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Abstract 
This paper concerns building embedded languages 

in Prolog, with special attention on expert system 
shells. First, the paradigm of meta-programming, of 
which building embedded languages is an example, is 
discussed. Second, we review interpreters for embed
ded languages, concentrating on meta-interpreters. Fi
nally, two applications, explanation and uncertainty 
reasoning, are presented and the techniques that were 
used in their construction are discussed. 

1 The Paradigm of 
Met a-Programming 

Prolog is widely recognized as a good language for 
writing simple rule-based expert systems. There are 
two major factors. First, the primary language con
structs, Horn clauses, are essentially rules. Second, 
Prolog's built-in backward chaining interpreter can be 
used as the inference engine. However, writing rule
based systems directly in Prolog has limitations due 
to the 'hard wiring' of both a particular type of repre
sentation and a particular inference strategy. Further, 
the language does not provide certain functionalities 
of an expert system shell, such as tools for interacting 
with the user, explanation, knowledge acquisition and 
debugging. 

Three different approaches have been suggested to 
overcome Prolog's limitations for building expert sys
tems [11]. The first method is to build the desired ex
tensions within the underlying Prolog engine at the im
plementation level of a Prolog compiler or interpreter. 
The second method is to translate a knowledge-based 
system written in a special language to Prolog by us
ing a special compiler. The third method is to exploit 
the meta-programming facilities of Prolog. Clearly the 
first method is the most efficient yet the most inflex
ible. Developing the desired extensions within Prolog 
is the easiest method and the most flexible one, since it 
is not necessary to change the underlying Prolog sys
tem. In this paper, we advocate this third method and 
illustrate techniques for building embedded languages 
and expert system shells in Prolog by exploiting its 
meta-programming facilities. 

Let us start by addressing the question "what is 
meta-programming", a topic which has concerned 
many researchers. One common definition [2, 19] states 
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Meta-programming is writing programs that 
treat other programs as data. 

By this definition, familiar programs, such as assem
blers, compilers and program transformers are meta
programs. 

Another definition of meta-programming can be ob
tained by following Hayes-Roth's: Meta-X is a macro 
definition for 'X about X' [13]. Expanding this 
macro as in [3], yields another definition of meta-pro
gramming. 

Meta-programming is programming about pro
gramming. 

Both of the above definitions are descriptive. How
ever they are missing, in our opinion, the essence of 
meta-programming by ignoring both the purpose of 
writing meta-programs and the approach taken for de
veloping them. 

We regard meta-programming as a paradigm, which 
is according to Floyd [12], an approach to writing pro
grams. A paradigm can also be described as a col
lection of methods and/or techniques to facilitate the 
construction of certain classes of programs. Other ex
amples of paradigms are structured programming, dy
namic programming, divide-and-conquer and object
oriented programming. 

We offer a single sentence definition of the paradigm 
of meta-programming. 

Meta-programming is building an abstraction 
of an object language and developing an in
terpreter for the abstraction. 

This definition does not contradict the previous def
initions. However, it focuses on the purpose behind 
meta-programming activity. The reason for conceiving 
a programming task as meta-programming is to clar
ify and simplify the programming by giving a useful 
language to the user with which to build applications. 

In the chapter on meta-linguistic abstractions in their 
well-known textbook, Abelson and Sussman [1] stress 
the importance of establishing new descriptive lan
guages for programming. Tools and techniques are 
needed both to formulate new languages and to im
plement these languages by constructing evaluators. 
From an engineering point of view, it is much simpler 
to build within a high level language by delegating 
some of the work, i.e. matching, unification, or back
ward chaining to the underlying system. 



Meta-programming is an important paradigm for AI 
applications. The best way to develop a new applica
tion, in our experience, is to design a new language 
tailored to the application. This is only practical if it 
is easy to design and implement the language. 

A particular language, such as Prolog, supports meta
programming by making it easy to write interpreters 
for a specific application. Interpreters are used for two 
related reasons for modelling computations. The first 
one is the execution of an embedded language within 
a programming language. The next section gives an 
example of developing an embedded language within 
Prolog, and gives a simple interpreter. 

The second reason for developing interpreters is to 
model a particular inference, such as backward chain
ing. The interpreter can then be used to develop ex
pert system shells. In section 3, we discuss how to 
develop interpreters, classify the purposes of building 
them and present relevant techniques. In section 4, 
we discuss two expert system shells, for uncertainty 
reasoning and explanation, that exemplify the meta
programming paradigm . 

2 Embedded Languages 

This section gives an example of designing an embed
ded language for an expert system application. Before 
giving the details of the example, it is necessary to 
define some terminology. 

The domain language is the language used to repre
sent knowledge about the problem domain. An object 
language is a language describing a system or applica
tion program. A meta-language is a language which 
represents the constructs of an object language explic
itly. In this paper, we identify the domain and object 
languages and refer to the two synonomously. 

Consider writing an expert system to evaluate grad
uate student applications to a department in a univer
sity. Such a system must weigh attributes of a student 
such as GRE scores, grades, recommendation letters, 
and senior project topic, and classify the student ap
plication into categories such as accept, reject or con
sider further. We assume that the attributes can be 
described qualitatively, such as gre scores are excellent, 
recommendation letters are very good, and grades are 
poor. Further, the qualitative terms are assumed to lie 
on an ordinal scale, poor is worse than good is worse 
than very good, etc. A discussion on qualitative rea
soning with attributes from ordinal scales is in [5]. 

Our system will evaluate students by trying to write 
down heuristic rules expressed in these qualitative 
terms, such as 

"The student should be accepted if her gre scores 
are excellent, the grades are very good (or better) and 
the recommendation letters are good (or better)." 

To build such a system we need a syntax for ex
pressing rules. Borrowing from Prolog syntax, and 
taking advantage of the ability to define operators, one 
is lead to rules of the form Conditions ==> Action, 
where Conditions are a conjunction, denoted &, or 
died unction, denoted V, of a set of goals of the form 
(Attribute, R.elOp, Value). Five sample rules for 
evaluating graduate students are given. 
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(gre,=,excellent) t (grades,>=,very_good) t 
(recommendations,>=,very_good)==>accept. 

(faculty-decision,>,good) ==>accept. 
(gre,=,excellent) t (grades,>=,good) t 

{(senior�roject,>=,interesting) V 
(recommendation,>=,very_good))==>consider. 

(gre,>=,very_good) t (grades,=,excellent) t 
(senior�roject,>=,interesting) t 
(recommendation,=,excellent) ==> consider. 

(gre,<,excellent) t 
(grades,<,good) ==> refuse. 

An interpreter is needed to evaluate whether a cer
tain Student satisfies the requirements written in the 
rule language. Such an interpreter, is given below 
by the predicate evaluate(Student, Decision). It 
tries the rules in turn until one is found which is appli
cable for the given student, essentially using a generate
and-test strategy. By having the representation built 
on Prolog, two of its features are exploited to eval
uate the rules. Firstly, these rules are retrieved by 
using Prolog's built-in backward chaining interpreter. 
Secondly, the instantiation of variables is achieved by 
using Prolog's unification. 

evaluate(Student, Decision) � 

Qualifications ==> Decision, 
holds(Qualifications, Student). 

holds((C1VC2), Student) � holds(C1, Student). 
holds((C1VC2), Student) � holds(C2, Student). 
holds((C1tC2), Student) � 

holds(C1, Student), holds(C2, Student). 
holds((Concept, R.elOp, ExpVal), Student) � 

lookup(Concept, Student, Value), 
values(Concept, Values), 
compare(R.elOp, ExpVal, Value, Values). 

The holds predicate tests that all the 
Qualifications on the left-hand side of a rule hold 
with respect to the Student under consideration. It 
depends on compare/4, which compares the Student's 
Value with the expected value, ExpVal, of the Concept 
based on the operator R.elOp defined in the rule. Code 
for compare can be found in [19]. 

Let us generalize the experience. An embedded lan
guage for an application is built by 

• identifying the underlying abstraction necesssary 
for the task. 

• defining its representation in Prolog by creating 
language constructs, such as a new representation 
scheme for rules. 

• building an appropriate interpreter for the lan
guage. 

The embedded language is more convenient for build
ing expert systems. The knowledge engineer has the 
possibility of communicating more directly with the 
expert and reducing the gap between expert knowl
edge and expert system knowledge. The user does not 
need to know the full details of Prolog syntax a.nd ex
ecution, but can focus on the embedded language. 

It is possible to build applications directly in Prolog. 
A sample rule from our running example follows. 



evaluate(Student, accept) � 

holds((gre, = , excellent), Student), 
holds((grades, >=, very_good), Student), 
holds((recommendation, >= , very_good), 

Student). 

Comparing the system implemented directly in Pro
log with building a new rule language illustrates the 
advantages of using an embedded language. This 
method provides a general framework for other ap
plications which might use the same paradigm. For 
example, the generate-and-test paradigm for ordinal 
reasoning was used for two expert system applications, 
as described in [5]. In addition, flexibility and clarity 
is achieved by separation of the rules and how they are 
evaluated. Building on the power of Prolog, it is easier 
to include new rules or change the inference separately 
by using an embedded language. 

3 Writing Interpreters 

In the previous section, we developed a simple inter
preter for an embedded language. In this section, 
we will contrast that example with writing a meta
interpreter"'. 

Meta-interpreters can represent existing mo dels of 
computation [24]. They can be used to abstract run
time properties of computations for building applica
tions or tools. An explicit model of the inference writ
ten as a meta-interpreter can reveal or alter aspects of 
the computation of the domain language. 

To state what may seem obvious, the most impor
tant principle behind building a meta-interpreter is to 
understand why the interpreter is needed. Thus, the 
needed abstraction of the computation model must be 
determined, and how that abstraction should be rep
resented explicitly. Note that determining an abstrac
tion will in general be an iterative process. 

After constructing the meta-interpreter, enhance
ments are added to do a special task or combination 
of tasks, which we refer to as the functionality of the 
meta-interpreter. The functionality may involve re
vealing a particular run-time behavior, which may be 
hidden, e.g. generating a proof tree. The functionality 
may also be an altered computation model to obtain a 
specific behavior, i.e. invoking a depth-bound for com
putation termination or loop detection. To summarize, 
a general formula for constructing a meta-interpreter 
is 

Construction ::: Abstraction + 
Explicit Representation +Adding Functionality 

Most meta-interpreters in Prolog follow a single line 
of reasoning via chaining, where the clause selection, 
or the rule selection, is revealed and unification is left 
implicit. This is essentially what happens in the well
known vanilla interpreter (see for example [19]) which 
describes Prolog's computation in Prolog. The meta
interpreter exploits Prolog's unification both for select
ing appropriate clauses and for computing answers in 
the goals. 

*Some confusion exists between the terms meta-level 
interpreters and meta-interpreters. There is insufficient 
space here to discuss a technical basis for distinction. Here, 
meta-interpreter will refer to an interpreter for Prolog writ
ten in Prolog. 
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solve_top(Goal,Result) � 

solveJbottom(Goal,Result), 
filter(Result). 

solve_top(Goal,no). 

solveJbottom(true,yes) � !. 
solveJbottom((A,B) ,Result) � ! , 

solve_top(A,RA), 
solveJbottom�d(RA,B,Result). 

solveJbottom(not(A),Result) � !, 
solve_top(A,R), invert(R,Result). 

solveJbottom(A,Result) � 

sys(A), ! , 
(A� Result=yes ; Result=no). 

solveJbottom(A,no) � 

not clause(A,B), ! . 
solveJbottom(A,Result) � 

clause(A,B), solve_top(B,Result). 

solve_bottom�d(no,B,no). 
solveJbottom�d(yes,B,Result) � 

solve_top(B,Result). 

filter(yes). 
filter(no) � fail. 

invert(yes,no). 
invert(no,yes). 

Figure 1: Basic Layered Interpreter 

In this section, we present a meta-interpreter which 
makes explicit multiple lines of reasoning. Multiple 
lines of reasoning are necessary to handle failure and 
backtracking explicitly. Further constraints we place 
on our meta-interpreter are that the lines of reasoning 
are considered in the same order as Prolog. 

The meta-interpreter is based on a generate-and
test approach to traverse the AND-OR tree implicitly 
searched by Prolog. Backtracking is used to search al
ternative paths upon failure. The meta-interpreter has 
two layers. The bottom layer performs the computa
tion explicitly, similarly to the well-known vanilla in
terpreter, with the addition that branches of the search 
tree are labelled with an auxiliary parameter Result, 
which takes the values yes for success nodes and no 
for failure nodes. The computation is monitored by 
the top layer which generates the computation results 
and tests them. This abstraction gives the power to 
represent both success and failure by using a single 
interpreter. Note that we could not model the com
putation by using a Result parameter and a bottom 
layer only, because the goal is to be able to represent 
multiple lines of reasoning within Prolog. The code 
for the layered interpreter is given in Figure 1 and is 
used as a basis for the uncertainty reasoning and ex
planation shells presented in the next section. 

Other techniques are required for meta-interpreters 
which make different aspects of the computation ex
plicit and available. For example, in order to con
struct systems for reasoning about belief, or modules, 



we need to make theories, i.e. sets of rules, explicit. 
This is the approach taken in MetaProlog[6]. In or
der to reason about unification, all aspects of unifi
cation such as renaming, matching and propagation 
of matching in the program clauses have to be explic
itly represented. The demo meta-interpreter represents 
both unification and theories explicitly and is further 
discussed in [7]. 

The work presented above is complementary to pre
vious work [17] which advocated using meta-interpre
ters for expert system construction. There, the em
phasis was on systematic ways of adding multiple func
tionalities to a single meta-interpreter and composing 
them to get a final interpreter which incorporates the 
composite functionalities. Com.J> osing meta-interpre
ters was discussed in detail in l18]. Here we empha
size writing different meta-interpreters which are to 
be used as a basis for describing computations, where 
the functionalities are added later. How to add and 
compose functionalities is discussed in [17, 18]. 

4 Expert system Shells 

This section describes two applications based on the 
paradigm of meta-programming in Prolog, an expert 
system shell for reasoning under uncertainty and an
other shell for explanation. Both of these systems ex
ploit the multiple lines of reasoning allowed by the 
layered meta-interpreter presented in Section 3. 

4.1 Uncertainty Reasoning in Prolog Based 
Expert Systems 

Many researchers have addressed methods for incor
porating uncertainty reasoning within the paradigm 
of logic programming [23]. Describing the uncertainty 
reasoning scheme by using an appropriate Prolog meta
interpreter is the usual approach [15, 19, 16]. However, 
several issues have not been adequately addressed by 
previous research. In this section, we show how han
dling multiple lines of reasoning as allowed by the lay
ered meta-interpreter addresses some of the limitations 
of previous research. We begin by reviewing the two 
major concerns for handling uncertainty with Prolog 
meta-interpreters, namely the representation of uncer
tainty and the uncertainty reasoning calculus. 

Uncertainty is usually represented by augmenting 
the rule representation with an attached certainty fac
tor. A Prolog clause with augmented certainty factor** 
indicates a conditional certainty of the head of the 
clause when the body of the clause is true. For ex
ample, in A+- cj(CF),B1, ... ,Bn, the certainty fac
tor C F represents the certainty of A when the body 
of the clause is true. Clauses without certainty factors 
are assumed to have the maximum certainty factor 1. 
The exact form of the certainty factor is not speci
fied, and we discuss both single valued and two valued 
uncertainties in this section. 

The uncertainty calculus describes the methods to 
evaluate the rules during inference. For example, the 
best known uncertainty reasoning scheme is used in 
MYCIN [9], and reasons with single value uncertain-

"*Note that rules augmented with certainty factors are 
an example of an embedded language. 

S9 

ties. Dempster-Shafer theoq• is an example of two 
valued uncertainty reasoning l4]. 

The major difficulties with previous work are: 
1. Combining Lines of Reasoning: The result of a 
successful Prolog deduction simply involves one branch 
in the search tree. There might be, however, other 
branches in the search tree with the same solution, for 
a particular answer substitution. It seems sensible to 
include multiple lines of reasoning when we calculate 
an uncertainty for a predicate. This is not possible 
by computing uncertainties considering a single line of 
reasoning. In [15, 19], uncertainties are calculated only 
by pruning the current branch of the proof tree if nec
essary. Therefore, different values of uncertainty are 
given to the same answer substitution corresponding 
to different branches of the search tree. Given several 
bodies of evidence as different paths in the search tree, 
Baldwin [4] addresses computing a composite number 
in finding a solution for a predicate. There, the sepa
rate lines of reasoning are combined by using the com
putation of the set union of the answersf. 

Thus multiple lines of reasoning for a predicate are 
needed to compute a composite uncertainty. The naive 
approach to get all the lines of reasoning uses a set 
predicate such as setof as in (16]. However, this ap
proach does not combine the hnes of reasoning at dif
ferent levels of the computation. It is necessary to 
consider different lines of reasoning for each rule to 
compute a composite uncertainty and this should be 
applied to all the rules in the computation. 
2. Handling Failure and Negation: Operationally, 
dealing with negation requires the computation of all 
lines of reasoning for a goal. The earlier approaches 
[16, 19], do not deal with negation correctly, since 
there is no mechanism to incorporate all lines of rea
soning. Note that for single valued probabilities, a 
probability of not p can be obtained after a com
posite certainty of p is acquired, with the formula 
prob(not p) = 1- prob(p). 
3. Explicit Representation of True, False and 
Unknowns: Single valued probabilities do not allow a 
distinction between false and unknown values. In con
trast, a value pair [a, P] allows us to represent predi
cates that are defirutely known to be false, by the pair 
[0, Ol, or known to be true by the pair [1, 1]. Other 
metfiods to represent and calculate with certainties by 
using two values are discussed in [14, 10, 4]. For ex
ample, in [4], the interval [a, p], also represents the in
terval of the certainty of the predicate p, where 1 - P 
is defined to be the support for not p to be true. 

One way to handle unknown predicates is to assign 
them the value [0, 1], indicating the probability can 
have any value and there is no supporting or refuting 
evidence. The COOP shell f16] uses a similar con
vention to [4]. However, unknowns are represented 
by adding an auxiliary clause in the knowledge base. 
This method requires updating the knowledge base, 
in contrast to the meta-interpreter we present which 
performs all the necessary calculations. The meta
interpreter appropriately enhanced both to compute 

fFor single valued uncertainties, if there are two de
ductions for a. predicate p with the same answer substi
tution 8 with the certainties Pl and P2 respectively, then 
prob(p) = Pl + P2- Pl * 1J2. 



solve_top(Goal , U ,  Proof) <

solve_bottom(Goal , Uncertainty , Proof) , 
filter�certainty(Uncertainty , Goal , U ,  

Proof). 
solve_top(Goal , U ,  cl(Goal , U ,  ProofSet)) <

combine_prob(Goal , U ,  ProofSet). 

solveJbottom(true , T ,  fact)<- truthval(T) , !. 
solveJbottom((A , B) ,  and(CA , CB) , (PA , PB)) <-

! , % A  and B 
solve_top(A , CA , PA) , 
solve_bottomJand(CA , CB , B ,  PB). 

solveJbottom(not A , invert(CA) , not(A , PA))<
! , % negation 
solve_top(A , CA , PA). 

solveJbottom(A , Uncertainty , sys(A)) <

sys(A) , truthval(T) , falseval(F) , ! ,  
( A  � Uncertainty = T ; 

Uncertainty= F). 
solveJbottom(A , F ,  notclause(A)) <-

% does not exist in the knowledge base ... 
not clauseJlew(A , Body , Ci) , falseval(F) , !. 

solveJbottom(A , body(Ci , CBody) , 
clause(A , Body , ProofB)) <

clauseJlew(A , Body , Ci) , 
solve_top(Body , CBody , ProofB). 

solveJbottomJand(C , C ,  B ,  PB) <

not continue_conj (C) , ! . 
% stop calculation ! ... 

solveJbottomJand(C , CB , B ,  PB) <

continue_conj(C) , ! ,  
% if the first conjunct has not failed, continue . .. 

solve_top(B , CB , PB). 

filter�certainty(1 , true , 1 ,  fact) <- ! . 
filter�certainty(U , Goal , U ,  sys(_G)) ! . 
filter�certainty(O , Goal , _u , 

Proof) <

store�roof(Goal , Proof , O) ,  ! ,  fail. 
filter�certainty(invert(Cf) , Goal , U ,  

Proof) <- ! , 
U is 1 - Cf. 

filter�certainty(and(U1 , U2) , Goal , U ,  
Proof) <- ! , 

Uis U1 * U2. 
filter�certainty(body(CBody , Ci) , Goal , _u, 

Proof) <-
U is CBodY*Ci , 
store_proof(Goal , Proof , U) ,  ! , fail. 

truthval(1). 
falseval(O). 

Figure 2: Extended Layered Interpreter for Handling 
Single Valued Uncertainties 
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with single valued probabilities and to obtain proof of 
deduction is given in Figure 2. 

Due to the layered structure of the interpreter, the 
status of the computation is available to the top layer. 
Recall that the traversal of the search tree in the ba
sic layered meta-interpreter is monitored by a Result 
variable at the top layer. In a computation that in
volves certainties, the meta-interpreter computes an 
uncertainty rather than a Result, where the uncer
tainty can be either a single value or a pair of values. 
The certainty for a particular goal is computed from 
the certainities of all the branches that led to the so
lution at the top layer. The bottom layer provides 
the certainty calculated from a single line of reason
ing. The modified filter predicate at the top layer, 
filter _uncertainty, continues to compute all differ
ent paths that lead to a solution upon success as well 
as failure in contrast to filter in Figure 1. The pred
icate store _proof is used to store the branches of the 
proof temporarily. 

When the c.omputation terminates after calculating 
all lines of reasoning, by the ultimate failure of the 
first clause of solve_top, the certainty is calculated 
by the combine_prob predicate. This predicate first 
groups solutions with respect to different answer sub
stitutions and then combines the certainties for each 
answer substitution from different lines of reasoning 
while eliminating the branches that do not support 
an answer, i.e. branches with 0 probability. It also 
returns each different solution, in the order it is ob
tained, consistent with Prolog's behaviour. 

The layered interpreter provides several advantages 
for uncertainty reasoning. 

• Flexibility: We assign certainty functions at the 
bottom level and compute them at the top level. This 
gives us the flexibility to use single valued or inter
val valued certainties for representing certainties. By 
modifying filter �certainty and compute_prob dif
ferent strategies for calculating uncertainty can be ob
tained by using the same architecture. For example, 
an interval valued uncertainty calculus as outlined in 
[4, 16] can be used in the same architecture only by 
changing filter�certainty. 

• Calculation with Unknowns and Negation: 
Since the layered interpreter represents failure and 
hence negation adequately, the calculation of certain
ties for negated rules poses no problem in our ap
proach. Actually, this is the first meta-interpreter that 
we know that can handle rules with negation in rea
soning with uncertainties. Furthermore, the fail-safe 
nature of the layered interpreter allows unknowns to 
be represented by using the meta-interpreter. Unlike 
[16], no assigment or alteration of the knowledge base 
is required. This is desirable because the domain inde
pendent inference is separated from the representation 
of the knowledge base. 

• Dependency of Solutions: Although this is not 
implemented, the layered approach can be easily ex
tended to check the dependency of the computations 
for a specific solution. This issue is discussed in [4]. 
The layered structure can be extended for resolving 
conflicts at the top layer by examining the lines of rea
soning at the bottom layer. Just like the naive repre
sentation of multiple lines of reasoning, a non-layered 



architecture is not capable of doing this, because the 
independence of conflicts with all possible solutions 
must be checked for each predicate. 

4.2 Explanation 

An expert system user may require explanation of the 
system's behaviour, actions, or decisions. Explanation 
can be introspective, where the user is presented with 
what is happening in the system and why. An expla
nation system can also provide a justification of the 
system's behaviour. 

Different users have varying degrees of knowledge 
about the system and in general need different expla
nations varying in content and detail. Explanations 
can be classified according to what type of informa
tion they provide in response to users' queries. For 
example, how and whynot explanations highlight the 
reasons behind the system's decisions and computa
tions. When the expert system queries a user to aid in 
the solution, by supplying additional information, the 
user might want to know the reasons for the query. 
A why type of explanation provides the line of rea
soning which lead to the system's queries. Other ex
planations relate to assertions that are made by the 
user or the system, such as when and by whom cer
tain facts are provided, which of the known parameters 
have changed. A discussion of classifying user queries 
and explanations can be found in [21]. Among types 
of explanations, what-if explanation requires the sim
ulation of another computation by changing certain 
variables or facts in the system. It does reflect the 
current or completed behaviour of the system. 

An introspective account of a system can only be 
provided if the system can represent and present its 
own computations adequately. Meta-interpreters are 
a flexible and easy means for providing this type of ex
planation. The required functionality for explanation 
is to construct a proof structure representing the com
putations of the domain language. This is achieved 
by extending an appropriate interpreter by standard 
techniques. In [19], the vanilla interpreter is extended 
to give a simple explanation shell. 

We suggest the following features from a general 
purpose explanation shell based on Prolog: 

a. It should be interactive, posing queries to the 
user when the information is not in the knowledge base 
and recording the responses. This demands a dynamic 
knowledge base. 

b. It should be able to display reasons for successful, 
failed and partially completed computations - thereby 
providing how, why and whynot explanations. 

c. It should provide alternative solutions when re
quested. 

d. User supplied information should be easily ob
tainable for providing which, when, and what expla
nations. 

Building an explanation shell from single layer inter
preters, such as vanilla, suffer from the limitation that 
success and failure do not mesh well together. Previ
ous research has written separate meta-interpreters for 
successful and failed computations [8]. This method 
requires the system to first determine whether a query 
has succeeded or failed, in order to construct the proof 
by the appropriate interpreter. However, expert sys-

61 

terns are interactive. Users can add knowledge to the 
knowledge base during the solution of a goal. Us
ing different meta-interpreters to provide explanation 
for successful and failed queries causes changes to the 
knowledge base to be lost, or the computation be mis
represented, because a recomputation of the query does 
not guarantee the currently constructed proof to rep
resent the previous computation correctly. Therefore, 
we require an integrated interpreter which can com
pute queries in one pass. 

The layered interpreter provides an appropriate ba
sis for an explanation shell. We omit the interpreter 
for explanation, as its capabilities are discussed in [20] 
in detail. However, we present specific points which 
makes this tool desirable. 
1. An integrated single interpreter provides the ex
plicit representation of most aspects of Prolog compu
tations by representing the computation in two layers. 
This feature has two consequences for explanation. 

• The layered interpreter can represent both suc
cessful and failed computations in one pass, since it 
can handle multiple lines of reasoning. This is a very 
important feature since the proof for both successful 
and failed queries can be obtained by using the same 
meta-interpreter. The dynamic changes to the knowl
edge base does not impose a problem for this frame
work, and the proof, hence the explanation we obtain 
from the proof, is faithful to the current computation. 

• Representing computations with negation and the 
pruning operator cut are no longer a problem by using 
the correct techniques [22]. 
2. We expect the expert system shell to provide al
ternative solutions when requested by the user. The 
layered interpreter satisfies this constraint. 
3. Using Prolog for knowledge representation directly 
does not provide any information about the assertions 
to the database. However, using an embedded lan
guage provides information about the structure of the 
knowledge itself. As in our example of Section 2, 
the special language represents Conditions leading 
to an Action. If we have the representation avail
able, then the explanations can be extended to incor
porate the features of the language. Regarding our 
example, it is possible to answer queries of the form, 
What Conditions hold to lead to Action '?, Which 

Conditions do not hold to lead to Action '?. 

4.3 Conclusions 

In this paper, we have characterized meta-programming 
as a paradigm, and given a definition. Our specific in
terest is the use of the paradigm for building expert 
systems in Prolog. We advocate building an embed
ded language for specific applications, and presented 
a simple example for ordinal reasoning. An embedded 
language for a specific task can be designed very eas
ily in Prolog. The advantage is that a user building 
an application can work with a restricted language in
stead of having to deal with the full complexities of 
Prolog. By exploiting the meta-programming capa
bilities of Prolog, specifying the language constructs, 
such as special purpose rules or objects, poses no prob
lems. For knowledge engineers, more functionality can 
be included in the interpreter of the embedded lan
guage by separating knowledge representation from in-



ference. Further, a knowledge engineer can modify the 
system by using both the embedded language and Pro
lag directly, since they are both directly available. 

The other issue addressed is the use of meta-interpre
ters. Meta-interpreters provide an explicit representa
tion of a particular model of computation. We fo
cussed on a layered interpreter which allows multiple 
lines of reasoning. The expressive power of the layered 
interpreter was demonstrated in two applications - a 
shell for uncertainty reasoning and for explanation. 
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