
An Algorithm in SwinDeW-C for Scheduling Transaction-Intensive Cost-
Constrained Cloud Workflows

Yun Yang1, Ke Liu1, 2, Jinjun Chen1, Xiao Liu1, Dong Yuan1, Hai Jin2
 1 Faculty of Information and Communication

Technologies
Swinburne University of Technology

Hawthorn, Melbourne, Australia 3122
{yyang, kliu, jchen}@ict.swin.edu.au

2 School of Computer Science & Technology
Huazhong University of Science and

Technology
Wuhan, Hubei, China 430074

hjin@hust.edu.cn

The work presented focuses on scheduling for
transaction-intensive cost-constrained cloud
workflows, which are workflows with a large number
of workflow instances (i.e. transaction intensive)
bounded by a certain budget for execution (i.e. cost
constrained) on a cloud computing platform (i.e. cloud
workflows). First, the scheduling algorithms should
take execution cost of ‘pay for use’ as one key factor.
Second, as an important criterion of transaction-
intensive workflows, mean execution time will be
taken as another key factor. Third, the algorithms
should facilitate multiple strategies for compromising
execution time and cost with user input enabled on the
fly. Finally, they should conform to the nature of cloud
computing.

In general, there are two major types of workflow
scheduling: market-driven and performance-driven.
The former aims at achieving ‘optimal’ execution
performance, normally without considering cost, by
mapping workflow tasks onto resources according to
some specific strategies, such as the Heterogeneous
Earliest-Finish-Time algorithm [1] and a throughput
maximisation strategy [2]. The latter tries to allocate
resources for workflow tasks according to market
models with cost imposed, such as Back-tracking [3],
a genetic algorithm [4], the LOSS and GAIN
approach [5] and the deadline distribution algorithm
[6].

Because cloud workflow executions are unlikely
free, cloud workflows scheduling usually belongs to
market-driven strategies. Most existing market-driven
strategies mentioned above are designed for
scheduling a single workflow instance in general.
However, for transaction-intensive workflows on a
cloud computing platform, fierce competition on
servers may occur and failures may happen from time

to time. Thus the scheduling strategy needs to
incorporate this situation accordingly. In addition, it
also needs to consider the characteristics of cloud
computing by compromising execution time and cost
with user input enabled on the fly which is not
considered in other algorithms.

SwinDeW-C System Design

SwinDeW-C (Swinburne Decentralised Workflow
for Cloud) cloud workflow system includes the
following major parts: service clouds, cloud workflow
execution agents, services catalogue, and user
interface.
• Service Cloud: The servers with the same service
are organised dynamically as a service cloud. Every
server will automatically join the service clouds
according to the service it can provide. In case when a
cloud is too big, it is divided into several sub-clouds
according to servers’ geographical positions in order
to reduce communication delay.
• Cloud Workflow Execution Agent: In order to
access the services, every service is managed by a
cloud workflow execution agent. This agent manages
the services for workflow execution, including
monitoring, data management and coordination with
other agents which manage the services of the same
type.
• Cloud Services Catalogue: Cloud services are a
foundation of cloud computing. They are a variety of
services available over the Internet that deliver
compute functionality on the service provider's
infrastructure. To access the services, there is a Cloud
Services Catalogue which is a list of services that a
user can request.
• User Interface: SwinDeW-C provides a user
interface for users to monitor the workflow execution

Fourth IEEE International Conference on eScience

978-0-7695-3535-7/08 $25.00 © 2008 IEEE
DOI 10.1109/eScience.2008.93

374

status and input the setting of compromised time and
cost on the fly if needed. The input from the user on
time and cost will be taken into account for scheduling
the next round for better user satisfaction.
Our Scheduling Algorithm

We have proposed an algorithm for scheduling
transaction-intensive cost-constrained cloud
workflows. It has the following characteristics. (1)
Considering the “pay for use” feature of cloud
workflows, the algorithm takes execution cost and
execution time as the two key considerations. The
current primary purpose of the algorithm is to
minimise the cost under certain user-designated
deadlines. (2) The algorithm always enables the
compromises of execution cost and time. It provides a
just-in-time graph of time-cost relationship during
workflow execution in the user interface for users to
choose an acceptable compromise before the next
round scheduling begins.

The algorithm can be described briefly as follows:
Pre-Step: Check uncompleted tasks and schedule

them first in this round.
Step 1: Allocate sub-deadlines to tasks for each

instance.
Step 2: Calculate estimated execution time and

cost on each service.
Step 3: Allocate tasks to proper services.
Step 4: Provide just-in-time time-cost relationship

graph for user to optionally choose an updated
compromised deadline for scheduling.

Step 5: Sleep until next round scheduling.
Simulation and Comparison

0

5

10

15

20

25

30

M
ea

n
 E

xe
cu

ti
o

n

C
o

st

0.25 0.5 1 1.5 2 3 4

Deadline

Ours De adline-MDP

Figure 1: Comparison on mean execution cost

The simulation calculates the actual completion

time and cost within 0.25 to 4 times of the input

deadlines, using our algorithm and the currently most
effective Deadline-MDP algorithm [6].

Figure 1 demonstrates the comparison results on
the mean execution cost within different deadlines.
Given both algorithms meet the deadlines, it can be
seen that the mean execution cost of our algorithm is
always lower than that of the Deadline-MDP
algorithm in all circumstances. On average, the saving
on the mean execution cost is over 15%.
Conclusions and Future Work

This paper has proposed an innovative transaction-
intensive cost-constraint cloud workflow scheduling
algorithm which takes cost and time as the main
concerns with user input on the fly and incorporates
the characteristics of cloud computing. The simulation
has demonstrated that our algorithm can achieve
lower cost than others while meeting the user-
designated deadline.

In the future, we will try to apply our scheduling
algorithm to some real world applications such as
insurance claiming workflow systems.
Acknowledgement

The research work reported in this paper is partly
supported by Australian Research Council under
Discovery Grant DP0663841.

References
[1] T. Tannenbaum, D. Wright, K. Miller, and M. Livny.
“Condor – A Distributed Job Scheduler”, Computing with
Linux, MIT Press, 2002.
[2] K. Liu., J. Chen, Y. Yang and H. Jin, “A Throughput
Maximization Strategy for Scheduling Transaction Intensive
Workflows on SwinDeW-G”, Concurrency and
Computation: Practice and Experien.2008;20:1807-1820.
[3] D. A. Menasc and E. Casalicchio, “A Framework for
Resource Allocation in Grid Computing”, Proc. of the 12th
Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications
Systems (MASCOTS’04), 2004; 259-267.
[4] J. Yu and R. Buyya, “Scheduling Scientific Workflow
Applications with Deadline and Budget Constraints using
Genetic Algorithms”, Scientific Programming Journal, IOS
Press, 2006; 14(3-4): 217 – 230.
[5] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D.
Dikaiakos., “Scheduling Workflows with Budget
Constraints”, CoreGRID Workshop on Integrated research
in Grid Computing, Technical Report TR-05-22, University
of Pisa, Dipartimento Di Informatica, Pisa, Italy, November
2005; 347-357.
[6] J. Yu, R. Buyya, and C. K. Tham, “A Cost-based
Scheduling of Scientific Workflow Applications on Utility
Grids”, Proc. of the 1st IEEE International Conference on
e-Science and Grid Computing, Melbourne, Australia,
December 2005; 140-147.

375

