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ABSTRACT

We present new and accurate measurements of the cosmic distance—redshift relation, span-
ning 0.2 < z < 1, using the topology of large-scale structure as a cosmological standard
ruler. Our results derive from an analysis of the Minkowski functionals of the density field
traced by the WiggleZ Dark Energy Survey. The Minkowski functionals are a set of statistics
which completely describe the topological nature of each isodensity surface within the field,
as a function of the density value. Given the shape of the underlying matter power spec-
trum, measured by fluctuations in the cosmic microwave background radiation, the expected
amplitudes of the Minkowski functionals are specified as an excursion set of a Gaussian
random field, with minimal non-Gaussian corrections for the smoothing scales >10 h! Mpc
considered in this analysis. The measured amplitudes then determine the cosmic distance
Dy(z), which we obtain with 3—7 per cent accuracies in six independent redshift slices,
with the standard ruler originating in the known curvature of the model power spectrum at
the smoothing scale. We introduce a new method for correcting the topological statistics
for the sparse-sampling of the density field by the galaxy tracers, and validate our overall
methodology using mock catalogues from N-body simulations. Our distance measurements
are consistent with standard models which describe the cosmic expansion history, and with
previous analyses of baryon acoustic oscillations (BAOs) detected by the WiggleZ Survey,
with the topological results yielding a higher distance precision by a factor of 2. However,
the full redshift-space power-spectrum shape is required to recover the topological distances,
in contrast to the preferred length scale imprinted by BAOs, which is determined by simpler
physics.
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1 INTRODUCTION

The large-scale structure of the Universe, mapped by large galaxy
surveys, is one of the principal tools for testing the physical laws
on cosmological scales, in particular the unknown nature of the
‘dark energy’ which appears to dominate today’s Universe. The
pattern of the galaxy distribution is sensitive to the matter and en-
ergy constituents of the Universe, the cosmic expansion history,
and the gravitational physics which amplifies the initial density
seeds into today’s web of structure. However, it is also affected by
processes for which there currently exists no complete model: the
non-linear gravitational evolution of structure beyond perturbation
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theory, redshift-space distortions due to galaxy peculiar velocities,
and galaxy bias, which describes the complex astrophysical man-
ner in which the observed galaxy distribution traces the underlying
mass. The major challenge for cosmological analyses of large-scale
structure is to extract robust information about the underlying cos-
mological quantities in the presence of the poorly modelled non-
linear or astrophysical effects.

For example, one of the most important methods for obtaining
robust cosmological information from large-scale structure surveys
is to use the baryon acoustic oscillations (BAOs) encoded in the
clustering pattern as a standard ruler to map out the cosmic ex-
pansion history (Eisenstein, Hu & Tegmark 1998; Blake & Glaze-
brook 2003; Seo & Eisenstein 2003). This technique exploits a
preferred length scale imprinted in the clustering of galaxies, a
late-time signature of the sound waves which propagated in the
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pre-recombination Universe (Peebles & Yu 1970; Sunyaev & Zel-
dovitch 1970; Hu & Sugiyama 1996). This preferred scale, accu-
rately calibrated by measurements of the cosmic microwave back-
ground (CMB) radiation, may be extracted from the galaxy survey
observations in a manner which is independent of any other de-
tails of the clustering pattern (e.g. Anderson et al. 2012). This is
an attractive approach because the general clustering pattern is sub-
ject to the non-linear and astrophysical distortions mentioned above
(e.g. Eisenstein, Seo & White 2007; Smith, Scoccimarro & Sheth
2008; Seo et al. 2008), which may be harder to model. However,
seen from another viewpoint, this ‘model-independent’ technique
excludes information which may in principle be used to improve
cosmological constraints. The BAO standard-ruler method has now
been applied to a number of galaxy surveys to map out the cosmic
expansion history across a wide range of redshifts (e.g. Eisenstein
et al. 2005; Percival et al. 2010; Beutler et al. 2011; Blake et al.
2011c; Anderson et al. 2012; Busca et al. 2013).

The measurement of BAOs is an example of the use of two-point
clustering statistics, such as the correlation function or power spec-
trum, which are almost ubiquitous for testing cosmological models
using galaxy surveys. However, the two-point statistics do not de-
scribe all of the information contained in the cosmological density
field. Lacking any sensitivity to the phases of the underlying density
Fourier modes, they specifically filter out the direct morphological
information which is most striking in any visual examination of the
‘cosmic web’: its filamentary nature of inter-connected voids, walls
and nodes. Indeed, two completely different spatial patterns could
display the same two-point correlation function (e.g. Martinez et al.
1990). A more complete description of the information can make
use of a hierarchy of correlation functions, but these are cumber-
some to implement beyond the three-point function, and modelling
their non-linear evolution presents difficulties.

A less-studied but promising alternative approach for extract-
ing information from large-scale structure surveys is to quantify
the topological statistics of the cosmological density field. In this
study we focus on the Minkowski functionals (Mecke, Buchert &
Wagner 1994), a set of statistics supplied by integral geometry for
the complete morphological specification of spatial patterns. The
Minkowski functionals are computed from a density field, follow-
ing smoothing by a Gaussian filter, by considering the topological
nature of the surfaces formed by each isodensity threshold. In par-
ticular, for each surface, the four Minkowski functionals describe
the volume enclosed, surface area, curvature and ‘connectivity’ (for-
mally defined by either the Euler characteristic or genus statistic).
We note that a number of alternative topological approaches exist
for quantifying large-scale structure such as studies of cosmic voids
(Lavaux & Wandelt 2012), wavelet analysis (Martinez, Paredes &
Saar 1993), minimal spanning trees (Barrow, Bhavsar & Sonoda
1985) and multiscale morphology filters (Aragon-Calvo, van der
Weygaert & Jones 2010).

Topological statistics are worth exploring as a test of cosmologi-
cal models because they may be robust against some of the system-
atic non-linear processes which are typically difficult to model in
the correlation functions (Melott, Weinberg & Gott 1988; Matsubara
2003; Park & Kim 2010). In particular, any process which modi-
fies the density field, preserving the rank-ordering of density from
its initial state, will not affect the topology of isodensity contours
enclosing a given fraction of volume (Gott, Dickinson & Melott
1986); nor does the continuous deformation of a structure affect
its topological connectedness. As such, the Minkowski function-
als are completely unaffected by linear structure growth and local,
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monotonic, non-linear galaxy bias. Moreover, they are only very
weakly distorted by non-linear gravitational evolution and redshift-
space distortions (Matsubara 1994; Matsubara & Yokoyama 1996).
In summary, the topology of the density field in comoving space
is exactly conserved over time during linear evolution, and non-
linear corrections remain small for scales >10 /! Mpc. Indeed, we
determine that the most important systematic modelling issue in
our analysis is not non-linear evolution, but the ‘sparse-sampling’
distortions arising when the smoothing scale of the Gaussian filter
is comparable to the mean inter-galaxy separation (James 2012).
We also note that, even if the initial density statistics were signif-
icantly non-Gaussian, the topological statistics would nonetheless
be conserved during linear evolution.

The pattern of matter overdensities today reflects the distribution
of ‘seeds’ from which they were formed. If this initial distribution
constituted a Gaussian random field as assumed in this study, pre-
dicted by simple models of inflation, and supported by observations
of the CMB, then the Minkowski functionals of the smoothed den-
sity field have simple analytic forms. In this case the dependence
of the functionals on the isodensity threshold v is a known func-
tion of v, regardless of the power spectrum of the field, with an
unknown overall normalization that only depends on the shape of
the underlying power spectrum at the smoothing scale. If the shape
of this power spectrum is known, then theory predicts each of the
Minkowski functionals, independently of the normalization of the
underlying power spectrum.

A measurement of the Minkowski functional amplitudes is then
sensitive to the cosmic distance—redshift relation in two ways, which
allow a ‘standard-ruler’ technique to be applied (Park & Kim 2010;
Zunckel, Gott & Lunnan 2011). First, the distance-redshift rela-
tion determines the physical length scales mapped by the survey,
and hence the amplitudes of the Minkowski functionals in dimen-
sional units. Secondly, the smoothing scale applied when filtering
the density field in order to perform these measurements assumes
a fiducial distance-redshift relation, and selects a scale in the un-
derlying model power spectrum to which the measurements are
sensitive. For a power-law power spectrum these two effects are
precisely degenerate, yielding no sensitivity of the Minkowski func-
tional amplitudes to the distance scale. However, if the underlying
power spectrum possesses a curvature which is accurately known,
for example using models fit to CMB observations, then this curva-
ture may be used as a standard ruler to match the smoothing scale
which has been applied to the data. For a narrow redshift slice z of
a galaxy survey, the resulting observable is the ‘volume-weighted’
distance Dv(z), identical to the quantity measured by BAO surveys
using the angle-averaged correlation function.

The aim of our study is to measure these topological statistics
using data from the WiggleZ Dark Energy Survey (Drinkwater et al.
2010), which is one of the largest existing large-scale structure sur-
veys, and provides a uniquely long redshift baseline (0.2 < z < 1) for
testing the cosmological model. We use the Minkowski functional
amplitudes to measure the distance—redshift relation Dy(z) and
compare the result to analyses using BAOs (Blake et al. 2011c¢), val-
idating our techniques using mock galaxy catalogues from N-body
simulations. In comparison to previous analyses which have focused
on measuring just one of the Minkowski functionals, the genus
statistic, from the Sloan Digital Sky Survey (Gott et al. 2009; Choi
et al. 2010) or from large N-body simulations (Kim et al. 2011), we
implement some new methodological developments: (1) we apply a
new method of estimating the galaxy density field correcting for the
survey selection function; (2) we measure and utilize all Minkowski
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functionals rather than just the genus statistic; (3) we advocate and
apply a study of the differential Minkowski functionals rather than
the integral versions, in order to reduce covariance between mea-
surements at different values of v; (4) we measure this covariance
between different density thresholds and functionals, and propa-
gate this information into our cosmological fits; (5) we prescribe a
method for correcting our measurements for sparse-sampling.

Our paper is structured as follows. In Section 2 we describe the
various data sets employed in our analysis, including the WiggleZ
galaxy survey and mock catalogues. In Section 3 we present the
Minkowski functional measurements and modelling. In Section 4
we extract the Minkowski functional amplitudes and their covari-
ances, to which we fit cosmological models in Section 5. We present
our conclusions in Section 6.

2 DATA

2.1 The WiggleZ Dark Energy Survey

The WiggleZ Dark Energy Survey (Drinkwater et al. 2010) is a
large-scale galaxy redshift survey of bright emission-line galaxies
over the redshift range z < 1, which was carried out at the Anglo-
Australian Telescope between 2006 August and 2011 January. In
total, of the order of 200 000 redshifts of UV-selected galaxies were
obtained, covering of the order of 1000 deg” of equatorial sky. In
this study we analysed the same final WiggleZ galaxy sample as
utilized by Blake et al. (201 1c¢) for the measurements of BAOs in the
galaxy clustering pattern. After cuts to maximize the contiguity of
the observations, the sample contains 158 741 galaxies divided into
six survey regions — the 9-h, 11-h, 15-h, 22-h, 1-h and 3-h regions.
The survey selection function within each region was determined
using the methods described by Blake et al. (2010).

2.2 The Gigaparsec WiggleZ simulation volume

We tested our methodology using data from the Gigaparsec Wig-
gleZ (GiggleZ) N-body simulation (Poole et al., in preparation),
a 2160° particle dark matter simulation run in a 14~' Gpc box
(with resulting particle mass 7.5 x 10° A~' M). The cosmologi-
cal parameters used for the simulation initial conditions were [2,,
Qy, 1, h, 03] = [0.273, 0.0456, 0.96, 0.705, 0.812]. Bound struc-
tures were identified using suBrIND (Springel et al. 2001), which
uses a friends-of-friends (FoF) scheme followed by a sub-structure
analysis to identify bound overdensities within each FoF halo. We
employed each halo’s maximum circular velocity Vi, as a proxy
for mass, and used the centre-of-mass velocities for each halo when
introducing redshift-space distortions.

Using the GiggleZ simulation halo catalogues we created one
independent, complete realization of the set of six survey regions
compromising the WiggleZ data set. We constructed these mock
catalogues by first selecting a subset of dark matter haloes span-
ning a small range of V;,,, around 125kms~', chosen to possess
a similar clustering amplitude to the WiggleZ galaxies, and corre-
sponding to halo masses around 10'% /~! M@ . We then subsampled
these haloes using the survey selection function in each region to
match the observed number of galaxies. The GiggleZ mock cata-
logues were used for testing the cosmological fits to the topological
statistics for systematic errors, by checking for any significant devi-
ation between the best-fitting parameters and the input cosmology
of the simulation.

2.3 Lognormal density field catalogues

For each WiggleZ survey region we also constructed an ensemble
of 400 lognormal realizations using the method described by Blake
et al. (2011b). Lognormal realizations, which are Poisson-sampled
from a density field built from a fiducial power spectrum model,
are relatively cheap to generate and provide a reasonably accurate
description of two-point galaxy clustering for the linear and quasi-
linear scales important for this analysis. Work is in progress to
construct a larger set of N-body simulation mock catalogues for the
WiggleZ survey, although this is a challenging computational prob-
lem because the typical dark matter haloes hosting the star-forming
galaxies mapped by WiggleZ have mass ~10'> A~ My, which (for
example) is about ~20 times lower in mass than a Luminous Red
Galaxy sample. The lognormal catalogues were subsampled using
the survey selection function in each region to match the observed
number of galaxies. They were used for determining the covariance
matrix of the topological statistics at different density thresholds
and the sparse-sampling correction, both described in more detail
below.

2.4 Construction of the smoothed density fields

The cosmological density field of each data set was constructed
from the galaxy point distribution by smoothing with a Gaussian
filter. In the smoothing process we must also correct for the effect
of the varying survey selection function W (x) with position x. We
introduce here a modification to the reconstruction method used in
previous studies (e.g. Vogeley et al. 1994; James et al. 2009).

The previously existing methodology may be summarized as fol-
lows: (i) each galaxy within the data sample (D) is weighted with
the value 1/W(x) and placed in a (padded) three-dimensional ar-
ray using a nearest-grid-point binning; (ii) these data are smoothed
with a Gaussian (G) of standard deviation R; (iii) the systematically
lower density near the survey boundaries induced by the smoothing
is characterized by smoothing an array (C) that has constant value
inside the survey volume and zero outside; (iv) finally, the smoothed
D field is taken in ratio with the smoothed C field, after which topol-
ogy of structure within the resulting field can be studied. Formally,
this process may be written as

F=[(D/W)® G]/IC ® G, )

where ® is used to denote convolution.

The alternative that we propose and implement here is: (i) do not
weight the galaxies initially and instead smooth the galaxy counts
in cells D as they are; (ii) instead of creating a comparator field of
constant value inside the survey region, weight the constant field
by the selection function C x W(x); (iii) smooth this weighted
comparator field, which again is used in ratio with the smoothed
data. In the notation described immediately above, this process may
be summarized as:

F'=[D®G]/I(C x W)® G]. @

The motivation for the latter scheme is to apply the selection func-
tion to the data in a smoother and more global way, rather than
locally at the site of each galaxy. In this sense, it is closer in spirit
to the methodology used for correlation function estimation. These
two schemes are identical in the limit that the selection function
does not vary over the scale of the smoothing volume.

Fig. 1 shows two isodensity surfaces within the reconstructed
density field of the WiggleZ survey 15-h region for the redshift range
0.3 < z < 0.9, using a Gaussian smoothing scale R = 20 h~' Mpc.
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Figure 1. Density contours in the WiggleZ survey 15-h region for a smoothing scale of 20 2~! Mpc, extending from z = 0.3 (right of image) to z = 0.9, with
the contouring chosen to excise the highest (red) and lowest (blue) 20 per cent of volume within the field.

The isodensity values have been chosen so as to excise the highest
and lowest density fifths of the field by volume, and the surfaces
display the relative disconnectedness of structure that is expected
for regions this far removed from the median density. The apparent
uniformity of the topology of the structure with redshift relies on an
accurate correction of the effects of the survey selection function,
and the smoothness of the structures themselves is determined by
the choice of filter.

3 MINKOWSKI FUNCTIONAL ANALYSIS
OF GALAXY SURVEY DATA

3.1 Overview of Minkowski functional methodology

This work studies the topology of large-scale structure using the
four Minkowski functionals of (the boundary surface of) excursion
sets cut from the density field. An excursion set is constructed from
the smoothed density field by choosing a critical density threshold
(p.); regions of density above this value are identified as being
within the surface. The Minkowski functionals, which we computed
by the algebraic means described in Appendix A, are identified
geometrically with the enclosed volume, surface area, curvature and
genus of the excursion set boundary surface. Hadwiger’s theorem
yields the result that these four statistics form a complete geometric
description of the salient properties of the surface (see Chen 2004
for a recent review). Minkowski functionals have been explored in
the context of cosmology by several authors for almost two decades
(early analyses include Mecke et al. 1994; Kerscher et al. 1997;
Schmalzing & Buchert 1997).

For convenience we remap the density threshold parameter p. to
a variable v € (—oo, 0o) which is defined such that the fraction of
volume Vi, enclosed by a given isodensity surface is

1 ®° 1
Vfrac(v) = e’ 22 dv' = — erfc L . (3)
21t Sy 2 V2

This step ensures that the first Minkowski functional — the enclosed
volume —is identically an error function irrespective of the structure
of the density field. Consequently, it is the three remaining func-
tionals, which we studied as a function of v, that possess dispositive
statistical power in the analysis.

This density transformation is equivalent to the Gaussianization
process of Weinberg (1992) employed in studies of reconstructing

the linear-regime power spectrum (Neyrinck, Szapudi & Szalay
2011)
3 B
Jo® = fo where f(8) = erf™! {/ JC)) dé/} . 4
Ofs )

This transformation maps the one-point density distribution f{§) of
the field to that of the normal distribution with mean fg and standard
deviation o, preserving the ordering of regions from highest to
lowest. It is also very similar to the lognormal transformation, given
that the cosmological density field obeys a lognormal distribution
even to the smallest scales we study in this work (Coles & Jones
1991; Taylor & Watts 2000; Watts & Taylor 2001).

The parameter v indexes the surfaces drawn through the density
field. The first two useful Minkowski functionals describe the area
and curvature of these surfaces. There is less immediate geometric
intuition for the final functional: the total connectedness, or genus
statistic g. It is defined as the arithmetic difference between the
total number of holes through the filamentary structure and its total
number of disjoint components,

v

g = number of holes — number of isolated regions + 1. 5)

The natural interpretation in the context of the cosmological density
field is that the genus number measures how connected (when g > 0)
or disjoint (g < 0) regions of a given density tend to be. Its numerical
calculation often occurs indirectly via the computation of the total
Gaussian curvature of the surface, a differential geometric technique
introduced by Weinberg, Gott & Melott (1987). In this work we
compute an equivalent statistic, the Euler characteristic [=47t(1 —
2)1, as the final Minkowski functional.

3.2 Minkowski functionals of a Gaussian random field

The cosmological density field may be approximated, when fil-
tered at certain scales, as a Gaussian random field. The theory of
the statistics of excursion sets of such fields has been studied by
many authors in contexts of cosmology and geometric statistics
(Doroshkevich 1970; Adler 1981; Bardeen, Steinhardt & Turner
1983; Bardeen etal. 1986; Hamilton, Gott & Weinberg 1986; Tomita
1986; Gott, Weinberg & Melott 1987; Ryden 1988; Ryden et al.
1989; Matsubara 2003). For a three-dimensional Gaussian random
field with power spectrum P(k), smoothed by a Gaussian kernel
G(x) = e"®¥/2R wyith rms width R, the curves of the Minkowski
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functionals v,, in terms of the density parameter v, have a known
analytical form,

valv; P(K); R] = A, [P(k); R1e™ /% H, 1 (v). (6)

Here, values of n = {0, 1, 2, 3} correspond to the volume, surface
area, mean surface curvature and Euler characteristic, respectively,
with H, referring to the Hermite polynomial of degree n

H,(v) ="/ (_i> (e ), 7
dv

so that

Ho(w) = 1; Hi(v) = v; Hy(v) =" — 1, ®)

with the extension (Matsubara 2003)

s V22 Y
H,](V) = E e erfc ﬁ . (9)

The amplitude functional of the curves, A,, is related to the power
spectrum and smoothing scale in the following manner:

1 3 o2[P(k);R] \"* 10)
(27—[)(n+1)/2 w3y Wy 3 0()2[P(k)s R] ’

A, [P(k); R] =

where w, = /2 /T"(n/2 + 1) —in particular, wy = 1, w; =2, w2 =T
and w3 = 47/3 — and the generalized variance functionals are

1 : 2
o7 [P(k); R] = ﬁ/kz«’“ P(k)ye ©F dk. an

We note that the dimensions of 4,,, hence v, are (length) ™" — these
equations describe the predicted Minkowski functionals per unit
[length, area, volume] for n = {1, 2, 3}, matching the dimensions
of the estimators described in the Appendix.

We now provide some intuition for the physical meaning of the
ratio of power spectrum integrals that appear in equation (10), and
for its dependence on the cosmological distance scale adopted to
analyse the survey data. Although in practice we always evalu-
ate the exact integrals of equation (11), we note that the function
k*+2¢=*F* \which weights the power spectrum in the integrals,
peaks at wavenumber k = /T + j /R, and hence equation (11) ap-
proximately represents the ratio of two power spectrum amplitudes
evaluated at scales 1/R and +/2/R (i.e. between two wavenumbers
in a fixed ratio near 1/R):

PR

All ~ C”
P(1/R)

) (12)

where C, is a constant. In other words, A, intuitively depends on
the effective slope of the power spectrum at the smoothing scale.
Assuming a power-law power spectrum P(k) o k™ as a concrete
example, we can exactly solve the integrals to find that

34+m\"?
G )

Now suppose we change the distance scale used to analyse the
survey data, dilating all distances by a factor . We follow the
normal analysis practice for large-scale structure surveys, keeping
the data measurements fixed and transferring the o dependence
to the model. For fixed data there are two changes to model: (1)
the smoothing scale R is effectively dilated to «R, and (2) there
is an amplitude factor o” corresponding to the dependence of the
estimators in Appendix A on (length) ™. For the case of a power-law
P(k), for which A,, o« R™", we can see that these two shifts cancel in
equation (13) such that the model amplitudes have no dependence on

A, =C,R™" ( (13)

the dilation scale «, hence cannot be used to constrain the distance
scale, only the power-law slope m.

However, for a non-power-law P(k), the model Minkowski func-
tional amplitudes pick up a dependence on the distance-scale «. In
the intuitive form used in equation (12):

n/2
P(v/2/aR)

A, ~C,a"
P(1/aR)

(14)

The ‘curvature’ of the power spectrum P(k) at the smoothing scale
hence provides the ‘standard ruler’ which links the Minkowski func-
tional amplitudes to the underlying distance scale.

In order to construct the model galaxy power spectrum that ap-
pears in equation (11), we started by generating a matter power
spectrum using the camp software package (Lewis, Challinor &
Lasenby 2000). We assumed the following values for the cosmo-
logical parameters: matter density €2,, = 0.27, Hubble parameter
h = 0.71, physical baryon density Q,4* = 0.0226, primordial spec-
tral index n; = 0.96 and normalization o3 = 0.8, inspired by CMB
measurements from the Wilkinson Microwave Anisotropy Probe
(WMAP) satellite (Komatsu et al. 2011); we consider variations
of this fiducial cosmological model in Section 5, including the re-
cent results reported by the Planck satellite (Planck Collaboration
2013). We corrected the power spectrum for non-linear evolution
using the ‘halofit’ prescription of Smith et al. (2003). This model
power spectrum was subject to further modifications as described
in Section 3.3. We found that using the ‘halofit’, rather than linear,
power spectrum to predict the Minkowski functional amplitudes
was necessary to reproduce the results of the simulations.

Fig. 2 displays the integrand of equation (11) for j = (0, 1) as a
function of Ink, k3 P(k) e ***’, for our fiducial power-spectrum
model, illustrating the range of scales to which the topological
statistics are sensitive for the smoothing lengths adopted in our
analysis. We note that the information is dominated by linear-regime
scales k < 0.15hMpc~!.

10

R
b - K P WAKR) .

0.1

Integrand

107% 107 107° 0.01

k [h/Mpc]

Figure 2. The integrands in k-space, given our fiducial power spectrum
model, used in the determination of the amplitudes of the Minkowski func-
tionals in equation (11), illustrating the range of scales to which these
statistics are sensitive. The solid and dashed lines illustrate the integrands
of 0'02 and 0'12, respectively, and the four sets of curves, from top-right to
bottom-left, correspond to the four Gaussian smoothing lengths R = (10,
20, 30, 40) A~ Mpc used in our analysis. Noting the logarithmic y-axis of
the figure, we conclude that our measurements are principally sensitive to
linear-regime scales k < 0.15 2 Mpc~!.
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Fig. 3 illustrates the unnormalized shapes of the n = (1, 2, 3)
Minkowski functionals for a Gaussian random field, with a view
to providing some intuition for the statistics. We note the symme-
try of these functions for positive and negative v, such that the
surfaces enclosing overdense and underdense regions possess sim-
ilar topological properties. In the left-hand panel, the area of these
surfaces can be seen to vanish for the highest and lowest density
values as expected, and to peak at average density. In the middle
panel, the integrated mean curvature of the surfaces also tends to
zero for the highest and lowest density regions, owing both to their
vanishing area and to the fact that at such maxima the surfaces
become spherical, and the sphere is the structure which minimizes
integrated mean curvature. In the right-hand panel, the Euler char-
acteristic also approaches zero for the highest and lowest peaks,
given the diminishing number of regions in these limits. For large
(moderate) departures from the mean density, the surfaces are pref-
erentially disjoint (connected), corresponding to positive (negative)
Euler characteristic, with a transition at v = £1 owing to a cancel-
lation between the number of isolated regions and the number of
holes specified in equation (5).

3.3 Modifications for non-linear processes

3.3.1 Galaxy biasing

An attractive property of the Minkowski functionals is that the
density parameter v undoes the process of any local, monotonic
galaxy biasing scheme, such that in this model there is no effect
of galaxy bias on the Minkowski functionals (Matsubara 2003), a
result that remains true even in second-order perturbation theory
for weakly non-Ga