
Building Embedded Languages and Expert System Shells in Prolog

L. Umit Yalc:;inalp and Leon Sterling

Department of Computer Engineering and Science
Case Western Reserve University

Cleveland, OHIO 44106

Abstract
This paper concerns building embedded languages

in Prolog, with special attention on expert system
shells. First, the paradigm of meta-programming, of
which building embedded languages is an example, is
discussed. Second, we review interpreters for embed
ded languages, concentrating on meta-interpreters. Fi
nally, two applications, explanation and uncertainty
reasoning, are presented and the techniques that were
used in their construction are discussed.

1 The Paradigm of
Met a-Programming

Prolog is widely recognized as a good language for
writing simple rule-based expert systems. There are
two major factors. First, the primary language con
structs, Horn clauses, are essentially rules. Second,
Prolog's built-in backward chaining interpreter can be
used as the inference engine. However, writing rule
based systems directly in Prolog has limitations due
to the 'hard wiring' of both a particular type of repre
sentation and a particular inference strategy. Further,
the language does not provide certain functionalities
of an expert system shell, such as tools for interacting
with the user, explanation, knowledge acquisition and
debugging.

Three different approaches have been suggested to
overcome Prolog's limitations for building expert sys
tems [11]. The first method is to build the desired ex
tensions within the underlying Prolog engine at the im
plementation level of a Prolog compiler or interpreter.
The second method is to translate a knowledge-based
system written in a special language to Prolog by us
ing a special compiler. The third method is to exploit
the meta-programming facilities of Prolog. Clearly the
first method is the most efficient yet the most inflex
ible. Developing the desired extensions within Prolog
is the easiest method and the most flexible one, since it
is not necessary to change the underlying Prolog sys
tem. In this paper, we advocate this third method and
illustrate techniques for building embedded languages
and expert system shells in Prolog by exploiting its
meta-programming facilities.

Let us start by addressing the question "what is
meta-programming", a topic which has concerned
many researchers. One common definition [2, 19] states

CH2915-7/90/0000/0056$01.00 © 1990 IEEE

S6

Meta-programming is writing programs that
treat other programs as data.

By this definition, familiar programs, such as assem
blers, compilers and program transformers are meta
programs.

Another definition of meta-programming can be ob
tained by following Hayes-Roth's: Meta-X is a macro
definition for 'X about X' [13]. Expanding this
macro as in [3], yields another definition of meta-pro
gramming.

Meta-programming is programming about pro
gramming.

Both of the above definitions are descriptive. How
ever they are missing, in our opinion, the essence of
meta-programming by ignoring both the purpose of
writing meta-programs and the approach taken for de
veloping them.

We regard meta-programming as a paradigm, which
is according to Floyd [12], an approach to writing pro
grams. A paradigm can also be described as a col
lection of methods and/or techniques to facilitate the
construction of certain classes of programs. Other ex
amples of paradigms are structured programming, dy
namic programming, divide-and-conquer and object
oriented programming.

We offer a single sentence definition of the paradigm
of meta-programming.

Meta-programming is building an abstraction
of an object language and developing an in
terpreter for the abstraction.

This definition does not contradict the previous def
initions. However, it focuses on the purpose behind
meta-programming activity. The reason for conceiving
a programming task as meta-programming is to clar
ify and simplify the programming by giving a useful
language to the user with which to build applications.

In the chapter on meta-linguistic abstractions in their
well-known textbook, Abelson and Sussman [1] stress
the importance of establishing new descriptive lan
guages for programming. Tools and techniques are
needed both to formulate new languages and to im
plement these languages by constructing evaluators.
From an engineering point of view, it is much simpler
to build within a high level language by delegating
some of the work, i.e. matching, unification, or back
ward chaining to the underlying system.

Meta-programming is an important paradigm for AI
applications. The best way to develop a new applica
tion, in our experience, is to design a new language
tailored to the application. This is only practical if it
is easy to design and implement the language.

A particular language, such as Prolog, supports meta
programming by making it easy to write interpreters
for a specific application. Interpreters are used for two
related reasons for modelling computations. The first
one is the execution of an embedded language within
a programming language. The next section gives an
example of developing an embedded language within
Prolog, and gives a simple interpreter.

The second reason for developing interpreters is to
model a particular inference, such as backward chain
ing. The interpreter can then be used to develop ex
pert system shells. In section 3, we discuss how to
develop interpreters, classify the purposes of building
them and present relevant techniques. In section 4,
we discuss two expert system shells, for uncertainty
reasoning and explanation, that exemplify the meta
programming paradigm .

2 Embedded Languages

This section gives an example of designing an embed
ded language for an expert system application. Before
giving the details of the example, it is necessary to
define some terminology.

The domain language is the language used to repre
sent knowledge about the problem domain. An object
language is a language describing a system or applica
tion program. A meta-language is a language which
represents the constructs of an object language explic
itly. In this paper, we identify the domain and object
languages and refer to the two synonomously.

Consider writing an expert system to evaluate grad
uate student applications to a department in a univer
sity. Such a system must weigh attributes of a student
such as GRE scores, grades, recommendation letters,
and senior project topic, and classify the student ap
plication into categories such as accept, reject or con
sider further. We assume that the attributes can be
described qualitatively, such as gre scores are excellent,
recommendation letters are very good, and grades are
poor. Further, the qualitative terms are assumed to lie
on an ordinal scale, poor is worse than good is worse
than very good, etc. A discussion on qualitative rea
soning with attributes from ordinal scales is in [5].

Our system will evaluate students by trying to write
down heuristic rules expressed in these qualitative
terms, such as

"The student should be accepted if her gre scores
are excellent, the grades are very good (or better) and
the recommendation letters are good (or better)."

To build such a system we need a syntax for ex
pressing rules. Borrowing from Prolog syntax, and
taking advantage of the ability to define operators, one
is lead to rules of the form Conditions ==> Action,
where Conditions are a conjunction, denoted &, or
died unction, denoted V, of a set of goals of the form
(Attribute, R.elOp, Value). Five sample rules for
evaluating graduate students are given.

S7

(gre,=,excellent) t (grades,>=,very_good) t
(recommendations,>=,very_good)==>accept.

(faculty-decision,>,good) ==>accept.
(gre,=,excellent) t (grades,>=,good) t

{(senior�roject,>=,interesting) V
(recommendation,>=,very_good))==>consider.

(gre,>=,very_good) t (grades,=,excellent) t
(senior�roject,>=,interesting) t
(recommendation,=,excellent) ==> consider.

(gre,<,excellent) t
(grades,<,good) ==> refuse.

An interpreter is needed to evaluate whether a cer
tain Student satisfies the requirements written in the
rule language. Such an interpreter, is given below
by the predicate evaluate(Student, Decision). It
tries the rules in turn until one is found which is appli
cable for the given student, essentially using a generate
and-test strategy. By having the representation built
on Prolog, two of its features are exploited to eval
uate the rules. Firstly, these rules are retrieved by
using Prolog's built-in backward chaining interpreter.
Secondly, the instantiation of variables is achieved by
using Prolog's unification.

evaluate(Student, Decision) �

Qualifications ==> Decision,
holds(Qualifications, Student).

holds((C1VC2), Student) � holds(C1, Student).
holds((C1VC2), Student) � holds(C2, Student).
holds((C1tC2), Student) �

holds(C1, Student), holds(C2, Student).
holds((Concept, R.elOp, ExpVal), Student) �

lookup(Concept, Student, Value),
values(Concept, Values),
compare(R.elOp, ExpVal, Value, Values).

The holds predicate tests that all the
Qualifications on the left-hand side of a rule hold
with respect to the Student under consideration. It
depends on compare/4, which compares the Student's
Value with the expected value, ExpVal, of the Concept
based on the operator R.elOp defined in the rule. Code
for compare can be found in [19].

Let us generalize the experience. An embedded lan
guage for an application is built by

• identifying the underlying abstraction necesssary
for the task.

• defining its representation in Prolog by creating
language constructs, such as a new representation
scheme for rules.

• building an appropriate interpreter for the lan
guage.

The embedded language is more convenient for build
ing expert systems. The knowledge engineer has the
possibility of communicating more directly with the
expert and reducing the gap between expert knowl
edge and expert system knowledge. The user does not
need to know the full details of Prolog syntax a.nd ex
ecution, but can focus on the embedded language.

It is possible to build applications directly in Prolog.
A sample rule from our running example follows.

evaluate(Student, accept) �

holds((gre, = , excellent), Student),
holds((grades, >=, very_good), Student),
holds((recommendation, >= , very_good),

Student).

Comparing the system implemented directly in Pro
log with building a new rule language illustrates the
advantages of using an embedded language. This
method provides a general framework for other ap
plications which might use the same paradigm. For
example, the generate-and-test paradigm for ordinal
reasoning was used for two expert system applications,
as described in [5]. In addition, flexibility and clarity
is achieved by separation of the rules and how they are
evaluated. Building on the power of Prolog, it is easier
to include new rules or change the inference separately
by using an embedded language.

3 Writing Interpreters

In the previous section, we developed a simple inter
preter for an embedded language. In this section,
we will contrast that example with writing a meta
interpreter"'.

Meta-interpreters can represent existing mo dels of
computation [24]. They can be used to abstract run
time properties of computations for building applica
tions or tools. An explicit model of the inference writ
ten as a meta-interpreter can reveal or alter aspects of
the computation of the domain language.

To state what may seem obvious, the most impor
tant principle behind building a meta-interpreter is to
understand why the interpreter is needed. Thus, the
needed abstraction of the computation model must be
determined, and how that abstraction should be rep
resented explicitly. Note that determining an abstrac
tion will in general be an iterative process.

After constructing the meta-interpreter, enhance
ments are added to do a special task or combination
of tasks, which we refer to as the functionality of the
meta-interpreter. The functionality may involve re
vealing a particular run-time behavior, which may be
hidden, e.g. generating a proof tree. The functionality
may also be an altered computation model to obtain a
specific behavior, i.e. invoking a depth-bound for com
putation termination or loop detection. To summarize,
a general formula for constructing a meta-interpreter
is

Construction ::: Abstraction +
Explicit Representation +Adding Functionality

Most meta-interpreters in Prolog follow a single line
of reasoning via chaining, where the clause selection,
or the rule selection, is revealed and unification is left
implicit. This is essentially what happens in the well
known vanilla interpreter (see for example [19]) which
describes Prolog's computation in Prolog. The meta
interpreter exploits Prolog's unification both for select
ing appropriate clauses and for computing answers in
the goals.

*Some confusion exists between the terms meta-level
interpreters and meta-interpreters. There is insufficient
space here to discuss a technical basis for distinction. Here,
meta-interpreter will refer to an interpreter for Prolog writ
ten in Prolog.

S8

solve_top(Goal,Result) �

solveJbottom(Goal,Result),
filter(Result).

solve_top(Goal,no).

solveJbottom(true,yes) � !.
solveJbottom((A,B) ,Result) � ! ,

solve_top(A,RA),
solveJbottom�d(RA,B,Result).

solveJbottom(not(A),Result) � !,
solve_top(A,R), invert(R,Result).

solveJbottom(A,Result) �

sys(A), ! ,
(A� Result=yes ; Result=no).

solveJbottom(A,no) �

not clause(A,B), ! .
solveJbottom(A,Result) �

clause(A,B), solve_top(B,Result).

solve_bottom�d(no,B,no).
solveJbottom�d(yes,B,Result) �

solve_top(B,Result).

filter(yes).
filter(no) � fail.

invert(yes,no).
invert(no,yes).

Figure 1: Basic Layered Interpreter

In this section, we present a meta-interpreter which
makes explicit multiple lines of reasoning. Multiple
lines of reasoning are necessary to handle failure and
backtracking explicitly. Further constraints we place
on our meta-interpreter are that the lines of reasoning
are considered in the same order as Prolog.

The meta-interpreter is based on a generate-and
test approach to traverse the AND-OR tree implicitly
searched by Prolog. Backtracking is used to search al
ternative paths upon failure. The meta-interpreter has
two layers. The bottom layer performs the computa
tion explicitly, similarly to the well-known vanilla in
terpreter, with the addition that branches of the search
tree are labelled with an auxiliary parameter Result,
which takes the values yes for success nodes and no
for failure nodes. The computation is monitored by
the top layer which generates the computation results
and tests them. This abstraction gives the power to
represent both success and failure by using a single
interpreter. Note that we could not model the com
putation by using a Result parameter and a bottom
layer only, because the goal is to be able to represent
multiple lines of reasoning within Prolog. The code
for the layered interpreter is given in Figure 1 and is
used as a basis for the uncertainty reasoning and ex
planation shells presented in the next section.

Other techniques are required for meta-interpreters
which make different aspects of the computation ex
plicit and available. For example, in order to con
struct systems for reasoning about belief, or modules,

we need to make theories, i.e. sets of rules, explicit.
This is the approach taken in MetaProlog[6]. In or
der to reason about unification, all aspects of unifi
cation such as renaming, matching and propagation
of matching in the program clauses have to be explic
itly represented. The demo meta-interpreter represents
both unification and theories explicitly and is further
discussed in [7].

The work presented above is complementary to pre
vious work [17] which advocated using meta-interpre
ters for expert system construction. There, the em
phasis was on systematic ways of adding multiple func
tionalities to a single meta-interpreter and composing
them to get a final interpreter which incorporates the
composite functionalities. Com.J> osing meta-interpre
ters was discussed in detail in l18]. Here we empha
size writing different meta-interpreters which are to
be used as a basis for describing computations, where
the functionalities are added later. How to add and
compose functionalities is discussed in [17, 18].

4 Expert system Shells

This section describes two applications based on the
paradigm of meta-programming in Prolog, an expert
system shell for reasoning under uncertainty and an
other shell for explanation. Both of these systems ex
ploit the multiple lines of reasoning allowed by the
layered meta-interpreter presented in Section 3.

4.1 Uncertainty Reasoning in Prolog Based
Expert Systems

Many researchers have addressed methods for incor
porating uncertainty reasoning within the paradigm
of logic programming [23]. Describing the uncertainty
reasoning scheme by using an appropriate Prolog meta
interpreter is the usual approach [15, 19, 16]. However,
several issues have not been adequately addressed by
previous research. In this section, we show how han
dling multiple lines of reasoning as allowed by the lay
ered meta-interpreter addresses some of the limitations
of previous research. We begin by reviewing the two
major concerns for handling uncertainty with Prolog
meta-interpreters, namely the representation of uncer
tainty and the uncertainty reasoning calculus.

Uncertainty is usually represented by augmenting
the rule representation with an attached certainty fac
tor. A Prolog clause with augmented certainty factor**
indicates a conditional certainty of the head of the
clause when the body of the clause is true. For ex
ample, in A+- cj(CF),B1, ... ,Bn, the certainty fac
tor C F represents the certainty of A when the body
of the clause is true. Clauses without certainty factors
are assumed to have the maximum certainty factor 1.
The exact form of the certainty factor is not speci
fied, and we discuss both single valued and two valued
uncertainties in this section.

The uncertainty calculus describes the methods to
evaluate the rules during inference. For example, the
best known uncertainty reasoning scheme is used in
MYCIN [9], and reasons with single value uncertain-

"*Note that rules augmented with certainty factors are
an example of an embedded language.

S9

ties. Dempster-Shafer theoq• is an example of two
valued uncertainty reasoning l4].

The major difficulties with previous work are:
1. Combining Lines of Reasoning: The result of a
successful Prolog deduction simply involves one branch
in the search tree. There might be, however, other
branches in the search tree with the same solution, for
a particular answer substitution. It seems sensible to
include multiple lines of reasoning when we calculate
an uncertainty for a predicate. This is not possible
by computing uncertainties considering a single line of
reasoning. In [15, 19], uncertainties are calculated only
by pruning the current branch of the proof tree if nec
essary. Therefore, different values of uncertainty are
given to the same answer substitution corresponding
to different branches of the search tree. Given several
bodies of evidence as different paths in the search tree,
Baldwin [4] addresses computing a composite number
in finding a solution for a predicate. There, the sepa
rate lines of reasoning are combined by using the com
putation of the set union of the answersf.

Thus multiple lines of reasoning for a predicate are
needed to compute a composite uncertainty. The naive
approach to get all the lines of reasoning uses a set
predicate such as setof as in (16]. However, this ap
proach does not combine the hnes of reasoning at dif
ferent levels of the computation. It is necessary to
consider different lines of reasoning for each rule to
compute a composite uncertainty and this should be
applied to all the rules in the computation.
2. Handling Failure and Negation: Operationally,
dealing with negation requires the computation of all
lines of reasoning for a goal. The earlier approaches
[16, 19], do not deal with negation correctly, since
there is no mechanism to incorporate all lines of rea
soning. Note that for single valued probabilities, a
probability of not p can be obtained after a com
posite certainty of p is acquired, with the formula
prob(not p) = 1- prob(p).
3. Explicit Representation of True, False and
Unknowns: Single valued probabilities do not allow a
distinction between false and unknown values. In con
trast, a value pair [a, P] allows us to represent predi
cates that are defirutely known to be false, by the pair
[0, Ol, or known to be true by the pair [1, 1]. Other
metfiods to represent and calculate with certainties by
using two values are discussed in [14, 10, 4]. For ex
ample, in [4], the interval [a, p], also represents the in
terval of the certainty of the predicate p, where 1 - P
is defined to be the support for not p to be true.

One way to handle unknown predicates is to assign
them the value [0, 1], indicating the probability can
have any value and there is no supporting or refuting
evidence. The COOP shell f16] uses a similar con
vention to [4]. However, unknowns are represented
by adding an auxiliary clause in the knowledge base.
This method requires updating the knowledge base,
in contrast to the meta-interpreter we present which
performs all the necessary calculations. The meta
interpreter appropriately enhanced both to compute

fFor single valued uncertainties, if there are two de
ductions for a. predicate p with the same answer substi
tution 8 with the certainties Pl and P2 respectively, then
prob(p) = Pl + P2- Pl * 1J2.

solve_top(Goal , U , Proof) <

solve_bottom(Goal , Uncertainty , Proof) ,
filter�certainty(Uncertainty , Goal , U ,

Proof).
solve_top(Goal , U , cl(Goal , U , ProofSet)) <

combine_prob(Goal , U , ProofSet).

solveJbottom(true , T , fact)<- truthval(T) , !.
solveJbottom((A , B) , and(CA , CB) , (PA , PB)) <-

! , % A and B
solve_top(A , CA , PA) ,
solve_bottomJand(CA , CB , B , PB).

solveJbottom(not A , invert(CA) , not(A , PA))<
! , % negation
solve_top(A , CA , PA).

solveJbottom(A , Uncertainty , sys(A)) <

sys(A) , truthval(T) , falseval(F) , ! ,
(A � Uncertainty = T ;

Uncertainty= F).
solveJbottom(A , F , notclause(A)) <-

% does not exist in the knowledge base ...
not clauseJlew(A , Body , Ci) , falseval(F) , !.

solveJbottom(A , body(Ci , CBody) ,
clause(A , Body , ProofB)) <

clauseJlew(A , Body , Ci) ,
solve_top(Body , CBody , ProofB).

solveJbottomJand(C , C , B , PB) <

not continue_conj (C) , ! .
% stop calculation ! ...

solveJbottomJand(C , CB , B , PB) <

continue_conj(C) , ! ,
% if the first conjunct has not failed, continue . ..

solve_top(B , CB , PB).

filter�certainty(1 , true , 1 , fact) <- ! .
filter�certainty(U , Goal , U , sys(_G)) ! .
filter�certainty(O , Goal , _u ,

Proof) <

store�roof(Goal , Proof , O) , ! , fail.
filter�certainty(invert(Cf) , Goal , U ,

Proof) <- ! ,
U is 1 - Cf.

filter�certainty(and(U1 , U2) , Goal , U ,
Proof) <- ! ,

Uis U1 * U2.
filter�certainty(body(CBody , Ci) , Goal , _u,

Proof) <-
U is CBodY*Ci ,
store_proof(Goal , Proof , U) , ! , fail.

truthval(1).
falseval(O).

Figure 2: Extended Layered Interpreter for Handling
Single Valued Uncertainties

60

with single valued probabilities and to obtain proof of
deduction is given in Figure 2.

Due to the layered structure of the interpreter, the
status of the computation is available to the top layer.
Recall that the traversal of the search tree in the ba
sic layered meta-interpreter is monitored by a Result
variable at the top layer. In a computation that in
volves certainties, the meta-interpreter computes an
uncertainty rather than a Result, where the uncer
tainty can be either a single value or a pair of values.
The certainty for a particular goal is computed from
the certainities of all the branches that led to the so
lution at the top layer. The bottom layer provides
the certainty calculated from a single line of reason
ing. The modified filter predicate at the top layer,
filter _uncertainty, continues to compute all differ
ent paths that lead to a solution upon success as well
as failure in contrast to filter in Figure 1. The pred
icate store _proof is used to store the branches of the
proof temporarily.

When the c.omputation terminates after calculating
all lines of reasoning, by the ultimate failure of the
first clause of solve_top, the certainty is calculated
by the combine_prob predicate. This predicate first
groups solutions with respect to different answer sub
stitutions and then combines the certainties for each
answer substitution from different lines of reasoning
while eliminating the branches that do not support
an answer, i.e. branches with 0 probability. It also
returns each different solution, in the order it is ob
tained, consistent with Prolog's behaviour.

The layered interpreter provides several advantages
for uncertainty reasoning.

• Flexibility: We assign certainty functions at the
bottom level and compute them at the top level. This
gives us the flexibility to use single valued or inter
val valued certainties for representing certainties. By
modifying filter �certainty and compute_prob dif
ferent strategies for calculating uncertainty can be ob
tained by using the same architecture. For example,
an interval valued uncertainty calculus as outlined in
[4, 16] can be used in the same architecture only by
changing filter�certainty.

• Calculation with Unknowns and Negation:
Since the layered interpreter represents failure and
hence negation adequately, the calculation of certain
ties for negated rules poses no problem in our ap
proach. Actually, this is the first meta-interpreter that
we know that can handle rules with negation in rea
soning with uncertainties. Furthermore, the fail-safe
nature of the layered interpreter allows unknowns to
be represented by using the meta-interpreter. Unlike
[16], no assigment or alteration of the knowledge base
is required. This is desirable because the domain inde
pendent inference is separated from the representation
of the knowledge base.

• Dependency of Solutions: Although this is not
implemented, the layered approach can be easily ex
tended to check the dependency of the computations
for a specific solution. This issue is discussed in [4].
The layered structure can be extended for resolving
conflicts at the top layer by examining the lines of rea
soning at the bottom layer. Just like the naive repre
sentation of multiple lines of reasoning, a non-layered

architecture is not capable of doing this, because the
independence of conflicts with all possible solutions
must be checked for each predicate.

4.2 Explanation

An expert system user may require explanation of the
system's behaviour, actions, or decisions. Explanation
can be introspective, where the user is presented with
what is happening in the system and why. An expla
nation system can also provide a justification of the
system's behaviour.

Different users have varying degrees of knowledge
about the system and in general need different expla
nations varying in content and detail. Explanations
can be classified according to what type of informa
tion they provide in response to users' queries. For
example, how and whynot explanations highlight the
reasons behind the system's decisions and computa
tions. When the expert system queries a user to aid in
the solution, by supplying additional information, the
user might want to know the reasons for the query.
A why type of explanation provides the line of rea
soning which lead to the system's queries. Other ex
planations relate to assertions that are made by the
user or the system, such as when and by whom cer
tain facts are provided, which of the known parameters
have changed. A discussion of classifying user queries
and explanations can be found in [21]. Among types
of explanations, what-if explanation requires the sim
ulation of another computation by changing certain
variables or facts in the system. It does reflect the
current or completed behaviour of the system.

An introspective account of a system can only be
provided if the system can represent and present its
own computations adequately. Meta-interpreters are
a flexible and easy means for providing this type of ex
planation. The required functionality for explanation
is to construct a proof structure representing the com
putations of the domain language. This is achieved
by extending an appropriate interpreter by standard
techniques. In [19], the vanilla interpreter is extended
to give a simple explanation shell.

We suggest the following features from a general
purpose explanation shell based on Prolog:

a. It should be interactive, posing queries to the
user when the information is not in the knowledge base
and recording the responses. This demands a dynamic
knowledge base.

b. It should be able to display reasons for successful,
failed and partially completed computations - thereby
providing how, why and whynot explanations.

c. It should provide alternative solutions when re
quested.

d. User supplied information should be easily ob
tainable for providing which, when, and what expla
nations.

Building an explanation shell from single layer inter
preters, such as vanilla, suffer from the limitation that
success and failure do not mesh well together. Previ
ous research has written separate meta-interpreters for
successful and failed computations [8]. This method
requires the system to first determine whether a query
has succeeded or failed, in order to construct the proof
by the appropriate interpreter. However, expert sys-

61

terns are interactive. Users can add knowledge to the
knowledge base during the solution of a goal. Us
ing different meta-interpreters to provide explanation
for successful and failed queries causes changes to the
knowledge base to be lost, or the computation be mis
represented, because a recomputation of the query does
not guarantee the currently constructed proof to rep
resent the previous computation correctly. Therefore,
we require an integrated interpreter which can com
pute queries in one pass.

The layered interpreter provides an appropriate ba
sis for an explanation shell. We omit the interpreter
for explanation, as its capabilities are discussed in [20]
in detail. However, we present specific points which
makes this tool desirable.
1. An integrated single interpreter provides the ex
plicit representation of most aspects of Prolog compu
tations by representing the computation in two layers.
This feature has two consequences for explanation.

• The layered interpreter can represent both suc
cessful and failed computations in one pass, since it
can handle multiple lines of reasoning. This is a very
important feature since the proof for both successful
and failed queries can be obtained by using the same
meta-interpreter. The dynamic changes to the knowl
edge base does not impose a problem for this frame
work, and the proof, hence the explanation we obtain
from the proof, is faithful to the current computation.

• Representing computations with negation and the
pruning operator cut are no longer a problem by using
the correct techniques [22].
2. We expect the expert system shell to provide al
ternative solutions when requested by the user. The
layered interpreter satisfies this constraint.
3. Using Prolog for knowledge representation directly
does not provide any information about the assertions
to the database. However, using an embedded lan
guage provides information about the structure of the
knowledge itself. As in our example of Section 2,
the special language represents Conditions leading
to an Action. If we have the representation avail
able, then the explanations can be extended to incor
porate the features of the language. Regarding our
example, it is possible to answer queries of the form,
What Conditions hold to lead to Action '?, Which

Conditions do not hold to lead to Action '?.

4.3 Conclusions

In this paper, we have characterized meta-programming
as a paradigm, and given a definition. Our specific in
terest is the use of the paradigm for building expert
systems in Prolog. We advocate building an embed
ded language for specific applications, and presented
a simple example for ordinal reasoning. An embedded
language for a specific task can be designed very eas
ily in Prolog. The advantage is that a user building
an application can work with a restricted language in
stead of having to deal with the full complexities of
Prolog. By exploiting the meta-programming capa
bilities of Prolog, specifying the language constructs,
such as special purpose rules or objects, poses no prob
lems. For knowledge engineers, more functionality can
be included in the interpreter of the embedded lan
guage by separating knowledge representation from in-

ference. Further, a knowledge engineer can modify the
system by using both the embedded language and Pro
lag directly, since they are both directly available.

The other issue addressed is the use of meta-interpre
ters. Meta-interpreters provide an explicit representa
tion of a particular model of computation. We fo
cussed on a layered interpreter which allows multiple
lines of reasoning. The expressive power of the layered
interpreter was demonstrated in two applications - a
shell for uncertainty reasoning and for explanation.

Acknowledgements

We thank Arvind Bansal for pointing out the relation
ship between the layered architecture and the generate
and-test paradigm. We also thank the reviewers for
their valuable comments and the COMPOSERS group
for providing a fruitful environment to work. This re
search was supported under NSF Grant No. 1R187-
03911, and Equipment Grant No. DMC 8703210.

References

[1] H. Abelson and G. J. Sussman. Structure and
Interpretation of Computer Programs. MIT Press,
1985.

[2] H. Abramson and M.H. Rogers, editors. Meta
Programming in Logic Programming. MIT Press,
1989.

[3] L. Aiello and G. Levi. The Uses of Meta
Knowledge in AI Systems. In P. Maes and
D. Nardi, editors, Meta-Level Architectures and
Reflection, pages 243-254. North-Holland, 1988.

[4] J. F. Baldwin and M. R. Monk. Evidence Theory,
Fuzzy Logic and Logic Programming. Technical
report, Inf. Tech. Research Centre, U. of Bristol,
1987.

[5] A. Ben-David, L. Sterling, andY. H. Pao. Learn
ing and Classification by Monotonic Ordinal Con
cepts. Computational Intelligence, 5(1):45-49,
1989.

[6] K. Bowen. Meta-Level Programming and Knowl
edge Representation. New Generation Comput
ing, 3(4):359-383, 1985.

[7] K. Bowen and R. Kowalski. Amalgamating Lan
gauge and MetaLanguage in Logic Programming.
In K.L. Clark and S-A. Tarnlund, editors, Logic
Programming, pages 153-172. Academic Press,
1982.

[8] A. Bruffaerts and E. Renin. Proof Trees for
Negation as Failure: Yet Another Prolog Meta
Interpreter. In R. Kowalski and K. Bowen, edi
tors, Logic Programming, Proceedings of the 5th
International Conference and Symposium, pages
343-358. MIT Press, 1988.

[9] B.G. Buchanan and E. Shortliffe. Rule Based
Expert Systems The MYCIN Experiments of the
Stanford Programming Project. Addison-Wesley,
1984.

[10] A. Bundy. Incidence calculus: A mechanism for
probabilistic reasoning. In Proceedings of the In
ternational Conference on Fifth Generation Com
puter Systems, pages 166-174. ICOT, 1984.

62

[11] P. Coscia, P. Franceschi, G. Levi, G. Sardu, and
L. Torre. Object Level Reflection of Inference
Rules by Partial Evaluation. In P. Maes and
D. Nardi, editors, Meta-Level Architectures and
Reflection, pages 313-327. North-Holland, 1988.

[12] R. W. Floyd. The Paradigms of Programming. In
A CM Turing Award Lectures- The First Twenty
Years, pages 131-142. ACM Press, 1987.

[13] F. Hayes-Roth, D. Waterman, and D. Lenat, ed
itors. Building Expert Systems. Addison-Wesley,
1983.

[14] R. Ng and V. S. Subrahmanian. Probabilistic
Logic Programming. Technical Report CS-TR-
2399, Dept. of Computer Science, U. of Maryland,
1990.

[15] E. Shapiro. Logic Programs with Uncertainties:
A Tool for Implementing Rule-Based Systems.
In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pages 529-
532. William Kaufmann Inc., 1983.

[16] S. Shekhar and C.V. Ramamoorthy. COOP: A
Shell for Cooperating Expert Systems. In Confer
ence on Tools for A rtifical Intelligence 89, pages
2-11. IEEE-Computer Society Press, 1989.

[17] L. Sterling and R. Beer. Meta-Interpreters for
Expert System Construction. Journal of Logic
Programming, 6(1-2):163-178, 1989.

[18] L. Sterling and A. Lakhotia. Composing Prolog
Meta-Interpreters. In R. Kowalski and K. Bowen,
editors, Logic Programming, Proceedings of the
5th International Conference and Symposium,
pages 386-403. MIT Press, 1988.

[19] L. Sterling and E. Shapiro. The Art of Prolog.
MIT Press, 1986.

[20] L. Sterling and L. U. Yal�inalp. Explaining
Prolog-Based Expert Systems Using a Layered
Meta-Interpreter. In Proceedings of 11th Interna
tional Joint Conference in Artificial Intelligence,
pages 66-71. Morgan-Kaufmann, 1989.

[21] M. Wick and J. Slagle. An Explanation Facil
it� �or Today's Expert Systems. IEEE Expert,
4t1).26-36, 1989.

[22]

[23]

[24]

L. U. Yal�inalp and L. Sterling. Layered Meta
Interpreters for Describing Prolog's Control Flow.
Technical Report CES-89-Q8, Dept. of Computer
Eng. and Sci., Case Western Reserve U ., 1989.

L. U. Yal�inalp and L. Sterling. Uncertainty Rea
soning in Prolog with Layered Meta-Interpreters.
Technical Report 90-110, Center for Automation
and Intelligent Sys. Res., Case Western Reserve
u., 1990.

L. U. Yal�inalp, L. Sterling, A. Lakhotia, and
A. Bansal. The COMPOSERS Guide to Meta
Programming. Technical Report 89-166, Center
for Automation and Intelligent Sys. Res., Case
Western Reserve U., 1989.

