
Assessing Security Properties of Software Components: A Software Engineer’s
Perspective

Khaled M. Khan
School of Computing and Mathematics

University of Western Sydney
Locked bag 1797
S. Penrith D.C.

NSW 1797 Australia
k.khan@uws.edu.au

Jun Han
Faculty of Information and

Communication Technologies
Swinburne University of Technology
PO Box 218, Hawthorn, Melbourne

Vic 3122 Australia
jhan@ict.swin.edu.au

Abstract

The paper proposes an assessment scheme for the se-
curity properties of software components. The proposed
scheme consists of three stages: (i) a system-specific secu-
rity requirement specification of the enclosing application;
(ii) a component-specific security rating; and (iii) an eval-
uation method for the scored security properties of the can-
didate component. The assessment scheme ultimately pro-
vides a numeric score indicating a relative strength of the
security properties of the candidate component. The scheme
is partially based on ISO/IEC 15408, the Common Crite-
ria for Information Technology Security Evaluation (CC)
and the Multi-Element Component Comparison and Analy-
sis (MECCA) model. The scheme is flexible enough for soft-
ware engineers to use in order to get a first-hand prelimi-
nary assessment of the security posture of candidate com-
ponents.

1. Introduction

With the rapid development in the field of compo-
nent based software engineering, and the increasing recog-
nition of security risks involved with using third-party
software components, there is a need for an assess-
ment scheme for the security properties of components.
A component may be used in varieties of application run-
ning in numerous types of environments in its entire
life time, and may play various roles. The security pro-
vided by a third-party software component does not usually
address the security requirements of all possible applica-
tion types in all execution environments. It is not realistic
either to expect such universal capability of a compo-
nent.

A component may be proved secure in one applica-
tion in a particular operating environment, but the same
component may not be considered secure at all in a com-
pletely different application. For example, a compo-
nent considered reasonably secure in an application for
car manufacturing plant, may not be secure in an air traf-
fic control application because the use contexts and the
security requirements are different although the function-
ality provided by the component remains same for both
applications. We argue in this paper that the security pos-
ture of a candidate component should be assessed against
the security requirements of the specific enclosing applica-
tion before it is integrated into the system.

Generally speaking, software engineers lack confi-
dence in third-party components because they cannot as-
sess the security compatibility of the components for their
applications. Making a mere security claim such as ‘se-
cure’ on the component label would not help much to
develop software engineers’ confidence in third-party com-
ponents. Often the security provided by the component does
not exactly match with the security requirements of the en-
closing application, and the software engineers would rather
like to include additional security features to the compo-
nents. Software engineers need an assessment scheme with
which they can have a first-hand assessment about the se-
curity services provided by the candidate components
for their applications. Such a scheme helps them to se-
lect a particular component which will likely satisfy
the security requirements of their enclosing applica-
tion.

The Common Criteria (CC) [6] provides evaluation mea-
sures of security. CC provides a common set of require-
ments of the security functions of a system, and a set
of evaluation measures. The entire approach is quan-
titative, and it issues a formal certificate to the sys-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

S
o
ft
w

a
re

A
rc

h
it
e
c
tu

re

Connector
software component

interface
signature

implementation

attributes

operations
s
o
ft
w

a
re

 c
o
m

p
o
n
e
n
t

Figure 1. Software Component and Composition

tem. However, CC suffers from some distinct limitations.
First, it does not address the evaluation methodology un-
der which the criteria and assurances measures may be
applied by the evaluator. Second, it also does not pro-
vide any process for the preliminary assessment of the
security functions of a system before a system is built or in-
tegrated as a complete software. Third, the assessment of
systems security capabilities applying CC assurance mea-
sures requires huge efforts, and expertise. Many enterprises
cannot afford the costs required for the CC evalua-
tion.

To address these deficiencies, this paper proposes
a framework for evaluating security properties of soft-
ware components before integrating a complete sys-
tem. This paper evolves around three issues: (i) spec-
ifying system-specific security requirements; (ii) rat-
ing component-specific security properties; and (iii) an
evaluating method. The scheme would enable the soft-
ware engineers to infer whether a candidate component
would likely be able to meet their security require-
ments.

A first-hand assessment would help the software engi-
neers to decide what additional security measures might be
required for their specific application systems. The secu-
rity level that an application system requires may not com-
ply with the available features provided by a candidate
component. If a critical security function shown in the as-
sessment appears to be weak, adapters such as glue codes
could possibly enforce additional security policy to over-
come the weakness. Software engineers may require to
write security wrappers to enforce additional security pol-
icy to the components. A complete security assessment
profile of software components could be used to iden-

tify incompatible components from compatible one avail-
able in the open market.

It is also vital to put in place an assessment scheme
by which an independent certification authority can ver-
ify the security properties already in-built into the com-
ponent, and their suitability for a specific application. By
evaluating a component security profile, software engi-
neers could develop a level of confidence in the compo-
nents.

The paper is organised as follows. The next section ad-
dresses the fundamentals of components, compositions and
their security concerns. Section 3 proposes an assessment
scheme and its associated stages. Section 4 presents an ex-
ample to demonstrate the applicability of the scheme. A
summary of the related work in this field is briefly pre-
sented in section 5. Finally, we close with a conclusion in
section 6.

2. Software components and composition

Software components may be available in many differ-
ent forms ranging from procedure and object libraries up
to stand alone applications. A software component may be
already composed of other components. In this paper, we
are interested in the atomic component that are not built on
other components. Component based development has two
major aspects: components and composition. Each individ-
ual component has a scope of its own security responsibil-
ity. Similarly, the compositional architecture has also its de-
fined scope of responsibility regarding the security.

In Figure 1, we show a component is integrated with an-
other component through a connector in an compositional
architecture. During the execution, the component may bind

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

Enclosing
application

system

Candidate
software

component

Specification of
 system-specific

 security
requirements:

threats and

vulnerabilities.

Rating
component-specific

security services:
security classes,

security objectives,

security functions.
Evaluation method:
calculating final score

Evaluation template

Figure 2. The Assessment Scheme

the local resources of other components and could access
the resources by invoking methods on the resources. Infor-
mation and control data is typically transferred from com-
ponent to component through a connector. Events, proce-
dure calls, pipes, shared memory, shared databases, object
request brokers are the examples of connectors. Connectors
basically provide infrastructure for communication between
components. The security responsibility for the connector is
outside the scope of the individual component.

Interface signature is the access point of the component
where all communications to the component take place.
When there is no standard interface available in some appli-
cations, composers use adaptors or wrappers to control the
interface. In some cases, however, object adapter or wrap-
per may be involved in authenticating the request made by
other components. The security properties and features of
the wrapper is also not the concern of the individual com-
ponent. The security mechanism of the connector and the
wrapper is the prime responsibility of the composing archi-
tecture. The attributes and operations() are the property of
individual components. The security of component is con-
cerned with these properties of component.

3. Assessment scheme

Our proposed assessment scheme has three stages related
to the evaluation of security properties of software com-
ponents as depicted in Figure 2. The first stage, specifica-
tion of system-specific security requirements for individual
functionality of the enclosing system, involves identifying
threats, vulnerabilities, risk etc. of the system. The selec-

tion of candidate components for the enclosing system is
based on the security requirements of individual functional-
ity in the overall architecture of the system. For example, an
enclosing system s requires functionalities f1,. . . ,fn from
different components. Security requirements ri are speci-
fied relative to the individual functionality fi of the enclos-
ing system. In this paper we are not going to address this is-
sue as it is assumed this specification is already defined.

Regarding the second stage, the rating is a term used in
this context to assign a numeric value or score to each secu-
rity service provided by a candidate component. The score
is assigned only to those properties which are relevant to
the system-specific security requirements identified for the
enclosing system in the first stage. This is necessary in or-
der to find the relevancy of the component’s security to the
application’s requirements of a particular functionality. We
use a template in order to rate the security properties which
we call an evaluation template. The third stage is an eval-
uation method of grading the overall security properties of
the component in terms of their strength and weakness. We
discuss the rating of security services, and the evaluation
method of the services in detail in the following subsections.

3.1. Security properties and evaluation template

The evaluation template for the security properties of
a candidate component is based on the security classes
defined in the Common Criteria (CC). CC is a standard,
namely ISO/IEC 15408, concerning the security evaluation
of IT products. CC describes the security behaviour or func-
tions expected of an IT system to withstand threats. The

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

Service protection

Exported_Data_Control

Imported_Data_Control

Access_Control

Undo_Processing

Residual_Data_Protection

Stored_Data_Protection

Internal_Data_Control

Authorisation

Authentication

ACL

Encryption
algorithms

A security class

security objectives security functions dependencies

Figure 3. An example of an evaluation template

security functional requirements in CC consist of eleven
‘classes’ for generic grouping of similar types of security re-
quirements: security audit, communication, cryptographic
support, user data protection, identification and authenti-
cation, security management, privacy, protection of system
security functions, resource utilisation, system access, and
trusted path and channels.

The members of a class share a common focus while dif-
fering from each other in coverage of security aims. Each of
these classes comprises members called families. A ‘family’
is a grouping of sets of security requirements sharing a com-
mon security objective but differing in emphasis and rigour.
A family is based on ‘components’ (not software compo-
nents) which are the smallest sets of security requirements.

The Common Criteria definitely gives a comprehensive
catalogue of high level security requirements and assur-
ances for IT products. It harmonises the European ‘Infor-
mation Technology Security Evaluation Criteria (ITSEC)’,
the Canadian ‘Trusted Computer Product Evaluation Crite-

ria (TCSEC)’, and the United States ‘Federal Criteria (FC)’.
Similar to CC, in our proposed approach an evaluation

template representing a security class comprises several se-
curity objectives relevant to the class as the top element
in the hierarchy, a collection of defined security functions
supporting the corresponding security objective, and an ar-
bitrary number of dependencies for the security functions.
Figure 3 represents an example of an evaluation template
of a security class called service protection, and its associ-
ated objectives and the supporting security functions.

A component may support more than one security class,
similarly, a system-specific security may span more than
one class. In that case, one template represents one class.
Note that only those security classes, their associated ob-
jectives and functions of the component are represented in
the template which are relevant to the security requirements
of the enclosing application.

A security objective corresponds to a collection of secu-
rity functions or properties that are used to achieve a prede-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

Service protection

Access_Control

Authorization

Authentication

ACL

Pasword

A security class

security objectives
security functions dependencies

%

(weight)

Imported_Data_Control

%

(weight)

(rate)

(score)

(score)

Encryption
(score)

(rate)

(score)

(score)

(Final

score)

Figure 4. Structure of the evaluation method

fined security goal. In other words, the implementation of a
security objective is represented in terms of one or more se-
curity functions. A single or a collection of security func-
tions may be used to withstand one or more threats defined
in the security objective. A security function may be de-
pendent on other security properties. In that case, a depen-
dency exists between a function and other security proper-
ties. Dependencies are the most lowest level elements in the
template hierarchy. Dependencies are usually not the direct
implementation of security objectives, rather they are spe-
cific techniques, protocols, files, or standards. The example
in Figure 3 shows that the class service protection consists
of seven defined security objectives. The security functions
of the security objective Access Control are Authorisation
and Authentication. The dependencies of the functions Au-
thorisation and Authentication are the Access Control List
(ACL), and Encryption algorithm respectively.

This stage identifies the security functions of a compo-
nent in terms of events to the component functionality, and
the effect of each of this event. A security function or prop-
erty is stimulated by either an external or internal events.
The identification of relevant security functions also in-
cludes the source and entity of this stimulus input [1]. The
behaviour of a security function elicited from the stimulus
is recorded. It also notes the condition under which a se-
curity function could possibly be bypassed. Note that soft-
ware engineers can identify any number of security classes,
the associated objectives and security functions according
to the system-security requirements of their applications.

The rationale behind each of the identified security func-
tion may be examined to determine which threat is to be ad-

dressed with this property, and how it addresses the threats
or vulnerabilities specified for the enclosing system. Soft-
ware engineers are in far better position to identify the pos-
sible threats to their application systems. They could decide
which threats are redundant, that is, whether threats are cov-
ered by another security property in the same functionality
of the candidate component. It is quite possible that one sin-
gle security property may address one or more threats of the
application.

3.2. Rating component-specific security services

To compute the final score for the overall security prop-
erties identified in the rating process, we have adopted
the Multi Element Component Comparison and Analysis
(MECCA) [4] method. The method has been used as a sys-
tem evaluation technique. The underlying idea was first pro-
posed by the mathematician Zangerneister in 1970. The
technique was also employed in the assessment of soft-
ware maintenance tools [8]. The structure of the evaluation
method is shown in Figure 4. The dashed rectangle in the
figure denotes the dependent functions, and the rate shown
in the figure is used to contain the score for a security func-
tion.

The evaluation method uses a percentage weighting to
the security objectives. A percentage weight is assigned to
each security objective through out a given class. Each class
is also given a percentage weight relative to the importance
of other security classes. At a class level, the percentage of
the weights of all classes would add up to 100, although we
have not discussed other security classes in this paper. Sim-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

ilarly, accumulated percentage weighting of the security ob-
jectives in a given class would be always 100. The percent-
age weighting is defined by the software engineer depend-
ing on the importance of the individual security objectives.

Each security function is assigned a direct numeric score
if it does not have dependencies. A higher score reflects a
higher strength. The numeric score ranges from 0 (unknown
or nil compliance), 1 (weak compliance), 3 (moderate com-
pliance) to 5 (strong compliance). Scoring for a particular
security function or dependency is based on the deviation
between the software engineer’s expectation for the secu-
rity requirement of her application and the provided secu-
rity function of the candidate component. For a wider gap
the score should be at the lower value of the scale 0 - 5. This
gap could be determined based on various security proper-
ties and sub-properties of the provided security function of
the component.

Gap between the ‘as-is’ of the component security and
the ‘required’ of the enclosing system is translated into
this measuring scale. A zero gap between the component-
specific ‘as-is’ security properties and system-specific se-
curity requirements may incur a highest score of 5, which
is translated as fully complied. If a particular security prop-
erty scores 4, it means the property has better compliance
than average. A zero score may indicate that either the prop-
erty does not exist, or has a nil compliance.

Consider the following example. A cryptographic secu-
rity function could be assessed in terms of three depen-
dencies: (i) the encryption algorithm used to generate the
key; (ii) the standard or protocol used; and (iii) the key
length. Suppose, a candidate component generates a key of
512 bits length with the algorithm MD5 using the standard
S/MIME. If these properties match the security require-
ment of the application, a score of 5 is assigned to the secu-
rity function. If the expectation of the key length is 2048 bits
instead of 512 bits, a lower score than 5 is assigned to the se-
curity function. The following generic guidelines could aid
the scoring process:

• Find a security function f if it does not have any de-
pendency, or find its dependency d specified in the
template.

• Check if the candidate component c provides this se-
curity function f or dependency d.

• If c does not offer f or d, assign a score 0 to f or d.

• If c offers f or d, break down the properties of
f or d into sub-properties such as f1, f2 . . . fn or
d1, d2 . . . dn.

• Compare the identified sub-properties with the re-
quired security properties of the system for the same
security function.

• Assign a lower score if the deviation is greater.

No direct score is assigned to a security function if it has
dependencies. In such case, the score for the security func-
tion is calculated based on the assigned scores to its depen-
dencies. At the component level, the final computation gen-
erates a single score. This final score has to be in a scale
from 0 to 5, where 5 is the most desirable, and 0 is the least
desirable.

The process of assigning scores directly to the security
functions and their dependencies is based on a subjective
evaluation of the properties. It is necessary to use such an
approach in this case because only the software engineers
know what security provisions are required for their en-
closing applications since security is a moving target as the
threat scenario changes very frequently, and it varies appli-
cation to application. Based on the advertised security func-
tions of the candidate components, the evaluator assigns the
score to specific security function relevant to her applica-
tion. For example, a security assurance of a component for
a banking system is quite different than the assurance of the
same component in a manufacturing plant.

Regarding the weighting, a scale of 1 to 100 is used in
terms of relative importance of different security require-
ments of a class. For example, a security class has three se-
curity objectives which have been identified as the security
requirements of an application system. All three objectives
have the same level of importance for the application. In
this case, the weight should be 33.33% for each of the ob-
jectives. It suggests that each objective has equal level of
importance as others.

The process of weighting in the proposed method also
encourages a subjective assessment of the properties be-
cause the evaluators are in a better position to know the ac-
tual security requirements of their application and their rel-
ative importance of the security requirements. The weight-
ing of a security requirement also depends on the value of
the data assets to be protected, the attackability scenario and
so on.

3.3. Evaluation method

The general equation to calculate the final score of a se-
curity class is,

Fi,j = MINIMUM(Di,j,k), k ≥ 1 (1)

Oi = MINIMUM(Fi,j), j ≥ 1 (2)

C =
N∑

i=1

WiOi (3)

where, C is a class, O is an security objective, F is a secu-
rity function, and W is the percentage weight of an objec-
tive. A dependency is represented as [i, j, k], that refers to
j security function of the security objective i. Thus, Wi de-
notes the scores of security function N of the security

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

objective i, and Di,j,k denotes the scores of the depen-
dencies k of the security function j of security objec-
tive i.

Software engineers could alter the scoring scale
(0, 1, 3, 5) and apply any other scaling method suit-
able for their applications. They have the freedom to
choose more liberal equation such as mean, or maxi-
mum score instead of the minimum in order to calculate the
score. This flexibility helps developers to find the alterna-
tive score emphasizing either on mean value or maximum
value of the weighting. However, component develop-
ers are not free to modify the principles of the evalua-
tion methods. The three basic principles of the proposed
methodology such as the assessment scheme, the evalua-
tion template, and the evaluation method are not subject to
change. Note that a maximum function is the most weak-
est form of calculation. The process of assigning score to
each individual security function would depend on the var-
ious factors such as the capability of the security function
to withstand certain threats, reliability, value of data as-
sets, and so on.

Regarding the dependencies, the score of the par-
ent function would be computed from its dependencies.
The minimum score of all its dependencies would be the
score assigned to the parent function. The minimum func-
tion is used instead of mean or maximum in order to ad-
dress the security rule that a chain is as weak as its weakest
link. A security objective may have more than one se-
curity function. In such case, the minimum score of all
functions would be the ultimate value for the correspond-
ing security objective.

The proposed method is intended for software compo-
nents in black-box form. The metrics are collected from
the advertised security functions of the components, com-
ponent functionalities, certificate, available users’ guide,
and from enquiry, much of which are described in the com-
ponent interface. In this regard, the proposed security
characterization in [7] if implemented, could be used in or-
der to know the actual security profile of the compo-
nent.

4. An example

The applicability of the proposed assessment model is il-
lustrated with an example. Assume we are going to evaluate
the security properties of a component for a banking sys-
tem. Suppose the enclosing banking system called ‘Smart
Banking System’ requires a software component which of-
fers functionalities such as debit and credit functions on
an account over the internet and storing the account infor-
mation. In addition to these functional requirements, the
system requires several security assurances from the com-
ponent. Also assume that quite a number of compo-

nents in the market can offer the same functionalities that
the banking system requires with varied security provi-
sions.

In the first stage of our assessment scheme, we iden-
tify the following system-specific security requirements:
(i) access to the account is restricted. Only authorised enti-
ties can operate on the account; (ii) The account informa-
tion or operation received from the outside of the system
boundary must be encrypted and authenticated. These are
necessary to ensure that data is not observed by other en-
tities, and the sender of data is authenticated; (iii) account
information transmitted to the outside of the system bound-
ary must be digitally signed and encrypted in order to
guarantee the authenticity of the bank and the confiden-
tiality of the data; and (iv) account data stored in the stor-
age devices such as hard disk or tape must be protected
in such a way that no unauthorised entity can have ac-
cess to data.

In the second stage, we map the above system-specific
security requirements into an evaluation template for the
rating of component-specific security properties. For sim-
plicity, we assume that all specified security requirements
of the functionalities required by the ‘Smart Banking Sys-
tem’ fall in one security class called ‘data protection’.
Each of the four security requirements is defined into a se-
curity objective as shown in Figure 5. The template
in the figure addresses the system-specific security re-
quirements specified in the first stage. Notice that some
of the requirements are represented as security func-
tions.

In the third stage of the assessment scheme, we as-
sign percentage weight to each security objective based
on the importance, and give scores to the security func-
tions if there is no dependencies, otherwise we assign
scores to the dependencies. The assigning percentage
weights to the security objectives depend on the rela-
tive importance of each security objective compared to
others. The scoring is done based on the information cap-
tured about the candidate component, component manual,
component developers, and examining the component se-
curity capability by stimulating its security related events.

We have defined the corresponding percentage weight
of each of the security objectives and assigned scores to
the security functions and dependencies as shown in Fig-
ure 6. The security objective Access Control has one
security function called Authorisation with two depen-
dent functions: one is ACL and the other one is Password.
ACL is assigned a score of 5 (strong), and Password
is given 3 (moderate). The minimum of these two de-
pendent functions is 3, and assigned to the parent secu-
rity function Authorisation according to equation (1).
The relative importance of the associated security objec-
tive of this class is 30%. Hence, the calculated score of the

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

Data protection

Access_Control Authorisation

ACL

Password

A security class

security objectives
security functions dependencies

%

(weight)

Imported_Data_Control

%

(weight)

(rate)

(score)

(score)

Encryption
(score)

(rate)

(score)

(score)

(Final

score)

Stored_Data_Protection

Exported_Data_Control

%

(weight)

%

(weight)

Authorisation

Authentication

ACL

Password
(score)

(score)

Password(score)

(score)

Encryption

Digital Signature
(score)

(score)

(rate)

(rate)

Figure 5. Evaluation template for the banking system

security objective Access Control would be 0.90 accord-
ing to equation(2).

The next security objective Imported Data Control
has one security function, Encryption with a score of 1
(weak). The importance of the objective is 30%, hence the
value is calculated as 0.30 for Imported Data Control.

Security objective Stored Data protection is based
on two independent security functions: Authentication
and Authorisation. Authentication has one depen-
dency called Password, and it is assigned a score of 3
(moderate). Hence, Authorisation is given the score 3
based on its dependent functions. Authorisation func-
tion has two dependencies: ACL and Password, and are
assigned 5 and 3 respectively. The score of the parent func-
tion is 3 based on the minimum of the two dependen-
cies. The weight for the corresponding security objective
Stored Data Protection is .60 based on its 20% impor-
tance.

The fourth security objective Exported Data Control
has two security functions. Digital Signature and
Encryption are assigned 5 and 5 respectively. The rat-
ing is 5, calculated based on the minimum of these two
scores according to equation(2). The corresponding ob-
jective Exported Data Control has a relative weight of
1.00.

According to equation(3), the accumulated score
of this class is 2.8 which is considered not a strong se-
curity measure in a scale of 0 (unknown or none) to 5
(strong). This example demonstrates that this particu-
lar class does not have a strong security properties provided
by the candidate component as a whole. Especially, the se-
curity objective ‘Imported Data Control’ is weak, and its
score 1 has contributed to a lower rating of the compo-
nent security. Obviously, with this score this component
will unlikely be used by the software engineer. How-
ever, if the software engineer still decides to use it, she
needs to add additional security wrapper or adapter to in-
crease its capability score from 2.8 to a higher value.
After adding the additional security features, the compo-
nent is to be reassessed using the same scheme.

The metric provides valuable indication on the candi-
date component’s likelihood of satisfying the security re-
quirements of the enclosing system. The final score could
be used as an indicator on how satisfactory a compo-
nent security is for the enclosing system’s security re-
quirements. If a set of components are assessed against a
specific security requirement of an application, the soft-
ware engineer is in a better position to have a comparative
ranking of the components’ ability to conform the require-
ment. For example, a component may score 4.5 and an-

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

Data protection

Access_Control Authorisation

ACL

Password

A security class

security objectives security functions
dependencies

30%

Imported_Data_Control30%

3

(3)

(5)

Encryption
(1)

1

(3)

(3)

(2.8)

Stored_Data_Protection

Exported_Data_Control

20%

20%

Authorisation

Authentication

ACL

Password
(3)

(5)

Password(3)

(3)

Encryption

Digital Signature
(5)

(5)

3

5

.90

.30

.60

1.00

2.8

Figure 6. Component-specific security properties and rating

other has a score of 3.5. This suggests that the component
with 4.5 is a better option than 3.5. Without such met-
ric, software engineers are unable to rank them.

Numeric values are used to assess the security proper-
ties provided that numeric values express the relative mea-
sure of the quality of the function. The score could be
generated from the judgement on the gap between the ob-
served property defined in the evaluation template and
the required properties defined by the software engi-
neer for the application. We define the ‘level of strength’
as the degree of the likelihood of its effect and capabil-
ity in a given context. A security function would be consid-
ered strong (highest score) if it is capable of withstanding
all identified threats, and satisfies all identified security re-
quirements.

The numeric score assigned to the individual security
function dictates its relative strength and weakness. Dur-
ing the scoring of the functions, each of them would be
judged based on the intended application, implementa-
tion of the policy, technology used, possible limitation,
potential value or assets that they protect, the threats coun-
tered, the possible contradictions to other security poli-
cies, and so on. For example, an encryption function could
be assessed in terms of the algorithms used in its imple-

mentation to compute the key such as RSA, DSA with ci-
pher, DES, ElGamal, HMAC; the length of the key such
as 56-bit, 128-bit, or 1056-bit; the cryptographic stan-
dard used such as IPSec, SET, S/MIME, SSL.

The assessment scheme, the evaluation template, and
the evaluation method are independent of any particu-
lar application contexts. Any application specific secu-
rity objectives, security functions and dependencies could
be used in the proposed template without any modifica-
tion.

The proposed methodology might not be suitable for as-
sessing other non-functional properties such as efficiency,
usability, maintainability, portability etc. This particu-
lar method is specific to security because the strength of the
method lies in the breakdown of the security-specific prop-
erties into the objectives, functions and dependencies.
Other non-functional properties may not be divided into
similar sub properties. A further study is required to ex-
amine whether an extended version of the evaluation
template could be used for other non-functional proper-
ties.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

5. Related work

There is a lack of literature in the public domain on this
field. The FoundScore [3] is a security metric that can be
used as a guide to measure the risk and the business value of
expenditures to information security. The paper addresses
issues such as why an organisation should use security met-
rics to understand risk, and how to track security improve-
ments using FoundScore. FoundScore is a security rating
system that compares security aspects of an organisation
against best practices in order to quantify the security risk.
The approach assesses vulnerabilities and risk of an organ-
isation, and calculates the cost for the security measures
taken to address the identified vulnerabilities and risks.

A seven-step methodology has been proposed in [9] to
guide the process of defining security metrics. The approach
basically yields an understanding of the purpose of the se-
curity metrics program, its deliverables, and how, by whom
and when these deliverables will be provided. Berionto [2]
has recently reported on five security metrics proposed by
Andrew Jaquith. It argues that a constant measure of secu-
rity incidents is a great indicator of the security posture, and
it could be used to quantify the efficiency of the deployed
security functions.

National Institute of Standards and Technology (NIST)
defines security metrics guide for information technology
systems [10]. The document provides guidance on how an
enterprise through the use of metrics identifies the security
needs, security controls, policies and procedures. The ap-
proach guides management of an organisation in deciding
where to invest in security. An approach to measure the at-
tack surfaces is recently reported in [5]. It proposes metrics
to count and measure a system’s attack opportunities. This
count is used to indicate a new security metrics called the
system’s attackability. The approach uses three abstract di-
mensions to describe a system’s attack surface such as tar-
gets and enables, channels and protocols, and access rights.

6. Conclusion

In this paper, we have proposed an assessment scheme
for security properties of software components. The scheme
is based on a rating process and an evaluation method. Com-
ponent security profiles are built by identifying provided se-
curity functions of the candidate component, and then the
captured properties are assessed against system-specific se-
curity criteria. The evaluation method presented here is con-
sidered flexible enough as some of the calculation and mea-
suring scale could be altered by software engineers as they
see appropriate for their assessment. Producing a security
profile as proposed in this paper for assessing component
security properties could be a viable supporting method to
other security evaluation approaches. The security testing

such as dynamic black box testing of component or the pro-
cess of fault injection could be augmented with our pro-
posed assessment scheme. By knowing the security proper-
ties of the components, testers can design their test cases to
find the security holes, fault tolerances, and weakness of the
component.

An assessment profile provides the software engineer
and certifier a framework to determine whether the secu-
rity properties would pass their required security threshold
or not. This would also allow them to select a suitable com-
ponent from a collection of competing components. This
may ultimately inspire the component vendors and devel-
opers to build better quality components regarding their se-
curity.

However, the evaluation of security profile of compo-
nents may not give any such guarantee that the component is
secure, instead, the information could be easily evaluated by
the user themselves against their application requirements.
The goal of our work is to provide a security assessment
scheme such that software engineers would be able to know
and judge a priori how a candidate component would pass
the threshold defined for the overall security of their enclos-
ing system. Our scheme is based on the compatibility be-
tween the security performance of the component and the
required security of the enclosing system.

References

[1] Bass, L., Clements, P., Kazman, R.: Software Architecture in
Practice. Addison-Wesley, Boston, 2003.

[2] Berinato, S., “A Few Good Metrics”, CIO-Asia Magazine,
September 2005.

[3] Foundstone, “Information Security Metrics”, White paper,
Foundstone Strategic Security, April 2003.

[4] Glib, T.: Software Metrics, Cambridge MA, Winthrop, 1977.
[5] Howard, M., Pincus, J., Wing, J., “Measuring Relative At-

tack Surfaces”, Chapter 8, in Computer Security in the 21st
Century, Springer-Verlag, 2005, pp. 109-137.

[6] ISO/IEC 15408. Common Criteria for Information Technol-
ogy Security Evaluation. NIST, USA, http://csrc.nist.gov/cc/,
June 1999.

[7] Khan, K., Han, J.,“A Security Characterisation Framework
for Trustworthy Component Based Software Systems”, Pro-
ceedings of the COMPSAC’03, IEEE Computer Society,
2003, pp. 164-169.

[8] Khan, K. M., Ramakrishnan, M.K., Lo, B., “Assessment
Model for Software maintenance Tools: A Conceptual
Framework” Proceedings of PACIS Pasific Asia conference
on Information systems, QUT, Brisbane, 1997, pp. 527-536.

[9] Payne, S., “A Guide to Security Metrics”, SANS Institute
2002.

[10] Swanson, M., Bartol, N., Sabato, J., Hash, J., Graffo, L., “Se-
curity Metrics Guide for Information Technology Systems”,
National Institute of Standard and Technology (NIST) Spe-
cial Publication 800-55, July 2003.

Proceedings of the 2006 Australian Software Engineering Conference (ASWEC’06)
1530-0803/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:08:33 EDT from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

