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ABSTRACT
We present new and accurate measurements of the cosmic distance–redshift relation, span-
ning 0.2 < z < 1, using the topology of large-scale structure as a cosmological standard
ruler. Our results derive from an analysis of the Minkowski functionals of the density field
traced by the WiggleZ Dark Energy Survey. The Minkowski functionals are a set of statistics
which completely describe the topological nature of each isodensity surface within the field,
as a function of the density value. Given the shape of the underlying matter power spec-
trum, measured by fluctuations in the cosmic microwave background radiation, the expected
amplitudes of the Minkowski functionals are specified as an excursion set of a Gaussian
random field, with minimal non-Gaussian corrections for the smoothing scales ≥10 h−1 Mpc
considered in this analysis. The measured amplitudes then determine the cosmic distance
DV(z), which we obtain with 3–7 per cent accuracies in six independent redshift slices,
with the standard ruler originating in the known curvature of the model power spectrum at
the smoothing scale. We introduce a new method for correcting the topological statistics
for the sparse-sampling of the density field by the galaxy tracers, and validate our overall
methodology using mock catalogues from N-body simulations. Our distance measurements
are consistent with standard models which describe the cosmic expansion history, and with
previous analyses of baryon acoustic oscillations (BAOs) detected by the WiggleZ Survey,
with the topological results yielding a higher distance precision by a factor of 2. However,
the full redshift-space power-spectrum shape is required to recover the topological distances,
in contrast to the preferred length scale imprinted by BAOs, which is determined by simpler
physics.
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1 IN T RO D U C T I O N

The large-scale structure of the Universe, mapped by large galaxy
surveys, is one of the principal tools for testing the physical laws
on cosmological scales, in particular the unknown nature of the
‘dark energy’ which appears to dominate today’s Universe. The
pattern of the galaxy distribution is sensitive to the matter and en-
ergy constituents of the Universe, the cosmic expansion history,
and the gravitational physics which amplifies the initial density
seeds into today’s web of structure. However, it is also affected by
processes for which there currently exists no complete model: the
non-linear gravitational evolution of structure beyond perturbation

� E-mail: cblake@astro.swin.edu.au

theory, redshift-space distortions due to galaxy peculiar velocities,
and galaxy bias, which describes the complex astrophysical man-
ner in which the observed galaxy distribution traces the underlying
mass. The major challenge for cosmological analyses of large-scale
structure is to extract robust information about the underlying cos-
mological quantities in the presence of the poorly modelled non-
linear or astrophysical effects.

For example, one of the most important methods for obtaining
robust cosmological information from large-scale structure surveys
is to use the baryon acoustic oscillations (BAOs) encoded in the
clustering pattern as a standard ruler to map out the cosmic ex-
pansion history (Eisenstein, Hu & Tegmark 1998; Blake & Glaze-
brook 2003; Seo & Eisenstein 2003). This technique exploits a
preferred length scale imprinted in the clustering of galaxies, a
late-time signature of the sound waves which propagated in the
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pre-recombination Universe (Peebles & Yu 1970; Sunyaev & Zel-
dovitch 1970; Hu & Sugiyama 1996). This preferred scale, accu-
rately calibrated by measurements of the cosmic microwave back-
ground (CMB) radiation, may be extracted from the galaxy survey
observations in a manner which is independent of any other de-
tails of the clustering pattern (e.g. Anderson et al. 2012). This is
an attractive approach because the general clustering pattern is sub-
ject to the non-linear and astrophysical distortions mentioned above
(e.g. Eisenstein, Seo & White 2007; Smith, Scoccimarro & Sheth
2008; Seo et al. 2008), which may be harder to model. However,
seen from another viewpoint, this ‘model-independent’ technique
excludes information which may in principle be used to improve
cosmological constraints. The BAO standard-ruler method has now
been applied to a number of galaxy surveys to map out the cosmic
expansion history across a wide range of redshifts (e.g. Eisenstein
et al. 2005; Percival et al. 2010; Beutler et al. 2011; Blake et al.
2011c; Anderson et al. 2012; Busca et al. 2013).

The measurement of BAOs is an example of the use of two-point
clustering statistics, such as the correlation function or power spec-
trum, which are almost ubiquitous for testing cosmological models
using galaxy surveys. However, the two-point statistics do not de-
scribe all of the information contained in the cosmological density
field. Lacking any sensitivity to the phases of the underlying density
Fourier modes, they specifically filter out the direct morphological
information which is most striking in any visual examination of the
‘cosmic web’: its filamentary nature of inter-connected voids, walls
and nodes. Indeed, two completely different spatial patterns could
display the same two-point correlation function (e.g. Martinez et al.
1990). A more complete description of the information can make
use of a hierarchy of correlation functions, but these are cumber-
some to implement beyond the three-point function, and modelling
their non-linear evolution presents difficulties.

A less-studied but promising alternative approach for extract-
ing information from large-scale structure surveys is to quantify
the topological statistics of the cosmological density field. In this
study we focus on the Minkowski functionals (Mecke, Buchert &
Wagner 1994), a set of statistics supplied by integral geometry for
the complete morphological specification of spatial patterns. The
Minkowski functionals are computed from a density field, follow-
ing smoothing by a Gaussian filter, by considering the topological
nature of the surfaces formed by each isodensity threshold. In par-
ticular, for each surface, the four Minkowski functionals describe
the volume enclosed, surface area, curvature and ‘connectivity’ (for-
mally defined by either the Euler characteristic or genus statistic).
We note that a number of alternative topological approaches exist
for quantifying large-scale structure such as studies of cosmic voids
(Lavaux & Wandelt 2012), wavelet analysis (Martinez, Paredes &
Saar 1993), minimal spanning trees (Barrow, Bhavsar & Sonoda
1985) and multiscale morphology filters (Aragon-Calvo, van der
Weygaert & Jones 2010).

Topological statistics are worth exploring as a test of cosmologi-
cal models because they may be robust against some of the system-
atic non-linear processes which are typically difficult to model in
the correlation functions (Melott, Weinberg & Gott 1988; Matsubara
2003; Park & Kim 2010). In particular, any process which modi-
fies the density field, preserving the rank-ordering of density from
its initial state, will not affect the topology of isodensity contours
enclosing a given fraction of volume (Gott, Dickinson & Melott
1986); nor does the continuous deformation of a structure affect
its topological connectedness. As such, the Minkowski function-
als are completely unaffected by linear structure growth and local,

monotonic, non-linear galaxy bias. Moreover, they are only very
weakly distorted by non-linear gravitational evolution and redshift-
space distortions (Matsubara 1994; Matsubara & Yokoyama 1996).
In summary, the topology of the density field in comoving space
is exactly conserved over time during linear evolution, and non-
linear corrections remain small for scales ≥10 h−1 Mpc. Indeed, we
determine that the most important systematic modelling issue in
our analysis is not non-linear evolution, but the ‘sparse-sampling’
distortions arising when the smoothing scale of the Gaussian filter
is comparable to the mean inter-galaxy separation (James 2012).
We also note that, even if the initial density statistics were signif-
icantly non-Gaussian, the topological statistics would nonetheless
be conserved during linear evolution.

The pattern of matter overdensities today reflects the distribution
of ‘seeds’ from which they were formed. If this initial distribution
constituted a Gaussian random field as assumed in this study, pre-
dicted by simple models of inflation, and supported by observations
of the CMB, then the Minkowski functionals of the smoothed den-
sity field have simple analytic forms. In this case the dependence
of the functionals on the isodensity threshold ν is a known func-
tion of ν, regardless of the power spectrum of the field, with an
unknown overall normalization that only depends on the shape of
the underlying power spectrum at the smoothing scale. If the shape
of this power spectrum is known, then theory predicts each of the
Minkowski functionals, independently of the normalization of the
underlying power spectrum.

A measurement of the Minkowski functional amplitudes is then
sensitive to the cosmic distance–redshift relation in two ways, which
allow a ‘standard-ruler’ technique to be applied (Park & Kim 2010;
Zunckel, Gott & Lunnan 2011). First, the distance–redshift rela-
tion determines the physical length scales mapped by the survey,
and hence the amplitudes of the Minkowski functionals in dimen-
sional units. Secondly, the smoothing scale applied when filtering
the density field in order to perform these measurements assumes
a fiducial distance–redshift relation, and selects a scale in the un-
derlying model power spectrum to which the measurements are
sensitive. For a power-law power spectrum these two effects are
precisely degenerate, yielding no sensitivity of the Minkowski func-
tional amplitudes to the distance scale. However, if the underlying
power spectrum possesses a curvature which is accurately known,
for example using models fit to CMB observations, then this curva-
ture may be used as a standard ruler to match the smoothing scale
which has been applied to the data. For a narrow redshift slice z of
a galaxy survey, the resulting observable is the ‘volume-weighted’
distance DV(z), identical to the quantity measured by BAO surveys
using the angle-averaged correlation function.

The aim of our study is to measure these topological statistics
using data from the WiggleZ Dark Energy Survey (Drinkwater et al.
2010), which is one of the largest existing large-scale structure sur-
veys, and provides a uniquely long redshift baseline (0.2 <z < 1) for
testing the cosmological model. We use the Minkowski functional
amplitudes to measure the distance–redshift relation DV(z) and
compare the result to analyses using BAOs (Blake et al. 2011c), val-
idating our techniques using mock galaxy catalogues from N-body
simulations. In comparison to previous analyses which have focused
on measuring just one of the Minkowski functionals, the genus
statistic, from the Sloan Digital Sky Survey (Gott et al. 2009; Choi
et al. 2010) or from large N-body simulations (Kim et al. 2011), we
implement some new methodological developments: (1) we apply a
new method of estimating the galaxy density field correcting for the
survey selection function; (2) we measure and utilize all Minkowski
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functionals rather than just the genus statistic; (3) we advocate and
apply a study of the differential Minkowski functionals rather than
the integral versions, in order to reduce covariance between mea-
surements at different values of ν; (4) we measure this covariance
between different density thresholds and functionals, and propa-
gate this information into our cosmological fits; (5) we prescribe a
method for correcting our measurements for sparse-sampling.

Our paper is structured as follows. In Section 2 we describe the
various data sets employed in our analysis, including the WiggleZ
galaxy survey and mock catalogues. In Section 3 we present the
Minkowski functional measurements and modelling. In Section 4
we extract the Minkowski functional amplitudes and their covari-
ances, to which we fit cosmological models in Section 5. We present
our conclusions in Section 6.

2 DATA

2.1 The WiggleZ Dark Energy Survey

The WiggleZ Dark Energy Survey (Drinkwater et al. 2010) is a
large-scale galaxy redshift survey of bright emission-line galaxies
over the redshift range z < 1, which was carried out at the Anglo-
Australian Telescope between 2006 August and 2011 January. In
total, of the order of 200 000 redshifts of UV-selected galaxies were
obtained, covering of the order of 1000 deg2 of equatorial sky. In
this study we analysed the same final WiggleZ galaxy sample as
utilized by Blake et al. (2011c) for the measurements of BAOs in the
galaxy clustering pattern. After cuts to maximize the contiguity of
the observations, the sample contains 158 741 galaxies divided into
six survey regions – the 9-h, 11-h, 15-h, 22-h, 1-h and 3-h regions.
The survey selection function within each region was determined
using the methods described by Blake et al. (2010).

2.2 The Gigaparsec WiggleZ simulation volume

We tested our methodology using data from the Gigaparsec Wig-
gleZ (GiggleZ) N-body simulation (Poole et al., in preparation),
a 21603 particle dark matter simulation run in a 1 h−1 Gpc box
(with resulting particle mass 7.5 × 109 h−1 M�). The cosmologi-
cal parameters used for the simulation initial conditions were [�m,
�b, ns, h, σ 8] = [0.273, 0.0456, 0.96, 0.705, 0.812]. Bound struc-
tures were identified using SUBFIND (Springel et al. 2001), which
uses a friends-of-friends (FoF) scheme followed by a sub-structure
analysis to identify bound overdensities within each FoF halo. We
employed each halo’s maximum circular velocity Vmax as a proxy
for mass, and used the centre-of-mass velocities for each halo when
introducing redshift-space distortions.

Using the GiggleZ simulation halo catalogues we created one
independent, complete realization of the set of six survey regions
compromising the WiggleZ data set. We constructed these mock
catalogues by first selecting a subset of dark matter haloes span-
ning a small range of Vmax around 125 km s−1, chosen to possess
a similar clustering amplitude to the WiggleZ galaxies, and corre-
sponding to halo masses around 1012 h−1 M�. We then subsampled
these haloes using the survey selection function in each region to
match the observed number of galaxies. The GiggleZ mock cata-
logues were used for testing the cosmological fits to the topological
statistics for systematic errors, by checking for any significant devi-
ation between the best-fitting parameters and the input cosmology
of the simulation.

2.3 Lognormal density field catalogues

For each WiggleZ survey region we also constructed an ensemble
of 400 lognormal realizations using the method described by Blake
et al. (2011b). Lognormal realizations, which are Poisson-sampled
from a density field built from a fiducial power spectrum model,
are relatively cheap to generate and provide a reasonably accurate
description of two-point galaxy clustering for the linear and quasi-
linear scales important for this analysis. Work is in progress to
construct a larger set of N-body simulation mock catalogues for the
WiggleZ survey, although this is a challenging computational prob-
lem because the typical dark matter haloes hosting the star-forming
galaxies mapped by WiggleZ have mass ∼1012 h−1 M�, which (for
example) is about ∼20 times lower in mass than a Luminous Red
Galaxy sample. The lognormal catalogues were subsampled using
the survey selection function in each region to match the observed
number of galaxies. They were used for determining the covariance
matrix of the topological statistics at different density thresholds
and the sparse-sampling correction, both described in more detail
below.

2.4 Construction of the smoothed density fields

The cosmological density field of each data set was constructed
from the galaxy point distribution by smoothing with a Gaussian
filter. In the smoothing process we must also correct for the effect
of the varying survey selection function W (x) with position x. We
introduce here a modification to the reconstruction method used in
previous studies (e.g. Vogeley et al. 1994; James et al. 2009).

The previously existing methodology may be summarized as fol-
lows: (i) each galaxy within the data sample (D) is weighted with
the value 1/W (x) and placed in a (padded) three-dimensional ar-
ray using a nearest-grid-point binning; (ii) these data are smoothed
with a Gaussian (G) of standard deviation R; (iii) the systematically
lower density near the survey boundaries induced by the smoothing
is characterized by smoothing an array (C) that has constant value
inside the survey volume and zero outside; (iv) finally, the smoothed
D field is taken in ratio with the smoothed C field, after which topol-
ogy of structure within the resulting field can be studied. Formally,
this process may be written as

F = [(D/W ) ⊗ G]/[C ⊗ G], (1)

where ⊗ is used to denote convolution.
The alternative that we propose and implement here is: (i) do not

weight the galaxies initially and instead smooth the galaxy counts
in cells D as they are; (ii) instead of creating a comparator field of
constant value inside the survey region, weight the constant field
by the selection function C × W (x); (iii) smooth this weighted
comparator field, which again is used in ratio with the smoothed
data. In the notation described immediately above, this process may
be summarized as:

F ′ = [D ⊗ G]/[(C × W ) ⊗ G]. (2)

The motivation for the latter scheme is to apply the selection func-
tion to the data in a smoother and more global way, rather than
locally at the site of each galaxy. In this sense, it is closer in spirit
to the methodology used for correlation function estimation. These
two schemes are identical in the limit that the selection function
does not vary over the scale of the smoothing volume.

Fig. 1 shows two isodensity surfaces within the reconstructed
density field of the WiggleZ survey 15-h region for the redshift range
0.3 < z < 0.9, using a Gaussian smoothing scale R = 20 h−1 Mpc.
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Figure 1. Density contours in the WiggleZ survey 15-h region for a smoothing scale of 20 h−1 Mpc, extending from z = 0.3 (right of image) to z = 0.9, with
the contouring chosen to excise the highest (red) and lowest (blue) 20 per cent of volume within the field.

The isodensity values have been chosen so as to excise the highest
and lowest density fifths of the field by volume, and the surfaces
display the relative disconnectedness of structure that is expected
for regions this far removed from the median density. The apparent
uniformity of the topology of the structure with redshift relies on an
accurate correction of the effects of the survey selection function,
and the smoothness of the structures themselves is determined by
the choice of filter.

3 M I N KOW S K I F U N C T I O NA L A NA LY S I S
O F G A L A X Y S U RV E Y DATA

3.1 Overview of Minkowski functional methodology

This work studies the topology of large-scale structure using the
four Minkowski functionals of (the boundary surface of) excursion
sets cut from the density field. An excursion set is constructed from
the smoothed density field by choosing a critical density threshold
(ρc); regions of density above this value are identified as being
within the surface. The Minkowski functionals, which we computed
by the algebraic means described in Appendix A, are identified
geometrically with the enclosed volume, surface area, curvature and
genus of the excursion set boundary surface. Hadwiger’s theorem
yields the result that these four statistics form a complete geometric
description of the salient properties of the surface (see Chen 2004
for a recent review). Minkowski functionals have been explored in
the context of cosmology by several authors for almost two decades
(early analyses include Mecke et al. 1994; Kerscher et al. 1997;
Schmalzing & Buchert 1997).

For convenience we remap the density threshold parameter ρc to
a variable ν ∈ (−∞, ∞) which is defined such that the fraction of
volume Vfrac enclosed by a given isodensity surface is

Vfrac(ν) = 1√
2π

∫ ∞

ν

e−ν′2/2 dν ′ = 1

2
erfc

(
ν√
2

)
. (3)

This step ensures that the first Minkowski functional – the enclosed
volume – is identically an error function irrespective of the structure
of the density field. Consequently, it is the three remaining func-
tionals, which we studied as a function of ν, that possess dispositive
statistical power in the analysis.

This density transformation is equivalent to the Gaussianization
process of Weinberg (1992) employed in studies of reconstructing

the linear-regime power spectrum (Neyrinck, Szapudi & Szalay
2011)

ν ≡ fG(δ) − f̄G

σfG

where fG(δ) ≡ erf−1

[∫ δ

−∞
f (δ′) dδ′

]
. (4)

This transformation maps the one-point density distribution f(δ) of
the field to that of the normal distribution with mean f̄G and standard
deviation σfG , preserving the ordering of regions from highest to
lowest. It is also very similar to the lognormal transformation, given
that the cosmological density field obeys a lognormal distribution
even to the smallest scales we study in this work (Coles & Jones
1991; Taylor & Watts 2000; Watts & Taylor 2001).

The parameter ν indexes the surfaces drawn through the density
field. The first two useful Minkowski functionals describe the area
and curvature of these surfaces. There is less immediate geometric
intuition for the final functional: the total connectedness, or genus
statistic g. It is defined as the arithmetic difference between the
total number of holes through the filamentary structure and its total
number of disjoint components,

g = number of holes − number of isolated regions + 1. (5)

The natural interpretation in the context of the cosmological density
field is that the genus number measures how connected (when g > 0)
or disjoint (g < 0) regions of a given density tend to be. Its numerical
calculation often occurs indirectly via the computation of the total
Gaussian curvature of the surface, a differential geometric technique
introduced by Weinberg, Gott & Melott (1987). In this work we
compute an equivalent statistic, the Euler characteristic [=4π(1 −
g)], as the final Minkowski functional.

3.2 Minkowski functionals of a Gaussian random field

The cosmological density field may be approximated, when fil-
tered at certain scales, as a Gaussian random field. The theory of
the statistics of excursion sets of such fields has been studied by
many authors in contexts of cosmology and geometric statistics
(Doroshkevich 1970; Adler 1981; Bardeen, Steinhardt & Turner
1983; Bardeen et al. 1986; Hamilton, Gott & Weinberg 1986; Tomita
1986; Gott, Weinberg & Melott 1987; Ryden 1988; Ryden et al.
1989; Matsubara 2003). For a three-dimensional Gaussian random
field with power spectrum P(k), smoothed by a Gaussian kernel
G(x) = e−(x.x)/2R2

with rms width R, the curves of the Minkowski
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functionals vn, in terms of the density parameter ν, have a known
analytical form,

vn[ν; P (k); R] = An[P (k); R] e−ν2/2 Hn−1(ν). (6)

Here, values of n = {0, 1, 2, 3} correspond to the volume, surface
area, mean surface curvature and Euler characteristic, respectively,
with Hn referring to the Hermite polynomial of degree n

Hn(ν) = eν2/2

(
− d

dν

)n

{e−ν2/2}, (7)

so that

H0(ν) = 1; H1(ν) = ν; H2(ν) = ν2 − 1, (8)

with the extension (Matsubara 2003)

H−1(ν) =
√

π

2
eν2/2 erfc

(
ν√
2

)
. (9)

The amplitude functional of the curves, An, is related to the power
spectrum and smoothing scale in the following manner:

An [P (k); R] = 1

(2π)(n+1)/2

ω3

ω3−n ωn

(
σ 2

1 [P (k); R]

3 σ 2
0 [P (k); R]

)n/2

, (10)

where ωn = πn/2/	(n/2 + 1) – in particular, ω0 = 1, ω1 = 2, ω2 = π

and ω3 = 4π/3 – and the generalized variance functionals are

σ 2
j [P (k); R] = 1

2π2

∫
k2j+2 P (k) e−k2R2

dk. (11)

We note that the dimensions of An, hence vn, are (length)−n – these
equations describe the predicted Minkowski functionals per unit
[length, area, volume] for n = {1, 2, 3}, matching the dimensions
of the estimators described in the Appendix.

We now provide some intuition for the physical meaning of the
ratio of power spectrum integrals that appear in equation (10), and
for its dependence on the cosmological distance scale adopted to
analyse the survey data. Although in practice we always evalu-
ate the exact integrals of equation (11), we note that the function
k2j+2 e−k2R2

, which weights the power spectrum in the integrals,
peaks at wavenumber k = √

1 + j/R, and hence equation (11) ap-
proximately represents the ratio of two power spectrum amplitudes
evaluated at scales 1/R and

√
2/R (i.e. between two wavenumbers

in a fixed ratio near 1/R):

An ∼ Cn

[
P (

√
2/R)

P (1/R)

]n/2

, (12)

where Cn is a constant. In other words, An intuitively depends on
the effective slope of the power spectrum at the smoothing scale.
Assuming a power-law power spectrum P(k) ∝ km as a concrete
example, we can exactly solve the integrals to find that

An = Cn R−n

(
3 + m

6

)n/2

. (13)

Now suppose we change the distance scale used to analyse the
survey data, dilating all distances by a factor α. We follow the
normal analysis practice for large-scale structure surveys, keeping
the data measurements fixed and transferring the α dependence
to the model. For fixed data there are two changes to model: (1)
the smoothing scale R is effectively dilated to αR, and (2) there
is an amplitude factor αn corresponding to the dependence of the
estimators in Appendix A on (length)−n. For the case of a power-law
P(k), for which An ∝ R−n, we can see that these two shifts cancel in
equation (13) such that the model amplitudes have no dependence on

the dilation scale α, hence cannot be used to constrain the distance
scale, only the power-law slope m.

However, for a non-power-law P(k), the model Minkowski func-
tional amplitudes pick up a dependence on the distance-scale α. In
the intuitive form used in equation (12):

An ∼ Cn αn

[
P (

√
2/αR)

P (1/αR)

]n/2

. (14)

The ‘curvature’ of the power spectrum P(k) at the smoothing scale
hence provides the ‘standard ruler’ which links the Minkowski func-
tional amplitudes to the underlying distance scale.

In order to construct the model galaxy power spectrum that ap-
pears in equation (11), we started by generating a matter power
spectrum using the CAMB software package (Lewis, Challinor &
Lasenby 2000). We assumed the following values for the cosmo-
logical parameters: matter density �m = 0.27, Hubble parameter
h = 0.71, physical baryon density �bh2 = 0.0226, primordial spec-
tral index ns = 0.96 and normalization σ 8 = 0.8, inspired by CMB
measurements from the Wilkinson Microwave Anisotropy Probe
(WMAP) satellite (Komatsu et al. 2011); we consider variations
of this fiducial cosmological model in Section 5, including the re-
cent results reported by the Planck satellite (Planck Collaboration
2013). We corrected the power spectrum for non-linear evolution
using the ‘halofit’ prescription of Smith et al. (2003). This model
power spectrum was subject to further modifications as described
in Section 3.3. We found that using the ‘halofit’, rather than linear,
power spectrum to predict the Minkowski functional amplitudes
was necessary to reproduce the results of the simulations.

Fig. 2 displays the integrand of equation (11) for j = (0, 1) as a
function of ln k, k2j+3 P (k) e−k2R2

, for our fiducial power-spectrum
model, illustrating the range of scales to which the topological
statistics are sensitive for the smoothing lengths adopted in our
analysis. We note that the information is dominated by linear-regime
scales k < 0.15 h Mpc−1.

Figure 2. The integrands in k-space, given our fiducial power spectrum
model, used in the determination of the amplitudes of the Minkowski func-
tionals in equation (11), illustrating the range of scales to which these
statistics are sensitive. The solid and dashed lines illustrate the integrands
of σ 2

0 and σ 2
1 , respectively, and the four sets of curves, from top-right to

bottom-left, correspond to the four Gaussian smoothing lengths R = (10,
20, 30, 40) h−1 Mpc used in our analysis. Noting the logarithmic y-axis of
the figure, we conclude that our measurements are principally sensitive to
linear-regime scales k < 0.15 h Mpc−1.
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Figure 3. The unnormalized shapes of the n = (1, 2, 3) Minkowski functionals for a Gaussian random field, e−ν2/2 Hn−1(ν).

Fig. 3 illustrates the unnormalized shapes of the n = (1, 2, 3)
Minkowski functionals for a Gaussian random field, with a view
to providing some intuition for the statistics. We note the symme-
try of these functions for positive and negative ν, such that the
surfaces enclosing overdense and underdense regions possess sim-
ilar topological properties. In the left-hand panel, the area of these
surfaces can be seen to vanish for the highest and lowest density
values as expected, and to peak at average density. In the middle
panel, the integrated mean curvature of the surfaces also tends to
zero for the highest and lowest density regions, owing both to their
vanishing area and to the fact that at such maxima the surfaces
become spherical, and the sphere is the structure which minimizes
integrated mean curvature. In the right-hand panel, the Euler char-
acteristic also approaches zero for the highest and lowest peaks,
given the diminishing number of regions in these limits. For large
(moderate) departures from the mean density, the surfaces are pref-
erentially disjoint (connected), corresponding to positive (negative)
Euler characteristic, with a transition at ν = ±1 owing to a cancel-
lation between the number of isolated regions and the number of
holes specified in equation (5).

3.3 Modifications for non-linear processes

3.3.1 Galaxy biasing

An attractive property of the Minkowski functionals is that the
density parameter ν undoes the process of any local, monotonic
galaxy biasing scheme, such that in this model there is no effect
of galaxy bias on the Minkowski functionals (Matsubara 2003), a
result that remains true even in second-order perturbation theory
for weakly non-Gaussian fields (Matsubara & Yokoyama 1996).
This will not be the case for non-local or non-deterministic biasing
prescriptions, which we do not consider here.

3.3.2 Redshift-space distortions

The observation of galaxies in redshift-space will impart anisotropic
distortions on the power spectrum. On the large scales relevant to
this analysis, the angle-averaged redshift-space power is given by

P (k) = b2 Pδδ(k) + 2

3
bf Pδθ (k) + 1

5
f 2 Pθθ (k) (15)

(Kaiser 1987) where, in terms of the divergence of the peculiar
velocity field θ , Pδδ(k), Pδθ (k) and Pθθ (k) are the isotropic density–

Figure 4. The WiggleZ galaxy power spectrum, combining measurements
in the different survey regions, compared to the model defined in Sections
3.2 and 3.3.2 which is used to produce the amplitudes of the Minkowski
functionals. This model is a good description of the data for the range of
scales relevant for the analysis.

density, density–θ and θ–θ power spectra, and f and b are the cosmic
growth rate and galaxy linear bias factor, respectively. As discussed
above, we produced the matter power spectrum for our fiducial cos-
mological parameter set using the ‘halofit’ model, Pδδ = Phalofit. We
then generated the velocity power spectra Pδθ and Pθθ using the
fitting formulae in terms of Pδδ , calibrated by N-body simulations,
proposed by Jennings, Baugh & Pascoli (2011). We do not include
small-scale velocity dispersion (‘fingers-of-god’) in our model. Our
justification of the validity of this model is provided by the tests we
carried out on the N-body simulation mock catalogues, described
below. We specified fiducial values of f and b as the prediction of
the �cold dark matter (�CDM) growth rate in our fiducial model
and the best fit to the WiggleZ galaxy 2D power spectra (Blake
et al. 2011a), noting that these choices could be varied without sig-
nificant effect on our final results. Fig. 4 overplots a measurement
of the WiggleZ galaxy power spectrum (Blake et al. 2010), com-
bining all survey regions, and our fiducial power spectrum model,
illustrating that the model provides a good description of the data in
the range k < 0.3 h Mpc−1 (χ2 = 33.4 for 27 degrees of freedom).
As quantified further in Section 4.3, this redshift-space distortion
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correction is negligible compared to the statistical errors in our
measurements.

3.3.3 Non-linear evolution

Progress has been made in extending the expressions for the
Minkowski functionals to weakly non-Gaussian fields, particularly
those that depart from Gaussianity as a result of primordial physics
or non-linear gravitational evolution. We summarize here the model
we used for the latter.

The perturbative approach to the study of non-linear gravita-
tional evolution aims to describe higher-order statistics, such as the
Minkowski functionals, in terms of the lower-order power spectrum.
The Minkowski functionals are expressed in an Edgeworth-like ex-
pansion about the field variance σ 0, with coefficients derived from
the skewness parameters S(i) (Matsubara 1994, 2003). To leading
order in σ 0 this expression reads:

vn(ν) = An e−ν2/2

{
Hn−1(ν) + σ0

[
n

3

(
S(1) − S(0)

)
Hn(ν)

+ n(n − 1)

6

(
S(2) − S(1)

)
Hn−2(ν)

]
+ O(σ 2

0 )

}
. (16)

The skewness parameters are also derived from the power spectrum
of the density field for each smoothing scale R:

S(0)(R) = (2 + E)S11
0 − 3S02

1 + (1 − E)S11
2 , (17)

S(1)(R) = 3

2

[
5 + 2E

3
S13

0 − 9 + E

5
S22

1 − S04
1

+ 2(2 − E)

3
S13

2 − 1 − E

5
S22

3

]
, (18)

S(2)(R) = 9

[
3 + 2E

15
S33

0 − 1

5
S24

1 − 3 + 4E

21
S33

2

+ 1

5
S24

3 − 2(1 − E)

35
S33

4

]
, (19)

where the cosmological factor E ≈ 3
7 and, with l = kR,

Sαβ
m (R) ≡

√
2π

σ0
4

(
σ0

σ1R

)α+β−2∫
l1

2

2π2R3

l2
2

2π2R3
P

(
l1

R

)
P

(
l2

R

)

× e−l1
2−l2

2
l1

α−3/2l2
β−3/2Im+1/2(l1l2) dl1 dl2, (20)

where Im(x) is the modified Bessel function. Equation (16) speci-
fies the final Minkowski functional model we used in our analysis,
combined with the redshift-space galaxy power spectrum of equa-
tion (15). As quantified further in Section 4.3, this non-linear evolu-
tion correction is negligible compared to the statistical errors in our
measurements, partly because non-linear effects are absorbed by
the volume fraction re-mapping of the density threshold parameter
described by equation (3) (Matsubara 2003).

3.4 Differential Minkowski functionals

The Minkowski functionals, as introduced in the previous subsec-
tions and employed in cosmology to date, possess substantial co-
variance between density thresholds that has not been fully detailed
in previous work [although see the appendices of Choi et al. (2010)

for recent progress in this endeavour]. Recognizing that a substan-
tial source of this covariance is the use of integral excursion sets,
such that each set is a subset of those that are excised subsequently,
we advance the use of the differential Minkowski functionals of the
disjoint part of each subsequent excursion set. We define the differ-
ential functionals using the algebraic difference between Minkowski
functional measurements at adjacent density thresholds:

v′
n(ν) = �vn(ν)

�ν
. (21)

This is possible because the property of additivity, which the
Minkowski functionals possess, ensures that for the incremental
addition of δS to an excursion set S:

vn(S ∪ δS) = vn(S) + vn(δS) − vn(S ∩ δS)

⇒ vn(δS) = vn(S ∪ δS) − vn(S), (22)

given that vn(S ∩ δS) is the null set, since δS is disjoint to the
previous surface S. Although the differential functionals contain no
extra information compared to the integral versions, they result in
a more closely diagonal data covariance matrix (see Section 4.2),
which may therefore be estimated more robustly.

4 R ESULTS

4.1 Measurement of topological statistics

We measured the three informative Minkowski functionals (surface
area, curvature, Euler characteristic) of each WiggleZ survey region
for four different Gaussian smoothing scales R = 10, 20, 30 and
40 h−1 Mpc for 36 values of the density threshold parameter equally
spaced in the range −4.5 < ν < 4.5, and converted each measure-
ment to a differential Minkowski functional using a finite difference.
We split the WiggleZ data into various redshift slices in the range
0.2 < z < 1. First, we performed measurements in broad overlap-
ping redshift ranges (0.2 < z < 0.6, 0.4 < z < 0.8, 0.6 < z < 1)
in order to facilitate comparison with the BAO standard-ruler dis-
tances reported by Blake et al. (2011c). We also split each broad
sample into three narrower, equal-volume redshift slices, such that
a set of independent distance measurements could be constructed
in six narrow redshift slices spanning 0.2 < z < 1.

We repeated these measurements for the mock halo catalogues
constructed from the N-body simulations. As described in Sec-
tion 2.2, we constructed one complete realization of all six Wig-
gleZ regions for the central broad redshift range 0.4 < z < 0.8,
which matched the large-scale bias and selection function of the
data sample. As above, we also split this sample into three nar-
rower, equal-volume redshift slices spanning this range.

Fig. 5 displays an example of the integral and differential
Minkowski functional measurements, using the central narrow red-
shift slice (z = 0.637) of the range 0.4 < z < 0.8 of the 15-h survey
region. The figure compares the WiggleZ survey measurement to
that determined from the N-body simulation, and the best-fitting
model. The WiggleZ and simulation results are in good agreement,
and the model is a good fit to the data in all cases, as judged by
the values of the χ2 statistic. For the 36 different combinations of
three differential Minkowski functionals, four smoothing scales and
three narrow redshift slices for the range 0.4 < z < 0.8 of the 15-h
survey region, the average value of the best-fitting χ2 is 34.6 for the
WiggleZ data and 36.5 for the simulation data, both for 34 degrees
of freedom.
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WiggleZ Survey: cosmic topology 2495

Figure 5. Minkowski functional measurements (open circles) and differential Minkowski function measurements (error bars) for the z = 0.637 narrow redshift
slice of the WiggleZ 15-h region for smoothing scales R = 10, 20, 30 and 40 h−1 Mpc. The black and red symbols represent the WiggleZ data and GiggleZ
simulation, respectively. The blue solid line displays the best-fitting model in each case, which is a good fit to the data, as discussed in the text. In each panel
the x-axis represents the density variable ν and the y-axis plots the value of the (differential) Minkowski functional.

4.2 Covariance matrices for differential Minkowski
functionals

The covariance matrices of the differential Minkowski functional
measurements in each region were determined by measuring these
statistics for each of the ensemble of Nlog = 400 lognormal real-

izations. Writing the measurement at density threshold ν i in the kth
realization as vk(ν i), the covariance matrices were determined as

C(νi, νj ) = 1

Nlog − 1

Nlog∑
k=1

[vk(νi) − v(νi)]
[
vk(νj ) − v(νj )

]
, (23)
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Figure 6. Correlation matrices for the three Minkowski functionals and their differential forms, generated from 400 realizations of a lognormal random field
for the 15-h survey region with the fiducial WiggleZ power spectrum, smoothed at a scale of 10 h−1 Mpc. The colour map has been scaled to the full range
[−1, 1], so that the off-diagonal regions give some indication of the noise present in the estimates.

where v(νi) = ∑Nlog
k=1 vk(νi)/Nlog. The corresponding correlation

matrices C(νi, νj )/
√

C(νi, νi) C(νj , νj ) for each statistic are dis-
played in Fig. 6, comparing the integral and differential functionals
for the measurements plotted in Fig. 5. This figure explicitly demon-
strates that the covariance matrix of the differential form is more
nearly diagonal than the integral form, as argued in Section 3.4.

4.3 Correction for sampling systematics

The measurement of Minkowski functional statistics is systemati-
cally biased in the regime where the smoothing scale is comparable
to the mean inter-galaxy separation (James 2012). Given the com-
plexity of the WiggleZ survey selection functions there is no analytic
description of this effect and we relied on an empirical correction
using the lognormal realizations. We calculated this correction for
each survey region and smoothing scale as the difference between
the mean measured Minkowski functional of the lognormal realiza-
tions, and the Gaussian random-field model Minkowski functional
corresponding to the underlying power spectrum used to generate
the lognormal realizations (which is equivalent to the Minkowski
functionals of the lognormal realization in the limit of high number
density). We note that this additive correction, which is then applied
to each Minkowski functional measurement from the survey data,
is computed independently of any assumed cosmological model for
either the volume of the real data or the non-linear corrections, but it
does assume the fiducial power spectrum model used to generate the
lognormal realizations; it is beyond the scope of this investigation
to consider the model-dependence of this correction. The method
is verified by its application to the mock catalogues generated from
N-body simulations.

Fig. 7 illustrates the relative magnitude of the sparse-sampling
correction (in the upper row) for the most affected smoothing scale,

R = 10 h−1 Mpc, again using the example of the central narrow
redshift slice (z = 0.637) of the range 0.4 < z < 0.8 of the 15-h
survey region. For the 10 h−1 Mpc smoothing scale the correction
is comparable to the statistical error in the measurements; it is
negligible for the other smoothing scales we considered. Fig. 7
also displays the magnitude of the corrections implied by the non-
linear evolution and RSD models described in Section 3.3; these
corrections are negligible in comparison with the statistical errors.

4.4 Measurements of Minkowski functional amplitudes

We fitted cosmological models to the Minkowski functional ampli-
tudes, rather than the functions themselves, given that the ampli-
tudes contain the cosmological distance-scale information. We fitted
amplitudes Ai to the differential Minkowski functionals measured
for each WiggleZ survey redshift slice and smoothing scale, using
the covariance matrix determined from the lognormal realizations.
The Minkowski functional model shapes, v(ν), were determined as
the random Gaussian field models of Section 3.2 with corrections
for redshift-space distortions (Section 3.3.2) and non-linear evolu-
tion (Section 3.3.3). Due to the sparse-sampling correction already
applied in Section 4.3, no modelling of shot noise is required. In
order to test for systematic errors, we repeated these amplitude fits
for measurements from the N-body simulation catalogues.

Fig. 8 displays an example of these amplitude fits, using the
broad redshift range 0.4 < z < 0.8 of the 15-h WiggleZ sur-
vey region. There are hence 36 amplitude measurements (spanning
three Minkowski functionals, three narrow redshift slices and four
smoothing scales). For ease of presentation, the results are displayed
divided by the predictions of the fiducial model. We note the good
agreement between the amplitude measurements of the data and the
mock catalogues, and that the simulation results are consistent with
the GiggleZ input cosmology.

 at Sw
inburne U

niversity of T
echnology on M

ay 22, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


WiggleZ Survey: cosmic topology 2497

Figure 7. The magnitude of the non-Gaussian corrections for sparse-sampling (upper row), non-linear evolution (middle row) and redshift-space distortions
(lower row), relative to the measured differential Minkowski functionals for the most affected smoothing scale, R = 10 h−1 Mpc. The panels display results for
the z = 0.637 narrow-redshift slice of the 15-h survey region, with the black solid and red dashed lines indicating the model with and without the application
of the non-Gaussian correction.

Figure 8. Amplitude measurements of each differential Minkowski functional for three narrow redshift slices and four smoothing scales R = (10, 20, 30,
40) h−1 Mpc for the broad redshift range 0.4 < z < 0.8 of the 15-h survey region. The solid (black) and open (red) circles represent the WiggleZ data and
GiggleZ simulation, respectively. The amplitudes are divided by the prediction of the fiducial model defined in the text.

4.5 Covariance matrix of amplitudes

The covariance matrix of the amplitude measurements, spanning
different functionals and smoothing scales, was determined by ap-
plying the analysis pipeline described above to every lognormal

realization, and deducing an amplitude covariance matrix using a
relation analogous to equation (23). An example amplitude covari-
ance matrix that results from this process is given in Fig. 9, which
displays a 36 × 36 matrix corresponding to the measurements in
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Figure 9. The covariance matrix of the amplitude measurements of the 36 sets of data encompassing combinations of the three Minkowski functionals vi,
three redshifts zi and four smoothing scales Ri for the broad redshift range 0.4 < z < 0.8 of the 15-h survey region. The covariance is displayed as a correlation
matrix relative to the colour bar at the top of the figure. The left-hand panel displays the full 36 × 36 correlation matrix, and the right-hand panel is a zoom-in
of the lower-right 9 × 9 section corresponding to the largest smoothing length.

Fig. 8. As expected, there are strong correlations between the am-
plitudes of different Minkowski functionals measured for the same
redshift interval, and for the same functionals measured for different
smoothing scales.

We note that building the covariance matrix from the lognormal
realizations is a good approximation to the true data covariance.
Considering the diagonal elements, the standard deviation of the
amplitude fits to the lognormal realizations agreed closely with the
standard deviation of the probability distribution obtained when
the amplitudes are fitted to the real survey data.

5 C O S M O L O G I C A L M O D E L FI T S

5.1 Distance fits

Given the shape of the galaxy power spectrum at the relevant
smoothing scales, the cosmological model described in Sections 3.2
and 3.3 prescribes the amplitude of the topological statistics. The
amplitude measurements were performed using our fiducial cosmo-
logical model, a flat �CDM model with matter density �m = 0.27,
to determine the observed survey distance scale. If the true distance
scale deviates from this fiducial cosmology, which we parametrize
by a dilation in distances by a parameter α, then the model ampli-
tudes must be adjusted in two ways.

(i) In the distorted model, the dimensional Minkowski functional
measurements would be scaled by a factor α−n, where values of
n = {1, 2, 3} correspond to the surface area, mean surface curvature
and Euler characteristic, respectively. For an analysis keeping the
data measurement fixed, the model amplitudes must therefore be
scaled by αn.

(ii) In the distorted model, the true smoothing scales R would
have changed relative to the fiducial values Rfid = (10, 20, 30,
40) h−1 Mpc used in the original computation. The distorted scales
in the new cosmological model are given by R = α Rfid.

The dilation scale α is related to the underlying cosmic distances
by α = DV(z)/DV, fid(z), where DV(z) is the composite ‘angle-
averaged’ distance that is measured using the baryon acoustic peak
in the clustering monopole as a standard ruler (Eisenstein et al.
2005),

DV(z) =
[

(1 + z)2DA(z)2 cz

H (z)

]1/3

. (24)

where DA(z) is the angular diameter distance to the redshift slice
and H(z) is the Hubble expansion parameter. We can therefore fit
the Minkowski functional amplitude measurements in each red-
shift slice for a single value of α, hence DV(z). We take the effec-
tive redshift zeff of the measurement in each slice as the volume-
weighted redshift of the pixels of the selection function which are
used in the computation. We fitted the amplitudes after combin-
ing the Minkowski functional measurements in the different survey
regions.

An example of these fitting results is displayed in Fig. 10, com-
bining all survey regions for the 0.4 < z < 0.8 redshift range, and
comparing fits to the WiggleZ survey data and the GiggleZ N-body
simulations. We show the results both combining all the different
Minkowski functionals and smoothing scales, and dividing the sig-
nal into individual survey regions, narrow redshift slices, functionals
and smoothing scales. We summarize the conclusions of Fig. 10 as
follows.

(i) The distance-scale fits to the amplitudes measured from the
N-body simulation mock catalogues produce results which are con-
sistent with the input cosmology of the simulation, validating the
method. The measurement of the distance scale relative to the in-
put cosmology of the simulation is DV/DV, fid = 0.99 ± 0.03 and
the value of the χ2 statistic of the best-fitting model is 42.2 for 35
degrees of freedom.

(ii) Each Minkowski functional carries roughly equal sensitivity
to the distance scale, with the area, curvature and Euler character-
istic producing mutually consistent distance measurements in the
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Figure 10. The results of distance-scale fits to the set of Minkowski functional amplitudes, using the WiggleZ data and simulations for the broad redshift
range 0.4 < z < 0.8. The far-left data point displays the measurement that results from combining the set of different survey regions, narrow redshift slices,
Minkowski functionals and smoothing scales. The subsequent sections of the figure, from left to right, restrict the fits to individual regions, redshifts, functionals
and scales. The solid (black) and open (red) circles show fits to the WiggleZ survey and GiggleZ simulation data, respectively. The fiducial cosmology used to
calculate DV, fid is a flat �CDM model with matter density �m = 0.27.

redshift range 0.4 < z < 0.8 with accuracies of (3.1, 3.4, 3.6) per
cent, respectively. The accuracy of the combined measurement is
2.9 per cent, demonstrating that although these topological statis-
tics are not independent, their combination does produce a slightly
improved measurement compared to each individual statistic (in
particular, an improvement of 20 per cent compared to using the
genus, i.e. Euler characteristic, alone).

(iii) The fits are dominated by measurements at the smallest
smoothing scale, 10 h−1 Mpc, which alone produces a 3.2 per cent
distance-scale determination. The precision resulting from larger
smoothing lengths is lower, in the range 8–12 per cent for 20–
40 h−1 Mpc, due to the smaller effective number of independent
data samples used to determine the topological statistics as the
smoothing scale is increased.

5.2 Comparison with BAO distance measurements

Fig. 11 compiles the overall set of distance-scale measurements
from the fits to the WiggleZ topological statistics, and compares
these with previous measurements of DV(z) using BAOs as a stan-
dard ruler. The black, solid circles are the measurements from Wig-
gleZ topology in six narrow, independent redshift slices spanning
0.2 <z < 1, with accuracies in the range 3.3–7.7 per cent. The black,
open circles in Fig. 11 are the topological measurements in the
broader redshift ranges (0.2 < z < 0.6, 0.4 < z < 0.8, 0.6 < z < 1),
which are designed for comparison with the existing BAO distance
measurements from the WiggleZ survey (Blake et al. 2011c). The
two independent techniques for determining the distance scale pro-
duce consistent results, with the topological measurements yielding
a higher accuracy by a factor of 2. However, the topological mea-
surements also rely on more assumptions, in particular knowledge
of the shape of the underlying redshift-space galaxy power spec-
trum, whereas the BAO technique relies more heavily on the single
standard-ruler scale. The red squares in Fig. 11 are a compilation
of other BAO distance-scale measurements from galaxy surveys in

this redshift range (drawn from Eisenstein et al. 2005; Percival et al.
2010; Beutler et al. 2011; Anderson et al. 2012).

In order to place the BAO measurements on Fig. 11 we com-
bined the quoted values of DV(z)/rs(zd) with the latest Planck
determination of the sound horizon at the baryon drag epoch,
rs(zd) = 147.4 × 1.0275 Mpc (Planck Collaboration 2013), where
the factor of 1.0275 converts the exact determination of rs(zd) to the
approximation of the Eisenstein & Hu (1998) fitting formula used
by the BAO papers. We then divided the result (in Mpc) by the value
of DV(z) in our fiducial cosmological model, for which �m = 0.27
and h = 0.71. We indicate as the dashed line in Fig. 11 the distances
in Mpc relative to this fiducial model of the cosmological model
favoured by Planck, �m = 0.31 and h = 0.69 (Planck Collaboration
2013), which provides a somewhat better fit to the BAO data set,
particularly to measurements from the 6-degree Field Galaxy Sur-
vey (Beutler et al. 2011) and the Baryon Oscillation Spectroscopic
Survey (Anderson et al. 2012).

The overall picture presented by these measurements is a consis-
tent delineation of the cosmic distance scale in the range z < 1. We
note in particular that the WiggleZ topology measurements have ex-
tended this determination into the redshift range 0.8 < z < 1, which
was not accessible applying the BAO technique to the WiggleZ sur-
vey given that the effective shot-noise weighted cosmic volume it
contains was insufficient to produce a significant detection of the
baryon acoustic peak. The topological measurements, whose results
are collected in Table 1, do not necessitate a minimum observed
volume.

5.3 Degeneracy with power spectrum shape

We now consider the significant degeneracy between the distance-
scale measurements and the shape of the underlying galaxy power
spectrum. For a pure CDM power spectrum, the matter transfer func-
tion at recombination can be expressed as a function of q = k/�mh2

with k in units of Mpc−1 (Bardeen et al. 1986). Given that
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Figure 11. Comparison of distance-scale measurements from the standard-ruler fits to the WiggleZ topological statistics and recent BAO measurements from
WiggleZ and other surveys. The WiggleZ topological measurements are shown with two independent binnings: the solid black circles are the results for six
narrow, independent redshift slices spanning 0.2 < z < 1, and the open black circles are the determinations in three broader, overlapping redshift ranges.
These are chosen to coincide with the WiggleZ BAO analysis of Blake et al. (2011c), whose results are shown as the blue triangles. BAO measurements from
other surveys are indicated as red squares, taken from Eisenstein et al. (2005), Percival et al. (2010), Beutler et al. (2011) and Anderson et al. (2012). The DV

measurements are plotted relative to the predictions of the WMAP fiducial cosmological model used in this paper; we also indicate in the figure as the dashed
line the change relative to this model recently implied by the best fits to data from the Planck satellite (Planck Collaboration 2013). More details about the
comparison of models and data are given in the text.

Table 1. Distance-scale fits to the topological statistics measured from the WiggleZ survey data
and GiggleZ N-body simulation mock catalogues. The WiggleZ data are analysed in a series of
broad redshift ranges (0.2 < z < 0.6, 0.4 < z < 0.8, 0.6 < z < 1), which are also split into three
narrow, equal-volume redshift subsamples. The mock catalogues were constructed for the range
0.4 < z < 0.8. The last four columns of the table list the effective (volume-weighted) redshift zeff of
each measurement, the fit of DV/DV, fid for fixed power spectrum shape, the value of the chi-squared
statistic χ2 for the best-fitting model and the number of degrees-of-freedom (‘dof’), and the fit of
DV �mh2 marginalized over �mh2, with DV in units of Mpc. The fiducial distances, DV, fid, are
calculated at each effective redshift assuming a flat �CDM cosmological model with matter density
�m = 0.27. A data set of six independent distance measurements may be constructed using the
results corresponding to slices (1, 2, 3) of the 0.2 < z < 0.6 and 0.6 < z < 1 redshift ranges.

Sample Redshift range Slice zeff DV/DV, fid χ2/dof DV[Mpc] �mh2/1000

WiggleZ 0.2 < z < 0.6 Joint 0.463 1.02 ± 0.04 53.1/35 0.213 ± 0.010
1 0.304 1.16 ± 0.08 29.4/11 0.191 ± 0.012
2 0.463 0.96 ± 0.07 11.3/11 0.205 ± 0.017
3 0.559 0.97 ± 0.07 6.9/11 0.261 ± 0.020

WiggleZ 0.4 < z < 0.8 Joint 0.637 0.96 ± 0.03 35.1/35 0.276 ± 0.009
1 0.486 1.02 ± 0.05 9.7/11 0.250 ± 0.015
2 0.637 0.92 ± 0.05 9.1/11 0.271 ± 0.017
3 0.749 0.96 ± 0.05 13.6/11 0.319 ± 0.017

WiggleZ 0.6 < z < 1 Joint 0.824 0.99 ± 0.02 41.7/35 0.328 ± 0.008
1 0.680 1.00 ± 0.05 9.3/11 0.315 ± 0.016
2 0.824 1.01 ± 0.04 14.7/11 0.362 ± 0.014
3 0.944 0.98 ± 0.03 18.3/11 0.391 ± 0.014

GiggleZ 0.4 < z < 0.8 Joint 0.637 0.99 ± 0.03 42.2/35 0.280 ± 0.009
1 0.486 0.89 ± 0.06 7.5/11 0.222 ± 0.014
2 0.637 1.05 ± 0.06 16.5/11 0.313 ± 0.018
3 0.749 1.01 ± 0.05 13.4/11 0.340 ± 0.019

 at Sw
inburne U

niversity of T
echnology on M

ay 22, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


WiggleZ Survey: cosmic topology 2501

Figure 12. The joint probability distribution of �mh2 and DV that results
from fits to the combined Minkowski functionals for the 0.4 < z < 0.8
redshift range of the WiggleZ data set. The blue dashed line displays the
degeneracy direction of constant DV �mh2, which is well-constrained by
the data. The vertical solid black line, together with the two vertical dotted
lines, indicates the best fit and ±1σ range of the measurement from WMAP
(Komatsu et al. 2011), �mh2 = 0.1345 ± 0.0055.

changing DV corresponds to a scale distortion of k ∝ DV, fid/DV,
we recover that the measured statistics should depend on the com-
bination DV �mh2 in this approximation, with DV in units of Mpc.

This is illustrated by Fig. 12, which we generated by performing a
joint fit of �mh2 and DV/DV, fid to the WiggleZ topological statistics,
where the value of �mh2 was used to produce the power spectrum
model in each case (with the other cosmological parameters fixed
at the values stated in Section 3.2) and DV/DV, fid was used to de-
termine the volume distortion relative to the fiducial cosmology. As
expected, the fits show that there is a significant degeneracy be-
tween these parameters. The dashed line in Fig. 12 indicates a set of
constant values of DV �mh2, confirming that this quantity is indeed
robustly constrained by the data, independently of �mh2. In Table 1
we list the best-fitting values of DV �mh2 for each data subsample,
marginalized over �mh2, which may be considered more ‘model-
independent’ than the measurements of DV(z), which assume the
fiducial cosmological parameter set. If we evaluate the χ2 values
of the ‘WMAP’ and ‘Planck’ (�m, h) models defined above, (0.27,
0.71) and (0.31, 0.67), using the set of six independent measure-
ments of DV �mh2 in narrow redshift slices from WiggleZ topology,
we find that χ2 = 6.2 and 13.7, respectively, for 6 degrees of free-
dom. The corresponding ‘p-values’, indicating the probability of
obtaining a χ2 equal to these values or higher, are 0.40 and 0.033.

We note that the measurements of DV using topological statistics
are much more precise (by a factor of 3–4) than those which are
obtained by fitting to the shape of the galaxy power spectrum data,
distorting a template model by a scaling factor α = DV/DV, fid

and marginalizing over a normalization factor (as performed for
example in section 4.2 of Blake et al. 2011b). A possible reason for
this is that the Minkowski functionals are independent of an overall
normalization factor such as linear galaxy bias.

5.4 Validating the distance error

Given the impressive accuracy of the distance-scale measurements
provided by these topological statistics, it is important to validate the

plausibility of the errors. In this section we provide two supporting
arguments.

First, we note that when the distance-scale fits are separately
applied to each of the six individual WiggleZ survey regions that
comprise our data set, the scatter amongst the best-fitting values is
approximately a factor of

√
6 higher than the error in the joint mea-

surement (as illustrated by the second section of Fig. 10), providing
some approximate empirical verification of the measurement errors
by division of the data into subsets. We also split the GiggleZ simu-
lation catalogue into six realizations of the WiggleZ 15-h region (as
opposed to one realization of all six WiggleZ regions), and fitted a
distance scale to each realization. We found that the scatter amongst
the best fits was comparable to the error in the fit to the real 15-h
region data set (indeed, the scatter in the simulation results was a
little smaller, likely owing to the fact that the realizations are not
truly independent, given that they have been carved from the same
simulation).

Secondly, we demonstrate that the error in the fitted distance
scale can be successfully estimated by propagating the error in the
fitted Minkowski functional amplitudes. We take the example of the
z = 0.637 narrow redshift slice, for which we obtain a 5 per cent
distance measurement (see Table 1). For the surface area, mean sur-
face curvature and Euler characteristic, the errors in the measured
amplitudes are (0.8, 1.6, 2.7) per cent for R = 10 h−1 Mpc, (1.5,
3.0, 5.1) per cent for R = 20 h−1 Mpc, (2.4, 4.5, 8.9) per cent for
R = 30 h−1 Mpc and (3.1, 5.8, 12.0) per cent for R = 40 h−1 Mpc. As
noted in Section 4.5, these amplitude errors are in close agreement
with the scatter of fits to lognormal realizations. Furthermore, the
Euler characteristic errors agree well with the 4.2 per cent measure-
ment of the genus amplitude of a similar volume of SDSS Lumi-
nous Red Galaxies for a smoothing scale of 22 h−1 Mpc, recently
presented by Choi et al. (2013).

Fig. 13 illustrates the step-by-step propagation of the error in
the Minkowski function amplitudes to the fitted distance-scale α.
The top-left panel displays the dependence of the amplitudes An of
equation (10) on R = αRfid. This figure gives a falsely optimistic
indication of the sensitivity of the measured amplitudes to α; we
must also consider the scaling of the measurements by αn as the
distance scale changes. This is encapsulated by the top-right panel,
which shows the variation of Mn = RnAn with R. These functions
would be horizontal lines with no dependence on R for a power-
law P(k). The variation of Mn with α controls the propagation of
errors from measured amplitudes to the distance scale, such that the
fractional error in amplitude must be multiplied by a factor

d ln α

d ln Mn

=
[

R

Mn

dMn

dR

]−1

, (25)

to yield the fractional error in the distance scale. The functions
dMn/dR are plotted in the lower left-hand panel of Fig. 13, and the
final factors d ln α/d ln Mn are shown in the lower right-hand panel.
The accuracies of the measured amplitudes in the z = 0.637 narrow
redshift slice are also displayed in this panel as a percentage, and it
can be seen that multiplying these accuracies by the relevant factors
traced by the lines successfully reproduces the ∼5 per cent distance-
scale error. For example, error propagation for the measurements
with R = 10 h−1 Mpc smoothing scale predicts errors in α in the
range 6.4–7.7 per cent for the three Minkowski functionals; when
combined with appropriate covariance and added to the (noisier)
measurements for larger smoothing scales, the result is consistent
with the final 5 per cent distance error.
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Figure 13. An illustration of the step-by-step propagation of the error in the Minkowski functional amplitudes An to the fitted distance-scale α. In each panel,
the black solid, red dashed and blue dotted lines represent functions describing the behaviour of the surface area, mean curvature and Euler characteristic,
respectively. The top-left, top-right, bottom-left and bottom-right panels, respectively, display the dependence on smoothing scale R = αRfid of the following
quantities: the raw model amplitudes An, the combination Mn = Rn An which is effectively constrained by the data, the rate-of-change dMn/dR that gives the
measurement the power to probe the distance scale, and the factor d ln α/d ln Mn which maps a fractional error in Mn to a fractional error in α. The measured
errors in Mn are also shown in the bottom-right panel, for the three Minkowski functionals and four smoothing scales. The same y-axis range is used, with
these quantities plotted as a per cent error. More details and interpretation are provided in the text.

6 SU M M A RY

We have presented the first measurements of the cosmic distance
scale using the topology of the galaxy density field as a standard
cosmological ruler. If the shape of the underlying galaxy power
spectrum is known, then the Minkowski functionals are prescribed
via the statistics of the excursion sets of a Gaussian random field.
Corrections due to non-Gaussian processes are small: the topolog-
ical statistics are independent of any local, monotonic, non-linear
galaxy bias and, for the smoothing scales considered in this analy-
sis, are only weakly distorted by non-linear gravitational evolution
and redshift-space distortions. As such, the topology of the density
field in comoving space is exactly conserved during linear evolution
and, given the standard ruler provided by the known curvature of
the underlying power spectrum, may be used to determine the same
composite distance DV(z) that is probed using BAOs.

We have applied these techniques to data from the WiggleZ Dark
Energy Survey, implementing a number of methodological improve-
ments compared to previous analyses:

(i) We utilized all Minkowski functionals in our analysis, whereas
previous work has focused mainly on exploiting the genus statistic.
Calculating the covariance between the topological statistics, we
have shown that a combined analysis produces the most accurate
distance measurements, and that the different statistics provide self-
consistent results.

(ii) We studied the differential, rather than integral, Minkowski
functionals, in order to reduce the covariance between measure-
ments at different density thresholds.

(iii) We employed a series of lognormal realizations, with known
topological statistics, to determine the correction to the Minkowski
functionals from the sparse-sampling of the density field by the
galaxy tracers. The complexity of the survey selection functions
implies that this correction does not have an analytic form and must
be determined numerically. The ensemble of lognormal realizations
also provides an accurate covariance matrix of fitted Minkowski
functional amplitudes, which we used to fit cosmological models.

We validated our methodology using mock catalogues sampled from
an N-body simulation, which match both the selection function and
large-scale clustering of the WiggleZ survey data, demonstrating
that the fiducial cosmology of the simulation is recovered (within
the statistical error of the analysis).

When analysed in broad overlapping redshift ranges
(0.2 < z < 0.6, 0.4 < z < 0.8, 0.6 < z < 1), the resulting distance-
scale measurements from the WiggleZ survey have errors in the
range 2.1–4.1 per cent. These determinations agree with, and are
almost twice as precise as, previous measurements from the same
data set using BAOs as a standard ruler. We used arguments based on
dividing the total data set into sub-regions, and computing direct er-
ror propagation between the Minkowski functional amplitudes and
distance scale, to increase confidence in the correctness of these
errors.

The topological analysis requires more assumptions, since the full
shape of the underlying power spectrum determines the Gaussian-
field statistics. We describe this degeneracy by also providing mea-
surements of the well-constrained combination DV �mh2, with er-
rors in the range 2.4–4.7 per cent. When analysed in six narrow,
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independent redshift slices in the range 0.2 < z < 1, the resulting
measurements of DV(z) have errors in the range 3.3–7.7 per cent,
and agree with the existing set of BAO distance-scale measure-
ments from other galaxy surveys, and with standard flat �CDM
cosmological models.

We conclude that the utilization of the topological statistics of the
galaxy density field is highly merited as a complement to standard
analyses based on two-point statistics, and contains a different set
of systematic errors. We have demonstrated that these topological
measurements are capable of accurate determinations of the cosmic
distance scale, as advocated by Park & Kim (2010) and Zunckel et al.
(2011). In the future, topological statistics should also be useful for
distinguishing between different models of gravity (Wang, Chen &
Park 2012). Further work is required to model the non-linear effects
of shot noise and redshift-space distortions on these statistics in a
general fashion.
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APPENDI X A : GÉOMÉTRIE SANS FRONTIERES, A
M I N KOW S K I FU N C T I O NA L M E A S U R E M E N T
I M P L E M E N TAT I O N F O R SU RV E Y DATA

We describe an implementation of an algorithm to measure the
Minkowski functionals at density thresholds vk(ν) on data with
non-periodic boundaries, as is the case for survey data that have
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been smoothed and corrected for selection effects. Similar enter-
prises have been discussed in works two decades past (e.g. Coles
& Plionis 1991; Coles, Davies & Pearson 1996), though our ap-
proach is novel. Our routine blends the CONTOUR3D algorithm of
Weinberg (1988) with the integral geometric method for comput-
ing the functionals on smoothed fields, detailed by Schmalzing &
Buchert (1997). Starting from a three-dimensional array, it sums the
contribution to the four Minkowski functionals at each array node,
where the contribution for each cell configuration about a node is
retrieved from a pre-computed table. The notable distinction with
respect to previous implementations is that the cell configurations
now admit three values for a cell, corresponding to the cell being
above the threshold, below the threshold and not in the survey re-
gion. This section describes how the look-up tables for contributions
to the Minkowski functionals are computed, how the cell config-
urations are indexed and how the thresholding and summation are
carried out. We validated our code using tests on a Gaussian random
field generated from the WiggleZ survey galaxy power spectrum,
including selection functions.

The theoretical necessity of an attentive study of boundaries
can be understood from the Gauss–Bonnet theorem. Let M be
a two-dimensional surface separating regions above and below the
threshold, and ∂M be the interface between this surface and re-
gions outside the survey. Then the Euler characteristic χ , the fourth
Minkowski functional, can be evaluated in relation to the Gaussian
curvature K of the surface and the geodetic curvature kg along the
boundary:∫

M
K dA︸ ︷︷ ︸

=4π(1−g)

+
∫

∂M
kg ds = 2π χ (M). (A1)

The importance of the boundary term is that, when the surface is
closed, the second integral vanishes and the Euler characteristic is
interpreted geometrically as the genus of the surface (χ = 2 − 2g).
However, in the case of survey data it is not possible to assert that
the surface is closed – one has no knowledge of the field outside
the survey boundary. The integral geometric algorithm for comput-
ing the Minkowski functionals computes the left-hand side of this
equation, incorporating the boundary term. This produces incor-
rect results for the surface area, curvature and Euler characteristic
functionals, a simple demonstration of which is the limit where all
of the survey region is above the density threshold: there are no
interfaces between regions above and below the threshold, so the
Minkowski functionals should have values {v0, v1, v2, v3} = {1, 0,
0, 0}; yet if the computation includes the boundary term, the latter
three functionals will all be non-zero.

Inevitably, the boundary term must be subtracted, allowing the
functionals to achieve their natural interpretations as volume, area,
curvature and genus and to match the theoretical formulae for these
quantities that have been developed to date. This is achieved on-the-
fly by requiring that the contributions to the Minkowski functionals
at each node be altered in the presence of boundaries, which in turn
mandates that this implementation operate on a ternary, rather than
binary, threshold array.

A1 Computing Minkowski functionals with integral geometry

To discover how such a computation can be carried out, it is nec-
essary to return to the fundamentals of Minkowski functional mea-
surement on smoothed fields in cosmology, explicated most fully in
the dissertation of Jens Schmalzing and summarized in his papers

thereafter (Schmalzing & Buchert 1997).1 Crofton’s 1868 formula
for evaluating the length of a curve by counting its intersections with
straight lines drawn through the plane can be extended to the surface
in three dimensions. This casts the computation of these functionals
as an integral over the intersections between the threshold surface
and all possible hyperplanes. When the threshold surface is embed-
ded in an array, however, the hyperplanes are those parallel to the
lattice, so that the computation of the geometric properties of the
surface is reduced to combinatorics of the point, line, surface and
cube components of the cells within it.

In the absence of a survey boundary, the threshold surface de-
fines a binary array of cells above and below the critical density.
Identifying the cells above the threshold as those composing the
volume, the total number of unique vertices N0, edges N1, faces N2

and cubes N3 within this volume, including those on its surface, are
counted to give the Minkowski functionals (Schmalzing & Buchert
1997)

v0 = a3

V
N3 (A2)

v1 = a2

V

2

9
(N2 − 3N3) (A3)

v2 = a

V

2

9
(N1 − 2N2 + 3N3) (A4)

v3 = 1

V
(N0 − N1 + N2 − N3) . (A5)

Here, a is the physical length scale of an individual cell and V the
physical volume of the field (i.e. V = a3N, where N is the number
of cells in the array), so that the Minkowski functionals vk are all
expressed in physical units and as a fraction of the total volume of the
field. The totals Nk are evaluated by summing the local contribution
nk at each node across the whole array.

This reduces the computation of the Minkowski functionals to a
counting problem and remains valid even in the presence of survey
boundaries. The crucial change when such a boundary is present is
that the weight assigned to a cell component at the survey interface
is reduced. To discover the manner in which this occurs, consider
the case where the survey volume consists of a single cell of unit
size, above the threshold density, surrounded entirely by unit cells
outside the survey volume. Once again, by geometric argument the
Minkowski functionals of this survey region are {v0, v1, v2, v3} =
{1, 0, 0, 0}, yet equations (A1)–(A4) will return

{v0,1,2,3} =
{

1,
2

9
(6 − 3),

2

9
(12 − 12 + 3), (8 − 12 + 6 − 3)

}
.

This is resolved by reducing the contribution of a cell component
to the count nk from 1 to 1 − nb/23 − k, where nb is the number of
cells outside the survey boundary with which the cell component is
in contact. In this particular case, each vertex will now contribute
1 − 7

8 , each edge 1 − 3
4 and each face 1 − 1

2 . When the adjacent
cells are not all outside the survey region, these weightings can take
other integer multiples of 1

8 , 1
4 and 1

2 (between 0 and 1) for vertices,
edges and faces, respectively. It would not be uncharitable to char-
acterize as incomplete our understanding of why this reweighting

1 This is an appropriate point for us to express our sadness at the tragic and
untimely passing of Jens Schmalzing in 2005, whose work retains its great
value to our field through its far-sighted understanding and uncompromising
clarity of prose.
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scheme succeeds. Some further clarifying examples will be pro-
vided in the sections below, after the numerical indexing scheme is
described.

A2 Indexing scheme

Computing the number of cell components nk comprising the thresh-
olded region, without double counting, can be achieved by indexing
each component uniquely to an array node. An arbitrary node within
the array is surrounded by eight cells, of which one is assigned to that
node; 12 faces, of which three are assigned to that node; six edges,
of which three are assigned to that node; and one vertex, the node it-
self. This configuration is demonstrated in Fig. A1. This means that
each node can contribute {0, 1

8 , 2
8 , . . . , 1} vertices, {0, 1

4 , 1
2 . . . , 3}

edges, {0, 1
2 , 1, . . . , 3} faces and {0, 1} cubes to each of the totals

nk.

Algorithm 1 counts weighted contributions at node

Require: a 23 ternary array, A
n0 ← or(A[:, :, :] = 1) × (1 − 1

8 �(A[:, :, :] = 2))
n1 ← or(A[1, :, :] = 1) × (1 − 1

4 �(A[1, :, :] = 2)) + prms.
n2 ← or(A[1, 1, :] = 1) × (1 − 1

2 �(A[1, 1, :] = 2)) +prms.
n3 ← (A[1, 1, 1] = 1)

Given this specification, algorithm 1 evaluates the number of
vertices, edges, face and cubes, with proper weightings for survey
boundaries, at an individual node. In this notation, ‘=’ is used in
the sense of logical evaluation, returning 1 when the condition is
true, and returning a binary array of the same size as the object on
the left-hand side; or (X) evaluates true when any member of the

Figure A1. Visual description of the node indexing scheme used in this
algorithm. Cell components are assigned to each array node (centre) as
follows: one vertex (centre, large point), three edges (thickened lines), three
faces (opaque shading) and one cube (shaded). This scheme ensures that
every vertex, edge, face and cube within the array will be evaluated exactly
once by looping over, or vectorized summation of, the array nodes.

Figure A2. Examples of possible configurations, where red cells are above
the threshold, empty cells below and blue cells outside the survey volume.
The left configuration yields n0,1,2,3 = { 6

8 , 3
4 + 1 + 2

4 , 1, 0} and the right

configuration yields n0,1,2,3 = { 6
8 , 1 + 3

4 + 3
4 , 1 + 1 + 1

2 , 1}.

array slice X is true; and �(X) is the sum over an array slice. Each
of the three faces and edges indexed to the node is tested separately
and these permutations have been suppressed in the expression for
n1 and n2.

Some examples may demonstrate this computation more clearly.
Consider the arrangement shown in Fig. A1, assuming that the
shaded cell is above the threshold and all others are both in the
survey region and below the threshold. The contributions nk at this
node will be {1, 3, 3, 1}. Two trickier configurations (numbers 1380
and 3647 in the sequence of 38) are shown in Fig. A2.

A3 Cell configurations for Minkowski functional
contributions

The algorithm examines the cell configuration at each node, count-
ing the contribution from each cell component attached to that node.
We use an unbalanced2 ternary labelling system, where cells within
the survey region and below the threshold are set to 0, those above
the threshold to 1 and those outside the survey region to 2. There
are, therefore, 38 possible configurations for the cell values about
each node, which are enumerated by the following extension of the
Weinberg (1988) scheme:

s1 = 33(1, 1, 1) + 32(1, 1, 2) + 3(1, 2, 2) + (1, 2, 1)

s2 = 33(2, 1, 1) + 32(2, 1, 2) + 3(2, 2, 2) + (2, 2, 1)

s = 34s1 + s2 + 1, (A6)

where (i, j, k) is shorthand for the value of the corresponding cell
within the 23 block surrounding the node. In the following we refer
to this as a function IDX mapping a 2 × 2 × 2 cell configuration
to an index s. The cell (1, 1, 1) is identified with shaded cube in
Fig. A1.

Algorithm 2 Generate lookup table

for c = 0 → 38 − 1 do
n ← base3(c) {i.e., n is c in base 3, with 8 digits}
A ← reshape(n, [2, 2, 2]) {pack digits into 23 array}
s ← idx(A)
[n0(s), n1(s), n2(s), n3(s)] ← counts(A)

end for

2 The balanced scheme, where cells outside the survey are set to −1, is
conceptually attractive but cumbersome to compute.
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To speed up evaluation of the total counts Nk across the array,
a lookup table is used. Algorithm 2 describes how this table is
generated and indexed to node configurations, using the function
COUNTS described in algorithm 1. Given a three-dimensional ternary
array representing the thresholded density field, one determines the
configuration at each node of the array using the function IDX and
adds the contribution nk(s) from the table, summing these local

contributions to give the total counts Nk that are the variables in
equations (A1)–(A4).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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