
 

 

 

 

Efficiency Analysis of the Australian Mining Firms 
 

 

 

A thesis submitted by 

 

Ahmad Hosseinzadeh 

 

For the fulfilment of the requirement for the degree of 

 

Doctor of Philosophy 

 

 

Faculty of Business and Law 

Swinburne University of Technology 

Melbourne, Australia 

April 2019 

 



i 
 

 

Abstract 

The mining industry is one of the main pillars of the Australian economy and it is usually given 

credit for preventing Australia from slipping into recession during, and after, the global 

financial crisis of 2008-2009. Over the past decade, improving Australian living standards has 

been largely attributable to the mining boom. However, the recent downturn in commodity 

prices has raised concerns about the profitability of mining companies. This challenge has also 

highlighted the importance of improving the efficiency of this crucial sector to the economy. 

Yet, we know little about the efficiency of Australian mining companies and what we do know 

is mostly restricted to performance at the industry level (see, inter alia, Zheng and Bloch 2014; 

Syed et al. 2015). Due to significant differences between individual companies in this sector, 

efficiency studies at the firm level are essential to complement industry-level analysis. The aim 

of this study is to shed light on firm-level efficiency, and its determinants, in the Australian 

mining sector. We apply a two-stage bootstrap data envelopment analysis (DEA), proposed by 

Simar and Wilson (1998, 2007, 2011), using a panel of 34 companies over the period 2010 to 

2014. 

To develop the model of technical efficiency estimation, we take into account the common 

approach of inputs and outputs selection in the production function theory as well as a natural 

resource-based approach which reflects the specifications of inputs and outputs selection in the 

non-renewable resource sector of mining. Therefore, we develop two technical efficiency 

models: Model I, constructed using one output, namely total production, and three inputs 

including labour, capital and intermediate inputs; and Model II which contains natural resource 

input in addition to the existing variables in Model I.  

Stage-one analysis involves the application of data envelopment analysis (DEA) to estimate 

the technical efficiency of Australian mining firms. The main advantage of non-parametric 

DEA, comparing to parametric methods such as stochastic frontier analysis (SFA), is that it 

does not require any pre-defined functional form; though, it does not take into account 

statistical noise resulting from measurement errors. To overcome the shortcoming associated 

with the lack of statistical noise in DEA, we use a bootstrap procedure proposed by Simar and 

Wilson (1998) to obtain bias-corrected DEA estimates. Both constant returns to scale (CRS) 
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and variable returns to scale (VRS) assumptions are considered in formulation of technical 

efficiency models. 

In the stage-two analysis, we examine the effects of firm-specific factors on the technical 

efficiency of mining firms in Australia. The econometric model of stage-two is constructed 

using 11 variables including ownership, firm size, firm age, capacity utilisation, financial risk, 

product type, product portfolio diversification, growth factors (including production progress 

pace as well as growth/decline status), location of operations, and time.  To do the second-stage 

analysis, we apply the bootstrap truncated regression method proposed by Simar and Wilson 

(2007). This method overcomes the limitation of commonly used methods, such as Tobit 

regression and Ordinary Least Square (OLS), to handle the issue arises due to the serial 

correlation among estimated efficiency scores. In this method, instead of conventional 

efficiency scores, the bias-corrected technical efficiency scores derived from bootstrap DEA 

are used as the dependent variable in the second-stage econometric model. 

Data was collected from the annual reports of Australian mining companies listed on the ASX. 

To have a more homogeneous sample, we consider only fully operational minerals and metal 

ore mining companies. The sample consists of 34 mining firms operating over the period 2010 

to 2014. These companies account for more than 90% of total output of listed mining 

companies. In total, our sample consists of 170 panel observations. 

The results from the first-stage bootstrap DEA revealed a significant level of inefficiency 

among Australian mining firms. On average, Australian mining firms could improve their 

economic performance by 62% over the study period 2010-2014 under the CRS assumption 

and Model I specification. This poor level of efficiency gain across Australian mining firms 

results from the presence of inefficiency in both components of efficiency performance, namely 

pure technical efficiency and scale efficiency. Once taking account of natural resource input in 

formulation of the efficiency model, the efficiency performance of Australian mining 

companies improves significantly. Nevertheless, Model II results show on average 41% 

technical inefficiency exists among mining companies in Australia. This sizable inefficiency 

performance is mostly attributed to pure technical inefficiency whereas most mining companies 

operate around their optimal scale. Our results of the first-stage DEA confirmed the findings 

of Topp et al. (2008), Zheng and Bloch (2014) and Syed et al. (2015), who addressed the issue 

in conventional productivity measurement of the mining sector and emphasised the role of 

resource depletion as a major contributor to the poor productivity performance of the Australian 
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mining sector in recent years. However, the results from the first stage show a significant 

opportunity for improving technical efficiency across mining companies in Australia even if 

we account for resource depletion. 

The outcomes of the second-stage analysis of both Model I and Model II exhibit similarly 

significant effects for factors including ownership concentration, firm age, product portfolio 

and change direction. These factors are dominating the efficiency performance of mining firms 

regardless of consideration for mining characteristics. Ownership concentration and firm age 

are positively associated with firm performance. Also, mining firms involved in exploration 

and extraction of iron ore and gold mines are more efficient than other mining companies in 

the sample. Furthermore, mining firms achieve higher efficiency gains on years with growing 

production output while their efficiency gains decline when mining companies reduce their 

production output. 

Product diversification is the only factor that turns out to be insignificant when we redefine 

input variables in Model II from the initial setup of Model I. Unlike the results of Model I, the 

coefficients of firm size, financial leverage, location of operations and change pace are reported 

to be significant under Model II specifications. The correlation between firm size and firm 

technical performance is positive. Financial leverage negatively affects technical efficiency. 

Mining companies with active operations outside Australia outperform those companies that 

limit their operations to domestic mining fields. Finally, companies with stable or gradual 

growth experience have higher efficiency gains in comparison with companies with sharp 

changes in their production output. 

This thesis provides four major contributions to the existing literature in mining efficiency and 

productivity analysis. First, this study contributes to the literature through examining efficiency 

in the Australian mining sector at the firm level during the period 2010-2014. To this point, no 

study has examined the efficiency of the Australian mining industry at the individual firm level. 

Second, this work introduces a firm efficiency model accounting for resource depletion which 

is specific to the mining industry. Sector-level studies have discussed the resource depletion 

effects on productivity performance. This study extends this concept to a firm-level analysis. 

Third, this study contributes to the existing literature through examining the determinants of 

efficiency using a second-stage regression. Only a few firm-specific factors such as ownership 

and age have been discussed in the existing literature. For the first time, this research explores 

the effects of factors such as portfolio diversification, product type, capacity utilisation, 
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operation location, financial risk and business stability in the context of mining firms’ 

efficiency. Finally, from a methodological perspective, this is the first study to employ a 

second-stage double bootstrap procedure to ascertain statistical significance of the 

determinants of technical efficiency in mining companies using a non-parametric set up.  

Through identifying the firm-specific characteristics most associated with higher efficiency 

performance, our findings should be of value to both government and mining businesses, in 

assisting in the formulation and implementation of policies designed to achieve productivity 

improvement within the industry. 
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1 Introduction 

 

1.1 Background to the Research 

The mining industry has contributed to some major economic and social developments in 

Australia over the past two centuries. In response to the increasing global demand for mineral 

and energy commodities since 2003-04, the mining sector has experienced substantial growth 

in the exploration and extraction of mining commodities. This expansion in mining activities 

has coincided with significant increases in the sector’s contribution to the national income, 

export, investment and employment. Before the boom, the sector’s contribution to the 

Australian GDP was about 5 per cent, increasing to a peak of 9 per cent in 2010-11 (ABS, 

2017a). Its contribution to the total export value also reached above 50 per cent over this period 

(ABS, 2017d). On average, mining export value grew around 1 per cent per annum between 

1990-91 and 2003-04. However, the industry experienced an annual increase of 18 per cent in 

the export value over the 2004-05 to 2010-11 period (Department of Industry, Innovation and 

Science, 2017). Similar to its income and export performance, the mining industry also 

increased its contribution to the labour market. The sector’s employment increased from 0.9 

per cent of the total employment in Australia in 2003-04 to a peak of 2.4 per cent in 2012-13 

(Department of Jobs and Small Business, 2017b). What’s more, strong capital investment 

during the mining boom increased the share of the sector in total capital stock in Australia from 

7 per cent in 2004-2005 to 15 per cent in 2013-14 (ABS, 2017c). 

Further to the positive effects of the millennium boom on the Australian mining sector, the 

whole Australian economy also benefited from this expansion. Australia’s performance in key 

economic variables, such as employment and national income, surpassed most OECD 

economies since the mining boom (Grafton, 2012). The economic and social effects of this 

boom were more evident in the resource-rich states of Western Australia, Queensland and the 

Northern Territory. Along with the significant capital investment occurring in these states, their 

average household income growth outperformed the rest of states in Australia during the 

mining boom. The majority of these expanding mining activities were located in rural and 
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regional Australia; hence, local and indigenous communities in mining regions benefited from 

the economic growth resulting from the investment boom. 

The Australian mining sector’s competitive advantages have aided its success in global 

markets. As a resource-rich country, Australia holds the top place in the world for economic 

demonstrated resources (EDR) as well as the production of several minerals such as iron ore, 

bauxite, black coal, brown coal, copper and gold. Furthermore, the Australian Government 

provided a favourable investment environment, attracting international and domestic investors 

to its mining projects. A highly skilled workforce and advanced technology utilised in mining 

operations are two other advantages of Australia’s mining sector against its global competitors. 

Mining exploration and extraction activities in Australia are highly supported by the mining 

equipment, technology and services (METS) sector. The METS sector in Australia is 

characterised as internationally competitive and innovative. Finally, Australia’s legal and 

legislative framework supports its communities as well as the mining industry through 

addressing the environmental accountability and social responsibility in mining activities 

(Penny et al., 2012; Geoscience Australia, 2015; Geoscience Australia, 2017). 

Despite its existing competitive advantages, the Australian mining sector may not be 

adequately equipped for success in the future. The sector faces a range of new global and 

domestic challenges that, if not addressed appropriately, could impose severe risks to the future 

of the Australian economy and particularly the mining sector. From a market demand point of 

view, the Australian mining sector has heavily relied on the Chinese market; however, the 

economic expansion of China and its demand for natural minerals and energy has begun to 

slow, counter to the growth it has experienced in the past few decades. That is, China’s 

economic growth has gradually decreased in recent years; reaching 6.5 per cent in September 

2018, its lowest growth since the global financial crisis of 2008 (Department of Industry 

Innovation and Science, 2018). On the other hand, other emerging economies in Asia, Africa, 

South America and the Middle East have significant potential to grow. These growth potentials 

in emerging economies across the globe offer an unprecedented opportunity to the Australian 

mining sector to maintain its leading position in the global resource market. 

Further to the changes in the market demand, the supply side of the market has also experienced 

some changes. Latin America and Africa succeeded in attracting a substantial level of new 

investments in mining projects. Comparing to Australia with a 13 per cent share, Latin 

American and African regions attracted 28 per cent and 13 per cent of the world’s new mining 



3 
 

investments in 2016 respectively (S&P Global, 2017). Moreover, the large consumers of 

mining commodities such as China, India and Brazil have changed their strategy toward a more 

diversified supply portfolio with emphasis on expansion in domestic supply as well as supply 

from new foreign mining regions (Penny et al., 2012). The realisation of changes in the global 

market for resource commodities through the development of adequate policy responses is 

essential to maintain the Australian mining sector’s competitive advantages against its 

counterparts.  

In addition to the market demand and supply forces, domestic levers such as social claims and 

a rising cost structure also influence the shape of the mining industry. In particular, the mining 

industry is beholden to address community concerns and obtain a social licence to operate in 

relation to environmental considerations, health and safety requirements, employment, 

stakeholder engagement and community benefits. Such intangible licences must be obtained 

and maintained for the entire life of mining projects, from the initial exploration phase to mine 

development, operations, closure and post-closure phases. The requirements for a social licence 

to operate can result in increased costs due to longer lead time to attain exploration and mining 

approvals and comply with more strict regulations (Penny et al., 2012; Geoscience Australia, 

2017). Rising costs are the other challenge facing the Australian mining industry. The 

associated costs with mining exploration and operations are relatively high in comparison with 

many other global competitors and the emerging mining regions (Penny et al., 2012). 

In the presence of declining and fluctuating commodity prices along with decreasing ore grade 

and the rising production costs of mining operations, productivity improvements and 

technological changes could support the mining sector to maintain its competitive advantages 

in the long term (Penny et al., 2012; CSIRO, 2017). In contrast with the positive trends in the 

1990-91 to 2000-01 period, from 2001-02 to 2012-13 the mining multifactor productivity 

(MFP) experienced downward trends. The sector’s recent dip in MFP growth came with 

adverse effects on the nation’s productivity performance. Labour productivity and capital 

productivity declined by 51 per cent and 42 per cent respectively. As a result, the MFP slumped 

by 44 per cent in this period. These declining trends were mainly due to the resource depletion 

and the lag between investment and production in mining activities. Due to the nature and 

characteristics of capital in the mining sector, surging investment in mining activities does not 

lead to an immediate increase in the production output. In fact, there is a significant lag between 

the time that new capital is invested and the time that production takes place from a completed 
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development project. While the relationship between investment and productivity is positive 

in the long term, the increased investment results in declining productivity in the short term 

(Topp et al., 2008; Syed et al., 2015). 

Further to the investment-production lags, resource depletion contributed significantly to the 

declining productivity performance in the mining sector during the recent boom. In addition to 

the common factors of production, mining production depends on the natural resource inputs. 

Changing the characteristics and quality of natural resources over time can deteriorate the 

productivity of mining activities. Due to the ongoing extraction, mineral deposits have 

depleted, resulting in less accessible or lower quality deposits over time. Maintaining the same 

level of output requires consumption of more labour inputs and capital services to reach less 

accessible deposits or to extract from lower grade deposits. 

In addition to the significant influence of investment-production lags and natural resource 

inputs, a range of other endogenous and exogenous factors have contributed to the productivity 

performance of mining activities in Australia over the past few decades. Inefficient production 

of mining products due to high commodity prices, over or under capacity utilisation, skills 

shortage, infrastructure constraints and significant climate events are named among the other 

driving factors of low productivity performance of the mining sector in Australia during the 

recent boom (Topp et al., 2008; Syed et al., 2013; Mason et al., 2013; Lumley and McKee, 

2014). 

The transition of mining projects from the capital-intensive phase of mining development to 

the production phase has led to an increase in the Australian mining MFP growth since 2013-

14 (ABS, 2018a). Nonetheless, resource depletion will be a continuing concern affecting the 

productivity performance of the mining sector in the years to come. The sector furthermore 

suffers from some operational challenges such as non-optimal utilisation of equipment and 

insufficiency of operational strategies in boosting productivity (Lumley and McKee, 2014). A 

long-term approach to productivity improvement is critical for both mining businesses and 

government policy makers in Australia. 
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1.2 Statement of the Problem 

The mining industry plays an important role in Australia’s ongoing prosperity. Its significant 

role in the nation’s GDP growth, new capital investment, export, direct and indirect 

employment as well as developments in regional and indigenous communities has made this 

sector beneficial to all Australians. Over the past two decades, the Australian mining industry 

has expanded substantially to respond to the increasing global demand for minerals and mining 

commodities. Despite the growing economic trends, the Australian mining sector has faced a 

considerable challenge in relation to its efficiency and productivity performance. During the 

mining boom, declining productivity trends were one of the major topics in the nation’s 

economic debates and post-boom, most mining companies in Australia listed it as one of the 

top priorities on their agenda (see e.g. Connolly and Orsmond, 2011; Eslake, 2011; D’Arcy 

and Gustafsson, 2012; Mitchell et al., 2014;  Lumley and McKee, 2014). 

In economics, efficiency and productivity are mostly used as the main measures of a producer’s 

performance. While these two concepts are usually used interchangeably, they are not the same. 

Productivity is simply the ratio of outputs to inputs. Labour productivity, capital productivity 

and multifactor productivity (MFP) are the most common measures of productivity (OECD, 

2001; Coelli et al., 2005). The productivity of each producer is calculated based on its inputs 

and outputs; however, efficiency is a relative measure and calculated by comparing the 

observed values of inputs and outputs of a producer against their optimum values. Thus, to 

measure the efficiency of a producer one needs to estimate the production technology frontier 

representing the optimum values and then to calculate the producer’s distance from the frontier. 

Such measure is called technical efficiency. Given the availability of price information, one 

can also calculate the cost, revenue or profit efficiency measures (Fried et al., 2008). 

The efficiency measurement techniques can be classified in two categories: parametric and 

non-parametric. The parametric techniques in efficiency measurement use econometric 

modelling to formulate the linkage between outputs and inputs in a production system. 

Stochastic frontier analysis (SFA) is the most common parametric technique in the literature.  

Due to their stochastic nature, the statistical properties of model parameters and efficiency 

estimates are derived from the parametric techniques. Having said this, the main disadvantage 

of these techniques is that their application requires selection of pre-defined functional forms 

in the econometric model. On the other hand, non-parametric techniques, such as data 

envelopment analysis (DEA), are flexible and do not need such requirements in selection of 
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functional forms. The efficiency estimates are derived from solving a mathematical 

programming problem. Due to the deterministic nature of these non-parametric techniques, the 

efficiency modelling omits consideration of the measurement and random errors in the 

calculation of efficiency estimates (Fried et al., 2008).  

Both econometric and mathematical programming techniques have been widely used in the 

efficiency and productivity literature. Fried et al. (2008), Aparicio et al. (2016) and Greene et 

al. (2016) presented various advancements in theoretical modelling and empirical studies in 

efficiency and productivity analysis. The existing literature covers a broad range of economic 

activities such as banking, insurance, agriculture, education, hotels and hospitality services, 

manufacturing and transportation. However, compared to most other industries, the literature 

is limited to much less research in the efficiency and productivity analysis of the mining 

industry using frontier techniques such as DEA and SFA (Hosseinzadeh et al., 2016). 

Efficiency and productivity studies into the mining industry have been conducted at mine, firm 

or sector levels. These studies have pursued different aims, performance modelling, variables 

of interest, common methodologies and policy implications depending on the scope of the 

research. Early research on efficiency and productivity analysis are limited to mine-level 

studies. With the aim of improving mine efficiency, the construction of efficiency models in 

the mine-level studies includes a set of operational input/output variables such as total working 

hours, utilised equipment capacity, mine geological characteristics and production volume (see 

e.g. Byrnes and Färe, 1987; Byrnes et al., 1988). On the other hand, sector-level studies have 

aimed to analyse and improve the productivity of the mining industry through nation-wide or 

sector-wide policy recommendations. The sector-level productivity modelling has relied on the 

macroeconomic trends and the official aggregate data of production factors from the national 

statistical organisations (see e.g. Asafu-Adjaye and Mahadevan, 2003; Rodríguez and Arias, 

2008; Zheng and Bloch, 2014). 

Nevertheless, the firm-level studies of mining efficiency and productivity have only received 

attention in recent years (see e.g. Das, 2012; Sueyoshi and Goto, 2012; Geissler et al., 2015). 

Few studies have been published in the area of efficiency or productivity growth using both 

mathematical programming and econometric modelling techniques. While some studies 

limited their scope to the mining activities in a specific county (Fang et al., 2009; Putuma and 

Kumo, 2010), other studies took a cross-country approach in evaluation of mining firms’ 

efficiency (Eller et al., 2011; Sueyoshi and Goto, 2012; Geissler et al., 2015). Technical 
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efficiency, revenue efficiency and productivity growth are among the main measures being 

investigated in the firm-level studies. Even though both mathematical programming and 

econometric approaches have been improved in recent years to tackle their modelling issues, 

the existing firm-level literature mostly relies on the application of DEA and SFA that were 

developed decades ago. Among these studies, only Koop and Tole (2008) and Sueyoshi and 

Goto (2012) applied more advanced methods in economic and mathematical programming 

approaches respectively. 

In the literature, common efficiency model variables include labour input, capital input, 

intermediate inputs and production output (Coelli et al., 2005). A major difference between 

mining and other economic sectors is the role of natural resource inputs in the production 

process. In addition to the common inputs to the production process, the mineral deposits in 

their natural state contributes to the production of mineral and energy products (Topp et al., 

2008). Mineral production from these non-renewable resources results in resource depletion 

and consequently productivity decline. The role of natural resource inputs has been discussed 

in sector-level studies. Kulshreshtha and Parikh (2002) included overburden removal as an 

undesirable output, which partially reflects the effects of natural resource characteristics. Zheng 

and Bloch (2014) investigated the effects of natural resource inputs on productivity growth 

using mineral and petroleum exploration capital stock as a proxy for natural resource inputs. 

Unlike sector-level studies, none of the firm-level studies have taken into account the role of 

natural resource inputs in the efficiency performance of mining firms. Changes in the ore 

quality and accessibility of operating mines directly affects revenue and expenses at the 

corporate level. Hence, the depletion of a company’s mineral deposits results in a decline in its 

overall efficiency and productivity performance. Thus, it is important to include the natural 

resource inputs among variables of the mining efficiency model of firm-level studies. 

Over the past two decades in Australia, several studies have attempted to investigate the 

productivity of mining industry. Their main intention has been to explain the poor MFP 

performance across the industry, particularly during the mining boom of the 2000s. The 

findings from these studies suggest that the official MFP index published by the ABS is 

substantially influenced by changes in the natural resource inputs. Using different time periods 

and methodologies, these studies reported consistently moderate and positive adjusted 

estimates of MFP growth between 2 per cent to 2.5 per cent per annum over the past three 

decades (see e.g. Topp et al., 2008; Loughton, 2011; Zheng and Bloch, 2014; Syed et al., 2015). 
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Hence, the official MFP growth estimates are negatively biased indicators of technological 

progress of the mining industry in the long run.  

Further to resource depletion, other factors including sharp increases in input prices, 

considerable lags between investment and production phases, scale inefficiency and capacity 

utilisation have contributed negatively to the productivity of the Australian mining sector since 

the mining boom (Tilton, 2014; Zheng and Bloch, 2014; Syed et al., 2015). The literature 

suggests that despite the apparent decline in the productivity of Australian mining since 2003-

04, the true MFP growth and technological progress has been consistently positive. Therefore, 

the mining industry does not need to implement any specific policy beyond general advice in 

improving productivity such as growth in innovation, a more skilled workforce and faster 

technological progress (Syed et al., 2013; Syed et al., 2015). This view is not necessarily 

supported by the operational studies that report a significant productivity and efficiency gap in 

the mining activities in Australia, particularly in equipment and capacity utilisation (Mitchell 

et al., 2014; Lumley and McKee, 2014). 

While the studies conducted in the Australian mining industry have attempted to evaluate the 

mining sector’s productivity, limited research is available on the efficiency performance of 

mining activities. An early study by Asafu-Adjaye and Mahadevan (2003) decomposed the 

productivity growth of mining industry in Australian to investigate the role of efficiency 

changes in productivity performance. They found that the cost efficiency changes contributed 

negatively in the TFP growth of the mining sector for the 1968-69 to 1994-95 period. More 

recently, Syed et al. (2015) examined the productivity growth of the mining sector. Contrary 

to the findings from Asafu-Adjaye and Mahadevan (2003), they reported the positive role of 

technical efficiency changes in the sector’s productivity changes over the 1990-1991 to 2009-

2010 period. Hence, at the sector level, the literature findings in efficiency changes are 

ambiguous, potentially due to the differences in the study period, methodology and efficiency 

modelling. 

Interestingly, research in conducted efficiency and productivity analysis of the Australian 

mining industry is limited to sector-level studies. That is, no studies have examined the 

efficiency of mining firms in Australia. Mining companies form the largest division listed on 

the Australian Securities Exchange (ASX). A large number of domestic and international 

investors contribute to and benefit from these mining businesses. Certainly, the economic 

performance of these companies is the interest of various stakeholders including governments, 
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investors, mining business leadership and regional communities.  Hence, given the important 

role of mining companies in the success of the mining sector and the Australian economy, 

extending the efficiency and productivity analysis to firm-level studies greatly supports policy 

makers and mining businesses to explore the economic performance across the industry. 

In relation to the efficiency performance of mining companies, it is also important to know 

how to improve it. The answer to such a critical question relies on a clear knowledge about the 

factors contributing to the firm’s efficiency performance. This knowledge helps governments 

and mining businesses to develop relevant policy aimed at improving the efficiency of mining 

companies and the sector’s overall performance. Few studies in the literature have examined 

the determinants of efficiency and productivity in the mining industry. The type of factors 

examined in the literature depends on the scope of the study. Mine-level studies tend to focus 

on the role of operational factors and mine characteristics in efficiency performance. 

Geological characteristics in particular are among the most important factors investigated in 

mine-level efficiency studies (see e.g. Byrnes and Fare, 1987; Byrnes et al., 1988; Koop and 

Tole, 2008). Firm-level studies, on the other hand, have investigated the influence of firm-

specific factors such as ownership, firm age and firm size on the firm’s performance (see e.g. 

Eller et al., 2011; Das, 2012). Meanwhile, the investigation of macroeconomic contributing 

factors to the productivity growth has been the agenda of the sector-level studies. Factors such 

as domestic inflation, export and interest rate have been discussed in the productivity literature 

of the mining industry (see e.g. Mahadevan and Asafu-Adjaye, 2005; Tilton, 2014). 

The existing literature explains some driving factors behind changes in the efficiency and 

productivity of mining activities; however, it is unable to provide a comprehensive picture 

describing the causes of economic performance of the mining industry. A broader view is 

needed to aid business management and policy makers in improving mining industry 

performance. Further to the literature limitations in terms of the scope and the coverage of the 

efficiency determinants, the applied methodologies also suffer from some modelling issues.  

The analysis of efficiency determinants in the mining literature, especially in the non-

parametric applications, has relied on simple regression techniques (see e.g. Byrnes et al., 

1988; Eller et al., 2011). Simar and Wilson (2007, 2011) discussed in detail the issues 

surrounding the application of OLS and Tobit regression models in two-stage DEA; namely 

those due to the serial correlation among the DEA efficiency estimates. Better modelling is 

required to eliminate such issues in the second stage of DEA. These shortcomings indicate the 
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need for further work in the evaluation of the driving factors of efficiency and productivity in 

the context of the mining industry. 

Overall, there are gaps in the existing literature on the efficiency and productivity analysis of 

the mining industry which require further work. There is room for improvement in the 

efficiency modelling and the variable selection, particularly the inclusion of natural resource 

inputs in the analysis. In addition, the absence of recent methodology advancements in the 

frontier techniques is an evident gap in the mining efficiency literature. In the Australian 

mining context, despite the body of knowledge in assessing the productivity of the mining 

sector, the analysis of efficiency performance – particularly at the firm level – is a significant 

gap in the literature. Moreover, the available studies do not provide a broad picture of the 

contributing factors to the efficiency and productivity of the mining industry. Specifically, at 

firm level, the effects of various firm-specific factors are unknown, and for those investigated 

in the literature, the available knowledge is limited to one or two studies. Finally, the second-

stage analysis of a DEA method has been commonly involved in the application of a regression 

model based on the OLS or Tobit techniques, which provide inconsistent results. 

The limitations of the existing literature on the efficiency and productivity analysis of the 

mining industry have encouraged this thesis to investigate the efficiency performance of 

mining companies. Focusing on Australian mining companies, this study utilises a two-stage 

DEA to firstly estimate the efficiency performance of mining firms, and secondly, to 

investigate the contributing factors to the efficiency performance. In addition to the mining 

businesses, this research will benefit the regulatory authorities and (more broadly) society 

through insight into the efficiency challenges and the potential improvement actions toward 

optimum utilisation of resources in mining operations.  

 

1.3 Research Objectives 

This study aims to conduct an empirical investigation into the efficiency performance of 

Australian mining companies. The main objectives of the research are: 

(i) to evaluate the technical efficiency of Australian mining firms; 

(ii) to investigate and identify factors significantly contributing to the efficiency of 

Australian mining firms; and 
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(iii) to provide policy recommendations to improve the efficiency of Australian mining 

firms based on empirical findings. 

To achieve the above objectives, this study applies a two-stage bootstrap data envelopment 

analysis (DEA), proposed by Simar and Wilson (1998, 2007, 2011), using a panel of 34 

companies over the 2009-10 to 2013-14 period. 

The two-stage approach in this study involves the estimation of efficiency scores in the first 

stage, and the evaluation of effects from the firm-specific factors on the efficiency in the second 

stage. Toward achieving the first objective in this study, the non-parametric technique of data 

envelopment analysis (DEA) is used to estimate the technical efficiency of the Australian 

mining firms. While this technique does not require any pre-defined functional form, which is 

the main disadvantage in the application of parametric techniques such as SFA, DEA ignores 

the presence of statistical noise and measurement errors. Hence, this study uses a bootstrap 

procedure proposed by Simar and Wilson (1998, 2000a) to derive the bias-corrected DEA 

estimates. Two efficiency models are proposed in this study; the first model is based on the 

common approach of input/output selection in the production function theory, whereas the 

second model is a natural resource-based approach to reflect the input/output specifications in 

the non-renewable resource sector of mining. Therefore, Model I is constructed using one 

output, namely total production, and three inputs including labour, capital and intermediate 

inputs. On the other hand, Model II includes the natural resource inputs in addition to the 

existing variables in Model I.   

Aiming at the second objective, this study uses the efficiency estimates obtained from stage 

one to examine the effects of firm-specific factors on the technical efficiency of mining firms 

in Australia. The firm-specific factors examined in stage two include ownership, firm size, firm 

age, capacity utilisation, financial leverage, product type, portfolio diversification, growth 

status, location of operations and year-specific variables. To overcome the limitation of 

commonly used regression techniques in providing consistent parameter estimates in the 

second-stage analysis, this study applies the bootstrap truncated regression method proposed 

by Simar and Wilson (2007). Unlike techniques such as Tobit regression and Ordinary Least 

Square (OLS), their proposed method provides reliable and consistent estimates of the 

econometric model parameters while the firm-specific factors are regressed against the bias-

corrected technical efficiency scores derived from the first-stage bootstrap DEA. 
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The annual reports of the Australian mining companies listed on the ASX are the primary 

source of data for variables used in the first and second stages of this study. To improve the 

homogeneity of the sample, this study includes only minerals and metal ore mining companies 

that had been fully operational over the period of study. The sample consists of 34 mining firms 

operating over the period 2010 to 2014, accounting for more than 90% of the total output of 

the listed mining companies in Australia. 

Results from stage one and stage two of this study facilitate the development of appropriate 

policy recommendations as outlined in the third objective. Mining businesses are the main 

audience of such policy recommendations at the firm level. Nevertheless, policy makers in the 

government and regulatory authorities can also benefit from the research findings and its 

recommendations. Most policy recommendations have multiple dimensions associated with 

various stakeholders such as mining businesses, investors, federal and state governments, and 

local communities. 

 

1.4 Contributions and Significance of the Research 

This study addresses the gap in the literature on mining efficiency and productivity by 

providing four major contributions. Firstly, this is the first study to examine the efficiency 

performance of the Australian mining industry at the firm level. Due to the significant 

contribution of mining companies to the Australian economy, it is essential to understand how 

mining companies perform in terms of technical efficiency. Improving mining companies’ 

efficiency benefits a broad range of stakeholders such as investors, governments and regional 

communities. The conducted research on the efficiency and productivity analysis of the 

Australian mining industry is limited to few sector-level studies. Unfortunately, research on 

the aggregate data and trends in the mining sector is not sufficient to develop improving actions 

at the enterprise level. Hence, this study contributes to the literature by closing the existing gap 

in firm-level efficiency analysis in Australia.  

Secondly, unlike most studies in the efficiency analysis of mining companies, this work 

introduces an efficiency model accounting for natural resource inputs. Due to the nature of the 

mining sector, the characteristics of mineral deposits can significantly influence the production 

output of mining activities. Unlike other inputs in the production system, natural resource 

inputs are non-renewable and can result in resource depletion, i.e. less accessibility or lower 
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quality of mineral deposits. Hence, over time, a greater amount of labour, capital and 

intermediate inputs is required to maintain the same level of production output or value with a 

given technology. As natural resource inputs are specific to resource sectors, such as mining, 

it is important to account for their effects on the efficiency of mining activities. While few 

sector-level and mine-level studies have discussed resource depletion effects on productivity 

performance, no firm-level studies have included natural resource inputs in their efficiency 

models. This study addresses such gap in the literature by extending the efficiency model to 

include a proxy for natural resource inputs as the natural resource-based model of technical 

efficiency. 

Thirdly, this study examines the effects of a broad range of firm-specific factors on the 

efficiency performance of mining companies. Any policy implications rely on understanding 

the contributing factors of efficiency performance. Despite the important role of firm-specific 

factors in determining efficiency performance, the existing literature covers only a few 

contributing factors. Although the existing literature has attempted to explain some driving 

factors behind changes in the efficiency and productivity of mining activities, it has been unable 

to provide a comprehensive picture describing the causes of the economic performance across 

mining companies. The firm-level studies in the literature have only discussed a handful of 

firm-specific factors such as ownership, size and age; however, a broader view is needed to aid 

business management and policy makers in improving mining industry performance. While the 

need for investigation of firm-specific factors have been acknowledged in the literature, for the 

first time, this study attempts to examine the effects of multiple factors such as portfolio 

diversification, product type, capacity utilisation, location of operations, financial risks and 

business stability on mining firm efficiency. 

Finally, this study is the first in employing a two-stage bootstrap DEA to investigate efficiency 

and its determinants among mining companies. No studies in the literature have addressed the 

issues associated with the deterministic nature of non-parametric techniques in the context of 

the efficiency analysis of mining companies. Non-parametric methods, such as DEA, ignore 

the presence of statistical noise and measurement errors. As the frontier is constructed based 

on the extreme points in the observed data, the estimation of efficiency scores is highly 

sensitive to outliers. In addressing such methodology issues, this study adopted the bootstrap 

DEA proposed by Simar and Wilson (1998, 2000a) to derive the error terms and the confidence 

intervals of the DEA efficiency estimates. Further to the improvement in the employed 
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technique of the first-stage analysis, this study adopted a technique that provides consistent 

results in the second stage. Simar and Wilson (2007, 2011) discussed that common techniques 

in the second stage analysis, such as OLS and Tobit regression, are unable to provide reliable 

and consistent parameter estimates when DEA efficiency estimates are the dependent variables. 

For the first time in the context of mining efficiency analysis, this study uses a bootstrap 

truncated regression technique proposed by Simar and Wilson (2007) that provides consistent 

estimates of second-stage model parameters. 

 

1.5 Organisation of the Thesis 

This thesis includes eight chapters. Following this introductory chapter, the remainder of the 

thesis is organised in the chapters briefly outlined below. Chapter 2 reviews the mining sector 

in Australia and discusses its main contributions to the Australian economy through value 

added, investment, export and employment. Furthermore, this chapter outlines the 

opportunities and challenges facing the mining sector in Australia and discusses the 

productivity concerns during and after the recent mining boom. The role of factors potentially 

contributing to the undesirable productivity trends are also explored in this chapter. 

Chapter 3 reviews and critically discusses the existing literature on efficiency and productivity 

analysis in the mining industry. Unlike many other sectors, the efficiency measurement in the 

mining industry is limited to some narrow research streams, most of which are reviewed in this 

chapter. This review starts by exploring the existing studies that examine the efficiency and 

productivity of the mining industry at mine, firm and sector levels. Due to the differences in 

the research aims, variables of interest, methodologies and policy implications, this chapter 

discusses the mine-level, firm-level and sector-level studies in three separate sections. This 

review follows by outlining the available body of knowledge in the context of the Australian 

mining industry. The last part of the literature review presents the existing studies that examine 

efficiency and productivity determinants. 

Chapter 4 looks at the relevant methodologies and presents the frontier techniques in efficiency 

measurement. The efficiency modelling is presented in the form of mathematical formulations 

and graphical illustrations. Also, the related concepts are explained in detail to help audiences 

with less expertise in mathematical modelling to understand the presented methods. Two 

prominent frontier approaches in the efficiency measurement, namely econometric and 
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mathematical programming, are discussed in this chapter. Focusing on the mathematical 

programming approach and the DEA method, this chapter explores the recent developments in 

the statistical foundations of efficiency estimates from the deterministic techniques and 

introduces the procedures used in this study to derive the bias-corrected efficiency scores. As 

the intention of this study is also to examine the efficiency determinants, this chapter discusses 

the common methods in the second-stage analysis in the investigation of contributing factors 

to efficiency performance. While the issues of the second-stage regression techniques are 

discussed, this chapter introduces a procedure used in this study that eliminates the 

shortcomings of the existing techniques to instead provide the reliable and consistent results in 

two-stage DEA. 

Chapter 5 introduces the scope of the study, the research variables and the empirical models. 

First, this chapter presents the source of data and 34 ASX listed companies in the sample, 

studied over the period 2009-10 to 2013-14. It proceeds to introduce the variable used for the 

efficiency model variables. There are two efficiency models developed in this study; Model I 

is based on the common approach in input/output selection and Model II is a modified 

efficiency model for consideration of natural resource inputs which are specific to mining 

activities. Further to the variables in the efficiency models, this chapter review the variables 

used in the second-stage analysis. Following this section, the chapter presents the empirical 

mathematical model of stage one and the empirical econometric model of stage two. 

Chapter 6 presents the empirical results from the models developed in Chapter 5. The first stage 

involves the estimation of efficiency scores based on both efficiency models, i.e. the common 

model of technical efficiency (Model I) and the natural resource-based model of technical 

efficiency (Model II). For each model, the efficiency estimates are derived from the original 

DEA and the bootstrap DEA techniques. The presented results include efficiency scores under 

both CRS and VRS assumptions. The second stage involves the estimation of parameters in 

the second-stage regression model. Applying the procedure explained in Chapter 5, the second-

stage results for both efficiency models are presented and explained in this chapter.  

Chapter 7 reviews the results achieved in this study and discusses the findings of factors 

contributing to the efficiency performance of mining companies. Each explanatory variable is 

discussed in detail and the implications of their effects in the mining industry are evaluated. In 

relation to the significant contributing factors, this chapter provides a set of policy 



16 
 

recommendations to aid the mining businesses and the government in addressing the efficiency 

and productivity challenges facing the mining industry.  

Finally, Chapter 8 summarises the findings and outlines the concluding remarks on the 

efficiency of mining companies. The summary of findings from stage one and stage two is 

followed by a summary of the relevant recommended policy options. Furthermore, the 

contribution of this study to the existing literature is presented in this chapter. The chapter ends 

by addressing the limitations surrounding this study and proposes an agenda for the future 

studies. 
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2 Overview of the Australian Mining Industry 

 

2.1 Introduction 

Over the past two centuries, the mining sector has played a critical role in the Australian 

economy. Since the early 2000s, the sector has experienced a significant expansion in 

exploration and extraction activities in response to the increasing global demand for mineral 

and energy commodities, particularly from emerging economies such as China and India. With 

such a significant contribution to the national income, the Australian mining sector has 

dominated the nation’s export earnings and investment. The regional and indigenous 

communities have also benefited from the investment, employment and economic growth 

brought by the Australian mining sector. Furthermore, the sector has contributed to the growth 

in downstream and service industries and the Australian Government has earned substantial 

revenue from growing activities in this sector. 

The prominence of the mining sector in the Australian economy has been supported by the 

sector’s competitive advantages in global resource markets. In addition to the resource 

endowment, the attractive investment environment and the developed technology and skills in 

Australia have pioneered this sector among global competitors (Penny et al., 2012). However, 

the sector is facing some critical challenges that may influence its future success. The 

productivity of the Australian mining sector is among those challenges that need vital attention 

from both industry and government. During the recent investment boom in mining activities, 

the productivity performance declined substantially and, even after its transition to the 

production phase, the sector still faces some critical productivity challenges. In addition to 

short-term operational solutions, overcoming these challenges requires a strategic orientation 

toward long-term success in the global market. 

The purpose of this chapter is to provide background knowledge on the mining sector in 

Australia and its economic performance. Therefore, through the following five sections, this 

chapter is organised to present the role of mining sector in the Australian economy and its main 

characteristics of the sector with a specific focus on the productivity performance. Section 2.2 

introduces the mineral and mining activities in the Australian context. Section 2.3 discusses 
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the role of mining activities in the Australian economy. This review includes the contribution 

of the mining sector to the national output, investment, employment and exports in Australia. 

Section 2.4 reviews the sector’s strengths that have enabled its boom over the past two decades, 

as well as the opportunities and challenges facing the sector which will influence its future 

success. Section 2.5 elaborates on the productivity performance of the mining sector and the 

challenge resulting from a poor multifactor productivity (MFP) growth during the recent 

mining boom. Based on conventional reports, this section explains some major factors that 

have driven the productivity growth in the Australian mining sector over the past two decades. 

Finally, Section 2.6 summarises the concluding remarks from the review of the mining sector 

in Australia. 

 

2.2 Mining Activities in Australia 

According to The Australian and New Zealand Standard Industrial Classification (ANZSIC) 

2006, the mining division consists of five sub-divisions including coal mining, oil and gas 

extraction, metal ore mining, non-metallic mineral mining and quarrying, and exploration and 

other mining support services (ABS, 2006). Table 2.1 presents the mining division 

classification in ANZSIC 2006. This classification groups mining units based on the natural 

resource mined. 

The mining sector covers a diverse range of distinct exploration and extraction activities with 

a variety of operational techniques in different geographical locations and attributes. A broad 

range of mineral commodities are produced and exported in Australia. Both open-cut and 

underground mining methods are utilised in the Australian mining operations. These mining 

operations are distributed unevenly across Australia. Western Australia has the main 

contribution to the total mining production in Australia. Almost 60 per cent of total sales and 

service income from the mining industry in 2014-15 was generated from this state. This was 

followed by Queensland and New South Wales by contributions of 19 per cent and 13 per cent 

respectively (Figure 2.1). 
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Table 2.1: ANZSIC Mining division classification 
Sub-division Group Class 

06    Coal Mining 060   Coal Mining 0600    Coal Mining 

07    Oil and Gas Extraction 070   Oil and Gas Extraction 0700    Oil and Gas Extraction 

08    Metal Ore Mining 080   Metal Ore Mining 0801    Iron Ore Mining 

          0802    Bauxite Mining 

                   0803    Copper Ore Mining 

                   0804    Gold Ore Mining 

                   0805    Mineral Sand Mining 

                   0806    Nickel Ore Mining 

                   0807    Silver-Lead-Zinc Ore Mining 

                   0809    Other Metal Ore Mining 

09    Non-Metallic Mineral 

Mining and Quarrying 

         

 

 

 

091   Construction Material 

Mining 

0911    Gravel and Sand Quarrying 

 0919    Other Construction Material 

Mining 

099   Other Non-Metallic 

Mineral Mining and Quarrying 

0990    Other Non-Metallic Mineral 

Mining and Quarrying 

10    Exploration and Other 

Mining Support Services 

  

101   Exploration 1011    Petroleum Exploration 

 1012    Mineral Exploration 

109   Other Mining Support 

Services 

1090    Other Mining Support Services 

Source: ABS (Australian and New Zealand Standard Industrial Classification, 2006, Cat. no. 1292.0) 

 

Figure 2.1: State shares of total mining income, 2014-15 

 
Source: ABS (Mining Operations, Australia, 2014-15, Cat. no. 8415.0 Table 6) 
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The major activities undertaken in the mining industry include exploration, mine development, 

extraction, processing, transformation and restoration of land. This range of activities may be 

undertaken by mining companies or contracted out to specialised contractors (Topp et al., 

2008). Table 2.2 presents the details of activities involved in mining operations. 

Table 2.2: Mining activities 
Activity Examples 
Exploration Prospecting; Determine characteristics of deposit; Feasibility analysis 

Mine development Acquire mining rights; Construct access roads and infrastructure; Construct mine to 
access deposit; Install plant and equipment 

Extraction Remove deposit from the ground 

Processing Crushing; Milling; Concentration 

Transport Move extracted material or milled product to transport head 

Reclamation  Remove buildings, plant and equipment; Treat waste and tailings; Environmental 
rehabilitation 

Source: Topp et al. (2008) 

 

Table 2.3: Share of Australia in world minerals production in 2009 
Commodities Australian percentage share of world 

Crude oil 0.7 

Natural gas 1.6 

Hard coal 5.7 

Iron ore 24.8 

Copper 6 

Zinc 11.2 

Nickel 12.3 

Zircon 41 

Rutile 48.5 

Bauxite 31.3 

Uranium 15.7 

Gold 9.4 

Source: ABS (Year Book Australia, 2012, Catalogue Number 1301.0) 

The aim of exploration is to find commercially viable quantities of minerals to mine. This 

process determines the area to be explored, conducts sampling and geological analysis, and 

completes comprehensive technical and socio-economic analysis. As a result, a physical 

location can be transformed into a mineral resource (a significant but imprecisely measured 
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deposit) and subsequently, an ore reserve (a precisely measured deposit that is profitable to 

mine at current and expected future prices). Once the viability of mineral deposits is proved 

and the extraction decision is made, the production stages will commence which constitutes 

the remainder of activities in Table 2.2 (Topp et al., 2008). 

At the global scale, Australia is a major producer of several mineral products. Table 2.3 shows 

the contribution of Australian mining to the total world production in selected products. The 

significant share of total world mining production in commodities such as iron ore and bauxite 

has turned Australia into one of the major players in the global natural resource market. 

 

2.3 The Role of Mining Industry in the Australian Economy 

Since the early 2000s, the global mining industry has experienced a rapid growth due to a 

significant increase in global demand for most mining commodities. This rapid growth was 

followed by a moderate expansion of mining activities in response to the modest global 

consumption growth of resource commodities and declining commodity prices in recent years 

(Department of Industry, Innovation and Science, 2017). The growth in industrial production 

and urbanisation in developing countries, particularly China and India, resulted in growth in 

demand for mining products and an extraordinary increase in mining commodity prices. The 

global exporters of mining commodities, including Australia, enjoyed the benefits from this 

increased demand; however, the recent slowdown in demand growth has concerned the mining 

industry and policy makers across the world. Hence, improving the productivity performance 

of mining activities is a critical solution to the adverse effects of the price decline. The long-

term projection of global economic growth shows a need for further demand in mining 

commodities as the urbanisation and population growth continuous around the world, 

particularly in India and African countries. As the Australian mining industry is heavily 

integrated with the global market, such expansions seem to be in favour of mining companies 

in Australia which have made a significant investment in new exploration and extraction 

projects over the past decade. 
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2.3.1 Mining Sector Output and Investment 

Historical data from the Australian Bureau of Statistics (ABS) shows the mining sector 

contributes around 5 per cent to the Australian gross domestic product (GDP). The trend of the 

mining sector’s contribution to the Australian GDP over the past two decades is presented in 

Figure 2.2. Along with increasing global demand for mineral commodities in the 2000s, the 

mining sector’s GDP share grew and reached above 9 per cent in 2008-09. From 2011-12 

onward, the drop in mineral commodity prices resulted in a decrease in GDP share of mining 

sector, but it has maintained its position above the historical average. The mining commodity 

price increase in 2016-17 caused the share of mining sector in the Australian GDP reached 

above 7 per cent after its drop to below 6 per cent in 2015-16. 

Due to the increased global demand and prices for mining commodities, the increase in mining 

share in the Australian GDP was accompanied by a significant increase in new investment in 

the mining sector (Figure 2.3). At current prices, the gross fixed capital formation increased 

from 9 per cent of total gross capital formation in Australia in 2004-05 to 32 per cent in 2012-

13. In response to a slower economic growth in target countries, particularly China, and 

reduced mining product prices, this trend has been reversed since 2012-13. The share of mining 

sector investments in the Australia’s gross capital formation declined to 14 per cent in 2016-

17. Its share in the net capital stock of Australia has been maintained at 15 per cent from 2014-

15 to 2016-17. 

Figure 2.2: Mining sector contribution to the Australian GDP, 1998-2017, current prices 

 
Source: ABS (Australian System of National Accounts 2016-17, Cat. no. 5204.0 Table 5) 
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Figure 2.3: Share of mining sector investment in Australia, 1998-2017, current prices 

 
Source: ABS (Australian System of National Accounts 2016-17, Cat. no. 5204.0 Tables 63 & 64) 

 

2.3.2 Volume of Mining Sector Output 

The gross value added of mining activities in Australia in current prices has grown fast along 

with significant fluctuations since the recent boom. The value of mining sector output has 

increased fivefold over 20 years, from 1997-98 to 2016-17, averagely more than 20 per cent 

per year. However, in real terms, the total output of the mining sector shows a less steep growth. 

The chain volume measures of gross value added of the mining sector has increased smoothly 

by 7 per cent in two decades. Figure 2.4 compares the nominal and real output of the Australian 

mining sector between 1998 and 2017. 

Figure 2.4: Australian mining sector gross value added (GVA) ($m), 1998-2017  

 
Source: ABS (Australian System of National Accounts 2016-17, Cat. no. 5204.0 Table 5) 
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2.3.3 Employment in Mining Sector 

Since its early 2000s’ boom, the mining sector has experienced a significant increase in new 

exploration and extraction projects across Australia. Along with this expansion, the labour 

employed in this sector increased 220 per cent between 2002 and 2013. The sector reached its 

highest employment in 2013 with almost 270,000 personnel. Employment in the sector 

declined in 2014 and 2015 (Figure 2.5). 

Based on the ABS Labour Force Survey data, the Department of Jobs and Small Business of 

Australia has projected the employment trends in the mining sector will grow by 2.4 per cent 

over the next five years (up to May 2022). Based on this estimation, the sector’s employment 

is expected to reach 237,000 workers. The gradual growth of employment in the mining sector 

is chiefly due to the transition from the investment phase to the production phase. Employment 

growth is furthermore attributed to new exploration projects, particularly gold, and increased 

metal ore mine production (Department of Jobs and Small Business, 2017a).  

In terms of distribution of employment among mining sub-divisions, metal ore and coal mining 

activities have the major share of employment in mining operations. The contribution of 

exploration and mining services are also significant in total mining sector employment. 

Figure 2.5: Employment in mining industry, 2002-2017 (in thousands) 

 
Source: Labour Market Information Portal at < http://lmip.gov.au>, viewed 10 December 2017 
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substantially since the boom; however, its share in the Australian workforce remains low. From 

a low level of 0.9 per cent share in the Australian labour force in 2002, the mining sector 

reached a peak of 2.4 per cent contribution in total employment in Australia in 2012. Since 

then, this share has been declining gradually. In 2017, only 1.8 per cent of total employment in 

Australia was allocated to the mining sector (Figure 2.6).  

Figure 2.6: The Employment share of mining industry in Australia, 2002-2017 

 
Source: Department of Jobs and Small Business, Labour Market Information Portal at < http://lmip.gov.au>, 

viewed 10 December 2017 

 

2.3.4 Export Performance of Mining Sector 

Similar to the production, investment and employment performance of the mining sector in the 

recent boom, the exporting of mining commodities significantly increased in the 2000s. That 

is to say, mining is export-oriented. Three of its main industries – metal ore mining, coal 

mining, and oil and gas extraction – contributed to over 50 per cent of the total exports in 

Australia over the past decade (Figure 2.7). In fact, the majority of mining commodities 

extracted and mined in Australia are exported to foreign destinations, particularly China. In 

2016, 73 per cent of minerals exported from Australia had China as their destination (The 

World Bank, 2017). 
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Figure 2.7: Mining sector contribution to total export in Australian, 2006-2017  

 
Source: ABS (International Trade in Goods and Services, Australia, Cat. no. 5368.0 Table 32a) 

 

2.3.5 Distribution of Mining Sector Output across Sub-divisions 

Among mining sector sub-divisions, coal mining and oil and gas extraction had the main 

contribution to the mining sector output. ABS data shows around 50 per cent of industry value 

added by the mining sector had been generated from these two industries over the past 20 years 

(ABS, 2017a). Since 2008-09, the output of iron ore mining has grown constantly. Although 

coal mining and oil and gas extraction have been remained as major activities in the Australian 

mining sector, iron ore mining has been positioned as the largest mining activity in Australia. 

In 2014-15, iron ore mining comprised 38 per cent of total value added by the mining sector, 

well above other mining activities in Australia. These three industries account for 78 per cent 

of the value of mining sector output. Since the more recent move from extensive investment to 

the production phase, the share of exploration and service to mining activities in total value 

added of this sector has declined. In 2014-15, only 6 per cent of mining sector value added was 

assigned to the exploration and other mining support services. Table 2.4 lists the distribution 

of value added by the mining sector. 
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Table 2.4: Mining sector value added by sub-division and class in 2014-15 
Sub-division/class Industry value added 

 Value (in millions dollar) Per cent 

06 Coal mining 15,925 13% 

07 Oil and gas extraction 31,891 27% 

08 Metal ore mining   

     0801 Iron ore mining 45,458 38% 

     0803 Copper ore mining 2,000 2% 

     0804 Gold ore mining 7,448 6% 

     0805 Mineral sand mining 1,088 1% 

     0807 Silver-lead-zinc ore mining 2,140 2% 

     0802, 0806 and 0809 Bauxite, nickel and other metal ore mining 2,928 2% 

09 Non-metallic mineral mining and quarrying 2,352 2% 

10 Exploration and other mining support services 7,050 6% 

Total Mining 118,281 100% 

Source: ABS (Mining Operations, Australia, 2014-15, Cat. no. 8415.0 Table 3) 

 

2.4 Strengths and Challenges in the Australian Mining Industry 

The Australian mining sector is globally competitive, with an outstanding position in the global 

resource market. Major consumers of mineral commodities across the globe rely on the mining 

activities in Australia, just as the Australian economy has come to rely on this sector for its 

long-term prosperity. The knowledge of current strengths and future opportunities and 

challenges can help in developing government and industry policy and programs toward the 

mining sector’s long-term success in Australia. 

 

2.4.1 Strengths of Mining Industry in Australia 

The Australian resource sector has been developed with the aid of some critical enablers, 

facilitating its global competitiveness. Australia stands among the top countries in the world in 

both economic demonstrated resources (EDR) and mine production of several minerals such 

as iron ore, bauxite, black coal, brown coal, copper and gold (Table 2.5). The exploration of 

mineral resources is greatly supported by the Australian Government through providing public 

access to geoscience information (Geoscience Australia, 2017). 
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Table 2.5: Australia’s global position in economic demonstrated resources (EDR) and 
production of major minerals in 2015 

Mineral 

Commodities 

Australia in world EDR Australia in world mine 

production 

EDR to 

production ratio 

Rank (No.) Share (%) Rank (No.) Share (%) Life (years) 

Bauxite  2 22 1 29 75 

Black Coal  5 10 4 8 110 

Brown Coal  2 24 3 8 1095 

Copper  2 12 6 5 90 

Gold  1 17 2 9 351 

Ilmenite  2 19 2 9 165 

Iron Ore  1 28 2 25 65 

Lead  1 40 2 14 70 

Manganese 2 17 3 16 30 

Nickel  1 24 4 9 80 

Rutile  1 52 1 47 85 

Silver  2 15 6 5 75 

Uranium  1 29 3 9 210 

Zinc  1 31 2 12 40 

Zircon  1 67 1 31 80 

Source: Geoscience Australia (2016) 

The substantial resource endowment is coupled with encouraging investment environment in 

Australia. Australia is ranked as a low sovereign-risk country due to its stable social, political 

and cultural structure with strong regulatory and legal systems and a high degree of openness 

in trades and investment (Penny et al, 2012). This positive perception of sovereign risk attracts 

investors to engage in investment projects across Australia. The Fraser Institute ranked 

Australia as the second most attractive region in the world for investment in 2017. Among 

Australia’s states, Western Australia followed by Queensland, South Australia and Northern 

Territory have attained high scores in both investment attractiveness and policy perception 

indices over the past decade (Stedman and Green, 2018). The Australian mining companies are 

able to attract their required capital through listings and share placements on the Australian 

Securities Exchange (ASX). The material, including mining companies, is the largest sector on 

the ASX in terms of number of companies. Domestic and international borrowings and foreign 

direct investment (FDI) are other main methods to access the intensive capital required for 

mining development and extraction projects. As Table 2.6 illustrates, mining investment 

comprises the majority of foreign direct investment in Australia. In line with the capital 
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formation trends, mining FDI reached its peak in 2013 with around $51 billion in investment 

contributing to 88 per cent of total FDI in Australia. 

Table 2.6: Mining foreign direct investment (FDI) in Australia, 2011 – 2016 
 2012 2013 2014 2015 2016 

Value of mining FDI ($million) 39,353 51,205 35,389 11,550 29,747 

Share of total foreign direct investment (%) 68% 88% 79% 45% 46% 

Source: ABS (International Investment Position, Australia: Supplementary Statistics, 2016, Cat. no. 5352.0 

Table 14a). 

The Australian mining sector benefits from a highly experienced and skilled workforce. More 

than 70 per cent of its workforce have attained a post-secondary qualification which is above 

the average ratio for the post-secondary qualifications of workforce in Australia (Table 2.7). A 

number of government and industry initiatives have been introduced to improve the workforce 

skills in the short term and long term (Penny at al., 2012). Furthermore, Australia’s university 

and research sector is world-leading in mineral geoscience, contributing to the development of 

new knowledge as well as training highly skilled workforce for mining sector (Geoscience 

Australia, 2017). 

Table 2.7: Mining workforce education in comparison with other industries in 2017 
Industries Higher education degree Post-secondary qualifications 

Agriculture, forestry and fishing 19% 44% 

Mining 31% 71% 

Manufacturing 28% 59% 

Construction 18% 64% 

All industries 43% 65% 

Source: ABS (Education and Work, Australia, May 2017, Cat. no. 6227.0 Table 14) 

 Technology advancement is another strength of the Australian mining industry. In addition to 

the utilisation of advanced technology in the exploration and extraction of mineral products, 

the mining equipment, technology and services (METS) sector is world-leading in providing 

specialised products and solutions across the mining value chain, including mineral 

exploration, development, extraction, processing, transport and remediation (Geoscience 

Australia, 2015). As it is characterised by being internationally competitive and innovative, the 

Australian METS sector is set as a benchmark for some global competitors. Almost two thirds 

of companies in the METS sector are export-oriented. These companies export approximately 

$15 billion annually. The Australian METS accounts for 76 per cent of patents filed in the 

mining sector. Furthermore, Australia is in third place, after Japan and Germany, as the top 
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inventor location for Patent Cooperation Treaty (PCT) applications in mining inventions 

(CSIRO, 2017). Since the recent mining boom, the total output of exploration and mining 

support services increased significantly. However, following the transition from the mining 

development phase to the production phase in 2013, both total services volume and its 

contribution to mining sector production have declined considerably. 

Figure 2.8: Exploration and mining support services in Australia: chain volume measures 
($m), 1998-2017  

 
Source: ABS (Australian System of National Accounts 2016-17, Cat. no. 5204.0 Table 5) 

Further to the resource endowment, the favourable investment environment, workforce 

capabilities and technology advancement, the environmental accountability and social 

responsibility are well respected in mining activities and legislative framework in Australia. 

Both the Commonwealth and states have introduced comprehensive legislation in regard to 

national and local environmental significance. The environmental impact assessment is a vital 

part of any commencing projects including mining exploration and extraction activities (Penny 

at al., 2012). 

 

2.4.2 Opportunities and Challenges facing the Australian Mining Industry 

Relying on its strengths, the Australian mining sector has been highly competitive globally in 

the past. However, increasing global competition in the resource sector of mining has no 
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change in market portfolio of mineral and energy commodities is a main driving factor shaping 

the future of the resource sector in Australia. In addition to the advanced economies, the 

emerging economies will have an increasing importance to the global commodity markets 

(Penny et al., 2012). China’s industrial production has grown rapidly over the past few decades 

and its growth is expected to continue; albeit, at a slower rate. It has already resulted in the 

expansion of resource-intensive industries such as energy generation and metal production. 

The Australian economy, in general, and the mining sector, in particular, is highly sensitive to 

China’s economic growth. Other emerging nations in Asia, such as India, Indonesia and the 

Philippines, have significant potential to grow. The growth potential of Asian countries as well 

as other emerging economies across the globe offers an unprecedented opportunity to the 

Australian mining sector to maintain its leading position in the global resource market. 

The increasing demand and high commodity prices in the 2000s encouraged the global 

suppliers of mining products to increase substantially their investment in exploration and 

development projects. Yet, despite the peak in commodity prices in 2012, the general trends in 

mining investment have been declining across the globe. As the future growth in production 

depends on the exploration of new mineral resources, the exploration expenditure is a sound 

indicator of mineral supply potential in the future. In 2016, the Latin America region (including 

Chile, Peru, Mexico, Brazil, Argentina and Colombia) attracted 28 per cent of global 

nonferrous exploration budgets. Canada followed by Australia as the most popular national 

targets accounted for 14 per cent and 13 per cent of the global budget respectively. In addition, 

the Africa region could attract 13 percent of the global total (S&P Global, 2017). Although 

these records show the importance of the Australian mining sector in the global market, 

significant investment in exploration of mineral resources in other regions can substantially 

influence its future global position. Over the 2007- 2016 period, no quality Tier 1 discoveries 

were made in Australia out of a total of 12 Tier 1 discoveries found around the globe. Such 

exploration outcomes urge the mining exploration firms to move from the well-established 

regions to remote unexplored or less explored regions in Australia. However, the current trends 

in exploration activities do not support this urgency (Geoscience Australia, 2017).  

Further to the exploration expenditures by suppliers, the large consumers of mining products 

have diversified their supply strategy to secure their long-term supply. They have introduced 

this diversification strategy through expansions in supply from domestic deposits as well as 

new mining regions. For instance, Chinese companies have increased their involvement in the 
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global mineral exploration expenditure while around one third of their budgets were allocated 

to projects outside China. What’s more, China, India and Brazil have increased their direct and 

indirect foreign investment in the resource sector of a diverse host of countries (Penny et al., 

2012). 

In addition to fulfilling the formal regulatory conditions and obtaining a licence to mine, the 

mining companies need to address community concerns and obtain a social licence to operate. 

The industry faces increasing social claims from the community and governments. The 

challenge of mining sector’s social licence to operate encompasses various aspects including 

environmental considerations, health and safety requirements, employment, stakeholder 

engagement and community benefits. Such intangible licence must be obtained and maintained 

for the entire mining project life, from the initial exploration phase to mine development, 

operations, closure and post-closure phases. Increasing community concerns and the 

requirements for a social licence to operate has resulted in increased costs due to longer lead 

time to attain exploration and mining approvals and complying with more strict regulations 

(Penny et al., 2012; Geoscience Australia, 2017). 

The rising costs are the other challenge facing the Australian mining industry. The associated 

costs of mining exploration and operations are relatively high in comparison with many other 

global competitors and emerging mining regions (Penny et al., 2012). Moreover, some global 

investors believe that most low-cost mining regions in Australia have been discovered many 

years ago. Due to resource depletion in existing mine sites, further developments require 

moving from low-cost but exhausted regions to less explored regions where the associated 

costs of mineral exploration and mining are substantially higher. This perception influences 

adversely attraction of new exploration investments in an increasing competitive market 

(Geoscience Australia, 2017). 

Finally, the productivity challenge is a significant concern in the Australian mining sector. 

Similar to some other major players in the global resource market, such as Canada and the US, 

the multifactor productivity of Australia’s mining sector experienced decline in the decade 

2000-2010. This significant decline in productivity performance has been explained as a result 

of the special characteristics of the mining sector, namely the resource depletion and 

investment-production lags (e.g. see Topp et al., 2008; Zheng and Bloch, 2014; Syed et al., 

2015). Since 2013-14, along with a decline in new capital investments and the transition of the 

industry from the investment-intensive phase to the production phase, the Australian mining 



33 
 

MFP has started to grow (ABS, 2018a). However, the resource depletion will increasingly 

continue to influence future productivity performance. Moreover, regardless of its investment 

state, the mining sector faces some fundamental challenges at the operational level. Compared 

to other countries, Australian mining equipment contributes to lower annual output while the 

adopted operational strategies by the Australian mining companies have not been changed in 

response to changing economic circumstances (Lumley and McKee, 2014). 

 

2.5 Productivity Performance of the Australian Mining Industry 

The Australian mining sector continues to contribute significantly to the nation’s economy. 

Contributing up to 7 per cent of the GDP, 15 per cent of capital stock and over 50 per cent of 

exports, the mining sector is considered a valuable and influential sector in Australia (ABS, 

2017a, 2017c, 2017d). 

The recent mining boom had a profoundly positive influence on Australian prosperity. Some 

examples of its positive effects are higher government tax and levy earnings, increased 

company revenue, increased and sustained real income growth (especially during the great 

recession of 2008-09 and the years after) increased investment in mining and infrastructure 

projects, increased employment and wages in the resource sector, as well as stronger exchange 

rate in favour of Australian consumers of imported goods (Penny et al., 2012). Having said 

that, the significant growth in mining activities in Australia caused some challenges in the 

Australian economy including declined productivity performance. 

 

2.5.1 Australia’s Productivity and Mining Sector 

The adverse effect on the national productivity performance was one of challenges resulting 

from the rapid expansion of mining sector activities in Australia. Eslake (2011) discussed this 

issue and showed that the market sector’s multifactor productivity (MFP) declined at an annual 

average rate of -0.7 per cent over 2000-09, while the trend was positive at an annual average 

rate of 1 per cent a decade before, from 1990 to 2000. This negative MFP growth trend was 

primarily due to the decline in two specific sectors, namely the mining sector and electricity, 

gas, water and waste services. The sharp drop in MFP of the mining and utilities sectors was 
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blamed as the main contributor to Australia’s MFP decline over 2000s. Figure 2.9 shows trends 

of MFP based on the hours worked, the capital productivity and the labour productivity since 

1995-96. Over this period, labour productivity growth has been almost positive. However, the 

market sector’s MFP performance experienced both positive and negative growth rates. From 

2004-05 to 2010-11, the Australian mining sector recorded a poor MFP growth performance. 

In 2011-12, the market sector MFP growth turned to positive rate, and it was maintained in 

subsequent years (Figure 2.9). 

Figure 2.9: Market sector labour, capital and multifactor productivity growth, 1996-2017 

 
Source: ABS (Estimates of Industry Multifactor Productivity, Australia, Cat. no. 5260.0.55.002) 

Table 2.8 presents the average of MFP growth in the past three decades. The mining sector 

MFP grew by 1.8 per cent annually during the 1990s. However, unlike most industries, its MFP 

growth was negative by an annual rate of -2.7 per cent in the period of 2000-01 to 2009-10. 

Over this period, the productivity of Australia’s mining sector declined by almost 30 per cent. 

Although the average annual MFP changes maintained negative from 2010-11 to 2016-17, the 

mining sector productivity performance has improved over this period. 

The high productivity growth in the 1990s was mainly attributed to the economic reforms 

introduced in 1980s and early 1990s. These reforms included facilitating international trade 

with the abolition of input quotas and reduction of tariffs, floating of the exchange rate to 

abolish most restrictions on the international movement of capital, liberalisation of product 

markets and competition policy, corporatisation and privatisation of government business 

enterprises, labour market reform and increases in working hours, tax and welfare reforms, and 

monetary and fiscal policy changes to promote macroeconomic stability (Syed et al., 2013). By 
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contrast, the slowdown of productivity growth of Australian businesses was partially attributed 

to the fading impact of 1980s and 1990s reforms. The absence of significant economic reforms 

can explain the gradual productivity growth in the 2000s (Eslake, 2011). 

Table 2.8: MFP growth in Australia, selected sectors, average annual growth, 1990-91 to 2016-
17 

Commodities 
1990-91 to 

1999-00 

2000-01 to 

2009-10 

2010-11 to 

2016-17 

1990-91 to 

2016-17 

A Agriculture, Forestry and Fishing 4.3% 3.0% 2.9% 3.5% 

B Mining 1.8% -2.7% -1.4% -0.7% 

C Manufacturing 0.8% 0.5% -0.4% 0.4% 

D Electricity, Gas, Water and Waste Services 2.8% -3.3% -1.1% -0.5% 

E Construction 0.7% 0.6% 0.0% 0.5% 

F Wholesale Trade 2.9% 1.6% 3.6% 2.6% 

G Retail Trade 1.8% 1.7% 1.5% 1.7% 

H Accommodation and Food Services 0.6% 0.3% 0.8% 0.5% 

I Transport, Postal and Warehousing 2.2% 0.9% 0.2% 1.2% 

J Information, Media and Telecommunications 2.3% 0.9% 1.9% 1.7% 

K Financial and Insurance Services 3.2% 1.0% 2.2% 2.2% 

R Arts and Recreation Services -0.8% 0.1% 0.2% -0.2% 

12 Selected industries 1.8% 0.5% 0.6% 1.0% 

Source: Author’s estimation based on ABS (Estimates of Industry Multifactor Productivity 2017, Cat. no. 

5260.0.55.002 Table 1) 

In the case of the mining sector, the decline in productivity performance in the 2000s was 

mainly attributed to the increased demand and prices of mining commodities. In response to 

the increasing market demand, mining companies across Australia were encouraged to increase 

their production outputs. This increase required a substantial increase in labour and capital 

inputs. Over this period, the increase in labour and capital inputs exceeded the increase in 

output resulting in a decline in productivity performance. 

 

2.5.2 Productivity of the Australian Mining Sector 

As discussed earlier in this chapter, the productivity performance of the Australian mining 

sector declined during the recent mining boom, as driven by increased global demand for 

mining commodities. Figure 2.10 shows different measures of productivity including capital 

productivity, labour productivity and multifactor productivity.  
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Figure 2.10: Indexes of labour, capital and multiple factor productivity in the Australian 
mining sector, 1990–91 to 2016-17  

 
Source: ABS (Estimates of Industry Multifactor Productivity 2017, Cat. no. 5260.0.55.002 Tables 1, 6 & 7) 

Note: Reference year for indexes is 2015-16 = 100.0. 

 

Table 2.9: Productivity growth in the Australian mining sector, 1990-91 to 2016-17 
Productivity measures 

1990-91 to 

2000-01 

2000-01 to 

2012-13 

2012-13 to 

2016-17 

1990-91 to 

2016-17 

Labour productivity 64.1% -51.4% 58.0% 26.1% 

Capital productivity 4.2% -42.2% 0.0% -39.8% 

Multifactor productivity 19.1% -44.1% 12.8% -24.8% 

Source: Author’s estimation based on ABS (Estimates of Industry Multifactor Productivity 2017, Cat. no. 

5260.0.55.002 Tables 1, 6 & 7) 

The mining sector productivity trends can be segmented into three periods. From 1990-91 to 

2000-01, the measures of productivity indicate a general growth. Labour productivity grew 

notably by almost 64 per cent while capital productivity experienced low changes by 4 per cent 

between 1990-91 and 2000-01. Hence, a modest MFP growth of 19 per cent was recorded over 

this period in the Australian mining sector. In contrast to the 1990-91 to 2000-01 period, from 

2001-02 to 2012-13 all three measures show downward trends. Labour productivity and capital 

productivity declined by 51 per cent and 42 per cent respectively. As a result, the multifactor 

productivity slumped by 44 per cent from 2000-01 to 2012-13. Since 2012-13, signs of 

improvement in productivity performance of the Australian mining sector are evident. Labour 

productivity sharply boosted by 58 per cent over only four years. Capital productivity remained 

unchanged during this period. Therefore, a limited growth of 13 per cent was achieved in 

multifactor productivity of the Australian mining sector from 2012-13 to 2016-17. Overall, the 

labour productivity has grown by 26 per cent since 1990-01; however, the substantial drop in 
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capital productivity by 40 per cent resulted in the declining MFP level of the Australian mining 

sector by 25 per cent over the past 26 years. Table 2.9 summarises the growth trends in these 

three distinct periods of productivity growth.  

 

2.5.3 Input and Output Growth in Mining Sector 

The decomposition of MFP to labour and capital productivity measures shows the influence of 

input-output growth in productivity performance. Figure 2.11 presents the trends of labour 

(hours worked) and capital service levels relative to the volume chain measure of value added 

index. From 1990-91 to 2000-01, the labour input demonstrated a steady trend, while the capital 

services gradually increased. The total output of the mining sector, however, showed steeper 

rise relative to the input changes. Subsequently, the multifactor productivity improved over 

this period. 

Figure 2.11: Indexes of labour, capital and gross value added in the Australian mining 
sector, 1990–91 to 2016-17 

 
Source: ABS (Estimates of Industry Multifactor Productivity 2017, Cat. no. 5260.0.55.002 Tables 8 to 10);  

Note: Reference year for indexes is 2015-16 = 100.0. 

From 2001-02 to 2012-13, the volume of mining sector output increased by 5 per cent per year, 

similar to output growth trends in the previous period; however, both labour input and capital 

services rose strongly by 19 per cent and 14 per cent per year, respectively, over this period. 

Hence, the input growth exceeded the output growth, resulting in a declined productivity 

performance. From 2012-13 to 2016-17, the mining sector demonstrated stronger output 

growth, at around 7 per cent per year. Over this period, capital services grew moderately by 

almost 7 per cent annually, while labour input to mining activities dropped by 5 per cent 
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annually. Thus, the multifactor productivity slightly grew during these recent years. Table 2.10 

shows the growth rates of inputs and output of the Australian mining sector in three distinct 

periods of productivity performance. 

Table 2.10: Inputs and output growth in the Australian mining sector, 1990-91 to 2016-17 
Productivity measures 

1990-91 to 

2000-01 

2000-01 to 

2012-13 

2012-13 to 

2016-17 

1990-91 to 

2016-17 

Labour input -8.9% 224.8% -19.3% 138.8% 

Capital services 43.5% 173.2% 27.5% 399.8% 

Gross value added 49.5% 57.9% 27.5% 201.1% 

Source: Author’s estimation based on ABS (Estimates of Industry Multifactor Productivity 2017, Cat. no. 

5260.0.55.002 Tables 8, 9 & 10) 

 

2.5.4 Explanations for the Productivity Challenges in Mining Sector 

In the 1990s, similar to the overall trends across the Australian economy, the mining sector 

experienced growing productivity performance. The multifactor productivity rose by 1.9 per 

cent per year in the period 1990-91 to 2000-01. It is plausible that the economic reforms 

introduced in the 1980s and early 1990s positively influenced the productivity performance of 

the Australian mining sector, similar to the general pattern in the Australian economy. 

Figure 2.12: Contribution of capital, labour and productivity to output growth of the 
Australian mining sector, 1990-91 to 2016-17 

 
Source: ABS (Estimates of Industry Multifactor Productivity 2017, Cat. no. 5260.0.55.002 Table 25). 
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In the 2000s, in response to the increasing global demand for energy and minerals, particularly 

from China and India, the mining activities in Australia expanded rapidly. As shown in Table 

2.10, both labour and capital service inputs grew significantly while a moderate increase in 

production output was recorded for Australia’s mining sector. From 2001-02 to 2012-13, the 

input growth exceeded the output growth, resulting in negative productivity trends over this 

period. While the contribution of labour input and capital services to gross value added growth 

remained positive over these years, the multifactor productivity contributed negatively to the 

mining sector output growth in most years. Figure 2.12 and Table 2.11 illustrate the 

contribution of labour input, capital services and MFP to value added output growth from 1990-

91 to 2016-17.  

 Over the period of 1990-91 to 2000-01, the value added output grew by 4.16 per cent per year. 

The capital services and MFP contributed positively to the value added output growth of the 

mining sector, whereas hours worked shared a negative contribution as a result of declining 

labour input utilised in the Australian mining activities. 

Almost with the same annual growth rate, the value added output grew by 4.09 per cent per 

year in the period of 2001-02 to 2012-13. However, over this period, the source of production 

growth was primarily due to increases in capital services and labour input rather than 

productivity growth. On average, MFP contribution to value added growth was -4 per cent per 

year. In the 2013-14 to 2016-17 period, the contribution of productivity to value added growth 

turned to positive records. In this phase, on average, 50 per cent value added growth per year 

was due to productivity. 

 

Table 2.11: Average contribution to output growth per year in the Australian mining sector, 
1990-91 to 2016-17 

Productivity measures 
1990-91 to 

2000-01 

2001-02 to 

2012-13 

2013-14 to 

2016-17 

1990-91 to 

2016-17 

Value added output growth 4.16 4.09 6.08 4.29 

 Capital services 2.46 6.24 4.47 4.64 

 Hours worked -0.46 1.82 -1.41 0.47 

 Multifactor productivity 2.16 -3.96 3.02 -0.82 

Source: Author’s estimation based on ABS (Estimates of Industry Multifactor Productivity 2017, Cat. no. 

5260.0.55.002 Table 25) 
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(i) Investment-Production Lags 

The growth pattern in inputs, outputs and productivity of mining activities shows some major 

characteristics contributing to a productivity challenge in this sector. This pattern illustrates the 

cyclical investment behaviour in the Australian mining sector over time. Figure 2.12 clearly 

shows two cycles of capital service contribution to the value added output of the mining sector. 

The first cycle ends in 2000-01 and the second cycle ends in 2016-17. The historical trends of 

gross capital formation in the Australian mining sector in Figure 2.13 show four cycles of 

investment in the sector over the past five decades with peaks in 1970-71, 1982-83, 1997-98 

and 2012-13. Each peak is followed by a few years of declining investment. Among these four 

cycles, the magnitude of the recent surge in mining investment is not comparable with the 

previous cycles. 

Figure 2.13: Australia’s mining gross fixed capital formation: Chain volume measures 
($m), 1967-68 to 2016-17 

 
Source: ABS (Australian System of National Accounts 2017, Cat. no. 5204.0 Table 64). 

The comparison of investment and productivity trends reveals an inverse relationship between 

changes in capital investment and changes in multifactor productivity (MFP) of the mining 

sector. As Figure 2.14 presents, a rapid increase in capital formation is associated with 

significant decreases in MFP. The productivity growth rates are negative in peaking periods in 

investment, and vice-versa. This negative association of new investment and MFP is primarily 

due to the nature and characteristics of capital in the mining sector. Surging investment in 

mining activities does not lead to an immediate increase in production output. In fact, there is 

a significant lag between the time that new capital is invested and the time that production takes 
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inverse correlation between new investment and productivity. Over the longer term, new 

investments lead to improvement in technology or management practice; hence, the general 

long-term trends of new capital investment and productivity are expected to be positively 

correlated (Topp et al., 2008). 

The investment-production lag in the mining sector is the result of the capital-intensive nature 

of the mining sector. The duration of mine development projects is significantly long. Although 

in most mine development projects the production can commence a short time after 

construction starts, reaching the maximum production capacity is generally quite a long 

process. Furthermore, once a mine development project is complete, there is limited capacity 

to expand production. Apart from a variety of techniques and processes utilised in mining 

activities, the invested capital expenditures in most mining projects are sunk costs. That is, 

there are few opportunities to recover the investment capital through the sale or transfer of 

assets in the future. Also, the adopted technology is almost fixed; once implemented, the 

significant upgrade costs make technology improvement infeasible. Hence, due to the capital-

intensive nature of the sector, further expansions in production capacity are associated with 

high cost and long production lag (Topp et al., 2008). 

Figure 2.14: Gross fixed capital formation (left axes, $m) and multifactor productivity (right 
axes, index) in Australia’s mining sector, 1967-68 to 2016-17 

 
Source: ABS (Australian System of National Accounts 2017, Cat. no. 5204.0 Table 64); ABS (Estimates of 

Industry Multifactor Productivity 2017, Cat. no. 5260.0.55.002 Table 1). 

Note: Reference year for MFP index is 2015-16 = 100.0. 
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Since both expansion of existing mines and new mine development require significant capital 

expenditures and face risks of significant investment-production lag, productivity performance 

declines sharply during investment surging periods; a pattern that is evident in the Australian 

mining sector over the past few decades. 

The existing literature in empirical studies emphasises the importance of investment-

production lag in the productivity performance of mining activities. However, the suggested 

approximation of lags is different from one study to another. Topp et al. (2008) discussed the 

existing lag between capital expenditures and production from a new investment based on 

empirical studies and government published data. They concluded that, on average, the lag 

between investment in new productive capacity and its associated production is three years. 

Based on ABS data, Syed et al. (2013) illustrated that the value added output lags two years 

from both labour inputs and capital services. Zheng and Bloch (2015) examined the various 

lags for capital services and suggested that consideration of one year lag between investment 

in capital goods and their use in production is appropriate.  

 

(ii) Natural Resource Inputs 

In addition to common factors of production, the mining industry’s productivity is influenced 

by the effects of natural resource inputs. Changing the characteristics and quality of natural 

resources over time can deteriorate the productivity of mining activities. Unlike most 

industries, the raw material input to mining production processes is not renewable. Due to 

ongoing extraction, resource deposits are depleted resulting in less accessible or lower quality 

deposits over time. Maintaining the same level of output requires consumption of more labour 

inputs and capital services to reach less accessible deposits or to extract from lower grade 

deposits. Topp et al. (2008) explained the effects of natural resource depletion on the 

productivity performance of the Australian mining sector. They argued that the conventional 

productivity measurement ignores the natural resource inputs; hence, the reported productivity 

performance is biased. 

As a result of such depletion in natural resources, mining companies are required to spend 

constantly in search and exploration of mineral resources. By definition, exploration and 

evaluation of mineral resources are expenditures incurred before the technical feasibility and 
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commercial viability of extracting a mineral resource is demonstrable (AASB, 2015). The 

exploration expenditure is unique to mining activities. The expenditures in exploration and 

evaluation of mineral resources follow almost the general pattern of capital formation in the 

Australian mining sector. However, their contribution to the total fixed capital formation has 

been declining over time. In 2016-17, the exploration and evaluation expenditures consisted of 

5 per cent of gross fixed capital formation (Figure 2.15). 

In the 2000s, significant increases in exploration and evaluation activities in response to 

increasing demand for mineral products in the global market contributed negatively to the 

sector’s productivity performance. The lag time between incurring exploration and evaluation 

expenditures and possible production from the explored resources is much longer than the 

investment-production lag associated to other capital investments. Also these incurred 

expenditures may not result in exploration of a feasible mineral deposit. Therefore, exploration 

expenditures do not contribute to the productivity performance in the short term, and their long-

term contribution depends on the success in exploration of feasible and viable deposits. 

Figure 2.15: Exploration expenditures (left axes, $m) and their contribution to gross fixed 
capital formation (right axes, %) in Australia’s mining sector, 1967-68 to 2016-17 

 
Source: Author’s estimation based on ABS (Australian System of National Accounts 2017, Cat. no. 5204.0 

Table 64). 
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performance of mining activities in Australia over the past few decades. One of the driving 

factors of mining production output is the commodity price. 

As shown in Figure 2.16, from 2003-04 to 2013-14, the Australian mining sector experienced 

high commodity prices. Over this period, the aggregate export prices increased threefold. The 

general pattern of commodity price changes is also evident in mining sub-divisions such as 

coal mining and metal ore mining. Along with higher commodity prices, this period recorded 

high mining input growth rates and low productivity performance. 

Higher commodity prices encourage miners to continue the extraction of mining products from 

depleted deposits. Higher prices make the extraction of lower grade or less accessible deposits 

profitable, while productivity declines due to consumption of more inputs per unit of output. 

Also due to the shortage of required inputs, particularly the specialist equipment and labour, 

miners may utilise a non-optimal combination of inputs to overcome the imposed constraints. 

Such non-optimal and mismatched resource allocation results in the productivity decline of 

mining operations (Topp et al., 2008; Syed et al. 2013). 

Figure 2.16: Export price index of mining division, 1998 to 2017 

 
Source: ABS (International Trade Price Indexes, Australia 2018, Cat. no. 6457.0 Table 19). 
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Australian mining industry has benefited from major technology advancements over the past 

few decades. Topp et al. (2008) discussed the role of technology changes in the sector’s 
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the heap-leaching and hydrometallurgical extraction processes, and increases in information 

and communications technology (ICT) are some examples of these technological 

advancements. 

On the other hand, mining companies have experienced some difficulties in optimal utilisation 

of adopted technology. Lumley and McKee (2014) reported a significant decline in mining 

equipment productivity in all major global mining regions since 2007. Also, most international 

competitors have outperformed Australia’s mining equipment productivity. The Australian 

annual output from utilised equipment is generally lower relative to other regions including 

North America, South America, Asia and Africa. Lumley and McKee (2014) expressed that 

the underperforming equipment productivity in Australia relative to other international 

competitors is not only associated with poorer equipment of the environment, but it is a 

function of work practices, culture, leadership and strategy which needs detailed investigation. 

Topp et al. (2008) discussed that work practices, poor weather and infrastructure constraints 

are among other influencing factors of productivity performance of the Australian mining 

sector. The changes in work arrangement and management practices in 1980s and 1990s, such 

as increased working hours and 12-hour shifts, contributed positively to increased multifactor 

productivity in the mining sector. However, the rise of fly-in fly-out work arrangement in 2000s 

incurred additional costs to mining companies, resulting in a detrimental effect on mining 

firms’ levels of productivity. 

Significant climate events have also impacted the productivity performance of mining activities 

in the short term. The impact of some recent extreme weather events in Australia on mining 

investment and operations has been enormous. The 2010/2011 Queensland floods caused more 

than $2 billion loss to coal mining operations through closure or restricted production of 40 out 

of 50 coal mines in Queensland (Mason et al., 2013). However, in the long term, significant 

influence from climate events on productivity is not expected.  

Finally, the infrastructure constraints in Australia adversely influenced the productivity growth 

in the mining sector during the early 2000s’ production surge. The capacity constraints on the 

transport supply chain, including rail and port infrastructure, resulted in congested 

transportation of mined coal and iron ore toward export destinations. Since 2011, the mining 

commodity prices have generally declined; however, the production output has increased 

constantly. That is, the sector is in transition from the construction phase to the production 
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phase with expansion in the volume of exports. The existing infrastructure supports current 

mining operations without significant constraints in the transportation supply chain. However, 

the growing production and exports of mining commodities require adequate infrastructure 

planning to ensure growth opportunities are maximised. Infrastructure Australia (2016) 

addressed the importance of this long-term infrastructure plan in the success of mining 

operations across growing regions such as the Pilbara. 

 

2.6 Summary 

The mining sub-divisions in Australia includes coal mining, oil and gas extraction, metal ore 

mining, non-metallic mineral mining and quarrying, and exploration and other mining support 

services (ABS, 2006). Mining companies are mostly involved in a range of activities, from 

exploration and mine development to mineral extraction, processing, transformation and 

restoration of land. 

This sector plays an important role in the Australian economy. Following the millennium 

mining boom that commenced in 2002-03 due to a significant increase in global demand and 

prices for most mining commodities, the Australian mining sector has experienced 

considerable growth in terms of employment, investment, export and revenue. The average 

annual growth in export values of the Australian resources between 2004-05 and 2010-11 was 

18 per cent, compared with an average annual increase of 1 per cent between 1990-91 and 

2003-04 (Department of Industry, Innovation and Science, 2017). Along with increased prices, 

the total revenue of mining activities across Australia increased substantially. The contribution 

of the mining sector to the Australian economy increased from a historical level of 5 per cent 

before 2000 to a peak of above 9 per cent in 2010-11 (ABS, 2017a). The majority of Australia’s 

mined products are exported to foreign destinations. The exporting of mining commodities 

increased substantially during the mining boom and the sector’s contribution to the total export 

value reached above 50 per cent in 2008-09. This substantial contribution has been maintained 

in many subsequent years (ABS, 2017d). The expansions in mining activities across Australia 

has resulted in sharp growth in mining sector employment. The share of mining sector 

employment reached its peak in 2012-13 by 2.4 per cent contribution to the total employment 

in Australia, while this share was only 0.9 per cent in 2003-04 (Department of Jobs and Small 

Business, 2017b). With significant increases in capital investment, the share of the mining 
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sector in total capital stock in Australia increased from 7 per cent in 2004-2005 to 15 per cent 

in 2013-14 (ABS, 2017c). 

The effects of the millennium mining boom were not only limited to the Australian mining 

sector. The key economic variables such as employment and national income show the superior 

performance of the Australian economy against most OECD economies (Grafton, 2012). The 

resource-rich states, including Western Australia, Queensland and Northern Territory, attracted 

the majority of capital investment. The average household income in these states outperformed 

the rest of states in Australia. Furthermore, the regional and indigenous communities in mining 

regions benefited from the economic growth resulted from the investment boom. 

The Australian mining success over the recent boom relied on its competitive advantages in 

global markets. Australia is a resource-rich country, among the top nations in terms of 

economic demonstrated resources and production of several minerals. Moreover, a favourable 

investment environment has been provided for international and domestic investors to 

stimulate capital flow to mining projects. The mining companies benefit from the employment 

of a highly skilled workforce and the utilisation of advanced technology. The mining 

equipment, technology and services (METS) sector in Australia is characterised by being 

internationally competitive and innovative. The legislative framework ensures the 

environmental accountability and social responsibility of active parties in the mining sector 

(Penny et al., 2012; Geoscience Australia, 2015; Geoscience Australia, 2017). 

However, the future prosperity of the Australian economy, particularly the mining sector, relies 

on its success to overcome the challenges in increasingly competitive markets. Both the 

demand side and supply side of the global resource and energy market have undergone 

significant changes. The growth in demand for mineral commodities is moving from the 

traditional developed economies to emerging economies in Asia, Africa, South America and 

the Middle East. In response to the increasing global demand, the major exporters – in addition 

to some new players in the production of resource and energy commodities – have expanded 

their efforts in attracting the capital investment for exploration and development of mining 

projects. The diversification and risk-reducing strategies taken by the main global consumers 

also influence the resource exporters. The realisation of changes in the global market for 

resource commodities through the development of adequate policy responses is essential to 

maintain the Australian mining sector’s competitive advantages against its counterparts.  



48 
 

In addition to the changes in the global market of resource products, the mining sector is under 

the influence of domestic challenges such as social licence and cost structure. Obtaining and 

maintaining the social licence to operate is becoming more and more challenging for mining 

companies, resulting in increases in the associated costs of mining activities. An increased cost 

structure of mining activities puts further pressure on the sector to maintain its cost-competitive 

advantage. 

In the presence of declining and fluctuating commodity prices, along with decrease in ore grade 

and rising production costs of mining operation, productivity improvements and technological 

changes could support the mining sector in maintaining its competitive advantages in the long 

term (Penny et al. 2012; CSIRO, 2017). However, the multifactor productivity (MFP) growth 

declined during the recent mining boom with adverse effects on the nation’s productivity 

performance. The productivity downturn during the millennium mining boom was mainly due 

to the resource depletion and the lag between investment and production in mining activities 

(Topp et al., 2008; Syed et al., 2015). The transition of the mining sector from the capital-

intensive phase of mining development to the production phase since 2013-14 has led to the 

increase in the Australian mining MFP growth (ABS, 2018a). Nonetheless, resource depletion 

will be a continuing concern that affects the productivity performance of mining companies for 

years to come. Furthermore, the sector suffers from some operational challenges such as non-

optimal utilisation of equipment and insufficiency of operational strategies in boosting 

productivity (Lumley and McKee, 2014). A long-term approach to productivity improvement 

is vitally needed for both private mining businesses and government policy makers in Australia. 
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3 Literature Review on Efficiency Analysis in Mining Industry 

 

3.1 Introduction 

The efficiency and productivity literature has grown extensively over the past four decades. 

Both mathematical programming and econometric approaches have received wide attention 

from scholars in the field of economics and management science. Stochastic frontier analysis 

(SFA) and data envelopment analysis (DEA) are among the most popular techniques in 

efficiency and productivity measurement. These techniques measure the efficiency and 

productivity of producers or decision-making units by comparing the observed values against 

their corresponding optimal values on a frontier. These frontier techniques have been used 

widely in the empirical studies across various economic activities and industries. In the context 

of the mining industry, a range of research studies have attempted to investigate efficiency and 

productivity performance. However, unlike some other industries such as banking, insurance, 

manufacturing and utilities, the application of frontier techniques in the mining industry has 

been limited to a few studies conducted at sector, firm or mine levels.  

This chapter starts with an introduction to some concepts and mythology background. This 

review is brief, with a more comprehensive discussion on concepts and methodologies 

presented in Chapter 4. Section 3.2 provides the basic concepts of efficiency and productivity 

and discusses their differences from the view of economics literature. The section continues by 

explaining a frontier approach in efficiency and productivity measurement as opposed to a non-

frontier approach. Furthermore, focusing on the frontier approach, it introduces the two 

prominent methodological streams of efficiency and productivity measurement, namely 

parametric and non-parametric approaches. 

Following the initial introduction on the concept and methods, Section 3.3 reviews the major 

studies conducted in the mining industry. Due to the differences among studies conducted at 

sector, firm and mine levels in terms of aims, modellings, policy implication and audiences, 

the review of each study type is presented in a separate sub-section. Because of the importance 

of the mining industry in Australia and the defined scope of study in this thesis, the relevant 
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literature in the Australian mining context is presented in a separate sub-section at the end of 

Section 3.3. 

Further to the discussion in Section 3.3 on the existing literature in efficiency and productivity 

measurement, Section 3.4 reviews the literature in its determinants in the mining industry. In 

regard to identifying what determines efficiency and productivity performance, limited studies 

have been published in the context of the mining sector. Therefore, to avoid missing any 

important dimensions covered in this narrow literature, each section unpacks all relevant 

studies first and then provides an overall critical discussion on the reviewed literature. Finally, 

Section 3.5 summarises the application of frontier efficiency and productivity measurement in 

the mining industry. 

  

3.2 Economic Efficiency and Productivity Concepts 

Performance measurement is the process of quantifying the efficiency and effectiveness of 

action; hence, a performance measure is a metric used in this process to quantify such efficiency 

and/or effectiveness (Bourne et al., 2003). From an organisational perspective, performance 

measurement is the process of monitoring resources and investments toward reaching desired 

targets (Thompson et al. 2007). There are various methods in the measurement of firm 

performance. Using financial indicators, efficiency and productivity measures and market 

performance metrics are among common methods used to evaluate the performance of 

economic units. Accounting and finance literature has broadly used financial ratios in 

profitability, market value, asset management and financial leverage. However, the economics 

literature has promoted the application of efficiency and productivity. This section introduces 

the economics view to firm performance measurement. Furthermore, this section briefly 

discusses the techniques in economic performance measurement while Chapter 4 presents them 

in detail. 

 

3.2.1 Productivity and Efficiency 

In economics literature, productivity is a common performance measure of economic units. A 

productivity ratio, which is the ratio of outputs to inputs, is a natural measure of performance. 
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Obviously, a larger value of this ratio represents a better performance. In the case of a multiple 

input-multiple output production model, a method of aggregation is needed to obtain a single 

index for inputs and/or outputs to construct the productivity ratio (Coelli et al., 2005). Hence, 

even in the case of multiple inputs and/or outputs, the productivity remains as a ratio of two 

scalars. In addition to the measurement of productivity ratio, the productivity growth is an 

important measure in economics literature. Productivity growth is calculated as the difference 

between output growth and input growth (Fried et al., 2008). 

The OECD productivity manual (OECD, 2001) outlines the productivity measurement 

objectives as tracing technology progress, identifying efficiency changes, real cost savings, 

benchmarking production processes and assessing standards of living. While the concept of 

productivity seems to be straightforward, there is no agreement on a unique measure of 

productivity. The choice of productivity measure mainly depends on the purpose of 

measurement and the availability of data. Productivity can be measured at the industry or firm 

level, can be single-factor (single input) or multifactor (multiple inputs), and can be calculated 

using gross output or value-added. Single-factor productivity measures of labour productivity 

and capital productivity as well as multifactor productivity (MFP) measures of capital-labour 

MFP and capital-labour-energy-materials-service MFP (KLEMS MFP) are among the most 

common productivity measures in the economics literature (OECD, 2001).  

While productivity and efficiency are closely related, they are not precisely the same. 

Productivity refers to the ratio of outputs to inputs; however, the efficiency of an economic unit 

refers to comparing its performance against its best practice. In other words, efficiency 

measurement involves a comparison between the observed and optimal values of output and 

input of a producer. Toward such measurement, one can compare observed output to maximum 

potential output given the available input. Alternatively, one can compare observed input to 

minimum potential input in production of a given output. If the optimum is defined in terms of 

production possibilities, the efficiency measure is technical. But if the comparison is between 

observed and optimum cost, revenue or profit, then the efficiency measure is economic (Fried 

et al., 2008). Further details in efficiency measurement are provided in Chapter 4. 
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3.2.2 Frontier and Non-Frontier Approaches 

In the measurement of productivity growth, two approaches of least-square econometric 

production models and total factor productivity (TFP) indices are widely used. These methods 

are mostly applied to measure technical changes and/or TFP on aggregate time-series data. 

These approaches assume that all firms are technically efficient (Coelli et al., 2005). That is, 

these methods do not compare the observed and optimal values of inputs and outputs of 

economic units as it is assumed producers behave efficiently. Hence, these methods do not 

attempt to construct the production frontier representing optimal values. Such methods are 

classified as non-frontier approaches to productivity measurement. Coelli et al. (2005) provides 

a detailed review of non-frontier methods and OECD (2001) presents a comprehensive manual 

for the application of a growth accounting framework and TFP index numbers. 

On the other hand, frontier approaches do not assume that producers are technically efficient. 

These methods construct a production technology frontier and compare the observed values 

against the respective optimal values from the frontier. Pioneered by Koopmans (1951), Debreu 

(1951) and Farrell (1957), the frontier approach in efficiency and productivity measurement 

has been developed substantially over the past few decades, particularly in two main streams 

of mathematical programming and econometrics. These methods are most often applied to a 

cross-section sample of economic units to measure the relative efficiency among observations. 

Nonetheless, given the availability of panel data, both frontier approaches are capable of 

measuring productivity growth and its components including technical changes and efficiency 

changes (Coelli et al., 2005). The following section provides a brief review on the frontier 

approaches, but the detailed presentation on these methods is provided in the next chapter. 

 

3.2.3 Parametric and Non-Parametric Frontier Approaches 

As discussed above, the frontier approaches to efficiency and productivity analysis rely on the 

concept of efficiency, which measures the performance of producers relative to their 

corresponding frontier in a production possibility set. However, the true frontier is not known. 

Thus, the efficiency and productivity measurement in frontier approaches involves an empirical 

approximation of production frontier. Mathematical programming and econometric approaches 

are two dominating streams of frontier efficiency measurement in the economics literature. 
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The econometric approach consists of a set of techniques involving the econometric estimation 

of parametric functions. The main advantage of parametric techniques is their ability to 

incorporate random errors and statistical noise. Stochastic frontier analysis (SFA) is one of the 

main parametric frontier techniques proposed by Aigner et al. (1977) and Meeusen and van 

Den Broeck (1977). This technique separates the effect of statistical noise from that of technical 

efficiency. Furthermore, SFA provides the statistical inferences for the efficiency estimates 

including standard errors and confidence intervals. Hypothesis testing of endogenous and 

exogenous factors is another advantage of SFA. However, the main drawback of SFA and in 

general parametric techniques is the need for adopting pre-defined functional forms of 

technology frontier and error terms (Fried et al., 2008). In addition, most parametric techniques 

such as SFA are unable to incorporate multiple outputs directly into the efficiency model; and 

in the case of small samples, these techniques do not provide a reliable estimation of efficiency 

and model parameters (Coelli et al., 2005). 

On the other hand, the mathematical programming approach consists of a set of techniques that 

are mostly non-parametric (or deterministic). This approach involves construction of a non-

parametric piece-wise surface or frontier over the sample data (Coelli et al., 2005). Data 

envelopment analysis (DEA) is the most frequently used non-parametric frontier technique, 

first proposed by Charnes et al. (1978). In this technique, the distance from the frontier 

represents the degree of inefficiency of a producer. Constant returns to scale (CRS) and variable 

returns to scale (VRS) are the two main DEA models in the frontier literature. The former 

model assumes that all producers are operating at their optimum scale while the latter considers 

the possibility of working away from the optimum scale due to exogenous constraints such as 

imperfect competition, government regulation and finance. 

The non-parametric techniques such as DEA do not require any pre-determined functional 

form. In addition, their flexibility and ability to incorporate multiple outputs into efficiency 

model as well as their superior performance in efficiency measurement of small samples make 

them an attractive approach in the frontier literature. Nonetheless, the main shortcoming of a 

mathematical programming approach in general, and data envelopment analysis (DEA) in 

particular, is their deterministic nature. There is no room for statistical noise. The frontier is 

constructed using the observed values; hence, these techniques are highly sensitive to outliers 

(Fried et al., 2008). 
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Recent advancements in efficiency and productivity methodology have closed the gap between 

parametric and non-parametric techniques. From one side, the development of statistical 

foundations in mathematical programming techniques has provided the basis for statistical 

inference. From the other side, developments such as flexible functional forms as well as semi-

parametric, non-parametric and Bayesian techniques have overcome the parametric rigidity 

(Fried et al., 2008).   

 

3.3 Efficiency and Productivity in Mining Industry 

This section aims to review and discuss the existing literature on the efficiency and productivity 

analysis in the mining industry. The attention of this section is mainly turned on the application 

of frontier techniques; in particular, multiple non-frontier productivity studies that contribute 

substantially to the body of knowledge in the literature. First, the major frontier studies in the 

mining industry are reviewed. Due to the differences among mine-level, firm-level and sector-

level studies in terms of aims, performance modelling, variables of interest, common 

methodologies and policy implications, a separate sub-section is assigned to each level of 

study. Next, studies in the context of the Australian mining industry are examined. Due to the 

importance of non-frontier studies, the review of the Australian mining literature will include 

both frontier and non-frontier research. 

 

3.3.1 Application of Frontier Approaches in Mining Industry 

In the past four decades, the existing literature on frontier approaches of efficiency and 

productivity analysis has grown rapidly and the developed theoretical models have been 

applied across a number of sectors. Fried et al. (2008) summarised some examples of frontier 

approach application in efficiency and productivity analysis across a broad range of industries. 

More recently, Aparicio et al. (2016) and Greene et al. (2016) presented various advancements 

in theoretical modelling and empirical studies in efficiency and productivity analysis. Both 

dominating approaches, namely parametric and non-parametric, have been applied in 

performance analysis of various industries. A rich body of literature exists in some industries 

such as banking, insurance, agriculture, education, hotels and hospitality services, 

manufacturing and transportations. However, unlike most industries, there are only a limited 
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number of studies applying frontier approaches such as data envelopment analysis (DEA) and 

stochastic frontier analysis (SFA) to measure efficiency and productivity in the mining 

industry. These studies looked at the mining industry from different angles. Most early studies 

focused on the efficiency performance among mines. Sector-level analysis also has been a main 

interest of researchers over the past two decades. However, firm-level studies have become the 

centre of efficiency and productivity analysis in recent years. 

This section reviews the most relevant efficiency and productivity studies conducted in the 

mining industry. The majority of these presented studies used frontier techniques; however, 

this section also includes some significant non-frontier studies in the mining literature. As the 

aims, the modelling and the audiences of efficiency and productivity studies may vary 

depending on the level of study, i.e. mine-level, firm-level or sector-level, the literature related 

to each level is reviewed in a separate sub-section. Nonetheless, various study variables, 

methodologies and findings are consistent among these studies, so much that none of these 

three levels can be excluded from the scope of this literature review. Table 3.1, Table 3.2 and 

Table 3.3 present the details of selected studies on efficiency and productivity at mine, sector 

and firm levels respectively. 

 

(i) Mine-Level Efficiency and Productivity Studies 

In one of the earliest studies, Byrnes et al. (1984) used a frontier approach to estimate the 

efficiency of a sample of 15 coal mines in the U.S in 1978. They decomposed the Farrell 

technical efficiency measure into measures of purely technical efficiency, input congestion 

(which reflects the overutilisation of inputs) and scale efficiency using a non-parametric 

mathematical approach. The importance of this study in the efficiency literature is due to its 

attempt to introduce inefficiency sources. Such knowledge aids managers in the mining 

industry in particular, and other industries in general, to focus on areas causing inefficient 

operations. Their efficiency model was constructed using one output (tons of coal) and eight 

inputs (e.g. labour in thousand miner-days, three capital variables of bucket capacity of 

draglines, dipper capacity of power shovels and earth-moving capacity of wheel excavators) as 

well as four geological variables (e.g. thickness of first (upper) seam mined, depth to first seam 

mined, thickness of second (lower) seam mined and depth to second seam mined). The 

geological input variables are specific to the mining industry and reflect the availability and 
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accessibility of utilised natural resources in mining operations. Byrnes et al. (1984) interpreted 

these geological variables as a proxy for the ore quality. Based on their study, Byrnes et al. 

(1984) concluded that efficient mines, in comparison with inefficient mines, are characterised 

by having more seams, lower labour-output ratio, lower stripping ratio (lower overburden to 

retrieved coal ratio), higher earth-moving capacity, and being newer and safer. Despite the 

novelty in modelling efficiency measures, the application of the developed model in this study 

was limited to a small sample of coal mines. Furthermore, the characteristics of efficient versus 

inefficient mines were not statistically validated and the reported results were only comparisons 

of arithmetic averages. 

Byrnes and Färe (1987) later examined the sources of inefficiency for a larger sample of surface 

coal mines in the interior U.S for a cross-section sample of 186 observations in 1978. Using a 

non-parametric linear programming technique, their study analysed the effect of mine 

characteristics on efficiency. Following Byrnes et al. (1984), this study constructed a technical 

efficiency measure consisting of three components including pure technical efficiency, input 

congestion and scale efficiency. One output (total coal production) and nine input variables 

including a labour input variable, six capital input variables (reflecting surface coal mining 

equipment capacity) and two variables to measure geological characteristics of mines (coal 

seam thickness and depth) were used to estimate technical efficiency measures. Also, five mine 

characteristics were used to analyse the efficiency measure results. These include location of 

the mine, the age of the mine, union status of employees, the amount of captive production (i.e. 

production not sold in open market) and the ratio of acres reclaimed to acres stripped. This 

study reported that more than 90 per cent of coal mines were not fully efficient, mainly due to 

their operating under the optimum scale. This study showed that location of operation is a 

determinant of efficiency gains as Texas outperformed the other states in all components of 

technical efficiency while Arkansas performed poorly, largely due to scale efficiency. 

Surprisingly, the study revealed that the unionised mines were more efficiency than non-

unionised mines. Overall efficiency and all its three components had higher averages in 

unionised mines compared to non-unionised mines. Next, the study reported that aged mines 

(more than 28 years in operation) as well as newly opened mines (less than 3 years in operation) 

performed poorly. The other unanticipated finding in this research was the revelation of 

significantly higher efficiency gains in captive mines where extracted mining commodities 

were not sold in the open market. 
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In another study for U.S mines, Byrnes et al. (1988) compared the efficiency results of a non-

parametric mathematical programming method, substantiating the sources of inefficiency, with 

a parametric econometric method based on the Cobb-Douglas production function. This study 

investigated the effects of unionisation on the efficiency performance of U.S surface coal 

mining. The data used in this study were comprised of two data sets: a cross-section sample of 

84 observations of coal surface mines from Interior U.S. in 1978; and a sample size of 113 

from an unbalanced panel of 64 Western U.S. coal surface mines over 1975-78 period. Due to 

different geological characteristics and utilised operation technologies, two samples were not 

pooled but treated separately. In construction of efficiency measures, this study used one output 

(total production), and nine input variables including a labour input, six capital inputs (e.g. 

equipment capacity for removal of overburden, coal extraction and land reclamation), and two 

geological variables (e.g. thickness of coal seams and inverse of overburden thickness or 

volume). Results from the non-parametric technique in this study revealed the significant level 

of inefficiency (nearly 40 per cent) among mines in the samples. Also, this study attributed the 

inefficiency mainly to input congestion in both Interior and Western samples. Furthermore, 

non-union mines were reported to have lower efficiency performance due to input congestion 

in Western mines and operating beyond the optimal scale in Interior mines. Similar to the 

findings from the non-parametric approach, the results of the parametric approach in this study 

confirmed that union mines are more efficient than non-union mines. However, the 

econometric approach was unable to provide information on the source of inefficiency. 

These three studies for U.S. mines introduced a useful quantitative framework to evaluate the 

technical efficiency of mining activities. Although these studies looked at mining activities at 

mine level, their findings from efficiency modelling and analysis can aid decision makers 

beyond mining operations, such as through corporate leadership in mining firms or government 

authorities for developing mining sector policy and strategies. 

Using an unbalanced data panel of 419 mines over 1996 to 2005, Koop and Tole (2008) 

conducted a Bayesian econometric frontier technique to evaluate technical and environmental 

efficiency in the gold mining industry. This research includes the volume of mined ore as the 

main production output in the econometric model. Gold mining can be involved in the 

extraction of other metal ores; therefore, in addition to the volume of gold production, this 

study measured the production volume of copper and silver as two other outputs of mining 

operations when applicable. Waste, measured as all geological and chemical-geological waste 
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from the processing stage, as well as low-grade ore served as a bad environmental output of 

mining operations. The set of explanatory variables in this study include the type of mining 

operation (i.e. open-pit or underground) and the geological characteristics represented by 

resources (measured by total probable and proven ore reserves), and ore grade (measured using 

the grade of ore in the ore body). Following the economics literature, labour measured as total 

full-time employees and capital proxied by project cost were included in the model as 

conventional inputs; however, due to the unavailability of data for many mines in the sample, 

these two variables are excluded in the analysis. The effects of ownership (foreign or domestic) 

as well as location country (rich or poor) on efficiency estimates were also examined in this 

study. 

The findings of the multiple input-multiple output Bayesian frontier model in this study show 

that there is no systematic difference in technical and environmental efficiency of mines located 

in rich or poor countries or those that are owned domestically compared to those with foreign 

ownership. The authors argued that due to the presence of multinational mining firms in 

operation of these mines, irrespective of the location of operation, a standard of performance 

defined by rich countries is evident across the operating mines. 

In a comparative study, Tsolas (2011) used data from Byrnes et al. (1984) and Thompson et al. 

(1995) to investigate the variations in efficiency estimates of strip coal mining when taking 

into consideration undesirable outputs as well as random errors in the sample data. The author 

developed a bootstrap DEA model including two inputs of labour (in thousand man- days), 

capital (in million dollars), one desirable output of extracted coal (in thousand tons) and one 

undesirable output of overburden (thousand tons). The results from the output-oriented DEA 

model under weak disposability and variable returns to scale (VRS) assumptions did not show 

the significance of undesirable output in estimation of technical efficiency scores. However, 

by applying a bootstrap technique, greater inefficiency was detected in coal mining activities. 

Except Koop and Tole (2008), the remaining reviewed studies in efficiency and productivity 

analysis of operating mines applied non-parametric frontier techniques. Largely, the intention 

of these studies has been the evaluation of technical efficiency which seems to be a more 

appropriate efficiency measure at an operational level. None of these studies evaluated the 

economic and allocative efficiency measures due to the lack of financial information and factor 

prices. Such economic measures can aid leadership teams in mining companies in formulation 

and evaluation of their strategies at both corporate and operational levels. 
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From an efficiency modelling point of view, the input/output variables defined in these studies 

are operational. Labour is measured as total working hours or man-days and capital is measured 

based on the capacity of extraction equipment utilised in mining activities. Output is measured 

as the volume of production. Also, mine geological variables, such thickness and depth of 

seams or volume of overburden and extraction, are a main part of efficiency modelling and 

analysis for mine-level studies. To maintain homogeneity in the research sample, these studies 

looked at one specific mining activity. However, the investigated mining activities in these 

studies are limited to coal and gold. 

One other highlight from the review of the existing mine-level efficiency and productivity 

literature is that these studies have concentrated more on non-parametric techniques. Both 

frontier approaches have the ability to be used in performance measurement and the 

benchmarking of operational activities such as mining operations. Perhaps the difference in the 

origins of parametric and non-parametric techniques can explain why non-parametric 

techniques, as opposed to not parametric techniques, have been used mostly in mining-level 

efficiency studies. As explained in the frontier literature (see e.g. Fried et al., 2008), the 

parametric frontier techniques are based on econometric modelling. These techniques have 

been developed in economics and they are vastly used in the efficiency and productivity 

analysis of economic agents at both macroeconomic and microeconomic levels. On the other 

hand, non-parametric mathematical programming techniques have been developed in 

management science. Focusing on decision making units (DMUs), these techniques are 

powerful tools in the benchmarking of operational units and companies in terms of their ability 

to transform inputs into outputs. 

In general, studying the efficiency and productivity of mining operations under the production 

frontier approach seems to be an underresearched area which could utilise recent 

methodological developments to investigate efficiency- and performance-driving factors.  
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Table 3.1: Selected mine-level studies on efficiency and productivity of mining industry 
Study Method Data Inputs/Outputs Indexes Results 
Byrnes et 
al. (1984) 

DEA  15 Illinois strip 
coal mines in the 
U.S., 1978  

Inputs: Labour, 
capital variables 
(capacity 
of draglines, power 
shovels, wheel 
excavators), 
geological variables 
(first seam thickness, 
first mined seam 
depth, second seam 
thickness, second 
mined seam depth)  
Outputs: Production 
volume  

Overall technical 
efficiency 
Pure technical 
efficiency 
Input congestion 
Scale efficiency 

Minimum efficiency 
score was 64%. A major source 
of inefficiency was identified as 
the non-optimal scale of 
production. The pure technical 
efficiency score of all mines 
was 100%. 
Characteristics of efficient 
mines: higher number of seams, 
less labour output ratio, less 
non-fatal accident, less 
mine opening duration, less 
stripping ratio and more earth-
moving capacity.   

Byrnes and 
Fare (1987)  

DEA 186 coal mines in 
the U.S., 1978  

Inputs: Labour, 
capital variables 
(number of draglines 
and power shovels, 
total loaders and 
brooms, total of 
scrapers, dozers and 
graders), thickness of 
seams, inverse of 
thickness of 
overburden 
excavated)  

Overall technical 
efficiency 
Pure technical 
efficiency 
Input congestion 
Scale efficiency 

With an average of 46% 
efficiency, the major source of 
inefficiency was deviation from 
the optimal scale.  
Unionised mines showed better 
performance than non-unionised 
mines, and captive mines were 
more efficient than non-captive 
mines. 

Byrnes et 
al. (1988)  

DEA  
Econometric 
Analysis  

A: 84 interior 
surface coal 
mines in the U.S. 
in 1978  
B: 64 western 
surface coal 
mines in the U.S. 
from 1975 to 
1978  

Inputs: Labour, 
capital variables 
(number of draglines 
and power shovels, 
total loaders and 
brooms, total of 
scrapers, dozers and 
graders), thickness of 
seams, inverse of 
thickness of 
overburden 
excavated)  
Outputs: Production 
volume  

CRS technical 
efficiency 
NIRS technical 
efficiency 
VRS technical 
efficiency 
Input congestion 
Scale efficiency 

On average, mines were 60% 
efficient. The overall efficiency 
of union mines was more than 
non-union mines. The results for 
the econometric method were 
consistent with the DEA 
results.  

Koop and 
Tole (2008) 

Bayesian 
stochastic 
production 
frontier 

419 mines over 
1996 to 2005 

Inputs: Labour, 
capital, waste, ore 
grade, ore resources, 
mine operation type 
Outputs: production 
of gold, copper and 
silver (desirable), 
waste (undesirable) 

Technical 
efficiency 
Environmental 
efficiency 

Waste, ore grade and type of 
mine operation significantly 
contribute to production output; 
however, the effect of ore 
resources on production is not 
statistically evident. 
On average, mines in the sample 
were 68% environmentally 
efficient, regardless of being 
located in a rich or a poor 
county. 

Tsolas 
(2011)  

DEA (output 
oriented VRS 
DEA)  
Bootstrap-
DEA  

15 Illinois strip 
coal mines in 
1978 (using data 
from Byrnes et al 
(1984) and 
Thompson et al. 
(1995))  

Inputs: Labour, 
capital  
Outputs: Mixed mine 
environmental 
performance indicato
r (production volume 
as desirable output 
divided by 
overburden as 
undesirable output).  

Technical 
efficiency: 
-Point estimates 
-Bias-corrected 
estimates 
-Confidence 
intervals 

Omitting undesirable output did 
not cause significantly biased 
efficiency results.  
The bootstrapped results 
showed that mines were less 
efficient than that achieved by 
point estimation (with an 
average of 2.142 in bias-
corrected estimates than 1.775 
from the original model).  
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(ii) Firm-Level Efficiency and Productivity Studies 

Fang et al. (2009) applied a non-parametric model to compare coal mining companies in China 

with the U.S. Their sample consisted of 17 Chinese and 8 American coal mining companies. 

In this paper, Fang et al. (2009) constructed an input-oriented DEA model using operating 

costs, total assets and number of employees as inputs, and earning per share, operating revenue 

and net profit before tax as outputs. Their findings revealed that the American coal mining 

companies outperformed their Chinese counterparts in the overall measure of technical 

efficiency as well as component measures of pure technical efficiency and scale efficiency. 

They discussed that state ownership, being in an early development stage, low industry 

concentration, over-competitiveness and high withdrawal threshold are among main 

contributors of poor efficiency performance in the coal mining industry in China. 

In the investigation of profit efficiency in the mining industry of South Africa, Potuma and 

Kumo (2010) applied stochastic frontier analysis to estimate the efficiency performance of 14 

small and medium-sized mining firms over the 2003-2006 period. With taxable income as a 

dependent variable, they used data from financial statements to define explanatory variables 

including wage bill, sales revenue, gross interest income, interest expenses, other income and 

asset size. Based on the findings from this study, there is a significant degree of inefficiency 

among the small and medium-sized mining firms in South Africa. With high variation, the 

average profit efficiency was only 37 per cent among the selected SMEs over the study period. 

Also, the authors found that the ranking of high-performing companies have been reasonably 

stable from 2003 to 2006. 

Eller et al. (2011) applied data envelopment analysis (DEA) and stochastic frontier analysis 

(SFA) to compare the efficiency of national oil companies with international private oil 

companies. Their sample consisted of a panel of 78 oil companies over three years from 2002 

to 2004. The set of variables in this study included three inputs including number of employees, 

volume of oil reserves and volume of natural gas reserves, and one output of revenue. The 

authors found that the efficiency estimates from the output-oriented CRS DEA and the 

maximum likelihood SFA models are highly correlated and two orderings are not independent. 

Hence, the authors concluded as the results from these two different techniques are consistent, 

the variations observed among efficiency estimates are due to firm-specific characteristics and 

not due to the applied estimation method. They argued that due to differences in firm structural 
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and institutional features, national oil companies were less efficient than international private 

oil companies.  

To investigate the role of ownership in the efficiency performance of mining companies, Dos 

(2012) examined the productivity growth of 65 Indian mining firms over the period 1988-89 

to 2005-06. Using 872 observations in this sample, they estimated the total factor productivity 

(TFP) of firms at the first stage and then computed the sector weighted average TFP including 

mining industry and its four sub-sectors of metallic, non-metallic, coal and petroleum. The 

Cobb-Douglas production function applied in this study includes deflated production values as 

a proxy for production output as well as gross fixed assets, estimated labour hours and deflated 

energy cost as proxies for labour, capital and energy inputs, respectively. From a 

methodological point of view, the author argued that the estimated coefficients of labour, 

capital and energy from the OLS method are biased when compared to results derived from a 

semi-parametric method developed by Levinsohn and Petrin (2003). Also, in the context of 

mining industry productivity, this research showed that private companies are significantly 

more efficient than their public sector counterparts in metallic, non-metallic and coal mining. 

However, the petroleum sector presents a different pattern with a higher but declining TFP 

index in private companies in the first half of the study period and almost comparable trends 

in the second half. In general, productivity in both private and public companies improved over 

the course of study. Further regression analysis in this study revealed that private ownership as 

well and initial TFP level play a significant and positive role in productivity gains. While age 

does not significantly contribute to productivity performance in the mining industry and 

petroleum sub-sector, it positively influences the level of TFP index in metallic, non-metallic 

and coal sub-sectors.  

In development of a DEA model for environmental assessment, Sueyoshi and Goto (2012) 

applied a non-radial DEA model to investigate the efficiency performance of 19 national and 

international oil companies over 2005 to 2009 in the presence of undesirable outputs. Their 

model includes four inputs (oil reserve, gas reserve, operating cost and number of employees), 

two desirable outputs (oil production and gas production) and one undesirable output (CO2 

emissions). This study considered two types of unification for desirable and undesirable outputs 

in their environmental assessment using DEA; first, decreasing an input vector along with 

decreasing the undesirable vector (referred as natural disposability), and second, increasing an 

input vector while decreasing the undesirable output vector (referred to as managerial 
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disposability). The authors argued that under the natural disposability approach, national oil 

companies gain higher efficiency than those international private companies. However, under 

a managerial disposability approach, international oil companies outperform the nationally 

owned companies. Furthermore, while mixed results were observed among national oil 

companies in terms of their returns to scale (RTS) status, all international oil companies require 

decreasing the operational scale. Also, both national and international oil companies need to 

decrease their operational size to improve their environmental performance in CO2 emissions. 

Geissler et al. (2015) used DEA to analyse the technical efficiency performance of 24 world-

leading state-owed and publicly quoted companies operating in phosphate rock mining in 2012. 

They considered two model specifications based on the arrangement of output variables. Both 

models included operating costs, total assets and number of employees as three inputs; 

however, their first model used turnover and EBIT as two outputs while their second model 

only used EBIT to improve discrimination power of the model. The results of the input-oriented 

DEA models in this study showed that model specifications have a negligible effect on 

efficiency estimates. In both models, it was found that the phosphate rock mining companies 

are above 90 per cent efficient. Although the findings of this study indicate that scale 

inefficiency is not a chief concern, most firms can increase their operating scale to improve 

their efficiency. In terms of input reduction strategy, the first model of this study suggested that 

employees are the first input to focus on, with an average reduction target of 19.8 per cent 

followed by total assets and operating costs with an average reduction target of 11.3 per cent 

and 7.3 per cent respectively. Despite the observed difference between arithmetic averages of 

the efficiency performance of state-owed and publicly quoted companies, further statistical 

analysis did not confirm the significance of this difference.  

The existing literature in firm-level studies of mining efficiency and productivity shows that 

this research area has only received attention in recent years. Using both mathematical 

programming and econometric modelling techniques, few studies have been published 

regarding the evaluation of efficiency or productivity growth. While some studies limited their 

scope to mining activities in a specific county, other studies took a cross-country approach in 

the evaluation of mining firms’ efficiency. Technical efficiency, revenue efficiency and 

productivity growth are among the key measures being investigated in firm-level studies. 

Despite recent methodological advancements, such as statistical foundations in the 

programming approach or flexible functional forms in econometric approach, the existing firm-
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level literature mostly relies on the application of DEA and SFA which were developed decades 

ago. Among these studies, only Sueyoshi and Goto (2012) applied a more advanced method in 

mathematical programming approach. 

Most firm-level studies have used financial statements to extract the variables of efficiency 

models. Number of employees, operating expenses and total assets are among most common 

inputs and revenue is the most common output in these studies. Unlike mine-level studies, none 

of the firm-level studies have discussed the role of natural resource inputs in the efficiency 

performance of mining firms. While ore quality and accessibility are main drivers of production 

output given a certain level of input consumption, formulating a variable reflecting these 

characteristics of mining operations at corporate level seems to be a vital but challenging task. 

Similar to mine-level studies, each firm-level study focuses on one specific mining activity. 

Although this approach sounds appropriate in terms of the homogeneity of the sample 

observations, it imposes some risks onto the efficiency modelling and data selection. Major 

mining companies across the globe are active in the exploration and extraction of several 

mining products. Diversification helps companies to achieve economies of scope. It enables 

them to utilise the available productive capacity and operation capabilities in areas requiring 

such resources (Chakrabarti et al. 2007; Nath et al. 2010). Furthermore, diversification reduces 

the risk associated with significant variations in mining commodity prices. If prices of one 

mining commodity experiences sharp decline, diversification weakens the adverse impact of 

such variation on business performance. The significance of price variations of mining 

commodities is evident in the economic trends. For instance, both International Trade Price 

Indexes (ABS, 2018b) and Producer Price Indexes (ABS, 2018c) show a significant price 

fluctuation in the mining sector, compared with other Australian economic sectors over the 

past two decades. Hence, mining companies are encouraged to diversify their portfolio. When 

it comes to the study of efficiency and productivity of mining firms, it is essential to understand 

if mining companies are involved in only one mining activity or in a diverse portfolio. The 

published financial statements of companies usually do not provide that level of detailed 

information to separate resources used in each mining activity. As financial statements have 

been the original source of most conducted studies, it is not clear how these studies 

distinguished the utilised resources in each mining activity in the case of diversified portfolios. 

Overall, there has been some progress toward firm-level studies of efficiency and productivity 
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in the mining sector in the last decade. However, some areas such as efficiency modelling, 

variable selection and application of frontier methods require further work. 

Table 3.2: Selected firm-level studies on efficiency and productivity of mining industry 
Study Method Data Inputs/Outputs Indexes Results 
Fang et al. 
(2009)  

DEA, Input 
Oriented  

17 Chinese and 8 
American coal 
mining 
companies 
between 2001 
and 2005  

Inputs: Operating 
costs, total assets, 
number of employees  
Outputs: Earning per 
share, operating 
revenue, net profit 
before tax  

Overall technical 
efficiency 
Pure technical 
efficiency 
Scale efficiency 

Chinese coal companies with an 
average of 77% were less 
efficient than American coal 
companies with an average of 
93% in overall technical 
efficiency measure.  

Putuma and 
Kumo 
(2010) 

SFA Panel 14 mining 
SMEs in South 
Africa from 2003 
to 2006 

Inputs: wage bill, 
sales revenue, gross 
interest income, 
interest expenses, 
other income, asset 
size 
Outputs: Taxable 
income 

Profit efficiency In terms of profit efficiency, 
selected mining SMEs in South 
Africa performed poorly over 
2003 to 2006. High variation in 
efficiency performance was 
observed. Ranking of high 
performing firms was reasonably 
stable over this period. 

Eller et al. 
(2011)  

DEA, Output 
Oriented  
SFA  

Panel of 
78 national oil 
companies and 
private 
international oil 
companies from 
2002 to 2004  

Inputs: Number of 
employees, oil 
reserve, natural gas 
reserve  
Outputs: Revenue  

Revenue 
efficiency 

Using DEA method, on average 
revenue efficiency of national oil 
companies 
was 28% considerably less than 
revenue efficiency of five major 
private international oil 
companies with an average score 
of 73%. There was no significant 
difference between DEA and 
SFA results.  

Das (2012)  Non-frontier 
TFP 
estimation 
(OLS and 
SPM)  

872 observations 
on 65 Indian 
mining firms, 
public and private 
from 1988-1989 
to 2005-2006  

Inputs: Labour hours, 
gross fixed asset, 
energy  
Outputs: production 
value  

TFP index Except the petroleum sector, the 
estimated TFP of private 
companies was higher than 
public companies.  

Sueyoshi 
and Goto 
(2012) 

Non-radial 
DEA  

19 national and 
private 
international oil 
companies from 
2005 to 2009  

Inputs: Oil reserve, 
natural gas 
reserve, operating 
cost, number 
of employees,   
Outputs: Oil 
production, gas 
production, CO2 
emission   

Technical 
efficiency 

Efficiency of private 
international companies was 
higher than the national oil 
companies under a managerial 
disposability assumption. But 
under a natural disposability 
assumption, national oil 
companies outperformed those in 
private companies. Under 
managerial disposability, the 
minimum efficiency score 
among companies was 81%.  

Geissler et 
al. (2015) 

Input-
oriented DEA  

24 world-leading 
companies in 
phosphate rock 
mining in 2012  

Inputs: Operating 
costs, total assets, 
number of employees 
Outputs: Turnover, 
EBIT  

Overall technical 
efficiency 
Pure technical 
efficiency 
Scale efficiency 

With an average of 93%, 
publicly quoted companies 
seemed to be more efficient than 
state-owned companies with an 
average of 88%; however, the 
difference was not statistically 
significant.  
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(iii) Sector-Level Efficiency and Productivity Studies 

In a study on the Indian mining sector, Kulshreshtha and Parikh (2002) analysed the efficiency 

and productivity changes of 30 major areas of underground and opencast coal mining for the 

period 1985 to 1997. This study used the Malmquist index to estimate and compare the total 

factor productivity (TFP) growth for the periods 1985-1990, 1990-1995 and 1995-1997. Also, 

data envelopment analysis (DEA) is used to investigate the technical efficiency of underground 

and opencast mining for the years 1985, 1990, 1995 and 1997. Total coal production used as 

main output in both underground and opencast mining. The amount of overburden removal 

was considered as an output in opencast mining, in addition to actual output of coal. Inputs in 

this study consisted of labour input (labour employed in manshifts), machineries (specific to 

underground and opencast mining aggregated in horse power unit), cranes and dumpers in the 

case of opencast mining, and rope haulage in the case of underground mining. Kulshreshtha 

and Parikh (2002) considered the geological characteristics of mining activities as a non-

discretionary or non-controllable variable because of resource depletion. In the DEA model, 

the authors assumed that rope haulage used in underground mines to be a non-discretionary 

input variable (due to adverse effect of resource depletion on utilisation of rope haulage) and 

the overburden removal to be a non-discretionary output variable in opencast mining (due to 

the dependency of the volume of overburden on the natural resource accessibility and 

depletion). This study conceded that unlike common perceptions, the efficiency of Indian 

opencast mining declined over 1985-1990, 1990-1995 and 1995-1997 periods. The 

productivity growth in opencast mining was primarily due to technical changes while the main 

driving factor behind productivity changes in underground mining was efficiency gains. 

Focusing on the limitation of conventional growth accounting methods to identify the source 

of productivity growth, Asafu-Adjaye and Mahadevan (2003) used a stochastic cost frontier 

model to investigate the factors driving productivity growth in the Australian mining sector. In 

their study, output growth was decomposed into input growth and total factor productivity 

(TFP) growth, and further TFP growth was decomposed into economic efficiency, returns to 

scale, technological progress and price effects. Asafu-Adjaye and Mahadevan (2003) used a 

panel data consisting of five major Australian mining sub-sectors including coal, iron ore, 

copper, gold and oil and gas from 1968-1969 to 1994-1995 period. In developing their 

econometric model, Asafu-Adjaye and Mahadevan (2003) adopted a parametric cost frontier 

function developed by Schmidt and Knox Lovell (1979). The set of variables in this study 
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included gross output, total cost (sum of expenditure on all inputs) and input prices of capital, 

energy and labour. The authors found that the output growth in all mining industries in 

Australia was mainly due to the input growth owing to the nature of mining industries which 

are highly capital- and energy-intensive. On the other hand, it was found that Australian mining 

industries performed poorly in improving their productivity. They pointed out that both cost 

(allocative) and technical inefficiencies were the primary causes of poor productivity growth. 

Based on their previous work, Mahadevan and Asafu-Adjaye (2005) attempted to test the link 

between inflation and productivity growth. This study furthermore examined the effects of 

mineral price inflation, interest rate and export growth on the productivity growth of the 

Australian mining industry. In the first stage, the authors estimated the TFP growth using a 

translog cost frontier function with variables including gross output, total cost and input 

(capital, energy and labour) prices. In the second stage, they applied the Granger-causality tests 

and the Vector Autoregressive (VAR) model to examine causality between exogenous 

economic variables and the productivity growth. The results of the study revealed a negative 

effect of inflation on productivity growth. Their findings supported the inflation-targeting 

policy implemented by the Reserve Bank of Australia (RBA) in 1993. Also, the authors 

commented that the mineral price inflation had a stronger negative impact on the productivity 

growth than the domestic inflation, through its adverse impact on mineral export. A higher 

mineral price can reduce foreign demand for Australian minerals in the global market in the 

presence of high competition from other counterparts. 

In relation to the issues around a conventional productivity index using the Solow Residual 

technique in extractive industries, Rodríguez and Arias (2008) used a translog variable cost 

function to evaluate the productivity growth in Spain’s coal mining sector from 1975 to 2001. 

The variable cost function was estimated using price and quantity information of inputs 

including labour, capital, materials and energy as well as information for prices and quantities 

of coal production as the only output in the model. To capture the effects of natural resource 

depletion, the authors included the level of mineral reserves in their model. This research 

reported that over the study period the effect of non-optimal allocation of fixed factors (capital), 

non-constant returns to scale and resource depletion on estimated Solow Residual TFP was 

sizeable. Among others, the resource depletion appeared to be a more significant factor 

determining productivity growth, demonstrating a consistently negative effect over the study 

period. Accounting for the effects of capital, scale of operation and resource depletion, 
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Rodríguez and Arias (2008) reported differentials between their corrected estimates of the 

technological progress and those estimates from a conventional Solow Residual technique. 

In another sector-level study, Tsolas (2010) applied both non-parametric and parametric 

approaches to evaluate the methodological variation of efficiency estimates in Greek bauxite 

mining over 1970 to 1996. The non-parametric approach followed a bootstrap DEA method 

introduced by Simar and Wilson (1998) to account for noise and random error in the sample 

data. The efficiency model in this study was constructed using real bauxite production as only 

output and total man-shift paid and fixed capital depreciation as proxies for labour and capital 

service inputs. The Wilcoxon/Mann–Whitney and Kruskal–Wallis tests revealed a significant 

variation among efficiency estimates obtained from DEA and SFA methods in this study. SFA 

tends to provide higher technical efficiency estimates than those derived from DEA. However, 

there is a strong correlation between efficiency estimates from the two approaches. This 

correlation improves if bias-corrected DEA estimates are used.   

In a study in the Australian mining context, Lovell and Lovell (2013) questioned the magnitude 

of the productivity decline in the Australian coal mining industry reported by Productivity 

Commission in Topp et al. (2008). Following their index number methodology, Lovell and 

Lovell (2013) applied some minor revisions on the underlying data and re-estimated the 

productivity growth in the period 1991-92 to 2006-07. The outcomes of this re-evaluation 

present a reduction of 4 per cent in the size of productivity (from 25 per cent to 21 per cent) 

during the mining boom period of 2000-01 to 2006-2007. Both approaches, in estimating 

capital input quantity index – including the use of capital income share in factor income or the 

use of capital expense share in factor cost – led to negligible differences in estimates of 

productivity changes. Moving from a value-added framework to a gross output framework, the 

authors found consistent trends but a significant change in the estimated productivity index. 

Productivity declined from 21 per cent to 13 per cent over the period 2000-01 to 2006-07. They 

argued that due to the importance and significant contribution of intermediate inputs (including 

outsourcing) to gross output in coal mining, gross output framework is a useful complement to 

the value-added framework. In terms of the financial implications of productivity changes in 

Australian coal mining, Lovell and Lovell (2013) concluded that the financial performance of 

coal mining improved over the period of study; the productivity growth served as main 

contributor of financial performance to 2000-01, but due to the increased demand for coal, the 

price recovery induced the improving financial performance thereafter. 
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In another study in the Australian mining industry context, Zheng and Bloch (2014) 

investigated the poor mining productivity performance during the 2000s reported in 

conventional reports. They discussed that there is a systematic weakness in the growth 

accounting framework in measuring mining MFP. The growth accounting framework ignores 

the violations in the competitive markets and long-run equilibrium assumptions; also, this 

framework does not include resource inputs in mining productivity. They formed a dual 

measure of MFP for mining to analyse the relationship between true and conventional 

measured MFP. Their analytical model was based on a translog variable cost function to 

decompose the measured MFP to the components capturing the true MFP as well as the effects 

of return to scale, quasi-fixity of capital (capacity utilisation) and natural resource inputs. In 

their productivity analysis model, Zheng and Bloch (2014) included one output (gross value 

added) and three inputs (labour measured by labour service cost, capital measured by 

productive capital stock and resource inputs proxied by productive capital stock for mineral 

and petroleum exploration). Using sector-level data from 1974-75 to 2007-08, they found that 

unlike declining trends in conventional measured MFP (on average by 0.2 per cent per annum), 

the true productivity measure reflects productivity improvement by an average of 2 per cent 

per year. The presence of moderate decreasing returns to scale resulted in a negative scale effect 

on the measured productivity by an average of -0.2 per cent per annum. As production either 

above or below capacity incurs a higher cost, low capacity utilisation in the 1980s and 1990s, 

followed by over-capacity production in 2000s, had been responsible for a considerable 

negative effect (by around -1.4 per cent per annum) on the measured MFP. Resource inputs 

also played a negative role in the productivity performance of the Australian mining sector, 

influencing the measured MFP by -0.66 per cent per annum over the study period. The authors 

concluded that due to the effects of natural resource inputs as well as capacity utilisation and 

operating scale in conventional measured MFP, focusing on this measure without consideration 

of its components misinforms decision makers in the mining industry. 

As presented above, more efficiency and productivity studies have been conducted at sector-

level compared to mine-level or firm-level studies. Among all mining sub-sectors, coal mining 

has been the centre of most studies which shows the importance of this industry in the global 

market. The Australian mining industry also has attracted the most attention in the existing 

literature on mining efficiency and productivity. Given the position of the mining sector in 

Australia’s economy, this focal point is not surprising. From a methodological perspective, 

most studies have applied econometric techniques. As expected, economy-wide and sector-
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level studies are dominated by economists, which is evident from their preference in the 

application of the econometric techniques as opposed to the mathematical programming 

techniques. 

The sector-level studies reviewed in this section have largely focused on productivity growth. 

Consistent with economy-wide studies, it is more appropriate to study productivity growth and 

its contributing components in the sector-level research. Total factor productivity (TFP) or 

multifactor productivity (MFP) indices are used in these studies to evaluate productivity growth 

in the mining sector. Labour, capital and intermediate inputs are the three main inputs in the 

existing literature. With slight variations, the variables used to measure these inputs are 

consistent among these studies. Also, real value added, real gross output and production output 

are among the main variables used to measure output in productivity models. The main 

difference among these studies concerns the consideration of natural resource inputs. Only two 

studies have included natural resource inputs (or the effects of geological characteristics) in 

their productivity models. Kulshreshtha and Parikh (2002) included overburden removal as the 

undesirable output, which partially reflects the effects of natural resource characteristics. Zheng 

and Bloch (2014) is the other study that investigated the effects of natural resource inputs on 

productivity growth. They used mineral and petroleum exploration capital stock as a proxy for 

natural resource inputs. 

Despite the low number of articles published in sector-level productivity studies, the developed 

literature covers various aspects of sector performance. Both productivity measures and driving 

factors have been discussed in these studies. Specifically, in the context of Australia, a valuable 

set of studies have been conducted over the past two decades such as Mahadevan and Asafu-

Adjaye (2005), Lovell and Lovell (2013) and Zheng and Bloch (2014). These studies 

contributed to the literature by emphasising the importance of productivity components 

(including technological progress, operating scale, capacity utilisation and natural resource 

inputs) in the interpretation of productivity measures. Moreover, Mahadevan and Asafu-

Adjaye (2005) is among the very few mining sector studies that investigated the role of 

macroeconomic factors (such as inflation, commodity prices, export and interest rate) in 

productivity growth.  

Nevertheless, there are other areas to further explore in future sector-level studies. The 

development of more accurate methods to capture the effects of natural resource inputs, the 

investigation of undesirable outputs (specifically, environmental impacts of mining 
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operations), and the testing of economic driving factors both nationwide and globally are 

among the possible future research topics. 

Table 3.3: Selected sector-level studies on efficiency and productivity of mining industry  
Study Method Data Inputs/Outputs Indexes Results 
Kulshreshtha
 and Parikh 
(2002)  

DEA   
Malmquist 
Index  

30 coal mining 
areas 
(Underground 
and Opencast) 
from 1985 to 
1997 in India  

Inputs: Man-shift, 
mining machineries 
(in horse power unit), 
cranes and dumpers 
(opencast), rope 
haulage 
Outputs: Production 
volume, overburden 
removal 

Malmquist 
productivity 
Technical 
efficiency 

There were rises and declines in 
both opencast and underground 
mine productivity over the study 
period. The productivity 
improvement in opencast 
mining was technology growth-
driven, but efficiency growth-
driven in underground mining.  

Asafu-
Adjaye and 
Mahadevan 
(2003) 

SFA 
(translog cost 
frontier, input 
oriented)  

Australian 
mining sub-
sectors: Coal, 
Iron Ore, Copper 
Ore, Gold Ore, 
and Oil and Gas 
from 1968-1969 
to 1994-1995  

Inputs: Total cost 
(aggregation of all 
input prices including 
capital, energy and 
labour)  
Outputs: Value 
added  

Output growth 
Input growth 
TFP growth 
Economic 
efficiency 
Returns to scale 
Technological 
progress 

Mining output growth was 
largely input-driven, rather than 
productivity-driven. Cost 
inefficiency was the main factor 
causing low TFP growth.  

Mahadevan 
and Asafu-
Adjaye 
(2005)  

SFA (translog 
cost frontier, 
input 
oriented)  

Australian 
mining sub-
sectors: Coal, 
Iron Ore, Copper 
Ore, Gold Ore, 
and Oil and Gas 
from 1967-1968 
to 1997-1998  

Inputs: Total cost 
(aggregation of all 
input prices including 
capital, energy and 
labour)  
Outputs: Value added 

Output growth 
Input growth 
TFP growth 
Economic 
efficiency 
Returns to scale 
Technological 
progress 

Price inflation (domestic 
inflation slightly and mineral 
prices strongly) had a negative 
effect on mining TFP growth.  
Interest rate had a slight 
negative effect, but export 
growth had a positive influence 
on the mining TFP growth.  

Rodriguez 
and Arias 
(2008)  

Translog vari
able cost 
function (TFP 
growth 
study)  

Spain's coal 
mining sector 
from 1975-2001  

Inputs: Labour, 
material, energy, 
capital, reserves  
Outputs: Production 
volume  

Solow Residual 
TFP growth 
Technical change 
effect 
Fixed factors 
Scale of 
production 
Resource 
depletion effect 

On average, around 5% TFP 
growth was recorded over the 
period. Reserves depletion had a 
significant negative effect on 
productivity growth.  
Non-optimal allocation of fixed 
factors and non-constant return 
to scale showed slightly positive 
effects on productivity growth.  

Tsolas 
(2010)  

DEA (output- 
oriented 
NIRS DEA)  
Bootstrap-
DEA  
SFA  

Greek bauxite 
mining from 
1970 to 1996  

Inputs: Labour (total 
man-shift hours 
paid), Capital (fixed 
capital)  
Outputs: Production 
volume  

Technical 
efficiency 

SFA and DEA did not provide 
similar results (DEA exhibits 
more inefficiency than SFA), 
but there was a positive 
relationship between results of 
DEA and SFA.  

Lovell and 
Lovell 
(2013) 

Non-frontier 
TFP 
estimation 
(Cobb-
Douglass 
production 
function) 

Australian coal 
mining from 
1990-91 to 2006-
07 

Inputs: Gross fixed 
capital formation, 
number of persons 
employed, 
intermediate inputs 
(only in the gross 
output model) 
Output: Value added 
/ gross output 

Tornqvist 
productivity 
index 

Unlike previous reports, the 
magnitude of productivity 
decline was estimated to be 21% 
over 2000-01 to 2006-07 using 
the value-added framework; 
moreover, using the gross 
output framework the 
productivity decline shrinks to 
only 13%. 

Zheng and 
Bloch (2014) 

Translog vari
able cost 
function  

Australian 
mining sector 
between 1974–
1975 and 2007–
2008  

Inputs: Labour 
service, capital 
service, mineral and 
petroleum 
exploration capital 
stock 
Outputs: Gross value 
added 

Multifactor 
productivity 
index 

After removing the effects of 
returns to scale, capacity 
utilisation and natural resource 
inputs, from 1974-75 to 2007-08 
MFP grew by 2% per annum, 
significantly higher than the 
published MFP index of -
0.02% per annum. 
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3.3.2 Mining Efficiency and Productivity Studies in Australia 

Due to the importance of mining in the Australian economy, several studies have investigated 

the sector’s productivity growth and its determinants. While these studies have focused on the 

productivity performance at the sector level, their findings can support decision makers in 

mining businesses in addition to those in federal and state governments. This section aims to 

look at the existing literature in the Australian context to understand, first, the productivity 

performance of the mining sector in Australia, and second, the determinants driving this 

performance particularly in recent years. 

Among the early studies in efficiency and productivity analysis of the Australian mining 

industry, Asafu-Adjaye and Mahadevan (2003) and Mahadevan and Asafu-Adjaye (2005) in 

two separate papers argued the limitation of conventional growth accounting methods to 

identify the source of productivity growth. Using a stochastic cost frontier model, they 

investigated the components of TFP growth, namely economic efficiency, returns to scale, 

technological progress and price effects, in five major Australian mining sub-sectors including 

coal, iron ore, copper, gold and oil and gas between 1968-1969 and 1994-1995. Their study 

reported that the poor TFP performance of the Australian mining industry was associated with 

weak cost efficiency. Moreover, they revealed the strong relationship between productivity 

growth and economic factors of domestic inflation, mineral price inflation, interest rate and 

export growth. 

Toward an investigation into the nature and causes of the mining productivity growth in 

Australia, Topp et al. (2008) analysed data from the ABS and other sources over the period 

1974-75 to 2006-07. They found that the Australian mining industry had a negligible MFP 

growth of 0.01 per cent per annum over the study period, with a sharp decline by 24.3 per cent 

between 2000-01 and 2006-07. They reported that a slow output growth along with a strong 

growth in labour and capital inputs are to be blamed for this poor performance. To explain why 

output growth could not keep pace with input growth, Topp et al. (2008) discussed the role of 

resource depletion and investment-production lag in the mining activities. Accounting for the 

quality of natural resource inputs and the lag between capacity building investment and 

production, they estimated both the conventional and adjusted MFP growth of the mining 

sector and sub-sectors in Australia. 
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To capture the effects of resource depletion, the authors introduced a composite yield index 

using the average metal ore grades, the saleable to raw coal ratio, as well as the implicit oil and 

gas flow rates. According to this index, they found that the composite index of mining yield 

fell by 1.5 per cent per annum between 1974-75 to 2006-07. Taking into consideration the 

effect of resource depletion using the yield index, the MFP growth changes to 2.5 per cent per 

annum in comparison with 0.01 per cent per annum growth in the unadjusted MFP over this 

period. Furthermore, focusing on the sharp decline in the mining productivity index between 

2000-01 to 2006-07, Topp et al. (2008) discovered that both resource depletion and capital-

production lag contributed substantially to the deterioration of the mining MFP performance 

in Australia. By removing the adverse effects of these two factors, the MFP increases by 8 per 

cent from 2000-01 to 2006-07. 

Loughton (2011) criticised the practicality of the composite yield index proposed by Topp et 

al. (2008) and argued that the required data to construct such measure is not readily available 

on an annual basis for a National Statistical Office. As an alternative method, Loughton (2011) 

proxied the natural resource inputs by the ratio of cumulative extraction to the total reserves 

available for extraction and found that the quality of natural resources in mining decreased 

significantly from 1985-86 to 2009-10. Controlling for the adverse effect of natural resource 

quality resulted in a positive annual MFP, changing by 2.05 per cent instead of a negative 

change of -0.15 per cent per year officially reported. 

Syed et al. (2013) and Syed et al. (2015) examined the productivity growth in the Australian 

mining industry at national, regional and sector levels. Further to the estimation of productivity 

growth over 1985-86 to 2009-10 period, their research outlines the measurement and 

interpretation issues surrounding the conventional productivity reports in the context of the 

mining industry. In line with findings by Topp et al. (2008), they argued that the main 

contributors to the poor productivity performance are resource depletion and production lags. 

After removing the effects of resource deposit quality (proxied by energy consumption) and 

production lag (estimated as a two-year lag), the MFP growth of Australian mining increases 

from -0.65 per cent per annum to 2.5 per cent per annum between 1985-86 and 2009-10. Using 

a stochastic frontier production function, they also decomposed the components of productivity 

growth and found that, in contrast to insignificant technological progress, technical efficiency 

and scale effects contributed positively and significantly to the Australian mining MFP over 

the study period. 
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In a discussion on the reported productivity trends in the Australian coal mining, Lovell and 

Lovell (2013) revised data used by Topp et al. (2008) and re-estimated the MFP growth. They 

found that by applying some changes in the underlying data, the MFP changes over 2000-01 

to 2006-07 decrease from 25 per cent to 21 per cent. Moreover, moving from a value-added 

framework to a gross output framework of MFP index, the MFP changes shrink to 13 per cent, 

which reflects the importance of intermediate inputs such as outsourcing in coal mining.  

Topp and Kulys (2013) discussed the role of natural resource inputs on measured value added 

and the MFP estimates, while such inputs are not measured directly in the National Account. 

They emphasised that while the publication of an adjusted measure of MFP for the natural 

resource inputs by the ABS is useful to realise their contribution to productivity performance, 

the reliability of the gathered information is under question. Natural resource inputs are not 

generally tradeable in market; hence, there is no accurate way to calculate the effects of such 

inputs on production output. 

Zheng and Bloch (2014) argued that the conventional published productivity performance for 

the Australian mining sector did not reflect true MFP growth and was biased by measurement 

issues and general conceptual weaknesses. Using a translog variable cost function method, they 

decomposed the measured MFP growth into the true MFP growth (or unbiased MFP growth) 

and the effects of returns to scale, capacity utilisation and natural resource inputs. They found 

that the MFP performance of Australian mining from 1974-75 to 2007-08 had deteriorated 

mainly due to the negative effect of returns to scale, capacity utilisation and natural resource 

inputs by -0.2 per cent, -1.4 per cent and -0.66 per cent per annum respectively; however, the 

average true MFP growth was 2 per cent per year over this period. 

To provide a better understanding of the contribution of natural capital in the economic growth 

and productivity performance, Hoang (2018) compared the different methods of valuation of 

depletion or service flows from natural capital. This study used the ABS data over the 1989-90 

to 2015-16 period. The adjusted MFP estimates in this study from all applied methods – 

including Resource Rent, Residual Method, Diewert and Fox, Jorgenson, Exogenous and No 

Capital Gains – show the strong presence of natural capital contribution to MFP growth. Given 

the consideration of natural capital, the MFP growth rates are estimated to be higher by at least 

0.4 per cent per year over the study period. The author concluded that despite the importance 

of natural capital in economic growth and productivity performance, the inclusion of its effects 
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on the estimation of MFP growth will be a remaining challenge due to the lack of appropriate 

data, difficulties in setting the price and accounting for quality change. 

The review of the existing literature in efficiency and productivity analysis of the Australian 

mining industry shows the attempts of researchers to explain the poor MFP performance across 

the sector, particularly during the 2000s’ mining boom. This research suggests that the official 

MFP index published by ABS is substantially influenced by changes in natural resource inputs. 

Using different time periods and methodologies, these studies reported consistently moderate 

and positive adjusted estimates of MFP growth between 2 per cent to 2.5 per cent per cent per 

annum over the past three decades (see e.g. Topp et al. ,2008; Loughton, 2011; Zheng and 

Bloch, 2014; Syed et al., 2015). Hence, the official MFP growth estimates are negatively 

biased-indicators of technological progress of the mining industry in long run. Penney et al. 

(2012) suggested that the rising cost structure in the Australian resources sector represents a 

new challenge to mining companies. The direct impact of this structural change on mining 

companies is an increase in the input prices, which adversely affect industry productivity. 

However, Tilton (2014) argued that while the association between mineral commodity prices 

and productivity is strong and negative, also the natural resource depletion imposes increasing 

cost to mining operations, the technological progress can keep up pace to maintain prices 

reasonably low. 

In addition to resource depletion, there are a range of other factors contributing to the 

productivity challenge in the Australian mining sector. Sharp increases in input prices, 

considerable lags between the investment and production phases, scale inefficiency and 

capacity utilisation have been among main factors behind poor mining MFP performance 

during the mining boom of 2000s. Syed et al. (2015) suggested that due to the positive true 

MFP growth and technological progress in the mining industry, the mining industry does not 

need any specific policy implemented beyond general advice in improving productivity. The 

productivity decline in the Australian mining industry is not due to a poor policy 

implementation, but rather it has resulted from the influence of exogenous factors such as price 

fluctuations and resource depletion. The improvement of productivity performance in the 

mining industry can be supported by growth in innovation, an upskilled workforce and faster 

technological progress. 

In the mining productivity literature, only two studies attempted to decompose the productivity 

growth to investigate the pattern of efficiency in the mining industry. Asafu-Adjaye and 
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Mahadevan (2003) reported that cost inefficiency is responsible for the poor productivity 

growth in the mining industry. The lack of using a least-cost combination of inputs (i.e. 

allocative inefficiency) and the existing excess capacity of inputs in producing outputs 

(technical inefficiency) resulted in negative efficiency effects on mining productivity over 

1968-69 to 1994-95. In contrast, Syed et al. (2015) found a positive and strong influence of 

technical efficiency on the adjusted measure of MFP growth during 1990-1991 to 2009-2010 

period. Although these two studies provide opposite views on the efficiency of Australia’s 

mining industry, it cannot be easily concluded that efficiency in the sector has improved over 

time. The difference might arise from the way productivity was estimated. The former study 

applied a cost frontier technique while the latter used the production frontier method in 

estimation of efficiency changes. In addition, the combination of variables included in the 

productivity model was different. Unlike Asafu-Adjaye and Mahadevan (2003), Syed et al. 

(2015) introduced a proxy into the productivity model to reflect changes in quality of natural 

resource depletion. 

Another highlight from the literature review concerns the scope of study; that is, the conducted 

research is limited to sector-level studies. Given the importance of mining activities in the 

Australian economy, extending the efficiency and productivity analysis to firm-level and mine-

level studies can support policy makers and mining businesses to explore the dimensions of 

economic performance and implement improving actions across mining enterprises and 

operations. Mining companies make up the largest division listed on the Australian Securities 

Exchange (ASX). Hence, evaluation of the economic performance of mining companies can 

benefit the Australian community who are contributing to the sector through the share market. 

In summary, there is a rich body of knowledge in assessing the productivity of the Australian 

mining sector. In particular, great attention has been paid to the contributing factors of poor 

productivity in the sector. However, the existing literature presents a gap in the evaluation of 

efficiency performance. The existing efficiency analyses of the mining sector provide 

ambiguous results and no work has been published discussing the efficiency of mines or mining 

businesses in Australia. 
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Table 3.4: Selected Productivity Studies in the Australian Mining Sector 
Study Industry Aims Main Findings 
Asafu-
Adjaye and 
Mahadevan 
(2003) 

Mining sectors (coal, 
iron ore, copper, 
gold, and oil and gas) 
Study period: 1968-
69 to 1994-95  

− Adressing the limitation of 
growth accounting methods 
in identifying the source of 
productivity growth 

− Testing the components of 
mining productivity growth 

− Over the period of study, mining output growth 
was largely input-driven, rather than productivity-
driven. 

− Both allocative and technical inefficiencies played 
as primary causes of poor productivity growth. 

Mahadevan 
and Asafu-
Adjaye 
(2005)  

Mining sectors (coal, 
iron ore, copper, 
gold, and oil and gas) 
Study period: 1967-
68 to 1997-98 

− Testing the link between 
inflation and productivity 
growth 

− Both domestic and mineral price changes influence 
the mining TFP growth, but mineral price changes 
have an stronger negative effect.  

− Interest rate negatively and export growth 
positively contribute to the mining TFP growth. 

Topp et al. 
(2008) 

Mining sector (coal, 
oil and gas, iron ore, 
and other metal ore) 
Study period: 1974-
75 to 2006-07 

− Identifying measurement and 
interpretation issues in the 
estimation of the productivity 
performance of the mining 
industry in Australia 

− Long lead times between investment and 
production have a significant adverse effect in the 
short term, while depletion of natural resource has a 
long-term negative impact on mining MFP. 

− By controlling investment-production lags and 
natural resource depletion, MFP growth turns out to 
be positive over the 2000s’ mining boom. 

Loughton 
(2011) 

Mining sector 
Study period: 1985-
86 to 2009-10 

− Introducing practical method 
of resource depletion 
estimation for a National 
Statistical Office in an annual 
basis 

− The quality of natural resources in mining 
decreased significantly from 1985-86 to 2009-10. 

− Adjusting for resource depletion, the annual 
productivity growth turned to be 2.05% instead of -
0.15% from conventional measure. 

Syed et al. 
(2013) 
Syed et al. 
(2015) 

Mining sector 
Study period: 1985-
86 to 2009-10 

− Explaining the apparent 
decline in mining 
productivity growth published 
in a report by the ABS report 
which showed a decline by 
almost a half between 2000-
2001 and 2012-2013 

− Resource depletion and the lags between capital 
investment and output response are the two main 
drivers of declining MFP. 

− Accounting for resource depletion and investment-
production lags, the annual MFP growth becomes 
2.5% (adjusted) from -0.65% (unadjusted) for the 
period 1985-1986 to 2009-2010. 

Lovell and 
Lovell 
(2013) 

Coal mining 
Study period: 1990-
91 to 2006-07 

− Investigating the productivity 
decline in the 2000s reported 
in a PC paper 

− Comparing productivity 
estimated from value added 
and gross output frameworks 

− The magnitude of productivity declines in 
Australian coal mining was estimated to be 21% 
over 2000-01 to 2006-07. 

− A gross output framework of MFP suggests a 
decline by 13% over this period. 

Topp and 
Kulys 
(2013) 

Mining, Agriculture, 
and Utilities sectors 
Study period: 1974-
75 to 2006-07 

− Review of the effect of 
natural resource inputs on 
MFP growth  

− The reliable data for measuring natural resource 
inputs and their use in production, in a way that can 
be readily incorporated in a growth accounting 
framework, is not available. 

Zheng and 
Bloch 
(2014) 

Mining sector 
Study period: 1974-
75 to 2007-08  

− Testing the mining sector’s 
poor MFP performance as 
measured by the growth 
accounting formula 

− Decomposing MFP to 
technical change, returns to 
scale, capacity utilisation and 
natural resource inputs 

− Declining natural resource inputs, the effects of 
capacity utilisation and returns to scale are main 
components responsible for deteriorated MFP. 

− After removing the effects of return to scale, 
capacity utilisation and natural resource inputs, the 
true MFP growth become 2% per annum from 
1974-75 to 2007-08 rather than the published MFP 
index of -0.02%. 

Hoang 
(2018) 

Mining sector 
Study period: 1989-
90 to 2015-16  

− Understanding the 
contribution of natural capital 
to productivity growth 

− The inclusion of natural capital results in a higher 
mining MFP growth by at least 0.4 percent per year 
over 1989-90 to 2015-16. 

  

3.4 Determinants of Economic Efficiency and Productivity in Mining Industry 

The examination of efficiency and productivity determinants has been a long-standing interest 

in economics literature in the context of the mining industry. Along with the evaluation of 
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efficiency and productivity, some studies have extended their analysis to the driving factors of 

economic performance at the mine, firm or sector level. In the application of both econometric 

and mathematical programming approaches, researchers have investigated the role of the 

micro-level and macro-level factors in determining efficiency and productivity performance. 

Although most studies discussed the causes of economic performance, the current research 

limits its review to those studies that employed a quantitative approach to explore contributing 

elements of efficiency and productivity. Table 3.5 summarises the reviewed literature on 

determinants of efficiency and productivity in mining industry. 

 

3.4.1 Studies in Determinants of Mining Efficiency and Productivity 

An early study into the mining industry conducted by Byrnes et al. (1984) analysed the 

relationship between technical efficiency and mine characteristics of a sample of 15 coal mines 

in Illinois. The authors examined the relationship between mine efficiency estimates derived 

from a DEA model and mine characteristics including average number of seams, average 

labour output ratio, average non-fatal accidents, average years of mine opening and average 

earth-moving capacity. Furthermore, they discussed the effect of mine size on technical 

efficiency. The results of this evaluation, which were purely based on a comparison of 

descriptive statistics of efficient versus inefficient mines, show that on average, efficient mines 

have more coal seams than inefficient mines. Also, efficient mines have a higher stripping ratio. 

Stripping ratio depends on the mine geological characteristics and by definition it is the ratio 

of removed overburden to retrieved coal. Labour productivity (i.e. labour-output ratio) is higher 

in efficient mines than in those deemed inefficient. Moreover, comparing against inefficient 

mines, they found that efficient mines are safer, reporting less non-fatal accidents. In terms of 

vintage of the mine, this study showed that newer mines are technically more efficient. Finally, 

they concluded that the efficiency of mines positively depends on their capital capacity 

measured by total earth-moving capacity. 

Using an efficiency model developed by Byrnes et al. (1984), Byrnes and Färe (1987) analysed 

the association of mine characteristics and the efficiency performance of a large sample of 186 

surface coal mines in the U.S. In addition to overall technical efficiency, they investigated the 

effects of mine characteristics on three components of technical efficiency; namely, pure 

technical efficiency, input congestion and scale efficiency. Five characteristics were examined 
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in this study including mine location, union status, mine age, captive status and acreage 

reclaimed. This study used descriptive statistics (arithmetic averages) to discuss the 

relationship between technical efficiency and mine characteristics. This research found that 

mine location is a main determinant of efficiency gain. On average, the overall technical 

efficiency as well as each efficiency component of mines located in Texas were higher than 

mines located in the other states. Yet, compared to the other states, mines located in Arkansas 

performed poorly as a result of low scale efficiency. In addition, this study reported that union 

mines are more efficient than non-union mines. While none of the non-unionised mines were 

efficient overall, over 11 per cent of unionised mines were fully efficient. Unionised mines also 

outperformed non-unionised mines in all efficiency components. The other finding from 

Byrnes and Färe (1987) study is the relationship between mine operating age and its efficiency. 

Except in mines with an operating age of 3 years or less, age exhibited a negative impact on 

efficiency performance (i.e. aged mines experienced lower efficiency). Moreover, captive 

mines performed better than non-captive mines in terms of overall technical efficiency as well 

as each efficiency component. Unlike non-captive mines, captive mines do not sell all their 

output on the open market, but instead a proportion of their production is consumed by a parent 

or subsidiary company. Lastly, no specific patterns were reported in this study regarding the 

relationship between efficiency and reclamation ratio (ratio of acres reclaimed to acres 

stripped). 

Byrnes et al. (1988) applied both parametric and non-parametric approaches to examine the 

effects of unionisation on efficiency performance of the two samples of surface coal mines in 

the Interior and Western U.S. This study in the first stage applied non-parametric technique of 

DEA, and then conducted the second-stage analysis by regressing each of the calculated 

efficiency measures against variables representing natural condition and mine union status. The 

results of their second-stage analysis showed that variation in two geological characteristics, 

including thickness of coal seams and amount of overburden removed, has a minor effect on 

variation in efficiency performance. On the other hand, the status of unionisation has a 

significant effect on the efficiency performance of mines in the sample. They concluded that 

controlling for the effect of natural condition, union mines are more efficient than non-union 

mines. The results of the parametric approach based on the Cobb-Douglas production function 

also broadly supported the results achieved from the non-parametric approach. 
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In a study of mining productivity in Australia, Mahadevan and Asafu-Adjaye (2005) 

investigated the association between productivity and inflation. TFP estimates for five 

Australian mining industries including coal, iron ore, copper, gold and oil and gas obtained 

from a parametric translog cost frontier technique were used to conduct causality tests between 

productivity growth and macroeconomic variables of domestic inflation, changes in mineral 

prices, mineral export growth and real interest rate. Their results of the Granger-causality tests 

based on the VAR model showed that productivity growth in the Australian mining sector is 

driven by domestic inflation, movement in mineral prices and changes in the export volume. 

The results from the ordinary least square (OLS) regression model showed that domestic 

inflation and mineral price changes impact the productivity growth adversely, while the 

magnitude of effects of mineral price changes on productivity growth is greater than those 

effects from domestic inflation. The export growth was shown to have a positive effect on 

mining productivity. The authors discussed that higher mineral prices reduce the international 

demand for Australian mining products, causing a reduction in export volume and productivity 

growth. The research findings also revealed that real interest rate negatively influences mining 

productivity growth, implying that higher interest rates reduce productivity growth through 

lowering incentives for investment in mining industry. While the outcomes of this study 

support the macroeconomic directions in monetary policy around inflation, targeting and 

lowering interest rate by the Reserve Bank of Australia (RBA), it expressed concern about 

trends in the mining production costs which negatively impact productivity. 

Koop and Tole (2008) investigated the effects of ownership and location on the environmental 

and technical efficiency of gold mines. In their study, using a Bayesian stochastic production 

frontier technique, Koop and Tole (2008) analysed the role of environmental bad outputs (i.e. 

mining operation waste such geological waste, chemical waste and non-tradable low-grade 

ore), ore grade, ore resources and mine operation type in production of gold. Their findings 

show while there is strong evidence confirming that the amount of waste and ore quality 

positively contribute to gold production, the volume of ore resources seems to be less 

associated with output. Moreover, the findings suggest that the technological differences 

between open-pit mining and underground mining result in a difference in transformation of 

inputs to outputs from an environmental perspective. While the model specification – in terms 

of inclusion of environmental impact, geological characteristics and operation type – turns out 

to be crucial in determining operation output, the mine ownership and the county of operation 

do not appear to have significant effects on production output. Mines operating under control 
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of a foreign firm have marginally higher efficiency performance and mines located in rich 

countries are slightly more efficient; nevertheless, the differences are not statistically 

supported. The authors discussed that in the case of mines operating under multinational gold 

mining companies, producing pollution is not necessarily associated with the location of 

operations. These multinational companies defined and implemented a standard of 

performance covering all operation locations. While these findings do not ascertain that the 

gold mining operations produce low pollution, they show multinational companies do not 

produce significantly more pollution in poor countries. 

In a firm-level study, Eller et al. (2011) applied both DEA and SFA to investigate the 

differences in efficiency performance among 78 national and private oil companies in the 

period of 2002 to 2004. In the application of a non-parametric approach, they used a two-stage 

procedure. The first stage involved the estimation of the efficiency scores from a CRS DEA 

model, and the second stage investigated the relationship between vertical integration, 

ownership and efficiency performance through a linear regression model. In the application of 

a parametric technique of SFA, they followed a single-step method proposed by Battese and 

Coelli (1995) to simultaneously estimate the efficiency estimates and the coefficients of 

explanatory variables of vertical integration and government ownership. Consistent findings 

from both parametric and non-parametric techniques showed that vertical integration and 

government ownership influence the revenue efficiency performance of oil companies. 

Vertical integration, i.e. being engaged in both upstream (exploration and production) and 

downstream (refining and marketing) operations, positively affect revenue efficiency. 

However, greater government ownership results in less revenue efficiency. National oil 

companies tend to hire excess employees and sell their products to domestic consumers at 

subsidised prices, which in turn reduces their ability to produce revenue from a certain level of 

inputs. Once controlling for excess employees and subsidised domestic prices, this study found 

that the government ownership contributes positively in revenue efficiency gains in oil 

companies.  

Using a large sample of mining firms in India, Das (2012) investigated the role of private versus 

public ownership in the productivity performance of mining firms across metallic, non-

metallic, coal and petroleum sector. The comparison of results from the application of Cobb-

Douglass production function in a semi-parametric method showed that private companies 

perform better than public companies in terms of productivity, especially in metallic, non-
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metallic and coal sectors. Further analysis using a fixed effect GMM regression model showed 

that private ownership as well as initial (or last year) productivity performance are the two 

main determinants of productivity gains among mining firms. Moreover, age contributes 

positively in the productivity of metallic, non-metallic and coal mining firms. 

Questioning the belief of the permanent rise of real mineral commodity prices in the future due 

to the inability of new technology to offset the effects of resource depletion, Tilton (2014) 

discussed the determinants of productivity changes and technological progress in the copper, 

aluminium, iron ore and coal mining industries. This study categorised the common 

productivity determinants in the mining industry to innovation and technological change, 

resource depletion and ore quality, government regulations, worker quality, investment lags, 

economies of scale, capacity utilisation, unplanned production stoppages (e.g. strikes and 

accidents) and other factors. While the first two factors govern the long-run productivity 

performance, the remaining factors have a short-term and cyclical influence on the mining 

productivity. Moreover, the author discussed that while these factors are mainly attributed to 

the cyclical changes over the past decade due to the global mining boom and severe fluctuation 

in mineral commodity prices, there is a strong association between mineral prices and 

productivity. In periods with low mineral prices, there is substantial pressure on management 

and labour to work together to reduce cost and enhance productivity. On the contrary, the 

mining industry is less motivated to reduce costs and improve productivity if mineral markets 

are strong and prices are high. This review concluded that unlike existing beliefs, the new 

technology can continue to offset the adverse effects of resource depletion; hence, real mineral 

commodity prices will be lower than what are normally expected. 

 

3.4.2 The Literature Gaps in Analysis of Efficiency and Productivity Determinants 

The review of studies investigating the determinants of efficiency and productivity in the 

mining industry indicates differences in the analysis approach depending on the level of study. 

Table 3.5 presents a summary of studies in this context. Despite similarities in the modelling 

of efficiency and productivity among mine-level, firm-level and sector-level studies, the 

variables of interest in the analysis of performance determinants are highly attributed to the 

level of studies. Mine-level studies tend to focus on the role of operational factors and mine 

characteristics in efficiency performance. Geological characteristics are among the most 
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important factors investigated in mine-level efficiency studies. Firm-level studies seem to be 

interested in the influence of firm-specific factors such as ownership, firm age and firm size on 

the firm’s performance. Meanwhile, the macroeconomic factors that contribute to productivity 

growth have been the focus of sector-level studies. In particular, factors such as domestic 

inflation, export and interest rate have been discussed in the productivity literature of the 

mining industry. 

The existing literature explains some driving factors behind changes in the efficiency and 

productivity of mining activities; however, the existing body of knowledge is unable to provide 

a comprehensive picture describing the causes of economic performance of mining industry. 

Very limited studies have examined the contributing factors to mining efficiency and 

productivity. These studies have reviewed certain variables while a broader view is needed to 

assist business management and policy makers in improving mining industry performance. The 

analysis of performance determinants in mining studies, especially in non-parametric 

approaches, has relied on simple regression techniques; however, two-stage DEA has been 

developed significantly in the last decade. Better modelling is required to eliminate the issues 

surrounding the second stage of DEA (Simar and Wilson, 2007, 2011). These shortcomings 

indicate the need for further work in evaluating the driving factors of efficiency and 

productivity in the context of the mining industry. 

Unlike the mining sector, the body of knowledge on the analysis of efficiency and productivity 

determinants in other sectors seems to be developed and rich. In recent years, scholars in 

economics and management science have advanced the application of frontier techniques 

toward identifying the contributing factors of efficiency and productivity. In the application of 

non-parametric models, the two-stage bootstrap techniques developed by Simar and Wilson 

(2007, 2011) have been largely utilised in recent literature. For instance, Biener et al. (2016) 

studied the role of factors including international diversification, size, specialisation, 

organisational form, leverage, premium growth, age and year-specific effects on the efficiency 

and productivity of insurance companies in Switzerland. Sufian et al. (2016) examined the 

determinants of efficiency in the Malaysian banking sector, given a set of variables describing 

bank characteristics (e.g. credit risk, diversification, operating cost stability, liquidity risk, size, 

capitalisation and bank origin) and a set of variables explaining economic and financial market 

conditions (e.g. GDP, inflation, banking system concentration, Z-Score and size of the equity 

market). Chowdhury and Zelenyuk (2016) applied DEA with a truncated regression approach 
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to investigate the drivers of hospital service performance in Ontario. They tested the effects of 

factors such as geographical location, size, teaching status, occupancy rate, non-price 

competition, outpatient-inpatient ratio, rate of unit producing personnel, quality, case-mix 

index and year-specific factors. 

Table 3.5: Selected studies on determinants of mining efficiency and productivity 
Study Method  Country and 

Industry 
Level of 
Study 

Efficiency / Productivity 
Indexes 

Determinants 

Byrnes et 
al. (1984) 

DEA 
Descriptive 
analysis 

U.S.;  
Coal mining  

Mine Overall technical 
efficiency 
 

Average number of seams 
Average labour output ratio 
Average non-fatal accidents 
Average years of mine opening 
Average earth-moving capacity 
Mine size (output) 

Byrnes and 
Fare (1987)  

DEA 
Descriptive 
analysis 

U.S.;  
Coal mining  

Mine Overall technical 
efficiency 
Pure technical efficiency 
Input congestion 
Scale efficiency 

Location of mine 
Union status of mine 
Year mine opened for operation 
Production not sold in open 
market (captive) 
Acres reclaimed to acres 
stripped ratio 

Byrnes et 
al. (1988)  

DEA 
Regression 
analysis 
Econometric 
analysis (Cobb-
Douglas) 

U.S.;  
Coal mining  

Mine CRS technical efficiency 
NIRS technical efficiency 
VRS technical efficiency 
Input congestion 
Scale efficiency 

Union status (non-union, 
UMWA, other unions) 
Geological characteristics 
(thickness of coal seams, 
overburden removal) 

Mahadevan 
and Asafu-
Adjaye 
(2005)  

SFA (translog 
cost frontier, 
input oriented)  

Australia; 
Mining sector 
(coal, iron ore, 
copper, gold, and 
oil and gas) 

Sector Output growth 
Input growth 
TFP growth 
Economic efficiency 
Returns to scale 
Technological progress 

Domestic inflation 
rate 
Change in the price of mineral 
products 
Real interest rate 
Real mineral export growth rate 

Koop and 
Tole (2008) 

Bayesian 
stochastic  
frontier 

Global; 
Gold mining 

Mine Technical efficiency 
Environmental efficiency 

Ownership (domestic or 
foreign) 
Location county (rich or poor) 

Eller et al. 
(2011)  

DEA, Output 
Oriented  
SFA 
Linear regression 
analysis 

Global; 
Oil  

Firm Revenue efficiency Vertical integration (upstream 
and downstream operations) 
Government ownership 
Excess employees and 
subsidised domestic prices 

Das (2012)  TFP estimation 
(OLS and SPM) 
Fixed effect 
GMM regression 

India; 
Mining industry 
(metallic, non-
metallic, coal and 
petroleum)  

Firm TFP index Ownership 
Age 
Initial TFP 

Tilton (2014) Discussion on 
existing literature 
for TFP 
estimation 

Global; 
Copper, 
aluminium, iron 
ore and coal 
mining 

Sector TFP index Mineral commodity prices 

Overall, there are gaps in the existing literature on the efficiency and productivity analysis of 

the mining industry, requiring further work. The existing literature contains the examination of 

a limited number of factors. Regardless of the level of study, the extant literature does not 

provide a broad picture of the influencing factors. Specifically, at firm level, the effects of 

various firm-specific factors are unknown, and for those investigated in the literature, the 
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available knowledge is limited to one or two studies. This thesis attempts to provide a broader 

view on the effects of firm-specific factors on the efficiency performance of mining companies. 

The literature review in this chapter displayed the importance of factors such as ownership, 

size, age, location, product type, diversification, capacity utilisation, business risk and growth. 

Chapter 5 discusses these factors in detail. 

The other gap in the literature is in relation to the applied methodology. The second-stage 

analysis of a DEA method is commonly involved in the application of a regression model using 

techniques such as OLS or Tobit. It has been the case for studies in the mining sector also. As 

Simar and Wilson (2007, 2011) showed, such models lead to inconsistent estimates of 

coefficient parameters. The utilisation of techniques like two-stage bootstrap DEA succeeds in 

dealing with issues such as the serial correlation among efficiency models and explanatory 

variables. Chapter 4 introduces a robust technique in the application of a two-stage DEA 

approach. 

 

3.5 Summary 

In the economics literature, efficiency and productivity are among most common measures of 

producers’ performance. Productivity is simply the ratio of outputs to inputs. Labour 

productivity, capital productivity, capital-labour MFP and capital-labour-energy-material-

service MFP are the most frequently used measures of productivity in the literature. In the 

public community and in the media, productivity and efficiency are used interchangeably; 

however, their economic definitions are different. While productivity measure looks at the 

input and output values in each individual producer, efficiency is a relative measure. It 

measures the performance of a producer by comparing the observed values of inputs and 

outputs against their optimum values lying on a corresponding frontier. Hence, the efficiency 

measurement involves the estimation of a production technology frontier and the estimation of 

producers’ distance from the frontier. Such measure of efficiency is called the technical 

efficiency. In the presence of price information, one can also estimate the economic (cost, 

revenue or profit) efficiency. 

There are two prominent approaches in efficiency measurement; parametric and non-

parametric. The parametric frontier approach uses econometric techniques to formulate the 

linkage between outputs and inputs in a production system. Parametric techniques such as SFA 
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separate the effect of statistical noise from that of technical efficiency. While these techniques 

provide the statistical inferences about the efficiency estimates, the need for selection of pre-

defined functional forms has been the main critic in the application of parametric approach. In 

contrast, the non-parametric techniques are free from such rigidity in selection of functional 

forms. But this freedom is achieved at a cost; in the application of non-parametric frontier 

techniques, which are based on mathematical optimisation modelling, statistical noise and 

random errors are ignore.  

Unlike most other economic sectors, there are limited studies conducted in the efficiency and 

productivity analysis of the mining industry using frontier approaches. The reviewed literature 

in this chapter showed that early literature on the efficiency and productivity analysis are 

limited to mine-level studies. Over the past two decades, sector-level studies have been the 

focus of scholars in mining efficiency and productivity. Nevertheless, firm-level studies have 

received attention only in recent years. Moreover, this review revealed that studies pursue 

different aims, modellings and implications depending on the level of study. For instance, 

mine-level studies used operational input/output variables such as total working hours, utilised 

equipment capacity, mine geological characteristics and production volume. Firm-level studies 

used input/output variables such total employees, total assets and operating revenue; while 

sector-level studies used the official data from national statistical organisations to extract 

input/output data such as aggregate working hours, capital service and value added. The mine-

, firm- and sector-level studies are also dissimilar in their application of frontier techniques. 

Mine-level studies used mostly DEA; firm-level studies used both DEA and SFA; and sector-

level studies widely applied SFA. 

Another distinguishing factor among studies at mine, firm and sector levels is the investigated 

measure of efficiency and productivity. Efficiency measurement and analysis has been the topic 

of mine- and firm-level studies. Technical efficiency has been the main measure of mine 

efficiency while both technical and economic efficiency measures have been investigated in 

firm-level studies. On the other hand, sector-level studies have investigated the productivity 

growth. Analysis of the MFP growth and its main components including technical changes, 

efficiency changes and operating scale changes have been the centre of sector-level studies. 

This chapter continued the review of literature with a focus on the studies conducted in the 

Australian mining industry. While the existing literature highlights the importance of mining 

productivity in the sector as well as for the whole economy, its main aim has been explaining 
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the undesirable productivity performance of the sector as published in government reports.  

These studies emphasised the issues surrounding the official MFP indices and argued that 

resource depletion, capital-production lags and operating scale have been the most influential 

factors adversely affecting the sector’s MFP during the latest resource boom. Once controlling 

for such factors, the MFP growth turns out to be positive and moderate. Among productivity 

growth components, technical efficiency and operating scale have been reported to positively 

contribute to MFP growth, while technical progress seemed to have negligible effects. Despite 

the rich literature in productivity analysis of the Australian mining sector, the lack of mine- or 

firm-level studies and the absence of efficiency analysis is evident. 

The last section of this chapter provided a detailed review on the determinants of mining 

efficiency and productivity. The investigated factors are significantly different among studies 

at mine, firm and sector levels. The evaluated factors at the mine level have been mainly related 

to mine characteristics, whereas the firm-level studies have looked at the association of firm-

specific factors and firm efficiency. On the other hand, the role of macroeconomic factors in 

productivity performance has been tested in sector-level studies. 

The review of the existing literature in this chapter revealed that the examination of efficiency 

and productivity drivers in the mining sector has been limited to a small number of factors. In 

the firm-level studies, various firm-specific factors have not been tested, and for those 

investigated in the literature, the available knowledge is limited to one or two studies. 

Yet, little is known about the efficiency of Australian mining companies. The existing 

knowledge is mostly restricted to performance at the industry level (see e.g. Lovell and Lovell, 

2013; Zheng and Bloch, 2014; Syed et al., 2015). Due to significant differences between 

individual companies in this sector, efficiency studies at the firm level are essential to 

complement industry level analysis. Further to the gaps in efficiency measurement, there is 

limited knowledge on the determinants of efficiency performance. Gaps also exist in the 

application of robust frontier techniques, particularly in relation to the deterministic 

mathematical programming approach. 
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4 Methodology 

 

4.1 Introduction 

The measurement of a firm’s efficiency performance is primarily linked to the modern 

literature in frontier production. A seminal paper by Farrell (1957) introduced the foundations 

of frontier efficiency measurement, and since then the frontier approach in efficiency analysis 

has evolved and expanded significantly from both theoretical and empirical perspectives. Such 

measure of economic performance is different from conventional productivity measure. In 

economic literature, the economic performance of firms has commonly been referred as their 

productivity or efficiency performance. The productivity of a firm refers to the ratio of a firm’s 

aggregate output to its aggregate input. In line with this definition pioneered by Solow (1957), 

productivity growth refers to the difference between aggregate output growth and the aggregate 

input growth. Such productivity growth may be attributed to differences in production 

technology, operating scale, operating efficiency or operating environment. The Organisation 

for Economic Co-operation and Development - OECD (2001) provided detailed concepts and 

instruction to productivity measurement. 

On the other hand, the efficiency of a firm refers to the comparison of a firm’s observed and 

optimal values of its input and output. The optimal values are defined in terms of production 

possibility. This can be viewed as the comparison of observed output to maximum output 

obtainable from a given input set, or the comparison of observed input to the minimum input 

required to produce a given set of output in the production possibility space. This measure of 

firm efficiency is called technical efficiency. Subject to the availability of price information, it 

is possible to compare the observed and optimum cost, revenue or profit of a firm and calculate 

its economic efficiency. Since the efficiency measure is based on the comparison of observed 

input and output to their optimum values, it is a more accurate measure of firm performance in 

comparison with the productivity measure which is only based on the ratio of aggregate output 

and aggregate input (Daraio and Simar, 2007). 

From the production frontier literature, the efficiency analysis of firms commonly involves 

three steps: first, estimation of a production technology frontier; second, measurement of the 
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technical efficiency (inefficiency) of each firm in the sample relative to the estimated frontier; 

and finally, the investigation of inefficiency causes. Since Farrell (1957) introduced the 

application of frontier method in efficiency analysis, the theory and application of frontier 

techniques have been broadly extended. These efforts can be classified into two main streams: 

one, in economics involving parametric econometric techniques; and the other, in management 

science which applies nonparametric mathematical programming techniques. The parametric 

econometric techniques, pioneered by the independent work of Aigner et al. (1977) and 

Meeusen and van Den Broeck (1977), are basically stochastic and try to distinguish the effects 

of statistical noise from that of technical inefficiency. While these techniques are enriched by 

the statistical inference, the requirement of adopting pre-defined functional form of production 

frontier and the error terms remains a major shortfall for their application. 

The mathematical programming techniques, commonly known as data envelopment analysis 

(DEA) as introduced by Charnes et al. (1978), construct a piece-wise frontier over observed 

data. These flexible techniques do not require a pre-defined functional form; however, the 

deterministic nature of them leaves these techniques unable to address the statistical noise and 

measurement error in the process of efficiency analysis. Simar and Wilson (1998, 2000a) 

proposed a solution to address this shortcoming of non-parametric techniques through the 

application of bootstrapping. Bootstrapping techniques rely on re-sampling to calculate 

statistical properties of efficiency scores. In this study, we apply bootstrap DEA. In addition to 

the flexibility of DEA in modelling efficiency, especially with the lack of a large sample, this 

method enables us to obtain statistical properties of efficiency scores such as standard errors 

and confidence intervals. 

Chapter 4 discusses the main approaches in efficiency analysis with a focus on the 

mathematical programming techniques applied in this study. The reminder of this chapter is 

organised as follows. Section 4.2 introduces concepts in economic efficiency analysis. 

Adopting an analytical approach, the mathematical foundation of efficiency concepts is 

provided and illustrated where applicable. Section 4.3 reviews the main two approaches in 

efficiency analysis, namely parametric econometric and non-parametric mathematical 

programming techniques. Section 4.4 provides further details of the econometric approach to 

efficiency measurement, particularly focusing on their cross-section and panel-data 

applications. Section 4.5 discusses the mathematical programming techniques. The 

mathematical modelling of the basic DEA models is presented in detail in this section. Section 
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4.6 discusses the statistical foundation of DEA by introducing bootstrap techniques and its 

application in a DEA setup. Finally, Section 4.7 outlines the methods in evaluation of influence 

of business environment and firm-specific factors on firm efficiency. This section presents the 

new developments in the application of bootstrap techniques in the two-stage DEA. Section 

4.8 summarises the methodological topics discussed in the chapter. 

 

4.2 Frontier Approach in Economic Efficiency Analysis 

Economic efficiency is comprised of technical and allocative efficiency components. The 

technical efficiency refers to the ability of a firm to produce maximum output given a set of 

inputs and available technology or, alternatively, a firm’s ability to consume the minimum 

input required by the available technology in production of output. The allocative efficiency 

refers to the ability of a firm in choosing an optimal set of inputs given different input prices.  

Koopmans (1951) stated that a firm is technically efficient if increases in any output requires 

reduction in at least one other output production or increases in at least one input consumption, 

and if reduction in any input requires increase in at least one other input or reduction in at least 

one output. Thus, firms that are technically inefficient can produce the same amount of outputs 

with a less amount of at least one input; or they can produce more of at least one output with 

the same amount of inputs consumed in production process. Koopmans’ definition establishes 

two orientations in measuring and analysing technical efficiency: output-augmenting 

orientation and input-conserving orientation. 

Farrell (1957) introduced a frontier efficiency measurement approach based on Koopmans’ 

(1951) technical efficiency definition and Debreu’s (1951) defined measure of technical 

efficiency to estimate the overall efficiency and to decompose it to its components, namely 

technical and price (allocative) efficiencies. With an input-conserving orientation, the Farrell 

(1957) measure of technical efficiency is defined as (one minus) the maximum 

equiproportionate (i.e., radial) reduction in all inputs that is feasible with the given technology 

and set of outputs. With an output-augmenting orientation, this measure is defined as the 

maximum feasible radial expansion in all outputs given the available technology and inputs. In 

both orientations, a firm with a technical efficiency value of unity is fully efficient and no radial 

adjustment is feasible to improve its technical efficiency. Any values different from unity 

indicate a degree of technical inefficiency in the firm’s performance. 
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To model the Farrell measure of technical efficiency, we use the notations and terminology 

described in Fried et al. (2008).  

We can view an economic system (such as a firm) as a system where some technology 

transforms a set of inputs (x) to a set of outputs (y). If the economic system under investigation 

uses 
1( ,..., ) N

nx x x +=   to produce 
1( ,..., ) M

my y y +=  , production technology can be 

described as: 

{( , ) :  is produceable from }N M M NT x y y x+ + + +=     . (4.1) 

T is a set of input-output pairs ( , )x y ; the output element of the pair, y, is producible from the 

input element of the pair, x. Figure 4.1 shows a simple example of an economic system with 

one input and one output. The technology set consists of all combinations of inputs and outputs, 

( , )x y , located to the right of curve f including this curve. Curve f , which is called 

technology frontier, represents the maximum output producible from the available input. 

Figure 4.1: Example of technology set 

 

Alternatively, input and output sets can represent the technology. The output set can be defined 

as: 

( ) { : is produceable from }M M NP x y y x+ + +=    . (4.2) 

Output set P(x) consists of all possible combinations of outputs that are producible from each 

particular level of Nx + . 
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𝑥 
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Figure 4.2: Example of output set 

 

 

Also the input set can be defined as 

is produceable from( ) { :    }N M NL y x y x+ + +=    . (4.3) 

That is, L(y) is a set of all possible combinations of inputs that can produce each particular 

level of output My + . 

Figure 4.3: Example of input set 

 

As these three sets equivalently represent the technology, we have 

( , ) ( ) ( )x y T y P x x L y     . (4.4) 
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Shephard (1953, 1970) introduced the distance function to represent the production technology. 

From an output augmentation approach, Shephard’s (1970) output distance function is thus 

given by: 

( , ) min{ 0 : ( , / ) }
             min{ 0 : ( / ) ( )}

OD x y x y T
y P x

 

 

=  

=  
 (4.5) 

For ( , )x y T  or alternatively ( )y P x , ( , ) 1OD x y   and for all points lying on the frontier 

curve f , ( , ) 1OD x y = . The output distance function ( , )OD x y  is non-increasing in all inputs, 

Nx + , and non-decreasing, homogenous of degree +1 and convex in all outputs, My + . 

For all possible combinations of pairs in the input-output space, i.e. ( , ) N Mx y + +  , 

( , ) / ( )OD x y y f x= . In fact, the distance function is a generalisation of the production function. 

Using a simple example of one-input-one-output technology set, Figure 4.4 shows the intuition 

of the output distance function and its relationship with production function. In a one-input-

one-output technology set, such as the example in Figure 4.4, the area representing the 

technology set, T , is the same as the area representing output set, ( )P x ; furthermore, the 

technology frontier curve f  is the same as production frontier of . 

Figure 4.4: Output distance function for one-input-one-output technology set 

 

As we can see from Figure 4.4, ( ) / ( , )o o o o
Of x y D x y= . Through the simple example, we can 

explain that the Shephard’s output distance function is the ratio of actual output to the 

maximum output, i.e.  ( )f x , that is producible with the same level of input. Hence, for a firm 

y𝑜/D𝑂(x𝑜, y𝑜) 

(x𝑜, y𝑜) 

O 

𝑦 

𝑥 

(x𝑜, y𝑜/D𝑂(x𝑜, y𝑜)) 

𝑇 

𝑓 

x𝑜 
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located at point ( , )o ox y T , ( , )o o
OD x y  the output distance function reflects the efficiency of 

the firm.  

Such measure of technical efficiency is often expressed in the form of the reciprocal value of 

distance function, which is known as the Farrell output-oriented measure of technical efficiency 

defined by: 

( , ) max{ 0 : ( , ) }, ,
               max{ 0 : ( )}, ( ),
               1/ ( , ), ( ),

M N
O

N

N
O

TE x y x y T y x
y P x y P x x

D x y y P x x

 

 

+ +

+

+

=    

=    

=  

 (4.6) 

If we consider the output isoquant as the upper boundary of ( )P x defined as 

( ) { : ( ), ( ), 1}, NI x y y P x y P x x  +=      (4.7) 

a firm at point ( , )o ox y is technically efficient if and only if 

( , ) 1 ( )o o o
OD x y y I x=    (4.8) 

and a firm at point ( , )o ox y is technically inefficient if and only if 

0 ( , ) 1 ( ), ( ), 0o o o o o
OD x y y P x y I x y       (4.9) 

In other words, for any firm with outputs belonging to the output set, the value of the output 

distance function is equal to, or less than, unity. Alternatively, the value of the output-oriented 

Farrell technical efficiency for a firm under a given technology is equal to, or greater than, 

unity. A value equal to unity for the Farrell output measure of technical efficiency represents a 

fully efficient firm while any values greater than unity reflect some degree of inefficiency in 

the firm performance. 

Similarly, we can develop the model of technical efficiency from an input-conserving 

orientation. Shephard’s input distance function is given by: 

( , ) max{ 0 : ( / , ) }
             max{ 0 : ( / ) ( )}

ID x y x y T
x L y

 

 

=  

=  
 (4.10) 
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For ( , )x y T  or alternatively ( )x L y , ( , ) 1ID x y   and for all points lying on the frontier 

curve f , ( , ) 1ID x y = . The input distance function ( , )ID x y  is non-increasing in My + , and 

non-decreasing, homogenous of degree +1 and concave in Nx + . 

The Farrell input-oriented measure of technical efficiency is expressed in the form of the 

reciprocal value of the distance function as follows: 

( , ) min{ 0 : ( , ) }, ,
               min{ 0 : ( )}, ( ),
               1/ ( , ), ( ),

M N
I

M

M
I

TE x y x y T y x
x L y x L y y

D x y x L y y

 

 

+ +

+

+

=    

=    

=  

 (4.11) 

If we let the input isoquant ( )I y to be the lower boundary of ( )L y  as 

( ) { : ( ), ( ), 1}, MI y x x L y x L y y  +=      (4.12) 

a firm located at point ( , )i ix y is technically efficient if and only if 

( , ) 1 ( )i i i
ID x y x I y=    (4.13) 

and a firm located at point ( , )i ix y is technically inefficient if and only if 

0 ( , ) 1 ( ), ( ), 0i i i i i
ID x y x L y x I y x       (4.14) 

That is, the value of the input distance function is equal to, or greater than, unity for any firm 

with inputs belonging to the input set. As Farrell’s technical efficiency is the reciprocal of the 

corresponding distance function, the value of input-oriented measure of technical efficiency is 

equal to, or less than, unity for any firms. A value of one for the Farrell input-oriented measure 

of technical efficiency represents a fully efficient firm, whereas any values between zero and 

one show a firm operates inefficiently. 

 

4.3 Efficiency Measurement Techniques 

To measure technical efficiency, one needs to compare the actual performance with the 

corresponding potential (optimal) performance located on the technology frontier. However, 

the true technology frontier is unknown. Therefore, the measurement of technical efficiency 
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requires constructing the technology frontier through some empirical examinations. Such 

empirical examinations result in the approximation of technology frontier by a best practice 

frontier. Since Farrell’s (1957) seminal work, a broad range of techniques have been developed 

and empirically applied to construct the technology frontier and measure economic efficiency. 

The developed techniques of economic efficiency measurement can be classified into two 

distinguished categories based on the tools used to solve the efficiency models: (1) the 

econometric approach and (2) the mathematical programming approach. The econometric 

approach consists of techniques which are basically stochastic. Such stochastic techniques 

enable us to provide statistical inference to distinguish the effects of statistical noise effects 

and technical inefficiency. However, these techniques require adopting a pre-defined 

functional form for the technology frontier and the inefficiency error terms. Use of econometric 

techniques introduces the risk of confounding the effects of misspecification of the functional 

form of technology or inefficiency with sample inefficiency effects. 

In contrast, the mathematical programming techniques calculate the efficient frontier from the 

sample observations without any requirements for pre-established functional form. However, 

the major shortcoming of these techniques is their deterministic nature. Therefore, these 

techniques cannot distinguish the effects of noise from those of inefficiency. 

Recent development in efficiency analysis has attempted to overcome such disadvantages in 

both approaches. The mathematical programming techniques have been developed to include 

the statistical foundations for identifying the statistical noise. In addition, the econometric 

approach has been improved through application of flexible functional forms and 

semiparametric, nonparametric and Bayesian techniques to limit the effects of functional form 

misspecification. 

 

4.4 The Econometric Approach to Measure Efficiency 

The economic approach involves specifying the form of production frontier and the distribution 

of the inefficiency and random noise (error terms).  The efficiency measurement techniques in 

this approach can be classified in different ways: based on the specification of production 

frontier (deterministic or stochastic), the number of equations in the model, the distributional 

assumptions of the inefficiency and random components, according to the type of variables 

they use (quantities only or quantities and prices) and the type of data they use (cross-section 
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or panel). The econometric approach literature provides a broad range of techniques and their 

classifications (e.g. see Murillo‐Zamorano, 2004; Fried et al., 2008; Eling and Luhnen, 2010). 

Among different classifications of the econometric techniques to efficiency measurement, we 

introduce here two main categories of techniques according to the type of data used in 

efficiency measurement, namely cross-section models and panel models, and then we introduce 

some new developments in the econometric measurement of efficiency. 

 

4.4.1 The Cross-Section Models 

A single-equation cross-section frontier model can be represented as 

( ; )exp{ }, , , 1,...,N M
i i i iy f x v u x R y R i I + += −   =  (4.15) 

where parameter vector  characterises the structure of production technology, i indicates 

firms, iv  represents the random disturbance term and 0iu   captures the effect of inefficiency. 

The Farrell output-oriented measure of technical efficiency, which is the ratio of maximum 

attainable output to actual output, then can be presented by: 

( , ) ( ; )exp{ }/ exp{ } 1O i i i i i iTE x y f x v y u= =   (4.16) 

To estimate technical efficiency, ( , )O i iTE x y , one needs to estimate the production frontier as 

per (4.15), and also decomposes the residuals into separate estimates of iv  and iu . To do so, 

first one needs to parameterise the production technology; for instance, assuming that the 

efficient frontier follows the Cobb-Douglas production function form. Once the specifications 

of production function have been adopted, the vector of parameters and the estimates of 

inefficiency effects can be obtained using goal programming or econometric techniques. In this 

process, the main challenge is separating the effects of random noise from the effects of 

inefficiency. 

Corrected ordinary least squares, which was initially suggested by Winsten (1957), is an 

approach that simplifies the model in (4.15) by assuming that 0, 1,...,iu i I= = , and 

2~ (0, )i vv N  . These assumptions transform (4.15) to an ordinary least squares (OLS) model, 
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which intersects the data. Through an upward shift of the OLS estimated production function 

by the size of maximum positive residual to the estimated intercept, max
iv , a production frontier 

is constructed that bounds all sample observations. Using max
iv the residuals are then corrected 

in the opposite direction to estimate maxˆ 0, 1,...,i i iv v v i I= −  =  as a proxy for iu  and 

ˆ ˆ( , ) exp{ } 1O i i iTE x y v= −  . 

Due to providing an easy way to estimate the inefficiency effects, COLS is widely used. 

However, there are severe shortcomings in this approach that make it unfavourable in current 

efficiency measurement studies. The COLS estimated inefficiency effects are vulnerable to 

outliers as the production frontier is constructed based on the largest positive OLS residual. 

The COLS production frontier form is exactly similar to the one from OLS function, whereas 

empirical investigations do not support the similarity of production frontier and OLS function 

forms. Also, the estimation of efficiency depends only on the single firm with most favourable 

maximum residual (Fried et al, 2008). 

Aigner and Chu (1968) assumed that 0, 1,...,iv i I= = , which transform (4.15) to a 

deterministic production function that can be estimated by goal programming techniques to 

minimise i iu  or 2
i iu subject to constraint ln[ ( ; ) / ] 0i i iu f x y=   for all firms. Then the 

technical efficiency is estimated by ˆ ˆ( , ) exp{ } 1O i i iTE x y u=  . Some later studies, such as 

Schmidt (1976) and Green (1980), attempted to identify the specifications of production 

frontier and the distribution of inefficiency effects. However, the lack of robust statistical 

inference, due to the deterministic formulation of production functions, has remained as the 

main drawback of this approach. 

The stochastic frontier analysis (SFA) is an approach, introduced independently by Aigner et 

al. (1977) and Meeusen and van Den Broeck (1977), that incorporates the effects of both 

statistical noise and inefficiency into analysis. In terms of the distributional form in SFA, it is 

assumed that 2~ (0, )i vv N   and 0iu   is distributed half-normal or exponential. The SFA 

assumption is also expanded to consider the independency of these terms, i.e. iv  and iu , from 

each other and also from inputs ix . Given these assumptions, one can define the likelihood 

function and estimate the maximum likelihood estimates. This results in obtaining the 
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consistent estimates of parameter vector   and composed error term i iv u− . To separate the 

effects of inefficiency from those of statistical noise, Jondrow et al. (1982) suggested deriving 

the expected value of inefficiency effect conditional on the composed error term, i.e. 

ˆ[ | ( )]i i iE u v u− − . Once the conditional estimates of  iu  are obtained, the technical efficiency 

can be estimated as 1ˆ ˆ( , ) {exp{ [ | ( )]}} 1O i i i i iTE x y E u v u −= − −  . Battese and Coelli (1988) 

suggested an alternative estimator for technical efficiency as 
1ˆ ˆ( , ) { [exp{ }| ( )]} 1O i i i i iTE x y E u v u −= − −  . Later studies, such as Hjalmarsson, Kumbhakar 

and Heshmati (1996), Horrace and Schmidt (1996) and Bera and Sharma (1999), proposed 

confidence intervals for efficiency estimates. 

 

4.4.2 The Panel-Data Models 

In the case of availability of observations over a period of time for each firm in the sample, 

panel-data techniques can be applied to estimate the efficiency performance. Schmidt and 

Sickles (1984) proposed the application of panel data techniques in a frontier context. Given 

the availability of panel data, equation (4.15) can be written as: 

( ; )exp{ }, , , 1,..., , 1,...,N M
it it it iy f x v u x R y R i I t T + += −   = =  (4.17) 

As in (4.17), the efficiency term iu  does not change over time; such model is called time-

invariant. Based on earlier research, Fried et al. (2008) summarised four strategies to estimate 

efficiency using panel data. 

The first approach introduced by Pitt and Lee (1981) is to estimate efficiency terms in panel-

data cases using the cross-section maximum likelihood estimation (MLE) procedures. Battese 

and Coelli (1995) extended the panel data model to allow the technical efficiency term to be a 

function of firm-specific variables and time by setting ( ; )it it itu u z = . The time-variant model 

of technical efficiency is more desirable in long panels while the inefficiency effects of firms 

may change over time. Although the technical efficiency estimates from this approach are 

consistent in T and I, the need for maintaining distributional and independency assumptions in 

MLE application has remained its main limitation. 
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The fixed-effects model is the second approach to estimate efficiency in the panel-data context. 

Similar to cross-section COLS, the fixed-effects model does not require any distributional 

assumption on efficiency effects, iu , also these terms are allowed to be correlated with 

statistical noise terms, itv  , and the input values, itx . The fixed-effects model treats the 

efficiency effects as the firm-specific constants ( )oi o iu = −  which can be estimated by OLS. 

The efficiency estimates are obtained from *ˆ 0i o oiu  = −   where * max
o oi = , thus the 

efficiency estimates are generated by 1ˆ ˆ( , ) [exp{ }]O i i iTE x y u −= − . The advantage of applying 

the fixed-effects model is deriving consistent estimates in both T and I with no need to 

distributional and independency assumptions on efficiency effects. The main shortcoming of 

this model is that the firm-specific constants may capture the variation in other time-invariant 

firm-specific factors in addition to the technical efficiency. Moreover, the assumption of time-

invariant technical efficiency is not desirable in long panels. 

The random-effects model is an approach that allows some of regressors to be time-invariant. 

This model assumes that efficiency effects, iu , are random variable with unspecified 

distribution and constant mean and variance, but uncorrelated with statistical noise terms, itv  , 

and the input values, itx . The generalised least square (GLS) can be applied in (4.17) by 

defining  ** ( )o o iE u = −  and ** ( )i i iu u E u= − . The firm efficiency effects and the technical 

efficiency estimates are obtained from **max **ˆi i iu u u= − and 1ˆ ˆ( , ) [exp{ }]O i i iTE x y u −= −  

respectively. The estimates from the random-effects model are consistent in T and I with the 

advantage of allowing some regressors to be time-invariant. The disadvantage of the random-

effects model, in comparison with the fixed-effects model, is the requirement of independency 

of efficiency effects from the model regressors. 

The last approach to estimate the technical efficiency in a panel-data case is a mixture of fixed-

effects and random-effects models shown by Hausman and Tylor (1981). In this approach, iu s  

are allowed to be correlated with some regressors and the model can include some time-

invariant regressors. 
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4.4.3 Developments in the Econometric Approach to Efficiency Measurement 

During the past three decades the econometric approach to efficiency measurement has 

extensively been developed. In addition to the time-invariant models explained in the previous 

sections, the time-variant models have been developed to account for time-varying effects of 

(in) efficiency in the panel-data context. Cornwell et al. (1990) and Lee and Schmidt (1993) 

were the first among all to propose inclusion of time-varying efficiency effects in a generalised 

model of Schmidt and Sickles (1984). 

In addition to the primal approach to efficiency measurement, which uses the input-output 

information to construct the production frontier, at the presence of price information, a dual 

approach can be utilised through the indirect estimation of efficient frontier using cost, revenue 

or profit functions. The dual approach allows us to deal with multiple outputs, quasi-fixed 

inputs, alternative behavioural objectives and the joint analysis of technical and allocative 

efficiencies (Murillo-Zamorano, 2004; Green, 2008). 

To overcome the requirement of parametric approach to restrictive parametric assumptions, 

van Den Broeck et al. (1994) and Koop et al. (1994) were among the first to apply Bayesian 

techniques in a cross-section efficiency measurement context. Bayesian techniques do not 

require imposing priori sampling distributions on the efficiency term, iu . Rather, the Bayesian 

method provides the ability to present the results in the form of probability density functions 

and to express the probability statements about the unknown parameters. Also, in the case of 

finite samples, the Bayesian estimation method overcomes some deficiencies of the classical 

econometric methods in terms of the statistical problems involved in the efficiency estimation. 

The application of Bayesian techniques was extended to the panel-data context by Koop et al. 

(1997) and Fernandez et al. (1997). Since van Den Broeck et al. (1994) and Koop et al. (1994), 

both the theoretical and the empirical literature on the Bayesian efficiency estimators have 

rapidly developed (e.g. see Green, 2008). The application of Bayesian techniques allows for 

dealing with multiple outputs and undesirable outputs in efficiency measurement (e.g. see 

Fernandez et al., 2002). 

Further to the application of Bayesian techniques in efficiency measurement, the econometric 

approach literature has been developed to analyse multiple outputs technologies, and to deal 

with undesirable outputs using parametric frontier models (see e.g. Coelli and Perelman, 2000; 

Sickles et al., 2002). 
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4.5 The Mathematical Programming Approach to Measure Efficiency 

Based on the Farrell’s (1957) method, Charnes et al. (1978) developed a mathematical 

programming method of efficiency measurement which later was called data envelopment 

analysis (DEA). DEA is a non-parametric method which aims to construct a frontier 

envelopment surface for all sample observations. The frontier surface is determined by efficient 

firms which lie on it. Inefficient firms are enveloped by frontier surface but do not lie on this 

surface. Since the introduction of DEA by Charnes et al. (1978) the mathematical programming 

approach to efficiency measurement has been significantly developed. In this section, among 

all developments and classifications of mathematical programming methods, we limit our 

introduction to the CCR model, BCC model and scale efficiency, and the statistical foundation 

of DEA.  

 

4.5.1 CCR Model: 

Charnes et al. (1978) generalised the Farrell’s (1957) single input/output efficiency measure to 

a multiple input/output context. Their model, known as CCR, imposes three restrictions 

including constant returns to scale (CRS), convexity of the set of input-output combinations 

and strong disposability of inputs and outputs. The production set in a CCR model is illustrated 

in Figure 4.5, for a single input-single output case. The production frontier is a line connecting 

the origin to the observation point(s) which covers all other observations in the sample. 

Figure 4.5: Production Set in CCR model 
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Suppose that firms use inputs Nx +  to produce outputs My + . The CCR model can be 

presented as the following fractional programming problem which seeks the values for input 

weights   and output weights  to minimise the weighted input-to-output ratio of the firm 

under evaluation subject to constraints that the weighted input-to-output ratios for all firms in 

the sample are greater than or equal to unity: 
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 (4.18) 

In (4.18), the vectors of inputs and outputs of firm under evaluation are represented by ( , )o ox y  

and the vectors of inputs and outputs of the ith firm in the sample are represented by ( , )i ix y . 

As this fractional mathematical program results in an infinite number of solutions, one needs 

to transform it to a linear form. The fractional program (4.18) can be converted to the linear 

multiplier problem (4.19) and its dual envelopment program (4.20): 
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 (4.20) 

where X is an N x I sample input matrix and Y is an M x I sample output matrix. Through 

running the multiplier program I times (number of observations in the sample), one can obtain 

the set of weights required to calculate the efficiency scores for all sample observations. In the 

envelopment program,   is a scalar and   is an I x 1 intensity vector. The performance of a 

firm in the envelopment program is evaluated as the firm’s ability to expand its output subject 
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to constraints imposed by the best practice observations in the sample.   is the DEA estimator 

of technical efficiency defined in (4.6). The possibility of a radial expansion of output for a 

producer is equivalent to 1   from solving the envelopment program, which represents some 

degree of inefficiency in the firm performance. If the radial expansion is not possible, solving 

the envelopment program results in 1 = , which represents a technically efficient firm based 

on the definition of Debreu-Farrell output-oriented technical efficiency measure. In the sense 

of Koopmans technical efficiency definition, an efficient firm is characterised by 

{ 1, , }o oX x y Y   = = =  to avoid any slacks in inputs or outputs. Similar to the multiplier 

model, to obtain the efficiency estimates corresponding to all observations the CCR model 

should be run I times, once for each firm. From the CCR envelopment problem in (4.20), we 

can obtain the production set in (4.1) as {( , ) : , , 0}CCRT x y y Y X x  =     which is 

restricted by constant returns to scale assumption. 

 

4.5.2 BCC Model and Scale Efficiency 

The CCR model assumes that all firms in the sample operate at their optimum scale. If firms 

are surrounded by some limitations such as imperfect competition or government regulations, 

they may not be able to operate at their optimum scale; hence, the constant returns to scale 

assumption may not be valid in the efficiency measurement (Coelli et al., 2005). Banker, 

Charnes and Cooper (1984) relaxed the constant returns to scale assumption and introduced 

the variable returns to scale (VRS) model, which is known as the BCC model. The 

consideration of variable returns to scale assumption allows us to divide the operating 

efficiency performance from the effect of the operating scale (scale efficiency). 

One can construct the BCC model by adding a free variable 
o  to the multiplier program or 

equivalently adding a convexity constraint 1ii
 =  to the envelopment program. The BCC 

multiplier and envelopment programs can be shown as formulas (4.21) and (4.22): 
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The production set in the BCC model envelops the data more tightly than the production set in 

CCR model. As only the convex combination of efficient firms constructs the frontier, the 

production set shrinks, becoming {( , ) : , , 0, 1}BCC
ii

T x y y Y X x   =    = . Figure 4.6 

graphically illustrates the production frontiers in both CCR and BCC models in a single 

input/output case. As shown in this figure, observations have shorter distance to the BCC 

frontier than the CCR frontier; hence, the efficiency estimates from the BCC model are 

generally higher than those obtained from the CCR model. What’s more, the production 

frontier in BCC model exhibits increasing returns to scale, constant returns to scale and 

decreasing returns to scale in different regions of the production set. By definition, the constant 

returns-toscaleassumption applies when a proportional increase (decrease) in inputs results in 

a same proportional increase (decrease) in outputs. If a proportional change in inputs results in 

a greater proportional change in outputs the underlying technology exhibit the increasing 

returns to scale. Finally, if a proportional change in inputs results in a proportionally smaller 

change in outputs, the decreasing returns to scale exist in the underlying technology. In Figure 

(4.6), the firm ,( )o ox y  is operating above it optimal size as ,( )o ox y  is located in the decreasing 

returns to scale region of the production frontier. In general, if the free variable o  in the 

multiplier program is negative, zero or positive, then the corresponding observation is located 

in the increasing returns to scale, constant returns to scale or decreasing returns to scale regions 

of production frontier respectively. 
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Figure 4.6: Production Frontiers in CCR and BCC Models 

 

The CRS measure of technical efficiency captures the effects of both operating inefficiency 

(pure technical inefficiency) and the lack of operating on the optimum scale (scale 

inefficiency). To obtain the scale efficiency measure, one needs to conduct both a CRS and a 

VRS DEA and divide CRS efficiency score by the corresponding VRS efficiency score. If we 

denote the efficiency score obtained under the CRS assumption as 
CRS  and the efficiency score 

obtained under VRS assumption as
VRS , we can present the relationship among CRS 

efficiency, VRS efficiency and scale efficiency as follows: 

CRS

VRS

S 


=  (4.23) 

The knowledge of scale efficiency aids us to understand whether the operating scale condition 

influences the efficiency performance of a firm. As Coelli et al. (2005) highlighted, further to 

the size of scale (in)efficiency, the nature of returns to scale can be obtained by conducting an 

additional non-increasing return to scale (NIRT) model. If the technical efficiency from the 

NIRT model is equal to the technical efficiency from the VRS model, then the decreasing 

returns to scale exist; meaning that the firm under investigation operates above its optimum 

scale (too big). If the VRS and NIRT efficiency scores are unequal, then the increasing returns 

to scale are exhibited; that is, the firm under investigation operates under its optimum scale 

(too small). In the condition that the CRS and VRS efficiency scores are equal, the constant 

returns to scale apply and the firm under investigation operates at its optimum scale. 

The CCR and BCC models represented here are output-oriented. To obtain the input-oriented 

CCR and BCC models, taking into account the adjustment of the required variables, one needs 
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to convert the multiplier program to a maximisation program and convert the envelopment 

program to a minimisation program. 

 

4.5.3 Allocative Efficiency 

Further to the estimation of technical efficiency using DEA models, the DEA literature has 

been extended to estimate the allocative efficiency (e.g. see Ferrier and Lovell, 1990; Fare et 

al., 1985; Fare et al., 1997). If the price information is available and objectives (such as cost 

minimisation, revenue maximisation or profit maximisation) are appropriate, it is possible to 

calculate both technical and allocative efficiencies. In doing so, first, the technical efficiency 

should be estimated using an envelopment program such as (4.20) for a CRS model or (4.22) 

for a VRS model, the economic efficiency should then be estimated using appropriate cost 

minimisation, revenue maximisation or profit maximisation programs. 

From an input-oriented perspective, the cost efficiency (CE) can be defined as the ability of a 

firm to produce a given set of output by using minimum level of inputs at the optimum input 

price. Hence, the allocative efficiency is the ability of a firm to produce its given set of outputs 

at the minimum price. The allocative efficiency is the cost efficiency (CE) divided by technical 

efficiency (TE). Similarly, from an output-orientation perspective, the revenue efficiency (RE) 

can be defined as the ability of a firm to produce the maximum combination of its output at the 

maximum revenue by using a given set of inputs. Therefore, when the output price information 

is given, allocative efficiency can be measured as the firm’s ability to produce at the maximum 

output prices. The output-oriented allocative efficiency is revenue efficiency (RE) divided by 

technical efficiency (TE). Finally, if both input and output prices are available, one can 

construct the profit maximisation problem to estimate profit efficiency (Coelli, 2005). 

 

4.5.4 Statistical Foundation of DEA 

A main drawback of DEA models is their inability to incorporate the impact of statistical noise. 

In the past two decades, the frontier literature has been developed to accommodate the 

statistical inferences in the deterministic DEA models. The two main approaches to develop 
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the statistical foundation of DEA measure of technical efficiency are chance-constrained DEA 

and bootstrap DEA. 

Based on an idea from Timmer (1971), Land et al. (1993) introduced the chance-constrained 

DEA by imposing probability to constraints on the envelopment problem. Therefore, a firm 

denoted by ,( )o ox y  is required to radially expand its outputs subject to the constraints that 

,( )o ox y  is “probably” feasible. Solving a chance-constraints DEA program requires 

distribution assumptions of the sample data. For instance, one needs to assume that outputs and 

inputs follow normal distributions with defined expected values and variance-covariance 

matrices. The required assumptions on the expected values as well as variance-covariance 

matrices of all variables for all firms make this approach implausible for empirical studies. 

Furthermore, this approach allows for stochastic inputs and outputs but fails to derive the 

statistical properties of the frontier and estimated efficiency scores (Grosskopf, 1996). 

The other approach to incorporate random errors in the DEA estimates is applying 

bootstrapping techniques. The efficiency scores derived from DEA models are estimators for 

true but unknown efficiency. The structure of the true but unknown technology as well as the 

data generating process (DGP) determines the properties of the efficiency estimators (Fried et 

al., 2008). Simar and Wilson (1998) developed some assumptions on DGP and introduced a 

bootstrapping technique which provides statistical properties for the DEA efficiency 

estimators. Their work emphasised on the need for defining a reasonable data-generating 

process to derive a proper set of efficiency estimators. The bootstrap DEA provides the bias-

corrected efficiency estimates with corresponding confidence intervals. The following section 

discusses in detail the bootstrapping technique and its application in DEA estimation of 

efficiency measures. 

 

4.5.5 Bootstrapping Techniques and DEA 

One of the main drawbacks of the data envelopment method is its deterministic nature. 

Basically, there is no statistical foundation in the DEA estimation. The estimated frontier output 

(or input) depends on the particular set of inputs-outputs and a different observed sample set 

would lead to a different estimated frontier. Hence, the estimated technical efficiency would 

be different from one sample to another. The conventional DEA models cannot provide the 
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statistical properties that reflect sample variations and statistical noise. To obtain confidence 

intervals that cover statistical errors, one would need the sampling distribution of the frontier 

output (or input). However, usually only one sample is available. Applying the bootstrapping 

techniques is a practical way to accommodate the measurement errors and statistical noise in 

the deterministic DEA models, identifying the confidence intervals for efficiency estimates. 

 

4.5.6 Bootstrapping Technique 

Bootstrapping is one of the techniques of nonparametric statistics, introduced by Efron (1979) 

as an alternative resampling method. The bootstrapping technique estimates values of interest 

(statistics) based on an available sample from a corresponding population. These statistics are 

the estimators of statistical parameters of the population. The derived statistics depend on the 

sample and they vary from one sample to another. By drawing more samples, the accuracy of 

estimated statistics as estimators of the corresponding population increases. However, drawing 

many samples mostly is not feasible in practice. The bootstrapping technique uses a resampling 

procedure to generate a large number of resamples based on an original sample.  

The bootstrapping technique estimates a parameter, such as mean or standard deviation, based 

on available data. The technique aids in constructing confidence intervals of the values of 

interests using the original sample data without imposing overly restrictive assumptions about 

the distribution form of the corresponding population. The bootstrap idea is about using only 

what is known from the data without extraneous assumptions about the population distribution 

(Chernick and LaBudde, 2011). In doing so, bootstrapping considers the random sampling from 

the observed data as the representation of the random sampling from the true population. This 

technique assumes that the empirical distribution of observed data mimics the distribution of 

the true population (Moradi, 2013). 

Suppose 1( ,..., )nX X X=  is a random sample from a population with an unknown distribution 

F . The empirical distribution denoted by F̂  represents the distribution of sample data. Our 

aim is to estimate a population parameter   using the random sample X . The common 

population parameters are mostly functionals of the unknown population distribution F . We 

denote the parameter functional by  and its empirical (sample) statistics by ˆ ( )S X = . Based 

on the bootstrapping principles, for a population with unknown distribution F  and a parameter 
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of interest   that we aim to estimate based on the available sample 
1( ,..., )nX X X= , we use 

F̂  as the representation of  F  and the bootstrap distribution *F̂  as the representation of F̂  in 

the resampling process. In the resampling process we draw a random sample * * *
1( ,..., )nX X X=  

from the original sample 
1( ,..., )nX X X= with replacement. The bootstrap distribution *F̂  is 

the distribution for sampling with replacement from F̂  with the bootstrap estimate of 
* *ˆ ( )S X = . If we repeat this process many times, we can obtain a histogram of values for the 

bootstrap estimate which enables us to approximate the statistic distribution and also its 

statistical inferences such as bias and variance estimation, confidence interval construction and 

hypothesis testing.  

Figure 4.7- Real World versus Bootstrap World 

 
Source: Efron and Tibshirani (1994, p87) 

The relationship between the real world and bootstrap world is demonstrated in Figure 4.7. In 

the real world, there is only one sample available, i.e. 1( ,..., )nX X X= , from an unknown 

probability distribution F . The statistic ˆ ( )S X =  is the estimator of true parameter  . On the 

other hand, the bootstrap sample * * *
1( ,..., )nX X X=  is drawn from the empirical distribution 

F̂  using a resampling procedure. The bootstrap estimate * *ˆ ( )S X =  is the estimator of the 

sample statistic ˆ ( )S X = . Unlike the real world wherein only one sample statistic is 

calculated, we can generate a bootstrap estimate as many as the replication number; therefore, 

the distribution of statistic estimator can be approximated. It allows us to obtain the statistical 

inferences for the statistic estimator and consequently, the parameter of interest from the true 
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population. The accuracy and consistency of the estimates depends on the data generating 

process. If  F̂  is a reasonable estimator of F , the bootstrap distribution of *ˆ ˆ − mimics the 

sampling distribution of ̂ − . 

Naïve bootstrap is a simple technique in which the empirical distribution is a discrete 

distribution that gives equal weight to each data point by assigning equal probability 1/n to the 

original n observations. In this technique, it is possible in each random draw to have some 

observations repeated more than one time while some other observations are omitted. Efron 

and Tibshirani (1994) developed the following algorithms to compute the standard errors, bias 

and confidence intervals for the statistic of interest: 

 

(i) Algorithm to Estimate Standard Errors of Statistic of Interest 

1- Form B independent bootstrap samples *1 *2 *, ,..., BX X X  by repeating B times drawing 

n values with replacement randomly from 
1( ,..., )nX X X= . 

2- Calculate the bootstrap statistic of interest for each bootstrap sample: 
* *ˆ ( ) ( ); 1,2,...,b S X b B = =  (4.24) 

3- Compute the standard deviation of *ˆ ( ); 1,2,...,b b B =  as the estimator of the standard 

error of the statistic of interest: 
* * 2 1/ 2

1 1
ˆ ˆˆ { [ ( ) ( ( ) / )] /( 1)}B B

B b b
se b b B B 

= =
= − −   (4.25) 

 

(ii) Algorithm to Estimate Bias of Statistic of Interest 

1- Select B independent bootstrap samples *1 *2 *, ,..., BX X X  in which n data values in 

each sample are selected randomly with replacement from the original sample 

1( ,..., )nX X X= . 

2- Calculate the bootstrap statistic of interest for each bootstrap sample using (4.24). 

3- Calculate the expected bootstrap statistic of interest as the arithmetic average of 

bootstrap statistics: 
* *

1
ˆ ˆ( ) ( ) /B

b
E b B 

=
=  (4.26) 



112 
 

4- Calculate the bootstrap estimate of bias *̂  as the estimator of bias of the statistic of 

interest ̂ : 

* *ˆ ˆ ˆ ˆ( , ) ( )Bias E   = −  (4.27) 

5- Calculate the bias-corrected estimate of the statistic of interest: 

* *ˆ ˆ ˆ ˆ ˆ ˆ( , ) 2 ( )Bias E     = − = −  (4.28) 

 

(iii) Algorithm to Construct Confidence Intervals for Statistic of Interest 

1- Form B independent bootstrap samples *1 *2 *, ,..., BX X X  by drawing n data values 

from the original sample 
1( ,..., )nX X X=  with replacement. 

2- Calculate the bootstrap statistic of interest for each bootstrap sample using (4.24). 

3- Sort the bootstrap estimates of the statistic of interest in ascending order: 
*(1) *( 1) *( ) *( ) *( 1) *( )ˆ ˆ ˆ ˆ ˆ ˆ,..., , ,...,  where ; 2,...,b b B b b b B     − −  =  (4.29) 

4- Construct the 100(1 )−  confidence interval for the statistic of interest based on the 

percentile method by finding the [( / 2)100]th  and [(1 / 2)100]th−  the empirical 

percentiles of ascending sorted bootstrap estimates: 
* * *([( / 2)100] ) *([(1 / 2)100] )ˆ ˆ ˆ ˆ[ , ] [ , ]th th
low up

     −=  (4.30) 

 

4.5.7 Bootstrap DEA 

The non-parametric methods of efficiency measurement do not account for the possibility of 

measurement error and natural randomness. As the frontier is constructed based on the extreme 

points in the observed data, the estimation of efficiency scores is highly sensitive to outliers. 

This limitation of deterministic methods, such as DEA, in providing statistical inference of 

efficiency estimates has encouraged scholars in the efficiency measurement field to explore 

some way-out solutions. 

Bootstrap DEA is one of the stochastic DEA approaches developed to overcome this limitation. 

Ferrier and Hirschberg (1997) introduced a method to derive the stochastic properties of the 

estimated efficiencies. In their method they computed the bias of efficiency estimates and 
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constructed the confidence intervals of efficiency scores using the bootstrap technique 

introduced by Efron (1979). 

Based on Efron’s (1979) work, Simar (1992) and Simar and Wilson (1998), Simar and Wilson 

(2000b) set the foundation for applying bootstrapping techniques to obtain the statistical 

inference in DEA estimates. A simple bootstrapping procedure, called naïve bootstrap, requires 

taking n independent draws from the empirical distribution of the observations in 
nS  to 

construct a pseudo sample *
nS . Simar and Wilson (1999) presented that the naïve bootstrap 

procedure, such as the bootstrap technique used by Ferrier and Hirschberg (1997), results in 

inconsistent inference for DEA estimators. Simar and Wilson (1998) discussed the importance 

of the data generating process (DGP) and introduced a smoothed bootstrapping procedure to 

avoid inconsistent estimates of efficiency. Simar and Wilson (2000a) dropped the homogeneity 

requirement in their earlier work and extended their bootstrapping method to allow for 

heterogeneity in the structure of efficiency. 

The consistency of the efficiency estimates in the bootstrap DEA depends on the data 

generating process (DGP). If a reasonable DGP is employed, the empirical distribution is a 

consistent estimator of the population distribution and the bootstrap efficiency scores are 

consistent estimators of the efficiency scores. The naïve bootstrap techniques, as shown by 

Simar and Wilson (1999), does not lead to consistent efficiency estimates. This means that 

even if the number of replications B and the sample size n approach infinity, the Monte Carlo 

empirical distribution of bootstrap efficiency estimates *̂  will not approximate the sampling 

distribution of sample efficiency estimates ̂ . Two main alternative bootstrap techniques, 

developed to overcome the inconsistency issue in applying the naïve bootstrap technique, are 

sub-sampling and smoothing. The sub-sampling technique draws pseudosamples of size 
km n= , where 1k  . The smoothing version of the bootstrap method employs a smooth 

estimate of the joint probability density to simulate pseudosamples * , 1,...,bX b B=  (Simar and 

Wilson, 2008). 

Kneip et al. (2008) discussed the consistency of bootstrapping procedures and concluded that 

both sub-sampling and smoothing procedures are consistent to obtain statistical inference based 

on the asymptotic distribution of DEA estimators under variable returns to scale assumption. 
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(i) Bootstrapping DEA Efficiency Scores 

The aim of bootstrapping is to approximate the sampling distribution of ˆ( , ) ( , )x y x y −  by 

computing *ˆ ˆ( , ) ( , )x y x y −  from resampled data * , 1,...,bX b B= . Suppose   is the 

production set, ( , )f x y  is the probability density function of inputs/outputs, and 

( , (.,.))f =    is the DGP. We denote a consistent estimator of the DGP as: 

ˆˆˆ ( ) ( , (.,.))X f =    (4.30) 

Unfortunately, in the real world, we do not have the knowledge of  ,   and ( , )x y . 

Therefore, we intend to construct the estimates of  ,   and ( , )x y  using the only available 

observation set 
1( ,..., ) {( , ), 1,..., }n i iX X X x y i n= = = . ̂ , ̂  and ˆ( , )x y  are the estimates of 

,   and ( , )x y  in the real world. However, in the bootstrap world, they are considered to be 

true DGP, true production set and true efficiency respectively. Bootstrap data set 
* * * * *

1( ,..., ) {( , ), 1,..., }n i iX X X x y i n= = =  can be drawn from the known DGP estimate ̂ . From 

an output orientation point of view and under variable returns to scale assumption, the bootstrap 

estimate of production set can be shown as: 

* *

*

1 1 1

ˆ ˆ ( )

{( , ) : , , 1, 0   1,..., }
n n n

N M
i i i i i i

i i i

X

x y y y x x i n   + +

= = =

 =  =

    =   =  
 (4.31) 

and the bootstrap estimate of efficiency score can be attained by solving the following linear 

program which is similar to the envelopment program (4.22): 

* *

*

1 1 1

ˆ ˆ( , ) { : ( , ) }

{ : , , 1, 0   1,..., }
n n n

i i i i i i
i i i

x y Max x y

Max y y x x i n

  

     
= = =

=  =

  =   =  
 (4.32) 

If the bootstrap is consistent, the sampling distribution of bootstrap efficiency scores provides 

approximations of the sampling distribution of efficiency scores. Mathematically, it can be 

shown as: 

*ˆ ˆ ˆˆ( ( , ) ( , )) | ( )   ~   ( ( , ) ( , )) |x y x y X x y x y   −  −   (4.33) 
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The DGP estimator ˆ ( )X  is used to generate B samples * , 1,...,bX b B= , by size of n. Therefore, 

B times solving of the linear program (4.32) results in B pseudoestimates of efficiency scores 
*ˆ ( , ), 1,...,b x y b B = . Monte Carlo simulations are used to approximate the sampling 

distribution of *ˆ ( , )x y , which is assumed to be known in the bootstrap world. In theory, by 

approaching B toward infinity, the Monte Carlo approximation error due to bootstrap 

resampling tends to be zero. What’s more, a larger sample size gives better approximations 

(Simar and Wilson, 2008). 

 

(ii) Bootstrap Confidence Intervals 

Assuming knowledge of the distribution of ˆ( ( , ) ( , ))x y x y − , one can find 
/ 2c  and 

1 / 2c −
 

such that:  

/ 2 1 /2
ˆprob( ( , ) ( , ) ) 1c x y x y c   − −  = −  (4.34) 

where 
/ 2c  and 

1 / 2c −
 are the ( / 2) th and ( / 2) th quantiles of the sampling distribution of 

ˆ( ( , ) ( , ))x y x y −  and [0,1]  . Hence a (1 ) 100%−   confidence interval for ( , )x y  can 

be expressed as: 

1 /2 /2
ˆ ˆ( , ) ( , ) ( , )x y c x y x y c   −−   − . (4.35) 

To estimate the unknown values of 
/ 2c  and 

1 / 2c −
, the empirical bootstrap distribution of  

*ˆ ( , ), 1,...,b x y b B =  can be used. Hence (4.34) can be transformed into: 

*
/2 1 /2

ˆ ˆ ˆˆ ˆprob( ( , ) ( , ) | ( )) 1c x y x y c X   − −   = −  (4.36) 

where / 2ĉ  and 1 / 2ĉ −
 are the ( / 2) th and ( / 2) th quantiles of the empirical distribution of 

*ˆ ˆ( ( , ) ( , )), 1,...,b x y x y b B − = sorted in ascending order. Therefore, the bootstrap 

approximation of (4.34) is: 

 / 2 1 /2
ˆˆ ˆprob( ( , ) ( , ) ) 1c x y x y c   − −   −  (4.37) 
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and the estimated (1 ) 100%−   confidence interval for ( , )x y  is: 

1 /2 /2
ˆ ˆˆ ˆ( , ) ( , ) ( , )x y c x y x y c   −−   − . (4.38) 

The bootstrap confidence interval procedure should be repeated n times (the number of 

observations in the original sample) to construct confidence intervals for all observations. The 

construction of confidence intervals explained above is suitable for the output-oriented Farrell 

efficiency measure, in which efficiency scores are bounded by a minimum of unity. In the case 

of using efficiency measures that lead to efficiency scores between zero and one, a reciprocal 

transformation is required to avoid negative lower-bound confidence intervals (Simar and 

Wilson, 2008). 

 

(iii) Bootstrap Bias Corrections 

Bias of efficiency estimates can be presented by the following equation: 

ˆ ˆ( ( , )) ( ( , )) ( , )bias x y E x y x y   − . (4.39) 

The bootstrap bias estimator of the original efficiency score ˆ( , )x y  can be defined as: 

1 *

1

ˆ ˆ ˆˆ ( ( , )) ( ( , )) ( , )
B

b
B

b
bias x y B x y x y  −

=

= − . (4.40) 

Using (4.40) we can construct a bias-corrected estimator of ( , )x y  as: 

1 *

1

ˆ̂ ˆ ˆ ˆ ˆˆ( , ) ( , ) ( ( , )) 2 ( , ) ( ( , ))
B

b
B

b
x y x y bias x y x y B x y    −

=

= − = −  . (4.41) 

The bias corrections procedure may introduce additional noise as ˆ̂( , )x y can have a mean 

square error greater than the mean square error of ˆ( , )x y . Hence, the bias correction formula 

of (4.41) should not be used unless  
ˆˆ| ( ( , )) | 1
ˆ 3

Bbias x y


 where ̂  is the sample standard 

deviation of the bootstrap values *ˆ ( , ), 1,...,b x y b B =  (Simar and Wilson, 2008). 
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(iv) DEA Bootstrap Algorithm 

Subsampling and smoothing techniques are two approaches to construct consistent 

pseudosamples. Subsampling is similar to naïve bootstrap techniques except for the 

pseudosample size. In subsampling techniques, the size of pseudosamples is km n=  where 

(0,1)k  .  As Kneip et al. (2008) showed, the subsampling techniques results in consistent 

bootstrap estimates, however the choice of (0,1)k   is critical to the technique. 

As an alternative approach, the pseudosamples can be drawn from a smooth nonparametric 

estimate of the unknown probability density function of inputs/outputs, ( , )f x y . In comparison 

with the subsampling technique, the smoothing technique is more complicated as the 

corresponding production set,  , of the probability density function of inputs/outputs, ( , )f x y

, is unknown as well. Simar and Wilson (1998, 2000a) provide the stepwise procedures to run 

the smoothing technique. The smooth bootstrap DEA algorithm for the output-oriented 

technical efficiency can be outlined as per the below steps: 

1- Estimate the technical efficiency score ˆ
j , for each firm 1,...,j n=  using the 

envelopment program (e.g. using (4.20) for a CRS model or (4.22) for a VRS model). 

2- Generate a simple (naïve) bootstrap sample 1 ,..., n    drawn (with replacement) from 

1̂
ˆ,..., n  . 

3- Calculate the smoothed bootstrap sample, 1 ,..., n   , from the naïve bootstrap sample 

via the following equations: 

 
  if  1

2-   otherwise
j j j j

j
j j

h h

h

   


 

   



 

 + + 
= 

−

 

where h  is the bandwidth of a standard normal kennel density and j
  is a randomly 

generated term from the standard normal. This formula set a bound to ensure that j
  

is equal or greater than unity. Simar and Wilson (2000b) described a procedure to 

obtain an optimum h .  

4- To correct the variance of the smoothed bootstrap sample, calculate j
 via 
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2 2
ˆ

1 ( )
ˆ1 /

j j
h



   


   = + −
+  

where   is the mean value of 1 ,..., n   and 2
ˆˆ


 is the sample variance of 1̂
ˆ,..., n  . 

5- Calculate the pseudo-data set as  ˆ( , ) : / ; 1,...,j j j j j jx y y y j n   = = . 

6- Using the pseudo-data set, solve the DEA problem below: 

1 1 1

ˆ max{ 0 , , 0, 1, 0, 1,..., }
n n n

j k k j k k j k k
k k k

z y y z x x z z k n    

= = =

=     =  =  
 

7- Repeat steps (2) to (6) B times to provide  ,
ˆ ; 1,...,j b b B  = . 

8- Calculate statistics for the bootstrap bias-corrected measure of technical efficiency. 

 

4.6 Analysis of Environmental Factor Effects on Technical Efficiency 

In addition to inputs and outputs, business environment and firm-specific factors can influence 

the efficiency performance of a production unit. Unlike traditional inputs and outputs, such 

factors are generally assumed to be non-controllable for managers. For instance, ownership 

status, location of operations, and government regulations are factors that can influence the 

efficiency performance of a firm; however, such factors are not under control of managers 

toward optimising the transformation of inputs to outputs. The analysis of exogenous variables, 

which are called environmental variables here, is important given that improving the efficiency 

performance requires the knowledge of its determinants. 

 

4.6.1 Environmental Factor Analysis in SFA 

Early literature in SFA used a two-stage approach to analyse the determinants of efficiency 

performance. The first stage involved the estimation of efficiency; for instance, using the SFA 

model of Battese and Coelli (1988). Then in the second stage, an econometric model was 

constructed to regress the estimated efficiencies against environmental and firm-specific 

factors, potentially influencing the efficiency. This approach was criticised by Deprins and 

Simar (1989) for its statistical validity. To overcome the issues surrounding the two-stage SFA 

approach, Battese and Coelli (1995) proposed a single-stage model as 
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( ; ) exp{ ( ; )}i i i i iy f x v u z = −  where ( ; ) 0i iu z   , 
iz  is a vector of exogenous factors and   

is the vector of parameters of exogenous factors. 

 

4.6.2 Environmental Factor Analysis in DEA 

DEA literature provides a range of techniques to deal with environmental factors. Coelli et al. 

(2005) recommend four methods for dealing with environmental factor analysis in a DEA 

setup. For the case that only one environmental variable from the categorical class is under 

investigation, the method proposed by Charnes et al. (1981) can be used. In this method, first 

the efficiency performance is calculated for each category, then all observations are projected 

onto their respective frontiers. Finally, all these projected observations are used to construct a 

single DEA model to assess if the mean efficiency of subsamples is statistically different. 

In case that the environmental variable can be ordered from the least to the most adverse effect 

upon efficiency, as suggested by Banker and Morey (1986b), the efficiency performance of a 

firm can be compared with only those firms in the sample that their environmental variable is 

less than or equal to that of the firm under investigation. This method ensures that no firm is 

compared with another firm that has a more favourable environment. Similar to the previous 

method, only one environmental variable can be included in the analysis. A key problem with 

this method is its need for the direction of influence of the environmental variable on efficiency 

performance. Such knowledge is not known in many empirical studies. 

Another method of dealing with environmental factors in DEA problems is to include them 

directly into the linear programming (LP) formulation. In doing so, one needs to decide if the 

direction of the influence of environmental factors on efficiency is known or not. In the case 

of having knowledge of influence direction, the environmental variables can be considered as 

non-discretionary input or output variables. If it is believed that the environmental variable 

positively influences the efficiency, such variable appears as a non-discretionary input variable 

in the LP formulation; for instance, as proposed by Banker and Morey (1986a). The aim of this 

DEA modelling is to contract only the discretionary factors in solving the constructed LP. 

Hence, the non-discretionary inputs are not scaled up or down within the reference firm while 

restricted to not exceed the non-discretionary input level. In the case of non-discretionary 

variables with a negative effect on efficiency, they should be included in the LP formulation 
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as non-discretionary outputs. Therefore, the DEA program expands only the discretionary 

outputs while restricting the non-discretionary outputs to not fall below the non-discretionary 

output level. 

If the direction of the influence of environmental factors is not known, they should be 

considered as non-discretionary neutral variables. In this case, the related constraints in the LP 

problem should be in equality form to ensure that a firm is compared with a theoretical frontier 

firm wherein its operating environment is no better and no worse (same) than the firm 

environment. A disadvantage of this method is that it is suitable for only continuous variables, 

and in the case of categorical variable presence among environmental factors, a more 

complicated mixed-integer LP problem, as presented in Banker and Morey (1986a), should be 

used. 

The last method to handle non-discretionary factors in DEA applications is the two-stage 

approach introduced and developed by Ray (1988, 1991). The two-stage approach involves the 

estimation of efficiency using a traditional set of inputs/outputs in the first stage and regressing 

the estimated DEA efficiency scores against non-discretionary factors in the second stage. The 

second-stage regression aims to estimate the part of efficiency that is explained by non-

discretionary factors. To do so, the DEA efficiency scores are corrected for environmental 

factors by using the estimated regression coefficients. This adjusts all efficiency scores 

corresponding to a common operating environment. Hence, the extent of managerial 

inefficiency, which is not associated with the influence of non-controllable factors, is the 

shortfall of DEA efficiency scores from the estimated efficiency score in the second stage and 

not from the unity. The two-stage method is superior to other methods as it can accommodate 

more than one variable with both continuous and categorical characterisations. Also a priori 

knowledge of the direction of the influence of environmental variables is not required, while 

this simple and transparent method enables us to conduct hypothesis testing on the significance 

of influence of environmental factors upon efficiency.  

Nevertheless, the two-stage method suffers from some severe limitations. The regression 

analysis requires the specification of a functional form; therefore, a misspecification of the 

functional form can alter the results. Also, as a significant proportion of efficiency scores are 

frequently equal to one, the ordinary least square (OLS) regression may result in efficiency 

estimates greater than one.  The Tobit regression method can account for truncated data to 
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ensure that the dependent variable (efficiency estimate) is bounded between 0 and 1. Hence, it 

is recommended to use the Tobit model in the second-stage analysis. 

A major problem of the two-stage approach arises from the fact that if the input-output factors 

used in the first stage are highly correlated with the independent variables (environmental 

factors) in the second-stage econometric model, the results are likely to be biased. Furthermore, 

as the efficiency scores are dependent on each other due to the nature of DEA problems, the 

basic regression analysis assumption of independency within sample is violated. Simar and 

Wilson (2007) show that these dependency issues lead to invalid results from the OLS or the 

Tobit regression analysis. 

 

4.6.3 Two-Stage DEA Using Truncated Regression Model 

In the two-stage approach, the efficiency estimates are first obtained from the DEA problem 

using traditional input-output specifications, then these estimated efficiency scores are 

regressed against environmental variables. The second-stage regression model can be specified 

as: 

,     1,...,j j jTE Z j n = + = . (4.42) 

where jZ is a vector of firm-specific variables expected to influence the technical efficiency of 

firm j . The aim of second-stage analysis is to estimate the coefficient vector   and generate 

the stochastic error term j for each individual firm. Thus, the corrected efficiency estimates 

for environmental factor influence can be attained for each firm in the sample. 

The traditional two-stage approach mostly employs either OLS or Tobit method to regress the 

efficiency estimates from stage one. However, as Simar and Wilson (2007) explained, the 

underlying DGP is not described in these two methods. Additionally, the DEA efficiency 

estimates are biased as the conventional DEA methods do not account for statistical noise and 

measurement error. More importantly, the DEA efficiency estimates are serially correlated in 

a complicated and unknown way; also if any inputs or outputs are correlated with 

environmental factors, the error term j  is correlated with jZ . To solve these dependency 

issues and to eliminate the efficiency estimates bias, Simar and Wilson (2007) proposed an 
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alternative approach using a bootstrap truncated regression. Instead of conventional efficiency 

scores, the bias-corrected technical efficiency scores ( ˆ bc
jTE ) are used in equation (4.42). Since 

both sides of equation (4.42) are bounded by unity, the restriction 1j jZ  −  is applied for 

j . It is assumed that j  is from a left-truncated normal distribution with zero mean and 

unknown variance. Hence, the initial regression model can be presented as per the formulation 

in (4.43) for the second-stage analysis: 

2ˆ ; where  ~ (0, ), and 1 ,     1,...,bc
j j j j j jTE Z N Z j n     = +  − = . (4.43) 

A bootstrap method, such as the procedure in Simar and Wilson (2000a), can be used to 

calculate the bias-corrected efficiency estimates. Then a second parametric bootstrap can be 

used to calculate valid estimates of confidence intervals for the parameters in the second-stage 

regression. Simar and Wilson (2007) proposed two algorithms for the two-stage efficiency 

estimation problem. The following procedure is the second algorithm in Simar and Wilson 

(2007) which takes into account the bias term in the estimated efficiencies used in the second-

stage regression in (4.43): 

1- Estimate the efficiency score 𝜃𝑖 for each firm using (4.20) for a CRS model or (4.22) 

for a VRS model. 

2- Obtain an estimate 𝛽̂ of 𝛽 and 𝜎̂𝜀of 𝜎𝜀 in the truncated regression of 𝜃𝑖 on 𝑍𝑖 using the 

maximum likelihood method when 𝜃𝑖 > 1. 

3- Repeat the next four steps B times to obtain {𝜃𝑖𝑏
∗ , 𝑏 = 1, … , 𝐵}: 

3-1- draw 𝜀𝑖 from the 𝑁(0,  𝜎̂𝜀
2) distribution with left truncation at (1 − 𝑧𝑖𝛽̂) for  𝑖 =

1, … , 𝑛. 

3-2- Calculate 𝜃𝑖
∗ = 𝑧𝑖𝛽̂ + 𝜀𝑖 for each firm. 

3-3- Set 𝑥𝑖
∗ = 𝑥𝑖 , 𝑦𝑖

∗ = 𝑦𝑖𝜃𝑖/𝜃𝑖
∗ for all 𝑖 = 1, … , 𝑛. 

3-4- Compute 𝜃𝑖
∗ for all firms by replacing 𝑥𝑖 and 𝑦𝑖 in (1) with 𝑥𝑖

∗ and 𝑦𝑖
∗. 

4- For each firm, calculate the bias-corrected 𝜃𝑖 = 𝜃𝑖 − (
1

𝐵
∑ 𝜃𝑖𝑏

∗ − 𝜃𝑖)
𝐵
𝑏=1 . 

5- Estimate the truncated regression of 𝜃𝑖 on 𝑧𝑖 using the maximum likelihood method to 

obtain (𝛽̂̂, 𝜎̂̂). 

6- Loop over the next three steps B times to provide (𝛽̂̂𝑏
∗,  𝜎̂̂𝑏

∗, 𝑏 = 1, … , 𝐵). 

6-1- Draw 𝜀𝑖 from the 𝑁(0, 𝜎̂̂ ) with left truncation at (1 − 𝑧𝑖𝛽̂̂) for 𝑖 = 1, … , 𝑛. 
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6-2- Calculate 𝜃𝑖
∗∗ = 𝑧𝑖𝛽̂̂ + 𝜀𝑖  for each firm. 

7- 6-3) Estimate the truncated regression of 𝜃𝑖
∗∗on 𝑧𝑖 using maximum likelihood to obtain 

(𝛽̂̂∗, 𝜎̂̂∗). 

8- Construct the confidence interval for 𝛽 and 𝜎𝜀 using the bootstrap values (𝛽̂̂𝑏
∗,  𝜎̂̂𝑏

∗, 𝑏 =

1, … , 𝐵). 

 

4.7 Summary 

This chapter has discussed the concepts and techniques in efficiency analysis. The chapter 

provided a detailed analytical approach to present efficiency concepts. The attention in this 

chapter has mainly been to technical efficiency as adopted in analysis of this thesis. The 

introduction of concepts started with technology frontier, output set, input set, distance function 

and measures of technical efficiency. Where applicable, the mathematical formulation and 

graphical illustration have been adopted to aid in explaining the efficiency concepts. 

Further to the concepts presented in this chapter, the efficiency analysis techniques from both 

dominant approaches, namely stochastic frontier analysis (SFA) and data envelopment analysis 

(DEA), have been discussed. SFA is a parametric econometric technique that separates the 

effects of inefficiency, which is under the control of managers, from that of statistical noise 

and measurement error, which managers do not have much control over. The stochastic nature 

of SFA enables this approach in providing statistical inference such as standard errors of 

efficiency estimates and hypothesis testing. Nonetheless, the techniques in this approach 

require selection of a pre-defined functional form for both frontier and error terms in the 

econometric modelling. Recent development in the econometric approach, such as flexible 

functional forms and semiparametric, nonparametric and Bayesian techniques, improved the 

limitation of the stochastic approach in the requirement of pre-defined functional forms (see 

e.g. Greene, 2008). 

DEA is the most frequently used non-parametric model in productive efficiency literature. 

Emrouznejad and Yang (2018) reported an exponential growth in DEA-related publications in 

the past four decades. Using linear programming techniques, DEA constructs a piece-wise 

envelop (frontier) that covers all observations in the sample to calculate the distance of 

individual units from the respective point on the frontier. Such distance is used to estimate the 



124 
 

efficiency performance of firms relative to the constructed frontier. Constant returns to scale 

(CRS) and variable returns to scale (VRS) are two common assumptions in DEA application. 

According to the CRS assumption, all firms in the sample are assumed to operate at their 

optimum scale; whereas VRS assumption is based on the fact that due to some limitations in 

operating environment, such as imperfect competition, government regulations and constraint 

on finance, firms may not be able to operate at their optimum scale. Hence, the total technical 

efficiency estimated from a CRS DEA model should be decomposed to two components; pure 

technical efficiency and scale efficiency (Coelli et al. 2005).  

The popularity of the DEA approach is mainly due to its main advantages in no requirement 

for functional form and the ability to handle multiple input-multiple output problems. However, 

the deterministic nature of DEA leads to its inability in presenting the statistical properties of 

efficiency estimates. Simar and Wilson (1998) addressed the lack of statistical inference in 

DEA applications and they proposed a bootstrap procedure to generate statistical properties of 

efficiency estimates. The bootstrap DEA enables us to calculate the efficiency standard errors, 

efficiency confidence intervals and bias-corrected efficiency estimates. As the statistical 

properties of efficiency estimates are calculated by a bootstrapping technique, one can conduct 

hypothesis tests on efficiency parameters. Simar and Wilson (1999) argued that the naïve 

bootstrap procedure, as initially introduced by Efron (1979), does not produce consistent 

bootstrap efficiency estimates. Kneip et al. (2008) presented that both major resampling 

procedures, including subsampling and smoothing techniques, result in consistent bootstrap 

estimates. Therefore, in this study we follow the smooth bootstrapping procedure proposed by 

Simar and Wilson (1998, 2000a) to generate standard errors and confidence intervals of 

efficiency estimates. 

A main question in efficiency analysis studies is how to improve it. To answer such question, 

one needs to investigate the exogenous factors which are potentially associated with the 

inefficiency observed among firms. The productive efficiency literature proposed different 

methods in both SFA and DEA environments in order to analyse the potential effects of 

environmental factors in efficiency gains. In the case of DEA application, which is our chosen 

approach in this study, two-stage DEA is the most common method to analyse the influence of 

business environment conditions and firm-specific factors on efficiency performance. The first 

stage follows a DEA model to estimate efficiency, and the second stage applies an econometric 

regression model to investigate the factors influencing the estimated efficiency. The application 



125 
 

of OLS and Tobit regression methods is a common practice in the two-stage DEA empirical 

studies. Such models are simple and easy to construct for the inclusion of multiple regressors, 

either continuous or categorical. However, Simar and Wilson (2007, 2011) criticised these 

models in producing biased estimated coefficients due to the dependency issues in DEA setup. 

That is, the inputs and outputs may be correlated with the environmental factors. Also due to 

the nature of DEA methods, the efficiency of a firm is calculated relative to the rest of 

observations in the sample; therefore, the estimated efficiency scores are dependent on each 

other in a complicated way. These dependency issues are contrary to the independency 

requirement of regression analysis. Furthermore, the efficiency estimates from the first stage 

are biased due to the deterministic nature of DEA. To overcome these issues, Simar and Wilson 

(2007) proposed a bootstrap two-stage DEA approach. This approach, which is used in this 

study, includes bias-corrected efficiency estimates as the regressant and applies a bootstrap 

truncated regression to provide valid inference in the second-stage regression. Monte Carlo 

experiments confirm the improvement of second-stage DEA by way of the bootstrap truncated 

regression method (Simar and Wilson, 2007). 
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5 Data and Empirical Models 

 

5.1 Introduction 

The aim of this chapter is first to present the source of data and description of variables study, 

and second, to develop the empirical models of technical efficiency analysis with a two-stage 

DEA approach. Section 5.2 of this chapter introduces the data source used in our study. 

DatAnalysis provides financial data of Australian companies listed on the Australian Securities 

Exchange (ASX) including the Australian listed mining companies. The data required to 

construct some variables of our empirical model is available on the DatAnalysis database. We 

use this database to extract the related data and formulate those variables. Further to this 

database, the mining firms’ annual reports are broadly used to obtain data on a number of 

variables in both technical efficiency and efficiency determinants models. The dataset covers 

study variables over the period of 2010 to 2014. 

In Section 5.3, the variables used in the empirical model are discussed. Following our two-

stage analysis approach, first we review the variables (inputs and outputs) used to construct a 

general model of technical efficiency. In addition to common inputs and outputs in the technical 

efficiency model, this section discusses the role of natural resource input as a specific input 

variable in the resource sector (such as mining). This section continues with discussion of 

variables used in the second-stage econometric analysis. In line with the firm-level approach 

of this study, the focus of the second-stage analysis is to investigate the firm-specific factors 

which influence the efficiency performance of mining companies. As discussed in Chapter 2 

and Chapter 3, previous studies have identified a number of micro-level factors as influential 

to the efficiency and productivity gains of mining companies. This chapter summarises the 

major factors that potentially determine the efficiency performance of Australian mining 

companies. 

Section 5.4 develops the model of technical efficiency estimation. We take into account the 

common approach of input and output selection in the production function theory as well as a 

natural resource-based approach which reflects the specifications of input and output selection 

in the non-renewable resource sector of mining. Therefore, we develop two technical efficiency 
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models: Model I is constructed using one output, namely total production, and three inputs 

including labour, capital and intermediate inputs; and Model II which contains natural resource 

input in addition to the existing variables in Model I. 

Stage-one analysis involves the application of data envelopment analysis (DEA) to estimate 

the technical efficiency of the Australian mining firms. The main advantage of DEA is that it 

does not require any pre-defined functional form; however, it does not take into account 

statistical noise resulting from measurement errors. To overcome the shortcoming associated 

with the lack of statistical properties in DEA, we use a bootstrap procedure proposed by Simar 

and Wilson (1998) to obtain bias-corrected DEA estimates. Both constant returns to scale 

(CRS) and variable returns to scale (VRS) assumptions are considered in formulation of the 

technical efficiency models. 

Section 5.5 provides the analytical model for stage two and examines the effects of firm-

specific factors on the technical efficiency of mining firms in Australia. The econometric model 

of the stage-two analysis is constructed using variables defined in Section 5.3.  To do this, we 

apply the bootstrap truncated regression method proposed by Simar and Wilson (2007). This 

method overcomes the limitation of commonly used methods, such as Tobit regression and 

Ordinary Least Square (OLS), to handle the issue arising from the serial correlation among 

estimated efficiency scores. In this method, instead of conventional efficiency scores, the bias-

corrected technical efficiency scores derived from bootstrap DEA are used as the dependent 

variable in the second-stage econometric model. 

 

5.2 Data Sources 

The DatAnalysis database created and maintained by Morningstar Inc. provides a broad range 

of financial information on the ASX listed companies. Annual reports of companies listed on 

the ASX are the main source of data in this database. Part of the data for input, output and 

environmental variables is collected from this database. Moreover, through a comprehensive 

review of the annual reports of individual mining firms listed on the ASX, we extracted data 

for a number of variables which were not available in the DatAnalysis database. Our study 

focuses on major Australian mining firms listed on the ASX. Among the ASX listed companies 

classified as metals and mining industry, 34 firms have been fully operational for five years 
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from 2010 to 2014. These 34 companies contribute to more than 85 per cent of the total market 

capitalisation in the metals and mining industry. 

According to Global Industry Classification Standard (GICS), all 34 companies in our sample 

have the same six digit classification code (i.e. Metals and Mining; code=151040), which is 

one of the major industries of the material sector (code=15). The main activity of all companies 

in the sample is exploration and extraction of minerals and mining products. Table 5.1 

illustrates the list of companies in our sample. 

Table 5.1: Study sample: 34 mining companies listed on the ASX 
DMU Company Name 

ASX 
Code 

 
DMU Company Name 

ASX 
Code 

1 Aditya Birla Minerals Limited ABY  18 Norton Gold Fields Limited NGF 

2 AngloGold Ashanti Limited AGG  19 OceanaGold Corporation OGC 

3 Atlas Iron Limited AGO  20 OM Holdings Limited OMH 

4 Aquarius Platinum Limited AQP  21 OZ Minerals Limited OZL 

5 BHP Billiton Limited BHP  22 Panoramic Resources Limited PAN 

6 Evolution Mining Limited EVN  23 PanAust Limited PNA 

7 Fortescue Metals Group Ltd FMG  24 Rio Tinto Limited RIO 

8 Grange Resources Limited GRR  25 Rand Mining Limited RND 

9 Independence Group NL IGO  26 Resolute Mining Limited RSG 

10 Iluka Resources Limited ILU  27 Saracen Mineral Holdings Limited SAR 

11 Kingsgate Consolidated Limited KCN  28 St Barbara Limited SBM 

12 Mirabela Nickel Limited MBN  29 Silver Lake Resources Limited SLR 

13 Mincor Resources NL MCR  30 Tribune Resources Limited TBR 

14 Mount Gibson Iron Limited MGX  31 Troy Resources Limited TRY 

15 Metals X Limited MLX  32 Wollongong Coal Limited WLC 

16 Medusa Mining Ltd MML  33 Western Areas Limited WSA 

17 Newcrest Mining Limited NCM  34 Zimplats Holdings Limited ZIM 

 

5.3 Description of Variables 

In this section we explain specifications of our technical efficiency model in terms of input and 

output variables. These variables are used in the first stage of our two-stage data envelopment 

analysis (DEA) to derive technical efficiency estimates. Furthermore, business environment 
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and firm-specific factors used to construct the second-stage econometric model, are described 

in this section. Table 5.2 and Table 5.3 present the summary of key variables and their 

descriptions. 

 

5.3.1 Variables of Technical Efficiency Estimation 

First, we review the possible input and output variables to formulate our efficiency model. 

Coelli et al. (2005) stressed the importance of quality and appropriateness of data used in 

efficiency measurement studies. They emphasised consideration of quantities, prices and 

quality characteristics of inputs and outputs in the process of efficiency and productivity 

measurement. We discuss the most common approaches to nominate variables presenting 

inputs and outputs of an economic enterprise in the mining industry. Table 5.2 summarises the 

descriptive statistics of input and output variables. 

 

(i) Outputs  

If an economic enterprise produces a single output, the output of the firm is simply defined as 

the total of production volume in a calendar year. In case of multiple-output firms the aggregate 

output can be obtained upon availability of prices and quantities for all products. In the mining 

industry, major companies are mostly involved in a range of mining exploration and extraction 

activities. Hence, aggregate production output in mining firms includes diverse commodities 

with different prices and ore quality. In such case, a value aggregate can be formed using 

individual commodity quantities and prices. In the existing literature, value added and revenue 

are two common proxies for aggregate output (e.g. Mahadevan and Asafu-Adjaye, 2005; Fang 

et al., 2009; Eller et al., 2011; Das, 2012).  

Using financial information from annual reports, the total revenue of a mining company 

represents the aggregate value of outputs of firm operations in delivering mining commodities 

and services. Therefore, we define total revenue excluding interest as proxy for mining 

enterprise aggregate output. This is the total of income a mining company earns through direct 

mining operations or services such as engineering, logistics and property rent. 
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(ii) Inputs 

Coelli et al. (2005) summarised five common input categories in firm-level studies as capital 

(K), labour (L), energy (E), material inputs (M) and purchased services (S). The last three 

categories are commonly aggregated as intermediate input or other input category. The choice 

of inputs in the efficiency model depends on the output specifications. If value added is chosen 

as the output of an economic unit, only capital (K) and labour (L) are used as the inputs. To 

calculate value added, intermediate input is deducted from gross output. If a measure of gross 

output such as total revenue is used, the efficiency model can include measures for labour, 

capital and intermediate input categories. Following the later approach, we select labour, 

capital and intermediate inputs as three inputs for mining enterprises. In addition, a mining 

company’s efficiency depends on the characteristics of natural resource input to its mining 

operations. Due to the natural resource depletion, the volume of output extracted from mining 

operations declines over time. The depletion of natural resources results in the consumption of 

more labour, capital and intermediate inputs to produce the same level of output. Hence, a 

decline in the economic performance of mining firms may not necessarily be related to 

technically inefficient operations but derived from their depleted natural resources. Therefore, 

to reflect such effect we extend the technical efficiency model to include the natural resource 

input to mining operations. 

Labour (L) 

Different measures can be used to quantify labour input. For instance, labour input can be 

defined as number of employees, number of hours of labour input, number of full-time 

equivalent employees or total wages and salaries bill (Coellie et al., 2005). In the context of 

the mining sector, different proxies have been chosen for labour input measurement. At mine 

level, total man-hours and total man-days are mostly used to measure labour input (e.g. Byrnes 

and Fare, 1987; Thompson et al., 1995; Kulshreshtha and Parikh, 2002). At firm level, number 

of employees is a common proxy for labour input when companies are involved in one specific 

mining activity. For example, Sueyoshi and Goto (2012) used the number of employees as a 

measure of labour input to evaluate the efficiency of 19 national and international petroleum 

companies from 2005 to 2009. Fang et al. (2009) applied similar proxy for labour input to 

investigate the efficiency difference between selected coal mining companies in the United 

States and China in the period of 2001 to 2005.  
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In our study we do not use such proxies for labour input, instead we proxy labour input with 

total employee benefits, which includes wages, salaries and other employee benefits. Our data 

are mainly extracted from annual reports. Wages, salaries and employee benefits are generally 

reported in the income statements of annual reports. However, no hourly-based data is available 

in annual reports for labour employed. What’s more, information on number of employees is 

not available in multiple annual reports used to extract our data. In addition to the availability 

advantage of employee benefits as a proxy for labour input, the quality of labour is also 

reflected in the paid wages and salaries bill. 

Capital (K) 

Coellie et al. (2005) explained various types of measures to calculate enterprise capital input. 

Total capital service flow from different assets, capital stock (e.g. measured by perpetual 

inventory method (PIM)), replacement values, net capital stock from accounting reports and 

physical measures are some common methods to measure capital input. In the existing 

literature for firm-level mining efficiency and productivity studies, most physical measures and 

capital stock reported in financial statements are used to calculate capital input. In an output-

oriented DEA model, Eller et al. (2011) used the oil and gas reserves as capital input. Reccardi 

et al. (2012) applied the installed cement capacity as the proxy for capital input in their DEA 

models. Das (2012) applied the value of gross fixed assets as a proxy for capital input to 

evaluate 65 Indian private and public mining firms from 1988-89 to 2005-06. Fang et al. (2009) 

used the value of total assets as capital input in their DEA model. Geissler et al. (2015) also 

used total assets to formulate the efficiency of 24 world-leading companies in phosphate rock 

mining in 2012 using DEA.  

A major problem in using asset-based measures of capital input in the existing literature is that 

capital is measured as a stock variable rather than a flow variable. In production theory it is 

often assumed that inputs are transformed into outputs in the production process given the 

existing level of technology. Therefore, technical efficiency is a measure reflecting how well 

the inputs are used to produce the outputs using the prevailing technology. With this approach, 

it is more appropriate to measure the flow of capital service input instead of using a measure 

of capital stock. Use of capital stock represented by various measures of firms’ assets may 

cause some issues in measuring capital used in the production process. For instance, some firms 

may have assets that they are not fully utilised but, due to asset specificity, cannot be disposed 

of easily, at least in the short term. Such firms turn out to be less efficient than those that utilise 
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most of their assets in their ongoing operations. The asset-based measure of capital input does 

not account for unproductive capacity which may be associated with decline in production. 

Moreover, there is normally a considerable period from the time that a firm invests in a new 

operation capacity up to production from that new capacity. Such investment-production lag is 

not taken into consideration when using asset-based measures of capital input. 

Coelli et al. (2005) explained that the value of capital services as the flow of services from 

capital goods into the production process is an appropriate measure of capital input. The cost 

of capital services used in the production process consists of depreciation and interest expenses 

(Coelli et al., 2003). We can obtain the depreciation cost from the notes to the balance sheet of 

firms’ annual reports. In our model, we do not include the interest costs to the proxy for capital 

service since the interest expenses reported in the accounts only reflect the cost of debt and 

ignore the implicit (forgone opportunity) cost of equity. More importantly, in our study, a 

significant proportion of assets are related to mining development activities. Therefore, any 

incurred interest expenses related to these activities are not associated with the productive 

capital stock and hence do not contribute to the current production output. As separate interest 

expenses associated with utilised assets as well as development projects are not available in 

annual reports, and to avoid introducing bias in calculated capital services, we exclude the 

interest expenses from the capital input proxy. 

Intermediate Inputs (M) 

Intermediate inputs category is another input variable in our efficiency model, aggregating 

associated expenditure to material inputs, energy inputs and purchased services. In empirical 

studies, the value of operating costs are mostly used to present intermediate inputs (e.g. Fang 

et al., 2009; Sueyoshi and Goto, 2012; Geissler et al., 2015). Following this common approach 

for selection of intermediate inputs proxy, we use operating expenses calculated from expenses 

reported in the income statement section of annual reports. The operating expenses include 

costs associated with ongoing mining operations and expenditure on maintaining and 

improving the current condition in the existing mines. To construct a more precise proxy of 

intermediate inputs, we exclude exploration and evaluation expenditure from operating 

expenses as this expenditure does not contribute to the current production and hence may cause 

bias in efficiency estimates. We furthermore exclude any labour costs from operating expenses. 

Thus, our proxy for intermediate inputs is the total expenses of material, energy and purchased 
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services used in the ongoing mining operations, which is reported in firms’ financial 

statements. 

Natural Resource Input (N) 

A major difference between the resource sector and other economic sectors is the role of natural 

resource input in the production process. Similar to other production inputs, mineral deposits 

in their natural state contribute to the production of mineral and energy products (Topp et al. 

2008). Mineral production from these non-renewable resources results in resource depletion. 

In the case of depletion of homogenous non-renewable natural resources, the quality of 

extracted ores may not change, however, the supply would fall and the price would rise. If the 

deposit is heterogeneous, which is the case in most mining activities, the most easily accessible 

and highest quality deposits are extracted first, while deposits with lower quality or less 

accessibility are the second priority. One consequence of such resource depletion is the 

consumption of greater amounts of labour, capital and intermediate inputs to maintain the same 

level of production output with a given technology. Alternatively, the resource depletion may 

lead to a lower ore quality in the remaining deposits. Hence, the lower mineral commodity is 

obtained from the same unit of mined ore over time (Zheng and Bloch, 2014). 

The conventional productivity measurement methods do not take into account natural resource 

input. The difficulty in measuring natural resource input combined with the unavailability of 

its market price results in omitting this major input category in the official productivity 

measurement. Hence, the conventional productivity measurement provides a biased level of 

productivity in the mining sector. 

However, there are a number of studies in the mining efficiency and productivity literature that 

reflect natural resource inputs in their developed models. In an early work, Wedge (1973) 

emphasised the importance of natural resource inputs in mining productivity estimates. He 

argued that by taking into account the effect of natural resource input, measured by a proxy of 

ore grade index, the Canadian mining productivity was significantly higher than the measured 

productivity from the conventional reports. In a mine-level study, Byrnes and Fare (1987) 

applied the geological characteristics of a mine including total seam thickness and inverse of 

overburden excavated among mining operation inputs to examine efficiency of 186 surface 

coal mines in the interior USA in 1978.   
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Rodriguez and Arias (2008) applied the level of coal reserves to control for the resource 

depletion effect on the Solow Residual model in Spain’s coal industry. They found that the 

decrease in the level of reserve negatively contributed to total factor productivity (TFP) growth, 

and it required an annual increase of 1.29 per cent input use. They concluded that given the 

large magnitude of resource depletion effects, it is important to correct for the effects of coal 

reserves on extraction costs in the Solow Residual. 

In a comprehensive study exclusively on Australian mining productivity, Topp et al. (2008) 

challenged the measurement errors surrounding the conventional reports and highlighted 

significant decline in the Australian mining multifactor productivity (MFP) indices. They 

stressed the significant adverse role of Australia’s natural resource depletion resource on long-

term mining MFP. To estimate the effect of declining resource quality in the mining industry, 

Topp et al. (2008) constructed yield variables to measure resource depletion in various mining 

sectors. Moreover, using the sector level yield indices, including the changes in ore grade, oil 

and gas flow rates and the ratio of saleable to raw coal, they estimated the aggregate yield index 

as a proxy of declining resource quality on the mining industry as a whole. 

More recently, Zheng and Bloch (2014) examined the MFP growth in the Australian mining 

sector by a translog variable cost function. They decomposed the productivity growth to the 

effects of returns to scale, capacity utilisation and natural resource inputs. In their study, they 

assumed the exploration expenditure as a cost that a mining company spends for overcoming 

their resource depletion. Exploration expenditure is a cost that mining companies pay to 

discover new deposits for maintaining and enhancing the quality and quantity of resource 

inputs. The exploration expenditure can be seen as a response to the declining quality and 

quantity of natural resource reserves. 

Following Zheng and Bloch (2014), in our study we use the exploration expenditure to 

construct an index representing resource depletion. Using financial information from annual 

reports, such expenditure appears as capitalised exploration expenditure reported in the balance 

sheet or operating costs reported in the income statement. In the case of renewable resource 

activities, this kind of expenditure is neither presented in assets nor operating expenses. From 

the capital input point of view, while there is a degree of resource decline, a part of the 

enterprise total assets would be assigned to the associated cost of exploration expenditure. This 

resource depletion effect can be presented as the share of exploration expenditure in the firm’s 

total assets. If no exploration expenditures occur, the effect of resource depletion on the 
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enterprise capital will be zero and the whole enterprise assets will be available to utilise for 

economic activities. Based on this assumption, to reflect resource depletion effects on the 

enterprise capital, we define the capital-based natural resource input index as follows: 

Capital based natural resource input index = [(Total assets – Capitalised exploration 

expenditure) / Total assets] x 100 

If no exploration expenditures occur, the capital-based natural resource input index is equal to 

100; whereas any value less than 100 represents a degree of resource depletion effect of the 

enterprise capital. 

Similarly, we can construct the cost-based natural resource input index to reflect the effect of 

natural resource depletion on the enterprise operating costs as follows: 

Cost based natural resource input index = [(Total operating costs – Exploration 

expenditure expenses) / Total operating costs] x 100 

Any presence of exploration expenditure on the firms’ operating bills brings about a value less 

than 100 for the cost-based natural resource input index. 

To combine the effects of exploration expenditure on the enterprise capital and operating costs, 

we formulate the natural resource input index simply as the average of capital-based and cost-

based indices. Thus, in our efficiency model, the proxy for natural resource input is described 

as:  

Natural resource input index = (Capital-based natural resource input index + Cost-based 

natural resource input index)/2 

A value of 100 in the natural resource input index shows no resource decline, while any value 

below 100 shows the presence of exploration expenditure due to a degree of resource depletion. 

Such index provides a practical solution to include natural resource input in the efficiency 

model; whereas in a firm-level study, availability and aggregation of detailed information 

representing resource depletion, such as ore grades or saleable prices, are extremely 

challenging. 
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5.3.2 Variables of Firm-Specific Factor Effects 

The data used in the second-stage regression analysis includes ownership concentration, size, 

age, property, plant and equipment (PP&E) ratio, financial leverage, type of product, product 

divarication, change pace, direction of change, location of operations and year. The summary 

of descriptive statistics of continuous firm-specific factors and dummy variables for firm-

specific factors is presented in Table 5.2 and Table 5.3 respectively. 

 

(i) Ownership 

In the mining literature, few studies examined the role of ownership on efficiency gains. These 

studies focused on comparison of private versus state-owned companies (e.g. Eller et al. 2011; 

Das 2012). While all firms in our sample are private companies listed on the ASX, the 

ownership concentration is different from company to company. The effect of ownership 

concentration on the firms’ performance is ambiguous as both positive and negative 

relationships have been reported in the literature. Margaritis and Psillaki (2010) reported a 

positive relationship between ownership concentration and efficiency of chemical 

manufacturers in France. Ma et al. (2010) examined the impact of ownership concentration on 

the performance of China’s listed companies and concluded that ownership concentration 

enhances firms’ performance. Using stochastic frontier analysis (SFA) and data envelopment 

analysis (DEA), Su and He (2012) found that the relationship between ownership concentration 

and firm performance is an inverted U-shaped and both low degrees and high degrees of 

ownership concentration affect the performance negatively. 

Shleifer and Vishny (1997) argued that ownership concentration along with legal protection is 

an efficient governance mechanism. Anderson et al. (2012) evaluated that the level of 

protection afforded to shareholders under Australian law is relatively high in comparison with 

other countries. Hence, in our study we hypothesise that ownership concentration, as an 

efficient corporate governance mechanism, improves the efficiency gain of Australian mining 

companies. We use the percentage of shares held by the substantial shareholders as a proxy to 

measure the ownership concentration. 
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(ii) Firm Size 

Furthermore, we investigate the association between firm efficiency and firm size. We use the 

natural logarithm of property plant and equipment (PP&E) assets as the proxy for size of a 

firm. PP&E assets represent the productive capital and reflect the operations capacity. Hence, 

it is an appropriate proxy for firm size. The existing literature provides mixed evidence on the 

relationship between firm size and firm efficiency. For instance, Diaz and Sanchez (2008) 

found a negative correlation between firm size and firm efficiency; whereas Badunenko (2010) 

showed a positive correlation and Schiersch (2013) presented a U-shaped relationship. To the 

best of our knowledge, there is no specific study in the mining sector applying a second-stage 

analysis to investigate size-efficiency relationship. Zheng and Bloch (2014) argued that 

operating scale is one of the major contributors of recent unfavourable productivity trends in 

the Australian mining sector. They added that the presence of a moderate level of decreasing 

returns to scale can describe 0.2 per cent of annual productivity decline over the period 1974-

75 to 2007-08.  This shows that larger mining companies are less agile than smaller companies 

to downsize and optimise their operating scales; and consequently, may be less productive than 

their smaller peers. Hence, it is expected that larger mining companies are less productive than 

their smaller counterparts.  

 

(iii) Firm Age 

Age is another firm-specific factor that may influence firm performance. Loderer and Waelchli 

(2010) showed a robust negative association between firm age and firm performance, 

particularly firm profitability. They stated that aged firms are characterised by higher expenses, 

lower output growth, less R&D and capital expenditure, and worse corporate governance. In 

an earlier study, Majumdar (1997) argued that while firm aging affects the profitability of 

firms, older firms are more productive than younger firms. Lumley and McKee (2014) 

explained that productivity in mining firms is heavily dependent on the way people act. The 

availability of the right people with the required skills is a key element of a success strategy to 

achieve higher productivity. A number of mining companies are long-established, having 

started their operations at the advent of the recent boom. A lack of mining business knowledge 

and required skills has been a major challenge for the young mining firms in Australia. In the 

Australian mining context, we postulate that older firms are able to achieve higher productive 
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efficiency through prior opportunities arising from learning-by-doing hypothesis in gaining the 

required knowledge and skills in their industry.  

 

(iv) Capacity Utilisation 

Topp et al. (2008) remarked that capital-output lag is a significant contributor to the 

productivity index decline in the Australian mining sector. Zheng and Bloch (2014) found that 

the declining productivity trends in the Australian mining sector are largely associated with the 

physical capital utilisation due to the long lead time from the investment in capital goods to 

their use in production. Sector-level studies argue that the declining productivity performance 

in the Australian mining sector has resulted from incorrect assumptions and mismeasurement 

of productivity changes in conventional reports. However, at an operational level, mining 

industry reports identified that a major reason for low efficiency among the Australian mining 

companies is inefficient utilisation of mining equipment (Lumley and McKee, 2014; Mitchell 

et al., 2014). In their report, Lumley and McKee (2014) highlighted that the differences 

between median performance and best practice output by equipment category can be over 100 

Per cent. 

In line with sector-level and mine-level findings, we test whether capacity utilisation is a 

contributor to efficiency gain. Using financial information from annual reports, the property, 

plant and equipment (PP&E) assets represent firm equipment and infrastructure capital. 

Holding the effects of other assets constant, inefficient utilisation of PP&E assets is associated 

with a higher share of PP&E in total assets. Therefore, we use the ratio of PP&E assets to total 

assets as a proxy of operations capacity utilisation. Considering the findings from previous 

research, we expect a negative correlation between this ratio and firm efficiency. 

 

(v)  Financial Risk  

The existing literature also examined the influence of financial risk on firm performance and 

reported both positive and negative effects (e.g. Abor, 2005; Zeitun and Tian, 2007; El-Sayed 

Ebaid, 2009; Yazdanfar and Ohman, 2015). We proxy risk with financial leverage defined as 

total assets divided by total equity. A high leverage ratio indicates that a much greater 
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proportion of firm capital is funded from lenders rather than shareholders. Higher leverage can 

provide opportunities to grow business at an accelerated rate. On the other hand, a large amount 

of debt is generally considered a sign of risky business practices. It is required by the law that 

companies must make payments on their debts regardless of business revenues. A company 

with a high leverage ratio that experiences financial downturn is in risk of loan default and 

bankruptcy. Considering the classic risk-return trade-off arguments, we expect that mining 

firms with higher leverage have higher economic performance. 

 

(vi) Types of Product 

According to the ABS (ABS, 2016), iron ore and gold contributed to 80 per cent of total sales 

and service income in the minerals and metal mining industry during 2013-14. Hence, in the 

list of exogenous variables, it is important to control for the type of products (including iron 

ore, gold and other minerals and metal ores) each company produces. We assume that iron ore 

companies, which are generally operating large-scale projects, gain higher efficiency 

performance. Moreover, gold mining is a well-established and mature industry in Australia. 

We expect that gold mining companies perform more efficiently than companies extracting 

other metal and mineral commodities. 

 

(vii) Product Diversification 

While most mining companies are involved in one or a few related mining activities, some 

companies expand their operations to a diverse portfolio of mining exploration and extraction 

activities. The existing literature has provided mixed evidence on the effect of product 

diversification on firm performance (e.g. Chang and Wand 2007; Chakrabarti et al. 2007; Nath 

et al. 2010). Conceptually, diversification and firm performance are expected to be positively 

correlated. Diversification enables firms to achieve economies of scope and leverage their 

strategic resources across other products and markets (Rumelt, 1974). We expect that 

diversification positively affects the efficiency of mining firms through utilisation of unused 

productive capacity, reduction of business risk arising from falling prices, and employing 

operation capabilities across other mining activities. 
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(viii) Growth Status 

Mining companies experience continual growth and decline in their operations output 

depending on their stages in mine life cycle. Furthermore, due to management decisions or 

natural factors, mines may record comparatively large changes in production from one year to 

the next. Even though mining firms are able to adjust their operating expenses along with 

output changes, they can unlikely optimise their capital assets in the short term, especially 

during declining periods. Mitchell and Steen (2014) commented that the lack of effective 

portfolio management can influence the capital productivity of mining companies. A balanced 

set of projects in the portfolio results in the stability of production outputs. To consider this 

point, we assume that mining companies with a steady state or gradual growth of outputs are 

more efficient than companies with rapid growth. Also, we expect that companies are more 

efficient during growth periods in comparison with declining cycles.  

 

(ix) Location of Operations 

A number of Australian mining companies have expanded their operations to other countries. 

Such international diversification may provide benefits to the Australian mining companies 

through lower operating expenses. Nath et al. (2010) argued that international diversification 

is not necessarily beneficial to parent companies. They discussed that success in this strategy 

requires extensive knowledge assimilation, understanding of local business environment and 

culture, active participation from local partners and transfer of resource and operations 

capacities between parent and local partner companies. To evaluate if international 

diversification benefits mining companies in terms of efficiency gain, we add the dummy 

variable of overseas operations to our econometric model. 

 

(x) Year Dummies 

In addition to firm-specific variables, we include the year dummies among the regressors to 

capture the effect of time on mining firms’ efficiency. These time-varying effects can be related 

to some possible economic and structural changes across the mining sector which cannot be 

explained by firm-specific factors.  
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5.3.3 Adjustment for Price Changes 

As we tend to measure technical efficiency in real terms, it is essential to remove the effects of 

price changes on employed variables. To do so, appropriate deflators matching the research 

data must be selected. Such selected deflators must relate to the commodities that constitute 

the aggregate as closely as possible (Coell et al., 2005). In our study, the production output 

measured by total revenue is deflated by the producer price index (PPI) for output of the mining 

sector. The intermediate input is deflated using the PPI for input of mining sector. To adjust 

the price effects of labour input, we apply the respective wage price index (WPI) for mining 

activities. Finally the capital input is deflated through applying the PPI for capital goods (ABS, 

2015a, 2015b).  

 

Table 5.2: Data description of continuous variables 
Variables  Mean Std. Deviation Minimum Maximum 

Output variables     

   Total revenue, thousands of AUD (Q) 4477175 14647918 14599 77883040 

Input Variables     

   Employee benefits, thousands of AUD (L) 565323 1805976 530 9604749 

   Total depreciation, thousands of AUD (K) 389981 1361589 385 8962845 

   Intermediate inputs, thousands of AUD (INT) 1960169 6317772 2471 34002611 

   Natural resource input, index (N) 94.66 6.16 62.00 100.00 

Firm-Specific Factors     

   Substantial shareholder, percentage (OWNER) 39.34 23.57 4.00 95.00 

   Firm size, ln(total assets) (SIZE) 20.06 1.96 15.83 25.46 

   Firm age, year (AGE) 35.97 35.91 3.00 141.00 

   PP&E assets ratio, percentage (PPE) 53.69 17.66 11.00 93.00 

   Financial leverage, ratio (LEV) 1.64 0.64 1.03 4.66 
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Table 5.3: Data description of dummy variables 

Variables  Description of variable 
No. 

0 1 

Firm-Specific Factors    

   Iron ore production (IRON) = 1 if the main product is iron ore, 0 otherwise. 150 20 

   Gold production (GOLD) = 1 if the main product is gold, 0 otherwise. 90 80 

   Product diversification (DIV) = 1 if the product portfolio is diversified, 0 otherwise. 140 30 

   Change pace (CH_PACE) = 1 if the firm total output changes rapidly (> 30%), 0 otherwise. 113 57 

   Change direction (CH_DIR) = 1 if the firm total output grows, 0 otherwise. 55 115 

   Location of operation (LOC_OPS) = 1 if firm operates in overseas projects, 0 otherwise. 80 90 

   Year 2011 (Y2011) = 1 if observation is for 2011, 0 otherwise. 136 34 

   Year 2012 (Y2012) = 1 if observation is for 2012, 0 otherwise. 136 34 

   Year 2013 (Y2013) = 1 if observation is for 2013, 0 otherwise. 136 34 

   Year 2014 (Y2014) = 1 if observation is for 2014, 0 otherwise. 136 34 

 

5.4 The Empirical Model in Stage One: Estimation of the Efficiency Scores  

To analyse the efficiency performance of the Australian mining companies, we apply a two-

stage DEA method. The aim of the first stage is to obtain the efficiency estimates of mining 

firms and we examine the effects of firm-specific characteristics on the efficiency performance 

in the second stage. Taking into account the production function theory, we select labour, 

capital and intermediate inputs as the model inputs and total production as the model output. 

To analyse the role of natural resource input in the economic performance of mining 

companies, we extend our model and include the developed variable representing natural 

resource input to the efficiency model. Model I represents a general model of efficiency 

estimation and Model II includes the natural resource input, a main characteristic of mining 

activities. In the following sections we discuss the empirical models applied in our study. 

 

5.4.1 The Choice of Efficiency Measurement Method 

In the existing literature, there are no specific techniques for efficiency measurement 

recommend as the preferable approach. Each technique has its own advantages and 

disadvantages. The choice of efficiency method relies on a careful consideration of frontier 

techniques and the specification of data and industry under investigation. As Fried et al. (2008) 



143 
 

explained, there has been a considerable improvement in both approaches in providing more 

robust techniques and narrowing the gap. 

This study follows the mathematical programming approach to efficiency analysis using data 

envelopment analysis (DEA) method. The first advantage in the application of DEA is its 

superior performance in handling a small sample size. On the other hand, techniques in the 

econometric approach to efficiency analysis such as stochastic frontier analysis (SFA) mostly 

require a large sample size. Our sample in this study consists of 34 Australian listed mining 

companies. Hence, the application of DEA sounds more plausible. 

The other advantage in the application of DEA is its flexibility and ability in handling multiple 

input-multiple output problems. The SFA techniques, however, requires a pre-defined 

functional form of the production frontier. The SFA methods cannot directly account for a 

multiple input-multiple output production model, i.e. the econometric model can have only one 

dependent. Also, the researcher must select the cost or production function form such as a 

Cobb-Douglas or a translog function in advance. 

The downside of DEA is mainly attributed to its deterministic nature. This method does not 

allow for random noise or statistical error. The efficiency frontier is highly sensitive to outliers. 

Fortunately, a remedy exists; Simar and Wilson (1998, 2000a) introduced a bootstrapping 

technique that generates the statistical properties of estimated efficiency scores. In this study, 

their proposed technique is used to derive the error estimates and confidence intervals for 

efficiency scores of the mining companies in our sample. 

Using linear programming methods, DEA models construct a non-parametric piece-wise 

surface, which is called frontier, over the sample data. The efficiency performance of a firm is 

calculated relative to this frontier. The form of frontier depends on the returns to scale 

assumptions. The CRS assumption considers that all firms operate at an optimal scale. 

However, due to business constraints such as imperfect competition, government regulations 

and financial constraints, a firm may not be able to operate at the optimal scale. Therefore, CRS 

estimates of technical efficiency may contain the scale inefficiency effects when not all firms 

operate at their optimum scale. The technical efficiency estimates derived from the VRS model 

are free from such effects (Coelli et al., 2005). We estimate efficiency scores under both 

constant returns to scale (CRS) and variable returns to scale (VRS) assumptions. Estimating 

efficiency performance using both CRS and VRS models enables us to identify the influence 
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of operating scale on the efficiency scores across companies. We expect more efficiency 

variations assuming CRS rather than VRS.  

The efficiency model that we employ is output-oriented. The mining industry plays a critical 

role in the Australian economy in terms of export revenue and value added. Furthermore, the 

existing global demand for mining products requires constant adjustments to export volumes 

in a competitive market. Hence, we consider the use of an output-oriented approach to be more 

appropriate than an input-oriented one. Nevertheless, assuming CRS the efficiency scores are 

just the reciprocal value of input-oriented measures. 

 

5.4.2 The Empirical DEA Model 

Based on the notations and terminology described in Fried et al. (2008), we define 

1( ,..., ) N
nx x x +=  as a vector of inputs and 

1( ,..., ) M
my y y +=  as a vector of outputs. 

Production technology can be described as: 

{( , ) :  is produceable from }M N M NT x y y x+ + + +=     . (5.1) 

and the Farrell output-oriented measure of technical efficiency defined by: 
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The value of the output-oriented Farrell technical efficiency for a firm under a given technology 

is equal to, or greater than, unity. To estimate technical efficiency, one needs to compare the 

actual performance of firms with the optimal level of performance on the technology frontier. 

The true technology frontier (optimal level of performance) is unknown. T̂ as the DEA-estimate 

of T can be represented as follows: 
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Under the assumptions of CRS, additivity and free disposability, the DEA-estimator of the 

Farrell output-oriented technical efficiency score of observations ( 1,..., )j j n= is formulated 

by: 
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Assuming VRS, an additional constraint 
1

1
n

k

k
z

=

=  is added to (5.4). The efficiency scores 

estimated via (5.4) are bounded between unity and infinity. An efficiency score of one 

represents a fully efficient firm, while greater scores reflect the degree of inefficiency in firm 

performance. Table 5.4 shows the parameters of equation (5.4) assigned to Model I and Model 

II. 

As we discussed in Chapter 4, the main advantage of DEA is that this method does not require 

any pre-assumptions for functional form but cannot provide any information for the statistical 

noise. The estimated frontier output (or input) depends on the particular combination of input-

output mix and a different observed sample set would lead to a different estimated frontier. The 

estimated technical efficiency would thus be different from one sample to another. To obtain a 

confidence interval covering possible statistical errors, one would need the sampling 

distribution of the frontier output (or input). However, usually only one sample is available. 

Bootstrap DEA is one of the stochastic DEA approaches developed to overcome this limitation. 

It estimates the sampling distribution and statistical properties for an estimator through re-

sampling from the original sample. We use the smooth bootstrapping procedure developed by 

Simar and Wilson (1998) with 2000 iterations to obtain statistical inference for DEA estimates 

of technical efficiency from stage one. 
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Table 5.4: Specifications of the constructed DEA models 
Model I Model II 

Number of outputs (M): 1 Number of outputs (M): 1 
Number of inputs (N): 3 Number of inputs (N): 4 
Number of observations (n): 170 Number of observations (n): 170 
Outputs (ym): Outputs (ym): 

Production (y1) Production (y1) 
Inputs (xi): Inputs (xi): 

Labour (x1) Labour (x1) 
Capital (x2) Capital (x2) 
Intermediate input (x3) Intermediate input (x3) 

 Natural resource input (x4) 
Source: Author’s classification 

 

5.5 The Empirical Model in Stage Two: Examination of Effects from the Firm-Specific 

Factor on the Efficiency Estimates 

At the second stage, we examine what factors determine the efficiency performance using a 

regression analysis. The regression model is specified as follows: 

,     1,...,j j jTE Z j n = + =  (5.5) 

where jZ is a vector of firm-specific variables relative to firm j . The aim is to estimate the 

coefficient vector   and generate the stochastic error term j for each individual firm. 

Tobit model is a common method in DEA literature to conduct the second-stage analysis using 

equation (5.5). However, Simar and Wilson (2007) criticised the use of this model because the 

serial correlation problem may plague the estimated parameters. They proposed an alternative 

approach using a bootstrap truncated regression. Instead of conventional efficiency scores, the 

bias-corrected technical efficiency scores ( ˆ bc
jTE ) are used in equation (5.5). As both sides of 

equation (5.5) are bounded by unity, the restriction 1j jZ  −  is applied for j . Following 

Simar and Wilson (2007), we assume that j is from a left-truncated normal distribution with 

zero mean and unknown variance. Hence, we formulate the following regression model to 

investigate the effects of firms’ specific factors on technical efficiency: 

ˆ ,     1,...,bc
j j jTE Z j n = + =  (5.6) 
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where 

2~ (0, ), such that 1 ,     1,...,j j jN Z j n    − =  (5.7)  

Based on equation (5.6) and variables discussed in Section 5.3.2, the econometric model of 

stage two in our study is constructed as follows: 

0 1 2 3 4 5 6
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j j j j j j j

j j j j j
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    

     
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+ + + + +

+ + + + + + =

 (5.8) 

where 

OWNERj = ownership concentration in firm j, represented by the ratio of substantial 

shareholders 

SIZEj = size of firm j, proxied by the natural logarithm of the property plant and equipment 

(PP&E) assets 

AGEj = age of firm j, measured by the number of years since firm establishment 

PPEj = capacity utilisation in firm j, represented by the ratio of PP&E assets to total assets 

LEVj = leverage of firm j, measured by the ratio of total debt to total assets 

IRONj = dummy for iron ore mining in firm j; 

IRONj =1 if the iron ore is the main mining activity in firm j, 

IRONj =0, otherwise 

GOLDj = dummy for gold mining in firm j; 

GOLDj =1 if the gold is the main mining activity in firm j, 

GOLDj =0, otherwise 

DIVj = dummy for product diversification in firm j; 

DIVj =1 if firm j operates a diverse portfolio of mining activities, 

DIVj =0, otherwise 

CH_PACEj = dummy for pace of growth in firm j; 

CH_PACEj =1 if the absolute value of growth rate in firm j is among the top third of companies 

in our sample, 

CH_PACEj =0, otherwise 

CH_DIRj = dummy for direction of growth in firm j; 

CH_DIRj =1 if company j experiences a positive growth rate, 
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CH_DIRj =0, otherwise 

LOC_OPSj = dummy variable for location of operation; 

LOC_OPSj =1 if company j operates mining projects overseas in addition to their domestic 

mining activities, 

LOC_OPSj =0, otherwise 

Y2011j = dummy variable for year 2011 relative to observation j,  

Y2011j =1 if the observation j is related to year 2011, 

Y2011j =0, otherwise 

Y2012j = dummy variable for year 2012 relative to observation j,  

Y2012j =1 if the observation j is related to year 2012, 

Y2012j =0, otherwise 

Y2013j = dummy variable for year 2013 relative to observation j,  

Y2013j =1 if the observation j is related to year 2013, 

Y2013j =0, otherwise 

Y2014j = dummy variable for year 2014 relative to observation j,  

Y2014j =1 if the observation j is related to year 2014, 

Y2014j =0, otherwise 

j = stochastic error for firm j 2( ~ (0, ))j N    

 = a vector of unknown coefficients to be estimated   

j=1, … , 170. 

In the estimation procedure we use Algorithm 2 of Simar and Wilson (2007) to run the 

regression model (5.6) with 2000 bootstrap iterations as described in Chapter 4. 

 

5.6 Summary 

Chapter 5 has presented the data source, the description of variables and the empirical models 

of technical efficiency analysis in the Australian mining context. The DatAnalysis database, 

which provides detailed financial information of the ASX listed companies, has been used to 

extract data required for part of variables in our model. Further to the DatAnalysis database, 

the annual reports of selected mining companies have been used to obtain data for a number of 

defined variables. Our sample consists of 34 major Australian mining companies which were 

operational over 2010-2014. 



149 
 

There are multiple reasons behind the selection of our sample. First, these companies cover 

more than 85 per cent of total market capitalisation of mining companies listed on the ASX. 

Hence, the efficiency performance of the Australian mining activities can be well represented 

by this sample. Second, to increase the homogeneity of our sample we include only fully 

operational companies over the period of study. Third, our sample includes large- to medium-

sized companies. Such companies mostly acquire established management systems and they 

are capable of handling various exploration and extraction activities. We did not include small 

mining companies which mostly operate one mining field with a very limited capacity to their 

production output. The existing operational level studies have reflected the efficiency 

performance of such single mining operations. What’s more, the exclusion of small companies 

in our study resulted in a more homogenous sample.  

Further to the data source and sample selection discussion, this chapter has explained the 

variables used in our study. In the first-stage analysis, we estimated the efficiency performance 

of the Australian mining firms. Following the common approach in the production function 

theory, we selected total output (Q) represented by total revenue, labour input (L) measured by 

total employee benefits, capital service (K) measured by total depreciation, and intermediate 

inputs (M) calculated using operating expenses as the output / input variables of the constructed 

efficiency model. In addition, we expanded this common approach to comply with the 

geological characteristics influencing the efficiency performance in the resource sector. In 

doing so, we defined a variable reflecting the natural resource inputs to mining operations. 

Given the availability of financial information from firms’ annual reports, we used the 

exploration expenditure of both capitalised and reported expenses to construct the Natural 

Resource Input Index. Our assumption to construct this variable is based on the fact that, due 

to depleting non-renewable resource deposits, mining companies are required to introduce 

exploration activities in order to maintain and continue their economic operations. 

Chapter 5 has also explained the variables used in the second-stage analysis. To examine the 

effects of firm-specific characteristics on technical efficiency performance, major factors 

which potentially influence the efficiency of Australian mining companies have been 

identified. The second-stage econometric model includes 11 variables: ownership ratio of 

substantial shareholders (OWNER), firm size (SIZE), firm age (AGE), ratio of PP&E assets to 

total assets (PPE), financial leverage (LEV), dummy variables for main product as iron ore 

(IRON) and gold (GOLD), a dummy variable for product portfolio diversification (DIV), 
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dummy variables for growth factors including production progress pace (CH_PACE), growth 

or decline status (CH_DIR), and a dummy variable for location of operations (LOC_OPS). In 

addition, four year-specific dummies have been introduced to the model to capture any 

significant influence caused by the external environmental factors and not explained by the 

internal variables.  

Our empirical model developed in this chapter consists of modelling the technical efficiency 

estimation in stage one and constructing the econometric model of efficiency determinants in 

stage two. The stage-one analysis has been developed to include a model of technical efficiency 

in respect to commonly used input-output variables in production function theory. We 

designated this technical efficiency formulation as Model I, which include variables of labour, 

capital and intermediate inputs and total production output. Further, we extended our efficiency 

model to include natural resource input as a specific characteristic of the non-renewable 

resource sector of mining. This natural resource-based model of technical efficiency has been 

denoted as Model II. 

We employed data envelopment analysis (DEA) method to formulate the technical efficiency 

model. DEA involves estimating the production frontier given the sample data and evaluation 

of observations performance relative to their corresponding frontier. Since DEA is a non-

parametric method of efficiency estimation, it does not consider the sample variations; hence, 

the statistical noise is omitted in this method. This limitation of DEA method has been 

surmounted through applying the bootstrapping procedure proposed by Simar and Wilson 

(1998).  

To examine the effects of firm-specific factors on firm efficiency at the second stage of the 

analysis, a bootstrap truncated regression method proposed by Simar and Wilson (2007) was 

utilised. This method improves the limitation of common methods used in the second-stage 

DEA, such as Tobit regression or OLS, to provide consistent estimated parameters at the 

presence of serial correlation among efficiency estimates. This study’s constructed 

econometric model considered bias-corrected technical efficiency as the dependent variable 

and 15 explanatory variables including ownership ratio of substantial shareholders (OWNER), 

firm size (SIZE), firm age (AGE), ratio of PP&E assets to total assets (PPE), financial leverage 

(LEV), dummy variables for main product as iron ore (IRON) and gold (GOLD), dummy 

variable for product portfolio diversification (DIV), dummy variables for growth factors 

including production progress pace (CH_PACE) and growth or decline status (CH_DIR), a 
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dummy variable for location of operations (LOC_OPS) and four year-specific dummies. Due 

to different variable specifications in Models I and II resulting in different efficiency estimates, 

a corresponding econometric model was formulated separately in stage two. The results from 

the application of the developed empirical models are presented and discussed in Chapter 6. 
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6 Empirical Results 

 

6.1 Introduction 

Chapter 6 aims to present the results from the empirical models of technical efficiency analysis 

with respect to data and variables discussed in Chapter 5 in a two-stage approach. Section 6.2 

presents the empirical results from the application of Model I and Model II. The former consists 

of the common input/output variables of efficiency modelling including one output, namely 

total production, and three input variables of labour, capital and intermediate inputs. The latter 

maintains the common variables but includes a proxy for natural resource inputs. 

Using specifications defined in the general model of technical efficiency, i.e. Model I, and the 

natural resource-based model of technical efficiency defined in Model II, data envelopment 

analysis (DEA) is used to derive the efficiency estimates in stage one. In addition to the original 

DEA estimates of efficiency, the results from a bootstrap DEA method proposed by Simar and 

Wilson (1998) are presented in Section 6.2. These estimates include the efficiency scores under 

both constant returns to scale (CRS) and variable returns to scale (VRS) assumptions from an 

output-oriented perspective. 

The variation of technical efficiency scores and underlying trends across different 

specifications applied in Model I and Model II are also discussed in this section. The Friedman 

test is applied to examine if the efficiency performance changed over the study period.  

In addition to the evaluation of technical efficiency, it is important to understand the factors 

contributing to technical efficiency performance. This knowledge will aid us to identify 

relevant policy recommendations to improve the efficiency of mining firms in Australia. 

Section 6.3 presents and discusses the results derived from the second-stage analysis of the 

study’s two distinguished models. The aim of stage two is to examine the effects of firm-

specific factors on the technical efficiency of the Australian mining firms. In the second-stage 

analysis, technical efficiency is regressed on 11 factors of ownership, firm size, firm age, 

capacity utilisation, financial risk, product type, portfolio diversification, growth variables of 

production progress pace as well as growth/decline status, location of operations, and time. The 
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analysis in both stage one and stage two is conducted in the R programming environment using 

codes developed by the author and FEAR package provided by Wilson (2013). 

The derived results from a bootstrap truncated regression method proposed by Simar and 

Wilson (2007) show that the firm-specific factors significantly influence the efficiency 

performance of the Australian mining firms. It is also assessed whether considering natural 

resource input in the technical efficiency modelling results in significant variations among 

estimated parameters of the second-stage regression model, compared with the results from the 

general efficiency model. The results obtained from the second analysis in both models have 

been discussed in detail and the findings are compared with those from the existing literature. 

 

6.2 Efficiency Estimation Results 

At the first stage of analysis, the aim was to estimate the Farrell technical efficiency of observed 

DMUs. Using an output-oriented DEA model, the production frontier was constructed over the 

sample and the efficiency scores relative to the corresponding frontier level were estimated. 

This section presents the efficiency estimates obtained from Model I and Model II. First the 

efficiency scores are estimated using a conventional DEA model. Then, the bootstrap DEA 

model is applied on the sample to obtain the bias-corrected estimates of technical efficiency 

and the confidence intervals. The bootstrap DEA model results in efficiency estimates with 

valid statistical inference relative to the sampling variations of the estimated frontier (Simar 

and Wilson, 1998). Simar and Wilson’s smooth bootstrapping procedure is employed to correct 

the bias in efficiency scores and to obtain the corresponding confidence intervals.  

 

6.2.1 Original DEA Efficiency Estimates 

As discussed in Chapter 5, this thesis applies an output-oriented DEA model. Both variable 

return to scale (VRS) and constant return to scale (CRS) models are utilised to obtain the 

efficiency scores. By focusing on firm-level efficiency, the sources of inefficiency are 

decomposed into pure technical inefficiency and scale inefficiency. Pure technical inefficiency 

indicates that the firm’s performance gap against the corresponding frontier can be directly 

measured through variable returns to scale (VRS) models. Scale inefficiency indicates the 
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degree to which the firm does not operate on its optimal scale. Constant returns to scale (CRS) 

efficiency reflects the effect of both scale and pure technical (in)efficiencies. A comparison of 

the efficiency results derived from CRS and VRS models can reveal whether the source of 

inefficiency in mining firms results from pure technical inefficiency or whether it reflects the 

effects of operating beyond an optimal scale. 

Usually, firms are not able to change their operating scale in the short term. The VRS technical 

efficiency can be interpreted as what a company can achieve in the short run and CRS technical 

efficiency represents the potential for improvement in the long term (Coelli, et al, p. 60, 2005). 

Therefore, in addition to the overall technical efficiency estimates derived from the CRS model, 

this study extracts the components of technical efficiency, namely pure technical efficiency 

and scale efficiency, to identify the improvement potentials in the short term and long term. 

Table 6.1 and Table 6.2 show the summary of efficiency estimates derived from Model I and 

Model II respectively. The details of efficiency estimates for individual firms are reported in 

Table 6.3 and Table 6.4. As the Farrell estimates of technical efficiency are calculated in the 

constructed model, a higher efficiency score indicates lower firm efficiency (Farrell, 1957). 

The stage one results summarised in Table 6.1 show a significant inefficiency level among the 

Australian mining firms based on Model I and the CRS assumption. On average, 62 per cent 

inefficiency is observed across mining companies in the study’s sample. Accounting for the 

VRS assumption in Model I, the pure technical efficiency improves over the period 2010-14. 

On average, the estimated VRS efficiency scores, i.e. pure technical efficiency scores, reach 

1.67 points, representing 40 per cent inefficiency performance among mining companies. 

Comparison of the VRS and CRS results from Model I shows a significant scale inefficiency 

among mining companies. Over the entire sample, the average scale efficiency score is 1.59 

points which can be interpreted as the presence of 37 per cent scale inefficiency in the 

Australian mining sector. Table 6.3 reveals that majority of observations in the sample are 

operating over the optimum scale. Around 90 per cent of observations require reducing their 

operating scale to achieve better efficiency performance. 

This finding is in line with that of studies addressing the issue of operating scale in the 

Australian mining sector. In a sector-level study, Zheng and Bloch (2014) used the elasticity 

of cost with respect to output as a measure of returns to scale and found the presence of a 

moderate returns to scale in Australian mining. They reported that a non-optimal scale of 
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operation had been responsible for the decline in MFP growth by 0.2 per cent per annum over 

the 1974-75 to 2007-08 period. In another sector-level study, Syed et al. (2015) decomposed 

the MFP growth to technical progress, technical efficiency and scale efficiency, and found that 

both technical efficiency and scale effects had positive contributions to the MFP growth of the 

Australian mining sector over the period 1990-91 to 2009-10. Although their study did not 

reveal the size of technical and scale inefficiency, Syed et al. (2015) estimated the contribution 

of technical efficiency and operating scale improvements to the annual MFP growth by 82.4 

per cent and 27.8 per cent respectively, while technical progress contributed negatively by -

10.2 per cent per year. Zheng and Bloch (2014) explained that the slight decreasing returns to 

scale phenomenon may be attributable to the natural constraints to expansion of natural 

resource production. An increase in production is not necessarily proportional to an increase in 

exploration expenditure, physical capital and labour when the most accessible deposits are 

discovered and extracted first. 

Table 6.1: Summary of Model I technical efficiency scores - the original DEA model 
Original CRS Model  Original VRS Model 

Year Mean Std. dev. Min. Max. Ineff.(a)  Year Mean Std. dev. Min. Max. Ineff.(a) 
2010 2.56 1.08 1.10 4.67 61%  2010 1.68 0.60 1.00 3.17 41% 

2011 2.50 1.38 1.00 6.69 60%  2011 1.58 0.62 1.00 3.74 37% 

2012 2.59 1.23 1.00 5.16 61%  2012 1.64 0.69 1.00 3.83 39% 

2013 2.79 1.40 1.00 6.51 64%  2013 1.73 0.73 1.00 3.99 42% 

2014 2.79 1.72 1.00 9.76 64%  2014 1.74 1.05 1.00 6.99 43% 

Total 2.65 1.37 1.00 9.76 62%  Total 1.67 0.75 1.00 6.99 40% 

Source: Author’s calculations  
Note: (a) Ineff. (average firms’ inefficiency) is calculated by (Mean – 1)/Mean) where 1 is best practice. The higher the 
efficiency score, the lower is the average efficiency in a given year.  

 

Model II accounts for the natural resource inputs and resource depletion in efficiency 

measurement. Table 6.2 presents the summary of efficiency performance obtained from Model 

II. Under the CRS assumption in Model II, on average, 41 per cent inefficiency exists among 

mining firms in the sample, whereas this overall inefficiency reduces to 39 per cent considering 

the VRS technology assumption. These results reveal that once accounting for natural resource 

inputs, the deviations between CRS and VRS efficiency estimates are not significant. It 

illustrates that most mining firms operate close to their optimum scale when the natural 

resource input has been taken into consideration. The average scale efficiency score in the 

sample derived from Model II is 1.04 points which represents the existence of only 4 per cent 

scale inefficiency among mining companies. 
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Table 6.2: Summary of Model II technical efficiency scores - the original DEA model 
Original CRS Model  Original VRS Model 

Year Mean Std. dev. Min. Max. Ineff.(a)  Year Mean Std. dev. Min. Max. Ineff.(a) 
2010 1.74 0.58 1.00 3.09 43%  2010 1.66 0.60 1.00 3.07 40% 

2011 1.59 0.62 1.00 3.74 37%  2011 1.55 0.62 1.00 3.74 35% 

2012 1.65 0.68 1.00 3.85 40%  2012 1.58 0.67 1.00 3.83 37% 

2013 1.73 0.73 1.00 4.01 42%  2013 1.70 0.71 1.00 3.99 41% 

2014 1.75 1.05 1.00 7.00 43%  2014 1.73 1.05 1.00 6.99 42% 

Total 1.69 0.74 1.00 7.00 41%  Total 1.64 0.74 1.00 6.99 39% 

Source: Author’s calculations  
Note: (a) Ineff. (average firms’ inefficiency) is calculated by (Mean – 1)/Mean) where 1 is best practice. The higher the 
efficiency score, the lower is the average efficiency in a given year.  

 

Details of efficiency estimates from Model II presented in Table 6.4 show that a combination 

of decreasing returns to scale (DRS), increasing returns to scale (IRT) and optimum operating 

scale conditions have been observed among mining companies. Almost 42 per cent of firms 

have an operating scale above the optimum level; 30 per cent of firms are operating in a lower 

scale than the optimum scale; and 28 per cent are fully scale efficient. In several observations, 

the DRS or IRS conditions appear due to the presence of minor scale inefficiency. Once 

applying the effects of natural resource input, only 12 out of 170 observations in the sample 

have more than 10 per cent scale inefficiency. 

This finding strongly suggests that the main reason behind poor scale efficiency among the 

Australian mining companies is the adverse effect of natural resource input and resource 

depletion. Lower ore grades or less accessible mineral ore deposit leads to consumption of 

greater amounts of labour, capital and intermediate inputs to maintain the same level of 

production output with a given technology. To overcome the adverse effects in natural resource 

quality, mining firms increase their labour, capital and intermediate inputs that does not result 

in proportional increase in production output. Therefore, the DEA method suggests that mining 

companies require a decrease in the size of their operations as they do not utilise their resources 

efficiently. However, this apparent inefficient utilisation of resources is not due to their non-

optimum operating size, but due to natural resource quality decline. Inclusion of effects from 

natural resource inputs into the efficiency model reveal that most mining firms have been 

capable of operating close to their optimum scale.   

The results support some major recent studies in the Australian mining sector that address the 

challenges of the resource depletion phenomenon and the evaluation of the productivity of 
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mining activities. Topp et al. (2008) explained that resource depletion has been the main 

contributor to poor productivity performance of the Australian mining sector in the long run. 

They estimated that resource depletion caused 24.2 per cent decline in the mining MFP between 

2000-01 and 2006-07. 

While resource depletion and investment-production lags were reported to impact the MFP 

performance negatively, their study shows a positive influence on MFP growth from 

technology progress and efficiency improvement.  Zheng and Bloch (2014) and Syed et al. 

(2015) also argued that the natural resource inputs to mining operations resulted in significant 

decline in the productivity performance. Zheng and Bloch (2014) reported a sizable decline 0.6 

per cent per annum in the measured MFP due to the resource input effect. Also, Syed et al. 

(2015) showed that the MFP growth measure adjusted for construction-production lead time, 

as well as natural resource depletion, was 1.6 per cent per year from 2000 to 2010, compared 

to a decline of 3.1 per cent per year based on the unadjusted MFP measure. Although the scope 

of this study, the timeframe, the model variables and the methodology are different from these 

sector-level analyses, the results support their findings. The effect of natural resource inputs in 

the efficiency and productivity performance of the mining industry is evident. It is an important 

factor that cannot be ignored in the performance measurement of mining activities.  
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Table 6.3: Original DEA efficiency estimates – Model I (general model) 
Firm Year CRS-TE VRS_TE SE RTS  Firm Year CRS-TE VRS_TE SE RTS 

ABY 2010 2.12 1.66 1.28 drs  NGF 2010 4.55 3.17 1.44 drs 
ABY 2011 2.36 1.78 1.32 drs  NGF 2011 1.07 1.07 1.00 irs 
ABY 2012 2.02 1.65 1.23 drs  NGF 2012 5.16 2.44 2.11 drs 
ABY 2013 2.17 1.75 1.24 drs  NGF 2013 1.47 1.34 1.10 drs 
ABY 2014 2.89 2.17 1.33 drs  NGF 2014 1.66 1.49 1.11 drs 
AGG 2010 1.26 1.00 1.26 drs  OGC 2010 4.67 2.12 2.20 drs 
AGG 2011 1.00 1.00 1.00  -   OGC 2011 4.50 2.33 1.94 drs 
AGG 2012 1.10 1.00 1.10 drs  OGC 2012 4.29 2.37 1.81 drs 
AGG 2013 1.20 1.00 1.20 drs  OGC 2013 5.70 2.14 2.66 drs 
AGG 2014 1.38 1.09 1.26 drs  OGC 2014 3.50 1.59 2.19 drs 
AGO 2010 4.57 2.82 1.62 drs  OMH 2010 1.93 1.57 1.23 drs 
AGO 2011 1.92 1.21 1.58 drs  OMH 2011 2.16 1.69 1.28 drs 
AGO 2012 2.25 1.28 1.76 drs  OMH 2012 1.92 1.56 1.23 drs 
AGO 2013 2.06 1.20 1.72 drs  OMH 2013 2.07 1.72 1.20 drs 
AGO 2014 1.20 1.00 1.20 drs  OMH 2014 1.91 1.49 1.28 drs 
AQP 2010 3.39 1.87 1.81 drs  OZL 2010 2.40 1.00 2.40 drs 
AQP 2011 1.58 1.20 1.31 drs  OZL 2011 3.42 1.30 2.63 drs 
AQP 2012 2.37 1.81 1.31 drs  OZL 2012 4.22 1.50 2.82 drs 
AQP 2013 4.63 2.12 2.18 drs  OZL 2013 6.51 2.71 2.40 drs 
AQP 2014 3.75 2.64 1.42 drs  OZL 2014 3.45 1.43 2.42 drs 
BHP 2010 3.07 1.07 2.87 drs  PAN 2010 1.90 1.53 1.24 drs 
BHP 2011 2.59 1.00 2.59 drs  PAN 2011 2.26 1.84 1.22 drs 
BHP 2012 2.90 1.00 2.90 drs  PAN 2012 2.51 2.06 1.21 drs 
BHP 2013 3.04 1.00 3.04 drs  PAN 2013 3.40 2.59 1.32 drs 
BHP 2014 3.67 1.01 3.63 drs  PAN 2014 3.06 2.26 1.35 drs 
EVN 2010 2.52 2.45 1.03 drs  PNA 2010 2.94 1.44 2.04 drs 
EVN 2011 5.73 2.78 2.06 drs  PNA 2011 3.19 1.63 1.96 drs 
EVN 2012 2.13 1.32 1.62 drs  PNA 2012 3.71 1.59 2.33 drs 
EVN 2013 1.59 1.00 1.59 drs  PNA 2013 4.66 1.71 2.73 drs 
EVN 2014 1.72 1.09 1.58 drs  PNA 2014 5.60 2.12 2.64 drs 
FMG 2010 1.45 1.11 1.31 drs  RIO 2010 2.15 1.00 2.15 drs 
FMG 2011 1.24 1.00 1.24 drs  RIO 2011 2.30 1.00 2.30 drs 
FMG 2012 1.34 1.00 1.34 drs  RIO 2012 2.81 1.03 2.73 drs 
FMG 2013 2.04 1.01 2.02 drs  RIO 2013 2.79 1.00 2.79 drs 
FMG 2014 2.64 1.00 2.64 drs  RIO 2014 3.09 1.12 2.76 drs 
GRR 2010 2.81 2.10 1.34 drs  RND 2010 1.68 1.00 1.68 irs 
GRR 2011 3.34 1.89 1.77 drs  RND 2011 1.44 1.00 1.44 irs 
GRR 2012 3.67 2.20 1.67 drs  RND 2012 1.58 1.00 1.58 irs 
GRR 2013 2.52 1.80 1.40 drs  RND 2013 1.00 1.00 1.00  -  
GRR 2014 2.38 1.93 1.23 drs  RND 2014 1.18 1.00 1.18 irs 
IGO 2010 1.40 1.34 1.05 drs  RSG 2010 2.54 1.85 1.38 drs 
IGO 2011 2.14 1.85 1.16 drs  RSG 2011 3.08 1.82 1.69 drs 
IGO 2012 3.42 2.52 1.36 drs  RSG 2012 2.34 1.38 1.70 drs 
IGO 2013 2.22 1.81 1.23 drs  RSG 2013 1.87 1.47 1.28 drs 
IGO 2014 1.58 1.31 1.21 drs  RSG 2014 2.37 1.78 1.33 drs 
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Table 6.3 (continued): Original DEA efficiency estimates – Model I (general model) 
Firm Year CRS-TE VRS_TE SE RTS  Firm Year CRS-TE VRS_TE SE RTS 

ILU 2010 4.66 1.90 2.45 drs 
 

SAR 2010 2.25 1.00 2.25 irs 
ILU 2011 2.94 1.11 2.63 drs 

 
SAR 2011 1.00 1.00 1.00  -  

ILU 2012 2.02 1.34 1.51 drs 
 

SAR 2012 1.13 1.06 1.07 drs 
ILU 2013 3.64 1.83 1.98 drs 

 
SAR 2013 1.84 1.60 1.15 drs 

ILU 2014 4.12 1.93 2.14 drs 
 

SAR 2014 1.78 1.54 1.16 drs 
KCN 2010 2.51 1.78 1.41 drs 

 
SBM 2010 2.26 1.78 1.27 drs 

KCN 2011 5.00 2.53 1.97 drs 
 

SBM 2011 2.07 1.63 1.27 drs 
KCN 2012 3.89 1.68 2.32 drs 

 
SBM 2012 1.47 1.17 1.26 drs 

KCN 2013 4.13 1.80 2.30 drs 
 

SBM 2013 2.07 1.56 1.32 drs 
KCN 2014 5.13 2.20 2.34 drs 

 
SBM 2014 2.32 1.82 1.27 drs 

MBN 2010 4.56 2.81 1.62 drs 
 

SLR 2010 2.15 1.99 1.08 drs 
MBN 2011 3.41 2.17 1.58 drs 

 
SLR 2011 2.30 2.05 1.12 drs 

MBN 2012 4.93 2.91 1.69 drs 
 

SLR 2012 1.73 1.53 1.13 drs 
MBN 2013 4.91 3.99 1.23 drs 

 
SLR 2013 3.59 2.84 1.26 drs 

MBN 2014 1.00 1.00 1.00  -  
 

SLR 2014 2.48 1.95 1.27 drs 
MCR 2010 4.26 2.37 1.79 drs 

 
TBR 2010 1.10 1.00 1.10 irs 

MCR 2011 6.68 3.74 1.79 drs 
 

TBR 2011 1.25 1.23 1.01 drs 
MCR 2012 4.60 3.14 1.47 drs 

 
TBR 2012 1.31 1.26 1.04 drs 

MCR 2013 5.07 3.45 1.47 drs 
 

TBR 2013 1.00 1.00 1.00  -  
MCR 2014 4.86 2.87 1.70 drs 

 
TBR 2014 1.25 1.22 1.02 irs 

MGX 2010 1.32 1.00 1.32 drs 
 

TRY 2010 2.83 2.36 1.20 drs 
MGX 2011 1.20 1.00 1.20 drs 

 
TRY 2011 2.50 1.77 1.42 drs 

MGX 2012 1.00 1.00 1.00  -  
 

TRY 2012 1.40 1.12 1.25 drs 
MGX 2013 2.74 1.49 1.84 drs 

 
TRY 2013 1.46 1.12 1.30 drs 

MGX 2014 2.57 1.48 1.73 drs 
 

TRY 2014 1.67 1.37 1.22 drs 
MLX 2010 2.41 2.05 1.17 drs 

 
WLC 2010 2.15 1.89 1.14 drs 

MLX 2011 1.28 1.17 1.10 drs 
 

WLC 2011 1.85 1.70 1.09 drs 
MLX 2012 4.27 3.83 1.12 drs 

 
WLC 2012 1.36 1.32 1.03 irs 

MLX 2013 2.27 2.08 1.09 drs 
 

WLC 2013 2.99 2.34 1.28 drs 
MLX 2014 1.57 1.37 1.14 drs 

 
WLC 2014 9.75 6.99 1.40 drs 

MML 2010 1.31 1.14 1.15 drs 
 

WSA 2010 1.53 1.31 1.16 drs 
MML 2011 1.12 1.00 1.12 drs 

 
WSA 2011 1.24 1.00 1.24 drs 

MML 2012 1.54 1.35 1.15 drs 
 

WSA 2012 1.52 1.18 1.29 drs 
MML 2013 1.84 1.30 1.42 drs 

 
WSA 2013 1.37 1.04 1.33 drs 

MML 2014 3.18 1.73 1.84 drs 
 

WSA 2014 1.60 1.30 1.23 drs 
NCM 2010 2.09 1.14 1.83 drs 

 
ZIM 2010 2.28 1.63 1.40 drs 

NCM 2011 3.73 1.36 2.73 drs 
 

ZIM 2011 2.22 1.72 1.29 drs 
NCM 2012 3.52 1.25 2.81 drs 

 
ZIM 2012 2.58 1.92 1.34 drs 

NCM 2013 2.09 1.16 1.80 drs 
 

ZIM 2013 3.09 1.95 1.58 drs 
NCM 2014 1.00 1.00 1.00  -  

 
ZIM 2014 3.47 1.89 1.84 drs 

Source: Author’s calculations 
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Table 6.4: Original DEA efficiency estimates – Model II (natural resource-based model) 
Firm Year CRS-TE VRS_TE SE RTS  Firm Year CRS-TE VRS_TE SE RTS 

ABY 2010 1.67 1.66 1.00 drs 
 

NGF 2010 3.09 3.07 1.01 irs 
ABY 2011 1.79 1.78 1.00 drs 

 
NGF 2011 1.06 1.00 1.06 irs 

ABY 2012 1.65 1.65 1.00 drs 
 

NGF 2012 2.38 2.36 1.01 irs 
ABY 2013 1.76 1.75 1.00 drs 

 
NGF 2013 1.33 1.31 1.02 irs 

ABY 2014 2.17 2.17 1.00 drs 
 

NGF 2014 1.48 1.41 1.05 irs 
AGG 2010 1.00 1.00 1.00  -  

 
OGC 2010 2.12 2.12 1.00 drs 

AGG 2011 1.00 1.00 1.00  -  
 

OGC 2011 2.34 2.33 1.01 drs 
AGG 2012 1.00 1.00 1.00  -  

 
OGC 2012 2.38 2.37 1.01 drs 

AGG 2013 1.00 1.00 1.00  -  
 

OGC 2013 2.16 2.14 1.01 drs 
AGG 2014 1.10 1.09 1.00 drs 

 
OGC 2014 1.59 1.59 1.00  -  

AGO 2010 2.80 2.79 1.00 irs 
 

OMH 2010 1.57 1.57 1.00 drs 
AGO 2011 1.22 1.21 1.01 drs 

 
OMH 2011 1.70 1.69 1.00 drs 

AGO 2012 1.27 1.27 1.00 irs 
 

OMH 2012 1.57 1.56 1.01 drs 
AGO 2013 1.21 1.20 1.01 drs 

 
OMH 2013 1.72 1.72 1.00 drs 

AGO 2014 1.00 1.00 1.00  -  
 

OMH 2014 1.50 1.49 1.01 drs 
AQP 2010 1.89 1.87 1.01 drs 

 
OZL 2010 1.00 1.00 1.00  -  

AQP 2011 1.21 1.20 1.01 drs 
 

OZL 2011 1.30 1.30 1.00  -  
AQP 2012 1.82 1.81 1.01 drs 

 
OZL 2012 1.49 1.49 1.00 irs 

AQP 2013 2.14 2.12 1.01 drs 
 

OZL 2013 2.71 2.71 1.00  -  
AQP 2014 2.65 2.64 1.00 drs 

 
OZL 2014 1.43 1.43 1.00 drs 

BHP 2010 1.07 1.06 1.01 irs 
 

PAN 2010 1.53 1.53 1.00 drs 
BHP 2011 1.00 1.00 1.00  -  

 
PAN 2011 1.84 1.84 1.00  -  

BHP 2012 1.00 1.00 1.00  -  
 

PAN 2012 2.05 2.04 1.01 irs 
BHP 2013 1.00 1.00 1.00  -  

 
PAN 2013 2.56 2.53 1.01 irs 

BHP 2014 1.02 1.01 1.00 drs 
 

PAN 2014 2.24 2.22 1.01 irs 
EVN 2010 2.46 2.45 1.00 drs 

 
PNA 2010 1.44 1.44 1.00  -  

EVN 2011 2.80 2.78 1.01 drs 
 

PNA 2011 1.61 1.61 1.00 irs 
EVN 2012 1.34 1.32 1.02 drs 

 
PNA 2012 1.57 1.56 1.00 irs 

EVN 2013 1.00 1.00 1.00  -  
 

PNA 2013 1.69 1.68 1.00 irs 
EVN 2014 1.11 1.09 1.01 drs 

 
PNA 2014 2.09 2.08 1.00 irs 

FMG 2010 1.11 1.11 1.00 drs 
 

RIO 2010 1.00 1.00 1.00  -  
FMG 2011 1.00 1.00 1.00  -  

 
RIO 2011 1.00 1.00 1.00  -  

FMG 2012 1.00 1.00 1.00  -  
 

RIO 2012 1.03 1.03 1.00 drs 
FMG 2013 1.01 1.01 1.00  -  

 
RIO 2013 1.00 1.00 1.00  -  

FMG 2014 1.00 1.00 1.00  -  
 

RIO 2014 1.13 1.12 1.01 drs 
GRR 2010 2.10 2.10 1.00  -  

 
RND 2010 1.68 1.00 1.68 irs 

GRR 2011 1.87 1.87 1.00 irs 
 

RND 2011 1.44 1.00 1.44 irs 
GRR 2012 2.14 2.07 1.03 irs 

 
RND 2012 1.58 1.00 1.58 irs 

GRR 2013 1.79 1.78 1.00 irs 
 

RND 2013 1.00 1.00 1.00  -  
GRR 2014 1.94 1.93 1.00 drs 

 
RND 2014 1.18 1.00 1.18 irs 

IGO 2010 1.34 1.00 1.34 irs 
 

RSG 2010 1.85 1.85 1.00 drs 
IGO 2011 1.81 1.37 1.32 irs 

 
RSG 2011 1.84 1.82 1.01 drs 

IGO 2012 2.46 1.00 2.46 irs 
 

RSG 2012 1.38 1.38 1.00 drs 
IGO 2013 1.79 1.75 1.02 irs 

 
RSG 2013 1.47 1.47 1.00 drs 

IGO 2014 1.30 1.28 1.01 irs 
 

RSG 2014 1.78 1.78 1.00  -  
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Table 6.4 (continued): Original DEA efficiency estimates – Model II (natural resource-
based model) 

Firm Year CRS-TE VRS_TE SE RTS  Firm Year CRS-TE VRS_TE SE RTS 

ILU 2010 1.90 1.90 1.00  -  
 

SAR 2010 2.25 1.00 2.25 irs 
ILU 2011 1.12 1.11 1.00 drs 

 
SAR 2011 1.00 1.00 1.00  -  

ILU 2012 1.34 1.34 1.00 drs 
 

SAR 2012 1.06 1.05 1.00 irs 
ILU 2013 1.84 1.83 1.01 drs 

 
SAR 2013 1.60 1.59 1.01 irs 

ILU 2014 1.94 1.93 1.00 drs 
 

SAR 2014 1.54 1.54 1.00  -  
KCN 2010 1.78 1.78 1.00 drs 

 
SBM 2010 1.78 1.78 1.00 drs 

KCN 2011 2.53 2.53 1.00  -  
 

SBM 2011 1.63 1.63 1.00 drs 
KCN 2012 1.67 1.67 1.00  -  

 
SBM 2012 1.17 1.17 1.00 drs 

KCN 2013 1.80 1.80 1.00  -  
 

SBM 2013 1.56 1.56 1.00 drs 
KCN 2014 2.23 2.20 1.01 drs 

 
SBM 2014 1.82 1.82 1.00 drs 

MBN 2010 2.85 2.81 1.02 drs 
 

SLR 2010 1.98 1.71 1.16 irs 
MBN 2011 2.24 2.17 1.03 drs 

 
SLR 2011 2.01 1.68 1.20 irs 

MBN 2012 2.94 2.91 1.01 drs 
 

SLR 2012 1.53 1.53 1.00  -  
MBN 2013 4.01 3.99 1.00 drs 

 
SLR 2013 2.82 2.77 1.02 irs 

MBN 2014 1.00 1.00 1.00  -  
 

SLR 2014 1.94 1.93 1.00 irs 
MCR 2010 2.37 2.37 1.00  -  

 
TBR 2010 1.10 1.00 1.10 irs 

MCR 2011 3.74 3.74 1.00  -  
 

TBR 2011 1.24 1.23 1.00 drs 
MCR 2012 3.13 3.10 1.01 irs 

 
TBR 2012 1.26 1.26 1.00 drs 

MCR 2013 3.42 3.21 1.07 irs 
 

TBR 2013 1.00 1.00 1.00  -  
MCR 2014 2.86 2.85 1.00 irs 

 
TBR 2014 1.25 1.19 1.05 irs 

MGX 2010 1.00 1.00 1.00  -  
 

TRY 2010 2.36 2.35 1.00 irs 
MGX 2011 1.00 1.00 1.00  -  

 
TRY 2011 1.77 1.77 1.00 drs 

MGX 2012 1.00 1.00 1.00  -  
 

TRY 2012 1.12 1.12 1.00  -  
MGX 2013 1.49 1.49 1.00  -  

 
TRY 2013 1.12 1.12 1.00 drs 

MGX 2014 1.48 1.48 1.00  -  
 

TRY 2014 1.38 1.37 1.00 drs 
MLX 2010 2.03 1.96 1.04 irs 

 
WLC 2010 1.90 1.89 1.00 drs 

MLX 2011 1.17 1.17 1.00 drs 
 

WLC 2011 1.70 1.70 1.00 drs 
MLX 2012 3.85 3.83 1.01 drs 

 
WLC 2012 1.36 1.32 1.03 irs 

MLX 2013 2.05 1.73 1.19 irs 
 

WLC 2013 2.35 2.34 1.00 drs 
MLX 2014 1.36 1.32 1.03 irs 

 
WLC 2014 7.00 6.99 1.00  -  

MML 2010 1.14 1.11 1.02 irs 
 

WSA 2010 1.31 1.28 1.02 irs 
MML 2011 1.00 1.00 1.00  -  

 
WSA 2011 1.00 1.00 1.00  -  

MML 2012 1.35 1.34 1.00 irs 
 

WSA 2012 1.18 1.16 1.01 irs 
MML 2013 1.27 1.00 1.27 irs 

 
WSA 2013 1.01 1.00 1.01 irs 

MML 2014 1.73 1.73 1.00 drs 
 

WSA 2014 1.30 1.30 1.00 drs 
NCM 2010 1.14 1.14 1.00 drs 

 
ZIM 2010 1.64 1.63 1.00 drs 

NCM 2011 1.37 1.36 1.01 drs 
 

ZIM 2011 1.72 1.72 1.00  -  
NCM 2012 1.26 1.25 1.01 drs 

 
ZIM 2012 1.93 1.92 1.00 drs 

NCM 2013 1.16 1.16 1.00 drs 
 

ZIM 2013 1.96 1.95 1.00 drs 
NCM 2014 1.00 1.00 1.00  -  

 
ZIM 2014 1.89 1.89 1.00 drs 

Source: Author’s calculations 
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Overall, the summary of efficiency scores shows that efficiency performance improved from 

2010 to 2011; however, the performance gradually declined since 2011. To test whether there 

are any statistically differences among efficiency performance of the Australian mining firms 

from 2010 to 2014, this study applies the Friedman test. The Friedman test results, as presented 

in Table 6.5, suggest that despite the variations observed on the average estimate, there are no 

significant differences among efficiency performance of mining firms in the sample over the 

period of study. While no other study reported the efficiency performance of the Australian 

mining firms, the current study’s results do not support the sector-level findings in relation to 

efficiency improvements in the Australian mining industry. Topp et al. (2008) expressed that 

taking into account the long-term effect of natural resource inputs and short-term effect from 

capital-production lags, the MFP grew by 2.3 per cent per year over 1974-75 to 2006-07 due 

to improvements in production efficiency. As their study did not decompose the productivity 

growth to components such as technical progress and efficiency improvement, it cannot be 

definitively concluded that the MFP growth was mainly attributable to technical efficiency 

improvements. 

Table 6.5: Friedman test mean ranks and asymptotic significance. 
Model 1 - Original 

CRS   Model 1 - Original VRS   Model 2 - Original CRS   Model 2 - Original VRS 

p-value: 0.229  p-value: 0.636  p-value: 0 .732  p-value: 0 .361 
M1_CRS_TE10 3.00   M1_VRS_TE10 2.90   M2_CRS_TE10 3.07   M2_VRS_TE10 2.94 
M1_CRS_TE11 2.59   M1_VRS_TE11 2.76   M2_CRS_TE11 2.72   M2_VRS_TE11 2.74 
M1_CRS_TE12 2.79   M1_VRS_TE12 2.90   M2_CRS_TE12 2.90   M2_VRS_TE12 2.76 
M1_CRS_TE13 3.24   M1_VRS_TE13 3.24   M2_CRS_TE13 3.13   M2_VRS_TE13 3.21 
M1_CRS_TE14 3.38   M1_VRS_TE14 3.21   M2_CRS_TE14 3.18   M2_VRS_TE14 3.35 
Source: Author’s calculations 

Another study by Syed et al. (2015), which assessed the productivity growth of the mining in 

Australia, also reported a positive contribution of technical efficiency to MFP performance of 

the Australian mining industry. This study estimated that 82.4 per cent of productivity growth 

between 1990-91 to 2009-10 resulted from technical efficiency improvements and 27.8 per 

cent MFP improvement was achieved by improving the scale of operations, whereas technical 

progress contributed negatively by –10.2 per cent over the study period. While it is difficult to 

precisely identify the underlying reasons that explain the difference between the current study’s 

results and the ones published in Syed et al. (2015), this difference can arise due to the type of 

study, the applied methodology or the study period. The current study looks at the efficiency 

measurement and applies DEA which is a non-parametric efficiency technique. On the other 

hand, Syed et al. (2015) looked at productivity and efficiency growth over time and used SFA 
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which is a parametric method to productivity and efficiency measurement. Finally, the 2015 

study covered a different time scope, one that does not overlap with that of the current study. 

It may explain why this study’s findings are not supporting the previous studies. 

 

6.2.2 Bootstrap DEA Efficiency Estimates 

DEA is a deterministic method, which does not take into account sample variation and 

measurement errors. To overcome the shortcoming of this method in reflecting the statistical 

noise and errors, Simar and Wilson (1998) proposed a bootstrap procedure which allows 

researchers to examine statistical properties of the estimated DEA scores. Hence, the current 

study develops original R codes and uses FEAR package provided by Wilson (2013) to conduct 

the smoothing bootstrap procedure. This involved 2000 iterations to obtain bias-corrected 

efficiency estimates along with their 95% confidence intervals for 34 Australian mining firms. 

The technical details of this procedure are discussed in Chapter 4. Table 6.6 and Table 6.7 

provide summaries of the bootstrap DEA estimated, while Table 6.8 and Table 6.9 present the 

bias-corrected efficiency estimates and corresponding 95% confidence intervals over the 

sample data. The pattern of efficiency estimates derived from the bootstrapped models is 

similar to the original estimates but with the presence of greater inefficiency degrees across 

sample observations. As per Table 6.6, the overall efficiency results of Model I increase to 2.97 

and 1.87 based on the CRS and VRS assumptions, respectively, which reflect 4 per cent 

increase in CRS inefficiency and 7 per cent increase in VRS inefficiency levels. 

The bootstrap DEA estimates from Model II also show increases in efficiency scores. The 

average efficiency score rises to 1.89 and 1.86 for CRS and VRS technologies, respectively. 

Almost 12 per cent bias is corrected in the efficiency estimates. Even after considering the 

natural resource input in efficiency modelling, 47 per cent technical inefficiency is still 

observed among Australian mining companies, which has been almost stable over the period 

2010-2014. The aim of the second-stage analysis is to investigate the factors that determine 

this sizable inefficiency level among the Australian mining companies. In better understanding 

these factors, the suitable policy required to improve the efficiency performance can be 

introduced. 
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Table 6.6: Summary of Model I technical efficiency scores - the bootstrap DEA model 
Bootstrap CRS Model  Bootstrap VRS Model 

Year Mean Std. dev. Min. Max. Ineff.(a)  Year Mean Std. dev. Min. Max. Ineff.(a) 
2010 2.83 1.21 1.34 5.31 65%  2010 1.88 0.63 1.15 3.50 47% 

2011 2.81 1.56 1.21 7.37 64%  2011 1.77 0.64 1.17 4.14 43% 

2012 2.94 1.41 1.25 5.99 66%  2012 1.84 0.73 1.15 4.16 46% 

2013 3.15 1.63 1.22 7.36 68%  2013 1.94 0.82 1.10 4.78 48% 

2014 3.13 1.89 1.37 10.73 68%  2014 1.94 1.11 1.18 7.62 48% 

Total 2.97 1.54 1.21 10.73 66%  Total 1.87 0.80 1.10 7.62 47% 

Source: Author’s calculations  
Note: (a) Ineff. (average firms’ inefficiency) is calculated by (Mean – 1)/Mean) where 1 is best practice. The higher the 
efficiency score, the lower is the average efficiency in a given year.  

 

Table 6.7: Summary of Model II technical efficiency scores - the bootstrap DEA model 
Bootstrap CRS Model  Bootstrap VRS Model 

Year Mean Std. dev. Min. Max. Ineff.(a)  Year Mean Std. dev. Min. Max. Ineff.(a) 
2010 1.94 0.62 1.16 3.41 48%  2010 1.87 0.64 1.16 3.49 46% 

2011 1.78 0.65 1.18 4.16 44%  2011 1.75 0.64 1.18 4.16 43% 

2012 1.86 0.73 1.16 4.20 46%  2012 1.79 0.72 1.14 4.20 44% 

2013 1.94 0.82 1.12 4.82 48%  2013 1.94 0.83 1.12 4.74 48% 

2014 1.95 1.12 1.19 7.67 49%  2014 1.94 1.12 1.17 7.63 48% 

Total 1.89 0.80 1.12 7.67 47%  Total 1.86 0.80 1.12 7.63 46% 

Source: Author’s calculations  
Note: (a) Ineff. (average firms’ inefficiency) is calculated by (Mean – 1)/Mean) where 1 is best practice. The higher the 
efficiency score, the lower is the average efficiency in a given year.  

 

Interestingly, the inclusion of natural resource inputs in the efficiency model leads to almost 

similar results derived from the CRS and VRS DEA models presented in Table 6.7. That is, no 

significant scale effects deteriorated the technical efficiency of mining companies. Larger 

companies appear to be less efficient due to the adverse effects of natural resource quality, as 

opposed to a non-optimum operating scale. These results partially support the concluding 

remarks in Syed et al (2015). To reduce the adverse effects of resource depletion, which has 

been responsible for the low productivity of Australia’s mining industry, the federal 

government could introduce policy interventions that encourage resource exploration. Such 

policies may include the provision of precompetitive resource and reserves data. However, the 

sizable inefficiency among mining companies, beyond the effects of natural resource inputs, 

presents room for improvement. 
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Since the results of the CRS and VRS models contain negligible deviations, only the results of 

the CRS DEA from both Model I and Model II are presented. Table 6.8 and Table 6.9 contain 

the efficiency results calculated from the bootstrap DEA method including the original results, 

bias-corrected efficiency estimates and the corresponding 95% confidence intervals. Figure 6.1 

and Figure 6.2 present the bias-corrected bootstrap estimates of mining firms’ efficiency along 

with the associated 95% confidence interval upper bounds and lower bounds for Model I and 

Model II respectively. The results in Figure 6.1 show that more than two-thirds of observations 

have efficiency scores above 2.0, suggesting a high level of inefficiency. As per results 

presented in Table 6.6, part of the low performance is owing to pure technical inefficiency. 

Notwithstanding, the large gap between the CRS and VRS estimates suggests the presence of 

fairly large-scale inefficiency among the mining companies.  

Figure 6.1: Model I bootstrap CRS efficiency scores and their 95% confidence intervals 

Source: Author’s calculations 

 

The results from Model II, which represents the natural resource-based model of technical 

efficiency, are illustrated in Figure 6.2. Almost one-third of the observations have a bias-

corrected efficiency score above 2.0. A major source of this poor performance is pure technical 

inefficiency, whereas most firms in the sample are almost scale-efficient. In other words, taking 

into account the natural resource input of the mining operations, the observed inefficiency in 

Figure 6.2 has basically resulted from the shortfall in capability of firms to transform their 

consumed inputs, namely labour efforts, capital service and intermediate inputs, into 
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production outputs. The association between technical efficiency and firm-specific factors is 

examined in Section 6.3. 

Figure 6.2: Model II bootstrap CRS efficiency scores and their 95% confidence intervals 

Source: Author’s calculations  

 

Overall, the Australian mining firms perform differently in terms of their capability of 

transforming resources into desirable outputs. In the current study’s sample, more than two-

thirds of observations have achieved efficiency scores less than 2.0. As described in Chapter 4 

on methodology, in the Farrell output-oriented measure of technical efficiency, an efficient 

firm’s score is equal to unity and any scores greater than one represent some degree of 

inefficiency. Hence, observations with scores greater than 2.0 are far away from their 

corresponding benchmark. While all mining companies need to follow common productivity 

improvement programs such as investment in human capital and innovation, as discussed in 

Bradley and Sharpe (2009), as well as expansion in resource exploration, as suggested in Syed 

et al. (2015), specific improving actions seem to be necessary for the mining companies with 

fairly poor performance. Such actions require the knowledge of determinants of efficiency 

which are explored in the following section. 
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Table 6.8: Bootstrap DEA efficiency estimates – Model I (general model) 
Firm Year Original Bootstrap Lower 

bound 
Upper 
bound 

 
Firm Year Original Bootstrap Lower 

bound 
Upper 
bound 

ABY 2010 2.12 2.23 2.14 2.37 
 

NGF 2010 4.55 4.94 4.64 5.36 
ABY 2011 2.36 2.47 2.38 2.62 

 
NGF 2011 1.07 1.35 1.12 1.59 

ABY 2012 2.02 2.14 2.04 2.29 
 

NGF 2012 5.16 5.96 5.31 6.68 
ABY 2013 2.17 2.30 2.20 2.46 

 
NGF 2013 1.47 1.61 1.49 1.74 

ABY 2014 2.89 3.03 2.91 3.21 
 

NGF 2014 1.66 1.80 1.69 1.94 
AGG 2010 1.26 1.55 1.33 1.78 

 
OGC 2010 4.67 5.31 4.78 6.02 

AGG 2011 1.00 1.38 1.07 1.47 
 

OGC 2011 4.50 5.00 4.60 5.61 
AGG 2012 1.10 1.25 1.13 1.37 

 
OGC 2012 4.29 4.77 4.38 5.32 

AGG 2013 1.20 1.44 1.25 1.62 
 

OGC 2013 5.70 6.69 5.84 7.56 
AGG 2014 1.38 1.67 1.44 1.89 

 
OGC 2014 3.50 3.81 3.53 4.24 

AGO 2010 4.57 5.27 4.72 5.89 
 

OMH 2010 1.93 2.10 1.96 2.31 
AGO 2011 1.92 2.18 1.96 2.43 

 
OMH 2011 2.16 2.51 2.23 2.84 

AGO 2012 2.25 2.57 2.32 2.86 
 

OMH 2012 1.92 2.28 2.00 2.57 
AGO 2013 2.06 2.40 2.09 2.73 

 
OMH 2013 2.07 2.27 2.10 2.51 

AGO 2014 1.20 1.50 1.26 1.70 
 

OMH 2014 1.91 2.21 1.96 2.52 
AQP 2010 3.39 3.62 3.43 3.94 

 
OZL 2010 2.40 2.81 2.45 3.23 

AQP 2011 1.58 1.76 1.62 1.94 
 

OZL 2011 3.42 4.03 3.50 4.59 
AQP 2012 2.37 2.70 2.41 3.05 

 
OZL 2012 4.22 5.06 4.35 5.70 

AQP 2013 4.63 5.22 4.76 5.84 
 

OZL 2013 6.51 7.36 6.64 8.20 
AQP 2014 3.75 4.00 3.80 4.31 

 
OZL 2014 3.45 3.93 3.52 4.48 

BHP 2010 3.07 3.33 3.11 3.67 
 

PAN 2010 1.90 2.02 1.92 2.14 
BHP 2011 2.59 2.80 2.62 3.08 

 
PAN 2011 2.26 2.42 2.29 2.57 

BHP 2012 2.90 3.15 2.93 3.50 
 

PAN 2012 2.51 2.69 2.55 2.86 
BHP 2013 3.04 3.29 3.07 3.64 

 
PAN 2013 3.40 3.61 3.45 3.85 

BHP 2014 3.67 4.18 3.74 4.70 
 

PAN 2014 3.06 3.22 3.09 3.43 
EVN 2010 2.52 2.64 2.54 2.80 

 
PNA 2010 2.94 3.21 2.98 3.56 

EVN 2011 5.73 6.74 5.86 7.58 
 

PNA 2011 3.19 3.44 3.22 3.79 
EVN 2012 2.13 2.39 2.17 2.67 

 
PNA 2012 3.71 4.20 3.80 4.69 

EVN 2013 1.59 1.80 1.62 2.02 
 

PNA 2013 4.66 5.39 4.75 6.06 
EVN 2014 1.72 2.01 1.75 2.31 

 
PNA 2014 5.60 6.31 5.69 7.09 

FMG 2010 1.45 1.58 1.47 1.73 
 

RIO 2010 2.15 2.25 2.17 2.39 
FMG 2011 1.24 1.33 1.26 1.44 

 
RIO 2011 2.30 2.44 2.33 2.61 

FMG 2012 1.34 1.43 1.36 1.55 
 

RIO 2012 2.81 3.03 2.85 3.28 
FMG 2013 2.04 2.17 2.06 2.34 

 
RIO 2013 2.79 2.99 2.82 3.25 

FMG 2014 2.64 3.02 2.72 3.34 
 

RIO 2014 3.09 3.30 3.12 3.60 
GRR 2010 2.81 2.96 2.84 3.15 

 
RND 2010 1.68 1.91 1.72 2.12 

GRR 2011 3.34 3.71 3.42 4.10 
 

RND 2011 1.44 1.61 1.48 1.75 
GRR 2012 3.67 4.11 3.76 4.55 

 
RND 2012 1.58 1.77 1.61 2.01 

GRR 2013 2.52 2.78 2.58 3.03 
 

RND 2013 1.00 1.22 1.05 1.36 
GRR 2014 2.38 2.51 2.40 2.68 

 
RND 2014 1.18 1.38 1.21 1.55 

IGO 2010 1.40 1.56 1.44 1.68 
 

RSG 2010 2.54 2.67 2.57 2.84 
IGO 2011 2.14 2.32 2.19 2.47 

 
RSG 2011 3.08 3.30 3.12 3.58 

IGO 2012 3.42 3.69 3.48 3.98 
 

RSG 2012 2.34 2.49 2.36 2.70 
IGO 2013 2.22 2.40 2.26 2.55 

 
RSG 2013 1.87 1.98 1.89 2.11 

IGO 2014 1.58 1.69 1.61 1.80 
 

RSG 2014 2.37 2.49 2.39 2.64 
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Table 6.8 (continued): Bootstrap DEA efficiency estimates – Model I (general model) 

Firm Year Original Bootstrap Lower 
bound 

Upper 
bound 

 
Firm Year Original Bootstrap Lower 

bound 
Upper 
bound 

ILU 2010 4.66 5.13 4.71 5.72 
 

SAR 2010 2.25 3.00 2.35 3.57 
ILU 2011 2.94 3.34 3.00 3.73 

 
SAR 2011 1.00 1.32 1.05 1.56 

ILU 2012 2.02 2.32 2.06 2.62 
 

SAR 2012 1.13 1.37 1.17 1.57 
ILU 2013 3.64 4.09 3.74 4.56 

 
SAR 2013 1.84 2.16 1.92 2.41 

ILU 2014 4.12 4.57 4.18 5.11 
 

SAR 2014 1.78 2.06 1.85 2.29 
KCN 2010 2.51 2.75 2.56 3.01 

 
SBM 2010 2.26 2.40 2.29 2.55 

KCN 2011 5.00 5.86 5.14 6.53 
 

SBM 2011 2.07 2.20 2.10 2.34 
KCN 2012 3.89 4.56 3.96 5.21 

 
SBM 2012 1.47 1.56 1.49 1.68 

KCN 2013 4.13 4.78 4.20 5.48 
 

SBM 2013 2.07 2.17 2.09 2.30 
KCN 2014 5.13 6.09 5.29 6.80 

 
SBM 2014 2.32 2.45 2.35 2.60 

MBN 2010 4.56 5.15 4.65 5.76 
 

SLR 2010 2.15 2.27 2.17 2.41 
MBN 2011 3.41 3.84 3.49 4.28 

 
SLR 2011 2.30 2.41 2.32 2.55 

MBN 2012 4.93 5.99 5.07 6.85 
 

SLR 2012 1.73 1.82 1.75 1.93 
MBN 2013 4.91 6.06 5.20 6.83 

 
SLR 2013 3.59 3.99 3.64 4.43 

MBN 2014 1.00 1.53 1.06 1.83 
 

SLR 2014 2.48 2.71 2.51 2.97 
MCR 2010 4.26 4.72 4.33 5.28 

 
TBR 2010 1.10 1.34 1.13 1.57 

MCR 2011 6.68 7.37 6.76 8.22 
 

TBR 2011 1.25 1.47 1.29 1.65 
MCR 2012 4.60 5.21 4.73 5.85 

 
TBR 2012 1.31 1.54 1.34 1.77 

MCR 2013 5.07 5.73 5.18 6.43 
 

TBR 2013 1.00 1.27 1.06 1.44 
MCR 2014 4.86 5.40 4.96 6.03 

 
TBR 2014 1.25 1.54 1.30 1.77 

MGX 2010 1.32 1.57 1.37 1.73 
 

TRY 2010 2.83 3.32 2.95 3.71 
MGX 2011 1.20 1.40 1.25 1.55 

 
TRY 2011 2.50 2.89 2.60 3.22 

MGX 2012 1.00 1.50 1.06 1.73 
 

TRY 2012 1.40 1.65 1.44 1.86 
MGX 2013 2.74 2.90 2.76 3.13 

 
TRY 2013 1.46 1.83 1.52 2.09 

MGX 2014 2.57 2.71 2.59 2.90 
 

TRY 2014 1.67 2.06 1.72 2.40 
MLX 2010 2.41 2.54 2.43 2.70 

 
WLC 2010 2.15 2.37 2.19 2.62 

MLX 2011 1.28 1.35 1.29 1.43 
 

WLC 2011 1.85 2.04 1.89 2.22 
MLX 2012 4.27 4.58 4.33 4.96 

 
WLC 2012 1.36 1.68 1.42 1.90 

MLX 2013 2.27 2.39 2.29 2.54 
 

WLC 2013 2.99 3.35 3.09 3.62 
MLX 2014 1.57 1.68 1.59 1.82 

 
WLC 2014 9.75 10.73 9.98 11.69 

MML 2010 1.31 1.41 1.32 1.55 
 

WSA 2010 1.53 1.73 1.57 1.93 
MML 2011 1.12 1.21 1.14 1.33 

 
WSA 2011 1.24 1.40 1.28 1.55 

MML 2012 1.54 1.76 1.60 1.94 
 

WSA 2012 1.52 1.74 1.56 1.93 
MML 2013 1.84 2.03 1.86 2.26 

 
WSA 2013 1.37 1.56 1.42 1.72 

MML 2014 3.18 3.81 3.29 4.28 
 

WSA 2014 1.60 1.81 1.65 2.00 
NCM 2010 2.09 2.21 2.11 2.36 

 
ZIM 2010 2.28 2.41 2.30 2.58 

NCM 2011 3.73 4.26 3.83 4.74 
 

ZIM 2011 2.22 2.50 2.29 2.76 
NCM 2012 3.52 4.03 3.64 4.49 

 
ZIM 2012 2.58 2.92 2.67 3.23 

NCM 2013 2.09 2.42 2.16 2.72 
 

ZIM 2013 3.09 3.45 3.17 3.82 
NCM 2014 1.00 1.37 1.04 1.62 

 
ZIM 2014 3.47 3.71 3.51 4.04 

Source: Author’s calculations 
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Table 6.9: Bootstrap DEA efficiency estimates – Model II (natural resource basis model) 
Firm Year Original Bootstrap Lower 

bound 
Upper 
bound 

 
Firm Year Original Bootstrap Lower 

bound 
Upper 
bound 

ABY 2010 1.67 1.77 1.69 1.86 
 

NGF 2010 3.09 3.41 3.16 3.64 
ABY 2011 1.79 1.91 1.82 2.02 

 
NGF 2011 1.06 1.28 1.08 1.46 

ABY 2012 1.65 1.76 1.67 1.87 
 

NGF 2012 2.38 2.58 2.42 2.74 
ABY 2013 1.76 1.89 1.78 2.02 

 
NGF 2013 1.33 1.45 1.35 1.56 

ABY 2014 2.17 2.31 2.20 2.44 
 

NGF 2014 1.48 1.61 1.51 1.72 
AGG 2010 1.00 1.23 1.02 1.45 

 
OGC 2010 2.12 2.30 2.16 2.46 

AGG 2011 1.00 1.35 1.02 1.66 
 

OGC 2011 2.34 2.58 2.39 2.76 
AGG 2012 1.00 1.23 1.02 1.41 

 
OGC 2012 2.38 2.63 2.43 2.84 

AGG 2013 1.00 1.22 1.02 1.42 
 

OGC 2013 2.16 2.39 2.19 2.57 
AGG 2014 1.10 1.30 1.12 1.53 

 
OGC 2014 1.59 1.67 1.61 1.75 

AGO 2010 2.80 3.10 2.84 3.37 
 

OMH 2010 1.57 1.67 1.60 1.78 
AGO 2011 1.22 1.38 1.24 1.50 

 
OMH 2011 1.70 1.87 1.72 2.07 

AGO 2012 1.27 1.42 1.29 1.54 
 

OMH 2012 1.57 1.80 1.60 2.01 
AGO 2013 1.21 1.37 1.23 1.55 

 
OMH 2013 1.72 1.87 1.75 2.02 

AGO 2014 1.00 1.27 1.02 1.48 
 

OMH 2014 1.50 1.69 1.52 1.87 
AQP 2010 1.89 2.02 1.91 2.11 

 
OZL 2010 1.00 1.16 1.02 1.24 

AQP 2011 1.21 1.33 1.25 1.44 
 

OZL 2011 1.30 1.46 1.32 1.58 
AQP 2012 1.82 2.03 1.86 2.24 

 
OZL 2012 1.49 1.64 1.51 1.77 

AQP 2013 2.14 2.29 2.17 2.43 
 

OZL 2013 2.71 3.19 2.76 3.59 
AQP 2014 2.65 2.88 2.69 3.07 

 
OZL 2014 1.43 1.61 1.46 1.75 

BHP 2010 1.07 1.26 1.09 1.47 
 

PAN 2010 1.53 1.62 1.55 1.71 
BHP 2011 1.00 1.21 1.02 1.41 

 
PAN 2011 1.84 1.97 1.87 2.09 

BHP 2012 1.00 1.18 1.03 1.37 
 

PAN 2012 2.05 2.19 2.09 2.33 
BHP 2013 1.00 1.21 1.02 1.39 

 
PAN 2013 2.56 2.72 2.60 2.88 

BHP 2014 1.02 1.19 1.04 1.39 
 

PAN 2014 2.24 2.40 2.28 2.54 
EVN 2010 2.46 2.75 2.51 2.99 

 
PNA 2010 1.44 1.52 1.46 1.59 

EVN 2011 2.80 3.03 2.85 3.23 
 

PNA 2011 1.61 1.70 1.63 1.78 
EVN 2012 1.34 1.48 1.37 1.61 

 
PNA 2012 1.57 1.66 1.59 1.74 

EVN 2013 1.00 1.12 1.02 1.22 
 

PNA 2013 1.69 1.80 1.71 1.92 
EVN 2014 1.11 1.25 1.13 1.41 

 
PNA 2014 2.09 2.26 2.13 2.41 

FMG 2010 1.11 1.31 1.13 1.55 
 

RIO 2010 1.00 1.25 1.02 1.44 
FMG 2011 1.00 1.20 1.02 1.40 

 
RIO 2011 1.00 1.20 1.03 1.36 

FMG 2012 1.00 1.25 1.02 1.44 
 

RIO 2012 1.03 1.16 1.05 1.33 
FMG 2013 1.01 1.20 1.02 1.35 

 
RIO 2013 1.00 1.13 1.02 1.29 

FMG 2014 1.00 1.27 1.02 1.46 
 

RIO 2014 1.13 1.29 1.15 1.48 
GRR 2010 2.10 2.22 2.13 2.35 

 
RND 2010 1.68 1.98 1.71 2.21 

GRR 2011 1.87 2.03 1.90 2.16 
 

RND 2011 1.44 1.68 1.46 1.85 
GRR 2012 2.14 2.35 2.18 2.53 

 
RND 2012 1.58 1.95 1.60 2.36 

GRR 2013 1.79 1.97 1.82 2.14 
 

RND 2013 1.00 1.32 1.02 1.55 
GRR 2014 1.94 2.05 1.96 2.16 

 
RND 2014 1.18 1.36 1.20 1.51 

IGO 2010 1.34 1.50 1.36 1.63 
 

RSG 2010 1.85 2.01 1.89 2.12 
IGO 2011 1.81 1.98 1.84 2.11 

 
RSG 2011 1.84 1.97 1.87 2.06 

IGO 2012 2.46 2.68 2.51 2.88 
 

RSG 2012 1.38 1.48 1.41 1.54 
IGO 2013 1.79 1.92 1.82 2.05 

 
RSG 2013 1.47 1.59 1.50 1.71 

IGO 2014 1.30 1.38 1.32 1.46 
 

RSG 2014 1.78 1.94 1.81 2.07 
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Table 6.9 (continued): Bootstrap DEA efficiency estimates – Model II (natural resource 
basis model) 

Firm Year Original Bootstrap Lower 
bound 

Upper 
bound 

 
Firm Year Original Bootstrap Lower 

bound 
Upper 
bound 

ILU 2010 1.90 2.03 1.93 2.15 
 

SAR 2010 2.25 2.73 2.29 3.27 
ILU 2011 1.12 1.19 1.13 1.26 

 
SAR 2011 1.00 1.25 1.03 1.46 

ILU 2012 1.34 1.57 1.37 1.78 
 

SAR 2012 1.06 1.22 1.08 1.38 
ILU 2013 1.84 2.03 1.87 2.27 

 
SAR 2013 1.60 1.82 1.63 2.01 

ILU 2014 1.94 2.14 1.97 2.33 
 

SAR 2014 1.54 1.73 1.56 1.90 
KCN 2010 1.78 2.01 1.82 2.18 

 
SBM 2010 1.78 1.89 1.81 1.99 

KCN 2011 2.53 2.77 2.58 2.99 
 

SBM 2011 1.63 1.73 1.66 1.82 
KCN 2012 1.67 1.81 1.70 1.94 

 
SBM 2012 1.17 1.24 1.19 1.30 

KCN 2013 1.80 1.95 1.82 2.09 
 

SBM 2013 1.56 1.68 1.59 1.79 
KCN 2014 2.23 2.42 2.27 2.56 

 
SBM 2014 1.82 1.97 1.85 2.12 

MBN 2010 2.85 3.21 2.91 3.52 
 

SLR 2010 1.98 2.18 2.02 2.33 
MBN 2011 2.24 2.50 2.28 2.74 

 
SLR 2011 2.01 2.18 2.05 2.34 

MBN 2012 2.94 3.40 2.99 3.91 
 

SLR 2012 1.53 1.64 1.55 1.75 
MBN 2013 4.01 4.82 4.09 5.67 

 
SLR 2013 2.82 3.07 2.88 3.34 

MBN 2014 1.00 1.36 1.02 1.71 
 

SLR 2014 1.94 2.08 1.98 2.23 
MCR 2010 2.37 2.55 2.41 2.74 

 
TBR 2010 1.10 1.30 1.11 1.52 

MCR 2011 3.74 4.16 3.82 4.43 
 

TBR 2011 1.24 1.44 1.26 1.59 
MCR 2012 3.13 3.48 3.18 3.84 

 
TBR 2012 1.26 1.48 1.28 1.68 

MCR 2013 3.42 3.78 3.46 4.17 
 

TBR 2013 1.00 1.25 1.02 1.41 
MCR 2014 2.86 3.10 2.90 3.34 

 
TBR 2014 1.25 1.49 1.27 1.71 

MGX 2010 1.00 1.19 1.02 1.33 
 

TRY 2010 2.36 2.70 2.41 2.97 
MGX 2011 1.00 1.20 1.02 1.35 

 
TRY 2011 1.77 1.98 1.80 2.17 

MGX 2012 1.00 1.33 1.01 1.64 
 

TRY 2012 1.12 1.27 1.14 1.39 
MGX 2013 1.49 1.59 1.51 1.68 

 
TRY 2013 1.12 1.29 1.14 1.44 

MGX 2014 1.48 1.60 1.51 1.70 
 

TRY 2014 1.38 1.61 1.40 1.81 
MLX 2010 2.03 2.18 2.07 2.31 

 
WLC 2010 1.90 2.05 1.93 2.19 

MLX 2011 1.17 1.30 1.19 1.40 
 

WLC 2011 1.70 1.86 1.73 2.01 
MLX 2012 3.85 4.19 3.93 4.44 

 
WLC 2012 1.36 1.62 1.39 1.84 

MLX 2013 2.05 2.23 2.09 2.38 
 

WLC 2013 2.35 2.62 2.41 2.85 
MLX 2014 1.36 1.45 1.38 1.52 

 
WLC 2014 7.00 7.66 7.12 8.30 

MML 2010 1.14 1.34 1.15 1.50 
 

WSA 2010 1.31 1.48 1.33 1.62 
MML 2011 1.00 1.19 1.02 1.33 

 
WSA 2011 1.00 1.18 1.02 1.30 

MML 2012 1.35 1.57 1.37 1.76 
 

WSA 2012 1.18 1.35 1.20 1.51 
MML 2013 1.27 1.44 1.29 1.59 

 
WSA 2013 1.01 1.16 1.03 1.29 

MML 2014 1.73 1.94 1.77 2.12 
 

WSA 2014 1.30 1.49 1.33 1.65 
NCM 2010 1.14 1.28 1.17 1.40 

 
ZIM 2010 1.64 1.77 1.66 1.88 

NCM 2011 1.37 1.55 1.40 1.72 
 

ZIM 2011 1.72 1.98 1.76 2.21 
NCM 2012 1.26 1.42 1.29 1.57 

 
ZIM 2012 1.93 2.20 1.97 2.47 

NCM 2013 1.16 1.40 1.19 1.67 
 

ZIM 2013 1.96 2.19 2.00 2.40 
NCM 2014 1.00 1.35 1.02 1.69 

 
ZIM 2014 1.89 2.05 1.93 2.16 

Source: Author’s calculations 
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6.3 Second-Stage DEA Results 

This section presents the results derived from the second-stage DEA model explained in 

Section 6.2. With the aim of identifying the firm-specific determinants of technical efficiency, 

the proposed econometric model is developed with respect to major factors influencing mining 

operations. To overcome the drawback of Tobit or ordinary least square (OLS) models in the 

presence of serial correlations among DEA efficiency estimates, a truncated regression model 

is constructed following Simar and Wilson (2007). Their second algorithm is applied to 

generate bootstrap data and construct the proposed econometric model. The FEAR package 

(Wilson, 2013) and R codes developed for the current study are used to run the double bootstrap 

procedure. 

The second-stage analysis is conducted for both technical efficiency Models I and II. As 

explained in Section 6.2, the deviation of the estimates in CRS DEA modelling, compared with 

those from VRS DEA modelling, is due to the presence of some degree of scale inefficiency. 

In other words, when considering the general form of technical efficiency modelling which 

assumes only labour, capital and intermediate inputs are utilised to produce mining operation 

output, the estimated technical efficiency scores include the effects of operating scale 

efficiency (the degree of deviation from the optimal operating scale) and pure technical 

efficiency (the ability of firms in transforming inputs to outputs given their operating scale). 

Once the natural resource input is included in the technical efficiency model, the presence of 

the scale inefficiency turns out to be insignificant. There are negligible variations among VRS 

estimates derived from Model I and Model II; furthermore, VRS estimates in Model II are very 

close to the CRS estimates in this model. Hence, in the second-stage analysis, the DEA 

estimates under the CRS assumption are used. CRS DEA estimates provide greater 

discriminatory power in the second stage to evaluate the significance of firm-specific factor 

effects on technical efficiency in each model. In addition, the CSR DEA estimates are 

significantly different between two models; these deviations facilitate the understanding of 

differences in the role of firm-specific factors in the efficiency performance once applying 

different model specifications for Models I and II. 
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6.3.1 Second-Stage DEA in Model I  

Table 6.10 shows the empirical results obtained from the second stage truncated regression 

equation constructed for Model I. The parameters of the constructed econometric model are 

estimated according to the second algorithm in Simar and Wilson (2007), with 2000 iterations 

for bias correction of efficiency estimates and 2000 iterations to obtain confidence intervals for 

parameters of the truncated regression model. 

This study’s truncated regression model includes 15 regressors: ownership ratio of substantial 

shareholders (OWNER), firm size (SIZE), firm age (AGE), ratio of PP&E assets to total assets 

(PPE), financial leverage (LEV), dummy variables for main product as iron ore (IRON) and 

gold (GOLD), dummy variable for product portfolio diversification (DIV), dummy variables 

for growth factors including change pace (CH_PACE) and change direction (CH_DIR), 

dummy variable for location of operations (LOC_OPS) and four year dummies (2010, 2011, 

2012, 2013 and 2014).  

Following Simar and Wilson (2007, 2011) confidence intervals obtained from the bootstrap 

truncated regression model are used to test whether the estimated coefficients are statistically 

significant or not. If the value of zero does not fall into the relative confidence interval, the 

estimated coefficient is statistically significant.  

As the Farrell efficiency measure has been employed in this study, the higher efficiency score 

indicates the lower efficiency of a firm. Hence, in Table 6.10, a positive relationship between 

the efficiency scores and the firm-specific factor represents the negative effect of the factor on 

the firm’s efficiency performance. 

 

(i) Types of Product 

First of all, the results show the importance of product portfolio on the efficiency gains. At the 

1% level, iron ore mining as the main activity (IRON) has a positive effect on firm efficiency. 

The scale of iron ore mining projects is significantly larger than other mining activities. 

Companies focusing on iron ore mining benefit from economies of scale and consequently they 

gain higher efficiency performance. In addition to the significant effect of iron ore mining on 

efficiency, gold mining (GOLD) contributes to higher efficiency gain. Gold has been a major 
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mining product in the past two centuries in Australia. As such, the gold mining life cycle is 

mature, utilising advanced technology compared to other mining activities. Moreover, 

economies of scale are another contributor of higher efficiency gain in gold mining, as 

exemplified in a study by Asafu-Adjaye and Mahadevan (2003). They reported the cost 

efficiency ratio in gold mining being greater than other mining sectors in Australia over the 

period 1968-69 to 1994-95. This sector has maintained its high efficiency in the following 

decades; however, iron ore has moved to first place in recent years due to the significant 

increase in the economic demonstrated resources as well as production of iron ore since the 

early 2000s. In 2014-15, iron ore consisted of 74 per cent of total metal ore mining industry 

value added in Australian. The iron ore mining contributed to 38 per cent of total mining 

industry value added in this year (ABS, 2016). 

Table 6.10: Bootstrap truncated regression results for Model I 

Variables Estimates 90% Conf. Int. 95% Conf. Int. 99% Conf. Int. 
LB UB LB UB LB UB 

Constant -0.23 -7.01 5.84 -8.46 7.08 -11.14 9.20 

Substantial shareholder (OWNER) -0.05*** -0.07 -0.03 -0.08 -0.03 -0.09 -0.02 

Firm size (SIZE) 0.38 -0.01 0.81 -0.08 0.90 -0.21 1.08 

Firm age (AGE) -0.02** -0.04 -0.01 -0.04 0.00 -0.05 0.00 

PP&E assets ratio (PPE) -0.01 -0.04 0.02 -0.04 0.03 -0.06 0.04 

Financial leverage (LEV) -0.04 -0.61 0.47 -0.74 0.55 -1.08 0.73 

Iron ore production (IRON) -2.59*** -4.41 -1.05 -4.90 -0.78 -5.95 -0.29 

Gold production (GOLD) -1.77*** -2.74 -0.89 -2.96 -0.70 -3.42 -0.37 

Product diversification (DIV) -1.95*** -3.35 -0.80 -3.62 -0.62 -4.22 -0.30 

Change pace (CH_PACE) 0.31 -0.58 1.20 -0.73 1.36 -1.11 1.70 

Change direction (CH_DIR) -1.62*** -2.61 -0.72 -2.80 -0.58 -3.22 -0.29 

Location of operation (LOC_OPS) -0.47 -1.33 0.38 -1.55 0.55 -1.95 0.91 

Year 2011 (Y2011) -0.52 -1.73 0.67 -1.98 0.91 -2.43 1.41 

Year 2012 (Y2012) -0.36 -1.62 0.87 -1.94 1.09 -2.27 1.68 

Year 2013 (Y2013) 0.27 -0.92 1.46 -1.18 1.73 -1.57 2.16 

Year 2014 (Y2014) -0.02 -1.19 1.14 -1.44 1.48 -2.09 2.13 

Truncated regression standard error 2.06 1.73 2.46 1.69 2.54 1.62 2.75 

Source: Author’s calculations 
Note: *, **, *** indicate that the estimated coefficient is statistically significant at 10%, 5% and 1%, respectively.  

 

(ii) Product Diversification 

Similar to product portfolio, product diversification (DIV) is statistically related to mining 

firms’ efficiency. In contrast with findings in the existing literature, the current study’s findings 

show that diversification increases firm performance. In a study centring on the manufacturing 
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industry, Chakrabarti et al. (2007) found that that diversification improves performance only 

in the least developed institutional environments; otherwise its impact is negative. Nath et al. 

(2010) also found that logistics firms achieve higher performance if they concentrate on a 

narrow portfolio of products/services while diversifying their geographical market. Differences 

in the mining industry compared to other sectors may explain the contrasting results found in 

the current study. The mining industry heavily depends on capital investment. Once investment 

occurs, any changes in the market and production cannot be followed by some changes and 

adjustments in capital in the short term. Hence, through product diversification, mining 

companies could achieve the economics of scope and utilise the available productive capacity 

and operation capabilities. With respect to the significant variation of mining commodity prices 

in recent years, such a diversification strategy could enable mining companies to reduce the 

business risk that arises from falling prices. 

 

(iii)  Growth Status 

The Australian mining industry has experienced a significant growth in the exploration and 

extraction activities since the early 2000s. The number of mining companies listed on the ASX 

increased sharply in recent years, reaching around 700 companies. Despite the overall growth 

in the industry, many mining companies have experienced both growth and decline in their 

investment and operations. What’s more, the change rates vary across mining companies. Some 

companies could maintain more stable production while others experienced significant 

fluctuations in their operations. To study the effects of growth status, two variables were 

incorporated into the econometric model presented in Chapter 5. Change direction dummy 

shows if a company’s production increased or decreased in each year. Furthermore, change 

pace dummy indicates if a company’s change has been substantial or gradual. 

The results from the second-stage analysis confirm that the presence of rapid growth in total 

firm’s output has an adverse effect on efficiency; however, this effect is not statistically 

significant. Direction of output changes has a significant influence on the mining firms’ 

efficiency, implying that generally mining companies are not agile enough to optimise their 

inputs consumption in the decline stage. Such conclusion is highly expected as companies 

cannot adjust and optimise their available long-term (non-current) assets with the same pace of 

output changes. While short-term cost reduction strategies may help companies to adjust 
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operating expenses relative to declined production, companies need to adopt long-term 

strategies to minimise the impact of operating under capacities during downturn periods 

(Mitchell and Steen, 2014). 

 

(iv)  Ownership 

The coefficient for indicator OWNER is found to be negative and significant at the 1% level. 

This suggests that among the Australian listed mining companies, those with higher ownership 

concentration achieve higher efficiency. In the literature, the empirical evidence on the 

relationship between ownership concentration and firm performance is mixed. This finding is 

in line with a number of studies that have found positive associations between ownership 

concentration and firm performance among private companies (see e.g. Boubakri et al., 2005; 

Omran, 2009; Ma et al., 2010; Cabeza-García and Gómez-Ansón, 2011). Under Australian law, 

a high level of protection is provided to shareholders in comparison with other countries 

(Anderson et al., 2012). Hence, the minority shareholders are protected from the influence of 

large shareholders colluding with managers to expropriate their benefits (tunnelling). On the 

other hand, large shareholders have the power and incentive to closely monitor management 

performance and prevent expropriation or asset stripping by managers. As Shleifer and Vishny 

(1997) argued, with such legal protection, higher ownership concentration results in better 

corporate governance and economic performance.  

 

(v)  Firm Size 

Size, which is measured here by natural logarithm of total productive assets, has a negative 

impact on the efficiency of fully operational mining companies. However, this adverse effect 

is not statistically significant. While the significance of size in firms’ efficiency could not be 

identified, the findings in the existing literature are ambiguous. Diaz and Sanchez (2008) 

explained that due to the complexity of larger firms in organisational and managerial control, 

they tend to be less efficient than small and medium companies. In contrast, Badunenko (2010) 

found that small firms are less efficient and Schiersch (2013) reported a U-shaped relationship 

meaning smallest firms are almost as efficient as the largest ones while most SMEs are among 

the least efficient companies. 
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In the context of the mining industry, it was expected that larger firms would be better off due 

to the advantage of economies of scale. However, the sector-level studies in Australian mining 

productivity have addressed two main issues that induce the significant deterioration of 

productivity growth (see e.g. Topp et al., 2008; Zheng and Bloch, 2014; Syed et al., 2015). The 

first issue results from the decline in the quality of natural resource, while the second issue 

arises from the lags between capital investments and the production response to these 

investments. Both effects can cause higher growth in a firm’s assets, which is the proxy for 

firm size, than the growth in production. Companies experiencing more decline in the quality 

of their natural resources need to invest more in exploration expenditure. Moreover, during the 

mine development phase, firms can aim to increase their assets to enhance the production 

capability; however, three to five years lag is expected before achieving full production from 

the invested capital. Over the period of the current study, the Australian mining capital index 

increased sharply (ABS, 2018a). Hence, the adverse effect of capital-production lags as well 

as the resource depletion effects could offset the positive effect of economies of scale on the 

technical efficiency of mining firms.  

 

(vi)  Firm Age 

Firm age with a P-value of less than 5% is a significant contributor of efficiency gains in mining 

firms. Focusing on profitability, Loderer and Waelchli (2010) found a negative relationship 

between firm age and profitability performance; however, as Majumdar (1997) explained, older 

firms may be less profitable but they are more productive. That is, old companies can leverage 

their experience to utilise their resources more efficiently. In the context of the Australian 

mining industry, this study’s finding implies that most young firms have severe efficiency 

challenges. This conclusion is well expected while field research revealed that a lack of skills 

and expertise is a major drawback in the sector (Lumley and McKee, 2014), and newer formed 

companies have considerably less knowledge, expertise and resources to manage booming 

operations. Along with the growth in global demand for mining commodities in the 2000s, 

newly established mining companies also increased sharply. Many of these newcomers were 

on the ASX to attract their required capital; however, capital was not their only need, these 

companies suffered mainly from the lack of mining business knowledge and required skills. 
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(vii) Capacity Utilisation 

The obtained results do not confirm the significance of the capacity utilisation effect on the 

efficiency of Australia’s mining sector. Both Topp et al. (2008) and Zheng and Bloch (2014) 

have presented comprehensive explanations regarding the effect of investment-production lag 

on the Australian mining sector’s productivity.  Since the efficiency model of the current study 

is constructed comprising utilised capital service with a selection of total asset depreciation as 

the capital service proxy, the undesirable effects of non-operational capital is removed from 

the estimated efficiency. Hence, the obtained efficiency estimates are not biased due to the 

investment-production lag phenomenon. Lumley and McKee (2014) argued that non-optimised 

capacity and asset utilisation can be owing to inefficient utilisation of established infrastructure 

and equipment in the Australian mining firms. This current study’s results suggest that the 

capacity utilisation for ongoing mining operations is not a driver of inefficiency. Instead, the 

new capital investment and the depletion of natural resources are more significant, leading to 

inefficiency in mining companies. Non-operational assets forming during exploration and 

development phases are mainly responsible for lowering the mining sector’s efficiency and 

productivity. 

 

(viii) Financial Risk 

The second-stage results show a negative but insignificant effect of business risk, measured 

using financial leverage, on mining firms’ efficiency. Mining firms use funds from lenders to 

accelerate the progress of their exploration and development projects. The results of the 

econometric model confirm that such a risk-increasing approach neither impacts the firm’s 

economic performance adversely nor induces performance gain. Therefore, mining firms can 

adjust their lending strategies independent from their economic performance goals. The 

existing literature provides vague conclusions on the association of financial risk and firm 

performance. For instance, Yazdanfar and Ohman (2015) and Vatavu (2015) found a negative 

relationship between firm performance and financial risk, while El-Sayed Ebaid (2009) found 

no significant relationship. It is worth noting that, to best of this researcher’s knowledge, no 

study has examined the relationship between efficiency and financial risk in the mining 

industry. Moreover, in the existing literature, various firm performance and financial risk 

measures have been applied. Hence, due to differences in the capital structure in mining 
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companies with companies from other sectors, as well as differences in the investigated 

measures, this study’s results may not be necessarily comparable with other studies. 

 

(ix) Location of Operations 

Although product diversification is related to the efficiency of mining firms, the international 

diversification of operations location is not statistically related to mining firms’ efficiency. 

While mining firms with active exploration and extraction projects outside Australia enjoy 

lower operating expenses in other targeted countries, companies with operations limited to 

Australia could utilise other inputs more efficiently to compensate for higher operating 

expenses. This result may also be related to the project portfolio status of mining companies. 

That is, in recent years, Australian mining firms have been attracted to investment beyond its 

borders. Many overseas projects have not reached their full production scale, while investments 

in Australia are in general more mature. With such differences among the development status 

of domestic versus overseas mining projects, those involved in foreign investment projects may 

be affected by a stronger impact of capital-production lag, offsetting their benefit from lower 

operating costs. 

Australian mining has been the focus of many domestic and international business investors 

over the past two decades. The Fraser Institute’s investment attractiveness index (Stedman and 

Green, 2018; Jackson and Green, 2015) shows that Australian states, with a higher position 

than other mining regions across the globe, have experienced rises and declines in their 

rankings in recent years. But for Queensland and South Australia, other Australian states’ 

rankings have declined since 2013. Hence, it is not surprising that Australian mining firms tend 

to expand their activities toward emerging and attractive mining regions outside Australia. 

 

(x) Year Dummies 

Finally, the results show that the year dummies are insignificant, suggesting that the efficiency 

performance of the Australian mining companies did not significantly change over the period 

of study. This finding from the second-stage analysis is in line with the results derived from 
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the first-stage analysis, implying that no significant changes of efficiency gains occurred during 

the period 2010-2014. 

Earlier studies including Asafu-Adjaye and Mahadevan (2003) and Syed et al. (2015) reported 

improvements in the efficiency of mining industry; however, the current study presents results 

that do not support extant findings. As previously discussed in this chapter, the differences in 

the study period, the applied techniques and the study scope can drive such differences in 

efficiency improvements.  

   

6.3.2 Second-Stage DEA in Model II  

The empirical results of the second-stage truncated regression analysis, based on the technical 

efficiency specifications of Model II, are presented in Table 6.11. Similar to the second-stage 

analysis of Model I, the second algorithm in Simar and Wilson (2007) with 2000 replications 

is used to obtain the bias-corrected efficiency estimates as well as confidence intervals for 

truncated regression parameters. FEAR package and the researcher’s own developed R codes 

are used to generate the second-stage results of Model II. 

Since the efficiency model specifications of Model II vary from Model I, it is possible to 

achieve different results in the second-stage analysis of Model II from those of the second stage 

of the general model of technical efficiency. Sections 6.2.1 and 6.2.2 previously explained that 

accounting for the natural resource input in the efficiency estimation of mining firms leads to 

a higher efficiency performance among mining companies. Mining companies utilise more 

resource in their operations when facing depletion in the natural resource inputs. To maintain 

their economic operations, mining companies assign part of their financial resources to 

exploration expenditures. The aim of such expenditures is to enable them to extract mining 

product from less accessible or low grader mining fields or even to start mining operations in 

new fields. In this study’s second model of efficiency estimation, the natural resource input is 

proxied by a mixed index which is calculated based on the average value of two defined ratios: 

the exploration expenditure expenses to operating expenses ratio, and the capitalised 

exploration expenditure to total assets ratio. Such index reflects extra resource consumptions 

in mining activities due to resource depletion.  
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A lack of consideration for the natural resource input in mining operations leads to biased 

estimations of efficiency scores. For instance, if Company A owns better ore reserves in terms 

of ore quality or accessibility than those own by Company B, keeping all other factors constant, 

Company B consumes more labour, capital and intermediate inputs than Company A to 

produce the same amount of output. Therefore, Company B appears to be less efficient than 

Company A; however, the presence of higher inefficiency in Company B is due to the natural 

resource input effect, not the capability of this company in the transformation of inputs to 

desired outputs. By controlling for this adverse effect, the resulting efficiency scores are the 

correct representation of mining companies’ technical ability in producing maximum outputs 

given a certain level of inputs.  

Accounting for the natural resource input in formulation of technical efficiency in mining 

companies is also important for the second-stage analysis. Indeed, by removing the effects of 

resource depletion on the estimated efficiency scores, one can examine the driving factors 

directly associated with technical ability of mining firms in the transformation of their utilised 

inputs in production of their desirable outputs. 

Results from stage one and stage two of the analysis based on Model I are important as they 

present the overall efficiency performance and its driving factors regardless of reserves 

characteristics. Such results may be of interest to key stakeholders in the global mining industry 

and particularly shareholders, whereas the overall performance (with consideration to both 

exogenous and endogenous factors) is admissible for their decision making. However, the 

results of such modelling are ambiguous while the evaluation of mining firms’ technical 

capabilities is under investigation. 

The results derived from Model II satisfy the requirements for investigating the driving factors 

of technical efficiency in the mining sector. The adverse effect of natural resource 

characteristics on efficiency performance is removed in Model II by adding the introduced 

natural resource quality index to mining operation inputs. The second-stage results from Model 

II are presented in Table 6.11. 
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Table 6.11: Bootstrap truncated regression results for Model II 

Variables Estimates 90% Conf. Int. 95% Conf. Int. 99% Conf. Int. 
LB UB LB UB LB UB 

Constant 12.59*** 8.48 16.97 7.79 18.22 6.17 20.68 

Substantial shareholder (OWNER) -0.01*** -0.02 -0.01 -0.03 -0.01 -0.03 0.00 

Firm size (SIZE) -0.51*** -0.78 -0.26 -0.85 -0.22 -1.00 -0.12 

Firm age (AGE) -0.02*** -0.03 -0.01 -0.03 -0.01 -0.04 -0.01 

PP&E assets ratio (PPE) 0.02 0.00 0.03 0.00 0.04 -0.01 0.04 

Financial leverage (LEV) 0.34** 0.09 0.59 0.04 0.65 -0.07 0.74 

Iron ore production (IRON) -0.95** -1.84 -0.14 -2.06 -0.02 -2.53 0.22 

Gold production (GOLD) -1.06*** -1.54 -0.62 -1.65 -0.54 -1.86 -0.40 

Product diversification (DIV) -0.32 -0.90 0.25 -1.04 0.36 -1.27 0.56 

Change pace (CH_PACE) 0.48* 0.05 0.92 -0.03 1.01 -0.25 1.23 

Change direction (CH_DIR) -1.17*** -1.69 -0.68 -1.80 -0.61 -2.04 -0.45 

Location of operation (LOC_OPS) -0.47* -0.88 -0.06 -0.98 0.03 -1.14 0.16 

Year 2011 (Y2011) -0.34 -0.97 0.26 -1.10 0.37 -1.41 0.54 

Year 2012 (Y2012) -0.26 -0.87 0.37 -1.01 0.47 -1.25 0.75 

Year 2013 (Y2013) 0.05 -0.52 0.65 -0.62 0.74 -0.82 0.92 

Year 2014 (Y2014) -0.20 -0.80 0.40 -0.93 0.48 -1.18 0.75 

Truncated regression standard error 0.98 0.83 1.16 0.80 1.19 0.76 1.27 

Source: Author’s calculations 
Note: *, **, *** indicate that the estimated coefficient is statistically significant at 10%, 5% and 1%, respectively.  

 

(i) Types of Product 

Similar to the Model I results, the second-stage results of Model II show that the product 

portfolio is a key firm-specific factor driving the efficiency of mining firms in Australia. At the 

1% level, companies with gold mining activities (GOLD) are more efficient than companies 

active in other mining extraction activities. The economies of scale are a main contributor to 

higher efficiency gains in gold mining. More importantly, the experience and maturation in 

gold mining over the past two centuries has promoted this sector to best-in-class in the 

Australian mining sector and even across the globe. 

Well-established mining activities along with the utilisation of advanced technology have 

resulted in a high level of efficiency gain among Australian mining firms involved in gold 

exploration and extraction projects. Australian gold mining companies provide a range of best 

practices and are considered the benchmark in strategy, process and performance for gold 

mining companies around the world. Moreover, companies involved in other mining activities 

can benefit from the best practices of gold mining companies to improve the organisational 

capabilities toward enhanced economic performance. 
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Firms heavily involved in iron ore mining (IRON) are also more efficient than their 

counterparts. Iron ore mining companies benefit from large-scale operations, resulting in a 

lower production cost per unit of production. However, the significance level of coefficient 

relative to iron ore production dummy variable increased to 5% in Model II from 1% in Model 

I. This indicates that iron ore mines are less depleted in comparison with other ore resources in 

Australia; not surprising, given that iron ore deposits have significantly higher grades than 

other mining reserves in Australia (Mudd, 2010). Iron ores contain hematite (Fe2O3) and 

magnetite (Fe3O4) with almost 70 and 20-30 per cent ore grades respectively. More than 90% 

of extraction and export of iron ore in Australia is high-graded hematite (Geoscience Australia, 

2017).  

 

(ii) Product Diversification 

Unlike the Model I results, product diversification (DIV) appears to be statistically insignificant 

in influencing the mining firms’ efficiency gains under the Model II specifications. Considering 

the natural resource input to mining operations, the expansion of mining activities to broader 

range of mining production does not provide much advantage in gaining higher technical 

efficiency performance. This finding supports the results from Chakrabarti et al. (2007) and 

Nath et al. (2010) concerning the independency of economic performance from the product 

diversification approach. 

The differences between the operational versus organisational advantage of product 

diversification are evident when comparing the results of Models I and II. While product 

diversification does not provide operational advantage in optimising mining production given 

a set of utilised inputs, this strategy is important from an enterprise perspective. That is, the 

long-term success of a mining firm relies on its success in business risk reduction. Product 

diversification can outweigh the adverse effects of market shocks, whereas the adjustment of 

capital inputs is not practical in the short term in response to output demand fluctuations. A 

diversified product portfolio enables mining companies to leverage their unutilised capacities 

in the production of mining commodities not affected by adverse market shocks. 
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(iii)  Growth Status 

The results reported in Table 6.11 confirm that the presence of volatile growth of total firm 

output (CH-PACE) exerts significant negative effects on efficiency. This finding is not in line 

with the findings from Model I, confirming that no significant correlation is evident between 

growth rate and efficiency gains. The results from Model II suggest that companies with a 

stable or gradual growth pace in their output experienced higher efficiency among mining 

firms. The total output of mining activities for each company depends on the stage of their life 

cycle. During exploration, development and mine closure phases, no operating revenue is 

typically expected. Ineffective and unbalanced portfolio management leads to unstable 

production and operating revenue in mining companies. In the short run, a steep increase in 

production results in paying higher premiums for hiring labour and service capital; furthermore, 

a sharp decline in production output does not allow mining businesses to adjust their fixed 

assets. Similar to Mitchell and Steen (2014), the current study’s findings suggest that 

companies enjoy higher efficiency gains when they maintain a gradual pace in growth. This 

steady progress can be achieved through effective portfolio management and having a balanced 

set of projects in the portfolio. 

In addition, the results of Model II confirm that the direction of output changes has a significant 

effect on mining firms’ efficiency. The considerable challenge facing mining firms is being 

agile enough to optimise their consumed inputs during downturns. Mining companies adopt 

short-term plans to accommodate declining production through operating cost reduction 

programs. However, they may have limited success in implementing such plans due to business 

environment factors such as contractual commitments, regulations or companies’ future 

strategies. Hence, mining companies need to adopt long-term strategies toward asset utilisation 

and minimising the impact of operating under capacities during downturn periods. 

 

(iv)  Ownership 

Another explanatory variable in this study is ownership concentration. The results in Table 

6.11 show a negative coefficient for ownership concentration at the 1% significance level, 

suggesting a strong positive relationship between ownership concentration and firm 

performance. These findings are in line with that of Boubakri et al. (2005), Omran (2009), Ma 

et al. (2010), Cabeza-García and Gómez-Ansón (2011), all of which emphasise the significant 
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role of ownership concentration on higher firm performance. Ownership concentration may 

result in adverse outcomes for minority shareholders since the dominating influence of a few 

major shareholders could be against minority shareholder benefits. Shleifer and Vishny (1997) 

argued that with adequate legal protection provided to shareholders, higher ownership 

concentration results in better corporate governance and economic performance. Australian 

law provides a high level of protection for shareholders in comparison with other countries 

(Anderson et al., 2012). Hence, while the minority shareholders are protected from the 

influence of large shareholders colluding with managers to expropriate their benefits, known 

as ‘tunnelling’, they benefit from the large shareholders’ power and incentives to monitor 

management performance and prevent expropriation or asset stripping by managers. 

 

(v) Firm Size 

 The coefficient for indicator SIZE, measured by natural logarithm of productive assets, is 

found to be negative and significant at 1% level. This suggests that among the Australian listed 

mining companies, those with a larger operating scale achieve higher efficiency. Derived from 

the Model I results, this finding does not identify a significant association between firm size 

and firm efficiency. As discussed in Sections 6.2.1 and 6.2.2, the efficiency estimates from 

Model I show a considerable level of scale inefficiency among Australian mining firms. Many 

observations in the sample exhibit decreasing returns to scale condition. 

The results from Model II efficiency estimates revealed that the major driver of such sizable 

scale inefficiency is declines in natural resource input. Taking into account the natural resource 

input to mining operations proxied by formulated exploration expenditure index, most 

Australian mining firms operate close to their optimal scale. The results from stage one and 

stage two explain that larger mining companies benefit from economies of scale and, as a result, 

achieve higher efficiency performance. However, such efficiency gains are masked by resource 

depletion effects. Once the efficiency model controls for resource depletion, the direct effects 

of operating scale on efficiency performance is observed to be significant and positive. In the 

mining industry, larger companies are able to run larger mining projects with relatively less 

overhead cost per unit of production, to share unutilised capacities in other projects and 

business units, to more easily fund new investments and to hire better managers and 
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professionals. Moreover, from a market point of view, they have better control and penetration 

in the market. 

 

(vi)  Firm Age 

As illustrated in Table 6.11 and consistent with results from Model I, there is a significant 

association between firm age and firm performance at the 5% significance level. This implies 

that old mining companies outperform the younger firms. In the existing literature, the 

relationship between firm age and firm efficiency has produced mixed results (see e.g. 

Majumdar, 1997; Loderer and Waelchli, 2010; Le and Harvie, 2010). The positive relationship 

between firm age and firm performance is mainly associated with the learning-by-doing 

phenomenon. The accumulation of knowledge and skills over time is a key factor to boost the 

efficiency performance at the resource-scarcity time of booming. During the recent boom in 

the Australian mining industry, talent shortages led to recruiting less skilled labour to operate 

mining equipment, which consequently caused a further downward effect on the productivity 

of mining companies (Mitchell et al., 2014; Lumley and McKee, 2014). The current study’s 

results reveal that newer formed companies had more challenges in achieving the required 

knowledge, expertise and resources to manage booming operations. 

 

(vii) Capacity Utilisation 

The results from Table 6.11 show no significant correlation between capacity utilisation and 

the efficiency of the Australian mining sector. Mitchell et al. (2014) and Lumley and McKee 

(2014) both expressed that long lead time between investment and production, over-investment 

in capitals and poor capital utilisation due to the lack of skills and experience have adversely 

impacted the capital productivity in the Australian mining sector. Topp et al. (2008) and Zheng 

and Bloch (2014) also explained the effect of investment-production lag on Australian mining 

sector productivity during the recent mining boom. In the efficiency model developed for this 

study, the capital service input to the mining operations is measured using depreciation costs 

which reflect the costs associated with utilising the productive assets. According to the results, 

based on such unbiased efficiency estimations at the corporate level, productive assets 

utilisation is not found to have an additional negative effect on the efficiency gains of 
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Australian mining firms. In line with Topp et al. (2008), Lovell and Lovell (2013) and Zheng 

and Bloch (2014), this study emphasises the negative effects of new capital investment and 

depletion of natural resources as drivers of poor efficiency performance among mining 

companies in Australia; however, capacity utilisation for ongoing mining operations is not a 

significant driver of their inefficiency. 

 

(viii) Financial Risk 

The second-stage results show a positive coefficient for financial leverage as the proxy defined 

for financial risk in mining companies. While the general modelling of technical efficiency 

shows insignificant correlation between leverage and technical efficiency, their association 

turns out to be positive and significant under natural resource-based modelling of technical 

efficiency in Model II. In fact, when controlling for resource depletion to formulate the 

efficiency, a higher debt to assets ratio results in lower technical efficiency. Higher debt to 

assets ratio is associated with higher borrowing expenses; hence, this increase applies 

downward pressure on the efficiency gains. This effect was masked by the exploration 

expenditure effects on the efficiency performance in Model I. To the best of the researcher’s 

knowledge, no previous study has evaluated the relationship between financial risk and 

efficiency performance in the mining sector. Due to financial constraints, many mining 

companies finance their project by borrowing from financial institutions which involves 

significant interest payments over the period of operations. The result derived from Model I is 

in line with a number of studies that have investigated the association of financial risk or capital 

structure with firm performance (see e.g. Salim and Yadav, 2011; Yazdanfar and Ohman, 2015; 

Vatavu, 2015). However, the current study’s measure of firm performance is different from 

those in the existing literature. 

 

(ix)  Location of Operations 

The second-stage analysis of Model II shows that mining firms operating some exploration and 

extraction projects outside Australia achieve a higher efficiency than those firms limiting their 

operations to the mining regions in Australia. The comparison of results of Models I and II 

reveals that Australian mining companies involved in overseas mining projects had more 
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exploration expenditure than those only active in Australia. Due to resource depletion, mining 

companies invest more in new projects and, in the case of Australian mining companies, 

internationally based projects appear to be an efficient solution against declining resource 

deposits in Australia. The success of such international diversification relies on significantly 

lower operating expenses in other target countries. Moreover, it proves the potential for 

Australian mining companies to overcome challenges of incorporating their knowledge and 

technology in a new business environment and aligning local partners toward companies’ 

goals. This finding is consistent with the earlier findings discussed in Nath et al. (2010), 

particularly on the positive effects of international diversification on firm performance. 

 

(x) Year Dummeis 

Similar to the results in Model I, the year dummies are insignificant, indicating that the 

distribution of exploration expenditure has not changed over the 2010-2014 period. These 

findings confirm the results achieved in the first-stage analysis which show no significant 

changes occurring over the study period. Regarding the bias-corrected CRS efficiency 

estimated from Model II, on average, 47 per cent inefficiency was observed among the major 

listed mining companies in Australia over the period 2009-10 to 2013-14. With an almost 

consistent pattern over this period, the efficiency performance was influenced by firm-specific 

factors including ownership concentration, firm size, firm age, product portfolio, financial 

risks, growth status and overseas operations. 

 

6.4 Summary 

Chapter 6 applied the empirical models developed in Chapter 5. In the first stage, two efficiency 

models – including a general model of technical efficiency, denoted as Model I, and a natural 

resource-based model of technical efficiency, denoted as Model II – were utilised to estimate 

the efficiency scores of 34 Australian mining firms over 2009-10 to 2013-14 period. Using a 

bootstrap DEA method, the original and bias-corrected estimated were derived for both 

efficiency models. 
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The results from the stage-one analysis showed that the variable specification of the technical 

efficiency model is crucial to efficiency analysis in the Australian mining industry. Unlike most 

industries with renewable resources, the depletion in non-renewable resource deposits is 

adversely affecting the economic efficiency performance of mining companies. Model I, which 

has ignored the natural resource input, shows the presence of significant inefficiency in both 

components of technical efficiency performance, namely pure technical efficiency and scale 

efficiency. However, the Model II results revealed that pure technical inefficiency is the main 

source of inefficiency among mining companies while most mining companies operate at their 

optimum scale. In fact, the presence of scale inefficiency in the results of Model I reflected the 

extra resources consumed by mining companies due to natural resource depletion. Considering 

the natural resource input to mining operations, the scale inefficiency effects almost 

disappeared. The results from the first-stage DEA confirmed the findings of Topp et al. (2008), 

Zheng and Bloch (2014) and Syed et al. (2015), who addressed the issue in conventional 

productivity measurement of the mining sector and emphasised the role of resource depletion 

as a major contributor to the declining productivity performance of the Australian mining sector 

in recent years. 

Further to the estimation of technical efficiency, Chapter 6 examined and discussed the effects 

of firm-specific factors on the efficiency estimates from Models I and II. Applying the 

bootstrap truncated regression methods introduced by Simar and Wilson (2007, 2011) with 

2000 iterations, the coefficient estimates and their 90%, 95% and 99% confidence intervals 

were obtained for 15 variables representing firm-specific factors and apportion years. Such 

firm-specific factors include ownership concentration, firm size, firm age, capacity utilisation, 

financial risk, product type, portfolio diversification, growth status and location of operations. 

To solve the bootstrap DEA and the truncated regression models in this study, FEAR package 

(Wilson, 2013) in conjunction with the R codes developed by the researcher are used. 

The outcomes of the second-stage analysis of both Model I and Model II exhibited similar 

significant effects for factors including ownership concentration, firm age, product portfolio 

and change direction. These factors have been dominating the efficiency performance of 

mining firms regardless of the consideration of mining characteristics. Table 6.12 presents a 

summary of second-stage tests on the significance of estimated coefficients of the study 

variables at 5 per cent significance level. In both models, it was found that higher ownership 

concentration contributes to higher efficiency gains. This result confirmed that once adequate 
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legal protection is provided to shareholders, ownership concentration benefits shareholders and 

management through enhanced economic efficiency. 

What’s more, the results of the second-stage truncated regression analysis of both models 

showed that there is a positive association between firm age and firm performance. This finding 

highlights the importance of experience to succeed in booming cycles. It seems essential for 

newcomers to accelerate the process of technology and knowledge acquisition when entering 

a booming industry. 

In addition, both models confirmed that mining firms involved in exploration and extraction of 

iron ore and gold mines are more efficient than other mining companies in the sample. These 

outperforming results for iron ore and gold mining companies are the consequence of large 

operating scales, established organisations, and the utilisation of advanced technology in these 

two mining activities in Australia. 

Also both models presented a strong relationship between growth status and efficiency 

performance. Mining firms have achieved higher efficiency gains in years with growing 

production output. In contrast, their efficiency gains have declined when mining companies 

have reduced their production output. Although this finding seems to be rather expected in 

most production processes including mining activities, it explains the challenge facing mining 

firms to adjust their consumed inputs during business downturns. 

Product diversification is the only factor that turned out to be insignificant after redefining the 

input variables in Model II from the initial setup of Model I. The results showed that while 

product diversification has been a successful strategy in improving the economic performance 

of mining companies, it has illustrated limited control in increasing the technical capability of 

mining firms in transforming the consumed inputs to produced outputs. 

Unlike the results of Model I, the coefficients of firm size, financial leverage, location of 

operations and change of pace have been reported to be significant under the Model II 

specifications. A positive correlation between firm size and firm technical performance 

displays the importance of economies of scale in mining activities. Also, the specific results 

obtained from Model II include the positive association between technical performance and 

operating outside Australia. This association is dominantly cost-driven, rather than technically 

motivated. Moreover, even though most Australian mining firms utilise advanced technology, 

the availability of adequate skills to operate mining equipment is another drawback in 
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Australia. In Model II, financial leverage has a negative impact on firm technical efficiency. 

The direct interest expenses and also any potential agency costs have resulted in greater 

monetary value of inputs to mining operations, while the expected return associated with the 

related borrowings has not offset the effect of such increased inputs on technical efficiency. 

Finally, considering natural resource input to mining operations in Model II revealed that 

maintaining a stable or gradual growth of mining operations is important to achieve higher 

technical efficiency. This finding is in line with operational reports in the Australian mining 

sector which have advised implementing strategies that lead to balanced set of developing and 

operational projects in mining companies (Mitchell and Steen, 2014; Lumley and McKee, 

2014). 

Table 6.12: Comparison of second-stage results between Model I and Model II 
Variables Model I Model II 

Substantial shareholder (OWNER) Sig. Sig. 
Firm size (SIZE) Insig. Sig. 
Firm age (AGE) Sig. Sig. 
PP&E assets ratio (PPE) Insig. Insig. 
Financial leverage (LEV) Insig. Sig. 
Iron ore production (IRON) Sig. Sig. 
Gold production (GOLD) Sig. Sig. 
Product diversification (DIV) Sig. Insig. 
Change pace (CH_PACE) Insig. Insig. 
Change direction (CH_DIR) Sig. Sig. 
Location of operation (LOC_OPS) Insig. Insig. 
Year 2011 (Y2011) Insig. Insig. 
Year 2012 (Y2012) Insig. Insig. 
Year 2013 (Y2013) Insig. Insig. 
Year 2014 (Y2014) Insig. Insig. 
Source: Author’s calculations 
Note: “Sig.” and “Insig.” indicate whether the estimated coefficient is statistically significant or insignificant at 5%. 
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7 Discussions and Policy Implications 

 

7.1 Introduction 

The previous chapter provided the detailed results for the first stage and the second stage of the 

efficiency analysis among the Australian mining companies. According to the empirical results, 

a significant degree of inefficiency exists among the Australian mining firms. Moreover, the 

results revealed that the role of natural resource inputs in the efficiency performance of mining 

companies is significant. Further analysis in the second stage showed the factors contributing 

significantly in the mining companies’ efficiency. It was confirmed that the efficiency 

performance highly depends on the characteristics of mining companies. While the results in 

Chapter 6 aimed to achieve the first and the second research objectives in this study, this 

chapter targets the third objective by providing insight into the observed results and 

recommending policy options to improve the efficiency performance of mining companies. 

Thus, first, Section 7.2 of this chapter discusses the results from the efficiency estimation in 

stage one to address the challenges and gaps in the performance of mining companies. Then in 

Section 7.3, it explores the findings from the second-stage analysis to identify the determinants 

of efficiency performance. Each contributing factor is reviewed, and the implications of the 

results are discussed. The knowledge of efficiency determinants is important; however, it does 

not directly guide mining businesses and the governments toward relevant policy and 

programs. Hence, to answer how to improve efficiency, Section 7.4 introduces a set of policy 

and program recommendations in relation to the significant efficiency drivers. These policies 

and programs are not necessarily limited to each specific determinant; in fact, most programs 

are multidimensional and linked to multiple factors. Finally, Section 7.5 summarises the 

chapter discussions. 

 

7.2 Efficiency Performance of Mining Firms 

The first stage of analysis in this study involved the estimation of an output-oriented measure 

of Farrell technical efficiency for 34 Australian mining firms listed on the ASX over the period 
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2009-10 to 2013-14. Unlike most production environments, mining operations rely on non-

renewable natural resources. The availability, accessibility and quality of natural resources 

decline over time. One consequence of such resource depletion is that a greater amount of 

inputs such as labour, capital or intermediate inputs are consumed over time to maintain the 

same amount of production outputs. Hence, even if the technical capability of a firm is 

unchanged, the firm’s productivity declines due to resource depletion. In conventional reports 

on the mining sector’s productivity, this depleting effect is commonly ignored. This study 

constructed two efficiency models: the first model (Model I) followed the common 

input/output specifications and the second model (Model II) was modified to include the natural 

resource inputs. Model I consisted of variables including labour (input), capital service (input), 

intermediate inputs (input) and production (output). Model II included the natural resource 

input in addition to other variables from Model I. 

Further to the original DEA estimates in both Models I and II, the bootstrap DEA estimates 

were also calculated. The bootstrap DEA model used in this study is based on the proposed 

model by Simar and Wilson (1998, 2000a) which incorporates the statistical properties in the 

estimation of DEA efficiency scores. 

As presented in Table 6.1 in Chapter 6, according to the Model I specifications, the inefficiency 

among the Australian mining firms is significant. As the output-oriented measure of Farrell 

technical efficiency is used, a fully efficient firm’s score is equal to 1, whereas any scores 

greater than 1 show a degree of inefficiency. Hence, a lower score represents a better 

performance. On average, the Farrell technical efficiency score under CRS assumptions is 2.65, 

representing around 62 per cent overall inefficiency. The average of technical efficiency 

fluctuated slightly over the period of study with a minimum of 2.50 in 2011 and a maximum 

of 2.79 in 2013 and 2014. Under VRS assumptions, the average efficiency score is 1.67, 

representing the presence of 40 per cent pure technical inefficiency in the performance of 

Australian mining companies listed on the ASX. The variation patterns of the VRS estimates 

are almost similar to that of the CRS estimates; 2011 has the best performance with around 37 

per cent inefficiency while the 2014 average performance is 43 per cent. Regardless of the 

observed year-on-year variations in the average performance, the Friedman test did not confirm 

any significant changes over the period of study in both CRS and VRS models. 

The difference between CRS and VRS estimates is associated with the presence of inefficiency 

in the operating scale. On average, 37 per cent scale inefficiency exists among the mining 
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companies in the sample. Detailed efficiency results in Table 6.3 show that around 90 per cent 

of observations require a decrease in their operating scale. The decreasing returns to scale 

phenomenon may be attributable to the nature of mining resources. That is, an increase in 

production is not necessarily proportional to an increase in exploration expenditure, physical 

capital and labour when the most accessible deposits are discovered and extracted first (Zheng 

and Bloch, 2014; Syed et al., 2015). Over time, more inputs are consumed to produce the same 

amount of output. Hence, it is expected that firms reaching their full operating capacity will 

have higher efficiency than those with projects in the development phase as well as those with 

aged operating mines.   

The results of Model II are presented in Table 6.2 in Chapter 6. The results show that once 

accounting for the effects of natural resource inputs, proxied by the exploration expenditure, 

the average of CRS technical efficiency score shrinks from 2.65 to 1.69, equivalent to 41 per 

cent overall technical inefficiency. However, the average of VRS estimates changes marginally 

from 1.67 to 1.64, representing 39 per cent pure technical inefficiency among mining 

companies. Consistent with that observed in Model I, there is a slight variation among the 

yearly average CRS efficiency score in Model II with a minimum of 1.59 in 2011 and a 

maximum of 1.75 in 2014. The same variation pattern exists under VRS assumptions. 

However, the Freidman test shows no significant changes over the period of study in either 

CRS or VRS average estimates.  

As presented in Table 6.4, with an average scale efficiency score of 1.04, most mining 

companies were operating close to their optimum scale over the study period under Model II 

specifications. For those operating slightly below the optimum scale, a combination of 

increasing returns to scale and decreasing returns to scale is present among observations. These 

results suggest that the impact of natural resource inputs on the efficiency estimates is 

substantial. Due to resource depletion, mining companies require higher investment in 

exploration activities, which in turn results in lower efficiency estimates. Nonetheless, the 

lower efficiency estimates in such cases are not necessarily related to the poor performance of 

firms while transforming their consumed inputs to produced outputs; in fact, these lower 

efficiency estimates are associated with the adverse effect of natural resource inputs. As a 

result, mining firms increase their labour, capital and intermediate inputs to overcome the 

impact of natural resource quality. Such an input increase does not result in a proportional 

increase in production output. 
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The results from Model II support the arguments in the literature around mismeasurement and 

misinterpretation of productivity performance in the Australian mining industry (see e.g. Topp 

et al., 2008; Zheng and Bloch, 2014; Syed et al., 2015). Resource depletion affects the 

efficiency and productivity of mining companies; hence, any measures of efficiency or 

productivity performance in mining activities will be biased because of these effects. That is, 

true reflection of their performance requires accounting for natural resource inputs. In terms of 

efficiency measurement, resource depletion effects seem to be more on the scale efficiency 

than the pure technical efficiency. This pattern is well expected as resource depletion forces 

mining companies to seek new resource deposits and invest in new mining operations. More 

inputs are consumed over time, but production outputs do not increase proportionally. 

Therefore, because of greater resource depletion effects, mining firms are moving further away 

from their optimum operating scale. However, the pure technical efficiency does not change 

significantly. Pure technical efficiency relates to the ability of mining companies in 

transforming their inputs to their outputs given the consideration of scale constraints imposed 

by the resource depletion effects in the mining industry. 

Further to the efficiency model specifications discussed in Chapter 6 in the form of Model I 

and Model II, Section 6.2.2 provided the results from a bootstrap DEA for both models. The 

original DEA model is non-parametric. Hence, the statistical noise, related to measurement or 

random errors, is not incorporated in the efficiency measurement. Simar and Wilson (1998, 

2000a) argued that a smoothing bootstrap procedure could provide consistent bias-corrected 

efficiency estimates along with their statistical properties. Table 6.6 and 6.7 provided the 

summary of the bias-corrected efficiency estimates over the period of study. Similar to the 

variation patterns observed in the original models, 2011 has the lowest while 2013 and 2014 

have the highest efficiency score averages. The significance of these variations has been tested 

in the second-stage analysis through the inclusion of year-specific dummies into the 

econometric model.  

The bias-corrected estimates are higher than the original estimates, showing that the efficiency 

performance of the Australian mining companies is lower than what was assumed based on the 

conventional efficiency modelling. In Model I, the average efficiency estimates under CRS and 

VRS assumptions increase from 2.65 to 2.97 and from 1.67 to 1.87 respectively. Also, in Model 

II the average efficiency estimates increase from 1.69 to 1.89 under CRS assumptions and from 

1.64 to 1.86 under VRS assumptions. On average, the applied bootstrapping procedure 
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corrected 12 per cent bias among efficiency estimates. The Model I results show that, at 95% 

confidence level, the efficiency estimates are below 2.0 in only one third of observations, 

representing sizable inefficiency among most mining companies in the sample. With the 

inclusion of natural resource inputs in the efficiency model, the ratio of observations with 

efficiency scores lower than 2.0 increases to almost two thirds. Thus, while there is no 

specifically defined threshold to identify poor performance in mining companies, by 

considering an indicative efficiency score of 2.0, the results reveal that one third of 

observations severely suffer from technical inefficiency. As it is evident from the reported 

results in Table 6.7, this inefficiency is mainly attributable to pure technical inefficiency as 

opposed to scale inefficiency. A second-stage analysis is required to shed light on the factors 

determining the poor technical efficiency of mining companies. 

 

7.3 Determinants of Efficiency Performance 

While the first stage of the analysis attempted to evaluate the technical efficiency of the 

Australian mining companies, the second stage aimed to identify the contributing factors of 

their efficiency performance. The insight provided by the second-stage results supports the 

development of appropriate policy recommendations to improve the efficiency performance of 

mining companies. In the implementation of the second-stage analysis, this study followed the 

truncated regression method proposed by Simar and Wilson (2007). The main advantage of 

this method lies in its ability to provide consistent results when efficiency estimates driven 

from DEA are regressed on some explanatory variables. Simar and Wilson (2007, 2011) show 

that the application of common techniques in the second-stage analysis, such as OLS and Tobit 

regression models, leads to inconsistent model parameters and furthermore that the 

conventional likelihood-based approaches to statistical inference are invalid. These issues 

chiefly arise due serial correlations among efficiency estimates. The DEA efficiency estimates 

are calculated based on the distance of each observation from the respective frontier, which is 

constructed using observations in the sample. Hence, the estimated efficiency scores are 

correlated by construction in a complicated way. The bootstrap procedure suggested by Simar 

and Wilson provides valid inference in the second-stage regression.  

Section 5.5 in Chapter 5 presents the econometric model used in the second stage. FEAR 

package (Wilson, 2013) and the author’s own developed R codes are used to run this truncated 
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regression model with 2000 iterations to obtain intervals of the estimated parameters. This 

econometric model consists of bias-corrected efficiency estimates as the dependent variable 

and 15 exploratory variables. The variable “substantial shareholders” (OWNER) controls for 

the effect of ownership structure on the efficiency estimates. “Firm size” (SIZE), proxied by 

natural logarithm of total assets, controls for the effect of economies of scale on efficiency 

gain. The effect of learning by practice and experience is captured by the variable “firm age” 

(AGE). The “ratio of PP&E assets to total assets” (PPE) reflects the capacity utilisation. 

“Financial leverage” (LEV) represents the financial risks in the model. Two dummy variables 

of “iron ore” (IRON) and “gold” (GOLD) are included in the model to distinguish the effect of 

production of these two dominating products on the efficiency performance. The effect of 

economies of scope is represented by a dummy variable for “product portfolio diversification” 

(DIV). The growth effects on efficiency are controlled by introducing two dummy variables of 

“change pace” (CH_PACE) and “change direction” (CH_DIR). The “location of operations” 

(LOC_OPS) also included in the model to test if the running of mining projects beyond 

Australia’s borders changes the efficiency gain. Finally, to capture any exogenous effects out 

of control of businesses in each year, four year-specific dummies (2010, 2011, 2012, 2013 and 

2014) are added to the model. 

The results of the second stage regression are presented in Section 6.3.1 in Chapter 6. As two 

efficiency models were developed in Chapter 5, the second-stage analysis was implemented 

separately for Model I and Model II. This section reviews results from both models for each 

explanatory variable in the econometric model. 

 

7.3.1 Type of Product 

Under the efficiency specifications of both Model I and Model II, the production of iron ore 

and gold, represented by IRON and GOLD dummies respectively, appeared to be a significant 

contributor of higher efficiency performance. Australia has the world’s largest iron ore 

economic demonstrated resources (EDR) with 29 per cent of the global total (Geoscience 

Australia, 2018). Iron ore mining involves large-scale extracting operations. Hence, the 

companies being mainly active in iron ore mining benefit from the economies of scale. 

Furthermore, due to the large-scale projects in iron ore mining, leading companies such as 

BHP, Rio Tinto and Fortescue have employed the most advanced technology in their 
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exploration and extraction activities. Such advantages have resulted in the high technical 

efficiency of companies active in the iron ore mining. 

The high efficiency performance of gold mining companies should not be surprising. Gold 

mining has been a long-standing activity in the Australian resource sector. Some major 

economic and social developments in Australia have been attributable to the gold exploration 

and extraction activities over the past two centuries. According to Geoscience Australia (2019), 

Australia holds a global first place in gold resources and is among the world’s top five gold 

producers. Furthermore, following iron ore and black coal, gold has been the third largest 

contributor of mineral export earning in recent years. Rich resource endowment has not been 

the only success factor of gold mining in Australia. A high-skilled work force, well-established 

operating processes and advanced technology utilised in its mining operations have made gold 

mining a successful and efficient industry. 

While the results from both models confirm the importance of product portfolio in the 

efficiency of mining firms, the degree of dependency to product type varies between these two 

models. In Model I, both iron ore and gold are significant at 0.01 level, while the iron ore has 

greater coefficient. On the other hand, under Model II efficiency specifications, the coefficient 

of gold is greater than iron ore. This difference indicates two things: first, the severity of 

resource depletion in gold mining; and second, it shows that gold mining can serve as best 

practice for other mining activities in acquisition of enablers toward efficiency improvement. 

 

7.3.2 Product Diversification 

Under Model I efficiency specifications, companies with a diversified product portfolio turned 

out to be more efficient than those focusing on a single or a few related mining commodities. 

This significant effect was not held under the specification of Model II. The results presented 

in Table 6.11 in Chapter 6 show a positive but insignificant influence of diversification on 

technical efficiency. While diversification does not provide advantage in technical efficiency 

gain, it is a suitable business strategy in reducing costs and economic efficiency for those 

mining companies facing resource depletion. Resource depletion impacts the profitability and 

economic efficiency of mining operations. The sustainability of mining companies relies on 

their timely response to such negative effects. Diversification reduces the risks of depleting 

resources on the business outcomes. Moreover, diversification aids mining companies to 
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reduce the impact of mineral price fluctuations on business performance. Finally, through 

diversification, mining companies can leverage their key competencies in production of other 

mining commodities.  

 

7.3.3 Growth Status 

Since the early 2000s, mining businesses have experienced a high degree of changes in their 

production capacity and production output. Due to strong capital investments over the 2000s 

and early 2010s, the production of mining commodities increased substantially in the years that 

followed. However, the general growth pattern has not been similar among all players in the 

mining sector. While initially rising mining commodity prices followed by increased capital 

investment lifted the production output, price declines since 2011 as well as ongoing resource 

depletion have imposed downward pressure on the production volume of some mining 

companies. Further to the differences in growth direction, the pace of changes has also varied 

among mining companies. Rapid changes, particularly those related to short-term responses to 

the commodity price changes, can dislocate the efficient utilisation of resources. If mining 

companies produce below or higher than the output level for which they were designed, their 

productivity drops (Tilton, 2014). Thus, in the second-stage analysis, this study looked at the 

impact of changes and growth on the technical efficiency gain through inclusion of two dummy 

variables of change pace and change direction in the truncated regression model. 

The results presented in Chapter 6 show that under both models, the direction of changes has 

a significant impact on the efficiency performance. A decline in the production outputs results 

in a decrease in the firm’s efficiency, showing that mining companies are not agile enough to 

respond to changes in their production output. In addition, under Model II specifications, it is 

evident that rapid changes in mining output adversely impact the technical efficiency. While 

these results are well expected, they highlight the challenges facing mining companies. A 

sudden change in commodity prices, any changes in regulations or the existing gradual resource 

depletion, can all significantly influence the technical efficiency of mining companies. As 

Tilton (2014) outlined, such driving factors are not uncommon in the mining industry. Prices 

of mining and mineral commodities are highly influenced by national and international 

changes. Government regulations, particularly in relation to the environmental concerns, are 

changing from time to time across the world. Finally, the finite natural resource inputs are 
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depleting over time. Therefore, dealing with these factors requires sector-wide and corporate-

wide strategies rather than short-term tactical and operational solutions. 

 

7.3.4 Ownership 

The economic literature emphasises the importance of ownership in the efficiency and 

productivity performance of companies. Among the Australian listed mining companies, 

ownership concentration differs widely. As per Table 5.2 in Chapter 5, ownership of the 

substantial shareholders varies from a minimum of 5 per cent to a maximum of 95 per cent 

among the selected sample in this study. The results presented in Chapter 6 revealed that 

ownership concentration positively drives the technical efficiency. Higher ownership of 

substantial shareholders results in higher technical efficiency performance. The result is 

consistent in both efficiency models at 99% confidence level. The substantial shareholders have 

the power and incentive to monitor management performance and prevent inappropriate or 

inefficient use of companies’ assets. The literature supports the positive effect of ownership 

concentration on the firms’ performance; nonetheless, it expresses concerns regarding the high 

ownership concentration impact on minority shareholders (see e.g. Shleifer and Vishny, 1997; 

Boubakri et al., 2005; Omran, 2009; Margaritis, and Psillaki, 2010; Ma et al., 2010; Cabeza-

García and Gómez-Ansón, 2011). If adequate legal protection is provided to shareholders, the 

risk of substantial shareholders’ colluding with the business management is controlled. 

Anderson et al. (2012) discussed that such legal protection has been provided to shareholders 

under Australian law. Hence, without major concerns in relation to maintaining the shareholder 

benefits, minority shareholders can benefit from a better control of management performance 

in companies with high ownership of substantial shareholders. 

 

7.3.5 Firm size 

The effects of firm size on the technical efficiency of enterprises are reported ambiguously in 

the literature. Firm size has been interpreted as a source of organisational costs and inefficiency 

due to the complexity of larger firms in organisational and managerial control as well as 

difficulties in managing diversified portfolios in larger firms (e.g. Hansen and Wernerfelt, 

1989; Diaz and Sanchez, 2008). On the other hand, some studies found a positive or U-shape 
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relationship between size and firm performance (e.g. Badunenko, 2010; Schiersch, 2013). They 

claimed that small companies do not benefit from economies of scale but face challenges such 

as lower managerial skill, limited knowledge and presence in the market, and financial 

constraints which decrease their efficiency. 

In the context of the mining sector, generally it is expected to observe a positive association 

between size and efficiency. Efficient mining operations require acquisition of advanced 

technology, a skilled workforce and managerial expertise, whereas most newly formed and 

small firms suffer from the lack of such capabilities (Lumley and McKee, 2014). This study’s 

findings are quite interesting in terms of the linkage between size and efficiency. Based on the 

specifications of the general efficiency model, no significant effects from size, measured by 

the natural logarithm of property plant and equipment (PP&E) assets, were identified. 

However, based on the specifications of the natural resource-based model of technical 

efficiency, a larger size is associated with a higher efficiency. These results suggest that 

increasing physical assets is not necessarily a strategy to increase production output, but a way 

to overcome the adverse effects of resource depletion.  

 

7.3.6 Firm Age 

The second-stage findings presented in Chapter 6 reveal the positive effects of firm age on 

efficiency performance. Young firms’ poor efficiency may be attributable to their challenges 

in finding the essential knowledge, expertise and resources, particularly in booming cycles 

(Lumley and McKee, 2014). Following substantial increases in global demand for mining and 

mineral commodities in the 2000s, a large number of newly formed companies turned to the 

stock markets to attract their required capital. However, capital was not the only thing they 

were lacking; the skilled workforce to be able to utilise mining equipment effectively and the 

managerial expertise to lead fast growing businesses were among the main shortages of young 

firms. As Tilton (2014) discussed, the lack of such quality among a firm’s workforce and 

leadership can deteriorate its productivity. 

The findings in this thesis are consistent with the results in Das (2012), reporting a positive 

relationship between firm age and TFP of the Indian mining companies in metallic, coal and 

petroleum sectors. In contrast, the results of this study do not support the mine-level findings 

in Byrnes and Färe (1987) which reported that the age-efficiency relationship is negative. Such 
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contrast is not surprising; at mine level, in addition to the natural resource quality and 

accessibility, the performance of capital assets such as mining equipment and machineries 

declines, resulting in a lower technical efficiency of mining operations over time. Nonetheless, 

mining companies operate a portfolio of mining activities ranging from mine exploration and 

development to extracting operations. Therefore, more extensive experience aids mining 

companies to find the optimum mix of these activities to stabilise their business outcome in the 

long run. 

 

7.3.7 Capacity Utilisation 

Capacity utilisation has been addressed as a severe concern in the Australian mining industry. 

Mitchell et al. (2014) and Lumley and McKee (2014) argued that over-investment in capitals 

and poor capital utilisation due to the lack of skills and experience have adversely impacted 

the capital productivity of mining in Australia. Zheng and Bloch (2014) discussed that capacity 

utilisation, i.e. production below or above the built capacity, had the largest negative effect on 

the MFP growth of the mining sector in Australia over 1974-75 to 2007-2008 period. The built 

capacity in a mining company is in fact its productive assets which are recorded in financial 

statements as the property, plant and equipment (PP&E) assets. This study looks at the share 

of PPE assets in total assets of mining companies to examine if a high or low degree of PPE 

ratio affects the technical efficiency. The results derived from both models presented in Chapter 

6 do not suggest any significant influences on efficiency imposed by capacity utilisation. 

While the results from this study are not necessarily comparable with those reported in Zheng 

and Bloch (2014) due to the differences in modelling and proximation, this study’s findings 

show that the asset composition does not seem to be a driving factor of efficiency. In other 

words, a larger share of productive assets does not mean mining companies perform better or 

worse. 

 

7.3.8 Financial Risk 

The results of Model I show no significant effects of financial risk, proxied by leverage ratio, 

on the firms’ efficiency. However, the Model II results present a negative impact. It is worth 
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noting that the unadjusted technical efficiency can be interpreted as an overall business 

efficiency measure while the adjusted technical efficiency reflects the technical ability of a firm 

in transforming the resources into production output. These results suggest that while from a 

corporate perspective a high degree of leverage does not harm the economic performance, it 

limits the technical efficiency gain of mining companies through imposing higher costs to the 

production system. Such costs reduce the available funds for operating expenses which directly 

affect the production output.  

Leverage can serve as an influencing factor of agency cost which arises when the interests of 

the company’s managers and that of its shareholders or debt and equity investors are not 

perfectly aligned. The agency cost directly influences the firm performance; hence the 

relationship between leverage and agency cost is equivalent to the relationship between 

leverage and firm performance. The literature reported both positive and negative associations 

between leverage and agency cost (or inversely firm performance) (e.g. see Abor, 2005; Zeitun 

and Tian, 2007; El-Sayed Ebaid, 2009; Margaritis and Psillaki, 2010; Yazdanfar and Ohman, 

2015). The expected relationship in this study is in line with the theory of agency cost as 

discussed in Jensen and Meckling (1976), where leverage reduces the agency cost, resulting in 

higher efficiency performance. However, this expected association was not proven. Fama and 

French (2002) explained that excessive debt leads to higher agency costs and equivalently 

lower firm performance. While providing insight into the capital structure is beyond the scope 

of this study, the findings here illustrate the importance of financing in firm performance. As 

mining firms greatly rely on external funding, it is important to understand the short-term and 

long-term effects of financing (debt or equity) on their economic performance prior to such 

decisions. 

 

7.3.9 Location of Operations 

The location of operations did not appear to be influential to the firm’s performance in Model 

I; however, under Model II specifications, this firm-specific factor turned out to be significant. 

The intention of including this variable in the second-stage model was to evaluate the 

geological diversification strategy pursued by some mining companies in Australia. 

Particularly, major mining companies have expanded their exploration and extraction activities 

to some projects beyond Australia. More than half of the ASX listed Australian mining 
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companies operate overseas. Africa, Latin America and South East Asia are among the places 

mostly attracting Australian mining companies and engineering consultants. Through these 

international operations, mining companies leverage their organisational and technical 

capabilities to benefit from new market and lower operating costs in host countries, leading to 

a higher efficiency performance. The comparison of the results between general and natural 

resource-based models show that mining companies operating overseas are more involved in 

exploration activities compared to those limiting their operations to the resources inside 

Australia. 

The positive linkage between overseas operation and efficiency shows that Australian mining 

companies have been successful in managing the new business environment while 

incorporating their knowledge and technology in efficient overseas mining operations. 

 

7.3.10 Year-Specific Effects 

To capture year-specific effects, four dummy variables of Y2011, Y2012, Y2013 and Y2014 

are included in the regression model. The results from both models did not present any 

significant exogenous effects along the period of study. Particularly, 2011-12 represented by 

Y2012 dummy had two major events; the highest aggregate commodity prices and the 

introduction of the carbon pricing scheme. The average efficiency performance declines from 

2010-11 to 2011-12; however, this decline is not statistically significant. These results 

confirmed the initial findings from the Freidman test on the mean ranks, displaying no 

differences among average efficiency scores over the period of study. These results also 

confirm that the effects on the efficiency performance have been mainly captured by firm-

specific factors of ownership concentration, firm size, firm age, product portfolio, financial 

risks, growth status and overseas operations. 

 

7.4 Policy Implications 

Over the past few years, many companies in the mining industry have listed productivity among 

their top priorities. The vulnerability of the mineral commodity prices since 2012 has 

encouraged mining companies to take strong steps toward improving productivity (Lumley and 
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McKee, 2014). However, the question is whether the productivity has improved among mining 

companies. Conventional sector-level reports show a period of productivity decline during 

mining boom until 2014 and since then it has been stabilised and improved marginally. The 

literature has addressed the issues around the productivity trends and related them mainly to 

the contributing factors of resource depletion, investment-production lag and capacity 

utilisation. Hence, some scholars in the Australian mining context did not recommend any 

sector-specific policy beyond general advice for productivity improvement (e.g. see Syed et 

al., 2015). 

It is important to recognise that the aggregate reports do not provide insight into the firm-level 

performance in the mining industry. Understanding the efficiency and productivity gaps and 

its determinants at firm level is needed to develop improving strategies and programs. While 

the results of this study support some sector-level findings, such as the importance of resource 

depletion or investment-production lags in productivity performance, the results also suggest 

the need to introduce specific recommendations for productivity improvement among mining 

companies. The results from the first-stage analysis revealed a significant performance gap 

against the best practices; and results from the second stage presented the main factors driving 

the efficiency of mining companies. In line with the discussions in Section 7.2 and Section 7.3, 

several policy implications drawn from the results of this study are presented in this section. It 

is worth noting that the recommending policy and programs toward improving the efficiency 

of mining companies are mostly multidimensional. Therefore, each policy and program 

category in this section may cover multiple efficiency determinants discussed in the previous 

section. 

Both government and mining businesses can benefit from these recommendations to develop 

strategies and programs aimed at improving the efficiency and productivity of the mining 

industry. 

 

7.4.1 Human Capital Development 

The mining boom of the 2000s was practically a test of the mining industry’s capability in 

human capital. Due to the increasing demand and prices of most minerals, the existing mining 

companies vastly expanded their operations; in addition, many new players entered the mining 

market. The results from this study revealed that fast-growing companies as well as young 
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firms exhibited a low efficiency performance over the period of study. Talent shortage, 

particularly in the utilisation of advanced mining equipment, has been reported as one of main 

challenges facing mining companies. In addition to technical skills, leadership and managerial 

skills also did not match the requirements of a booming sector. These skill shortages, along 

with a high workforce turnover since the beginning of the mining boom, have had a significant 

impact on the productivity of mining companies (Mitchell et al., 2014). 

While war for talent is more evident during booming periods, talent development should be an 

ongoing program. Yet, the trends in talent development do not look to be moving toward the 

desired direction. Undergraduate intakes for most mineral resource higher education 

disciplines have notably declined since 2012. Following the sharp decline in enrolments, the 

number of graduates in the mining-related disciplines has also decreased (Minerals Council of 

Australia, 2018). Such concerning trends require a collaborative approach taken by 

government, the mining industry and the education sector to develop sustainable programs that 

address such issues. Further to the need for improving trends in mining education, businesses 

need to have robust plans for people selection and development of their hired employees. 

Through selecting the right people, the skill mismatch reduces. Moreover, skill development 

plans improve the workforce capabilities and individuals’ sense of belongingness. This 

approach leads to improved efficiency of mining operations and also results in reducing the 

high labour turnover in the mining industry. 

 

7.4.2 Product Portfolio and Diversification 

The results from this study showed that technical efficiency depends on the product portfolio. 

Companies mainly active in the production of iron ore or gold are more efficient than those 

involved in the production of other mining commodities. From an economy-wide perspective, 

such results are plausible as iron ore and gold are among the chief mining activities and export 

earning commodities in Australia. However, from a microeconomic perspective, there are a 

large number of companies operating in the exploration and extraction of other commodities 

that require boosts to their technical efficiency. Due to the large capital investment required for 

iron ore and gold mining, diversifying a product portfolio toward inclusion of gold or iron ore 

may not be practical for many companies. Furthermore, product portfolio diversification is not 

necessarily associated with higher technical efficiency gain once accounting for the effect of 
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natural resource inputs. Diversification can be pursued as a business strategy in improving 

sustainability and economic efficiency, but its effect on technical efficiency improvement is 

unproven. Although it is not recommended that mining companies necessarily move to 

production of gold or iron ore to boost their technical efficiency, diversification in general can 

help mining businesses to achieve sustainable business outcomes such as profitability and 

economic efficiency. 

Further to product diversification, findings in this study shed light on the importance of 

production stability in efficiency. Companies with more stable production output experienced 

a better efficiency performance. Such stability in production requires effective portfolio 

management (Mitchell and Steen, 2014). A balanced set of projects in a firm’s portfolio results 

in the stability of production outputs, thus improving the firm efficiency.  

The role of diversification in determining efficiency performance is not limited to the product 

portfolio; it is also the case for the operations location. This study found that companies with 

active mining projects outside Australia are more efficient than their counterparts that limit 

their operations to the mineral resources located in Australia. In most host countries, the 

operating expenses are less that those in Australia. Therefore, the Australian mining companies 

can leverage their domestic capabilities such as a skilled workforce and advanced technology 

in locations with lower operating costs. Such diversification is important from various aspects. 

Firstly, it helps companies to run their projects more efficiently, resulting in a greater operating 

profit margin. Secondly, this kind of diversification reduces the business risks attributable to 

the mine sites located in Australia. The rising social claim in relation to the environmental 

protection in Australia is an example of domestic changes influencing mining business stability 

in recent years. Thirdly, due to progressive resource depletion in Australian mineral deposits, 

and its direct impact on the economic efficiency and profitability of mining companies, 

expanding mining activities in emerging areas across the world aids companies in maintaining 

their strong presence in the global market in the long term. In addition to the strategic direction 

of Australian companies toward expanding their engagement in the global mining production, 

the Australian Government also needs to expand the mining trade missions toward emerging 

and new markets. These missions should include both mining exploration and extraction 

companies and mining equipment and service (METS) companies.  
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7.4.3 Research, Innovation and Technology Advancement 

The results from this study confirmed the sizable effect of natural resource inputs on efficiency 

performance. The distance from frontier production is mainly attributable to the decline in the 

accessibility and quality of mineral deposits. Unfortunately, resource depletion will have a 

continuing adverse effect on mining productivity. Unless any technological progress is 

achieved, given the finite resource deposits on the earth, a greater amount of inputs is required 

over time to produce the same amount or the same value of mineral commodities. Advancement 

in technology is required in all phases of mining activities including exploration, mine 

development, mine extraction, and mine closure and reclamation. 

As per findings in this thesis, gold mining is among the most efficient mining activities in 

Australia. However, there is no guarantee that the most efficient mining activities can deliver 

sustainable economic success to the Australian economy. The primary challenge in the gold 

mining industry is resource depletion. Without any new successful exploration projects or 

technological advancements in the extraction of currently uneconomic low-grade deposits, all 

gold-producing deposits have only a resource life of 23 years (Geoscience Australia, 2019). As 

the results of this study show, such significant resource depletion in gold mining will lead to 

higher consumption of inputs with lower production output. Unadjusted measures of efficiency 

are expected to decline in the future. Improvement in economic efficiency performance will 

require technological advancements that enable the economic extraction from low-grade 

deposits as well as acceleration in the exploration activities. As gold mining companies have 

high technical efficiency, maintaining their high performance should be among their priorities.  

The Australian mining equipment, technology and services (METS) sector is world-leading in 

providing specialised products and solutions across the mining value chain including mineral 

exploration, development, extraction, processing, transport and remediation (Geoscience 

Australia, 2015). As it is characterised by being internationally competitive and innovative, the 

Australian METS sector is a benchmark for some global competitors. (CSIRO, 2017). During 

the recent mining boom, the total output of exploration and mining support services increased 

significantly. However, since transitioning from the mining development phase to the 

production phase in 2013, both total services volume and its contribution to mining sector 

production have declined considerably (ABS, 2017a). 
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Continued investment in research, innovation and technology advancement is required at both 

government and sector levels. Maintaining the existing advantages in the METS sector can be 

achieved through development in organisational capabilities as well as practical research and 

technology solutions. The METS sector needs to develop the right skills, culture and processes 

to sustainably manage growth domestically and internationally. Moreover, METS companies 

need to provide opportunities for their researchers and technologists to gain practical 

experiences in emerging research areas. Such practical engagement helps to successfully 

convert leading scientific and technological breakthroughs into differentiated, repeatable and 

operationally ready solutions (CSIRO, 2017). 

 

7.4.4 Organisational Capabilities in Digital World 

The vulnerability of mineral commodity prices in recent years has left an extensive pressure on 

mining companies to improve their productivity. The recent advancements in information 

technology have opened new opportunities for mining businesses to use data for real-time 

decision making. In addition to the technological progress – such as the utilisation of artificial 

intelligence (AI), machine learning and robots in mine exploration and extraction operations – 

the emerging digital capabilities can aid leaders in mining businesses and government 

authorities in their decision-making processes. This study showed that companies experience 

low efficiency during fast changes in the operating scale. The mis-allocation of resources is a 

main driver of poor efficiency and productivity in a changing environment. Furthermore, the 

mine operations analysis has revealed a significant degree of unutilised equipment among 

Australian mining activities (Lumley and McKee, 2014). Real-time equipment performance 

monitoring facilitates the efficiency of operations management and equipment maintenance 

activities. A considerable amount of data is collected in each stage of mining operations; 

however, mining companies usually use a fraction of their data. Many leaders in mining 

companies have reported their reliance on monthly or quarterly reports while some managers 

expressed their concerns about the reliability of such reports (Lumley and McKee, 2014; 

Durrant-Whyte et al., 2015). To address such concerns, mining businesses need to prioritise 

the development and execution of their digital strategy. Companies need to move beyond data 

acquisition and rethink about data analytics and data usage. 
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While digital transformation seems promising in bringing productivity back to mining 

activities, this may be an impractical feat for some companies. Large mining companies can 

invest in big data, machine learning and AI, but SMEs and young mining firms do not have the 

opportunity to easily develop and utilise organisational capabilities in relation to digital 

transformation. Based on the results in this study, SMEs and young firms are among the least 

efficient mining companies in the Australian mining sector. Therefore, the emergence of digital 

transformation is likely to widen the existing efficiency gap for these companies. To aid small 

and young mining players, the role of the government and METS sector is critical. The 

exploration of mineral resources is greatly supported by the Australian Government through 

providing public access to geoscience information (Geoscience Australia, 2017). Further to this 

kind of support, the government needs to support professional associations to link mining and 

IT professionals toward collaborative projects in mining SMEs. The METS sector also needs 

to develop specific solutions suitable for mining SMEs with limited budgets and organisational 

capabilities. The findings of this research support the Australian Government’s initiative under 

the Entrepreneurs' Programme to boost business competitiveness and productivity in SMEs. 

Active engagement of the METS sector in this program in providing advice and customised 

digital solutions for the mining SMEs and the newcomers can support closing the efficiency 

gap among these mining companies.  

 

7.4.5 Economic Sustainability 

Besides the external market factors, the economic sustainability of mining companies relies on 

their sustainability in growth and control of business risks. This study discussed the adverse 

impact of extensive changes in the operating scale on the efficiency of the Australian mining 

companies, revealing that a sustainable growth is associated with high efficiency gain. 

However, the vulnerability of mineral prices significantly impacts production output. Hence, 

despite short-term changes, it is important for mining companies to map their long-term 

journey in the implementation of all enablers such human capital, product portfolio, technology 

utilisation and digital transformation. Mining companies have reported their success in the 

implementation of operational strategies; however, they have not been successful in 

development and implementation of long-term strategies so far (Lumley and McKee, 2014). 
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The mitigation of business risks is also critical to economic sustainability. During the mining 

boom of the 2000s, the Australian mining companies increased their short-term and long-term 

debts to largely cover their investment expenditure in exploration and development activities. 

In addition to equity financing, mining companies fund their projects through borrowing from 

external lenders. Due to the fluctuations in production volume and values, higher leverage 

imposes higher risk to mining businesses. The results from this study showed that higher 

leverage is associated with lower efficiency among the Australian mining companies. The 

borrowing expenses could impact the productive operating expenses; hence, a lower efficiency 

was achieved by highly leveraged companies. The other finding from this study is the strong 

correlation between ownership concentration and efficiency. That is, a higher ownership 

concentration leads to a higher efficiency performance. While these findings do not suggest a 

high degree of equity financing, which results in lower ownership concentration and 

consequently lower efficiency, they do not also suggest a high level of debt financing. 

Therefore, mining companies needs to be wise in their financing strategies by understanding 

the extent of their short-term and long-term implications. 

 

7.4.6 Environmental Protection and Social Licence 

Beyond fulfilling the formal regulatory conditions and obtaining a licence to mine, mining 

companies need to obtain a social license to operate. Increasing social claims from 

communities and governments have become a prominent challenge for the mining industry. 

Various aspects of this challenge include environmental considerations, health and safety 

requirements, employment, stakeholder engagement and community benefits. Such an 

intangible licence is required to attain and maintain approval for the entire mining project life, 

from initial exploration to post-closure phases. Mounting community concerns and the 

requirements for a social licence to operate can result in increased costs and lower efficiency 

due to longer lead time to attain exploration and mining approvals and complying with more 

strict regulations (Penny et al., 2012; Geoscience Australia, 2017). While a social licence to 

operate imposes unpredicted costs on mining companies, it is highly important that mining 

businesses understand the costs of social conflicts. Companies with such an insight tend to 

prioritise and pay more attention to the relationships between companies and local communities 

(Davis and Franks, 2014). 
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The environmental concerns and social claims in importing countries also influence the 

Australian mining companies. Iron ore, as the leading mineral exporting industry, faces new 

challenges influencing its economic and technical performance. In recent years, the iron ore 

industry focus has shifted from production quantity to ore quality. The global concerns over 

climate change and the reduction of greenhouse gas emissions played a key role in this direction 

change. China, as the main importer of Australia’s iron ore, has imposed strict regulations on 

the operation of inefficient steel mills. In addition, the steel manufacturers across the world 

increasingly prefer high-grade iron ore. These challenges forced some explorers and developers 

to discontinue their activities in some projects (Geoscience Australia, 2018). While it is 

important to comply with global market requirements, it is also important to prioritise domestic 

environmental protection. Mining companies and government authorities should be aware of 

the environmental, social and economic effects of any strategic direction changes such as 

concentration on extracting ore from high graded deposits. Accelerating exploration activities 

may be the solution to seeking high graded deposits; however, due to the finite nature of 

mineral deposits, this will not create a sustainable way to deal with the market challenges. 

Through technology advancement and boosting productivity, the mining industry needs to 

manage both domestic and global concerns in relation to environmental protection and social 

claims while supporting economic sustainability in Australia. 

 

7.5 Summary 

The results from this study showed that efficiency is a major concern in mining industry. The 

overall technical efficiency of the Australian mining companies shows a sizable gap against 

the best practice performance. However, a major part of this inefficiency can be explained by 

the adverse effects of natural resource inputs. Resource depletion highly contributes to low 

efficiency among mining companies. 

Through the inclusion of natural resource inputs in the efficiency model, this study presented 

a better estimation of true technical efficiency among the Australian mining companies. The 

results from the first-stage analysis show that while the scale inefficiency is marginal, the pure 

technical efficiency among mining companies in Australia is significant. 

The second-stage analysis revealed that the technical efficiency of mining companies is mainly 

associated with the firm-specific characteristics. Product portfolio turned to be highly 
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important in efficiency gain. Gold and iron ore mining companies outperformed companies 

with no such products in their portfolio. Highly skilled work force as well as advanced 

technology in gold mining and the advantage of economies of scale in iron ore mining are 

among main causes of such outstanding performance. A diversified portfolio seemed to be a 

better choice in relation to the overall economic efficiency, whereas it might not provide 

significant advantage in terms of technical efficiency. 

Companies with a positive moderate growth were more technically efficient than those with 

drastic changes or those experiencing contraction in their operations. Misallocation of 

resources and long lag in capital input adjustment can explain the poor efficiency in companies 

with sharp changes or decline in revenue. Due to a better corporate governance, more 

ownership concentration among the mining companies in Australia led to being more efficient. 

Smaller companies were less efficient than their larger counterparts potentially due to benefits 

from the economies of scale. Younger companies fell behind those with more experience 

chiefly as a result of limitations in attracting required skills and expertise. High financial 

leverage resulted in lower efficiency gain among the Australian mining firms. Excessive debt 

financing deteriorated the mining firms’ performance. Finally, companies with mining 

operations outside Australia were performing more efficient than those limiting their operations 

to the mineral resources in Australia. Mining operating expenses is relatively high in Australia 

in comparison with many other mining regions across the globe. 

The knowledge of efficiency determinants aided this study to identify relevant policy 

recommendations toward improving efficiency in mining industry. Among various programs 

potentially support efficiency and productivity improvement activities, this study focused on 

most relevant policy options addressing the findings from the first-stage and second-stage 

analyses. First, human capital development should be a critical part of strategies in mining 

industry. Skill shortage in newly formed companies and those with sharp growth was a main 

driver of poor efficiency. Mining businesses, government and higher education sector need to 

collaborate in developing consistent strategy in mining human capital. 

Second, diversification in general provides better efficiency performance in mining industry. 

Diversified products, diversified projects in terms of life cycle stages and diversified 

geographical locations support better utilisation of resources and capabilities. 
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Third, research, innovation and technology advancements are critical to the efficiency gain 

resulting to long-term success of mining companies. The resource depletion remains a 

continuing adverse effect on the mining industry’s productivity and efficiency. Only through 

research, innovation and technology advancements the negative effects of resource depletion 

can be offset. Innovations in more efficient mining processes and advancements in technology 

enabling the extraction from less accessible or lower grade mineral deposits are needed to 

maintain outstanding position of Australia in the global resource market. 

Fourth, mining companies needs to develop their digital capabilities. A large amount of data is 

collected at each stage of mining operations; however, it is not utilised effectively in the 

decision-making processes. The insight from mining of big data can aid companies to improve 

the efficiency of asset utilisation in exploration and extraction activities. In particular, newly 

formed as well as the small and medium-sized companies can greatly benefit from such insights 

to overcome their limitations in skills and expertise. Nonetheless, the role of government and 

METS sector is critical in providing support to these companies.  

Fifth, mining companies need to think beyond short-term requirements. Tackling undesirable 

efficiency associated with issues in relation to product portfolio, diversification, growth, 

ownership structure, capacity utilisation and financing require long-term strategic plans. Such 

long-term plans should consider all stage of mining life cycle from exploration to extraction to 

post-closure phases. 

Sixth, sustainability, as a main characteristic of efficient firms, should not be only limited to 

its economic aspect. Mining companies need to be fully aware of environmental concerns and 

social claims in relation to the adverse effects of mining operations. They need to be actively 

engaged with government authorities and local communities to understand the concerns and 

introduce appropriate policy and programs to address their claims.  
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8 Conclusions 

 

8.1 Introduction 

The mining industry plays an important role in Australia’s ongoing prosperity. Its significant 

role in the nation’s GDP growth, new capital investment, export, direct and indirect 

employment as well as developments in regional and indigenous communities has made this 

sector beneficial to all Australians. Over the past two decades the Australian mining industry 

has expanded substantially to respond to the increasing global demand for minerals and mining 

commodities. Despite the growing economic trends, the Australian mining sector has faced a 

severe challenge in relation to its productivity performance. Some studies have discussed the 

productivity challenge in the mining sector at an aggregate level; nonetheless, little is known 

in terms of efficiency and productivity across Australian mining companies. 

This study conducted an empirical investigation into the efficiency performance of Australian 

mining companies. It aimed to answer the following questions: (i) How do Australian mining 

firms perform in terms of technical efficiency? (ii) Which factors significantly contribute to the 

efficiency performance of Australian mining firms? (iii) How can the efficiency performance 

of Australian mining firms be improved? 

Toward answering these questions, this study utilised a frontier approach for evaluating the 

efficiency performance of mining companies. Focusing on mathematical programming 

techniques, this study introduced a bootstrap data envelopment analysis (DEA) method to 

estimate the technical efficiency of major mining companies listed on the Australian Securities 

Exchange (ASX). Moreover, this research investigated the firm-specific factors influencing the 

efficiency performance in a second-stage analysis. 

Chapter 2 explored in detail the Australian mining industry and its significant changes since 

2000.  The mining sector’s contribution to the Australian economy increased from 5 per cent 

in 2000 to 9 per cent in 2010-11. The export of minerals and mining commodities reached 

above 50 per cent of Australia’s exports, and the share of mining capital stock and number of 

employed people in mining industry increased by more than 200 per cent in a decade from 
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2003-04 to 2012-13. This success mainly relied on the natural resource endowment, the 

favourable investment environment, a skilled workforce and advanced technology in Australia. 

Aside from growing trends in exploration and extraction activities, the productivity 

performance of the Australian mining industry has deteriorated over the past two decades. 

Multifactor productivity (MFP) declined constantly between 2000-01 and 2012-13. 

Chapter 3 reviewed the existing literature in efficiency and productivity analysis in mining 

industry in general. This review showed that the efficiency and productivity measurement 

highly depends on the scope of study. Research aims, variables of interest, methodologies and 

policy implications are different among mine-level, firm-level and sector-level studies. While 

the existing studies have attempted to answer some questions in relation to the efficiency and 

productivity of the mining industry, little is known about the efficiency of mining enterprises 

and what determines their performance. Moreover, there is room for improvement in efficiency 

modelling given the recent advancements in the frontier techniques. 

In Chapter 4, this study presented the frontier techniques in efficiency measurement. This 

measurement relies on the comparison of observed against optimum values of inputs and 

outputs relying on the technology frontier. DEA and SFA are the main techniques in the 

efficiency measurement literature; the former being a mathematical programming method 

while the latter is based on the econometric modelling. This study used DEA to estimate and 

analyse the efficiency of Australian mining companies. The main advantage of DEA is its 

flexibility in the efficiency modelling of a multiple input-multiple output production setup. In 

contrast to SFA, DEA does not require selection of a pre-defined functional form. To overcome 

the main drawback of DEA, which is deterministic and does not account for the statistical noise 

in efficiency estimation, this study applied a bootstrap procedure proposed by Simar and 

Wilson (1998, 2000a). Furthermore, Chapter 4 explored the literature on techniques for 

analysing the determinants of efficiency. Among various techniques, this study utilised a 

bootstrap truncated regression model proposed by Simar and Wilson (2007, 2011) which 

provides consistent results in DEA efficiency modelling. 

In Chapter 5, the scope of the study, the research variables and the empirical models were 

introduced. This study examined the efficiency performance of Australian mining firms using 

a sample of 34 listed companies on the ASX over the period 2009-10 to 2013-14. Findings 

from the existing literature guided this research in the selection of efficiency model variables 

as well as efficiency determinants in a firm-level study. Following the existing literature, 
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variables of capital, labour, intermediate inputs and production output formed the efficiency 

model in this study. Depreciation, wage bills and operating expenses were selected from 

financial statements as three input proxies while revenue was the proxy for output in the 

efficiency model. This study also considered the effects of natural resource inputs on the 

mining operation performance by including exploration expenditure as a proxy for the cost of 

resource depletion. Further to the efficiency modelling, Chapter 5 provided a detailed review 

of the firm-specific factors potentially driving the efficiency performance. These factors 

include ownership, size, age, capacity utilisation, financial risk, products, diversification, 

growth status, location and time. The empirical mathematical programming models of first-

stage and the empirical econometric model of second-stage are also introduced in this chapter. 

The empirical results presented in Chapter 6 revealed a significant degree of inefficiency 

among the Australian mining firms. In addition, these results showed the importance of variable 

specification in the technical efficiency model. The efficiency estimates and the source of 

inefficiency widely varied between the general model of technical efficiency and the natural 

resource-based model of technical efficiency. By including resource depletion in the efficiency 

model, the average technical inefficiency under CRS assumptions shrank from 62 per cent to 

41 per cent. Moreover, the results proved the importance of robust techniques in the efficiency 

measurement. Bootstrap DEA estimates are clearly different from those of the original DEA 

model. Chapter 6 also presented and discussed the results of the second-stage analysis. The 

results confirmed the significant role of firm-specific factors in the efficiency performance. 

Ownership, firm size, firm age, financial risks, product type, change status and location were 

found to be the main determinants of mining companies’ efficiency. 

Chapter 7 discussed the empirical findings from stages one and two of the efficiency analysis 

in this study. This chapter explored the implication of findings in relation to the efficiency 

determinants and introduced a set of policy recommendations addressing factors associated 

with inefficiency among mining firms. Human capital development, product strategy and 

diversification, innovation and technology advancement, development of digital capabilities, 

economic sustainability as well as environmental and social responsibility are among most 

relevant policy recommendations toward improving efficiency in the mining industry. 

The present chapter elaborates on the key concluding remarks of this study. The rest of this 

chapter is organised as follows: in relation to the first research question, Section 8.2 provides 

key findings in the efficiency estimation obtained from first-stage analysis. Section 8.3 
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summarises the research findings in answering the second research question, i.e. “what 

determines the efficiency performance of mining companies?” Section 8.4 discusses the policy 

implications of the findings to respond to the question “how can efficiency be improved?” 

Section 8.5 outlines the significance and the contribution of this study to the existing literature. 

Finally, Section 8.6 explains the limitations surrounding this study and proposes an agenda for 

future studies.  

 

8.2 Key Findings in Estimation of Efficiency 

In this study, the first-stage analysis was conducted to estimate the technical efficiency of 34 

Australian mining firms listed on the ASX over the period 2009-10 to 2013-14. In this regard, 

two efficiency models were introduced; the first model was constructed based on common 

input/output specifications in the production function theory while the second model was 

developed as a specific model of technical efficiency in the mining industry. The general model 

of technical efficiency (Model I) included labour input, capital service input, intermediate 

inputs and production (output). The natural resource-based model of technical efficiency 

(Model II) included the natural resource inputs in addition to other variables from Model I. 

This study used DEA to estimate the efficiency scores of observations in the sample. In addition 

to the original DEA model, this study used a bootstrap procedure introduced by Simar and 

Wilson (1998, 2000a) with 2000 iterations to derive bias-corrected technical efficiency scores 

along with their corresponding confidence intervals. 

The results from first-stage analysis of Model I, presented in Table 6.1, revealed a significant 

gap in the efficiency of the Australian mining firms. On average, around 62 per cent overall 

inefficiency was observed among the Australian mining companies. Pure technical inefficiency 

by 40 per cent and scale inefficiency by 37 per cent contributed to this sizable overall 

inefficiency among mining companies. Taking into account the natural resource inputs in 

efficiency modelling, the results from Model II, presented in Table 6.2, show a large change in 

the observed overall inefficiency shrinking to 41 per cent. Surprisingly, the pure technical 

efficiency changed slightly reaching 39 per cent while the scale inefficiency diminished 

substantially to only 4 per cent. 

These results present two facts about mining firms’ efficiency.  First, the results confirmed the 

importance of natural resource inputs in the efficiency performance of mining companies. 
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Natural resource inputs should be among the primary variables of efficiency modelling. Hence, 

this study supported the arguments in the literature concerning mismeasurement and 

misinterpretation of productivity performance in the Australian mining industry (see e.g. Topp 

et al., 2008; Zheng and Bloch, 2014; Syed et al., 2015). Second, the results showed that 

resource depletion tends to lead to inefficient operating scale while pure technical efficiency 

seems to be independent from resource depletion. To address the adverse effects from resource 

depletion, mining companies typically seek new resource deposits and invest in new mining 

operations. Higher expenditure in exploration activities is required to search for potential 

deposits in more remote and unexplored regions. Mining companies enlarge their operating 

capacity and consume more inputs over time, but production outputs do not increase 

proportionally. 

Further to the findings from the original DEA method, Chapter 6 presented the results from the 

bootstrap DEA method. Despite the similarity of variation patterns among efficiency estimates 

from the original and the bootstrap DEA methods, the bias-corrected efficiency estimates are 

significantly lower than the original estimates. On average, the applied bootstrapping procedure 

corrected 12 per cent bias among efficiency estimates. In addition to point-estimate efficiency 

scores, the bootstrap DEA provided the confidence intervals for the estimated efficiency of all 

observations. The results from Model I presented in Table 6.6 show that, at 95% confidence 

level, the efficiency estimates are below 2.0 (equivalent to 50 per cent efficiency) in only one 

third of observations. With the inclusion of natural resource inputs in the efficiency model, the 

ratio of observations with efficiency scores lower than 2.0 increases to almost two thirds (Table 

6.7). It reveals, first, that the true technical efficiency of mining companies is considerably 

better than that measured using common efficiency model specifications, and second, even 

after accounting for the effects of natural resource inputs, still one third of observations 

severely suffer from technical inefficiency. As it is evident from the reported results in Table 

6.7, this inefficiency is mainly attributable to pure technical inefficiency as opposed to scale 

inefficiency.  

Overall, findings from the application of the bootstrap DEA displayed the benefit of this 

method in correction of measurement bias and providing confidence intervals. Also, it showed 

a significant level of pure technical inefficiency among mining companies that needs to be 

addressed through identifying its determinants and introducing the improvement programs.  
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8.3 Key Findings in Determinants of Efficiency 

The second-stage analysis was conducted to identify the most firm-specific factors driving the 

efficiency of mining companies. To improve the consistency of results in stage two, this study 

applied the bootstrap truncated regression method proposed by Simar and Wilson (2007) as 

discussed in Chapter 4. The econometric model of stage two consisted of bias-corrected 

technical efficiency as the dependent variable and 15 explanatory variables including 

ownership concentration, firm size, firm age, capacity utilisation, financial risk, two dummies 

for product type of iron ore and gold, portfolio diversification, two dummies of change pace 

and change direction, location of operations and four year-specific dummies. FEAR package 

(Wilson, 2013) and the author’s own developed R codes were used to run this truncated 

regression model with 2000 iterations to obtain intervals of the estimated parameters. 

As per results presented in Section 6.3.1 in Chapter 6, the product type influences the technical 

efficiency. Production of both gold and iron ore turned out to be positive contributors to 

efficiency gain. The finding was consistent between both efficiency models. Companies with 

iron ore production benefit from the economies of scale due to large-scale operations in iron 

ore mining. Furthermore, large-scale projects provide the opportunities to economically utilise 

advanced technology that may not be viable for small-scale mining operations. It is also 

noteworthy that gold mining companies had superior efficiency performance among mining 

companies in Australia. The advantage of gold mining in comparison to other mining activities 

relies on a high-skilled workforce, well-established operating processes and advanced 

technology utilised in gold mining operations in Australia. 

The presented results in Chapter 6 from Model I showed a positive association between 

portfolio diversification and technical efficiency. However, this linkage was not confirmed 

under the Model II specifications. These results show that while diversification does not 

provide advantage in technical efficiency gain, it is an important business strategy in reducing 

costs and economic efficiency. It seems that diversification reduces the adverse effects of 

resource depletion on the economic performance of mining companies. 

In terms of change effects, the results presented in Chapter 6 show that under both models, the 

direction of changes has a significant impact on the efficiency performance. In general, 

companies had higher efficiency during growth periods compared to their performance during 

downturns. This shows that mining companies are not agile enough to respond to negative 
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changes in their production output by reducing their labour, capital and intermediate inputs. 

Further to direction change, the results revealed that any sharp growth or decline leads to 

misallocation of resources and inefficiency. These results show the efficiency challenge facing 

mining companies due to business environment changes such as extensive changes in 

commodity prices, regulations or quality and accessibility of natural resource inputs. 

The results presented in Chapter 6 revealed that under both efficiency models ownership 

concentration positively drives the technical efficiency. The substantial shareholders have the 

power and incentive to monitor management performance resulting in better use of company 

resources and efficiency. While the higher ownership concentration improves the efficiency 

performance, the rights of minority shareholders needs to be protected by law to avoid any 

disadvantages to them resulting from substantial shareholders’ colluding with business 

managers. 

The results in this study showed no significant relationship between size and efficiency 

estimates from the general model of technical efficiency; however, under the natural resource-

based model specifications, the results confirmed a significant and positive linkage. In addition 

to the advantage of larger mining companies in terms of economies of scale, they benefit from 

the utilisation of advanced technology and a skilled workforce which has been a severe 

challenge for small and medium-sized companies over the past two decades. 

In relation to the association between age and technical efficiency, this study showed that 

younger firms are less efficient in comparison to their counterparts with more experience. 

Young firms suffer from the lack of essential knowledge, expertise and resources. Such 

challenges facing young and newly formed companies were more evident during the recent 

mining boom when a substantial number of companies entered the market in response to the 

increasing global demand for mineral commodities. 

As presented in Chapter 6, this study’s findings do not show a significant association between 

capacity utilisation and technical efficiency. Looking at the share of productive assets among 

mining companies, the results show that the asset composition does not seem to be a driving 

factor of efficiency. In other words, a larger share of productive assets does not mean mining 

companies perform better or worse. 

In terms of financial risk association with technical efficiency, Model I did not show the 

significance of their relationship. However, the financial risk turned out to be influential on the 
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efficiency performance under Model II specifications. That is, a higher leverage results in a 

lower technical efficiency. These findings illustrate the importance of financing in firm 

performance. As mining firms greatly rely on external funding, it is important to understand 

the short-term and long-term effects of financing (debt or equity) on their economic 

performance prior to such decisions. High levels of debt-financing may result in lower 

efficiency among mining companies. 

The results from the stage-two analysis also show that the location of operations can determine 

technical efficiency performance. While the relationship between efficiency scores from Model 

I and location of operations was not significant, Model II showed the relationship at 0.1 

significance level. These results confirm the solid strategic direction of major mining 

companies to expand their exploration and extraction activities to some projects beyond 

Australia. Through this international diversification of operations, mining companies leverage 

their organisational and technical capabilities to benefit from a new market and lower operating 

costs in host countries, leading to a higher efficiency performance.  

This study included year-specific dummies to the econometric model of stage two to capture 

any significant exogenous effects unobserved in this study. The results from both models did 

not present significant effects along the period of study. Despite existing variations in the 

average efficiency performance over the period of study, the second-stage results confirmed 

the initial findings from the Freidman test on the mean ranks, displaying no differences among 

average efficiency scores over the period of study. These results also confirmed that the effects 

on the efficiency performance were largely captured by firm-specific factors of ownership 

concentration, firm size, firm age, product portfolio, financial risks, growth status and overseas 

operations. 

 

8.4 Summary of Policy Recommendations 

Analysis of estimated efficiency and identified determinants helps to derive the appropriate 

policy recommendations toward improving the efficiency performance of mining companies. 

This study suggested a set of policies and programs that support both mining businesses and 

government authorities to prioritise and introduce efficiency and productivity improvement 

initiatives in the mining industry. The recommended policy and programs have been derived 

from the key findings in efficiency estimation and the investigation of driving factors. Hence, 
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recommendations in each policy area may not be necessarily linked and limited to only one 

investigated factor, but rather most recommended programs relate to several contributing 

factors of technical efficiency. 

The results from this study strongly suggest the importance of human capital development. 

During the mining boom of the 2000s, a large number of newly formed companies entered the 

fast-growing market of mining and energy. The lack of required skills and expertise was among 

the main challenges facing mining companies, particularly young and small businesses. As a 

result, resource utilisation, especially the utilisation of advanced mining equipment suffered 

from a sizable inefficiency. Mining businesses and government policy makers need to learn 

from this experience and invest in human capital as an essential success factor in the industry. 

Frequent boom and bust cycles in the mining sector result in mismanagement and misallocation 

of resources and consequently low efficiency. Over the past few decades, investing in human 

capital has been mainly limited to the booming cycles. Mining companies need to think 

strategically toward long-term plans in human capital development. However, the challenge 

cannot be effectively managed without collaboration between the government, the mining 

industry and the education sector to develop sustainable programs that address the issues. 

The results from this study showed that technical efficiency depends on the product portfolio. 

Being active in the mining of certain commodities provides benefits to the company in terms 

of technical efficiency. Moreover, diversification in product portfolio and operating locations 

supports the efficiency of mining companies. Hence, diversification in product and operating 

location needs to be prioritised by mining companies. Product diversification greatly reduces 

the risks associated with adverse commodity shocks and also provides the opportunity to use 

the under-utilised capabilities and resources across the broader mining range. The 

diversification in the location of operations and engagement in global projects furthermore 

helps mining companies to achieve lower operating expenses, resulting in higher profitability. 

A large number of small and medium-sized mining companies in the Australian mining sector 

are active in one or very few mining commodities. These companies mainly face productivity 

challenge. While it is not always possible for mining companies, particularly SMEs, to 

independently approach such a diversification strategy, through merging, joint venture and 

cooperation, mining companies can engage in a diverse set of projects, securing the 

sustainability and efficiency of their performance.    
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The first-stage analysis in this study showed the significant effects of natural resource inputs 

in efficiency performance. Ongoing resource depletion results in greater consumption of 

resources to maintain production output. Without any technological advancement, such effects 

will lead to a constant decrease in productivity in the mining sector. It seems that advancement 

in technology and innovation in mining operations are only solutions to overcome the 

increasing impact of resource depletion. Continued investment in research, innovation and 

technology advancement is required at both government and sector levels. Maintaining the 

existing advantages in the METS sector in Australia can be achieved through development in 

organisational capabilities as well as practical research and technology solutions. 

This study showed that companies experience low efficiency during fast changes in their 

operating scale. The misallocation of resources is a main driver of poor efficiency and 

productivity in a changing environment. Unfortunately, mining and energy markets across the 

globe are highly vulnerable to severe price changes; therefore, such adverse effects are 

expected to be present in the future. The recent advancements in information technology have 

provided new opportunities for mining businesses to use data for real-time decision making. 

Hence, mining companies will be able to make timely decisions in response to various 

exogenous and endogenous changes. Developing the digital capabilities of mining companies 

may include the utilisation of artificial intelligence (AI), machine learning and robots in mine 

exploration and extraction operations. While the Australian mining companies have invested 

in digitalisation and information technology advancements which provided them the 

opportunity to collect a wide range of operational data, most mining managers expressed their 

concerns in relation to the lack of timely and reliable performance reports. Mining companies 

need to develop their capabilities in using data in the leadership decision-making process. 

Along with prioritising the development and execution of their digital strategy, mining 

companies need to move beyond data acquisition and rethink data analytics and data usage. 

The findings from this study suggest that the economic sustainability of mining companies 

relies on their sustainability in growth and control of business risks. Such sustainability requires 

a long-term corporate strategy; however, mining companies mostly have been successful in the 

implementation of short-term and operational plans and have struggled to deploy long-term 

strategies. Hence, the development and deployment of long-term strategies need to be 

emphasised by mining companies. Such strategies should cover various critical dimensions 

including human capital, product portfolio, technology utilisation and digital transformation. 
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The success of implementing long-term plans relies on the mitigation of business risks. This 

study showed that financial risk can damage efficiency performance. Due to the fluctuations in 

production volume and values, higher leverage imposes higher risk to mining businesses. 

Hence, in relation to the financing direction, mining companies first need to evaluate and 

understand the short-term and long-term effects of financing – both types of debt and equity – 

on their economic performance. 

Finally, mining businesses need to consider environmental accountability and social 

responsibility among their top priorities. Resource depletion and adverse effects of expansions 

in mining exploration and extraction activities can lead to severe environmental impacts. Local 

communities are also highly influenced by boom and bust in mining activities. Hence, mining 

companies need to obtain a social license to operate and maintain it over all stages of mining 

life cycle. The economic sustainability of the mining industry relies on its success in 

introducing effective environmental and social policy and programs. In recent years, 

environmental and social concerns have been incorporated among main policy and strategies 

of major Australian mining companies. It is essential to all mining companies to prioritise their 

environmental and social programs and collaborate with all stakeholders to implement them 

effectively. Technology advancement and boosting productivity can aid the mining industry to 

manage both domestic and global concerns in relation to environmental protection and social 

claims while supporting economic sustainability in Australia. 

 

8.5 Contributions to the Literature 

This thesis provides four major contributions to the existing literature on mining efficiency and 

productivity analysis. First, this study contributes to the literature through examining the 

efficiency performance of the Australian mining industry at the firm level during the period of 

2009-10 to 2013-14. To this point, no study has examined the efficiency of Australian mining 

firms using frontier techniques. The detailed review of the existing literature in Chapter 3 

showed that the conducted research on the efficiency and productivity analysis of the 

Australian mining industry is limited to some sector-level studies. Mining companies comprise 

the largest division on the ASX. Shareholders in Australia benefit substantially from the listed 

companies in this industry. Many people in Australian also benefit from direct or indirect 

employment due to the activities of these companies. Most social and economic developments 
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in rural and regional Australia have been due to the mining activities commenced by these 

companies. Given the importance of mining businesses in the Australian economy, firm-level 

analysis complements the sector-level studies. It enables policy makers in government and the 

decision makers in mining businesses to better understand the relative economic performance 

of mining enterprises against best practices. Such a benchmarking approach in performance 

measurement assists mining companies in realising their efficiency gaps, learning from best 

practice and developing improvement programs.  

Second, this work introduces a firm efficiency model accounting for the natural resource inputs. 

A major difference between resource sectors such as mining and other economic sectors is the 

role of natural resource inputs in the production process. In addition to the production inputs, 

such as capital, labour and intermediate inputs, the mineral deposits in their natural state 

contribute to the production of mining and mineral products. However, unlike other production 

inputs, the natural resource inputs are non-renewable. Hence, mineral production results in 

resource depletion over time. The consequence of such resource depletion is the consumption 

of a greater amount of labour, capital and intermediate inputs to maintain the same level of 

production output and value with a given technology. Sector-level and mine-level studies have 

discussed the resource depletion effects on productivity performance. Nonetheless, none of the 

firm-level studies in the literature have discussed the role of natural resource inputs in the 

efficiency performance of mining companies. While the ore quality and accessibility of 

deposits determine the production output of mines, it is also important to account for their role 

in the efficiency performance of mining companies. This study extends this concept to a firm-

level analysis through introducing a natural resource-based model of technical efficiency. 

Third, this study contributes to the existing literature through examining the determinants of 

efficiency using a second-stage regression. In addition to evaluating technical efficiency 

performance, it is important to identify the factors contributing to the firm’s performance. This 

knowledge aids government and mining businesses to develop relevant policy to improve the 

efficiency of mining companies and mining sectors. The existing literature explains some 

driving factors behind changes in the efficiency and productivity of mining activities; however, 

the existing body of knowledge is unable to provide a comprehensive picture describing the 

causes of economic performance of the mining industry. Very limited studies have examined 

the contributing factors to mining efficiency and productivity. These studies have reviewed 

certain variables, though a much broader view is needed to help business management and 
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policy makers in developing effective strategies to enhance mining industry performance. The 

firm-level studies in the literature have only discussed a handful of firm-specific factors such 

as ownership, size and age. As a first, this research explores the effects of factors such as 

portfolio diversification, product type, capacity utilisation, location of operations, financial 

risks and business stability in the context of mining firms’ efficiency. 

Finally, from a methodological perspective, this is the first study to employ a two-stage double 

bootstrap procedure to ascertain statistical significance of the determinants of technical 

efficiency in mining companies using a non-parametric set up. Despite recent methodological 

advancements in the application of mathematical programming approaches in efficiency 

measurement, particularly the statistical foundations in non-parametric techniques, the existing 

firm-level literature relies on purely deterministic techniques. The non-parametric methods of 

efficiency measurement do not account for the possibility of measurement error and natural 

randomness. As the frontier is constructed based on the extreme points in the observed data, 

the estimation of efficiency scores is highly sensitive to outliers. To overcome the limitation of 

the deterministic method of DEA in providing statistical inference of efficiency estimates, this 

study employs the bootstrap DEA technique proposed by Simar and Wilson (1998, 2000a). 

Thus, the error terms and the confidence intervals of efficiency estimates are calculated through 

procedures explained in Chapter 4 of this thesis. In addition to the first-stage analysis, this 

thesis revisited the application of second-stage analysis and applied a consistent regression 

technique in two-stage DEA. A major problem of the two-stage approach arises from the fact 

that if the input-output factors used in the first stage are highly correlated with the independent 

(explanatory) variables in the second-stage econometric model, the results are likely to be 

biased. Furthermore, as the efficiency scores are dependent on each other due to the nature of 

DEA problems, the basic regression analysis assumption of independency within the sample is 

violated. Simar and Wilson (2007) show that these dependency issues lead to invalid results 

from the OLS or the Tobit regression analysis. This study introduces the bootstrap truncated 

regression model proposed by Simar and Wilson (2007) to examine the effects of firm-specific 

factors on efficiency performance. 
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8.6 Research Limitations and Suggestions for the Future Research 

This study analysed the efficiency of the Australian mining companies and attempted to 

identify the determinants driving technical efficiency performance. This study introduced 

several theoretical and empirical contributions to the limited literature on the efficiency 

analysis of mining enterprises. Nevertheless, this study is surrounded by several limitations 

offering potential work for future researchers.   

This study looks at the efficiency performance of 34 major mining companies listed on the 

ASX. All companies in the sample were operational during the period 2009-10 to 2013-14. 

While companies in this sample contribute to around 90 per cent of the market capitalisation 

of mining companies on the ASX, the sample may not be representative of all active mining 

companies. Small and medium sized companies (SMEs), companies not being fully operational 

for the whole study period, companies in mine exploration and development phases, as well as 

non-listed companies are not suitably represented by the sample in this study. More than 600 

mining companies are listed on the ASX, while other companies are privately owned and not 

listed in the securities exchange markets. Further research is needed to explore the efficiency 

of mining companies to include a broader sample or to focus on certain categories such as 

SMEs.  

Furthermore, this study is limited to Australian mining companies. While half of the companies 

in the sample are operating in locations outside Australia, the sample cannot serve as the 

representation of the world’s major mining companies. A cross-country study can help shed 

light on the underlying differences in efficiency performance and its determinants in different 

countries. Benchmarking the economic performance in the mining industry can benefit 

countries and communities across the globe to learn from the best practices in the most efficient 

ways of production from non-renewable mineral deposits. 

In terms of efficiency modelling, this study looks at the technical efficiency of mining 

companies. The efficiency model is constructed using information from the annual reports. 

Hence, the choice of input/output variables was limited to the availability of data in financial 

statements. Moreover, the annual reports do not provide separate data for input and output 

volumes and their associated prices. This limits the investigation of economic efficiency, i.e. 

revenue, cost or profit efficiency. The agenda for further studies could include seeking other 

data sources in providing alternative input/output proxies as well as price information in 
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conjunction with volume-based data. In addition, the study of mining companies’ efficiency 

analysis can extend from the efficiency measurement to the analysis of efficiency, technology 

and productivity changes.  

One of the main contributions in this study is the inclusion of natural resource inputs to the 

efficiency model of mining companies using a non-parametric set up. In this study, the effect 

of natural resource inputs was captured by constructing a measure based on exploration 

expenditure, i.e. the cost of resource depletion. To maintain the production volume or value, 

mining companies need to explore new mineral deposits. While such constructed variable 

seems to be a sound measure of resource depletion, it is only a proxy and may not function as 

a perfect substitute of unreported natural resource inputs. Following this initial work, further 

research is needed to find alternative and practical methods of resource depletion estimation in 

firm-level studies. 

This study applied the mathematical programming approach in efficiency analysis using two-

stage bootstrap DEA. The future research could consider the application of econometric 

techniques and the comparison of results with those from the mathematical techniques. The 

application of flexible functional forms and semiparametric, nonparametric and Bayesian 

techniques are among recent advancements in the econometric approach that can be employed 

in the efficiency analysis of mining companies in future research. 

Finally, in the second-stage analysis, this study investigated the contribution of multiple firm-

specific factors to the technical efficiency of mining companies. Future research can include a 

broader range of variables, potentially influencing the firms’ efficiency. In addition to firm-

specific factors, it is interesting to examine the macroeconomic and business environment 

factors in the second-stage modelling. The econometric modelling of the second stage can also 

extend beyond the truncated regression analysis employed in this study. 
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