Visualisation and Analysis Challenges for WALLABY

Christopher J. Fluke, David G. Barnes, and Amr H. Hassan
Centre for Astrophysics & Supercomputing
Swinburne University of Technology
Hawthorn Australia
Email: cfluke@swin.edu.au

Abstract—Visualisation and analysis of terabyte-scale data cubes, as will be produced with the Australian Square Kilometre Array Pathfinder (ASKAP), will pose challenges for existing astronomy software and the work practices of astronomers. Focusing on the proposed outcomes of WALLABY (Widefield ASKAP L-Band Legacy All-Sky Blind Survey), and using lessons learnt from HIPASS (HI: Parkes All Sky Survey), we identify issues that astronomers will face with WALLABY data cubes. We comment on potential research directions and possible solutions to these challenges.

Keywords—computer aided analysis; distributed computing; radio astronomy; visualisation.

I. INTRODUCTION

The Australian Square Kilometre Array Pathfinder (ASKAP; [1], [2]), represents a significant advance in radio telescope design. This facility will combine high resolution imaging (through the use of a 36-element aperture synthesis array with a maximum baseline of 6 km) with a wide field of view (achieved with innovative focal plane array technology) at frequencies between 700 MHz and 1.8 GHz. Installation of the first ASKAP antenna at the Murchison Radio Observatory site, Western Australia, occured in early 2010, and the 6-antenna BETA test array will operate from September 2011-March 2013. It is anticipated that full science operations will be underway by 2014. Processing and data transport requirements for ASKAP are described in [3], and [4] provides an overview of the data infrastructure requirements.

WALLABY [5] is one of ten ASKAP Survey Science Projects currently in the design study phase. WALLABY aims to significantly enhance our understanding of the extragalactic neutral hydrogen (H\text{I}) universe. The survey will cover 75% of the sky, detecting ~ 0.5 million galaxies to redshift $z = 0.26$ (lookback time ~ 3 Gyr). Key science outcomes are studies of galaxy formation and the missing satellite problem in the Local Group, evolution and star formation in galaxies, mergers and interactions, determination of the H\text{I} mass function and its variation with galaxy density, and the nature of the cosmic web.

Unlike previous H\text{I} surveys, it will not be feasible to keep all of the raw data (i.e. Fourier visibilities) from ASKAP observations for subsequent reprocessing. Instead, pipeline-preprocessed spectral data cubes will be provided for analysis. Each WALLABY spectral cube is anticipated to comprise 6144×6144 spatial pixels and 16,384 spectral channels (i.e. ~ 600 gigavoxels or volume elements in total), requiring 2.5 terabytes (TB) of storage. A total of 1200 cubes will be required to cover the sky south of declination $\delta = +30^\circ$. Likely additional outputs are integrated (moment) maps, continuum images, sub-cubes (individual objects or scaled versions of larger datasets), and full parameterisation of all galaxies, resulting in several petabytes of data products.

Such data volumes pose considerable challenges for the existing work practices of astronomers. Indeed, visualisation and analysis (hereafter, “V+A”) of WALLABY data products will require both evolutionary and revolutionary changes to existing software and hardware, with a likely move away from desktop-only solutions, and a greater reliance on remote services.

A brief overview of the WALLABY workflow from data collection to catalogue is as follows:
1) Observe field.
2) Generate spectral data cube from visibilities.
3) Visualise cube as quality control prior to deletion of raw data.
4) Transfer preprocessed data cube to archive.
5) Perform source finding on data cube.
6) Fit models to candidates and perform related quantitative analysis.
7) Add parameterised candidates to catalogue.

Apart from personnel, the main resource for completion of all of these stages is access to appropriate computing infrastructure (hardware and software).

As a framework within which to assess the practicalities of achieving each step in the WALLABY workflow, we begin (Section II) by considering desktop and high performance computing (HPC) cluster resources available and used by astronomers today, and project these forward to configurations available by 2014. In Section III, we present five challenges that V+A of WALLABY data products will face in the likely computing environment. We consider tasks that can be done essentially the same way they are now, and those requiring an investment in new technology or the development of new software, in order to deal with data sets orders of magnitude
larger than previous extragalactic HI survey projects. We make our concluding remarks in Section IV.

Throughout, we make comparisons with the existing HI Parkes All Sky Survey (HIPASS; [6]), conducted with the Parkes Multibeam receiver [7]. The southern catalogue, HICAT (δ < +2°; [8]), comprised 4315 galaxies, and the northern extension, NHICAT (+2° < δ < +25°30'; [9]), a further 1002 sources. Russell Jurek (Australia Telescope National Facility; ATNF) has combined the 388 individual southern sky data cubes into a single all-sky cube with 1721 × 1721 × 1025 = 3 gigavoxels, and a file size of 12 GB.

II. THE COMPUTE CONTEXT

The configurations of (typical) desktop and HPC resources available to astronomers are fundamental to the capacity of existing or new software to enable each stage of the WALLABY workflow. In Table I, we present hardware parameters for today’s mid-range desktop computer. Using typical growth rates in the computing industry (e.g. Moore’s Law; Kryder’s Law [10]), we extrapolate to 2014 (i.e. “tomorrow”). Quoted processing speeds are theoretical (i.e. peak), single precision values; these assume 100% efficient algorithms using all available processing cores/streams. Table II presents similar per-node comparisons for cluster-based HPC configurations. Other HPC configurations are possible, but we restrict our discussion to facilities similar to the Swinburne “Green Machine” Supercomputer [11], with which we are most familiar.

Most specifications and capabilities of desktop and HPC compute platforms will simply evolve and grow as they have done over the past decades. Two significant revolutions in compute capability of processors, however, are currently underway (e.g. [12]):

1) Central processing units (CPUs) are gaining increased compute capacity in the form of multiple cores, rather than increased clock speeds.

2) Graphics processing units (GPUs) are boosting compute capacity by around 10–50 times by functioning as streaming co-processors, at very low cost.

This “concurrency” revolution, based on the availability of high levels of parallelism on a single chip, requires major software work [13] and a re-examination of algorithms so that scientists can benefit fully from this new processing paradigm (see [14] and [15] for astronomy-related solutions). While CPUs are optimised for sequential programs thanks to sophisticated control logic and large memory caches (to reduce instruction and data access latencies), GPUs maximise the chip area for computation. The advent of programming libraries such as CUDA and OpenCL has enabled the use of GPUs for general purpose computation, with the GPU acting as a computational co-processor. Typical (single precision) theoretical peaks are already over 1 teraflop/s for cards like the NVIDIA Tesla C2050. Some of the challenges we identify in this paper can only be solved with GPUs.

III. CHALLENGES

A. Handling Big Data Files

Steps 1–4 of the WALLABY work flow relate to producing spectral data cubes that are significantly larger than have been available for previous surveys. The logistics of moving large data cubes on the network notwithstanding, it should be immediately apparent that an entire WALLABY cube cannot fit in the main memory of either today’s or tomorrow’s desktop configuration, and only one full resolution cube (at a time) can be stored on tomorrow’s internal desktop hard drive. Indeed, 16 GB memory limits sub-cubes to 2k × 2k × 1k (= 4 gigavoxels) for in-memory analysis. Since most existing astronomy software for the V+A of radio telescope data (e.g. Karma [16], AIPS [17], CASA [18]) is aimed at handling data sets that can fit in the host memory of a desktop machine, without further development, these packages are clearly incompatible with handling 2.5 TB cubes.

For V+A tasks that require access to an entire spectral cube (see below), the practical alternative is to use a distributed computing cluster architecture as a remote V+A service. This is one of the anticipated roles of the Pawsey HPC Centre [4], however, other major computing facilities such as the Swinburne Supercomputer incorporating gSTAR (the GPU Supercomputer for Theoretical Astrophysics Research)
could also be used. In principle, 2.5 TB of memory must be available across a computing cluster: assuming 16 GB (or 72 GB) is available per compute node, this means 160 machines today (or 36 tomorrow); there are clear advantages in managing fewer machines, each with more memory.

Moving software to a cluster environment necessitates the use of a distributed memory infrastructure, and an understanding of the level of parallelism in V+A algorithms. A data-parallel paradigm will be appropriate in many cases.

A remote service mode of operation is not likely to have a negative impact on the user’s experience for most large-scale analysis tasks (e.g. source finding or re-gridding), as these do not occur in “real-time”. The ability to achieve interactive visualisation at frame rates above 5-10 frames/sec (fps) will be limited by factors such as processing and network speed, and bandwidth.

To maximise efficiency, a distributed cluster also requires a parallel file system or other form of distributed network storage. Unfortunately, astronomy’s standard FITS (Flexible Image Transport System [19]) file format is not ideal for parallel access. Practical alternatives for faster access include NetCDF [20] or HDF5 [21] formats, but these require either “on-the-fly” transformations between file formats and metadata, or a possible need to increase the total storage for the WALLABY survey cubes.

B. Global Views versus Image Slices

The need to discard raw visibility data from ASKAP early in the WALLABY workflow (Step 3) means that global quality control of data cubes will be critical. Possible noise characteristics and artefacts may include large-scale gradients, non-uniform noise levels across the field of view, incompletely subtracted continuum sources and hydrogen recombination lines.

While inspecting individual slices may be one approach to quality control, this is not straightforward. Suppose it was possible to sequentially examine individual 2D slices from a WALLABY data cube (along the spectral axis), at a reasonable frame inspection rate of 5 fps: it would take ~ 1 hour to step through 16k spectral slices. This assumes a display capable of displaying 6k x 6k pixels - for a HD-1080 monitor, we require at least 3x6 sub-cubes, thus increasing the view time to 18 hours per cube. Moving to sub-cubes may limit opportunities to understand global variations. Moreover, slicing techniques remove the ability to perceive artefacts or noise characteristics along the slicing axis, so it may be necessary to slice along more than one axis. Alternatively, scaled down cubes could be inspected, but these may hide artefacts, as scaling of approximately 10:1 (spatially) would be required.

A preferred option may be to use a multi-panel display for full resolution visualisation. For example, the OptiPortal [22] at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) ICT Centre, Marsfield, New South Wales, comprises 25 high definition panels, with a total resolution over 50 megapixels. Accordingly, a full resolution WALLABY cube could be viewed on such a display at a 1:1 mapping of data to screen pixels.

A GPU-cluster based visualisation framework capable of volume rendering “larger than memory” data cubes at interactive frame rates has been demonstrated by [23]. In recent tests of this framework using the CSIRO GPU Cluster in Canberra (256 Tesla S2050 GPUs with 3 GB/GPU), frame rates of better than 40 fps (1024 x 1024 pixel output) were achieved for a 204 GB cube using 128 S2050 GPUs. Scaling this to a full WALLABY data cube requires a minimum of ~ 450 x 6 GB GPUs (or ~ 275 x 10 GB) in 2014. This task will not be feasible at interactive frame rates with a CPU-only HPC cluster. A combination of an OptiPortal and a GPU cluster may support fully three-dimensional global views of WALLABY data cubes, and the ability to quickly identify (compared with slicing) areas of a data cube that may indicate further processing is required using the visibilities.

C. Source Finding and Confirmation

Source finding is the process of identifying and extracting candidate sources from a data cube. To a large extent, the science outcomes of WALLABY depend on the existence of source finding software that maximizes reliability (i.e. only identifies extragalactic HI sources) and completeness (i.e. finds every source that exists within a data cube). An ideal source finder would have a 1:1 candidate to source ratio, and offer 100% completeness.

Conceptually, source finding is a simple task: examine each voxel in turn and determine the amount of source signal contributing to that voxel. Practically, source finding is extremely difficult, as every voxel contains both source and non-source components. The latter include noise (that may vary across the field of view), interference (natural and artificial), contamination from bright sources outside the field, recombination lines, incomplete subtraction of continuum sources, and so on.

It is instructive to consider the source finding tasks undertaken for HIPASS. The southern HIPASS catalogue, HICAT, used two main source finders: MULTIFIND and TOPHAT. These produced ~ 140,000 candidates, all of which were inspected manually (see [8] for details of these source finders). Neither source finder identified all candidates in the final source list. The overall performance of TOPHAT was much better than MULTIFIND: 17,232 TOPHAT candidates resulted in 90% of the final catalogue of 4315 galaxies. Due to its lower candidate-to-source ratio, only TOPHAT was used for the northern extension, NHICAT, with 14,879 candidates resulting in 1002 astronomer-confirmed sources [9].

For HIPASS, it was possible to view > 150,000 candidates by eye in order to provide confirmation of source identification. Overall, ~95% of candidates were rejected.
Limiting this to TOPHAT, the rejection rate was 75% for HICAT and 93% for NHICAT. For the expected ~ 0.5 million WALLABY sources, such high rejection rates will be crippling if human inspection is expected to play a significant role. Assuming a perfect source finder (i.e. no false detections) and 1 minute per source to load data, confirm, and annotate a candidate for later analysis, inspecting 0.5 million candidates will take a minimum of ~1 year (walltime). Fortunately, this is a parallel task that can commence before all survey cubes are obtained. The inspection processes could be shared between WALLABY team members, provided consistency in source confirmation can be assured.

As with visualisation, source finding within 2.5 TB data cubes requires (at minimum) a distributed computing approach. Effort is underway to produce a distributed version of DUCHAMP [24], but as with HIPASS, more than one source finder may be required. While solutions to the source finding problem are outside the scope of this paper, we assert that a GPU cluster will prove to be beneficial here. For compute intensive tasks, GPUs offer a massive processing gain at much lower cost than a CPU-only cluster with the equivalent processing power. GPUs may also permit alternative approaches to source finding that are simply not feasible to undertake on a CPU.

D. Desktop Visualisation and Analysis

Assuming we have solved the data handling problem, and that an appropriate catalogue of sources is available for inspection and quantitative analysis, we now consider what could be achieved on a desktop computer in 2014.

The biggest limitation is likely to be the amount of main memory: 16 GB will accommodate a ~4 gigavoxel cube, with a choice between cropping and subsampling from a larger WALLABY cube. Storing the WALLABY data in 16 GB tiles would facilitate some reasonable level of “traditional” handling of data by astronomers - but the entire survey would now occupy nearly 190,000 tiles instead of 1200 cubes.

A reasonable balance between the spatial and spectral axes yields:

\[
\left(\frac{s_{\alpha \delta} d_{\alpha \delta}}{6} \right)^2 \left(\frac{s_z d_z}{4} \right) > 1
\]

where \(s_{\alpha \delta} (s_z)\) is how coarsely the user is prepared to subsample along each spatial (spectral) axis of the WALLABY data cube, and \(d_{\alpha \delta} (d_z)\) is the factor by which the user is prepared to crop a standard WALLABY cube along each spatial (spectral) axis.

Let us refer to a cube that has been subsampled and/or cropped to fit in main memory on tomorrow’s desktop as a scube. Scubes will be acceptable for most modes of qualitative visualisation, but are not appropriate if quantitative analysis is going to be attempted; here, cropping is the necessary choice, but this will substantially reduce the area of sky and/or frequency space that is represented by a single scube.

While a 16 GB scube can easily be stored locally, it will take nearly 3 minutes to load into memory - waiting for data to load will become a much more common task for tomorrow’s astronomers. Once loaded, even the simplest of traditional operations (e.g. find the minimum, maximum, mean, standard deviation) will take on the order of seconds in the absolute best case (based on having to process the entire scube through the CPU). If any significant additional processing or filtering of the scube is desired, then the desktop platform will not have sufficient compute capability in the CPU alone. A desktop platform with a GPU co-processor would improve the situation, but not drastically, as the scube is still too large to fit on the GPUs own local memory (2-3 GB). The improvement in compute capability might in practice be a few times, but is unlikely to be better than 10 times.

Assuming a 4 gigavoxel WALLABY scube, the following traditional, interactive visualisation tasks should be feasible on tomorrow’s desktop:

1) Image slicing: 4 gigavoxels can be scanned on a 1 megapixel display, at 25 fps, in under three minutes. Compare this with HIPASS: 1024 frames at 25 fps takes ~40 seconds, but there is much less data (HIPASS cubes had spatial 170 x 160 pixels, with some blanked, so the information content is vastly lower per frame).

2) Volume rendering: to accomplish a traditional, hardware-accelerated texture-based volume rendering, we must further compress our scube from 16 GB down to ~2 GB (500 megavoxel ~800\(^3\) voxels) so that the image fits in the GPU co-processor memory. Subsampling is likely the preferred option here, as traditional volume rendering is qualitative not quantitative.

While fitting a 2 GB scube into GPU memory is achievable, we still require an interactive frame rate of >5 fps. Table III presents the results of performance testing with an NVIDIA GT120 GPU (512 MB RAM). Today’s desktop with a mid-range GPU can render up to 350\(^3\) voxels, filling 600 x 600 pixels on the screen, at ~8 fps. This limit

Table III

<table>
<thead>
<tr>
<th>N</th>
<th>(N^3) voxels</th>
<th>Minimum (fps)</th>
<th>Maximum (fps)</th>
<th>Average (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>(3.4 \times 10^6)</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>200</td>
<td>(8.0 \times 10^6)</td>
<td>10.0</td>
<td>19.9</td>
<td>14.0</td>
</tr>
<tr>
<td>250</td>
<td>(15.6 \times 10^6)</td>
<td>8.6</td>
<td>11.2</td>
<td>15.0</td>
</tr>
<tr>
<td>300</td>
<td>(27.0 \times 10^6)</td>
<td>6.7</td>
<td>12.0</td>
<td>9.1</td>
</tr>
<tr>
<td>350</td>
<td>(42.9 \times 10^6)</td>
<td>6.0</td>
<td>10.0</td>
<td>7.8</td>
</tr>
</tbody>
</table>
is imposed by the maximum texture size on the card (a factor of both the hardware and the application programming interface). A top-end graphics card today (the ATI Radeon 5970) can render a 5003 volume (125 megavoxels = 500 MB) at around 8 fps comfortably, just filling 1000 × 1000 pixels when the cube is face on. In practice this three-dimensional (3D) texture rendering does better for certain orientations of the cube, presumably corresponding to more contiguous memory access when gathering textures from the volume. Thus 8 fps is a conservative lower bound; around half the time it is actually managing closer to 15 fps.

We can extrapolate our results to estimate a rendering rate of \sim1 fps if we could fit a 500 megavoxel cube on the card. On tomorrow’s desktop platform this could be accomplished at \sim4 fps. Not a stellar result, so even tomorrow, texture-based volume rendering will be limited by rendering capability, not GPU memory size.

Both the Local Volume HI Survey (LVHIS; [25]) and The HI Nearby Galaxy Survey (THINGS; [26]) have demonstrated the diversity in HI kinematic structures in the local universe. Simple models, such as differentially rotating HI disks [27], [28], do not capture the complexities of warps, anomalous gas and mergers. A typical modelling process involves the generation of six-dimensional position and velocity values for an input model, and mapping these to two spatial coordinates and a line-of-sight velocity. New opportunities may arise for visualisation-directed, interactive model-fitting to complex kinematic structures using an approach of the type described by [29]. The highly data parallel nature of this processes (the contribution of each spatial pixel, and hence line-of-sight, can be computed independently of all others) is well-matched to the GPU, so interactive frame rates are unlikely to be computationally limited. See also the SHAPE 3D modelling tool for a similar technique applied to planetary nebulae and other bipolar outflows [30].

E. Data Product Management

While overall ASKAP data management will be largely the responsibility of the Pawsey HPC Centre, individual survey projects will need to carefully consider how they approach management of derived data. For a survey as comprehensive and data-rich as WALLABY, there is no place for the somewhat ad hoc data management practices that have sufficed for earlier all-sky extragalactic HI surveys. The access times required to open and edit files notwithstanding, text files are not a satisfactory solution for managing catalogues of \sim 0.5 million galaxies, plus similar orders of rejected or unconfirmed candidates.

Catalogues will need to capture model parameters, reasons for rejecting candidates, meta-data relating to the provenance of analysed sources (which analysis package was used, by whom, and with what set of input parameters, so that the results can be repeated). Moreover, it will necessary to share up-to-date modifications of the catalogue between multiple collaborators. Solutions here are likely to include large-scale commercial databases - and may be one of the cases where astronomers should spend money to buy a solution, rather than reinvent one themselves. We intend to address data management solutions for WALLABY in future work, but note that understanding the benefits and limitations of approaches used for similar large-scale catalogues from observational (e.g. Sloan Digital Sky Survey [31] and WiggleZ [32]) and simulation (e.g. Millenium [33]) projects will be essential.

IV. Concluding Remarks

Perhaps the biggest challenge to planning strategies for visualisation and analysis is that no ASKAP data exists yet. We do not know what the exact imaging properties of ASKAP will be. Although simulated data cubes are now being generated, until the full ASKAP system undergoes commissioning, we will not fully understand all of the calibration, noise, interference, etc. issues that will arise with the relatively new technology of focal plane arrays.

Testing source finders often includes injecting fake sources, with a given signal level, and then seeing how often they are recovered. With real WALLABY data cubes unavailable until 2014, progress in testing source finders will necessarily be limited. While we can do our best to plan source finders based on existing datasets, and early science data from the BETA configuration (September 2011-March 2013), we may find that our techniques do not work adequately for the full dataset. By considering the various V+A tasks now, and identifying approaches based on new hardware and software that were not available or feasible for earlier surveys, we can hope to minimise the impact of the “unknown unknowns” of ASKAP.

Graphics processing units offer an intriguing solution to a number of the current desktop-bound problems. Table IV summarises our thoughts regarding the visualisation and analysis tasks that will require either an evolution of existing

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big data files</td>
<td>Use distributed file system and remote V+A services.</td>
</tr>
<tr>
<td>Global views</td>
<td>Use cluster of GPUs and large-format displays.</td>
</tr>
<tr>
<td>Source finding</td>
<td>Requires most attention.</td>
</tr>
<tr>
<td>Human inspection</td>
<td>Not feasible without high-reliability source finders.</td>
</tr>
<tr>
<td>Desktop visualisation</td>
<td>Use GPUs for computation and display.</td>
</tr>
<tr>
<td>Image slicing</td>
<td>Only practical for sub-cubes.</td>
</tr>
<tr>
<td>Quantitative analysis</td>
<td>Opportunities for automated and interactive fitting with GPUs.</td>
</tr>
<tr>
<td>Data management</td>
<td>Must not be ad hoc. Databases must be used wisely.</td>
</tr>
</tbody>
</table>
software and hardware, or a revolution in how they are approached. By planning today, we aim to maximise the scientific return from WALLABY tomorrow.

ACKNOWLEDGMENT

The authors would like to thank Bärbel Koribalski (ATNF) and Russell Jurek (ATNF) for discussions relating to the WALLABY project, and John Taylor (CSIRO) and Tim Cornwell (ATNF) for enabling access to the CSIRO GPU cluster.

REFERENCES

