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Abstract

The development of mechanisms to under-
stand and model the expected behaviour of
multiagent learners is becoming increasingly
important as the area rapidly find applica-
tion in a variety of domains. In this paper we
present a framework to model the behaviour
of Q-learning agents using the ǫ-greedy ex-
ploration mechanism. For this, we analyse a
continuous-time version of the Q-learning up-
date rule and study how the presence of other
agents and the ǫ-greedy mechanism affect it.
We then model the problem as a system of
difference equations which is used to theoret-
ically analyse the expected behaviour of the
agents. The applicability of the framework is
tested through experiments in typical games
selected from the literature.

1. Introduction

Multiagent Learning (MAL) has become one of the
most active areas of Artificial Intelligence. As MAL-
based systems find application in wide variety of do-
mains, the development of mechanisms to understand
and model the expected behaviour of multiagent learn-
ers is becoming increasingly important. The advan-
tages of having such mechanisms are many. For in-
stance, MAL systems usually have parameters that
need to be adjusted so the overall behaviour of the sys-
tem can be optimized. The usual approach to setup
those parameters is to execute extensive experimenta-
tion with different configurations and to aggregate the
outcomes in the hope of finding some useful informa-
tion (Vidal & Durfee, 2003). A better understanding
of the expected behaviour can help the system’s de-
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signer in the task.

In this paper we investigate the case of Multiagent Q-
learning with ǫ-greedy exploration. Q-learning is cer-
tainly one of the most studied Reinforcement Learn-
ing (RL) algorithm and has been applied with success
in several domains, from relatively simple toy prob-
lems, such as Cliff-Walking (Sutton & Barto, 1998),
to more complex ones, such as web-based education
(Iglesias et al., 2008) and face recognition (Harandi
et al., 2008). Initially proposed for single-agent envi-
ronments, the simplicity and effectiveness of this al-
gorithm has led to its application also in multiagent
configurations, for example Galstyan et al. (2004) and
Ziogos et al. (2007). In this case, however, its support-
ing theoretical framework and convergence guarantees
are lost.

One of the difficulties of the multiagent case is to cope
with the very dynamic environment generated by mul-
tiple learners. There is also the co-adaptation effect, in
which one agent adapts its strategy to the others’, and
vice-versa, in a cyclic fashion. In addition, the rewards
that one agent receives depend on the actions of the
other agents. All these features make it especially dif-
ficult to predict and to model the learning behaviour
(Panait & Luke, 2005).

An important research in the area is the work of Tuyls
et al. (2003). The authors studied the case of Q-
learning agents with Boltzmann exploration. They
developed a continuous time model for the learning
process and have shown a link between the model and
the Replicator Dynamics (RD) of Evolutionary Game
Theory (Hofbauer & Sigmund, 1998). The main prin-
ciple of the RD is that the growth in the probability of
playing a given action is directly proportional to the
performance of that action against the others. The
ǫ-greedy mechanism, however, produces different dy-
namics. This mechanism defines a semi-uniform prob-
ability distribution in which the current best action is
selected with probability 1 − ǫ and a random action
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with probability ǫ. Hence, that research cannot be
directly applied in our case.

The importance of obtaining a model for Multia-
gent Q-learning with ǫ-greedy exploration is justified
through its large number of applications. For example:
Galstyan et al. (2004) applies the algorithm to develop
a decentralized resource allocation mechanism; Gomes
and Kowalczyk (2007) study the problem of learning
demand functions; and Ziogos et al. (2007) investigate
the development of bidding strategies.

Therefore, in this paper we present a framework to
model the dynamics of Multiagent Q-learning with the
ǫ-greedy exploration mechanism. For this, we anal-
yse a continuous-time version of the Q-learning up-
date rule and study how the ǫ-greedy mechanism and
the presence of other agents affect it. We then use this
analysis to model the problem as a system of difference
equations which is used to calculate the expected evo-
lution of the Q-values and, consequently, the expected
behaviour of the agents.

The paper is organized as follows. In the next section
we review the Q-learning algorithm with ǫ-greedy ex-
ploration and its extension to multiagent scenarios. In
Section 3 we present the analysis and the equations to
model the behaviour of the agents. In Section 4 we
provide the evaluation of the framework. We compare
the theoretical behaviour obtained by the model with
the behaviour found in real experimentation with Q-
learning. Section 5 discusses some related works and
Section 6 concludes the paper.

2. Background

In this section we briefly review the Q-learning algo-
rithm, the ǫ-greedy action-selection mechanism and
the extension of Q-learning to multiagent scenarios.

2.1. Single-agent Q-learning

The task of a Q-learning agent is to learn a mapping
from environment states to actions so as to maximize a
numerical reward signal (Sutton & Barto, 1998). The
model is formalized by a tuple (S,A, T,R), where S
is a discrete set of environment states, A is a dis-
crete set of actions, T is a state transition function
S × A × S → [0, 1], and R is a reward function
S × A → R. One of the attractives of Q-learning is
that it assumes no knowledge about state transitions
and reward functions, which must be learned from the
environment. In each step, the agent receives a sig-
nal from the environment indicating its state s ∈ S
and chooses an action a ∈ A. Once the action is per-
formed, it changes the state of the environment, gen-

erating a reinforcement signal r ∈ R that is then used
to evaluate the quality of the decision by updating the
corresponding Q(s, a) values.

The Q(s, a)-values are estimations of the Q∗(s, a)-
values, which represent the sum of the immediate re-
ward obtained by taking action a at state s and the
total discounted expected future rewards obtained by
following the optimal policy thereafter. By updating
Q(s, a), the agent eventually makes it converge to the
Q∗(s, a). The optimal policy is then followed by se-
lecting the actions where the Q∗-values are maximum.
The formula used to update the Q-values is:

Q(s, a) := Q(s, a)+α(r(s, a)+γ max
a′

Q(s′, a′)−Q(s, a))

where 0 < α < 1 is the learning rate and 0 < γ < 1 is
the discount rate.

Considering that the probabilities of making state
transitions T and receiving specific reinforcement sig-
nals R do not change over time, i.e. a stationary en-
vironment, if each action is executed in each state an
infinite number of times and α is decayed appropri-
ately, the Q-values will converge with probability 1 to
the optimal ones (Sutton & Barto, 1998).

2.2. ǫ-greedy Mechanism

An important component of Q-learning is the action
selection mechanism. This mechanism is responsible
for selecting the actions that the agent will perform
during the learning process. Its purpose is to harmo-
nize the trade-off between exploitation and exploration
such that the agent can reinforce the evaluation of the
actions it already knows to be good but also explore
new actions.

In this paper we consider the ǫ-greedy exploration.
This mechanism selects a random action with prob-
ability ǫ and the best action, i.e. the one that has the
highest Q-value at the moment, with probability 1-ǫ.
As such, it can be seen as defining a probability vector
over the action set of the agent for each state. If we
let x = (x1, x2, ..., xj) be one of these vectors, then the
probability xi of playing action i is given by:

xi =

{

(1 − ǫ) + (ǫ/n), if Q of i is the highest

ǫ/n, otherwise

where n is the number of actions in the set.

2.3. Multiagent Q-learning

Multiagent Q-learning is a natural extension of single-
agent Q-learning to multiagent scenarios. In this ap-
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proach, the agents are equipped with a standard Q-
learning algorithm each and learn independently with-
out considering the presence of each other in the envi-
ronment. The rewards and the state transitions, how-
ever, depend on the joint actions of all agents. The
problem is formalized as a tuple (n, S,A1···n, T, R1···n),
where n is the number of players, S is the set of states,
Ai is the set of actions available to agent i with A being
the joint action space A1 × · · · × An, T is the transi-
tion function S ×A× S → [0, 1], and Ri is the reward
function for the ith player S×A → R. Note that both
T and R are defined over the joint action space.

3. A Model of Multiagent Q-learning

We now present our model for multiagent Q-learning
with ǫ-greedy exploration. To develop this model, in
Section 3.1 we study how the ǫ-greedy mechanism and
the presence of other agents affect the learning process
of one agent. For this, we first show the derivation of a
continuous time equation for the Q-learning rule. We
then analyse the limits of this equation for the case
of a single learner and show how they change dynam-
ically when multiple learners are considered. Finally,
we show how the ǫ-greedy mechanism affects the shape
of the modelled function. The observations and results
from this study are used in Section 3.2 to develop a sys-
tem of difference equations to model the behaviour of
the learners.

For simplicity of explanation, we consider scenarios
composed of 2 agents with 2 actions each and a single
state. The reward functions of the agents in this case
can be described using payoff tables of the form:

A =

[
a11 a12

a21 a22

]

B =

[
b11 b12

b21 b22

]

where A describes the rewards, or payoffs, for the first
agent and B the rewards for the second. Given the
existence of only one state, the Q-learning update rule
can be simplified to

Qai
:= Qai

+ α(rai
− Qai

) (1)

where Qai
is the Q-value of agent a for action i and

rai
is reward that agent a receives for executing action

i. Please note that this notation is slightly different
from the notation applied in Section 2.

3.1. Analysis

We start the study by rewriting the update rule for
the first agent as follows:

Qai
(k + 1) − Qai

(k) = α(rai
(k + 1) − Qai

(k)) (2)

This difference equation describes the absolute growth
in Qai

between times k and k + 1. To obtain its con-
tinuous time version, consider ∆t ∈ [0, 1] to be a small
amount of time and Qai

(k + ∆t) − Qai
(k) ≈ ∆t ×

α(rai
(k +∆t)−Qai

(k)) to be the approximate growth
in Qai

during ∆t. Note that this equation becomes:
an identity when ∆t = 0; Equation 2 when ∆t = 1;
and a linear approximation when ∆t is between 0
and 1. Dividing both sides of the equation by ∆t,
Qai

(k+∆t)−Qai
(k)

∆t
≈ α(rai

(k + ∆t) − Qai
(k)), and tak-

ing the limit for ∆t → 0, lim∆t→0
Qai

(k+∆t)−Qai
(k)

∆t
≈

α(rai
(k) − Qai

(k)), we obtain

dQai
(k)

dt
≈ α(rai

(k) − Qai
(k)) (3)

which is an approximation for the continuous time ver-
sion of Equation 2. This result is in line with Tuyls
et al. (2003).

The general solution for Equation 3 can be found by
integration:

Qai
(k) = Ce−αt + rai

(4)

where C is the constant of integration. As e−x is a
monotonic function and limx→∞ e−x = 0, it is easy to
observe that the limit of Equation 4 when t → ∞ is
rai

:

lim
t→∞

Qai
(k) = lim

t→∞

Ce−αt

︸ ︷︷ ︸

0

+ lim
t→∞

rai

︸ ︷︷ ︸

rai

= rai

If we consider that only the first agent is learning and
that the second is using a pure strategy, and assum-
ing that the rewards are noise-free, playing a particu-
lar action will always generate the same reward for
the first agent. In this case, the derivation above
is enough to confirm that Qai

will monotonically in-
crease or decrease towards rai

, for any initial value of
Qai

. More specifically, the function is monotonically
increasing if Qai

(0) < rai
and monotonically decreas-

ing if Qai
(0) > rai

.

If the second agent is using a mixed strategy and the
game is played repeatedly, then rai

can be replaced by

E[rai
] =

∑

j

aijyj (5)

which is the expected payoff of the first agent given the
mixed strategy y of the second. Note that a pure strat-
egy is the specific case of a mixed strategy in which
probability 1 is given to one of the actions. We then
rewrite Equation 3 and 4 respectively as
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dQai
(k)

dt
≈ α(E[rai

(k)] − Qai
(k)) (6)

Qai
(k) = Ce−αt + E[rai

] (7)

Thus, if the adversary is not learning, Qai
will move

in expectation towards E[rai
] in a monotonic fashion.

With a learning adversary, however, the situation is
more complex. In this case, there is a possibility that
the expected reward will change over time. A learning
adversary can change its probability vector, which af-
fects the expected reward. If we first look at Equation
6, changes in the expected reward will modify the as-
sociated direction field and, consequently, the equilib-
rium points of it. At this level, every time the expected
reward changes, a new direction field is generated. If
we now look at Equation 7, the changes will modify
the limit and, possibly, the direction of Qai

. Hence, it
is important to identify when they will occur.

The ǫ-greedy mechanism updates the probability vec-
tor whenever a new action becomes the one with the
highest Q-value. Thus, we need to identify the in-
tersection points in the functions of the adversary. It
follows that the overall behaviour of the agent depends
on these intersection points as they define which values
Qai

will converge to.

From the analysis point of view, the fact that the
expected rewards can change over time implies that
Equation 6 cannot be solved in the same way we solved
Equation 3. However, one can easily derive the paths
given the initial Q-values.

Another important aspect to be considered in the
model is the speed in which the Q-values are updated.
During the learning process, the actions have different
probabilities of being played. For example, if ǫ = 0.2,
the Q-value of the current best action has a probability
of 0.9 of being updated, while the other has a proba-
bility of 0.1 (considering a 2-actions game). It means
that the Q-values are updated at different speeds. To
simulate this behaviour, we define the growth in the
Q-values as directly proportional to the probabilities.
Then, Equation 6 becomes

dQai
(k)

dt
≈ xi(k)α(E[rai

(k)] − Qai
(k)) (8)

where xi(k) is the probability of playing action i at
time k.

It is important to emphasize that the speed of the up-
dates affects the shape of the functions and, as a con-
sequence, the points at which they will intersect each

other. As such, this component plays a very signif-
icant role in the model. Roughly speaking, the ex-
pected reward indicates the values Qai

will converge
to, the speed of the updates defines the paths that it
will follow to get there and the presence of intersection
points in the functions of the adversary determines if
it is ever going to get there.

It should be clarified, however, that while the presence
of intersection points in one agent’s function does not
affect the limits of its equations and the equilibrium
points of the associated slope fields, it does affect the
speed of the convergence and the slope field itself. To
illustrate it, suppose that xi and E[rai

] are constants.
Then, by integration we can find the general solution
for Equation 8:

Qai
(k) = Ce−xiαt + E[rai

] (9)

Note that the only difference between this equation
and Equation 7 is the exponential term. Because the
limit of this term is 0 for t → ∞, the limit of the equa-
tion remains E[rai

], regardless of the value of xi. On
the other hand, different values of xi generate differ-
ent slope fields. This can be seen in Figure 1 where we
plotted the slope fields obtained when E[rai

] = 5 and
α = 0.2 for xi ∈ {0.1, 0.9}. For the sake of compari-
son, we have also plotted the sample paths for Qai

(0)
equal to 0, 2, 8 and 10.
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Figure 1. Slope fields associated with Equation 8 (α = 0.2
and rai

= 5) for xi = 0.1 (Left) and xi = 0.9 (Right),
and examples of specific solutions obtained when Qai

(0) ∈
{0, 2, 8, 10}.

3.2. The model

For the first and the second player, respectively, let A
and B be the payoff matrices, x and y be the probabil-
ity vectors, and Qa and Qb be the vectors of Q-values.
Then, based on the analysis presented in the previous
section, the expected behaviour for the Q-values can
be modelled by the system of equations:
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Qai
(k + 1) = Qai

(k) + xi(k)α(
∑

j

aijyj(k) − Qai
(k))

Qbi
(k + 1) = Qbi

(k) + yi(k)α(
∑

j

bijxj(k) − Qbi
(k))

xi(k) =

{

(1 − ǫ) + (ǫ/n), if Qai
(k) is the highest

ǫ/n, otherwise

yi(k) =

{

(1 − ǫ) + (ǫ/n), if Qbi
(k) is the highest

ǫ/n, otherwise

(10)

Having the above model for the Q-values, the expected
behaviour of the agents can be derived by tracking the
actions with highest Q-value over the learning process
of each agent. In the next sections the applicability of
the framework is tested through experiments in typical
games from the literature.

4. Application of the Model in Typical

Games

The present section illustrates the application of the
framework in two games selected from the literature:
the Prisoners Dilemma and an interesting game from
Tuyls et al. (2003). For each game we compare the
theoretical behaviour obtained with the model with
the behaviour found in real experimentation with Q-
learning. The experiments were performed with the
same configuration as for the model and the results
aggregated with the statistical median. The median
is employed because it is more robust in the presence
of outlier values than the mean. Therefore, it is more
informative in showing the typical Q-values found dur-
ing the experiments.

4.1. The Prisoners Dilemma

The first game we consider is the Prisoners Dilemma
(PD). This game has a single Nash Equilibrium in
which both players play their dominant strategies (ac-
tion 1). The payoff matrices for the first and second
players are respectively

A =

[
1 5
0 3

]

B =

[
1 0
5 3

]

In Figure 2 we plot the graphs obtained for this
game when the initial Q-values are set to Qa = [0, 1]
and Qb = [1, 0], and the learning parameters set to
α = 0.1 and ǫ = 0.4. The starting strategies of the
agents given these configurations are x = [0.2, 0.8] and
y = [0.8, 0.2]. The graphs on the left-hand side of the

figure compare the theoretical curves of Q-values ob-
tained by the model with the curves found in the ex-
periments. The experimental curves show the median
Q-values over 5000 learning experiments. The graphs
in the center and on the right-hand side show respec-
tively the theoretical and the observed dynamics for
the strategies of the agents. The first is obtained from
the analysis of the theoretical Q-values and the second
from the analysis of the median Q-values.

We first analyse the learning dynamics from the per-
spective of agent 2. The Q-values of this agent in the
beginning of the learning process describe curves that
would converge to 4.2 and 2.4 if no intersection point
had been found in the curves of agent 1. The values
are the expected rewards of agent 2 given the strat-
egy of agent 1 in that period. It can be seen that the
curve of action 1 is quicker than the curve of action
2. This behaviour is linked to the starting strategy of
this agent, which allocates probability 0.8 for the first
action and 0.2 for the second. Just after time 20, there
is a change in the direction of the curves. This change
results from a change in the expected rewards, gener-
ated by the new strategy adopted by agent 1 after the
intersection point found in its curves. From that point
on, the curves of agent 2 start to converge towards 1.8
and 0.6, the new expected rewards, and eventually sta-
bilize around these values. Meanwhile, the Q-values of
agent 1 evolve constantly towards 1.8 and 0.6. The in-
tersection point does not affect its expected rewards
but changes the speed of the convergence and conse-
quently the shape of its curves.

As seen in the graphs, the model is able to capture
all the major trends found in the experiments. One
particular point to note, however, is that while the
changes in the theoretical curves are very crisp, in the
observed ones they are actually smoother. The ex-
planation for this behaviour is that the intersections
in the experiments do not take place all the time in
the exact point found by the model. The main aspect
affecting the location of the intersection point is the
speed of the updates, which is in fact a result of the
stochastic process. It follows that, in our example, the
strategy of agent 1 can change before or after the the-
oretical point, smoothing the curves when the median
is calculated.

Figure 3 shows an example of the typical behaviour
found in the experiments. Note that the intersection
in the curves of the agent 1 was found slightly after
the theoretical point. Also note that, apart from the
local variabilities generated by the stochasticity in the
actions of both agents, the general trends of the curves
match the trend found by the model very well.
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Figure 2. Prisoner’s Dilemma: comparison between the theoretical Q-values derivated by the model and the median Q-
values observed in the experiments (left); the expected dynamics for the agents’ strategies according to the model (center);
and the dynamics observed in the experiments (right).
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Figure 3. Example of an individual run of Q-learning in the
Prisoners Dilemma.

4.2. A Game with no Pure Equilibrium

The second game we consider has been selected from
Tuyls et al. (2003). It has no Nash Equilibrium in pure
strategies and a unique Nash Equilibrium in mixed
strategies, where both players play the first action with
probability 0.5. The payoff tables are as follows:

A =

[
2 3
4 1

]

B =

[
3 1
2 4

]

In Figures 4 we plot the graphs obtained when the
initial Q-values are Qa = [0, 1] for agent 1 and Qb =
[2, 3] for agent 2. The learning parameters are α =
0.1 and ǫ = 0.1. The experimental results show the
median Q-values over 5000 learning experiments.

The results for this example can be divided in two
parts. The first part is characterized by major changes
in the curves of both agents, which the model is able
to capture very well. In particular, note that the Q-
values of agent 2 stabilize in the very beginning of the
learning process. Around time 100, however, there is
an intersection point in the curves of agent 1 that vio-

lates the equilibrium and triggers the process of adap-
tations.

In the second part there seems to be a discrepancy
between the model and the experiments. According
to the model, this part is characterized by a cycle-
like behaviour, indicating that the strategies will not
stabilize. Instead, the experimental results show the
convergence of the system.

To further illustrate this case, Figure 5 shows an exam-
ple of an individual run of the Q-learning algorithm for
this scenario. The graphs reveal that the experiments
actually present a cyclic behaviour similar to the one
described by the model. The convergence shown in
Figure 4 is the result of the aggregation obtained with
the statistical median.
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Figure 5. Example of an individual run of Q-learning in the
3rd Game.

5. Related Works

As far as we are aware, none of the existing approaches
has explored the specific case of Multiagent Q-learning
with ǫ-greedy exploration. The work most closely re-
lated to ours is the research of Tuyls et al. (2003). The
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Figure 4. Graphs for the 3rd game: comparison between the theoretical Q-values derivated by the model and the median
Q-values observed in the experiments (left); the expected dynamics for the agents’ strategies according to the model
(center); and the dynamics observed in the experiments (right).

authors have developed a continuous time model for
Multiagent Q-learning with Boltzmann exploration
and have shown a link between it and the Replicator
Dynamics (RD) of Evolutionary Game Theory (Hof-
bauer & Sigmund, 1998). The same type of link has
also been explored by Borgers and Sarin (1997) and
Panait et al. (2008). The former investigated the be-
haviour of the agents in the Cross learning algorithm
of Bush and Mosteller (1955). The later proposed and
analysed a variation of the Boltzmann-based multia-
gent Q-learning to improve the cooperative behaviour
of the agents.

In the RD, the probability of each action grows at a
rate which is directly proportional to its performance
against the others. Similar principles are applied in
several Reinforcement Learning algorithms, including
Q-learning with Boltzmann exploration. So the inspi-
ration to develop RD-like analysis for those algorithms
is quite natural. The ǫ-greedy mechanism, however,
generates a different dynamics. More specifically, the
mechanism defines a semi-uniform probability distri-
bution in which the current best action is selected with
probability 1−ǫ and a random action with probability
ǫ. Such a distribution is non-continuous and defined
by a conditional function. Hence, the link cannot be
directly applied in our case.

In another approach, Vidal and Durfee (2003) present
a framework to track the error in one agent’s decision
during the multiagent learning process. The frame-
work is generic enough to cover several different al-
gorithms. However, it requires the tuning of some pa-
rameters that might not be known a priori or even im-

possible to obtain without extensive simulations. Our
approach, in contrast, does not use any parameters
other than the ones that are required by the Q-learning
algorithm.

As in our research, all the above works share the prop-
erty of being based on the analysis of differential or
difference equations. The topic has a long research
tradition in the mathematical disciplines, a consid-
erable theoretical framework and forms the standard
aproach to the study of dynamical systems. Other ex-
amples of the application of the approach to analyse
multiagent reinforcement algorithms are the works of
Abdallah and Lesser (2008), who applied differential
equations to study the dynamics of their Weighted Pol-
icy Learner algorithm, and Leslie and Collins (2005),
who studied the asymptotic behaviour of variants of
the Boltzmann-based multiagent Q-learning. The ap-
proach has also been used for the analysis of single-
agent reinforcement learning algorithms (Borkar &
Meyn, 2000).

A different line of investigation corresponds to the
identification of factors that lead the agents to de-
velop some types of behaviours. Fulda and Ventura
(2007), for example, presented a set of conditions, on
the environment and the payoff tables, which are suffi-
cient to guarantee optimal performance of cooperative
agents using Q-learning with Boltzmann exploration.
Claus and Boutilier (1998) also studied the coopera-
tive case. Their analysis of Multiagent Q-learning with
Boltzmann exploration has shown that the agents
tend to converge to the most profitable equilibrium
in simple games.
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6. Conclusions

In this paper we have presented a framework to model
the behaviour of Q-learning agents using the ǫ-greedy
exploration mechanism. For this, we analysed a
continuous-time version of the Q-learning update rule
and studied how the presence of other agents and the
ǫ-greedy mechanism affect it. We then modelled the
problem as a system of difference equations which was
used to calculate the expected evolution of the Q-
values and, consequently, the expected behaviour of
the agents.

The application of the model in the typical games se-
lected from the literature has shown its feasibility. The
model was able to capture all the major trends found
in the experiments.

The next step in this research is to extend the approach
to multi-state scenarios.
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