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Abstract

This paper presents a blind identification algorithm for non-minimum phase single-input single-output (SISO) plants using an
over-sampling technique with each input symbol lasting for several sampling periods. First, an SISO autoregressive moving
average (ARMA) plant is converted into its associated single-input multi-output (SIMO) system by holding the system input
and over-sampling the system output. A sufficient and necessary condition for coprime transfer functions of the SIMO system
is provided. A new second-order statistics (SOS) based blind identification algorithm for the SIMO ARMA model is then
presented, which exploits the dynamical autoregressive information of the model contained in the autocorrelation matrices of
the system outputs. Further, the transfer function of the SISO system is recovered from its associated SIMO transfer functions.
Finally, the effectiveness of the proposed algorithm is demonstrated by simulation results.
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1 Introduction

Blind system identification is to estimate system pa-
rameters based on measurements of the system out-
puts under some conditions without accessing to the
system inputs. In general, the identification of non-
minimum phase single-input single-output (SISO) sys-
tems requires higher order statistics [6, 22], because
second-order statistics (SOS) of the output observations
do not have sufficient information for recovering the
non-minimum phase dynamics [20]. Fortunately, over-
sampling techniques can help to resolve this problem.
If the original output signal is stationary, the over-
sampled output data is a cyclostationary signal which
can provide the phase information for identification of
non-minimum phase SISO systems [5].

In the literature, several results have been reported
on blind identification of linear infinite impulse re-
sponse (IIR) models using over-sampling techniques
[1, 8, 14, 15]. The identification results of linear systems
have also been extended to systems with nonlineari-
ties [2, 14, 18, 19]. By over-sampling the system output
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elhxie@ntu.edu.sg (Lihua Xie).
1 Author for correspondence.

at a higher rate than the system input, the SISO sys-
tem model is converted into a single-input multi-output
(SIMO) system model. After all the SIMO transfer func-
tions have been estimated, the original SISO transfer
function can be recovered according to their connec-
tions. In [8,15], the input to the SISO system is a white
random process with known variance. One drawback of
this method is that the variance value of the system in-
put should be known as a prior knowledge for the identi-
fication of the denominator parameters. In [1,14,18,19],
the system input to the SISO system can be any de-
terministic informative signal. One common necessary
identifiability condition for the above algorithms is that
the over-sampling rate should be larger than the order
of the numerator of its transfer function. In practical
applications, if the numerator’s order is large or un-
certain, it may impose high computational burden and
cost on hardware.

In this paper, we use the input-holding and output
over-sampling technique to transform an SISO system
into its associated SIMO system [14]. A new blind iden-
tification algorithm is presented based on second-order
statistics, which exploits the dynamical autoregressive
information of the model contained in the autocorre-
lation matrices of the system outputs. Different from
the existing methods for identification of SIMO ARMA
systems, which estimate the numerator polynomials
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and the denominator polynomial separately using two
individual methods, our method estimates the numera-
tor polynomials and the denominator polynomial in a
more systematic way. Unlike the conditions on the over-
sampling rate required by the identification algorithms
for IIR models in [1, 14, 18,19], the sufficient and neces-
sary condition for the coprime SIMO transfer functions
only requires that the over-sampling rate is larger than
or equal to 2. In contrast to the methods in [8, 12, 15],
our proposed method combines both the block Toeplitz
structure of the convolution matrix and the dynamical
autoregressive information of autocorrelation matri-
ces for system identification. The proposed method in
this paper only uses lag-0 and lag-1 autocorrelation
matrices, while [3] uses higher-lagged autocorrelation
matrices. The method in [4] uses lag-0 and lag-1 auto-
correlation matrices, but it assumes some knowledge on
these autocorrelation matrices.

The main contributions of this paper are stated as fol-
lows: (1) a novel SOS based blind identification method
for SISO (or SIMO) ARMA systems is presented which
estimates the numerator polynomials and the denom-
inator polynomial in a more systematic way; (2) a
sufficient and necessary condition for coprime SIMO
transfer functions is provided without requiring a lower
bound of the over-sampling rate.

The rest of this paper is organized as follows. Section 2
gives the problem formulation. Section 3 formulates an
SIMO system model obtained by over-sampling an SISO
system, and provides a coprime condition of the derived
SIMO transfer functions. Section 4 provides a new blind
identification algorithm for SIMO ARMA systems.
Section 5 deals with the recovery of the original SISO
transfer from its associated SIMO transfer functions.
Section 6 presents numerical simulation results of the
proposed method and performance comparisons with
existing results, followed by Conclusion in Section 7.

2 Problem Statement

Consider an SISO discrete time-invariant system in the
following state-space equation

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

where x(t) ∈ RN , u(t) ∈ R and y(t) ∈ R are the sys-
tem state, input and output, respectively, and A, B, C
and D are the corresponding state matrices and vec-
tors of appropriate dimensions. The linear state-space
equation can represent dynamical systems in different
applications, such as an RLC circuit, a rocket ascend-
ing process and the dynamics of heat transfer. It is a

popular tool for system analysis and design, especially
for feedback control systems.

Without loss of generality, the above state-space realiza-
tion is assumed to be minimal and its z-transfer func-
tion, which is an irreducible rational polynomial, can be
written as

T (z−1) =
Y (z−1)

U(z−1)
= C(I− z−1A)−1B+D =

Q(z−1)

P (z−1)
(2)

where

P (z−1) = det(I− z−1A)

= 1 + p1z
−1 + · · ·+ pN−1z

−N+1 + pNz−N

= (1− γ1z
−1)(1− γ2z

−1) · · · (1− γNz−1)

Q(z−1) =Ddet(I− z−1A) +Cadj(I− z−1A)B

= q0 + q1z
−1 + · · ·+ qN−1z

−N+1 + qNz−N

where γi ∈ C, i = 1, 2, · · · , N , are real or complex poles
of the system, det(·) and adj(·) denote the determinant
and adjoint operators, respectively. In addition, it is
assumed that the N -th order system (1) is stable, i.e.
|γi| < 1 for i = 1, 2, · · · , N . For the sake of simplicity,
noise-free SISO models are concerned first, and addi-
tive noise contaminated models will be examined in the
simulation part.

When the SISO system in (2) is non-minimum phase,
the second-order stationary statistics of its output
signals sampled at the normal sampling rate do not
contain sufficient information for system identification.
Thus, the problem of interest is to design a second-
order statistics based blind identification algorithm for
non-minimum phase SISO ARMA systems using the
over-sampling technique, i.e. estimating the coefficients
{pi}Ni=1 and {qi}Ni=0 using the second-order statistics of
the over-sampled output signals.

3 Multi-Rate System Model

3.1 State-Space Representation

Let the input be held constant such that u(t) = u(nL)
for all t ∈ {nL, nL+1, · · · , nL+L−1}, where L denotes
the over-sampling rate. The state-space equation of an
SIMO system can be written as [7]:

x(nL+ L) = Āx(nL) + B̄u(nL)

ȳ(nL) = C̄x(nL) + D̄u(nL)
(3)
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or equivalently as (with simplified notation)

x(n+ 1) = Āx(n) + B̄u(n)

ȳ(n) = C̄x(n) + D̄u(n)
(4)

where Ā = AL, B̄ =
∑L−1

j=0 AjB,

C̄ =


C

CA
...

CAL−1

, D̄ =


D

D+CB
...

D+C
∑L−2

j=0 AjB

,

ȳ(n) =


y(nL)

y(nL+ 1)
...

y(nL+ L− 1)

 .

It is shown that the state-space equation (3) represents
a single-input L-output system. Its z-transfer matrix,
with respect to L-dimensional output, is

T̄ (z−1) =
Ȳ (z−1)

U(z−1)
= C̄(I− z−1Ā)−1B̄+ D̄. (5)

It can be transformed into rational transfer functions as
follows

T̄i(z
−1) =

Q̄i(z
−1)

P̄ (z−1)
i = 1, 2, · · · , L (6)

where T̄i(z
−1) denotes the i-th channel function,

P̄ (z−1) = 1 + p̄1z
−1 + · · · + p̄Nz−N , and Q̄i(z

−1) =
q̄i,0 + q̄i,1z

−1 + · · · + q̄i,Nz−N . The poles of the sys-
tem are determined by the denominator of the transfer
function, which is

P̄ (z−1) = det
(
I− z−1Ā

)
.

It is clear that all transfer functions T̄i(z
−1), from the in-

put to the outputs, have the same denominator P̄ (z−1).

3.2 Rational Polynomial Representation

The polynomial expression of (6) can also be directly
obtained from that in (2). Introduce

P̃ (z−1) =
N∏
i=1

(1 + γiz
−1 + · · ·+ γL−1

i z−(L−1)). (7)

Then the product of P (z−1) and P̃ (z−1) can be written
as

P̄ (z−L) = P (z−1)P̃ (z−1) =
N∏
i=1

(1− γL
i z

−L), (8)

and the system transfer function T (z−1) can be written
as

T (z−1) =
Q(z−1)P̃ (z−1)

P (z−1)P̃ (z−1)
=

Q̄(z−1)

P̄ (z−L)
(9)

where Q̄(z−1) is an NL-th order polynomial which can
be represented as

Q̄(z−1) = q̂0 + q̂1z
−1 + · · ·+ q̂NLz

−NL. (10)

Since u(t) = u(nL) is held constant for all t ∈ {nL, nL+
1, · · · , nL + L− 1}, the numerator Q̄i(z

−L) of T̄i(z
−L)

can be expressed by

Q̄i(z
−L) = q̄i,0 + q̄i,1z

−L + · · ·+ q̄i,Nz−NL, (11)

where

q̄i,k =


∑i−1

j=0 q̂j k = 0,∑i+L−1
j=i q̂(k−1)L+j k = 1, 2, · · · , N − 1,∑L
j=i q̂(N−1)L+j k = N.

(12)

Since the expression Q̄i(z
−L)

P̄ (z−L)
can be obtained from (8)

and (11), the SIMO transfer function Q̄i(z
−1)

P̄ (z−1)
in (6) can

be obtained accordingly.

The above derivation gives the connection between the
SISO transfer function and the associated SIMO trans-
fer functions, which is instrumental for the derivation of
the coprime condition of SIMO transfer functions and
the identification of the original SISO transfer function.

3.3 Coprime Condition for SIMO Transfer Functions

One essential condition for blind identification of SIMO
systems is that all channels are coprime [12, 16, 20], i.e.
all channel functions do not share any common zeros.
In this paper, an SIMO system is derived from an SISO
system, so what conditions on the SISO system such
that the derived SIMO transfer functions are coprime
will be studied here.

Since |γi| < 1 for i = 1, · · · , N , each pole γL
i of T̄i(z

−1)
in (6) satisfies |γL

i | < 1 and (6) is a stable ARMAmodel.
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The coefficient matrix of the moving average (MA) poly-
nomials Q̄i(z

−1) for i = 1, · · · , L is written as

Q =


q̄1,0 q̄1,1 · · · q̄1,N

q̄2,0 q̄2,1 · · · q̄2,N
...

...
. . .

...

q̄L,0 q̄L,1 · · · q̄L,N

 .

Let Σ =
[
1 σ · · · σN

]T
∈ CN+1, then {Q̄i(z

−1)}Li=1

are coprime if and only if there exists no Σ such that
QΣ = 0.

Lemma 1. The MA polynomials {Q̄i(z
−1)}Li=1 of the

ARMA model (6) are coprime if and only if the MA
polynomial Q(z−1) of the SISO model (2) has no factors
of the form 1− z−1 and 1− σz−L for any σ ∈ C.

Proof. Necessity: IfQ(z−1) has a factor 1−z−1 such that

Q(1) = 0, Q̄(z−1) in (9) satisfies Q̄(1) = Q(1)P̃ (1) = 0.
This together with the formation of the coefficients of
q̄i,k in (12) results in

N∑
k=0

q̄i,k = Q̄i(1) = Q̄(1) = 0, i = 1, 2, · · · , L.

It follows that QΣ|σ=1 = 0 and the MA polynomials

{Q̄i(z
−1)}Li=1, are not coprime.

IfQ(z−1) has a factor 1−σz−L, Q̄(z−1) = Q(z−1)P̃ (z−1)
has a factor 1 − σz−L. It follows from the formation
of the coefficients q̄i,k in (12) that each Q̄i(z

−L) has
a factor 1 − σz−L, for i = 1, 2, · · · , L. Hence, the MA
polynomials {Q̄i(z

−1)}Li=1 are not coprime.

Sufficiency: Suppose that the L MA polynomials
Q̄i(z

−1) are not coprime such that QΣ = 0 is satisfied

for a σ ∈ C. If σ = 1, then
∑N

k=0 q̄i,k =
∑NL

k=0 q̂k =

Q̄(1) = Q(1)P̃ (1) = 0 for all i = 1, 2, · · · , L. Since

P̄ (z−L) = P̃ (z−1)P (z−1) and P̄ (z−L) in (9) is the char-

acteristic polynomial of a stable ARMA model, P̃ (z−1)
has no factor of the form 1− z−1. It follows that 1− z−1

must be a factor of Q(z−1).

If QΣ = 0 is satisfied for σ ̸= 1, by multiplying it from

the left by

J =



1 0 · · · −σ

−1 1 0 · · · 0

0 −1 1 0 · · · 0

. . .
. . .

0 · · · 0 −1 1


∈ CL×L

and using the formation of the coefficients q̄i,k in (12),
it yields

JQΣ

=


q̄1,0 − σq̄L,0 q̄1,1 − σq̄L,1 · · · q̄1,N − σq̄L,N

q̂1 q̂L+1 − q̂1 · · · −q̂NL−L+1

...
...

. . .
...

q̂L−1 q̂2L−1 − q̂L−1 · · · −q̂NL−1




1

σ
...

σN



=


q̂0 q̂L − q̂0 · · · q̂NL − q̂NL−L −q̂NL

q̂1 q̂L+1 − q̂1 · · · −q̂NL−L+1 0
...

...
. . .

... 0

q̂L−1 q̂2L−1 − q̂L−1 · · · q̂NL−1 0




1

σ
...

σN+1



= (1− σ)


q̂0 q̂L · · · q̂NL−L q̂NL

q̂1 q̂L+1 · · · q̂NL−L+1 0
...

...
. . .

... 0

q̂L−1 q̂2L−1 · · · q̂NL−1 0




1

σ
...

σN


= 0.

(13)

Since σ ̸= 1, the equation (13) implies that the polyno-
mials

z−i+1
N∑

k=0

q̂kL+i−1z
−kL, i = 1, 2, · · · , L,

have a common factor of the form 1−σz−L, where q̂l = 0
for l > NL. It follows that

Q̄(z−1) = P̃ (z−1)Q(z−1) =

L∑
i=1

z−i+1
N∑

k=0

q̂kL+i−1z
−kL

has a factor of the form 1 − σz−L. Since P̃ (z−1) in the
form (7) has no factor of the form 1−σz−L and Q(z−1)
shares no common factors with P (z−1) which is guar-
anteed by the minimal realization (2), the polynomial
Q(z−1) must have a factor of the form 1 − σz−L. The
lemma is proven.
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4 Blind SIMO System Identification

The SIMO ARMA model in (5) can be described by

ȳi(n) =
Q̄i(z

−1)

P̄ (z−1)
u(n) = Q̄i(z

−1)s(n) i = 1, 2, · · · , L

(14)

where s(n) = u(n)/P̄ (z−1) denotes a pseudo colored
source signal. The above model can be further formu-
lated into the following matrix-vector multiplication
equation

ȳ(n) = Q̄s(n) (15)

where ȳ(n) ∈ RML and s(n) ∈ RM+N are defined by

ȳ(n) =
[
ỹT (n) ỹT (n− 1) · · · ỹT (n−M + 1)

]T
,

ỹ(n) = [ȳ1(n) ȳ2(n) · · · ȳL(n)]
T
,

s(n) = [s(n) s(n− 1) · · · s(n−M −N + 1)]
T
,

and Q̄ ∈ RML×(M+N) is a block Toeplitz matrix in the
form

Q̄ =


q̄0 q̄1 · · · q̄N

q̄0 q̄1 · · · q̄N

. . .
. . .

. . .

q̄0 q̄1 · · · q̄N

 , (16)

with q̄i = [q̄1,i q̄2,i · · · q̄L,i]
T .

In order to guarantee the identifiability of the SIMO
system, the following assumptions are made:

A1: The SISO transfer function T (z−1) is stable and
irreducible;

A2: The MA polynomial Q(z−1) has no factors of the
form 1− z−1 and 1− σz−L for any σ ∈ C;

A3: The source signal u(t) is a persistently excited white
noise without knowing its variance value;

A4: ML ≥ (M +N), i.e. Q̄ is a tall matrix.

Assumption A1 implies that the transfer functions

{ Q̄i(z
−1)

P̄ (z−1)
}Li=1 are stable, Assumption A2 hints that all

the MA polynomials {Q̄i(z
−1)}Li=1 are coprime, and

Assumption A2 and A4 infer that the matrix Q̄ is of
full column rank [12].

Under Assumptions A1 and A3, the pseudo source signal
s(n) and the output signals {ȳi(n)}Li=1 are wide-sense
stationary. The associated autocorrelation matrices are
connected by

Rȳ(k) = Q̄Rs(k)Q̄
H , (17)

whereRȳ(k) = E[ȳ(n)ȳT (n−k)],Rs(k) = E[s(n)sT (n−
k)], E denotes the mathematical expectation operator,
and the superscripts T and H denote transpose and
Hermitian transpose, respectively. In addition, the au-
tocorrelation matrices of different lags for the colored
source signal s(n) satisfy the following equation

Rs(k) =

{
Γ+

kRs(0) k ≥ 0

Γ−
−kRs(0) k < 0,

(18)

where

Γ+ =



−p̄1 · · · −p̄N 0 · · · 0

1

1

. . .

1 0


∈ R(M+N)×(M+N),

Γ− =



0 1

. . .

1

1

0 · · · 0 −p̄N · · · −p̄1


∈ R(M+N)×(M+N).

(19)

Based on Assumptions A1 and A3, we can obtain that
the autocorrelation matrix Rs(0) of any order is posi-
tive definite [11]. In (14), the AR polynomial P (z−1) is
unknown, so the second-order statistics of s(n) and its
autocorrelation matrices Rs(k) are not available. Thus,
the applied identification method should not depend on
the values of the autocorrelation matrices Rs(k). Let

R̂ȳ(0), R̂ȳ(−1) and R̂ȳ(1) denote autocorrelation ma-
trices calculated from output observations. The relation-
ships among R̂ȳ(0), R̂ȳ(−1), R̂ȳ(1) and Rs(0) showed
in the following lemma are instrumental for solving the
blind multi-channel identification problem.

Lemma 2. Associated with the matrices R̂ȳ(0),

R̂ȳ(−1) and R̂ȳ(1), there exists a nonsingular matrix

Φ ∈ C(M+N)×(M+N) satisfying

Q̄=U1Φ (20)

ΦΓ+Φ
−1 =UH

1 R̂ȳ(1)U1Σ
−1 (21)

ΦΓ−Φ
−1 =UH

1 R̂ȳ(−1)U1Σ
−1 (22)

where U1 ∈ CML×(M+N) is a matrix constituted by
M + N orthogonal columns, Σ ∈ R(M+N)×(M+N) is a

5



nonsingular diagonal matrix, and U1 and Σ are deter-
mined by the singular value decomposition of the Her-
mitian matrix R̂ȳ(0):

R̂ȳ(0) =
[
U1 U2

] [Σ 0

0 0

][
UH

1

UH
2

]
. (23)

Proof. In view of (17) and (23), combining the posi-
tive definite property of the matrix Rs(0), the full rank

matrix Q̄ has the same column space as that of R̂ȳ(0).
Thus, there exists a nonsingular matrix Φ satisfying the
equation (20).

Substituting (20) into (17) with k = 0 yields

U1ΣUH
1 = U1ΦRs(0)Φ

HUH
1 . (24)

Consequently,

Rs(0) = Φ−1ΣΦ−H . (25)

Using (17) and (18), R̂ȳ(1) can be written as

R̂ȳ(1) = Q̄Rs(1)Q̄
H

= U1ΦΓ+Rs(0)Φ
HU1

H

= U1ΦΓ+Φ
−1ΣUH

1 .

This is an equivalent expression of (21). Similarly, (22)
can also be established and the lemma is proven.

4.1 AR Parameter Estimation

In view of (21) and (22), the matrices involved in

the right-hand sides can be obtained from R̂ȳ(1) and

R̂ȳ(−1) and the singular value decomposition of R̂ȳ(0)
showed in (23). Let

ˆ̄Rȳ(1) =ΦΓ+Φ
−1 = UH

1 R̂ȳ(1)U1Σ
−1 (26)

ˆ̄Rȳ(−1) =ΦΓ−Φ
−1 = UH

1 R̂ȳ(−1)U1Σ
−1. (27)

Then the matrices ˆ̄Rȳ(1) and ˆ̄Rȳ(−1) can be used to
estimate the parameters of the ARMA model (14) con-
tained in the matrices Γ+, Γ− and Φ.

It can be found that the matrices Γ+ and Γ− are com-
panion matrices [9] whose characteristic polynomial can
be easily obtained as

det (λI− Γ+) = det (λI− Γ−)

= λM+N + p̄1λ
M+N−1 + · · ·+ p̄NλM .

Obviously, the AR polynomial P̄ (z−1) in (14) can be
estimated by computing the characteristic polynomial

of the observation matrix ˆ̄Rȳ(1) or
ˆ̄Rȳ(−1) as follows

ˆ̄P (z−1) = z−(M+N)det
(
zI− ˆ̄Rȳ(1)

)
= z−(M+N)det

(
zI− ˆ̄Rȳ(−1)

)
.

(28)

4.2 MA Parameter Estimation

The MA parameter estimation are carried out accord-
ing to the property of the matrix Q̄: (1) the matrix Q̄ is
full column rank but without the Toeplitz structure; (2)
the matrix Q̄ possess the Toeplitz structure. The first
case only utilizes the inner structures of lag-0 and lag-1
autocorrelation matrices, which can be directly applied
to the second case. Against the method applied in the
first case, by exploiting the Toeplitz structure of the
matrix Q̄ and the inner structures of autocorrelation
matrices, an efficient and effective identification is given
for the second case.

Case 1: The matrix Q̄ has full column rank but with-
out the Toeplitz structure.

Partition the full rank square matrix Φ as Φ =
[ϕ1, ϕ2 · · ·ϕM+N ] with ϕm being the mth column. In
view of the structure of Γ+ and Γ− in (19), the equa-
tions (26) and (27) can be equivalently written as

ˆ̄Rȳ(1)ϕ1 + p̄1ϕ1 = ϕ2,
...

ˆ̄Rȳ(1)ϕN + p̄Nϕ1 = ϕN+1,

ˆ̄Rȳ(1)ϕN+1 = ϕN+2,
...

ˆ̄Rȳ(1)ϕM+N−1 = ϕM+N ,

ˆ̄Rȳ(1)ϕM+N = 0,

(29)

ˆ̄Rȳ(−1)ϕ1 = 0,

ˆ̄Rȳ(−1)ϕ2 = ϕ1,
...

ˆ̄Rȳ(−1)ϕM = ϕM−1,

ˆ̄Rȳ(−1)ϕM+1 + p̄NϕM+N = ϕM ,
...

ˆ̄Rȳ(−1)ϕM+N + p̄1ϕM+N = ϕM+N−1.

(30)
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From the structure of the matrices Γ+ and Γ− in (19),
it can be verified that their rank is M +N −1, so is that

of ˆ̄Rȳ(1) and
ˆ̄Rȳ(−1). Thus, the dimension of the null

space of ˆ̄Rȳ(1) and ˆ̄Rȳ(−1) is one. In view of (29), if
ϕ1 is determined, the rest of ϕms can be represented in

terms of ˆ̄Rȳ(1), p̄ms and ϕ1. The vector ϕ1 is, however,

determined by the null space of ˆ̄Rȳ(−1) by (30) up to
a constant scale factor. Similarly, using (29), the vector

ϕM+N can be determined by the null space of ˆ̄Rȳ(1) up
to a constant scale factor, which can further determine
the rest ϕms by (30).

After obtaining the estimate of the matrix Φ, the con-
volution matrix Q̄ can be computed according to the
equation (20). Since the matrix Q̄ has the block Toeplitz
structure as shown in (16), then all the MA parameters
in (14) can be estimated accordingly.

Case 2: The matrix Q̄ possesses the Toeplitz structure.

The identification method in Case 1 tries to estimate
the nonsingular matrix Φ followed by extracting the
MA parameters from the Toeplitz matrix Q̄. It only
makes use of the structure properties of lag-0 and lag-1
autocorrelation matrices. However, if the matrix Q̄ does
possess the Toeplitz structure, an effective identification
algorithm is developed here by utilizing the structure
properties of autocorrelation matrices and the Toeplitz
structure of the matrix Q̄.

Let q =
[
qT
0 qT

1 · · · qT
N

]T
denote the vector form

of MA parameters and Q̄(q) denote the parametric form
of the Toeplitz matrix Q̄. According to the equation
(20), the unknown matrix Φ can be represented by Φ =
UT

1 Q̄(q). Substituting this relationship into the equa-
tion (26), we have that

ˆ̄Rȳ(1)U
T
1 Q̄(q) = UT

1 Q̄(q)Γ+. (31)

The equation (31) is linear with respect to the parameter
vector q. After several trivial manipulations, it can be
transformed into the equation as below

Fq = 0 (32)

where F ∈ R(M+N)(M+N)×NL is a tall matrix. Since the
equation (32) is equivalent to the equation (26) which
can determine the MA parameters uniquely up to a
scalar constant, it can be inferred that the tall matrix F
has reduced column rank. Then, the normalized estima-
tion of q can be find by solving

min
∥q∥2=1

∥Fq∥22. (33)

The identification method in this case is efficient and ef-
fective in the following aspects: (1) it solves the MA pa-
rameters directly, thus avoiding the circumstance that
the same parameter have different estimated values in
the Toeplitz matrix Q̄; (2) the computational complex-
ity is much lower than that inCase 1 since less variables
are to be estimated. The trivial point of this method is
to transform the equation (31) into the equation (32).

5 SISO System Identification

In view of the formulation of the coefficients of the mul-
tiple MA polynomials in (12), another compact form of
it will be derived here. We define a composite polyno-
mial as below:

C(z−1) = 1(z−1)Q̄(z−1)

= c0 + c1z
−1 + · · ·+ c(N+1)L−1z

1−(N+1)L
(34)

where 1(z) = 1+z−1+· · ·+z−(L−1), the order of C(z−1)
is (N + 1)L− 1, and its coefficients are determined by

ck =


∑k

i=0 q̂i 0 ≤ k ≤ L− 1∑k
i=k−L+1 q̂i L ≤ k ≤ NL− 1∑NL
i=k−L+1 q̂i NL ≤ k ≤ (N + 1)L− 1

.

It is evident that the coefficients of the MA polynomials
Q̄i(z

−1) can be represented by

q̄i,k = ckL+i i = 1, 2, · · · , L and k = 0, 1, · · · , N.

Then the polynomial C(z−1) can be represented by the
MA polynomials {Q̄i(z

−1)}Li=1 as follows

C(z−1) = 1(z−1)Q̄(z−1) =
L∑

i=1

z−i+1Q̄i(z
−L) (35)

Since Q̄i(z
−1) can be estimated using the proposed al-

gorithm in the Section 4, the composite MA polyno-
mial 1(z−1)Q̄(z−1) can also be estimated according to
(35). In order to get the estimate of Q̄(z−1), a decon-
volution operation should be carried out to remove the
term 1(z−1). From the equation (9), it can be found that

the irreducible SISO transfer function Q(z−1)
P (z−1) can be ob-

tained by taking common factor cancelation on the ra-

tional function Q̄(z−1)
P̄ (z−L)

. In the literature, there are many

greatest common divisor extraction algorithms [9,10,13].
We adopt the subspace method [13] in numerical simu-
lations since it is robust to noise interference.
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6 Numerical Simulations

In this section, simulation results are presented to eval-
uate the performance of our proposed algorithm. To ex-
amine the effectiveness of the proposed algorithm on
dealing with the noise effect, the following system model
is concerned

y(t) = T (z−1)u(t) + w(t) (36)

where w(t) ∼ N (0, σ2), and σ2 is the variance. To
identify the noisy ARMA system model, some extra
preprocessing operations on noisy observations should
be included (see [21]).

For the sake of quantitative evaluations, two measure-
ment criteria are adopted. The signal-to-noise ratio
(SNR), used to measure the noise level, is defined as

SNR = 10 log10
E[∥T (z−1)u(t)∥2]

E[∥w(t)∥2]
.

The normalized mean-square errors (nMSE), used to
measure the identification accuracy, are defined for the
estimates of the MA and AR parameters, respectively,
as follows

nMSE1 =
1

Nm

Nm∑
i=1

{
min
ci

∥ciQ̂i(z−1)−Q(z−1)∥2

∥Q(z−1)∥2

}
,

nMSE2 =
1

Nm

Nm∑
i=1

∥P̂ i(z−1)− P (z−1)∥2

∥P (z−1)∥2
,

where Nm is the number of Monte Carlo runs, Q̂i(z−1)

(P̂ i(z−1)) is the i-th estimation of the transfer func-
tion Q(z−1) (P (z−1)), ci is a factor to minimize

∥ciQ̂i(z−1) − Q(z−1)∥2 such that the scalar ambiguity
for the blind system identification can be eliminated.

In order to have a comprehensive assessment of the per-
formance, both the identifications of the SIMO transfer
functions and the original SISO transfer function are
evaluated in terms of nMSE. For the SIMO system iden-
tification, the evaluations of the MA polynomials and
the AR polynomial are separated. To demonstrate the
robustness of the proposed algorithm, the simulations
are carried out under different noise levels. The nMSE
curves, computed from 5000 and 10000 output observa-
tions, are plotted individually, and each nMSE value is
calculated by averaging 500 Monte Carlo trials.

First, two examples are demonstrated to show the per-
formance of our method against additive noises: one

system model is minimum-phase but not proper, and
the other is non-minimum phase but proper. Then, in
the third example, a modified identification method
presented in [15] is simulated for comparison purposes.

Example 1 : We consider a typical example of an SISO
ARMA system simulated in [22] as follows

T (z−1) =
1.0000− 1.4001z−1 + 0.9801z−2

1.0000− 0.8000z−1 + 0.6500z−2
.

It has poles at 0.4000 ± j0.7000, and zeros at 0.7000 ±
j0.7000, where the prefix j =

√
−1 is the imaginary unit.

By setting the over-sampling rate to L = 2, the SIMO
transfer functions can be computed using the state-space
form described in Section 3, which are shown as follows:

T̄1(z
−1) =

1.0000 + 1.4101z−1 + 0.3339z−2

1.0000 + 0.6600z−1 + 0.4225z−2
,

T̄2(z
−1) =

1.6001 + 0.9360z−1 + 0.2079z−2

1.0000 + 0.6600z−1 + 0.4225z−2
.

It can be easily verified that the above two transfer
functions are coprime.

In the simulation, the system input is a sequence of a
white Gaussian noise with each symbol lasting for two
periods, and the output sequence is splitted into two se-
quences which corresponds to two output sequences of
the SIMO system. Using the blind SIMO identification
algorithm described in Section 4, the SIMO transfer
functions T̄1(z

−1) and T̄2(z
−1) can be identified and

their identification performances are shown on the left
part of Fig. 1. Then, according to the SISO identification
strategy stated in Section 5, the SISO transfer function
T (z−1) can be further identified, whose identification
performance is shown on the right part of Fig. 1.

Fig. 1 shows that the identification performance im-
proves little when the SNR is very high, but its estima-
tion accuracy can still be improved by employing more
output observations. Also, it can be found that the esti-
mate of AR parameters is mainly affected by the factor
of inadequate observation samples while the estimate of
MA parameters is mainly affected by the additive noise.
Note, from the derivation of the identification algorithm
and the performance curves, we can find that both the
AR and MA parameters can be accurately estimated
with adequate measurement outputs in the absence of
noise. However, in practical realizations, inadequate
statistics may degrade the identification performance.
Moreover, one can find that identification performance

8



of the original SISO model is worse than that of the as-
sociated SIMO model since the SISO transfer function
is estimated based on that of the SIMO model.

Example 2 : We consider a continuous low-pass plant as
follows:

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t) +Dcu(t)

Ac =

[
−4 −5

1 0

]
Bc =

[
1

0

]
Cc =

[
1 −1

]
Dc = 0.

In the above state-space realization, the time index t is
continuous which is different from that in the model (1).

In order to obtain the corresponding discrete-time plant,
the sampling period is set to T = 0.3s, which satisfies
the Nyquist sampling theorem [17] where the system
bandwidth is the frequency at half power point of its
Bode plot. The discretized system can be obtained as
follows:

A = eAcT =

[
0.1999 −0.8109

0.1622 0.8487

]
,

B =

∫ T

0

eAcτdτBc =

[
0.1622

0.03027

]
,

C = Cc =
[
1.0000− 1.0000

]
, D = Dc = 0.

(37)

The transfer function of the above discrete linear time-
invariant system is

T (z−1) =
Q(z−1)

P (z−1)
=

0.1319z−1 − 0.1824z−2

1− 1.049z−1 + 0.3012z−2
,

where it can be found that T (z−1) is a non-minimum
phase transfer function since one zero is outside the unit
circle in the z-plane. By setting the over-sampling rate
to L = 2, two ARMA transfer functions of the SIMO
system are computed as follows:

T̄1(z
−1) =

Q̄1(z
−1)

P̄ (z−1)
=

0.0878z−1 − 0.2066z−2

1.0000− 0.4972z−1 + 0.0907z−2
,

T̄2(z
−1) =

Q̄2(z
−1)

P̄ (z−1)
=

0.1319− 0.1957z−1 − 0.0550z−2

1.0000− 0.4972z−1 + 0.0907z−2
.

From Fig. 2, it can be found that the identification
performance is quite similar to that of the previous ex-
ample: the discrete-time SISO plant and its associated

SIMO transfer functions can be accurately estimated
when the noise level is low and the observation samples
are adequate.

The proposed SIMO identification algorithm computes
the AR parameters first followed by computing the
MA parameters. Thus it seems that the AR parame-
ter estimation performance can affect that of the MA
parameters. In fact, the estimations of the MA param-
eters are fundamentally and uniquely determined by
the autocorrelation matrices Rȳ(0) and Rȳ(1) up to a
scalar constant. Thus the estimation outcomes of the
MA parameters are little affected by the AR parameter
estimates which can be considered as a set of interme-
diate data. This consideration has been verified by our
numerous simulations.

Example 3 : The considered SISO ARMA transfer func-
tion is

T (z−1) =
0.6000z−1 + 0.3300z−2

1.0000− 1.7000z−1 + 0.7200z−2
. (38)

Here, we consider three representative identification
methods for SISO IIR systems. In [1, 2], the input to
the SIMO system is a discrete pulse sequence, which
is a bit different from piece-wise constant input sam-
ples in our proposed method. In addition, it does not
explicitly deal with noisy cases. In [8, 15], the input to
the SIMO system is also a discrete pulse sequence and
the variance value of the system input should be known
as prior knowledge. In [14, 18, 19], the system model
is different from that in (36). However, the proposed
method can be applied to the model in (36) by some
modifications. The AR parameters of the IIR transfer
function are identified by the Instrumental-Variable
method [11, Section 7.6], and the MA parameters are
identified using the Subspace method [12] by consider-

ing u(n)
P̄ (z−1)

as a common source of an SIMO FIR system.

We call this method as IV-S method in the simulation
below. For fair performance evaluation and comparison,
only the IV-S method is simulated.

To satisfy the identifiability condition of both the IV-
S method and our method, the sampling rate is set to
L = 3 and the system input of the SISO system is gener-
ated as a white Gaussian noise. From the left part of the
Fig. 3, it can be found that our proposedmethod can pro-
vide superior performance in identifying the AR param-
eters of the SISO transfer function. In the Instrumental-
Variable method, high lagged second-order statistics of
the output observations are required in its identifica-
tion procedure. On the contrary, low lagged statistics
are used in our method, which results in higher estima-
tion accuracy. Since the identification procedure in the
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Fig. 1. Left: Performance of the SIMO system identification; Right: Performance of the SISO system identification. Blue curves
are computed from 5000 output samples and red curves are computed from 10000 output samples. Star-solid curves denote
the identification performances of denominator polynomials (Left: P̄ (z−1); Right: P (z−1)) and diamond-solid curves indicate
the identification performances of numerator polynomials (Left: Q̄(z−1); Right: Q(z−1)).
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Fig. 2. Left: Performance of the SIMO system identification; Right: Performance of the SISO system identification. Blue curves
are computed from 5000 output samples and red curves are computed from 10000 output samples. Star-solid curves denote
the identification performances of denominator polynomials (Left: P̄ (z−1); Right: P (z−1)) and diamond-solid curves indicate
the identification performances of numerator polynomials (Left: Q̄(z−1); Right: Q(z−1)).

Instrumental-Variable method does not involve the vari-
ance of the additive noise, thus the nMSE curves are
insensitive to the noise level, i.e. the nMSE curves are
quite flat. From the right part of the Fig. 3, we can ob-
serve that the IV-S method and our method have similar
performances on identifying the MA part of the SISO
system at high SNRs. The Subspace method [12] does
not involve the noise variance as well, thus its perfor-
mance is less sensitive to noise than our method. Since
our method has to remove the noise affect as a prepro-
cessing operation, its identification performance is sen-
sitive to the SNR criteria. This explains that the IV-S
method performs better than our method on identifying

the MA part of the SISO system at low SNRs.

7 Conclusion

In this paper, a second-order statistics based blind iden-
tification algorithm of non-minimumphase SISOARMA
systems has been presented using the input-holding out-
put over-sampling technique. This method estimates the
numerator polynomials and the denominator polyno-
mial of the associated SIMO system in a more system-
atic way: (1) identify the denominator polynomial by ex-
ploiting the dynamical regressive information involved
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Fig. 3. Left: Identification performances of the AR part of the SISO transfer function; Right: Identification performances of
the MA part of the SISO transfer function. Blue curves are estimated using the IV-S method and the red curves are estimated
using our method. The star-solid curves are computed from 5000 output samples and the diamond-solid curves are computed
from 10000 output samples.

in the lag-0 and lag-1 autocorrelationmatrices of the sys-
tem outputs; (2) identify the numerator polynomials by
combining the block Toeplitz property of the convolu-
tion matrix of the SIMO model and the inner structures
of autocorrelation matrices. A sufficient and necessary
condition of coprime SIMO transfer functions has been
provided. The effectiveness of the proposed SOS based
identification algorithm has been demonstrated in nu-
merical simulations.
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