 30

240

6 11.44 9.22 8.99 9.03 12.63 9.46 8.18 7.91
8 11.77 9.25 8.65 9.01 11.21 9.14 8.49 7.95
10 12.05 8.62 8.64 8.32 13.41 10.49 8.10 7.82
12 13.06 9.43 9.62 8.44 14.74 9.24 9.14 8.31
15 12.77 10.77 9.37 9.08 18.24 10.34 7.94 8.19
16 15.03 9.34 8.77 9.20 14.80 9.02 10.36 8.76
20 14.08 9.33 9.96 9.05 13.10 13.65 10.62 8.56
24 15.77 10.07 11.46 9.27 13.73 10.22 13.48 9.62

280

7 11.94 8.66 8.05 8.61 13.85 8.89 8.40 8.02
8 12.13 8.74 8.69 8.61 13.91 10.28 8.23 7.96
10 11.78 8.70 8.36 8.25 13.09 10.43 8.06 8.41
14 14.34 9.82 8.07 9.60 18.39 9.81 8.64 8.83
20 13.15 9.64 9.62 9.20 13.74 13.62 10.58 8.64
28 17.38 10.46 9.69 10.01 14.77 11.59 9.12 11.21

320

8 11.04 9.10 8.86 8.71 11.54 9.50 8.81 8.43
10 11.78 9.02 8.47 8.54 13.23 10.68 8.84 8.31
16 11.33 9.62 8.63 9.35 11.73 11.37 9.05 8.40
20 13.11 9.56 9.30 9.19 14.10 13.69 10.66 8.59
32 18.76 11.68 9.87 9.34 13.95 11.40 10.04 9.11
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error tolerance and causes globalization of the minutiae neighbourhood. Therefore, an

adequate r value balances between the two scenarios so that the EER is minimized.

On the other hand, a minutiae neighbourhood is acquired in every d distance along

the lines. An extremely small d value may result in redundancy, whereas some useful

information along the line may be missed out when d is too large.

Furthermore, l is another factor affecting the performance of MLC. The best-suited l

value for each dataset varies depending on the average ROI area of the dataset as stated

in Table 3.2. As a semi-circle containing no minutiae is assigned the code ‘0’ (for both

MLCN and MLCD), it is redundant to extend the lines outside the ROI where minutiae

do not exist. With l = 320, MLC yields the best performance for FVC2002 DB2 due to

its relatively larger average ROI area as compared to the other datasets which peak at

l = 240 or l = 280. In practice, the parameters are dependent on the fingerprint sensor

type, the image size and the image resolution, thus a change in one of these factors

requires the retraining of the optimal parameters (l, d and r).

3.6.3 Performance of Cancellable MLC

Teoh et al. [110] suggested that the user-specific key, κc used for template revocation

can be tokenized and kept by the user. Therefore, the performance of cancellable MLC

may be evaluated in two scenarios: i) the genuine key scenario, in which the impostor

uses his own key to generate the query template; and ii) the stolen key scenario, in

which the impostor has the knowledge of the key of the user being imposted and the

query template is generated based on the same key, hence is also known as the same

key scenario.

The optimal EER obtained for the genuine key scenario for both permutation-based and

RP-based cancellable MLC are 0%. This indicates that all users can be correctly veri-

fied and no impostor will be falsely accepted under the scenario given an appropriate

threshold for the matching score. For instance, figure 3.4 depicts the zero over-lapping

area between the genuine distribution and the impostor distribution of RP-based can-

cellable MLC when Dr = 100 under genuine key scenario.

Considering the stolen key scenario, since permutation merely change the positions of

the minutia vector components without altering the values, the performance is identi-

cal to that of without revocable transformation as discussed in section 3.6.2.
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Figure 3.4: Genuine key score distribution of RP-based cancellable MLC with Dr =
100 for FVC2002 DB1. The genuine distribution and the impostor distribution are
well-separated, with operational threshold at approximately 0.1 for both MLCN and
MLCD.

On the other hand, the performance of RP-based revocable template depends on the

MLC dimension after RP, Dr. Figure 3.5 shows the reaction of the system EER versus

the reduced dimension for all datasets and for both MLCN and MLCD. In the figure,

the EER deterioration ratio is defined as:

ratioEER =
EER after RP

EER before RP
. (3.6.1)
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The EER deterioration of 1 indicates that the performance is well-preserved after RP;

otherwise the ratio is larger than 1 when the performance deteriorates. A ratio of less

than 1 is not possible as there is bound to have loss of information in the MLC after RP.

Recall that the purpose of RP is for template revocation rather than to improve the per-

formance of MLC, and this experiment aims at finding the reduced dimension which

minimizes the loss of information. Besides the EER deterioration ratio, the dimension-

ality reduction ratio is defined as:

ratioDR =
Dr

Dm
. (3.6.2)

From figure 3.5, one can observe that as Dr increases from the range of 50 to 1000,

the EER after RP converges to the original EER of MLC. The EER deterioration ratio

is able to drop below 1.5 when ratioDR ≥ 0.4 for all cases. Although the performance

continues to improve after that, the margin is insignificant. Neither MLCN nor MLCD

can preserve all of the information in MLC after RP (i.e. reaching ratioEER = 1) within

the dimension range tested. This is not desirable, but it agrees with the results obtained

for FaceHashing [111].

It has been discussed [174] that data clusters can be well-separated after RP if the orig-

inal data is Gaussian or mixture of Gaussians. Also, Bingham and Mannila [175] has

shown that RP can preserve the information in image and text data, which are gener-

ally Gaussian. In the case of MLC however, the minutia vectors are sparse in nature as

most semi-circles contain no minutia. While such data is projected onto a lower dimen-

sional Gaussian space, performance preservation is not guaranteed. Therefore, we can

conclude that the performance of cancellable MLC is slightly worse than the original

MLC under the circumstance that the impostor gets hold of the user’s key. Figure 3.6

shows the comparison between the genuine-impostor distribution of the original MLC

and the RP-based cancellable MLC. The distributions of the cancellable MLC are closer

to each other compared to the original MLC, resulting in a larger over-lapping area.

This can be verified by the slight decrease in the mean of genuine scores and increase

in the mean of impostor scores.

Table 3.8 summarizes the performance of cancellable MLC under stolen-key scenario

with while compared to other existing cancellable fingerprint generation methods. The

recognition accuracy of the proposed cancellable MLC is comparable to other methods

and is significantly better when more difficult datasets (FVC2004 datasets) are used. It
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(b) MLCD, FVC2002 DB1.
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(c) MLCN, FVC2002 DB2.
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(d) MLCD, FVC2002 DB2.

0 0.1 0.2 0.3 0.4 0.5 0.6

1

1.2

1.4

1.6

1.8

Dimensionality reduction ratio

E
E

R
 d

et
er

io
ra

ti
o

n
 r

at
io

0 200 400 600 800 1000
8

10

12

14

16

Reduced dimension, D
r

E
E

R

(e) MLCN, FVC2004 DB1.
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(f) MLCD, FVC2004 DB1.
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(g) MLCN, FVC2004 DB2.
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(h) MLCD, FVC2004 DB2.

Figure 3.5: EERs of the proposed RP-based revocable MLC under stolen key scenario.
The primary axes indicate the EER versus reduced dimension, Dr; while the secondary
axes show the EER deterioration ratio and the dimensionality reduction ratio corre-
sponding to the values in the primary axes.
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Figure 3.6: Stolen key score distribution of RP-based cancellable MLC with ratioDR =
0.4 for FVC2002 DB1.

has to be understood that comparison of the cancellable fingerprint algorithms using

the end results may not be fair as the other modules, such as fingerprint image pro-

cessing and minutiae extraction, in the recognition system may be different. With this

in mind, the benchmarks act as references to evaluate the performance of the proposed

method.
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Table 3.8: Summary of the recognition accuracy (in terms of EER in %) of the proposed
cancellable MLC with ratioDR = 0.4 compared to other existing cancellable fingerprint
methods.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
Permutation-based cancellable MLC

MLCN 2.25 1.94 8.20 8.05
MLCD 2.32 1.65 7.54 7.82

RP-based cancellable MLC
MLCN 3.13 2.44 9.49 8.79
MLCD 2.83 2.25 9.16 8.89

Literature
Jin et al.1 [114] 4.36 1.77 24.71 21.82
Jin et al.2 [176] 3.07 1.02 - -
Zhang et al.3 [104] 7-8 (FVC2006 DB2)
Wang and Hu4 [113] 3.50 4.00 - -
Lee and Kim5 [116] - - 10.30 9.50
Teoh et al.6 [112] 2.39 - -

1non-invertible randomized graph-based Hamming embedding.
2random projected minutiae vicinity decomposition.
3cancellable MCC through combo plate. Results published for FVC2006 DB2 only.
4densely infinite-to-one mapping (DITOM) approach.
5minutia descriptor by three dimensional spatial quantization.
6BioHashing.

3.6.4 Security and Privacy Analyses

In this thesis, the security and privacy of a cancellable fingerprint template is mainly

evaluated based on three properties, namely non-invertibility, unlinkability and en-

tropy, each resembling the strength of the proposed MLC algorithm against certain

biometric database attack types. All experiments in this section correspond to the

best-performing parameters shown in Table 3.4 to 3.7, and with ratioDR = 0.4 and

Dr rounded to the nearest multiple of 50 for RP-based transformation.

Non-invertibility: Resistance against Reverse Attack

If an adversary were to unveil the original fingerprint ISO template from the cancellable

template, there are two phases to crack. First, the cancellable template is protected by

the cancellable transformation, which is made up of either permutation or RP. Con-

sidering that the user-specific key is secure, both transformations are mathematically

infeasible to reverse; the adversary can only guess the original MLC by brute force.

However, if the user-specific key is compromised, permutation-based transformation

can be easily reversed and the original MLC can be reconstructed exactly as the per-
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Table 3.9: Ratio of cardinalities of the proposed cancellable fingerprint template gen-
eration scheme, ‖ω

′‖0
‖ω̂‖0

.

Dataset MLCN MLCD
FVC2002 DB1 0.19 0.18
FVC2002 DB2 0.09 0.08
FVC2004 DB1 0.20 0.25
FVC2004 DB2 0.20 0.28

mutation order is known. On the other hand for RP-based transformation, it was

shown [177] that if the original signal is sparse (which in the case of MLC, is true),

it can be recovered exactly from the transformed template provided that

‖ω′‖0 ≤
αDr

log Dm
, (3.6.3)

where ‖ω′‖0 is the cardinality of a normalized minutia vector and α > 0 is some suffi-

ciently small constant. The recovery of discrete Fourier transform (DFT) with randomly

selected frequencies is demonstrated by the authors, but the recovery of RP may also be

applicable. To recover ω′ from ω̂, one simply needs to solve the convex programming

problem:

min ‖ω′‖1 subject to ω′R⊥ = ω̂. (3.6.4)

Since the minutia vectors of one fingerprint are multiplied with the same random ma-

trix, the RP transformation on each minutia vector is considered an independent oper-

ation. The equation can be solved by various sparse approximation methods such as

matching pursuit [178, 179], basis pursuit [180], the least absolute shrinkage and selec-

tion operation (LASSO) approach [181] etc. Further, Candès et al. [177] added that the

recovery rate is more than 50% if ‖ω′‖0 ≤ ‖ω̂‖0/4 (or ‖ω
′‖0

‖ω̂‖0
≤ 0.25) and more than 90%

if ‖ω′‖0 ≤ ‖ω̂‖0/8 (or ‖ω
′‖0

‖ω̂‖0
≤ 0.13). ‖ω̂‖0 in the ratio is essentially equivalent to Dr as

the projection matrix is extracted from a continuous Gaussian

Table 3.9 lists the ratios between the average cardinality values of the minutia vectors

(MLC) before and after RP. For most of the cases, the ratio is below 0.25. This indi-

cates that the adversary can recover more than 50% of the unprotected MLCs from the

protected template.

Furthermore, the non-invertibility of the proposed cancellable fingerprint partially re-

lies on the MLC algorithm. Assuming that the adversary has knowledge about the

MLC algorithm and the parameters, he is able to reverse the minutia vectors into re-
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Figure 3.7: An example of reverse attack upon the MLCN algorithm. The top row
shows the original minutiae set extracted from the fingerprint. The fingerprint is ro-
tated so that the orientation of the reference minutia (marked ×) is aligned with 0◦.
The middle and the bottom rows show the possible locations of the minutiae, divided
into six orientation levels (Nϕ = 6), obtained by reversing the MLC of the reference
minutia. The pixel intensity of the grayscale images indicates the number of minutiae
within the regions, i.e. areas with higher intensity contain more minutiae than areas
with lower intensity.

gions where minutiae are possibly located as shown in figure 3.7. Since the minutiae

are quantized into multiple levels based on the difference of orientation between the

neighbouring minutiae and the reference minutia, the adversary can only obtain the ro-

tated version of the vicinity. The regions obtained for different minutia vectors cannot

be inter-related as the orientations of the reference minutiae are independent of each

other. Besides, the MLC template is unordered, so the adversary has no clue about the

exact location of the recovered regions in the fingerprint. What’s more, the vicinity of

any one reference minutia contains only part of the entire fingerprint. In conclusion,

although the MLC template may reduce the effort of brute force attack on the minutiae

set, it is mathematically infeasible to obtain the minutiae set from the template.
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Unlinkability: Resistance against Linkage Attack

When an enrolled cancellable template is compromised, it is replaced with a new tem-

plate associated with a new user-specific key. If the adversary obtains multiple can-

cellable templates generated from the same fingerprint, he could find the similarity

between the templates and learn the pattern of the user’s cancellable template. Such at-

tack type is also known as the hill-climbing attack. What’s worse, the adversary might

be able to gain useful information that assists in reducing the complexity of reverse

attack. In this experiment, we intend to measure the separability between templates

from the same fingerprint transformed with different keys by following the procedures

below [99]:

1. The first sample of every fingerprint is used as the enrolled template. Five ver-

sions of the enrolled template is stored, each corresponding to a unique key for

cancellable transformation.

2. Each of the remaining seven samples is assigned another ten distinct keys to pro-

duce ten unique query templates per sample.

3. Match the query templates against the enrolled templates of the same fingerprint

and generate the distribution of matchable minutia vectors between the tem-

plates. Recall that two minutia vectors are said to be matchable if the similarity

fulfils the condition stated in (3.5.2). The separability between the same-key and

the different-key genuine distributions is then computed as:

separability =
|µDFG − µSKG|√

σ2
DFG+σ2

SKG
2

, (3.6.5)

where µDFG and µSKG, and σ2
DFG and σ2

SKG are the mean and variance of the same-key

and different-key genuine distributions respectively. Note that the same-key genuine

distribution is generated the same way as in section 3.6.3, except that number of match-

able minutiae is used instead of the matching score.

Table 3.10 shows the separability of MLC and the statistics of the distributions. The

separability of MLC is considerably high as compared to the highest separability of 3.2

reported by Lee et al. [99]. Besides, it is noteworthy that both the mean and variance of

the different-key distribution are zero’s for all algorithms and all datasets. It means that

no matchable minutia vectors exist between two cancellable templates generated from
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Table 3.10: Separability of the proposed cancellable MLC algorithm expressed in the
form of “separability(µSKG, σ2

SKG)[µDKG, σ2
DKG]”.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
Permutation-based cancellable MLC

MLCN
3.95

(23.55,71.20)
[0,0]

3.96
(30.72,120.52)

[0,0]

3.54
(19.87,62.88)

[0,0]

3.28
(17.48,56.79)

[0,0]

MLCD
3.54

(22.24,78.90)
[0,0]

3.28
(27.51,140.59)

[0,0]

2.92
(17.76,74.15)

[0,0]

2.79
(15.96,65.63)

[0,0]
RP-based cancellable MLC

MLCN
3.85

(23.39,73.77)
[0,0]

3.81
(30.07,124.85)

[0,0]

3.34
(19.05,65.28)

[0,0]

3.26
(17.42,57.05)

[0,0]

MLCD
3.47

(22.11,81.28)
[0,0]

3.24
(27.25,141.33)

[0,0]

2.83
(17.50,76.55)

[0,0]

2.80
(15.84,63.77)

[0,0]

different keys even if they originate from the same fingerprint. Hence, the proposed

cancellable fingerprint is secure against linkage attack.

Entropy: Resistance against Brute Force Attack

It is known that the MLCN algorithm produces integer-numbered templates while the

MLCD algorithm produces real-numbered templates. With the fact that the original

MLC template is sparse, the permutation-based cancellable template would also be

sparse. We can conveniently consider each element in the template a variable from the

discrete space for both permutation-based MLCN and MLCD. Although MLCD is real-

numbered, the values are rounded down to the nearest integer (quantization width of

1) for the calculation of the entropy. The entropy of a discrete random variable (also

known as Shannon entropy) is defined as:

H(ω̂) = −
S(ω̂)

∑
i=1

P(i)(ω̂) log2 P(i)(ω̂) bits, (3.6.6)

where S(ω̂) is the support set of ω̂ (an element in the cancellable MLC template Ω̂) and

P(i)(ω̂) is the probability of ω̂ being equivalent to the ith value in the support set.
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As for the RP-based cancellable templates, the original MLCs are projected onto a con-

tinuous Gaussian space and the entropy of a continuous random variable (also known

as differential entropy) is defined as:

H(ω̂) = −
∫

S(Ω̂)
f (ω̂) log2 f (ω̂)dx bits, (3.6.7)

where f (ω̂) is the probability density function (pdf) of the elements in Ω̂. If the variable

observed is taken from a zero-mean Gaussian distribution, (3.6.7) can be rewritten as

[182]:

H(ω̂) =
1
2

log2 2πeσ2 bits, (3.6.8)

where e is the Euler’s number. Although it is logical to compute the entropy of the

RP-based MLC with (3.6.8), it may result in a negative entropy if the variance of the

distribution, σ2 is too small, which is undesirable. Therefore, both (3.6.6) and (3.6.8)

are used to compute the entropy of RP-based MLC for comparison in this thesis. The

quantization width is set to 0.01 for the calculation of discrete entropy.

As the proposed template is variable-size and unordered, it is impossible to compute

the entropy for each element in the template. Instead, we could treat the elements in the

template as instances of one random variable and compute the entropy of this variable

as an approximation to the average entropy per element.

Table 3.11 presents the entropy of various outcomes of the proposed cancellable finger-

print algorithm. Since the feature length varies for different algorithms and datasets,

the average entropy per element is more appropriate for inter-algorithm and inter-

dataset comparison. RP-based MLC has significantly higher entropy than permutation-

based MLC as the latter is sparse.

For permutation-based algorithms, MLCD yields approximately half of the entropy

of MLCN. While both outputs are sparse, the values of MLCD has smaller variance

than MLCN. This is because two semi-circles enclosing different number of minutiae

may result in similar mean distance value from the centre as illustrated in figure 3.8.

On the other hand, the entropies for RP-based algorithms are rather similar to each

other due to the fact that they are projected onto the Gaussians with identical pdf.

The differential entropies are negative as expected because the variance of the output

templates is small.
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Table 3.11: Entropy (in bits) of the proposed cancellable MLC template. The first
number represents the average discrete entropy per element and the second number
represents the total discrete entropy of the entire template. The number in bracket is
the average differential entropy per element.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
Permutation-based cancellable MLC

MLCN 0.43, 390.82 0.37, 543.39 0.45, 668.48 0.42, 612.51
MLCD 0.22, 310.93 0.17, 199.09 0.28, 304.07 0.27, 243.22

RP-based cancellable MLC

MLCN 2.16, 755.35
(-4.47)

2.03, 1218.02
(-4.95)

2.05, 1230.33
(-4.92)

2.20, 1320.45
(-4.76)

MLCD 2.15, 1290.00
(-4.71)

2.06, 926.16
(-4.59)

2.07, 931.23
(-4.56)

2.33, 815.50
(-4.28)

 

 

 
20.15 

22.06 

18.89 

SC1 

SC2 

Figure 3.8: The figure shows a portion of the minutiae in a fingerprint. There are two
semi-circles labelled with SC1 and SC2, encompassing one minutia and two minutiae
respectively. Thus, the MLCN code produced are ‘1’ and ‘2’, which are distinctive. On
the other hand, the MLCD code extracted from the two semi-circles are ‘20.15’ and
(22.06+18.89)/2=‘20.48’, which are very close to each other.

3.6.5 Computational Complexity Analysis

In this section, the computational complexity of the MLC algorithm is evaluated in two

different measures including time complexity and CPU runtime. MLC can be gener-

ated either by recursive search for minutiae within the fixed radius or by performing

masking on the minutiae bit map (efficient MLC) as proposed in section 3.3.2.
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Nearest neighbour search within fixed radius by recursive sweep involves iterative

computations of distance. The number of distance calculations, which comprises of

multiplications and additions, depends on the number of minutiae in the fingerprint,

Nm. Therefore, the time complexity of producing one component of a minutia vector

is O(Nm). On the other hand, for efficient MLC by masking, the size of the masks

and the minutiae map are fixed regardless of any parameter and thus, the number of

arithmetic operations is constant, so does the time complexity, i.e. O(1). In order to

generate a complete MLC template for a fingerprint with Nm minutiae and with Dm

dimensions per minutia vector, the recursive sweep (or masking operation) needs to

be performed Nm × Dm times. As a result, the time complexity of the normal MLC

and efficient algorithms are O(N2
mDm) and O(NmDm) respectively. Note that although

MLCD requires additional arithmetic operations for the calculation of mean distance

(or an additional distance mask), both MLCN and MLCD yields the same time com-

plexity. In addition, the permutation-based cancellable transformation has constant

time complexity whereas the complexity of RP (matrix multiplication) is bounded by

O(NmDmDr).

Although the bottleneck of the computational complexity from the aspect of time com-

plexity lies with the RP operation. The CPU runtime of permutation and RP are almost

identical to each other. Therefore, only RP is used for the following experiment. The

RP-based cancellable MLC generation algorithms were performed in the MATLAB en-

vironment on Windows 7 with an Intelr CoreTM i5-2430M 2.40GHz processor and the

recorded CPU runtime is shown in Table 3.12. The best-performing parameters as sug-

gested in section 3.6.2 are applied to each dataset in this experiment. The results echo

the time complexity deduced above that the efficient MLC runs much faster than the

original MLC. Besides, the difference between MLCN and MLCD is negligible as the

additional computation contributes a very minor part to the overall algorithm. Com-

paring the results among different datasets, it is evident that the CPU runtime is di-

rectly proportional to the length of minutiae vector, Dm as this value varies for each

dataset.

The proposed cancellable MLC not only eliminate the computation for fingerprint pre-

alignment, with the efficient MLC algorithm, it can be further simplified. Therefore, it

consumes less computational power than methods that require fingerprint pre-alignment

[116]. Although some alignment-free techniques exist in the literature, repetitive calcu-
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Table 3.12: CPU runtime of the MLC generation algorithm with RP transformation.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
MLC (by recursive sweep)

MLCN 6.36s 9.79s 8.21s 6.11s
MLCD 6.68s 9.85s 8.80s 6.44s

Efficient MLC (by masking)
MLCN 2.94s 3.30s 3.33s 2.79s
MLCD 2.99s 3.31s 3.54s 2.90s

lation of some local attributes for example the lengths and angles of triplets [113, 114,

176] is also resource-consuming.

3.7 Summary

In this chapter, a novel cancellable fingerprint generation method has been proposed,

coined as the MLC. MLC is rotation- and translation-invariant as the positions of the

minutiae are relative to the reference minutia. In addition, MLC is incorporated with

the idea of fixed-radius descriptor and is robust against local non-linear distortions.

The main concept of MLC generation branches out into the integer-numbered ver-

sion which record the number of minutiae within the fixed-radius semi-circles (MLCN)

and the real-numbered version which takes the mean of distances from all minutiae

within the radius to the centre as the feature code (MLCD). Besides, two distinct can-

cellable transformations have been used to realize the cancellability of the MLC tem-

plate, namely permutation and RP.

Experimental results show that both algorithms are able to achieve 0% EER for genuine-

key scenario. This is supported by the none-overlapping between the genuine distribu-

tion and the impostor distribution as illustrated in figure 3.4. According to 3.8, MLCD

performs better than MLCN for most datasets, proving that the mean distance value is a

better feature in describing the semi-circle neighbourhoods created for MLC generation

compared to minutiae count. Moreover, permutation-based cancellable MLC is able to

maintain the performance of the original MLC while RP-based templates suffer from

EER deterioration. This is caused by the dimensionality reduction effect of RP, where

the features are restricted in a much lower dimension. Fortunately, the deterioration

can be kept minimum at an appropriate dimension.
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Furthermore, comprehensive studies have been done regarding the security and pri-

vacy issues of the proposed scheme. Results show that it excels in both unlinkability

and entropy which prove its resistance against linkage attack and brute force attack

respectively. Although the compromise of the algorithm parameters may reduce the

effort of reversing the MLC template by brute force, the MLC algorithm remain math-

ematically irreversible. Hence, the proposed algorithm has moderate non-invertibility.

Comparing the two MLC types, MLCN and MLCD yield almost similar security and

privacy strength.

From the aspect of computational complexity, the proposed efficient MLC algorithm

has successfully reduced the time complexity fromO(N2
mDm) toO(NmDm), or the run-

ning time by more than half. Both MLCN and MLCD share the same time complexity

and have similar running time.

In a nutshell, the proposed cancellable fingerprint template generation scheme fulfils

the criteria set in 1.3. Not only that the recognition accuracy is comparable to existing

methods in the literature, the proposed scheme also provides high security and privacy,

and is computationally efficient. The MLCD algorithm can be seen as an offer of trade-

off between performance and security.
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CHAPTER 4

Minutiae Set to Feature Vector (S2V)

Transformation via Kernel Subspace

Analysis

4.1 Background

A minutiae-based cancellable fingerprint template, coined as the MLC has been in-

troduced in the previous chapter. Like most minutiae-based methods discussed in

section 2.2.1, MLC produces an unordered and variable size set of minutia vectors.

Such biometric template hinders its adaptability in several applications such as bio-

cryptosystems, continuous classification in fingerprint indexing1 [185], vector component-

specific analysis for dynamic quantization and SVM classifier2 and thus, S2V transfor-

mation is essential.

In this chapter, a novel S2V transformation technique based on kernel subspace analy-

sis is proposed. Kernel subspace analysis turns linear subspace models into non-linear

models by applying the kernel trick. With the use of kernel functions, kernel trick op-

erates in a high-dimensional and implicit feature space without actually computing the

values of the data in that space. First of all, the two possible choices of linear subspace

1Indexing of minutiae-based fingerprint templates (e.g. [183,184]) usually involves repetitive matching
of local fingerprint structures. More efficient fingerprint indexing method employ hash-based technique
[184] to speed up the fingerprint retrieval process. If the fingerprint template is globally ordered and
fixed-length, it can be represented as a point in the continuous space and direct comparison between two
templates using standard distance metrics is made possible.

2A SVM model represents the input data as points in a fixed-dimension space, which are then mapped
into another fixed-dimension space so that the samples of separate classes are well-divided.
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analysis methods commonly used in the realm of biometrics are briefly described be-

low:

• Principal components analysis (PCA): PCA defines an orthogonal subspace that

optimally describes the variance among the input data. It can be done by per-

forming eigenvalue decomposition on the data covariance matrix. The final out-

come is computed by projecting the input data onto the mutually orthogonal

eigenvectors, sorted in descending order of the corresponding eigenvalues. This

essentially puts the greatest variance in the first dimension of the projected out-

put so that it can account for as much variability in the input data as possible.

This is particularly useful in dimensionality reduction where only a small num-

ber of dimensions are required to preserve the information in the original data.

Besides the standard linear PCA, other variants of the PCA model include non-

linear PCA [186], kernel PCA [187] and sparse PCA [188]. PCA and its variants

have been successfully implemented for face recognition [189–191] and palmprint

recognition [192] for feature extraction.

• Linear discriminant analysis (LDA): While PCA does not take into account the

classes of the input data, LDA aims at deriving linear combinations of variables

which best describe the classes of data. The covariance matrices of different

classes are calculated separately and pooled prior transformation through the

discriminant function. LDA is also known as the Fisher’s linear discriminant.

Fisherfaces [193] and kernel-based Fisherfaces [194] are two instances of the ap-

plication of LDA model in biometric authentication.

The major difference between LDA and PCA is that the former requires class-labelling

of the training observations. In the case of fingerprint recognition, a class represents

a unique fingerprint. In practice, the number of fingerprints (or the number of users)

in the system database may grow when new users are enrolled into the system. This

makes the training process of LDA intractable as new classes would have to be added.

Therefore among the statistical analysis methods, the PCA model is more suitable for

the S2V transformation purpose. However, linear PCA does not accept unordered and

variable-size dataset as the input. In this thesis, we exploit the flexibility of kernel PCA

(KPCA) in its input data type to achieve the transformation. Part of the work presented

in this chapter has been published [195].
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4.2 Related Work on S2V Transformation

Sutcu et al. [107] used a local point aggregation approach which constructs random

cuboids on the three-dimensional space (x-coordinate, y-coordinate and orientation)

and produce a histogram based on the number of minutiae enclosed in each cuboid.

This work was extended by Nagar et al. [108], in which more discriminative features

were used for binning, such as the distance from minutiae to the nearest boundary,

the average and standard deviation of minutiae coordinates. Besides, highly-correlated

bits are eliminated to improve the performance. Moreover, Gudkov and Ushmaev [196]

employed random minutiae cluster selection and performed matching on the fixed

number of selected minutiae only. However, this method suffers great loss in accuracy

due to the possibility of indistinctive minutiae being chosen. These histogram-based

methods operate on the spatial domain of minutiae, which directly utilizes the ISO tem-

plate of minutiae in S2V transformation, and thus require fingerprint pre-alignment.

Moreover, Bringer and Despiegel [47] proposed a method to generate binary finger-

print feature vector from minutiae vicinities, in which each minutia is represented by

a vicinity vector. These vicinities are then matched against a set of N representative

vicinities. A N-bit binary string is acquired by thresholding the maximum score for

each representative vicinity. Another histogram-based approach was introduced by

Farooq et al. [100] to convert minutiae set into a fixed-length binary template. Initially,

the attributes of each minutiae triplet are converted into a N-bit string. The final bit-

string is generated by identifying the triplet patterns which only appear once in the

fingerprint out of the histogram of length 2N . A more sophisticated technique, namely

the k-means algorithm was used by Vij and Namboodiri [197] to determine the repre-

sentative features in order to attain better performance.

Luo et al. [198] extends the idea of MCC local descriptor into global MCC. Instead of

encoding the vicinity of each minutia, the global MCC encodes the entire fingerprint

region based on reference points so that only a fixed number of global MCCs are pro-

duced. The reference points should be stable across different samples of a fingerprint.

Further, Xu et al. [136] presented a novel fixed-length fingerprint feature known as

the spectral minutiae. In their method, each minutia is expressed by an impulse func-

tion and the spectral representation of the minutiae is obtained by performing discrete

Fourier transform on the aggregated impulses in the polar-logarithmic domain. Hence,

the feature vector generated is invariant to translation, rotation and scaling. Instead of
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magnitude spectrum, Nandakumar [137] used the minutiae phase spectrum represen-

tation to transform an unordered minutiae set into a fixed-length vector, resulting in

a better accuracy. However, the improvement in accuracy is marginal without pre-

alignment using the local features. These local features are represented in a variable-

size set.

In summary, the S2V transformation methods in the literature can be primarily cate-

gorized into: i) the histogram-based approach [47, 100, 107, 108, 196–198] which per-

form minutiae binning based on pre-defined prototypes; and ii) the spectral analysis

approach [136, 137] which converts the minutiae map into a bit-plane and obtain the

frequency spectrum via Fourier transform. For the former approach, the bin definition

algorithm used for histogram generation is vital in determining the information preser-

vation property of the S2V transformation and thus, has to be prudently designed. As

for the latter, the minutiae are originally represented in the continuous space. There

are bound to be errors when discrete Fourier transform is performed on a continuous

image.

Apart from fingerprint recognition, S2V conversion is also much researched in other

fields of study. A multi-interface tool named Sally [199] was developed to embed

strings in vector spaces by using the bag-of-words model. The tool demonstrated high

efficiency even with large-scale data, but the classification performance was not dis-

cussed. Spillmann et al. [200] proposed a strings to real vector transformation by calcu-

lating the edit distances of the query string to the predefined prototypes. The prototype

selection strategy was designed so that there is no redundancies and outliers, and that

the prototypes are uniformly distributed. The transformed data could achieve 95%

recognition rate in bold-face digit recognition by using SVM with radial basis func-

tion (RBF) kernel. Furthermore, Sonnenburg et al. [201] demonstrated a kernel-based

feature vector extraction method on DNA sequences.

4.3 Preliminary: KPCA

The technique of kernel substitution is a way of observing an arbitrary mapping from

the data space, {X(i)} (X(i) ∈ RDx ) into the feature space, {Φ(X(i))} (Φ(X(i)) ∈ RD′x )

without having to compute the mapping explicitly, with i ∈ [1, N] and N being the

number of data observations in general. Combining the kernel trick with PCA obtains a

non-linear generalization of PCA called KPCA [187]. In the transformed feature space,
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the covariance matrix is

Cov =
1
N

N

∑
i=1

Φ(X(i))Φ(X(i))
T (4.3.1)

for Cov ∈ RD′x×D′x and thus the eigenvalue equation is

λε = Covε, (4.3.2)

where ε and λ are the eigenvectors and eigenvalues of Φ(X(i)). ε is given by a linear

combination of Φ(X(i)) and it can be written in the form

ε =
N

∑
i=1

ε̂Φ(X(i)). (4.3.3)

By substituting (4.3.1) and (4.3.3) into (4.3.2) and multiplying both sides by Φ(X(i))
T we

get

Nλε̂ = Kε̂, (4.3.4)

where K ∈ RN×N is the Gram matrix and ε̂ is the normalized eigenvectors of K. The

Gram matrix or the kernel function can be expressed in the inner product form

K = k(X, Y) = 〈Φ(X), Φ(Y)〉 = Φ(X)TΦ(Y). (4.3.5)

KPCA allows one to calculate the projection of the feature vector onto the principal

components εp ⊂ ε through the kernel function

Y = εT
pΦ(X) = ε̂pk(X, Y), (4.3.6)

where Y ∈ RNp and ε̂p ⊂ ε̂ with Np being the number of principal components

extracted. The polynomial kernel k(X, Y) = (XTY)n [187] and the Gaussian kernel

k(X, Y) = exp(−‖X− Y‖2/2σ2) [202] has been successfully applied in KPCA.

KPCA has been widely used in various pattern classification problems, such as nov-

elty detection [203], active shape models detection [204], fault detection of non-linear

processes [205] and face recognition [190]. In all the examples, KPCA is used to ex-

tract features from the original fixed-dimension data space. In this thesis, however,

we employ KPCA for an unconventional purpose — to convert variable-size data into

fixed-length representation.
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4.4 Nomenclature

Symbol Description

Ω, Ω̂ MLC fingerprint template before and after can-

cellable transformation

Nspu number of training samples per user

Nu number of users

Nt total number of training samples

Ωtrain training MLC templates for KPCA

Ktrain training kernel matrix

Sg global similarity between two fingerprints

σ scaling parameter of Gaussian kernel

ε̂ eigenvectors of the training kernel matrix

ε̂p ∈ RNt×Np selected principal components of the training

kernel matrix

Np number of principal components selected, also

the dimension of the fingerprint template after

KPCA

Ktest testing kernel matrix

VKPCA ∈ RNp fixed-length fingerprint template generated

through KPCA

V̂KPCA ∈ RDr cancellable fixed-length fingerprint template

generated through KPCA

Dr dimension of the cancellable fixed-length tem-

plate

4.5 Proposed S2V Transformation

Regardless of the original data structure, KPCA is able to produce a fixed-length fea-

ture by performing PCA on a transformed data space without computing the trans-

formation explicitly. Here, we exploit this characteristic of KPCA to convert the MLC

template into a fixed-length feature vector. It may apply to both cancellable (Ω̂) and

non-cancellable MLC (Ω). The non-cancellable template is used for methodology illus-

tration in this section. As conventional kernel functions (i.e. polynomial kernel, radial
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basis functions and sigmoid kernel) cannot be directly implemented on variable-size

data, we introduce a novel non-linear kernel function specifically for minutiae-based

algorithms.

Figure 4.1 summarizes the operations involved in the proposed KPCA-based S2V trans-

formation. It consists of a training stage and a transformation stage as described below:

1. Training stage: The pseudo code of the training stage is given in Algorithm 4.1.

Suppose Nspu samples are taken from every user, the total number of training

samples is Nt = NspuNu, where Nu is the number of users. The Gram matrix

Ktrain ∈ RNt×Nt is first computed by using the Gaussian-like matching function

of MLC
Ktrain(ij) = k(Ωtrain(i), Ωtrain(j))

= exp{−[1− Sg(Ωtrain(i), Ωtrain(j))]
2/2σ2},

(4.5.1)

where Ωtrain(i) refers to a training sample from the training set, Ωtrain and Sg

is the matching score between two variable-size templates as derived in (3.5.3).

With Ktrain obtained, the eigenvectors ε̂, and subsequently the principal compo-

nents ε̂p can be extracted using (4.3.4), where ε̂p ∈ RNt×Np with Np denoting

the desired number of principal components and Np < Nt. Since the minutiae

extracted for a fingerprint are different each time the fingerprint is scanned, the

term Sg(Ωtrain(i), Ωtrain(j)) in (4.5.1) produces non-binary similarity score ranging

from 0 to 1, resulting in a continuous Gram matrix rather than a discrete ma-

trix. Also, note that large Nt results in large matrix Ktrain and may cause memory

shortage error when performing eigen decomposition. In such case, incremental

eigen decomposition [206] or incremental PCA [207] algorithms may be applied.

Some of these algorithms claim to have achieved comparable performance as the

original PCA.

2. Transformation stage: Algorithm 4.2 depicts the pseudo algorithm of the transfor-

mation stage. Given an input fingerprint template, Ω, the corresponding kernel

matrix Ktest is constructed so that the matrix elements are computed as follow:

Ktest(i) = k(Ωtrain(i), Ω)

= exp{−[1− Sg(Ωtrain(i), Ω)]2/2σ2},
(4.5.2)

for i ∈ [1, Nt] and thus, Ktest ∈ RNt . After that, substitute ε̂p and Ktest into (4.3.6)

to obtain a fixed-length feature vector, hereafter denoted as VKPCA ∈ RNp .
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Algorithm 4.1: KPCA-based S2V training
Data: Ωtrain, Np, σ
Result: ε̂p

1 begin
2 Nt ←− size(Ωtrain)
3 Ktrain(Nt, Nt)←− 1
4 for i ∈ [2, Nt] do
5 for j ∈ [1, i− 1] do
6 Ktrain[i, j]←− MLCMatch(Ωtrain[i], Ωtrain)[j] // refer to Algorithm

3.1 for details of MLCMatch()
7 Ktrain[i, j]←− exp(−(1−Ktrain[i, j])2/2σ2)

8 end
9 end

10 Ktrain ←→ Ktrain + triu(Ktrain)
T // make Ktrain symmetric by reflecting

the upper triangle along the diagonal
11 ε̂p ←→ eigvector(Ktrain)[1 : Np]

12 end

Algorithm 4.2: KPCA-based S2V transformation
Data: Ω, Ωtrain, ε̂p, σ
Result: VKPCA

1 begin
2 Nt ←− size(Ωtrain)
3 Ktest ←− 0
4 for i ∈ [1, Nt] do
5 Ktest[i]←− MLCMatch(Ωtrain[i], Ω) Ktest[i]←− exp(−(1−Ktest[i])2/2σ2)
6 end
7 VKPCA ←− Ktest × ε̂p

8 end
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Figure 4.1: An illustration of the KPCA-based S2V transformation. In the example, five training samples, each with different number of minutiae,
are used for kernel construction and principal components extraction. In the transformation process, the final product, VKPCA is a fixed-length vector
regardless of the number of minutiae in the input fingerprint.
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Since the kernel function used is not a conventional kernel function, it is necessary to

verify that the resulting training kernel matrix, Ktrain is symmetric and positive semi-

definite. We examine these criterion through Mercer’s condition [208] as elaborated in

Theorem 1 (appendix B) even though it is said that non-Mercer kernels do not neces-

sarily deteriorate the performance [209].

In addition to Lemma 1 (appendix B), we propose the following to validate the kernel

function used:

Proposition 1. Let k1(x, y) be an admissible kernel over the data space X × X, X ⊆ Rn and

0 ≤ k1(x, y) ≤ 1, then k(x, y) = exp(−k1(x, y)) is also a kernel.

Proof for Proposition 1. By substituting the proposed kernel into the left hand side of Eq.

(B.0.2), with Taylor series expansion we get

∫∫
k(x, y)g(x)g(y)dxdy =

∫∫
exp(−k1(x, y))g(x)g(y)dxdy

=
∫∫ ∞

∑
i=0

(−k1(x,y))i

i! g(x)g(y)dxdy

=
∫∫ ∞

∑
j=0

(k1(x,y))2j

(2j)! g(x)g(y)dxdy

−
∫∫ ∞

∑
j=0

(k1(x,y))2j+1

(2j+1)! g(x)g(y)dxdy.

(4.5.3)

Since k1(x, y) is a kernel and by using Lemma 1, we can deduce that
∫ ∫ (k1(x,y))i

i! g(x)g(y)dxdy ≥

0 for i ∈N. Also, since 0 ≤ k1(x, y) ≤ 1, we have

∫∫
(k1(x, y))2j

(2j)!
g(x)g(y)dxdy ≥

∫∫
(k1(x, y))2j+1

(2j + 1)!
g(x)g(y)dxdy, (4.5.4)

and hence ∫∫
exp(−k1(x, y))g(x)g(y)dxdy ≥ 0 (4.5.5)

Consequently, the proof showing that the kernel function in Eq. (4.5.1) is a valid kernel

is as follow:
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Proof that Eq. (4.5.1) is a valid kernel. According to the steps of matching algorithm dis-

cussed in section 3.5, we can decompose Eq. (4.5.1) into

Ktrain(ij) = k(Ωtrain(i), Ωtrain(j))

= exp{−[1− Sg(Ωtrain(i), Ωtrain(j))]
2/2σ2}

= exp

−(1−
∑
i,j
<ωtrain(im),ωtrain(jn)>/(‖ωtrain(im)‖2

2+‖ωtrain(jn)‖2
2)

min(Nm(i),Nm(j))

)2

/2σ2


= exp(−1/2σ2) exp

−(∑
i,j
<ωtrain(im),ωtrain(jn)>/(‖ωtrain(im)‖2

2+‖ωtrain(jn)‖2
2)

√
2σ min(Nm(i),Nm(j))

)2


exp

(
∑
i,j
<ωtrain(im),ωtrain(jn)>/(‖ωtrain(im)‖2

2+‖ωtrain(jn)‖2
2)

σ2 min(Nm(i),Nm(j))

)
,

(4.5.6)

where m and n represents the indices of any matchable minutiae pair in Ωtrain(i) and

Ωtrainj respectively and Nm(i) and Nm(j) are the numbers of minutiae in the two fin-

gerprint templates. Plus, the sum of squared `2 norm, (‖ωtrain(im)‖2
2 + ‖ωtrain(jn)‖2

2) is

always positive. As the inner product in (4.5.6) is already a known kernel, by using

Lemma 1 and Proposition 1, it is plain that k(Ωtrain(i), Ωtrain(j)) is a valid kernel.

Now that the proposed kernel function is validated, it is also important to make sure

that the value of σ in (4.5.1) and (4.5.2) is not too small or too large to avoid ill-formed

kernel matrix. As Sg(Ωtrain(i), Ωtrain(j)) (or Sg(Ωtrain(i), Ω)) is a normalized similar-

ity score between two positive vectors, the value of 1 − Sg(Ωtrain(i), Ωtrain(j)) (or 1 −

Sg(Ωtrain(i), Ω)) ranges from 0 to 1. If σ is too small or too large, it becomes the domi-

nant factor in the exponential and equalizes the output value regardless of the similar-

ity score. Besides, a good kernel with the intuition of similarity measure should satisfy

the rule of thumb [210]:

(k(x, y)|(x = y)) > (k(x, y)|(x 6= y)). (4.5.7)

4.6 Experiments and Analyses

4.6.1 Testing Protocol

Note that the same fingerprint datasets (FVC2002 DB1, FVC2002 DB2, FVC2004 DB1

and FVC2004 DB2 as mentioned in section 3.6.1) are used throughout this thesis for fair

comparison. In Chapter 3, two MLC algorithms have been proposed, namely MLCN
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and MLCD, and the latter has been proven to be more superior than the former in

performance with insignificant loss in the security. Therefore, the MLCD algorithm,

along with its best-performing parameters set as concluded in Chapter 3, is used in the

experiments in this chapter.

Also, cancellable transformation by RP provides better security than by permutation

with minimal performance trade-off, hence RP is chosen as the revocation method

(refer to section 3.4 for the details of RP). The experiments in this chapter follow the

phase-wise sequence highlighted in Figure 4.2. Instead of directly appending the S2V

transformation to the cancellable template generation procedure proposed in Chapter

3, it is computationally more efficient to perform cancellable transformation after S2V

conversion.

 

MLC 
Algorithm 

(MLCD) 

S2V 
Transformation 

via KPCA 

Cancellable 
Transformation 

via RP 

Minutiae Set 
Fixed-Length 
Cancellable 
Fingerprint 

1 

2 

Figure 4.2: EERs of the proposed fixed-length representation of MLC via KPCA-based
S2V transformation while altering Np and σ. The examinable outcomes are labelled
with 1 and 2.

The proposed S2V transformation via KPCA is a training-based algorithm. Out of the

8 samples per fingerprint, 63 are allocated for training purpose while the remaining

samples are used for matching. That makes up 600 training samples and 200 testing

samples in each dataset. As a result, there are 100 genuine matchings and 9900 impos-

tor matchings for each dataset. The testing procedure is iterated fivefold with different

randomly selected training and matching samples to obtain results that are more rep-

resentative and unbiased. Also note that since KPCA operates in the inner product

space, the fixed-length vectors are compared with the inner product similarity. On the

other hand, a more common `2-based metric, namely one minus normalized Euclidean

distance, is used to match two cancellable templates:

S = 1−
‖V̂′KPCA − V̂′′KPCA‖2

‖V̂′KPCA‖2 + ‖V̂′′KPCA‖2
, (4.6.1)

where V̂′BoM and V̂′′BoM are two instances of the proposed KPCA-based cancellable fin-

gerprint representation.

3Preliminary experiments had been done to determine the number of training samples required to
achieve optimal performance with the fingerprint datasets available.
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4.6.2 Effect of KPCA Parameters on Performance

In this section, the effect of changing the number of selected principal components, Np

and the Gaussian parameter, σ on the performance of KPCA-based S2V transformation

is studied. The results discussed in this section correspond to the first examinable out-

come highlighted in Figure 4.2. Figure 4.3 depicts the performance of the fixed-length

representation on different datasets with Np ranging from 50 to 300 with a step size of

50 and five σ values from 0.2 to 20. The performance suffers a drastic fall when the

value of σ is extremely small (σ = 0.2) or extremely large (σ = 20) as predicted. The

EERs for σ = 1, σ = 2 and σ = 10 are similar to each other. Statistically, σ represents the

standard deviation and controls the width of a Gaussian distribution. Three zero-mean

Gaussian distribution with σ of 0.2, 0.5 and 20 are shown in Figure 4.4. As discussed

before, the numerator of the exponent in (4.5.1) and (4.5.2) always ranges from 0 to 1.

When σ = 0.2, a minor change in the input value results in a large difference in the out-

put, making the kernel function too sensitive to the similarity score; on the other hand,

when σ = 20, the output values corresponding to input value of 0 and 1 are almost

identical, creating a constant Gram matrix regardless of the similarity score. Compared

to the two cases above, σ = 0.5 has more adequate and healthier input (similarity score)

to output (Gram matrix) ratio and thus, yielding better performance.

In the experiments, the exhaustive search approach is used to determine the number of

retained principal components, Np so that the recognition accuracy is optimized. From

Figure 4.3, it is notable that the EER is at the lowest when Np is between 100 to 150.

For example when σ = 0.5, the lowest EERs for FVC2002 DB1 and FVC 2004 DB1 are

0.20% and 4.99% respectively at Np = 150, while the lowest EERs for FVC2002 DB2 and

FVC2004 DB2 are 1.33% and 7.38% respectively at Np = 100. Since the principal com-

ponents are input variables ordered in such a way that the first components account for

as much variability in the data as possible, if the number of retained components is too

small, there is insufficient relevant information taken into account. On the contrary, if

too many components are kept, the analysis may include noisy and trivial components.

Besides the exhaustive search approach, the most common rule for choosing the num-

ber of principal components is the Kaiser-Guttman criterion [211–213]. It is a stopping

rule for PCA which states that only components with eigenvalue of greater than one

should be retained to best summarize the input variables. Following this criterion, the
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(a) FVC2002 DB1. (b) FVC2002 DB2.

(c) FVC2004 DB1. (d) FVC2004 DB2.

Figure 4.3: EERs of the proposed fixed-length representation of MLC via KPCA-based
S2V transformation while altering Np and σ. The shaded areas represent the lowest
EER regions.
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Figure 4.4: Gaussian distributions with zero mean and three different σ values.

numbers of principal components chosen for the four datasets are 155, 128, 163 and 153

respectively, as observed from the scree plots in Figure 4.5.

Furthermore, the scree plots help in visualizing the relationship between eigenvalues

and the number of principal components. Another strategy is to examine the trend

of the scree plot and find the point where it stops to descend precipitously and levels

out eventually [214]. By this, the numbers of principal components taken are approx-

imately 120, 104, 114 and 108 for the four datasets in order. This estimation agrees

more to the actual results by exhaustive search compared to using the Kaiser-Guttman

criterion.
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Figure 4.5: Scree plots for the proposed KPCA method on different fingerprint
datasets with σ = 0.5. The blue horizontal dotted lines in the plots indicate the Kaiser-
Guttman criterion; the black vertical dotted lines and the red vertical dotted lines mark
the number of principal components chosen according to exhaustive search and the
Kaiser-Guttman criterion respectively.

4.6.3 Verification Rate of Cancellable Fixed-Length Representation

The results in this section correspond to the second (or final) outcome in Figure 4.2,

where RP is applied for cancellable transformation. For the convenience of comparison,

the experiments in this section use the same set of parameters for all four datasets, i.e.

σ = 0.5 and Np = 125 (an average between 100 and 150).

The manipulated parameter in this experiment is the reduced vector dimension after

RP, Dr. From Figure 4.6, it is obvious that the EER increases as Dr decreases. This agrees

with the observation in section 3.6.3, for cancellable MLC template. There is bound to

have loss of information when the original data space is compressed into a much lower

dimension. What is different from the results in section 3.6.3 is that the performance

of the cancellable fixed-length representation is able to surpass that of before RP. The

cause of the difference observed lies with the data distribution of the fingerprint tem-

plate prior RP. The elements in the MLC template are sparsely distributed while the
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KPCA-generated vector is normally distributed. RP has been proven to preserve in-

formation in normally distributed data [175], but does not work as well for unique

distribution like MLC (section 3.6.3). Furthermore, unlike direct vectors matching, the

matching of two unordered and variable-size templates (refer to section 3.5) is complex

and might not be exactly adaptable to RP.
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Figure 4.6: EERs of the proposed cancellable fixed-length fingerprint representation
via KPCA-based S2V transformation and RP under stolen-key scenario.

In Figure 4.6, most plots have EER approximates to the original EER when 40 < Dr <

60, except for FVC2002 DB1, which achieves equivalent EER when 60 < Dr < 80.

The EERs continue to drop tremendously afterwards, especially for the two FVC2004

datasets. Taking Dr = 60 as an example, the EERs for the four datasets are 0.51%, 2.00%,

4.29% and 5.51% respectively. These results correspond to the stolen-key scenario. The

genuine-key scenario on the other hand, is able to achieve 0% EER for all datasets.

Table 4.2 shows the performance of the final outcome corresponding to σ = 0.5, Np =

125 and Dr = 60. It is noteworthy that there is a great improvement in the EER com-

pared to the original MLC. It proves the information preservation ability of the S2V

transformation in the context of minutiae-based fingerprint template. Not only that,

KPCA projects the templates onto a non-linear and orthogonal subspace so that the

templates of different users are well-separated and thus, is able to enhance the verifica-

tion accuracy of the final output. Figure 4.7 visualizes the improvement in performance

by comparing the genuine-impostor distributions. The overlapping area between the

distributions is greatly reduced, indicating a better genuine-impostor separation. Be-
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sides, the proposed method outperforms all the other benchmarking cancellable fin-

gerprint templates.

Table 4.2: Summary of the recognition accuracy (in terms of EER) of the proposed
fixed-length cancellable fingerprint template compared to other existing methods.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
Proposed method

Original MLC (before
S2V transformation,
Chapter 3)

2.83 2.25 9.16 8.89

KPCA-based method
(after S2V transforma-
tion)

0.51 2.00 4.29 5.51

Existing S2V transformation methods (both cancellable and non-
cancellable)

Nagar et al.1 [108] - 3.00 - -
Bringer and De-

spiegel2 [47]
- 1.70 - -

Vij and Namboodiri2

[197]
1-2 1-2 7-8 8-9

Nandakumar2 [137] 0.80 0.70 - -
1cancellable method.
2non-cancellable method.
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Cancellable MLC template impostor distribution (=0.0568, 2=0.0016)

Fixed‐length cancellable template genuine distribution (=0.3968, 2=0.0051)

Fixed‐length cancellable template impostor distribution (=0.0215, 2=0.0009)

Figure 4.7: Comparison of genuine-impostor distribution between original MLC tem-
plate and the proposed fixed-length representation for FVC2002 DB1.
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4.6.4 Security and Privacy Analyses

The security and privacy of the proposed cancellable fixed-length fingerprint template

is evaluated the same way as the MLC template in section 3.6.4, that is, from the aspect

of non-invertibility, unlinkability and entropy of the final vector.

Non-invertibility: Resistance against Reverse Attack

Unlike the MLC template, the KPCA-based fixed-length representation is non-sparse.

Without the sparseness constraint, the `1-minimization problem in (3.6.4) has to be re-

placed with `2-minimization. Given that the adversary has the knowledge of the ran-

dom projection matrix (R ∈ RNp×Dr ), recovering the original vector (VKPCA ∈ RNp )

from the reduced vector (V̂KPCA ∈ RDr ) is equivalent to solving the optimization prob-

lem:

min ‖VKPCA‖2 subject to RVKPCA = V̂KPCA; (4.6.2)

Since Dr < Np, the equation above represents an underdetermined linear system and

there are infinite solutions for VKPCA. Even if the training samples are revealed, the

adversary would not know which templates belong to the user, so it does not provide

additional condition for solving the equation.

For the S2V transformation phase, as only the first Np principal components are chosen,

the projection onto these principal components also results in dimensionality reduc-

tion. Therefore, it gives the adversary another optimization problem similar to (4.6.2)

to solve. Provided that the Gram matrix can be exactly recovered (which requires im-

mensely large number of trials through the two stages of optimization problems), the

adversary can guess which training samples belong to the genuine user by observing

the values of the Gram matrix. As the Gram matrix is essentially a matrix of similari-

ties, the higher the value of an element in the matrix, the higher the possibility that the

corresponding training sample belongs to the user.

Besides guessing the user’s training samples from the Gram matrix, the adversary

could also generate the cancellable templates corresponding to the stored training sam-

ples and find the one(s) most similar to the stolen template. Even so, the training sam-

ples used for KPCA are MLC templates, thus protected by the MLC algorithm. Refer

to section 3.6.4 for the non-invertibility analysis of the MLC algorithm. With the multi-
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layer protection, including the MLC algorithm, S2V transformation (KPCA) and RP,

the raw minutiae information is kept secret from the adversary.

Unlinkability: Resistance against Linkage Attack

The unlinkability test is performed by computing the separability between templates

of the same fingerprint with multiple revocation attempts as explained in section 3.6.4.

However, since the fingerprint template is now ordered and fixed-length, the number

of matchable minutiae pairs is replaced with the similarity score between two vectors.

Also, training is required for the proposed KPCA-based S2V transformation, so the

unlinkability test follows the procedure below:

1. Randomly choose six out of eight samples per fingerprint for KPCA training. The

remaining two are used for testing.

2. Generate five versions of fixed-length cancellable templates as the enrolled tem-

plates from the first testing sample using five distinct revocation key.

3. The second testing sample is assigned another ten keys to produce ten unique

query templates.

4. Match the query templates against the enrolled templates of the same fingerprint

and generate the distribution of similarity scores between the templates. The

separability is calculated based on (3.6.5).

5. Repeat the steps above fivefold with different random samples to obtain an aver-

age separability measure.

In this experiment, Dr = 60 is used. Table 4.3 shows the separability between the same-

key distribution and the different-key distribution for the KPCA-based cancellable tem-

plate. Although the different-key genuine matching does not produce all-zero scores

like that of the variable-size MLC template (refer to Table 3.10), the separability values

are slightly higher. This is because the same-key genuine distribution has very small

variance while the means of the two distributions remain well-separated. Figure 4.8

compares the distributions of the dataset with the best and the worst separability. It is

easily observed that the higher the separability is, the less the intersected area between

the two distributions.

73



CHAPTER 4: MINUTIAE SET TO FEATURE VECTOR (S2V) TRANSFORMATION VIA

KERNEL SUBSPACE ANALYSIS

Table 4.3: Separability of the proposed cancellable fixed-length representation ex-
pressed in the form of “separability(µSKG, σ2

SKG)[µDKG, σ2
DKG]”. µSKG and σ2

SKG rep-
resent the mean and variance of the same-key genuine matching distribution, while
µDKG and σ2

DKG are the equivalent parameters of the different-key genuine matching
distribution. Since the decimal values shown are rounded to the nearest 0.01, any
value that is less than 0.005 are written as <0.005.

FVC2002
DB1

FVC2002
DB2

FVC2004
DB1

FVC2004
DB2

4.59
(0.66,0.01)

[0.29,<0.005]

3.53
(0.68,0.02)

[0.29,<0.005]

3.09
(0.57,0.01)

[0.29,<0.005]

3.21
(0.59,0.02)

[0.29,<0.005]

Table 4.4: Entropy (in bits) of the proposed cancellable fixed-length representation
of fingerprint. The first number represents the average discrete entropy per vector
component and the second number represents the total discrete entropy of the vector.
The number in parenthesis is the average differential entropy per component.

FVC2002 DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
5.14, 308.13

(-1.44)
5.14, 308.43

(-1.44)
5.14, 308.39

(-1.44)
5.14, 308.46

(-1.44)

Entropy: Resistance against Brute Force Attack

Again, the procedure of calculating the entropy follows the formulae in (3.6.6) and

(3.6.8) from section 3.6.4. What is different is that the output is now fixed-length and

ordered, so the entropy of each feature component can be calculated separately and the

total entropy of the entire template is the sum of the entropies of all the components,

that is,

H(V̂KPCA) =
Dr

∑
i=1

H(V̂KPCA(i)), (4.6.3)

where H(V̂KPCA(i)) is the entropy of the ith component of the fingerprint template as

defined in (3.6.6) and (3.6.8).

From Table 4.4, the entropies of all datasets are similar to each other, with 308 bits of

total discrete entropy and 5.14 bits of average entropy per vector component. Although

the total entropies approximate to the ones obtained for cancellable MLC template in

section 3.6.4, the average entropies per component are much higher. The sparseness

of MLC affects the values in the RP-ed template and thus, the entropy is low even

after RP. On the other hand, the fixed-length cancellable template originated from a

normally distributed KPCA-based vector, hence yield higher entropy per component.

The differential entropies are negative due to small variance of the distribution of the

feature components.
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Figure 4.8: Examples of same-key and different-key distributions.

4.6.5 Computational Complexity

The proposed S2V transformation via KPCA consists of a training stage and a trans-

formation stage. The computational complexity of each of the stages are evaluated

individually.

Preliminarily, the matching score calculation between two MLC templates yields time

complexity of O(N2
m). Although two fingerprints may have different number of minu-

tiae, the general term Nm is used to represent the average number of minutiae in any
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fingerprint. In the KPCA training stage (Algorithm 4.1), the matching algorithm is

executed Nt
2 [2(1) + (Nt − 1)(1)] − Nt = 1

2 (N2
t − Nt) times, so the time complexity of

the kernel construction process is O( 1
2 (N2

t − Nt)N2
m), where Nt is the total number of

training samples. If Nt � 1, the expression can be simplified to O(N2
t N2

m). Other

than kernel calculation, the training process also includes eigenvalue decomposition

and the complexity is O(N3
t ). Besides the main algorithm of the S2V transformation, a

complete training process also includes the MLC generation of the Nt training samples.

Therefore, the time complexity of the training stage is O(max(N2
t N2

m, N3
t , NtNmDm)),

where O(NmDm) is the complexity of the MLC generation step (refer to section 3.6.5).

As for the transformation stage, the matching is executed Nt times and the complexity

of kernel construction is O(NtN2
m). Additionally, the principal components projection

step has complexity of O(NtNp). It is known from section 3.6.5 that the complexity of

RP for the vectorized template is O(NpDr). To conclude all, the time complexity of the

entire fixed-length cancellable template generation process is O(max(NtN2
m, NtNp)).

The term O(NpDr) is negligible because Nt > Np > Dr.

From the aspect of CPU runtime, the average training time over four datasets is 3139.78s

and the average time needed for a single template generation is 5.55s. While the num-

ber of training samples used is the same for all datasets (Nt = 600), the average number

of minutiae (Nm) and the MLC dimension (Dm) differ among the datasets. For instance,

since FVC2004 DB2 has the least average number of minutiae (Table 3.2) and the lowest

MLC dimension (Table 3.3 and 3.7), it has the shortest runtime for both stages. Figure

4.9 depicts the breakdown chart of CPU runtime for FVC2004 DB2. In the training

stage, the MLC generation phase takes more than double the time of KCPA training.

Similarly in the template generation stage, MLC generation for a single fingerprint

takes longer than transforming it into a fixed-length vector. Plus, the time taken for

RP is trivial. Therefore, the observation shows that the MLC generation phase is the

bottleneck of the whole process.

Table 4.5: CPU runtime of the proposed cancellable fingerprint template generation
scheme, running on MATLAB environment (Windows 7) with an Intelr CoreTM i5-
2430M 2.40GHz processor.

Stage
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
Training 3083.73s 3649.99s 3325.85s 2499.56s
Template Generation 5.88s 6.60s 5.54s 4.16s
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(a) Training stage.
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Generation of a 
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Transformation) 

<0.01s (RP) 4.16s 

(b) Template generation stage.

Figure 4.9: CPU runtime breakdown chart of training stage and template generation
stage for FVC2004 DB2.

The training algorithm may seem complex and time-consuming at first glance, but it

does not affect the real-life applicability of the proposed scheme as it is processed off-

line. With high-speed computers available nowadays and with more efficient comput-

ing platform, the on-line template generation process can definitely be much shorter

than what is shown in Table 4.5.

4.7 Summary

A S2V transformation technique through kernel subspace analysis has been proposed

in this chapter. Among the subspace analysis models, PCA was chosen to be incor-

porated with kernel method to realize the task due to its adaptability to the minutiae

data. For this purpose, a unique kernel function has been introduced and verified. The

KPCA-based method can be separated into the training stage and the transformation

stage. The former performs analysis on the training samples to obtain the principal

components while the latter transforms the variable-size and unordered input data

into a fixed-length and ordered vector.

In the experiments, the proposed method was implemented in a complete fingerprint

template generation scheme, consisting of the MLC generation phase, the KPCA-based

S2V transformation phase and the cancellable transformation phase via RP. A great

improvement in the verification accuracy was observed after applying the proposed

S2V transformation due to the good data separation introduced by KPCA.
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Furthermore, the fixed-length cancellable template is well-protected by the non-sparse

RP step. Although the training samples stored for KPCA reveals the original variable-

size template (MLC), the samples are not labelled. The adversary is required to attack

the Gram matrix first before knowing which training samples belong to the genuine

user. In addition, the cracking the MLC template is another challenge for the adver-

sary. Such multi-layer protection provides high privacy to the users’ fingerprint data.

Other aspects of analysis such as unlinkability and entropy also show better security

compared to the original MLC template.

Even though the S2V transformation is an additional phase to the previously proposed

cancellable template generation scheme (Chapter 3) and results show that requires ad-

ditional CPU runtime, it poses no complication to the applicability of the proposed

scheme in real-life applications. This is because, the most time-consuming steps (train-

ing) are processed off-line and the on-line operations can be done effectively with cur-

rent computer technology.

Overall, the proposed S2V transformation via KPCA can be considered as an enhance-

ment to the existing scheme from the aspect of performance, security and privacy,

and most importantly, the applicability of the final outcome in various biometrics or

pattern classification systems (note that the motivation of transforming unordered set

to ordered vector is to enable the use of minutiae-based fingerprint templates in bio-

cryptosystems, continuous classification, and sophisticated classifiers and template bi-

narization techniques as discussed in section 4.1).
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CHAPTER 5

S2V Transformation via

Bag-of-Minutiae Modelling

5.1 Background

In addition to the S2V transformation technique presented in the previous chapter, an-

other alternative to transform unordered set to ordered vector is proposed in this chap-

ter, namely bag-of-minutiae (BoM) modelling. The BoM model is derived from the

bag-of-words (BoW) model. It represents a minutiae set by the occurrence of certain

minutia prototypes in the original set. Since two analogous minutiae might not have

the exact same value, the prototypes serve as a guideline of partitioning the minu-

tiae space. Besides text classification, the BoW model has also been implemented in

many image classification problems [215, 216], which is also known as the bag-of-

visual-words model. The keypoint detectors commonly used in bag-of-visual-words

modelling for feature extraction include Laplacian of Gaussian (LoG), scale-invariant

feature transform (SIFT), Hessian Laplace and Hessian Affine. However, these features

do not produce comparable performance as minutiae-based methods do in fingerprint

recognition [85].

The related work for S2V transformation or fixed-length representation of fingerprints

have been presented in section 4.2, so it is omitted in this chapter. The proposed BoM

modelling essentially belongs to the histogram-based approach in the literature cat-

egorization. In this chapter, BoM modelling is demonstrated through both K-means

clustering (hard quantization) and dictionary learning (soft quantization). Some parts

of the results obtained in this chapter has been published in [217].
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5.2 Preliminaries: Dictionary Learning for Soft Quantization

Given a training set Ωtrain ∈ RDm×Nt where Dm is the dimension per minutia and Nt is

the number of minutiae in the training set, the aim of dictionary learning is to partition

the feature space so that the following general objective function is fulfilled:

min
C,B
‖Ωtrain − CB‖2

2 s.t. ∀i, ‖B(i)‖0 ≤ λ, (5.2.1)

where ‖ · ‖0 and ‖ · ‖2 indicates the `0 norm and the `2 norm of vectors respectively,

C ∈ RDm×K is the dictionary containing K atoms with each corresponding to one parti-

tion, B ∈ RK×Nt is the resulting sparse representation, B(i) is the ith column of B and λ,

also known as the target sparsity, indicates the maximum number of atoms a minutia

may be assigned to. The dictionary learnt is usually used for sparse approximation.

In general, dictionary learning is an iterative process with each iteration composes of a

sparse approximation step and a dictionary update step, which are equivalent to minu-

tiae labelling and space partitioning in section 5.4. The sparse approximation step

deduces the sparse representation of Ωtrain corresponding to the dictionary obtained

from the previous iteration, while the dictionary update step re-evaluates the dictio-

nary based on the sparse representation. In this section, we discuss the orthogonal

matching pursuit (OMP) for sparse approximation and K-singular value decomposi-

tion (K-SVD) as the dictionary update algorithm.

5.2.1 Sparse Approximation: OMP

Matching pursuit is a greedy approach towards finding the sub-optimal solution to the

problem described in (5.2.1) given the dictionary, C. It is an iterative process which

removes the selected atoms from the residual at each iteration until the target sparsity

is reached and thus, increases the computational efficiency. The residual is used to

compute the new coefficients by projecting it onto the atoms in the dictionary. OMP

[179] is a popular variant of matching pursuit, in which one atom can only be selected

once so that the projection is orthogonal. The pseudo-code of the OMP algorithm is

presented in Algorithm 5.1.
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Algorithm 5.1: OMP
Data: Ω, C, λ
Result: C

1 begin
2 Nm ←− size(Ω,1)
3 K ←− size(C,2)
4 for i← 1 to Nm do
5 R(0) ←− ω(i) // initialize residual
6 Φ←− ∅

// selected atoms
7 for j← 1 to λ do
8 j←− arg maxk∈[1,K](|〈R(j), C(k)〉|)
9 Φ(j) ←− Φ(j−1) ∪ C(k)

10 B(i) ←− Φ(j)(Φ
T
(j)Φ(j))

−1ΦT
(j)R(j−1)

11 R(j) ←− R(j−1) − B(i)

12 end
13 end
14 end

5.2.2 Dictionary Update: K-SVD

K-SVD can be seen as a generalized framework of K-means algorithm [218]. Within

one dictionary learning iteration, the K-SVD algorithm consists of K sub-iterations

with each corresponding to one atom in the dictionary. At the ith sub-iteration (i ∈

[1, K]), the ith column of the dictionary, C(i) and the ith row of the sparse represen-

tation, B(i∼) are removed from the matrices, and the residual matrix is computed as

ε = Ωtrain −
K\{i}

∑
j=1

C(j)B(j∼). Let ε(i) be the i column of ε, SVD is then computed based

on ε(i)B(i∼) = E∆FT. The updated ith atom is calculated as C(i) = EFT. In a nutshell,

the K-SVD algorithm performs SVD K times in each iteration to update the entire dictio-

nary. Therefore, the computational power required is high. Besides, the approximation

accuracy is unsatisfactory as global optimum is not guaranteed [219]. Several vari-

ants of K-SVD were proposed to improve the performance of the dictionary learnt such

as: i) enhanced K-SVD (EK-SVD) [220] which finds the optimal dictionary size given

a dataset; ii) label-consistent K-SVD (LC-KSVD) [221] which incorporates the concept

of supervised learning; and iii) immune K-SVD (IK-SVD) [222] which introduces the

immune mechanism to improve the characteristics of global minimum.
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5.3 Nomenclature

Symbol Description

Ω MLC template of a fingerprint

Ωtrain training minutia vectors (MLCs) for BoM mod-

elling

Dm dimension per minutia vector

Nt total number of training samples

K dictionary size for a posteriori BoM modelling,

also the dimension of BoM-generated finger-

print vector

C dictionary trained for a posteriori BoM mod-

elling

B sparse representation of the input minutia vec-

tors (MLCs)

I number of iterations for the assign-

ment/update process

λ sparsity target for dictionary learning

VBoM ∈ RK fixed-length fingerprint template generated

through BoM modelling

V̂BoM ∈ RDr cancellable fixed-length fingerprint template

generated through BoM modelling

Dr dimension of the cancellable fixed-length tem-

plate

Nϕ number of orientation levels in MLC construc-

tion

l length of lines for MLC construction

Nl number of lines for MLC construction

d distance between two sample points

r radius of circles centring at the sample points
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Figure 5.1: Three design choices of the BoM model.

5.4 Proposed BoM Modelling

5.4.1 The BoM Model

Bianconi and Fernández [223] discussed the five dichotomous design choices of BoW

modelling for image classification but not all are applicable in the context of minutiae-

based fingerprint recognition. In this section, we explain the three design approaches

of the proposed BoM model, each with two alternative operational modes as illustrated

in Fig. 5.1.

Minutiae Representation

The choice of minutiae representation refers to the feature space which BoM operates

on. It can be either the three-dimensional spatial representation or the descriptor-based

representation. The former directly utilizes the ISO template of minutiae (except for the

minutia type) in space partitioning; whereas the latter transforms the minutiae into the

descriptor space prior partitioning.
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The spatial representation of a minutia indicates the location of the minutia in the fin-

gerprint image and its ridge orientation. The minutiae aggregations approach [107,108]

is one example of creating clusters based on this representation. Since translation and

rotation often occurs in fingerprint images and are unpredictable, the drawback of us-

ing such representation is that the partitions should move accordingly, and thus are

impossible to define. One solution to this issue is to perform fingerprint pre-alignment

so that the fingerprints are properly aligned with the space where the partitions are

constructed on. Although the vast advancement in the current computer technology

has set aside the concern over high computational time of fingerprint pre-alignment,

the errors in fingerprint pre-alignment can affect the accuracy of the transformed fin-

gerprint template.

On the other hand, the descriptor-based representation transforms the minutiae into

a translation- and rotation-invariant local space and consequently eliminates the need

for fingerprint pre-alignment. Descriptors employed for set-to-vector transformation

in the literature are the fixed-radius vicinity [47] and minutiae triplets [100,197], among

which the fixed-radius descriptor is more robust against local non-linear distortions.

However, descriptors of higher complexity such as minutia cylinder-code (MCC) [38]

and MLC (Chapter 3) are more suitable in BoM as the dimension of the minutia vectors

generated is adjustable.

Space Partitioning

Two alternative options of partitioning the feature space include a priori and a posteri-

ori. A priori partitioning is independent of data and the resulting partitions are usually

user-defined. For example, the random cuboid clustering technique [107, 108] creates

randomly chosen partitions of different sizes on the feature space regardless of the

minutiae distribution. As the minutiae are not uniformly distributed, redundant and

overpopulated partitions are unavoidable. On the contrary, a posteriori partitioning

requires the knowledge of data distribution and the partitions are learnt from the pre-

liminary data. The clusters selection technique used by Bringer and Despiegel [47] and

Farooq et al. [100] demonstrate the a posteriori partitioning, in which cluster centroids

are selected from the training data through certain criteria. A more advanced technique

was used by Vij and Namboodiri [197] where the partitions are learnt through K-means

algorithm. The proposed BoM model is in fact a generalized set-to-vector transforma-
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tion framework of that presented in [197]. Other algorithms such as various supervised

and unsupervised learning algorithms are also possible approaches towards a posteriori

partitioning.

Minutiae Labelling

Minutiae labelling refers to the process of assigning minutiae to the most appropriate

partition(s). The options are hard labelling (or hard quantization) and soft labelling

(or soft quantization). The former assigns each minutia to exactly one partition only;

while the latter allows a minutia to be associated with multiple partitions. All existing

methods [47, 100, 107, 108, 197] adopts the concept of hard labelling.

Besides K-means clustering, other possible hard labelling techniques include K-means++,

K-medians clustering and self-organizing map. The output of these labelling tech-

niques is binary — a minutia either belongs a partition or not. Albeit computation-

ally simple, hard labelling is sensitive to noisy data and outliers. Besides, it is not able

to handle two or more highly overlapping classes. As opposed to that, soft labelling

introduces fuzziness to the partition borders so that close-to-border minutiae may be

assigned to more than one partition. By introducing tolerance in minutiae assignment,

the quantization error may be reduced. Soft labelling produces a real-numbered weight

indicating the strength of association between a minutia and a partition as the output.

As the minutiae obtained for the same fingerprint are usually different (either trans-

lated, rotated, or missing), such weight value helps to reduce the error caused by mis-

labelling a minutia when distortions occur. A few instances of soft labelling include

fuzzy C-means clustering, sparse approximation and Gaussian mixture modelling.

5.4.2 S2V Transformation using the BoM Model

In this thesis, we demonstrate two realizations of the BoM model, each from one design

option of minutiae labelling, i.e. hard quantization and soft quantization. Hard quan-

tization is implemented with K-means clustering while it’s contra is realized by using

dictionary learning. Both of them belongs to a posteriori partitioning which requires

training for dictionary prior the transformation. The training stage and the transfor-

mation stage are detailed below:
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Algorithm 5.2: Hard quantization training

Data: Ωtrain, K, I // I is the number of iterations
Result: C

1 begin
2 C←− K minutia vectors randomly chosen from Ωtrain
3 for i← 1 to I do
4 B←− knnsearch(C, Ωtrain) // assignment
5 for j← 1 to K do
6 C(j) ←− centroid(Ωtrain(B==j)) // dictionary update
7 end
8 end
9 end

Training Stage

Regardless of the minutia labelling technique used, the training stage involves an it-

erative process of minutiae labelling and space partitioning. Given the training set

Ωtrain ∈ R
Dm×Nt
≥0 containing Nt minutiae vectors (MLC), the objective function in (5.2.1)

can be rewritten as:

min
C,B
‖Ωtrain − CB‖2

2 s.t. ∀i, ‖B(i)‖0 ≤ λ, (5.4.1)

where C ∈ RDm×K is the dictionary obtained and B ∈ RK×Nt is the sparse representa-

tion of the training set.

For hard quantization, λ = 1 indicates that one minutia vector is assigned to only

one partition. Algorithm 5.2 shows the pseudo-code of obtaining the dictionary via K-

means clustering, or also known as Lloyd’s algorithm [224]. The initial dictionary con-

sists of minutia vectors randomly selected from the training set. Similar to the dictio-

nary learning process of soft quantization discussed in section 5.2, an iteration consists

of an assignment (or minutiae labelling) step and a dictionary update (or space parti-

tioning) step. In the assignment step, each minutia vector in the training set, ωtrain(i)

is assigned to a cluster in the updated dictionary based on the nearest neighbour algo-

rithm:

arg min
j∈[1,K]

‖ωtrain(i) − C(j)‖2, (5.4.2)

where C(j) denotes the jth cluster in the dictionary. Subsequently, the dictionary is

updated by moving the cluster centroids to the centroids of the corresponding minutia

vectors.
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Algorithm 5.3: Soft quantization training
Data: Ωtrain, K, λ, I
Result: C

1 begin
2 C←− K minutia vectors randomly chosen from Ωtrain
3 for i← 1 to I do
4 B←− omp(Ωtrain, C, λ) // sparse approximation via OMP
5 for j← 1 to K do
6 Λ←− {k|1 ≤ k ≤ K, B(k) 6= 0} // active set
7 ε(j) ←− Ωtrain − (CB− C(j)B(Λ))

8 ε(j) ←− E∆FT // perform SVD
9 C(j) ←− E(1) // dictionary update

10 end
11 end
12 end

On the other hand, soft quantization allows λ > 1. Consider the linear system

Ω = CB, (5.4.3)

dictionary learning for soft quantization is used to solve an underdetermined system

in practice, where Dm << K. The dictionary learning process follows the algorithm

described in Algorithm 5.3 and section 5.2.2.

Transformation Stage

Fig. 5.4 shows the procedure of the set-to-vector transformation. Each time a finger-

print is presented to the system, the MLC-based template Ω, together with the dictio-

nary learned are used to compute for the approximated matrix V ∈ RK×Nm according

to nearest neighbour algorithm (for hard quantization) or OMP (for soft quantization).

The final fixed-length representation of fingerprint is obtained by performing one of

the following pooling functions:

i) sum-pooling:

VBoM =

[
Nm

∑
i=1

B(1i),
Nm

∑
i=1

B(2i), ...,
Nm

∑
i=1

B(Ki)

]
; (5.4.4)

ii) mean-pooling:

VBoM =

[
1

Nm

Nm

∑
i=1

B(1i),
1

Nm

Nm

∑
i=1

B(2i), ...,
1

Nm

Nm

∑
j=1

B(Ki)

]
; (5.4.5)

87



CHAPTER 5: S2V TRANSFORMATION VIA BAG-OF-MINUTIAE MODELLING

Algorithm 5.4: BoM transformation
Data: Ω,method,pooling
Result: VBoM

1 begin
2 if method == 0 then // perform hard quantization
3 load C
4 V←− knnsearch(C, Ω)
5 end
6 else if method == 1 then // perform soft quantization
7 load C, λ
8 B←− OMP(Ω, C, λ) // refer to Algorithm 5.1
9 end

10 if pooling == 0 then
11 VBoM ←− sumpool(B) // refer to (5.4.4)
12 end
13 else if pooling == 1 then
14 VBoM ←−meanpool(B) // refer to (5.4.5)
15 end
16 else if pooling == 2 then
17 VBoM ←−maxpool(B) // refer to (5.4.6)
18 end
19 end

iii) max-pooling:

VBoM =

[
max

i∈[1,Nm]
B(1i), max

i∈[1,Nm]
B(2i), ..., max

i∈[1,Nm]
B(Ki)

]
. (5.4.6)

Max-pooling does not apply to hard quantization-generated matrix as it is a binary

matrix (i.e. B ∈ {0, 1}K×Nm ) and does not reflect the strength of belonging between the

minutia vectors and the clusters. This makes up the five combinatorial BoM models

that will be examined in the experiments, including HQ+SUMPOOL, HQ+MEANPOOL,

SQ+SUMPOOL, SQ+MEANPOOL and SQ+MAXPOOL, in which HQ and SQ represent

hard quantization and soft quantization respectively.

5.5 Experiments and Analyses

5.5.1 Testing Protocol

Similar to the KPCA-based S2V transformation technique, BoM modelling requires

training data prior template generation. The cancellable template generation proce-

dure depicted in Figure 4.2 is adopted, except that the S2V transformation technique
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used is now BoM modelling. Since vectors generated by hard quantization are essen-

tially histograms, histogram intersection is used as the similarity measure between two

vectors:

S =

K
∑

i=1
min(V ′BoM(i), V ′′BoM(i))

K
; (5.5.1)

for soft quantization-generated vectors, the one minus normalized Euclidean distance

as described in (4.6.1) is used for matching. V′BoM and V′′BoM are two instances of the

proposed fixed-length fingerprint representation. Moreover, the cancellable templates

after RP, V̂BoM are matched with (4.6.1) regardless of the minutiae labelling option.

Also, a different set of parameters were used for the experiments in this chapter. The

dimension for each minutia vector (Dm) generated using the best-performing MLC pa-

rameters suggested in the Chapter 3 ranges from 900 to 1476, depending on the dataset.

Due to this, the dictionary size, K would have to be much larger (Dm << K), causing

unduly fine quantization on the minutia vectors. Hence, the MLC parameters used in

this chapter are: Nϕ = 6, Nl = 3, l = 240, d = 16 and r = 30, resulting in Dm = 576,

for all datasets. Now that the MLC parameters are the same for all datasets, the exper-

iments in section 5.5.2 are performed on FVC2002 DB1 only to determine the optimal

parameters of the S2V transformation.

5.5.2 Effect of Dictionary Size, Target Sparsity and Pooling Function

In this section, the effect of varying the parameters of the proposed S2V transforma-

tion on the system performance is studied. These parameters include the dictionary

size, K and sparsity, λ (soft quantization only). The performances of different pooling

functions are also investigated.

Figure 5.2 depicts the averaged EER over five trials of different methods and param-

eters. For hard quantization, the performance of sum-pooling and mean-pooling are

similar to each other. The vectors generated by HQ+MEANPOOL are the normalized

version of HQ+SUMPOOL-generated vectors. As histogram normalization does not

change the shape of the histogram, the performance does not differ much.

As for soft quantization approach, although max-pooling has been shown to outper-

form other pooling functions in image classification [221, 225], our results show other-

wise. In the plot, it is obvious that mean-pooling performs better than other pooling

functions. In practice, max-pooling creates a better separation between foreground
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Figure 5.2: Performance of the proposed minutiae-based fingerprint template after
S2V transformation via BoM with different parameter values. The results correspond
to FVC2002 DB1 dataset.

(genuine) distribution and background (impostor) distribution. Unlike mean-pooling,

max-pooling only captures the maximum over the pool and thus, does not result in

smoothing effect that causes inter-class variability to decrease. Besides, it is more ro-

bust against local spatial variations compared to mean-pooling. In the case of finger-

print recognition however, only an average of less than 40 minutiae are extractable

from a fingerprint, and when the pool cardinality (which is equivalent to number of
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minutiae in the fingerprint) is too small, mean-pooling produces a better foreground-

background separation [225].

On the other hand, the performances of SQ+SUMPOOL and SQ+MEANPOOL are not

as similar to each other as observed between HQ+SUMPOOL and HQ+MEANPOOL.

This is because Euclidean distance reacts to averaging differently – histogram inter-

section measures the similarity of the shapes of two histograms, whereas Euclidean

distance measures the numerical difference between two vectors in the `2 sense. Be-

sides, vectors generated by soft quantization consist of more non-zero values and so,

are more sensitive to the dividing factor in mean-pooling function.

Moreover, as the dictionary size (K) increases, the EER for all settings drop. Larger dic-

tionary size allows a finer quantization of the minutia vectors and reduces the quanti-

zation error, hence improves the recognition rate of fingerprints. The EERs reach their

lowest points at K = 5000 and saturate or even begin to increase thereafter due to

redundancy.

It is also notable that soft quantization with larger target sparsity (λ) does not perform

as good as smaller λ when K is small. The target sparsity controls the fuzziness of

soft quantization in dictionary learning. Even though such property helps to improve

the performance of vector quantization by allowing one minutia vector to be assigned

to multiple atoms, exceedingly high sparsity results in over-fuzziness and causes the

minutia vectors to lose their uniqueness.

Comparing the two minutiae labelling options, soft quantization performs better than

hard quantization. For soft quantization, the partition borders are fuzzy to allow mul-

tiple assignments of one minutia vector, resulting in lower quantization error. Besides,

there are numerous effective optimization algorithms to solve soft quantization prob-

lem that provide high fidelity.

5.5.3 Verification Rate of Cancellable Fixed-Length Representation

The experiments in this section inherit the optimal parameter values observed in the

section 5.5.2, i.e. K = 5000 and λ = 2 (for soft quantization only). In addition, mean-

pooling function is chosen. Figure 5.3 shows the stolen-key performance of the pro-

posed cancellable fixed-length representation when the vector dimension after RP (Dr)

is reduced to the range between 500 and 5000.
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(c) FVC2004 DB1.
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Figure 5.3: Performance of the proposed minutiae-based fingerprint template after
S2V transformation via BoM with different parameter values. The results correspond
to FVC2002 DB1 dataset.

For some datasets such as FVC2004 DB1 and FVC2004 DB2, the EERs after RP is able

to match with the original EERs with certain Dr values, while performance drop is ob-

served in other datasets even when Dr = K. This confirms the discussion in section

4.6.3 that the data distribution of the original vector is one of the factors affecting the

performance after RP. Just like MLC, the BoM-generated vector is sparse. For example,

assuming that there are 40 minutiae in the input fingerprint, the highest possible cardi-

nality of the vector generated is 40 (for hard quantization) or 80 (for soft quantization

with λ = 2) out of 5000 elements (K = 5000). Therefore, RP does not adapt to the

BoM-based transformation as good as the KPCA-based transformation.

Despite that, a similar trend in the EERs can be observed as the dimension is reduced.

The EERs increase gradually but marginally within the range of 2000 ≤ Dr ≤ 5000

and begin to rocket when Dr < 2000. The EERs at Dr = 2000 are 1.73%, 3.38%, 9.55%

and 10.53% for hard quantization, and 1.26%, 2.30%, 9.21% and 8.51% for soft quan-

tization when tested on the four fingerprint datasets respectively. These EER values

are reflected in Table 5.2, together with the past results obtained in this thesis as well

as other existing methods. The proposed method is able to preserve information in

the MLC template as the performance approximate to the performance of the original
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MLC. Although the EERs of the BoM-based method are lower than the benchmarking

methods in most cases, the KPCA-based method still has the lowest EER among all.

Table 5.2: Summary of the recognition accuracy (in terms of EER) of the proposed
fixed-length cancellable fingerprint template compared to other existing methods.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
Proposed method

Original MLC (be-
fore S2V transformation,
Chapter 3)

2.83 2.25 9.16 8.89

HQ+MEANPOOL (after
S2V transformation)

1.73 3.38 9.55 10.53

SQ+MEANPOOL (after
S2V transformation)

1.26 2.30 9.21 8.51

Past results and other existing S2V transformation methods (both can-
cellable and non-cancellable)

KPCA-based method1

(Chapter 4)
0.51 2.00 4.29 5.51

Nagar et al.1 [108] - 3.00 - -
Bringer and Despiegel2

[47]
- 1.70 - -

Vij and Nambood-
iri2 [197]

1-2 1-2 7-8 8-9

Nandakumar2 [137] 0.80 0.70 - -
1cancellable method.
2non-cancellable method.

5.5.4 Security and Privacy Analyses

For the sake of comparability, the same set of apparatus used in Chapter 3 and 4 are

adopted to evaluate the security and privacy of the cancellable fingerprint template

generated through the BoM model. The analyses are done based on K = 5000, λ = 2

(for soft quantization only), Dr = 2000 and with mean-pooling function applied on

both minutiae labelling techniques.

Non-invertibility: Resistance against Reverse Attack

The non-invertibility of the proposed scheme is analysed with the assumption that

the protected template and all helper data are compromised. In this case, the helper

data includes the random matrix used for RP (R) and the dictionary obtained from the

training stage of BoM modelling (C).
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Table 5.3: Ratio between the average cardinality values of the proposed vector before
and after RP, ‖VBoM‖0

‖V̂BoM‖0
.

Dataset HQ+MEANPOOL SQ+MEAPOOL
FVC2002 DB1 0.02 0.03
FVC2002 DB2 0.02 0.04
FVC2004 DB1 0.02 0.04
FVC2004 DB2 0.02 0.03

As discussed in section 5.5.3 that the BoM-generated vector is sparse and thus, the RP

operation may be exposed to the risk of reverse attack (refer to section 3.6.4 for further

explanation). According to Figure 5.3, the cardinality ratio of the RP transformation is

much lower than 0.13, the possibility is very high that the original vector can be recon-

structed from the cancellable template. However, there are two more phases protecting

the raw minutiae set.

In BoM, the dictionary, is the helper data obtained from the training stage and is stored

for template generation upon authentication. The dictionary consists of the prototypes

of minutiae vectors, also known as the centroids (in hard quantization) or atoms (in

soft quantization). Comparing the two BoM models, hard quantization takes less effort

to crack than soft quantization. Given a histogram generated by hard quantization,

it leaks the information about the total number of minutiae in the fingerprint and the

original minutia vectors can be estimated by matching the histogram with the dictio-

nary. On the contrary, the adversary cannot relate a soft quantization-generated vector

to the number of minutiae in each partition regardless of the pooling function used as

it contains only the pooled weight of the minutiae assignment. Besides, the dictionary

size is another factor affecting the privacy of the scheme. Larger K leads to finer space

partitioning and thus, the original minutia vectors are easier to crack. However, as seen

in Fig. 5.2, the performance drops when K is too small. There exists a trade-off between

performance and privacy in the choice of K.

Lastly, the non-invertibility of the MLC algorithm has been presented in section 3.6.4.

One of the advantages of the proposed multi-phase cancellable fingerprint template

generation scheme is that it provides multi-layer protection to the raw fingerprint data.

Unlinkability: Resistance against Linkage Attack

The unlinkability of the proposed cancellable template is measured by the separabil-

ity between templates generated using multiple distinct random keys as explained in
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Table 5.4: Separability of the proposed cancellable fixed-length representation ex-
pressed in the form of “separability(µSKG, σ2

SKG)[µDKG, σ2
DKG]”. µSKG and σ2

SKG rep-
resent the mean and variance of the same-key genuine matching distribution, while
µDKG and σ2

DKG are the equivalent parameters of the different-key genuine matching
distribution. Since the decimal values shown are rounded to the nearest 0.01, any
value that is less than 0.005 are written as <0.005.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2

HQ+MEANPOOL
2.99

(0.45,0.01)
[0.29,<0.005]

3.06
(0.47,0.01)

[0.29,<0.005]

2.01
(0.39,<0.005)
[0.29,<0.005]

2.24
(0.40,<0.005)
[0.29,<0.005]

SQ+MEANPOOL
3.03

(0.49,0.01)
[0.29,<0.005]

3.38
(0.51,0.01)

[0.29,<0.005]

2.24
(0.41,0.01)

[0.29,<0.005]

2.30
(0.43,0.01)

[0.29,<0.005]

section4.6.4. Table 5.4 shows the information of the same-key and different-key distri-

butions and the resulting separability values. One can observe that the means are at

least 0.1 apart from each other and the variance of both distributions are very small

(≤ 0.01). By comparing the settings with the highest separability (SQ+MEANPOOL,

FVC2002 DB2) and the lowest separability (HQ+MEANPOOL, FVC2004 DB1) as visu-

alized in Figure 5.4, it is obvious that the intersected area between the same-key and

the different-key distributions is less in the former case.

Furthermore, the BoM-based cancellable template yields lower separability than the

KPCA-based method (in Table 4.3). The analysis in section 5.5.4 is based on the tem-

plate dimension, Dr = 60, and Dr = 2000 is used in this section. It is rational that the

one with longer vector length should have better unlinkability as it is able to accommo-

date more combinations of the vector values. However, since the vector generated by

BoM modelling is sparse, the values of the final cancellable template are also limited.

Entropy: Resistance against Brute Force Attack

The discrete entropy and differential entropy of the proposed cancellable template is

computed based on (3.6.6) and (3.6.8) respectively. The entropies of the cancellable

template are similar to each other regardless of the minutiae labelling technique. Even

though soft quantization produces vectors with higher cardinality, zero is still the dom-

inant element value in the vectors. Therefore, the entropies of the cancellable templates

after RP do not differ much between the two techniques. The averaged total discrete

entropies over all datasets are 5105.36 bits and 5107.59 bits for HQ+MEANPOOL and
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Figure 5.4: Examples of same-key and different-key distributions.

SQ+MEANPOOL respectively, and the discrete entropy per component is 2.55 bits for

both techniques.

Despite the total entropy of the BoM-based method being a lot higher than that of the

KPCA method (refer to Table 4.4) due to longer vector length, the average entropy per

component is halved compared to the KPCA method. This is caused by the sparseness

of the vector before RP as discussed in section 4.6.4.
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Table 5.5: Entropy (in bits) of the proposed cancellable fixed-length representation
of fingerprint. The first number represents the average discrete entropy per vector
component and the second number represents the total discrete entropy of the vector.
The number in parenthesis is the average differential entropy per component.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2

HQ+MEANPOOL 2.55, 5109.49
(-4.11)

2.55, 5102.58
(-4.11)

2.55, 5098.36
(-4.12)

2.56, 5111.00
(-4.11)

SQ+MEANPOOL 2.56, 5110.32
(-4.11)

2.55, 5098.69
(-4.11)

2.55, 5109.38
(-4.11)

2.56, 5111.97
(-4.11)

5.5.5 Computational Complexity

If hard quantization is chosen as the BoM transformation option, the time complex-

ity of the training stage is equivalent to the complexity of Llyod’s algorithm, which

is O(KNtDm I). The transformation stage of hard quantization involves the K-nearest

neighbour search operation. A simple linear search approach yields a time complex-

ity of O(KNmDm). As for soft quantization, the K-SVD algorithm is computationally

bounded by O(KNtD2
m I). At the transformation stage, only OMP is performed and it

has a complexity of O(Nmλ) (refer to Algorithm 5.1). Considering the entire training

and template generation process which include MLC generation (O(NmDm) per finger-

print) and RP (O(KDr)), the time complexities of the two stages of a fingerprint authen-

tication system in respective order areO(max(KNtDm I, NtNmDm)) andO(KNmDm) for

hard quantization, and O(max(KNtD2
m I, NtNmDm)) and O(KNmDm I) for soft quanti-

zation.

The CPU runtime of the proposed scheme is shown in Table 5.6. Considering the tem-

plate generation stage, HQ+MEANPOOL requires slightly more time than SQ+ MEAN-

POOL. The linear nearest-neighbour search algorithm performs distance calculation

between the minutia vectors and the centroids in the dictionary; whereas the OMP

algorithm merely involves inner product operations and other linear algebraic opera-

tions for λ times per minutia vector. Therefore, the former consumes more time, but

only by a little. From the CPU runtime breakdown charts in Figure 5.5 and 5.6, hard

quantization and soft quantization for FVC2004 DB2 take 0.19s and <0.01s to complete

respectively, making the BoM method an advantage over the KPCA-based method (re-

fer to Figure 4.9) in terms of template generation speed. Also note that the MLC gener-

ation phase requires less time than that in Figure 4.9 as a different MLC parameter set

is used.
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Table 5.6: CPU runtime of the proposed cancellable fingerprint template generation
scheme, running on MATLAB environment (Windows 7) with an Intelr CoreTM i5-
2430M 2.40GHz processor. The number of iterations, I = 50 is used.

Stage
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
HQ+MEANPOOL

Training 1216.88s 1655.82s 1769.55s 1743.08s
Template Generation 1.36s 1.82s 2.04s 2.05s

SQ+MEANPOOL
Training 3336.43s 3856.58s 3993.17s 3901.77s
Template Generation 1.17s 1.60s 1.83s 1.86s
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Figure 5.5: CPU runtime breakdown chart of training stage and template generation
stage for FVC2004 DB2 using hard quantization.

 

1484.80s (MLC 
Generation of 
Nt Samples)

2416.97s (BoM 
Training, 

Hard 
Quantization)

3901.77s

(a) Training stage.

 

1.86s (MLC 
Generation of a 

Fingerprint)

<0.01s (BoM
Transformation, 

Soft 
Quantization)

<0.01s (RP) 1.86s

(b) Template generation stage.

Figure 5.6: CPU runtime breakdown chart of training stage and template generation
stage for FVC2004 DB2 using soft quantization.
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On the other hand, SQ+MEANPOOL takes more than double the CPU runtime of

HQ+MEANPOOL during training. The training stage of BoM involves two steps, namely

minutia vectors assignment and dictionary update, while template generation only re-

quires the assignment step. Since it has been discussed above that the assignment step

of hard quantization is more time-consuming than soft quantization, it is clear that the

dictionary update step of soft quantization consumes much more time than hard quan-

tization. Soft quantization updates the dictionary through K SVD operations while

hard quantization merely re-calculates the centroids of the clusters. As a result, the

training stage for soft quantization has higher CPU runtime than both hard quantiza-

tion and the previously proposed KPCA-based S2V transformation.

5.6 Summary

A S2V transformation technique via BoM modelling has been proposed in this chapter.

The concept of BoM modelling, which is originated from BoW modelling, is consoli-

dated from the aspect of three design approaches, viz. minutiae representation, space

partitioning and minutiae labelling. Two options from the minutiae labelling aspect are

demonstrated throughout the chapter, namely hard quantization via K-means cluster-

ing and soft quantization via dictionary learning. Since both minutiae labelling tech-

niques are using a posteriori space partitioning, the training for dictionary is necessary

prior template generation.

The experimental procedures follow the ones in the previous chapters (Chapter 3 and

4). As shown in Table 5.2, comparing the two minutiae labelling techniques, soft quan-

tization outperforms hard quantization due to its fuzziness in minutia vectors assign-

ment. Also, the performance obtained for the BoM-based method approximate to the

performance of the original MLC, but is not as good as the KPCA-based method intro-

duced in Chapter 4.

From the aspect of aspect of security and privacy, the original fixed-length vector can

be easily revealed from the cancellable template as it is sparse. In spite of this privacy

weakness, the raw minutiae set is protected by the MLC algorithm and the proposed

BoM transformation itself. For this, soft quantization has stronger non-invertibility

than hard quantization. The inter-templates separability and entropy per vector com-

ponent are also weaker than the KPCA-based method. Overall, the BoM-based can-
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cellable fingerprint template is less robust in terms of non-invertibility, unlinkability

and entropy compared to the KPCA-based method, but still in acceptable range.

As discussed before that since the training stage is performed off-line, the time taken for

training, albeit seemingly long, is omissible. Looking at the template generation time,

the BoM modelling, especially the soft quantization technique has a great advantage

over other methods.

In a nutshell, soft quantization outperforms hard quantization in all aspects investi-

gated, including recognition accuracy, security, privacy, and computational complex-

ity. Although the BoM-based method does not perform as good as the KPCA-based

method, it is a tangible solution towards the application of variable-size and unordered

minutiae-based templates in various classifiers and bio-cryptosystems, biometric tem-

plate binarization, and direct vector-to-vector comparison.
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CHAPTER 6

Cancellable Fingerprint Bit-String

Generation

6.1 Introduction

In this chapter, fixed-length cancellable fingerprint templates proposed previously, in-

cluding the KPCA-based template (Chapter 4) and BoM-based template (Chapter 5),

are converted into binary form. The template binarization phase is appended to the ex-

isting schemes as depicted in Figure 6.1. In here, bit-string refers to fixed-length binary

vector.

 

MLC 
Algorithm 

(MLCD) 

S2V 
Transformation 
(KPCA or BoM) 

Cancellable 
Transformation 

via RP 

Minutiae Set 
Fixed-Length 

Binary Template 
(Bit-String) 

Template 
Binarization 

Figure 6.1: Block diagram of the proposed bit-string generation scheme.

There are several benefits of storing biometric templates in binary form. First of all,

most applications such as bio-cryptosystems and fingerprint indexing requires the in-

put to be bit-strings. Comparison between two binary templates merely involve logical

operations rather than real-valued arithmetic operations, hence improves the speed of

fingerprint matching. Also, binary templates consume less storage than real-valued

templates.
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6.2 Nomenclature

Symbol Description

V̂BoM ∈ RDr cancellable fixed-length fingerprint template

generated through BoM modelling

V̂KPCA ∈ RDr cancellable fixed-length fingerprint template

generated through KPCA

V̂b ∈ {0, 1}Db cancellable fingerprint bit-string

Dr dimension of the cancellable template before bi-

narization

Db final bit-length — dimension of the cancellable

bit-string

V̂train ∈ RDr×Nt training samples for DQ, can be either KPCA-

or BoM-generated feature vector

Nt total number of training samples for DQ

Nspu number of training samples per user

SNR(·) signal-to-noise ratio of a feature component

σ2
u user’s variance

σ2
g global variance

Nd maximum number of bits assigned to a feature

component for DQ

Γ(ij) reliability of the jth bit position in the ith vector

component

Q user-specific quantization helper data, includ-

ing the number of bits and quantization inter-

vals for each vector component

6.3 Binarization Methods Used for the Proposed Fingerprint

Bit-String Generation Scheme

The quantization techniques used for biometric template binarization can be catego-

rized into static quantization and dynamic quantization. Static quantization assigns

equal number of bits to each data component, whereas dynamic quantization allows
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more bits to be assigned to more discriminative vector components in order to mini-

mize the false acceptance rate (FAR) or/and false rejection rate (FRR) of the system.

The most popular static quantization technique used in biometric template binarization

is the single-bit or multi-bit fixed threshold quantization method [47, 100, 103, 107, 108,

110, 123, 137, 196, 197], Fuksis et al. [226] demonstrated a bit-stability-based error com-

putation scheme. This scheme extends the BioHash algorithm [110] by weighting the

error rate contribution of each bit according to its stability. Vielhauer et al. [227] defined

the genuine quantization interval for each feature of a user as [xmin(1− t), xmax(1+ t)],

where xmin and xmax are the lowest and the highest recorded value of the feature re-

spectively and t is a tolerance factor. The remaining intervals are constructed with the

same width as the genuine interval.

The binarization schemes listed above are static approaches. As an example of dy-

namic approach, Feng and Wah [228] and Chang et al. [229] employed a multi-state

discretization (MsD) method, of which the genuine boundary of each feature compo-

nent is defined as [µ− kσ, µ + kσ], where µ and σ denote the mean and the standard

deviation of the user distribution respectively. The boundary is divided into several

segments according to a predefined value for each feature. Later, Teoh et al. [112, 230]

proposed a user-dependent MsD method which converts the real feature space into

the index space followed by Gray coding. Derived from the reliability-based static bit

selection method [158], Lim et al. [231] introduced a dynamic bit allocation scheme. Un-

like its predecessor, the number of bits allocated to a feature dimension is determined

dynamically according to the bit-stability as well as the signal-to-noise ratio (SNR) of

the feature component. Other dynamic approaches include mutli-bit detection rate op-

timized bit allocation (DROBA) [232] and the area under the FRR curve optimized bit

allocation (AUF-OBA) principle [233].

The template binarization methods used for the proposed scheme are described below.

6.3.1 Static Quantization: Zero-Thresholding

As discussed above, fixed threshold quantization is most commonly used among the

various static quantization techniques mainly because of its simplicity. In this chapter,

the same technique is used by setting the fixed threshold to zero so that V̂b(i) = 1 when

V̂(i) > 0 and V̂b(i) = 0 otherwise, where V̂(i) and V̂b(i) are the ith component of the real-

valued vector (may it be V̂KPCA or V̂BoM) and the bit-string (V̂b ∈ {0, 1}Db ) respectively.
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Figure 6.2: DQ technique adopted for the proposed fingerprint bit-string generation
scheme. The background pdf (black) is first quantized in equal-probable manner with
Nd = 3 bits. User 1 (green) has lower discriminability due to high intra-user variance,
hence is only assigned with one bit (‘0’); user 2 (blue) yields lower intra-user variance
and the data distribution is concentrated in the range of ‘011’ and ‘010’, so it is assigned
with two bits (‘01’); lastly, user 3 is the most discriminative among the three users and
is assigned with fully three bits (‘010’).

Since this is a single-bit quantization method, the final bit-length is equivalent to the

length of the original vector, i.e. Db = Dr.

6.3.2 Dynamic Quantization

In this chapter, the dynamic quantization (DQ) technique presented by Lim et al. [231]

is adopted. Figure 6.2 provides a pictorial illustration of the overall concept of DQ. The

original method assumes the input data to be normally distributed. Regarding this,

although RP was introduced as a cancellable transformation method, it also has the

ability to normalize the original vector, regardless of the original distribution. There-

fore, even the sparse vector generated by BoM is normally distributed in its cancellable

form. This is important as the pdf of the input data is the main factor determining

the initial quantization intervals of DQ. If the true data distribution disagrees with the

estimated distribution, over-populated and redundant intervals may exist, and the dis-

criminability of the vector components cannot be accurately derived.

DQ is a training-based vector binarization technique, so it can be divided into the train-

ing stage and the bit-string generation stage. Let V̂train ∈ RDr×Nt be the training set, the
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data component- and user-specific quantization information for each user is trained by

following the steps below:

1. Statistical analysis: the discriminability of a feature component is defined as its

signal-to-noise ratio, which is derived from the statistical measurement

SNR(V̂train(i)) =
σ2

g(i)

σ2
u(i)

, (6.3.1)

where V̂train(i) is the ith component of the user’s feature vector and σ2
g(i) and σ2

u(i)

are the inter-user variance and intra-user variance respectively. The components

are then sorted according to the discriminability value in descending order.

2. Background pdf quantization: the background pdf refers to the aggregated data

distribution of all users. Each feature component is initially converted into a Nd-

bit binary string, V̂train,d ∈ {0, 1}Nd , according to equal-probable quantization

based on the background pdf as shown in Fig. 6.2.

3. Reliability weight computation: in this step, the reliability of every bit position is

evaluated by counting the number of occurrences of 1. The reliability of the jth

bit position in the ith vector component is formulated as

Γ(ij) =
1

Nspu

Nspu

∑
k=1

Vtrain,d(ijk) (6.3.2)

where Vtrain,d(ijk) denotes the jth bit in the initially binarized ith vector component

of the kth training sample and Nspu is the number of training samples per user.

The reliability measure is then re-scaled so that it addresses both agreeing 1’s and

0’s, depending on the majority:

Γ(ij) =


Γ(ij), if Γ(ij) ≥ 0.5;

1− Γ(ij), otherwise.
(6.3.3)

4. Discriminability- and reliability-based bit allocation: re-visit the feature compo-

nents sorted in step 1 and choose the bits with reliability higher than a pre-defined

threshold value. The process ends when the total number of bits allocated reaches

the desired bit-length, Db.

105



CHAPTER 6: CANCELLABLE FINGERPRINT BIT-STRING GENERATION

The quantization intervals and the number of bits assigned for each component are

stored as the user-specific quantization information, Q required for bit-string genera-

tion upon fingerprint authentication. The final cancellable bit-string is represented as

V̂b ∈ {0, 1}Db .

6.4 Experiments and Analyses

6.4.1 Testing Protocol

The experimental protocol follows those described in the previous chapters (Chapter

4 and 5). Six out of eight samples per fingerprint are used for training while the re-

maining samples are used for matching. The procedure is repeated five times, each

with different randomly chosen samples, to obtain average results. The bit-strings are

matched with one minus normalized Hamming distance:

S = 1−
‖V̂′b ⊕ V̂′′b ‖1

Db
, (6.4.1)

where V̂′b and V̂′′b are two instances of the proposed cancellable bit-string.

Table 6.2 recapitulates the important parameters used for different S2V transformation

methods as suggested in Chapter 4 and 5.

6.4.2 Verification Rate of Cancellable Bit-String

In this experiment, for DQ, the vector space is initially quantized into a 3-bit binary

space, i.e. Nd = 3. Figure 6.3 shows the EERs of the final bit-strings generated by

DQ while varying the bit-length (Db). Regardless of the S2V transformation method

used, the EER plot follows similar trend — as Db increases, the EER decreases un-

til it reaches its minimum and beats off afterwards. DQ selects bits based on fea-

ture discriminability and bit stability. If Db is too small, there would be insufficient

number of bits to address inter-class variability. On the other hand, when Db con-

tinues to increase beyond the minimum point of EER, even feature components with

little discriminability will be selected and reduce the overall inter-class dissimilarity

of the final bit-string. From Figure 6.3, the bit-lengths with optimal performance for

the KPCA-based method, HQ+MEANPOOL and SQ+MEANPOOL are 64 bits (out of

Dr × Nd = 60× 3 = 180 bits), 768 bits (out of 6000 bits) and 1024 bits (out of 6000 bits)
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Table 6.2: Summary of the parameters used for the S2V transformation methods.

Parameter Description
KPCA-based

method
HQ+

MEANPOOL
SQ+

MEANPOOL
Nt total number of

training samples
600 600 600

Np number of prin-
cipal compo-
nents chosen for
KPCA, also the
dimension of
the KPCA-based
fixed-length
vector

125 - -

K dictionary size
for BoM mod-
elling, also the
dimension of
the BoM-based
fixed-length
vector

- 5000 5000

Dr dimension of the
final cancellable
template

60 2000 2000

respectively. Although SQ+MEANPOOL may have the longest bit-length, the KPCA-

based method has the highest optimal bit-length versus maximum possible bit-length

ratio ( 64
180 ≈ 0.36). It implies that the KPCA-generated vector contains more discrimina-

tive components than the other two methods. This agrees with the observation while

comparing the performance among the three methods in both real and binary form as

in Table 6.3.

Comparing the two template binarization methods, it is obvious that DQ performs bet-

ter than static quantization, or specifically, zero-thresholding. While zero-thresholding

is barely equivalent to applying a signum function on every vector component, DQ

systematically allocates bits to individual component according to its discriminability.

The discriminability is measured by the signal-to-noise ratio as defined in (6.3.1), which

is fundamentally the ratio between the inter-class variance and intra-class variance.

Therefore, DQ performs bits allocation in such a way that the inter-class dissimilarity

and intra-class similarity are maximized, resulting in better recognition accuracy of the

final bit-string.
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Figure 6.3: Performance of the cancellable bit-string generated by DQ while varying
the bit-length.

Moreover, not only is zero-thresholding more inferior than DQ, performance deteri-

oration is observed when zero-thresholding is applied compared to the real-valued

template. On the other hand, DQ promotes performance-lifting effect after binariza-

tion. This can be verified by observing the genuine-impostor distributions in Figure

6.4. When zero-thresholding is used, although the means of both genuine and impos-

tor distributions increase, the overlapping area between them also increase, leading to

higher error while making accept/reject decision. For DQ however, the distributions
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Table 6.3: Recognition accuracy (in terms of EER) of the proposed cancellable
bit-string compared to other existing methods. In the table, ZT represents zero-
thresholding while DQ represents dynamic quantization.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
Proposed methods after binarization

Original MLC (Chapter
3)

2.83 2.25 9.16 8.89

KPCA+ZT 2.59 3.24 7.80 7.88
HQ+MEANPOOL+ZT 2.42 2.23 9.81 9.02
SQ+MEANPOOL+ZT 0.93 0.93 8.40 8.00
KPCA+DQ 0.70 0.36 4.09 5.03
HQ+MEANPOOL+DQ 1.58 1.61 8.50 7.52
SQ+MEANPOOL+DQ 0.57 0.56 8.18 7.38

Past results and other existing fingerprint bit-strings (both cancellable
and non-cancellable)

KPCA-based method1

(Chapter 4)
0.51 2.00 4.29 5.51

HQ+MEANPOOL1

(Chapter 5)
1.73 3.38 9.55 10.53

SQ+MEANPOOL1

(Chapter 5)
1.26 2.30 9.21 8.51

Nagar et al.1 [108] - 3.00 - -
Bringer and Despiegel2

[47]
- 1.70 - -

Vij and Nambood-
iri2 [197]

1-2 1-2 7-8 8-9

Nandakumar2 [137] 0.80 0.70 - -
1cancellable method.
2non-cancellable method.

are further to each other after binarization, thus reducing the probability of false recog-

nition.

6.4.3 Security and Privacy Analyses

The security and privacy of the MLC algorithm and the S2V transformations have been

presented in Chapter 3, 4 and 5. In this section, the analyses are primarily based on the

binarization methods with the optimal bit-lengths (Db) of 60 bits, 2000 bits, 2000 bits, 64

bits, 768 bits and 1024 bits for KPCA+ZT, HQ+MEANPOOL+ZT, SQ+MEANPOOL+ZT,

KPCA+DQ, HQ+MEANPOOL+DQ and SQ+MEANPOOL+DQ respectively.
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(a) Zero-thresholding (ZT).
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(b) Dynamic quantization (DQ).

Figure 6.4: Examples of genuine-impostor distributions when soft quantization of the
BoM model is used for S2V transformation before binarization (SQ+MEANPOOL) and
after binarization (SQ+MEANPOOL+ZT or SQ+MEANPOOL+DQ). Figure shows the
results on FVC2004 DB2.

Non-invertibility: Resistance against Reverse Attack

If zero-thresholding is chosen as the binarization method, the compromised bit-string

reveals the sign of the real values in the original template before binarization. The im-

probability of reversing the bit-string depends on the range of the real values (which

also determines the quantization width). For example, the proposed KPCA-based can-
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cellable real template has values ranging from -0.4 to 0.4 while the BoM-based template

ranges from -0.1 to 0.1, hence the former has stronger non-invertibility than the latter.

However, this piece of information is kept secret from the adversary even if he has the

knowledge about the template generation method as only the bit-string is stored in the

database for authentication.

For DQ, the helper data stored includes the quantization intervals and the number of

bits assigned to each vector component. If this information, together with the bit-string,

are compromised, the adversary is able to know the range of the real vector values.

Consequently, the original real vector may be estimated based on the information. The

accuracy of the estimation depends on the quantization widths.

Comparing the two binarization methods, DQ yields weaker non-invertibility than

zero-thresholding in general. Zero-thresholding has fixed number of bit(s) and quan-

tization width for every vector component. For DQ, the non-invertibility strength of

individual vector component is seemingly the same as single-bit or multi-bit fixed-

threshold quantization, except that the quantization widths are known to the adver-

sary. Therefore, DQ provides more information regarding the original real vector. In

special case where no bit is assigned to a vector component, no information is stored

regarding that component and so, its value is kept secret. This situation can be noticed

in the BoM-based methods. For instance, only a total of 768 bits are extracted from

2000 (Dr) components when HQ+MEANPOOL is applied, which means that there are

at least 1232 components with no bit allocated.

Unlinkability: Resistance against Linkage Attack

The unlinkability test follows the procedure described in section 4.6.4. Table 6.4 shows

the separability between same-key matching distribution and different-key matching

distribution, as well as the statistical information of the two distributions. The exper-

imental results echo with the recognition accuracy of the algorithms in section 6.4.2.

While the different-key distributions of the algorithms are almost identical to each

other, the same-key distributions become the determining factor of the separability.

Same-key genuine distribution with higher mean and lower variance usually results in

better separation with the impostor distribution (i.e. better recognition accuracy) and

the different-key genuine distribution (i.e. better unlinkability).
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Table 6.4: Separability of the proposed cancellable fixed-length representation ex-
pressed in the form of “separability(µSKG, σ2

SKG)[µDKG, σ2
DKG]”. muSKG and σ2

SKG rep-
resent the mean and variance of the same-key genuine matching distribution, while
muDKG and σ2

DKG are the equivalent parameters of the different-key genuine match-
ing distribution. Since the decimal values shown are rounded to the nearest 0.01, any
value that is less than 0.005 are written as <0.005.

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2

KPCA+ZT
3.66

(0.78,0.01)
[0.50,<0.005]

2.82
(0.78,0.02)

[0.50,<0.005]

2.29
(0.71,0.01)

[0.50,<0.005]

1.95
(0.69,0.02)

[0.50,<0.005]

HQ+MEANPOOL+ZT
2.77

(0.63,<0.005)
[0.50,<0.005]

3.19
(0.64,<0.005)
[0.50,<0.005]

1.68
(0.58,<0.01)
[0.50,<0.005]

1.73
(0.58,<0.005)
[0.50,<0.005]

SQ+MEANPOOL+ZT
3.19

(0.66,<0.005)
[0.50,<0.005]

3.58
(0.67,<0.005)
[0.50,<0.005]

2.30
(0.60,<0.005)
[0.50,<0.005]

2.36
(0.61,<0.005)
[0.50,<0.005]

KPCA+DQ
4.90

(0.85,0.01)
[0.50,<0.005]

4.00
(0.86,0.01)

[0.50,<0.005]

2.59
(0.72,0.01)

[0.50,<0.005]

2.83
(0.73,0.01)

[0.50,<0.005]

HQ+MEANPOOL+DQ
3.62

(0.69,0.01)
[0.50,<0.005]

3.16
(0.68,0.01)

[0.50,<0.005]

2.04
(0.58,<0.005)
[0.50,<0.005]

2.29
(0.59,<0.005)
[0.50,<0.005]

SQ+MEANPOOL+DQ
4.38

(0.73,0.01)
[0.50,<0.005]

3.29
(0.72,0.01)

[0.50,<0.005]

2.30
(0.60,<0.005)
[0.50,<0.005]

2.36
(0.61,<0.005)
[0.50,<0.005]

Entropy: Resistance against Brute Force Attack

The entropy measures the aggregated bit randomness of the final bit-string. A bit is

considered completely random if its probability distribution is uniform, i.e. the prob-

ability of it being 0 and 1 are equal. Since binary values are discrete values, the differ-

ential entropy in (3.6.7) and (3.6.8) are not applicable. The entropy of a binary vector

(bit-string) is derived from the discrete entropy in (3.6.6) as shown below

H(V̂b) = −
S(V̂b)

∑
i=1

P(i)(V̂b) log2 P(i)(V̂b)

= −[Pr(V̂b = 0) log2 Pr(V̂b = 0) + Pr(V̂b = 1) log2 Pr(V̂b = 1)],
(6.4.2)

where V̂b may be any bit in the bit-string. The total entropy of the bit-string is simply

the sum of the entropies of all bits,

H(V̂b) =
Db

∑
i=1

H(V̂b(i)). (6.4.3)
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Furthermore, there is a possibility that one bit in the bit-string is dependent on another

bit. To account for this, the entropy is also evaluated based on the first-order depen-

dency tree approximation [234], defined as

H̃(V̂b) = H(V̂b)− max
∀i,j∈[1,Db]

(
Db

∑
i=1

I(V̂b(i); V̂b(j))), for i 6= j, (6.4.4)

where I(V̂b(i); V̂b(j)) is the mutual information between a bit V̂b(i) and its parent V̂b(j) in

the dependency tree, defined as

I(V̂b(i); V̂b(j)) = ∑̂
Vb(i)

∑̂
Vb(j)

P(V̂b(i), V̂b(j)) log

[
P(V̂b(i), V̂b(j))

P(V̂b(i))P(V̂b(j))

]
, (6.4.5)

In Zhou et al.’s method [234], the dependency tree was pre-trained using the optimiza-

tion method proposed by Chow and Liu [235] and applied on the testing set to compute

the entropy. However, due to the variations between the training set and the testing set,

the entropy obtained for the testing set was generally higher and might not be the best

estimation. In this section, we run exhaustive search through all dependency combina-

tions on the testing set directly to obtain the worst case entropy.

Table 6.5 shows the entropies of the bit-string estimated both with and without consid-

ering bit dependency. From the two entropy estimations, it is evident that the bits are

rather independent of each other as the entropy loss in first-order dependency estima-

tion is trivial.

Moreover, it is as usual that longer bit-length produces higher entropy. Nevertheless,

the average entropies per bit position (H(V̂b)/Db or H̃(V̂b)/Db) in the bit-strings are

similar. For example, for FVC2002 DB1, although the entropies (without first-order de-

pendency) range from 59.55 bits to 1983.50 bits, the average entropies per bit position

are all 0.99. This also means that only 1% of the bits lose their randomness. The re-

quirements for such high entropy are both high intra-class bit stability and uniformly

distributed inter-class bit values, that is, Pr(V̂b = 0) ≈ Pr(V̂b = 1) ≈ 0.5.

Resistance against Hill-Climbing Attack

Apart from the security and privacy issues discussed above, the adversary may iter-

atively present the estimated template to the system and utilize some leaked infor-

mation, such as the matching score, to refine the estimation until the matching score
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Table 6.5: Entropies (in bits) of the proposed cancellable bit-string estimated based on
(6.4.3) and (6.4.4) in the format of ‘H(V̂b) (H̃(V̂b))’

Algorithm
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2

KPCA+ZT 59.62
(59.25)

59.68
(59.28)

59.55
(59.27)

59.61
(59.29)

HQ+MEANPOOL+ZT 1984.58
(1951.86)

1981.32
(1947.83)

1979.50
(1950.67)

1984.23
(1955.20)

SQ+MEANPOOL+ZT 1984.46
(1950.21)

1977.86
(1941.19)

1983.50
(1956.54)

1984.45
(1954.79)

KPCA+DQ 61.91
(60.31)

61.80
(60.08)

62.60
(61.29)

62.37
(60.98)

HQ+MEANPOOL+DQ 757.56
(728.32)

756.70
(726.33)

761.96
(740.25)

760.88
(737.00)

SQ+MEANPOOL+DQ 1006.65
(964.26)

1004.21
(959.24)

1015.14
(985.57)

1012.82
(978.72)

converges. Such attack is known as the hill-climbing attack. Through this attack, the

estimated template would eventually approximate to the enrolled template and be ac-

cepted by the system. A possible countermeasure against hill-climbing attack is to

protect the matching score by score quantization [236, 237]. In this case, the actual

matching score is hidden and only the quantized score is put on the channel for de-

cision making. Non-uniform score quantization has been proven [237] to effectively

reduce the success rate of hill-climbing attack while paying off with a slight decrease

in the recognition rate of the system.

6.4.4 Computational Complexity

The training process of DQ involves iterative bit stability assessment for every bit po-

sition, so the computational complexity of DQ training is bounded by O(Dr NtNd). On

the other hand, zero-thresholding requires no training. The complexity of bit-string

generation using zero-thresholding and DQ are O(Dr) and O(Dr Nd) respectively.

From the other perspective, the CPU runtime of the proposed schemes are also recorded

for the computational complexity analysis, as displayed in Table 6.6. First of all, since

zero-thresholding does not required training, the training times of the bit-string gener-

ation schemes using zero-thresholding (which includes MLC generation for Nt samples

and training for S2V transformation) are the same as those shown in Table 4.5 and 5.6.

For the training stage of schemes using DQ, the additional steps not only include train-

ing for DQ, but also the vector generation via corresponding S2V transformation and
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cancellable transformation for the Nt samples. This put on some additional time to

the training stage, especially for KPCA+DQ as template generation through KPCA is

more time-consuming. Even so, the time required for DQ training is insignificant in

the entire bit-string generation scheme as depicted in Figure 6.5. Since the number of

training samples (Nt) and the maximum number of bits allowed per vector component

(Nd) are constant across different algorithms, Dr becomes the primary factor affecting

the complexity of DQ training. From Figure 6.5, it is clear that the KPCA-based method

(with Dr = 60) requires much less time for DQ training than the BoM-based methods

(with Dr = 2000).

Table 6.6: CPU runtime of the proposed fingerprint bit-string generation scheme,
running on MATLAB environment (Windows 7) with an Intelr CoreTM i5-2430M
2.40GHz processor. The number of iterations, I = 50 is used.

Stage
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
KPCA+ZT

Training 3083.73s 3649.99s 3325.85s 2499.56s
Template Generation 5.88s 6.60s 5.54s 4.16s

HQ+MEANPOOL+ZT
Training 1216.88s 1655.82s 1769.55s 1743.08s
Template Generation 1.36s 1.82s 2.04s 2.05s

SQ+MEANPOOL+ZT
Training 3336.43s 3856.58s 3993.17s 3901.77s
Template Generation 1.17s 1.60s 1.83s 1.86s

KPCA+DQ
Training 4819.08s 5625.29s 4521.13s 3256.85s
Template Generation 5.88s 6.60s 5.54s 4.16s

HQ+MEANPOOL+DQ
Training 1365.64 1822.89s 1930.05s 1891.54s
Template Generation 1.36s 1.82s 2.04s 2.05s

SQ+MEANPOOL+DQ
Training 3372.72s 3893.15s 4030.92s 3938.24s
Template Generation 1.17s 1.60s 1.83s 1.86s

As for the bit-string generation stage, the time taken for template binarization is negli-

gible, regardless of the binarization method used. Therefore, the CPU runtimes shown

in Table 6.6 are identical to those shown in Table 4.5 and 5.6.

6.5 Summary

In this chapter, the previously proposed fixed-length cancellable fingerprint templates

have been converted into binary form through the two types of biometric template bi-
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Generation of 
Nt samples)
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Training)
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(a) KPCA+DQ.
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Samples)
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Training, Hard 
Quantization)

114.00s (BoM 
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(b) HQ+MEANPOOL+DQ.

 

1484.80s (MLC 
Generation of Nt

Samples)

2416.97s (BoM 
Training, Hard 
Quantization)

1.50s (BoM 
Transformation 
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Soft 
Quantization)
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Training) 3938.24s

(c) SQ+MEANPOOL+DQ.

Figure 6.5: CPU runtime breakdown charts of the training stage of the proposed bit-
string generation scheme when DQ is used, tested on FVC2004 DB2.

narization methods, namely static quantization and dynamic quantization (DQ). The

former was demonstrated through zero-thresholding, while the latter was realized by

following the bit allocation technique proposed by Lim et al. [231]. The main differ-

ence between the two methods is that static quantization assigns equal number of bits

to all vector components whereas its contrary assigns different number of bits to the

vector components depending on their discriminability. For this reason, DQ requires

a training stage to obtain the discriminability and the number of bits allocated to each

individual vector component.

Deterioration in the recognition accuracy was observed when zero-thresholding is used

as the template binarization method. Zero-thresholding is merely a signum function

that registers the sign of the vector values, hence information loss in the final bit-string

is expected. On the other hand, DQ is able to improve the recognition accuracy of the

biometric template. This is mainly due to its ability to extract bits from the vector in

such a way that the intra-class similarity and inter-class dissimilarity are maximized. It

is noteworthy that the best performance acquired by DQ is better than the benchmark-

ing methods and is comparable to other non-cancellable fingerprint bit-string genera-

tion schemes as highlighted in Table 6.3.
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With the excellent performance of dynamic quantization, there exists a risk of revealing

the real vector prior binarization. The helper data stored for DQ consists of the number

of bits assigned to each vector component as well as the quantization intervals. This

information allows the adversary to narrow down the range of real values in the vec-

tor and reduces the complexity of reversing the bit-string. Nonetheless, DQ provides

slightly better unlinkability than zero-thresholding because of its high intra-class sim-

ilarity. Both zero-thresholding and DQ produce bit-strings with high entropy per bit

position.

Since zero-thresholding only involves comparison operator, the computational power

is certainly negligible in relative to the entire bit-string generation scheme. As for DQ,

the training stage requires the calculation of some statistical figures as explained in

section 6.3.2, but still is not as time-consuming as the MLC algorithm and the S2V

transformation.

Overall, zero-thresholding, albeit simple, may lead to performance degradation. As its

counterpart, DQ is a strong performance enhancer without much trade-off. Although

DQ process may be reversed with the helper data compromised, it merely gets the

adversary to the real vector, which is still protected by all preceding phases. The only

drawback is the additional but trivial computational power.
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CHAPTER 7

Case Study: Application on

Bio-cryptosystems

7.1 Introduction

It has been revealed in Chapter 2 that one of the main challenges of bio-cryptosystems is

the leakage of biometric data through the public helper data. Therefore, if the biometric

data is protected with another BTP scheme, it would be safe. For this purpose, this

thesis proposes to apply cancellable biometrics in bio-cryptosystems to enhance the

security and privacy of the systems. In this chapter, such hybrid BTP scheme is realized

by amalgamating the proposed cancellable fingerprint template with fuzzy extractor

(FE). The said hybrid BTP scheme is hereafter referred to as cancellable fuzzy extractor

(CaFE). Part of the work in this chapter has been published [238].

7.2 Preliminaries

7.2.1 Error-Correcting Codes

An error-correcting code is a technique of handling errors in data transmissions through

noisy channels. It encodes a message into a codeword with redundancy (i.e. codeword

length is longer than message length) and allows bit-flips detection and correction on

the receiver end. A (n,k,2t + 1) error-correcting code produces a n-bit codeword from

a k-bit message and the minimum distance between any two codes is 2t + 1. Note that

n is also known as the block length. Such error-correcting code is capable of correct-
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ing up to t erroneous bits. The ratio k
n is also called the code rate and there are n− k

redundant (or parity) bits in the codeword.

The two main categories of error-correcting codes are block codes and convolutional

codes, among which examples of block codes include Hamming codes, BCH codes,

Reed-Solomon codes, Hadamard codes, Golay codes and Reed-Muller codes. As the

name suggests, a block code is an error-correcting code that encodes and decodes data

in individual blocks as opposed to non-block codes which are continuous and untermi-

nated. The characteristics of some of these error-correcting codes are discussed below:

1. Hamming codes: Hamming codes are generalized and extended from the Ham-

ming (7,4,3)-code [239] and allows codewords longer than 7 bits. Figure 7.1 pro-

vides a visual illustration on the encoding algorithm of the Hamming(15,11,3)-

code. Hamming codes have an advantage of having high code rate, for instance,

the code rate of the Hamming(31,26,3)-code reaches ≈ 0.84. However, the down-

side is that since the minimum distance is always 3, it can only correct 1 bit of

error per block. It is extremely useful in computer memories [240], where errors

are rare. In the case of biocrypto-systems, the errors in a biometric bit-string are

usually more than one bit. Even if the bit-string can be divided into multiple

blocks, errors in two adjacent bit positions can be hardly corrected.

2. BCH codes: BCH codes form a family of cyclic codes, where one codeword is

another codeword circularly shifted. The main advantage of BCH codes is that

for the same block length, the number of correctable errors (t) is adjustable, hence

multiple bits of error correction is possible within a block. The single-bit error-

correcting BCH codes are equivalent to the Hamming codes. In the context of

bio-cryptosystems, the parameters of the BCH codes can be selected according to

the stability of the biometric bit-string to provide better key stability. In addition,

BCH codes can be decoded through syndrome decoding which is more efficient

than typical minimum distance decoding.

3. Reed-Solomon codes: Reed-Solomon codes are non-binary error-correcting codes.

Like BCH codes, Reed-Solomon codes are able to correct multiple errors in the

received codeword. The distinctive difference of reed-solomon codes from the

two aforementioned error-correcting codes is that they are designed for correct-

ing burst errors, which are errors that occur in numerous consecutive bits.
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Encoded data bits P1 P2 D1 P3 D2 D3 D4 P4 D5 D6 D7 D8 D9 D10 D11 

Parity bit 
coverage 

P1 
               D1⊕D2⊕D4⊕D5⊕D7⊕D9⊕D11 

= 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 
P2 

               D1⊕D3⊕D4⊕D6⊕D7⊕D10⊕D11 
= 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 

P3 
               D2⊕D3⊕D4⊕D8⊕D9⊕D10⊕D11 

= 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1 
P4 

               D5⊕D6⊕D7⊕D8⊕D9⊕D10⊕D11 
= 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1 

Codeword 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1  
 

Figure 7.1: Example of a Hamming(15,11,3)-code given the message ‘10011001001’. The P’s represents parity bits and the D’s represents data bits. The
parity bits are inserted into the bit positions that are powers of two. Viewing the bit positions as binary numbers, the first parity bit (P1) is calculated
by XOR-ing all data bits with bit positions which have the least significant bit set (i.e. least significant bit is equivalent to 1). The second parity bit (P2)
uses the bit positions which have the second least significant bit set and so on.
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4. Convolutional codes: A convolutional encoder is often explained as a linear time-

invariant (LTI) system. The codeword is generated by performing convolution

of the message with the encoder’s impulse response. Convolutional codes are

highly flexible as they have arbitrary block length and code rate. Unlike block

codes, convolutional codes may be decoded with soft-decision decoder. Soft-

decision decoder makes decision based on Euclidean distance while hard-decision

decoder (for block codes decoding) uses Hamming distance. In this way, soft-

decision decoder calculates the likelihood of two codewords being alike using

multiple bits in the codewords rather than treating each bit independently and

making binary decision of whether two corresponding bits from two codewords

are equal (hard-decision encoder). Soft-decision decoder often performs better

than its hard-decision counterpart, with the drawback of higher computational

cost.

7.2.2 Galois Field Notations

A Galois field, also known as a finite field, is a field that contains a finite number of

elements. For example, GF(2) is a Galois field of two elements, {0,1} and the arithmetic

operations in GF(2) are modulo-2-based, such as X + X = 0 or X · X = X. Since the

secure sketch involves only binary numbers, GF(2m) is of interest here.

Let α be a primitive element of GF(2m), the elements in the Galois field include {0, 1, α,

α2, ..., α2m−2} and the primitive polynomial of degree m over GF(2m) can be expressed

as

p(X) = p(m−1)X
m−1 + p(m−2)X

m−2 + ... + p(1)X + p(0), (7.2.1)

where p(i) ∈ GF(2).

Another important notation in Galois field is the minimal polynomials. Minimal poly-

nomials of GF(2m) are monic polynomials1 of smallest degree with coefficients in GF(2).

A minimal polynomial is mathematically defined as

Λ(X) = ΛaXa + ... + Λ(1)X + Λ(0), (7.2.2)

for Λ(i) ∈ GF(2) and a is the smallest integer that satisfies Λ(α)|α 6=0 = 0. A mini-

mal polynomial must also be prime, that is, it cannot be factorized into polynomials of

1A monic polynomial is a polynomial with the coefficient of the highest power of variable being 1.
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lower degree. For example, the primitive element α in GF(24) has two minimal polyno-

mials, X4 + X3 + 1 and X4 + X + 1; whereas X4 + X2 + 1 is not a minimal polynomial

as it can be further factorized into (X2 + X + 1)2.

7.3 Nomenclature

Symbol Description

V̂b ∈ {0, 1}Db cancellable fingerprint bit-string

Db final bit-length — dimension of the cancellable

bit-string

κc user-specific template revocation key

Q user-specific quantization helper data, includ-

ing the number of bits and quantization inter-

vals for each vector component

Ωtrain training MLC templates for KPCA

C dictionary for BoM transformation

λ sparsity parameter for BoM transformation

E error-correcting codeword for secure sketch

construction

κs randomly chosen message for secure sketch

construction

SS public sketch

κe random seed for randomness extractor

Symbol Description

RFE random cryptographic key generated by the

fuzzy extractor

V̂′b query fingerprint bit-string

E′ received error-correcting codeword for crypto-

graphic key reproduction

t correcting capability of error-correcting codes

n message length of error-correcting codes
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k codeword/block length of error-correcting

codes

α prime element of a GF

g(X) generator polynomial of error-correcting codes

Λ(X) minimal polynomials of the elements in a GF

e(X) errors in the received codeword

Syn syndrome generated for error-correcting de-

coding

H parity check matrix for error-correcting decod-

ing

7.4 The CaFE

In order to visualize the concept of CaFE, the block diagram of FE in Figure 2.2 is re-

drawn in Figure 7.2. First, the biometric feature (minutiae set) and the user-specific

revocation key (κc) are used to generate the cancellable bit-string (V̂b). The code-offset

construction of secure sketch [2] is adopted in the proposed framework. In the secure

sketch block, an error-correcting codeword (E) generated based on a randomly cho-

sen message (κs) is mixed with the cancellable bit-string to form the sketch (SS), i.e.

SS = E⊕ V̂b. Ultimately, the cancellable bit-string is used to extract a highly random

and uniformly distributed key/password (RFE) via a randomness extractor with ran-

dom seed (κe). The random key/password generated can be used for data encryption

or any other security applications. The randomness extractor is essentially universal

hashing 2 by using any family of one-way hash functions. In this thesis, we perform

the experiments using the secure hash algorithm (SHA). Beisdes the helper data for

fingerprint bit-string generation, the sketch and the random seed for extractor are also

stored for key reproduction. The biometric revocation key is held by the user himself

as suggested in Chapter 3.

During key reproduction, a query biometric feature and the revocation key are to be

presented to the system. Then, a cancellable bit-string (V̂′b) is regenerated based on

these inputs. The recovered codeword (E′) is computed by finding the difference be-

tween the query biometric bit-string and the sketch is computed, i.e. E′ = SS ⊕ V̂′b.

2To use universal hashing is to randomly select a hash function from a family of hash functions.
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Figure 7.2: The complete framework of the proposed CaFE.
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If the recovered codeword is close enough to the true codeword, the true message,

and subsequently the original biometric bit-string can be reconstructed through error

correction. Finally, the random password is reproduced with the same randomness

extractor.

7.4.1 Code-Offset Secure Sketch

The main idea of the code-offset construction of secure sketch is that, given the sketch,

if the query biometric bit-string is close enough to the original bit-string in Hamming

distance, the true message can be reconstructed. In this case, the maximum allowance

of bit-flips in the query bit-string is t bits (‖V̂b− V̂′b‖0 ≤ t) for exact recovery. Out of the

error-correcting codes discussed in section 7.2.1, the BCH codes are chosen to construct

the secure sketch for the simplicity of encoding/decoding algorithm and flexibility in

error-correcting capability.

Encoding BCH Codes

The encoding/decoding process of BCH codes can be explained in the GF(2m) sense.

Given a message κs(X), one first needs to know the generator matrix of the encoder

corresponding to the error-correcting capability, t. It is computed by taking the least

common multiple of the minimal polynomials of the first 2t elements in GF(2m) and is

mathematically expressed as

g(X) = LCM(Λ(1)(X), Λ(2)(X), ..., Λ(2t)(X)), (7.4.1)

of which Λ(i)(X) is the minimal polynomial of the element αi. The codeword is gener-

ated by appending the remainder of dividing Xn−kκs(X) by g(X) to the message:

E(X) = Xn−kκs(X) + r(X), (7.4.2)

where Xn−kκs(X) = q(X)g(X) + r(X), and q(X) and r(X) represents the quotient and

remainder of the division operation. An example of BCH encoding is presented in

Appendix C.
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Decoding BCH Codes

In the proposed CaFE implementation, syndrome decoding is used as the decoding

algorithm for BCH codes. Algorithm 7.1 depicts the flow of the syndrome decoding

process. Provided that the received codeword is E′(X) = E(X) + e(X), where e(X) is

the errors introduced in the biometric bit-string. The syndrome is defined as

Syn = E′(X) ·HT

= (E(X) + e(X)) ·HT

= e(X) ·HT,

(7.4.3)

where H is called the parity check matrix

H =


1 α α2 · · · αn−1

1 (α2)1 (α2)2 · · · (α2)n−1

...
...

...
. . .

...

1 (α2t)1 (α2t)2 · · · (α2t)n−1

 , (7.4.4)

such that E(X) ·HT = 0. Therefore the ith syndrome is

syn(i) =
n−1

∑
j=1

ejα
i·j. (7.4.5)

If there are non-zero syndromes, then there are errors. The next step is to determine

the error locator polynomial, σ(X) via the Berlekamp-Massey algorithm [241]. By fac-

torizing the error locator polynomial, the degrees of the roots indicate the locations of

the errors from the most significant bit. The roots can be obtained through the Chien

search [242]. Once the errors are defined, the true codeword can be acquired by sub-

tracting the errors from the received codeword. If the number of errors detected is

inappropriate, say greater than t, then the recovery of the original codeword would

fail. Refer to Appendix D for a working example on BCH decoding.
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Algorithm 7.1: Syndrome decoder for BCH codes. The superscripts in parenthe-
ses indicate the iteration number.

Data: E′(X)
Result: E

1 begin
2 calculate the syndrome based on (7.4.3) and (7.4.5)

/* The Berlekamp-Massey Algorithm */
/* Initialization */

3 σ(0)(X)←− 1 // error locator polynomial
4 B(0)(X)←− 1
5 L(0) ←− 0

/* Loop */
6 for i← 1 to 2t do

7 ∆(i) ←− syn(i) +
L
∑

j=1
σ(j)syn(i−j)

8 if ∆(i) 6= 0 AND 2L(i−1) ≤ i− 1 then
9 δ(i) ←− 1

10 else
11 δ(i) ←− 0
12 end
13 L(i) ←− δ(i− L(i−1)) + (1− δ(i))L(i−1)

14 B(i)(X)←− δ(i)(∆(i))−1σ(i−1)(X) + (1− δ(i))XB(i−1)(X)

σ(i)(X)←− σ(i−1)(X) + ∆(i)XB(i−1)(X)

15 end
/* Factorize the error locator polynomial */
/* Nr: the number of roots */
/* β(n) ∈ [1, 2m − 1]: the degree of the nth root */

16 σ(2t)(X)←−
Nr

∏
n=1

(α
β(n)

(n) X− 1)

/* Evaluate the error values */

17 e(X)←−
Nr

∑
n=1

X2m−1−β(n)

/* Correct errors in the received codeword */
18 E(X)←− E′(X)− e(X)

19 end

7.5 Experiments and Analyses

7.5.1 Testing Protocol

The training and testing samples allocation follows the description in previous chap-

ters, that is, six out of eight samples per fingerprint are used for training and the re-

maining two for testing. The training process includes minutiae set to feature vector

(S2V) transformation training and dynamic quantization (DQ) training, while the test-

ing process involve the complete CaFE system depicted in Figure 7.2. Both processes
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are repeated fivefold with randomly selected samples each trial to obtain average re-

sults. The decision making for bio-cryptosystems is binary, so the false rejection rate

(FRR) and the false acceptance rate (FAR) are used as the performance indicator instead

of the EER and no similarity calculation is required.

Since DQ has been proven (in Chapter 6) to outperform conventional zero-thresholding

for biometric template binarization in various perspectives, only the DQ-generated bit-

strings are considered in this chapter. Yet the bit-length of the fingerprint bit-string

varies with different S2V transformation methods (KPCA+DQ, HQ+MEANPOOL+DQ

and SQ+MEANPOOL+DQ), the block length (n) of the secure sketch construction should

also vary accordingly. The bit-strings are truncated from the least significant bit when-

ever necessary.

7.5.2 Performance of the CaFE

Table 7.2 shows the performance of the CaFE system illustrated in Figure 7.2. Since

the block length of BCH codes is n = 2m − 1, the fingerprint bit-string is truncated

to the same length for secure sketch construction. By truncating the least significant

bit from the bit-string, BCH codes with n = 63 and n = 1023 become adaptable to

the KPCA+DQ (Db = 64 bits) and SQ+MEANPOOL+DQ (Db = 1024 bits) algorithms

respectively. As for HQ+MEANPOOL+DQ (Db = 768 bits), 3 bits are truncated and

the bit-string is divided into three blocks of 255 bits (n = 255) each to utilize most of

the bits. In addition, BCH codes with n = 63 are also implemented on the first 63

bits (only 63 bits out of 768 bits or 1023 bits are used) of HQ+MEANPOOL+DQ and

SQ+MEANPOOL+DQ to compare the results.

From Table 7.2, it is apparent that as the correcting capability decreases, the FRR in-

creases while the FAR reacts otherwise. The FRR and FAR are in contrast to each

other, when less errors are being corrected, the chance of recovering the true code-

word drops, regardless of whether the query is from a genuine user or an impostor.

This is equivalent to increasing the similarity threshold for a fingerprint to be accepted

in a conventional biometric authentication system. As bio-cryptosystems are biometric

applications of high security requirement, it is more practical to adjust the correcting

capability so that FAR = 0% to avoid potential key reproduction by impostors.

Furthermore, for HQ+MEANPOOL+DQ and SQ+MEANPOOL+DQ, the performances

are better when only 63 bits of the bit-string are used compared to when bit-string

128



CHAPTER 7: CASE STUDY: APPLICATION ON BIO-CRYPTOSYSTEMS

Table 7.2: Recognition accuracy (in terms of FRR/FAR in %) of the proposed CaFE
compared to other existing bio-cryptosystems. In the table, BCH(n,k,2t+ 1) represents
the parameters of the BCH codes used.

Algorithm & Parameters
FVC2002

DB1
FVC2002

DB2
FVC2004

DB1
FVC2004

DB2
KPCA+DQ

BCH(63,7,31) 1 0/1.11 0/1.08 0/1.09 2/1.15
BCH(63,10,27) 1 0/0.10 0/0.14 0/0.10 2/0.26
BCH(63,16,23) 1 2/0 1/0 9/0 5/0
BCH(63,18,21) 1 2/0 2/0 10/0 7/0
BCH(63,24,15) 1 3/0 3/0 27/0 13/0

HQ+MEANPOOL+DQ
BCH(255,9,127) 2 75/0.00 77/0 98/0 98/0
BCH(63,7,31) 1 12/0.94 7/0.82 53/0.95 47/0.79
BCH(63,10,27) 1 19/0.11 13/0.11 67/0.07 59/0.11
BCH(63,16,23) 1 30/0 24/0 77/0 69/0
BCH(63,18,21) 1 37/0 30/0 83/0 76/0
BCH(63,24,15) 1 60/0 52/0 90/0 86/0

SQ+MEANPOOL+DQ
BCH(1023,11,511) 1 25/0.06 25/0.07 90/0.10 82/0.06
BCH(1023,16,295) 1 27/0 31/0 94/0 85/0
BCH(63,7,31) 1 5/0.93 5/1.02 43/0.75 32/0.82
BCH(63,10,27) 1 7/0.13 9/0.14 58/0.13 48/0.08
BCH(63,16,23) 1 16/0 12/0 72/0 53/0
BCH(63,18,21) 1 23/0 16/0 77/0 57/0
BCH(63,24,15) 1 42/0 27/0 89/0 80/0

Existing fingerprint hybrid BTP schemes
Xu and Wang [156] 11/0 13/0 - -

Other fingerprint key-generation schemes
Nguyen et al. [243] - 11/0 - 41/0.22
Yang et al. [244] 8/0.59 6/0.02 - 41/0.22
Nandakumar et al.

[143]
- 4/0.004 - -

Uludag and
Jain [245]

- 15.5/0 - -

1only use the first n bits of the biometric bit-string.
2only use the first 3n bits of the biometric bit-string, divided into three blocks.

truncation is kept minimal. For example, the CaFE, when incorporated with SQ+

MEANPOOL+DQ, is able to achieve 16% FRR for BCH(63,16,23), but 27% FRR for

BCH(1023,16,295) when FAR=0% on FVC2002 DB1. This is because DQ extracts bit-

strings such that the bits with higher reliability are selected first. Thus, errors are more

likely to occur in the least significant bits. Figure 7.3 shows an example of the dis-

tribution of errors over the entire bit-string of 1024 bits. It is obvious that the error

occurrence is more frequent in the least significant bits than in the most significant bits.
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Since KPCA+DQ produces the best EER among the proposed algorithms (see section

6.4.2), it is reasonable that it also gives the best performance when adopted by the CaFE.

It is able to achieve FRR of as low as 1% when FAR=0%. Such performance surpasses

existing hybrid BTP scheme using fingerprint and is comparable to the state-of-the-art

fingerprint key-generation schemes.

7.5.3 Entropy Analysis

The entropy evaluated in previous chapters are called the output entropy. Such entropy

denotes the randomness of the system output based on limited number of samples. The

randomness extractor in the CaFE generates an output that is independent from the

biometric bit-string and is almost uniformly distributed. Therefore, the output entropy

is expected to be close to the output length. What is more important for a cryptosystem

is the system entropy — the worst case entropy of the system output that takes into

account the data dependencies within the system.

The frequently used notation in bio-cryptosystems is the worst-case entropy, or other-

wise known as the min-entropy. It is defined as

H∞(X) = − log(max
x

Pr(X = x)). (7.5.1)

Figure 7.3: Distribution of errors over the bit-string for SQ+MEANPOOL+DQ on
FVC2002 DB1.
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Besides, the average min-entropy of X given Y is given by

H̃∞(X|Y) = − log(Ey←Y[2−H∞(X|Y=y)]). (7.5.2)

By the definitions above, for a fuzzy extractor built from a code-offset secure sketch,

Dodis et al. [2] has deduced that the entropy of the key generated (κFE) given the public

sketch (SS) is

H̃∞(κFE|SS) ≥ H∞(
ˆ̂Vb) + k− n− 2 log(

1
ε
). (7.5.3)

In randomness extractor the output (κFE) is truly random if the input ( ˆ̂Vb) is random.

However, this assumption may not apply to most biometric bit-strings. So, κFE is de-

scribed as ε-close to uniform distribution and the entropy loss 2 log( 1
ε ) is included in

the formula.

If a variable is taken from a uniform distribution, it yields an entropy of 1. Therefore,

the entropy is one way of measuring the “closeness” of one probability distribution to

uniform distribution [246]. Experiment shows that the average entropy per bit position

(as described in (6.4.2)) of the proposed bit-string for all datasets and all algorithms

was found to be 0.99 < H(V̂b) < 1 (or 0.99 < ε < 1). For this, 2 log( 1
ε ) is less than

0.02 and is negligible. Also, it has been shown in section 6.4.3 that the fingerprint bit-

strings can retain 0.99 of the entropy per bit position. Thus, the min-entropy of the

proposed CaFE is H̃∞(κFE|SS) ≥ 0.99n + k − n = k − 0.01n bits. Table 7.3 shows

the min-entropies with different error-correcting parameters. By relating Table 7.2 and

7.3, one can conclude that there exists a trade-off between performance and entropy

of a bio-cryptosystem. From the expression of H̃∞(κFE|SS) derived above, it is plain

that the message length (k) needs to be increased in order to acquire higher entropy.

However, longer message also means lower error-correcting capability (t) and directly

affects the FRR of the system.

Table 7.3: Min-entropy of the CaFE for different error-correcting parameters.

Parameters H̃∞(κFE|SS)
BCH(63,7,31) 6
BCH(63,10,27) 9
BCH(63,16,23) 15
BCH(63,18,21) 17
BCH(63,24,15) 23
BCH(255,9,127) 19
BCH(1023,11,511) 1
BCH(1023,16,295) 6
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7.6 Summary

In this chapter, an integration between the two models of biometric template protec-

tion (cancellable biometrics and bio-cryptosystems) for fingerprint biometrics has been

realized, namely the CaFE. Brief descriptions of the two major sections of the proposed

scheme are as below:

1. Cancellable biometrics: the goal of this section of CaFE is to generate a cancellable

bit-string from fingerprint. In the proposed scheme, i) the minutiae extraction is

done by using VeriFinger SDK [172]; ii) after that, the minutiae are transformed

into a set of minutia vectors using the MLC algorithm (3); iii) the variable-size

and unordered minutia vectors (MLC) are then converted into fixed-length and

ordered feature vector with either the KPCA-based method or the BoM-based

method (includes hard quantization and soft quantization); iv) the cancellable

transformation through RP is applied onto the feature vector; v) finally, bit-string

is produced via DQ. These are the five phases of the cancellable fingerprint gen-

eration section.

2. Bio-cryptosystem: the bio-cryptosystem section is demonstrated through the fuzzy

extractor [2]. Within it, are the secure sketch that helps to recover the fingerprint

bit-string during key reproduction and the randomness extractor that generates

the cryptographic key. The code-offset construction of secure sketch with BCH

coding was adopted in the experiments.

Experimental results showed that the KPCA-based S2V transformation produces the

best performance among the three methods tested. This is expected as the said method

also yields the most promising recognition accuracy as a cancellable biometrics. Look-

ing at FVC2002 DB2, the KPCA+DQ-based CaFE is able to achieve 1% FRR at FAR =

0%. This result overtakes the benchmarking key-generation bio-cryptosystems. How-

ever, trade-off between performance and security (entropy) was observed. The entropy

is merely 15 bits corresponding to the aforementioned FRR. To take it further, the pro-

posed CaFE can set at 23 bits of worst-case entropy with 3% FRR for FVC2002 DB2.

That is equivalent to a brute-force attack complexity of 223. This trade-off becomes one

of the hindrances of bringing the CaFE into real-life applications [247].
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Conclusions and Future Work

8.1 Summary of Thesis Chapters

In this thesis, a unique cancellable fingerprint template generation scheme has been

presented. The proposed scheme does not only function as a BTP method standalone,

but the output is also adaptable to bio-cryptosystems. A complete framework of gener-

ating the cancellable template from fingerprint minutiae was elaborated and evaluated

phase-by-phase throughout the thesis. As a finishing touch, the application of the tem-

plate in bio-cryptosystems was also demonstrated.

A thorough study about the existing fingerprint matching algorithms has been done

(Chapter 2). The conclusion was that minutiae-based matching is more robust than

texture-based matching due to its ability to address both local feature stability and

global feature uniformity. Fixed-radius minutia descriptors was found to stand out

among the minutiae-based methods as they are more effective in handling non-linear

distortions, and missing and spurious minutiae. Besides, the second part of the liter-

ature review covered the works on BTP schemes. For cancellable biometrics particu-

larly, non-invertible transforms using invariant features, although eliminate the need

for fingerprint pre-alignment, are subjected to loss of information. On the other hand,

biometric salting excels in information-preserving, but is of high risk against reverse

attack when the user-specific cancellable key is compromised.

Based on the findings above, a cancellable fingerprint template generation scheme in-

corporating fixed-radius minutia descriptor that is non-invertible and biometric salt-

ing which provides revocability was proposed (Chapter 3). The proposed descriptor,

namely the MLC, generates a minutia vector by observing the distribution of the neigh-
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bouring minutiae along multiple lines centred at the reference minutia. The MLC is

designed to be invariant to rotations and translations. In addition, the adverse effects

caused by scaling and non-linear local distortions can be minimized by adjusting the

radius size. Two distinct branches of the MLC algorithm were proposed, including the

one that counts the number of neighbouring minutiae within the radius (MLCN) and

the one that calculates the mean distance of the neighbouring minutiae from the centre

(MLCD). The objective of cancellable biometrics is not accomplished without revoca-

bility. Two cancellable transformations, namely RP and permutation, are borrowed

from the concept of biometric salting to complete the cancellable template generation

scheme.

Experimental results showed that MLCD performs better than MLCN. Besides, RP suf-

fers from performance deterioration while permutation is able to maintain the recog-

nition accuracy. Overall, the proposed scheme produced EER comparable to the exist-

ing methods. Furthermore, the security and privacy of the MLC algorithm was anal-

ysed. Permutation has zero privacy strength once the cancellable template and the

user-specific revocation key are compromised. Although RP introduces dimensional-

ity reduction, it also provides very weak privacy in the context since MLC is sparse. In

spite of that, the raw minutiae are still protected by the MLC algorithm. It was shown

that the MLC algorithm is mathematically irreversible even though it may reduce the

complexity of brute-force attack. The proposed method also yields strong unlinkability

and is computationally inexpensive. Note that the experiments are performed in the

MATLAB environment on Windows 7 with an Intelr CoreTM i5-2430M 2.40GHz pro-

cessor. The CPU runtimes shown are expected to shorten in real-life application with

more efficient platform.

As the number and positions of the minutiae in a fingerprint may vary each time it

is scanned, the cancellable template produced by the MLC algorithm is variable in

size and unordered. This hinders the application of the fingerprint template for var-

ious practical purposes such as bio-cryptosystems, sophisticated classifiers like SVM,

dynamic quantization for template binarization, standard vectors comparison metrics

and continuous classification for fingerprint indexing. Therefore, we introduced the

S2V transformation via kernel subspace analysis (Chapter 4) to convert the said tem-

plate into a fixed-length and ordered vector. In this context, PCA was chosen as the

most suitable subspace analysis model, onto which the kernel method is applied to

form KPCA. A kernel function was specially designed based on the matching func-
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tion of MLC templates so that it can be directly applicable to the previously proposed

fingerprint template.

The KPCA-based S2V transformation was shown to yield remarkable performance.

However, the training samples stored leak information about the user’s original tem-

plate. Yet, the raw minutiae remain protected as the training samples are generated

by the MLC algorithm which is designed to be mathematically non-invertible. There

are multiple layers of protection to break before unveiling the minutiae information.

Besides, the vectorized template showed high value in other aspects of security and

privacy such as unlinkability and entropy. Although the S2V transformation may put

on additional computational power to the framework, most operations are executed

off-line. The on-line runtime is within acceptable range considering the current com-

puter technology.

Further, a second approach towards S2V transformation based on the BoM paradigm

was presented (Chapter 5). The concept of BoM modelling, originated from the BoW

paradigm, was consolidated with three design perspectives, including minutiae rep-

resentation, space partitioning and minutiae labelling. In the experiments, two de-

sign choices of minutiae labelling, viz. hard quantization and soft quantization, are

implemented with K-means clustering and dictionary learning respectively. Results

showed that the latter exhibits lower EER than the former due to its fuzziness in la-

belling/assigning the minutiae. By allowing a minutia to be assigned to more than one

atom, the soft quantization algorithm is able to reduce the quantization error. In terms

of security and privacy, soft quantization takes more effort to crack, and the produced

cancellable template has slightly higher unlinkability than its counterpart. The draw-

back is that soft quantization requires more than doubled the training time of hard

quantization.

In most of the aforementioned practical applications of fixed-length and ordered fin-

gerprint representation, binary input is also a vital requirement. Therefore, the pro-

posed cancellable template was binarized into bit-string (Chapter 6). Note that bit-

string refers to fixed-length binary vector. Both static quantization (or specifically zero-

thresholding) and DQ were used to realize fingerprint template binarization in this

thesis for comparison. Apparently, DQ outperforms zero-thresholding by a significant

extent. This is because DQ aims at maximizing the inter-class similarity and minimiz-

ing intra-class similarity while allocating the bits. However, the helper data stored for

DQ may leak useful information about the values of the real vector. Both binarization
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techniques have similar unlinkability and entropy. From the aspect of computational

complexity, DQ requires additional computational power for training, but both tech-

niques are equally time-efficient during template generation.

Now that a complete cancellable fingerprint bit-string generation scheme has been de-

veloped, it can be a “plug and play” component to any appropriate application besides

a typical fingerprint authentication system. In this thesis, the application of the pro-

posed fingerprint bit-string in a key-generation bio-cryptosystem was demonstrated

(Chapter 7). To be more precise, the cancellable fingerprint was amalgamated with

fuzzy extractor to form a hybrid BTP, known as the CaFE. In addition to the bit-string

generation scheme, the CaFE consists of two other components, i.e. secure sketch with

code-offset construction and randomness extractor. Experimental results showed that

the CaFE is able to achieve FRR as low as 2% when FAR = 0% which is comparable to

the state-of-the-art key-generation bio-cryptosystems. The output entropy could pre-

serve more than 99% of the output length, but the worst-case system entropy appeared

to be a lot weaker. Nevertheless, the system entropy can be strengthened by sacrificing

the performance while maintaining it at acceptable range.

8.2 Concluding Remarks

Although two cancellable transformations were used, RP was proven to be more su-

perior than permutation. Also, DQ was preferable to zero-thresholding as the tem-

plate binarization technique for its excellent performance while no significant addi-

tional on-line runtime required. The entire cancellable bit-string generation scheme is

narrowed down to the choice of S2V transformation with three options available, in-

cluding the KPCA-based method, hard quantization-based BoM modelling and soft

quantization-based BoM modelling. Figure 8.1 depicts a triadic analysis on the three

important aspects of the methods. The trade-offs among the three aspects can be easily

observed from the figure. The KPCA-based method provides extremely high perfor-

mance, but lacks security strength and computational efficiency. On the other hand,

soft quantization-based BoM modelling compromises on the recognition accuracy to

offer lower on-line computational power demand and better resistance against various

attacks. Hard quantization-based BoM modelling however, shows poorer results than

soft quantization in all aspects. In conclusion, the end product of this thesis can accom-

modate to various applications, ranging from general biometric authentication systems
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Performance

Security and PrivacyComputational Efficiency

KPCA-Based Method

BoM-Based Method (Soft Quantization)

BoM-Based Method (Hard Quantization)

Figure 8.1: Radar chart on the performance, security and privacy, and computational
efficiency of the proposed S2V transformation methods. The magnitude of each of the
aspects represents its strength.

to highly secured cryptosystems, with proper choice of method and parameters. What

is more interesting is that the two major contributions of this study, including the MLC

descriptor and the two S2V transformation approaches, are mutually exclusive and can

each be adopted by any similar biometric system individually.

8.3 Directions for Future Works

In this section, some possible future works of this research project are briefly discussed.

They include improvements of algorithms and potential works extended from this

study, with the intention to incite the practicality of the proposed framework as well as

to discover research opportunities in relevant areas.

In the real world, a biometric system usually allows regular enrolments of new users

after the system has already been set up. For training-based algorithms, such as KPCA,

a posteriori BoM modelling and DQ, the enrolment of a new user may affect the pre-

trained helper data. For example, the minutia vectors of a new fingerprint may change

the positions of the clusters obtained by K-means algorithm, and subsequently affect

the feature vectors of existing users. Therefore, studies on proper update protocols
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of the helper data can be a future research direction. Although on-line algorithms for

BoM training, such as on-line K-means clustering [248, 249], streaming K-means clus-

tering [250] and on-line dictionary learning [251,252], have been proposed to incremen-

tally update the clusters/atoms, the problem of updating the existing feature vectors

in the database remains unsolved. One convenient and simple solution is to use a large

amount of training samples so that the dictionary obtained is globally representative

and will not be affected by new enrolment. This is related to the point-proportion ad-

missibility1 of clustering algorithms.

The issue of limited direct applications faced by minutiae-based fingerprint template

has been dealt with in this thesis by introducing two distinct S2V transformation meth-

ods as the countermeasures. This study intends to spur researches regarding this less

explored yet prominent issue in the realm of fingerprint biometrics. New methods and

enhancement of the existing methods towards S2V transformation are foreseeable.

Moreover, the proposed S2V transformation methods are applicable to most descriptor-

based fingerprint features, for example MCC [38] and other recently proposed descrip-

tors such as multi-line neighbouring relation-based descriptor [254] and minutiae rela-

tion code (MRC) [255]. Therefore, further study on more efficient and robust minutiae

representations also helps to improve the proposed cancellable fingerprint generation

scheme.

1A clustering algorithm is said to be point-proportion admissible if after adding a point that is identical
to the existing points in the clusters, the cluster boundaries remain unchanged. [253]
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APPENDIX A

Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization, also known as the Gram-Schmidt process, is a tech-

nique which takes non-orthogonal and linearly independent set S = {v1, ..., vk} and

generates an orthogonal set S′ = {u1, ..., uk}. Let

proju(v) :=
〈u, v〉
〈u, u〉u, (A.0.1)

where 〈u, v〉 denotes the inner product of the vectors u and v. The output vectors of

the orthogonal set are computed as follows:

u1 = v1, e1 =
u1

‖u1‖
;

u2 = v2 − proju1
(v2), e2 =

u2

‖u2‖
;

u3 = v3 − proju1
(v3)− proju2

(v3), e3 =
u3

‖u3‖
;

...

uk = vk −
k−1

∑
j=1

projuj
(vk), ek =

uk

‖uk‖
, (A.0.2)

where ‖ · ‖ denotes the `2 norm. The set {e1, ..., ek} contains normalized vectors of

{u1, ..., uk}, hence the process of calculating {e1, ..., ek} is also called Gram-Schmidt

orthonormalization.
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APPENDIX B

Kernel Validation(Mercer’s

Theorem)

Theorem 1 (Mercer’s Theorem [208]). Any continuous, symmetric and semi-definite func-

tion k(x, y) can be used as a kernel function if and only if, for any g(x) such that

∫
[g(x)]2dx < ∞ (B.0.1)

then ∫∫
k(x, y)g(x)g(y)dxdy ≥ 0 (B.0.2)

Lemma 1 ( [256]). Let k1(x, y) and k2(x, y) be kernels over the data space X × X, X ⊆ Rn

and a ∈ R+, then the following functions are kernels which satisfy the Mercer’s theorem:

1. k(x, y) = k1(x, y) + k2(x, y)

2. k(x, y) = k1(x, y)k2(x, y)

3. k(x, y) = ak1(x, y)

4. k(x, y) = exp(k1(x, y))
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APPENDIX C

Example of BCH Encoding

Given that α is the primitive element of a Galois field (GF) (refer to section 7.2.2 for

the notions of GF), Table C.1 shows an example of the elements in GF(24) in both poly-

nomial form and vector form. The polynomial representations of the elements with

degree 4 or higher are generated based on the definition p(α) = α4 + α + 1 = 0⇒ α4 =

α + 1.

Table C.1: Elements of GF(24) generated by the primitive polynomial p(X) = X4 +
X + 1.

Power representation Polynomial representation Vector representation
0 0 [0,0,0,0]
1 1 [0,0,0,1]
α α [0,0,1,0]
α2 α2 [0,1,0,0]
α3 α3 [1,0,0,0]
α4 α + 1 [0,0,1,1]
α5 α2 + α [0,1,1,0]
α6 α3 + α2 [1,1,0,0]
α7 α3 + α + 1 [1,0,1,1]
α8 α2 + 1 [0,1,0,1]
α9 α3 + α [1,0,1,0]
α10 α2 + α + 1 [0,1,1,1]
α11 α3 + α2 + α [1,1,1,0]
α12 α3 + α2 + α + 1 [1,1,1,1]
α13 α3 + α2 + 1 [1,1,0,1]
α14 α3 + 1 [1,0,0,1]

With this, the minimal polynomials of the elements can be calculated. Minimal poly-

nomials (Λ(X)) are polynomials that satisfies Λ(αj) = 0. For example, the minimal
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polynomial of α3 can be obtained by solving the following using Table C.1:

Λ(α3) = 0

Λ12(α
3)4 + Λ9(α3)3 + Λ6(α3)2 + Λ3α3 + Λ0 = 0

Λ12α3 + Λ12α2 + Λ12α + Λ12

+ Λ9α3 + Λ9α

+ Λ6α3 + Λ6α2

+ Λ3α3

+ Λ0

· · · + · · · + · · · + · · · + · · · = 0

get Λ12 = 1, Λ9 = 1, Λ6 = 1, Λ3 = 1, Λ0 = 1,

∴ the minimal polynomial of α3 is Λ(3)(X) = X4 + X3 + X2 + X + 1.

Following the same approach, the minimal polynomials of the elements of GF(24) for

p(X) = X4 + X + 1 are shown in Table C.2.

Table C.2: Minimal polynomials of the elements of GF(24) generated by the primitive
polynomial p(X) = X4 + X + 1.

Element(s)(αj) Minimal polynomial(Λ(j)(X))

{α, α2, α4, α8} X4 + X + 1
{α3, α6, α9, α12} X4 + X3 + X2 + X + 1

{α5, α10} X2 + X + 1
{α7, α11, α13, α14} X4 + X3 + 1

If the desired error-correcting capability is t = 3, then the generator polynomial of the

BCH encoder is the least common multiple of the first 2t minimal polynomials:

g(X) = LCM(Λ(1)(X), Λ(2)(X), Λ(3)(X), Λ(4)(X), Λ(5)(X), Λ(6)(X))

= LCM(Λ(1)(X), Λ(3)(X), Λ(5)(X))

= (X4 + X + 1)(X4 + X3 + X2 + X + 1)(X2 + X + 1)

= X10 + X8 + X5 + X4 + X2 + X + 1
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For a BCH(15,5,3)-code, given a message κs = [1, 1, 0, 1, 1] or κs(X) = X4 + X3 + X + 1,

the codeword (E(X)) is computed using (7.4.2) through the following steps:

X15−5κs(X) = X14 + X13 + X11 + X10

r(X) = X10κs(X) mod g(X)

= X9 + X4 + X2

∴ E(X) = X10κs(X) + r(X)

= X14 + X13 + X11 + X10 + X9 + X4 + X2

or

E = [1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0]
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Example of BCH Decoding

A message has been successfully encoded into a BCH(15,5,3) codeword in Appendix

C. The generator polynomial, message and the codeword are as follows:

g(X) = X10 + X8 + X5 + X4 + X2 + X + 1

κs(X) = X4 + X3 + X + 1

E(X) = X14 + X13 + X11 + X10 + X9 + X4 + X2

Now lets assume the codeword is slightly distorted during transmission and the re-

ceived codeword is E′(X) = X11 + X10 + X9 + X4 + X2 + 1 or E′ = [0, 0, 0, 1, 1, 1, 0, 0,

0, 0, 1, 0, 1, 0, 1]. First, calculate the first 2t coefficients of the syndrome based on (7.4.3)

and Table C.1:
syn(1) = E′(α) = α8

syn(2) = E′(α2) = α

syn(3) = E′(α3) = α2

syn(4) = E′(α4) = α2

syn(5) = E′(α5) = 0

syn(6) = E′(α6) = α4

After that, the Berlekamp-Massey algorithm (as described in Algorithm 7.1) is executed

to determine the error locator polynomial, σ(X). The algorithm consists of 2t iterations

and the values of the variables in each iteration are computed in Table D.1. The final

error locator polynomial obtained is σ(X) = α12X3 + α7X2 + α8X + 1. Through brute-

force Chien search, the roots of σ(X) are σ(1) = σ(α) = σ(α2) = 0. Therefore, the

errors are e(X) = X15−1 +X15−2 + 1 = X14 +X13 + 1 and successful decoding is proven

by E(X) = E′(X) + e(X)
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APPENDIX D: EXAMPLE OF BCH DECODING

Table D.1: Elements of GF(24) generated by the primitive polynomial σ(X) = p(X) =
X4 + X + 1.

i ∆(i) δ(i) L(i) B(i)(X) σ(i)(X)

0 - - 0 1 1
1 α8 1 1 α7 α8X + 1
2 0 0 1 α7X α8X + 1
3 α11 1 2 α12X + α4 α3X2 + α8X + 1
4 0 0 2 α12X2 + α4X α3X2 + α8X + 1
5 1 1 3 α3X2 + α8X + 1 α12X3 + α7X2 + α8X + 1
6 0 0 3 α3X3 + α8X2 + X α12X3 + α7X2 + α8X + 1
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