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The work presented focuses on scheduling for 
transaction-intensive cost-constrained cloud 
workflows, which are workflows with a large number 
of workflow instances (i.e. transaction intensive) 
bounded by a certain budget for execution (i.e. cost 
constrained) on a cloud computing platform (i.e. cloud 
workflows). First, the scheduling algorithms should 
take execution cost of ‘pay for use’ as one key factor. 
Second, as an important criterion of transaction-
intensive workflows, mean execution time will be 
taken as another key factor. Third, the algorithms 
should facilitate multiple strategies for compromising 
execution time and cost with user input enabled on the 
fly. Finally, they should conform to the nature of cloud 
computing.  

In general, there are two major types of workflow 
scheduling: market-driven and performance-driven. 
The former aims at achieving ‘optimal’ execution 
performance, normally without considering cost, by 
mapping workflow tasks onto resources according to 
some specific strategies, such as the Heterogeneous 
Earliest-Finish-Time algorithm [1] and a throughput 
maximisation strategy [2]. The latter tries to allocate 
resources for workflow tasks according to market 
models with cost imposed, such as Back-tracking [3], 
a genetic algorithm [4], the LOSS and GAIN 
approach [5] and the deadline distribution algorithm 
[6].  

Because cloud workflow executions are unlikely 
free, cloud workflows scheduling usually belongs to 
market-driven strategies. Most existing market-driven 
strategies mentioned above are designed for 
scheduling a single workflow instance in general. 
However, for transaction-intensive workflows on a 
cloud computing platform, fierce competition on 
servers may occur and failures may happen from time 

to time. Thus the scheduling strategy needs to 
incorporate this situation accordingly. In addition, it 
also needs to consider the characteristics of cloud 
computing by compromising execution time and cost 
with user input enabled on the fly which is not 
considered in other algorithms.  

 
SwinDeW-C System Design 

SwinDeW-C (Swinburne Decentralised Workflow 
for Cloud) cloud workflow system includes the 
following major parts: service clouds, cloud workflow 
execution agents, services catalogue, and user 
interface.  
• Service Cloud: The servers with the same service 
are organised dynamically as a service cloud. Every 
server will automatically join the service clouds 
according to the service it can provide. In case when a 
cloud is too big, it is divided into several sub-clouds 
according to servers’ geographical positions in order 
to reduce communication delay.  
• Cloud Workflow Execution Agent: In order to 
access the services, every service is managed by a 
cloud workflow execution agent. This agent manages 
the services for workflow execution, including 
monitoring, data management and coordination with 
other agents which manage the services of the same 
type.  
• Cloud Services Catalogue: Cloud services are a 
foundation of cloud computing. They are a variety of 
services available over the Internet that deliver 
compute functionality on the service provider's 
infrastructure. To access the services, there is a Cloud 
Services Catalogue which is a list of services that a 
user can request.  
• User Interface: SwinDeW-C provides a user 
interface for users to monitor the workflow execution 
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status and input the setting of compromised time and 
cost on the fly if needed. The input from the user on 
time and cost will be taken into account for scheduling 
the next round for better user satisfaction. 
Our Scheduling Algorithm 

We have proposed an algorithm for scheduling 
transaction-intensive cost-constrained cloud 
workflows. It has the following characteristics. (1) 
Considering the “pay for use” feature of cloud 
workflows, the algorithm takes execution cost and 
execution time as the two key considerations. The 
current primary purpose of the algorithm is to 
minimise the cost under certain user-designated 
deadlines. (2) The algorithm always enables the 
compromises of execution cost and time. It provides a 
just-in-time graph of time-cost relationship during 
workflow execution in the user interface for users to 
choose an acceptable compromise before the next 
round scheduling begins. 

The algorithm can be described briefly as follows:  
Pre-Step: Check uncompleted tasks and schedule 

them first in this round.  
Step 1: Allocate sub-deadlines to tasks for each 

instance. 
Step 2: Calculate estimated execution time and 

cost on each service. 
Step 3: Allocate tasks to proper services. 
Step 4:  Provide just-in-time time-cost relationship 

graph for user to optionally choose an updated 
compromised deadline for scheduling.  

Step 5: Sleep until next round scheduling. 
Simulation and Comparison 
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Figure 1: Comparison on mean execution cost 
 
The simulation calculates the actual completion 

time and cost within 0.25 to 4 times of the input 

deadlines, using our algorithm and the currently most 
effective Deadline-MDP algorithm [6]. 

Figure 1 demonstrates the comparison results on 
the mean execution cost within different deadlines. 
Given both algorithms meet the deadlines, it can be 
seen that the mean execution cost of our algorithm is 
always lower than that of the Deadline-MDP 
algorithm in all circumstances. On average, the saving 
on the mean execution cost is over 15%. 
Conclusions and Future Work 

This paper has proposed an innovative transaction-
intensive cost-constraint cloud workflow scheduling 
algorithm which takes cost and time as the main 
concerns with user input on the fly and incorporates 
the characteristics of cloud computing. The simulation 
has demonstrated that our algorithm can achieve 
lower cost than others while meeting the user-
designated deadline. 

In the future, we will try to apply our scheduling 
algorithm to some real world applications such as 
insurance claiming workflow systems. 
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