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Abstract� Given the fact that relational and object�relational databases
are the most widely used technology for storing data and that XML is the
standard format used in electronic data interchange� the process of con�
verting relational data to XML documents is one that occurs frequently�
The problem that we address in this paper is an important one related
to this process� If we convert a relation to an XML document� under
what circumstances is the XML document redundancy free� Drawing
on some previous work by the authors that formally de�ned functional
dependencies and redundancy in XML documents� we show that for a
very general class of mappings from a relation to an XML document� the
XML document is always redundancy free if and only if the relation is
in Boyce�Codd normal form �BCNF��

� Introduction

The eXtensible Markup Language �XML� ��� has recently emerged as a stan	
dard for data representation and interchange on the Internet �
�� 
�� As a result
of this and the fact that relational and object	relational databases are the stan	
dard technology in commercial applications� the issue of converting relational
data to XML data is one that frequently occurs� In this conversion process of
relational data to XML data� there many di�erent ways that relational data can
be mapped to XML data� especially considering the 
exible nesting structures
that XML allows� This gives rise to the following important problem� Are some
mappings �better� than others� Firstly� one has to make precise what is meant
by �better�� In this paper we extend the classical approach used in relational
database design and regard a good design as one which eliminates redundancy�
The relationship between normal forms and redundancy elimination has been
investigated� both for the relational case �

� �� 
�� and the nested relational case
���� and in particular it has been shown that Boyce�Codd normal form �BCNF�
��� is a necessary and su�cient condition for the elimination of redundancy in
relations when the only constraints are functional dependencies �FDs�� However�
this approach to determining good database designs depends on having FDs de	
�ned in relations� In some recent work �
�� 
��� we showed how to extend the
de�nition of FDs in relations to FDs in XML �called XFDs�� Since this current



paper depends heavily on this work� we �rst outline the contributions of this
previous work�

The de�nition of an XFD was proposed in �
�� 
�� and justi�ed formally by
showing that for a very general class of mappings from a relation to an XML
document� a relation satis�es a unary FD �only one attribute on the l�h�s� of the
FD� if and only if the corresponding XML document satis�es the corresponding
XFD� Thus there is a natural correspondence between FDs in relations and
XFDs in XML documents� The other contributions of �
�� were �rstly to de�ne
a set of axioms for reasoning about the implication of XFDs and to show that
the axioms are sound for arbitrary XFDs� The �nal contribution was to de�ne a
normal form� based on a modi�cation of the one proposed in ���� and prove that
it is a necessary and su�cient condition for the elimination of redundancy in an
XML document�

In this paper we address the following problem� Suppose we are given a single
relation and wish to map it to an XML document� There are many such mappings
and in particular a deeply nested structure� rather than a 
at structure� may be
chosen because it better represents the semantics of the data� We then want to
determine what mappings result in the XML document being redundancy free�
Knowing this is important for systems designers because they would obviously
wish to avoid mappings which result in the introduction of redundancy to the
XML document� The class of mappings that we consider is a very general class
of mappings from a relation into an XML document �rst proposed in �
�� 
���
The class takes a relation� �rst converts it into a nested relation by allowing
an arbitrary sequence of nest operations and then converts the nested relation
into an XML document� This is a very general class of mappings and we believe
that it covers all the types of mappings that are likely to occur in practice�
The main result of the paper then shows that� for the case where all FDs in
the relation are unary� any mapping from the general class of mappings from a
relation to an XML document will always be redundancy free if and only if the
relation is in BCNF� This result is of reassurance to system designers because it
allows them a great degree of 
exibility in determining how to map a relation
into an XML document� and thus they can make their mapping decision on
other criteria apart from eliminating redundancy� We also note� importantly�
that if the relation is not in BCNF� then some mappings in the general class
considered produce redundancy free XML documents� whereas others produce
XML documents with redundancy�

� Preliminary De�nitions

In this section we present some preliminary de�nitions that we need before de�n	
ing XFDs� We model an XML document as a tree as follows�

De�nition �� Assume a countably in�nite set E of element labels �tags�� a
countable in�nite set A of attribute names and a symbol S indicating text� An
XML tree is de�ned to be T � �V� lab� ele� att� val� vr� where V is a �nite set of



nodes in T � lab is a function from V to E �A � fSg� ele is a partial function
from V to a sequence of V nodes such that for any v � V � if ele�v� is de�ned
then lab�v� � E� att is a partial function from V � A to V such that for any
v � V and l � A� if att�v� l� � v� then lab�v� � E and lab�v�� � l� val is a
function such that for any node in v � V� val�v� � v if lab�v� � E and val�v� is
a string if either lab�v� 	 S or lab�v� � A� vr is a distinguished node in V called
the root of T and we de�ne lab�vr� � root� Since node identi�ers are unique� a
consequence of the de�nition of val is that if v� � E and v� � E and v� �� v�
then val�v�� �� val�v��� We also extend the de�nition of val to sets of nodes and
if V� � V � then val�V�� is the set de�ned by val�V�� � fval�v�jv � V�g�

For any v � V � if ele�v� is de�ned then the nodes in ele�v� are called subele	
ments of v� For any l � A� if att�v� l� � v� then v� is called an attribute of v�
Note that an XML tree T must be a tree� Since T is a tree the set of ancestors of
a node v� is denoted by Ancestor�v�� The children of a node v are also de�ned
as in De�nition 
 and we denote the parent of a node v by Parent�v��

We note that our de�nition of val di�ers slightly from that in ��� since we have
extended the de�nition of the val function so that it is also de�ned on element
nodes� The reason for this is that we want to include in our de�nition paths
that do not end at leaf nodes� and when we do this we want to compare element
nodes by node identity� i�e� node equality� but when we compare attribute or
text nodes we want to compare them by their contents� i�e� value equality� This
point will become clearer in the examples and de�nitions that follow�

We now give some preliminary de�nitions related to paths�

De�nition �� A path is an expression of the form l�� � � � �ln� n � 
� where
li � E �A�fSg for all i� 
 � i � n and l� � root� If p is the path l�� � � � �ln then
Last�p� � ln�

For instance� if E � froot� Division� Employeeg and A � fD�� Emp�g
then root� root�Division� root�Division�D��

root�Division�Employee�Emp��S are all paths�

De�nition �� Let p denote the path l�� � � � �ln� The function Parnt�p� is the path
l�� � � � �ln��� Let p denote the path l�� � � � �ln and let q denote the path q�� � � � �qm�
The path p is said to be a pre�x of the path q� denoted by p � q� if n � m and
l� � q�� � � � � ln � qn� Two paths p and q are equal� denoted by p � q� if p is a
pre�x of q and q is a pre�x of p� The path p is said to be a strict pre�x of q�
denoted by p 	 q� if p is a pre�x of q and p �� q� We also de�ne the intersection
of two paths p� and p�� denoted but p�
 p�� to be the maximal common pre�x of
both paths� It is clear that the intersection of two paths is also a path�

For example� if E � froot� Division� Employeeg and A � fD�� Emp�g
then root�Division is a strict pre�x of root�Division�Employee and

root�Division�D�
 root�Division�Employee�Emp��S� root�Division�

De�nition �� A path instance in an XML tree T is a sequence �v�� � � � ��vn such
that �v� � vr and for all �vi� 
 � i � n�vi � V and �vi is a child of �vi��� A



path instance �v�� � � � ��vn is said to be de�ned over the path l�� � � � �ln if for all
�vi� 
 � i � n� lab��vi� � li� Two path instances �v�� � � � ��vn and �v��� � � � ��v

�
n are said

to be distinct if vi �� v�i for some i� 
 � i � n� The path instance �v�� � � � ��vn is
said to be a pre�x of �v��� � � � ��v

�
m if n � m and �vi � �v�i for all i� 
 � i � n� The

path instance �v�� � � � ��vn is said to be a strict pre�x of �v��� � � � ��v
�
m if n � m and

�vi � �v�i for all i� 
 � i � n� The set of path instances over a path p in a tree T
is denoted by Paths�p�

For example� in Figure 
� vr�v��v� is a path instance de�ned over the path
root�Division�Section and vr�v��v� is a strict pre�x of vr�v��v��v�

We now assume the existence of a set of legal paths P for an XML application�
Essentially� P de�nes the semantics of an XML application in the same way
that a set of relational schema de�ne the semantics of a relational application�
P may be derived from the DTD� if one exists� or P be derived from some other
source which understands the semantics of the application if no DTD exists� The
advantage of assuming the existence of a set of paths� rather than a DTD� is that
it allows for a greater degree of generality since having an XML tree conforming
to a set of paths is much less restrictive than having it conform to a DTD� Firstly
we place the following restriction on the set of paths�

De�nition �� A set P of paths is consistent if for any path p � P � if p� 	 p

then p� � P �

This is natural restriction on the set of paths and any set of paths that is
generated from a DTD will be consistent�

We now de�ne the notion of an XML tree conforming to a set of paths P �

De�nition 	� Let P be a consistent set of paths and let T be an XML tree�
Then T is said to conform to P if every path instance in T is a path instance
over a path in P �

The next issue that arises in developing the machinery to de�ne XFDs is the
issue is that of missing information� This is addressed in �
�� but in this paper�
because of space limitations� we take the simplifying assumption that there is
no missing information in XML trees� More formally� we have the following
de�nition�

De�nition 
� Let P be a consistent set of paths� let T be an XML that conforms
to P � Then T is de�ned to be complete if whenever there exist paths p� and p�
in P such that p� 	 p� and there exists a path instance �v�� � � � ��vn de�ned over
p�� in T � then there exists a path instance �v��� � � � ��v

�
m de�ned over p� in T such

that �v�� � � � ��vn is a pre�x of the instance �v��� � � � ��v
�
m�

For example� if we take P to be froot� root�Dept� root�Dept�Section�

root�Dept�Section�Emp� root�Dept�Section�Projectg then the tree in Fig	
ure 
 conforms to P and is complete�

The next function returns all the �nal nodes of the path instances of a path
p in T �
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Fig� �� A complete XML tree�

De�nition �� Let P be a consistent set of paths� let T be an XML tree that
conforms to P � The function N �p�� where p � P � is the set of nodes de�ned by
N �p� � f�vj�v�� � � � ��vn � Paths�p� � �v � �vng�

For example� in Figure 
� N �root�Dept� � fv�� v�g�
We now need to de�ne a function that returns a node and its ancestors�

De�nition �� Let P be a consistent set of paths� let T be an XML tree that
conforms to P � The function AAncestor�v�� where v � V � N� is the set of
nodes in T de�ned by AAncestor�v� � v �Ancestor�v��

For example in Figure 
� AAncestor�v�� � fvr� v�� v�g� The next function re	
turns all nodes that are the �nal nodes of path instances of p and are descendants
of v�

De�nition �
� Let P be a consistent set of paths� let T be an XML tree that
conforms to P � The function Nodes�v� p�� where v � V �N and p � P � is the
set of nodes in T de�ned by Nodes�v� p� � fxjx � N �p� � v � AAncestor�x�g

For example� in Figure 
� Nodes�v�� root�Dept�Section�Emp� � fv�� v�g�
We also de�ne a partial ordering on the set of nodes as follows�

De�nition ��� The partial ordering � on the set of nodes V in an XML tree
T is de�ned by v� � v� i� v� � Ancestor�v���

� Strong Functional Dependencies in XML

We recall the de�nition of an XFD from �
��� For simplicity� we consider the case
where there is only one path on the l�h�s�

De�nition ��� Let P be a set of consistent paths and let T be an XML tree
that conforms to P and is complete� An XML functional dependency �XFD� is
a statement of the form� p� q where p � P and q � P � T strongly satis�es the
XFD if p � q or for any two distinct path intances �v�� � � � ��vn and �v��� � � � ��v

�
n in



Paths�q� in T � val��vn� �� val��v�n�� 
 val�Nodes�x�� p�� 
 val�Nodes�y�� p�� �
��� where x� � maxfvjv � f�v�� � � � � �vng � v � N �p 
 q�g and y� � maxfvjv �
f�v��� � � � � �v

�
ng � v � N �p 
 q�g�

We note that since the path pi 
 q is a pre�x of q� there exists only one node
in �v�� � � � ��vn that is also in N �pi 
 q� and so xi is always de�ned and unique�
Similarly for yi�

We now illustrate the de�nition by some an example�

Example 
� Consider the XML tree shown in Figure � and the XFD
root�Department�Lecturer�Lname�
root�Department�Lecturer�Subject�SubjName�S�Then vr �v��v��v���v���v��

and vr �v��v��v���v���v�� are two distinct path instances in
Paths�root�Department�Lecturer�Subject�SubjName�S� and val�v��� �

�n�� and val�v��� � �n��� So N �root�Department�Lecturer�Lname

root�Department�Lecturer�Subject�SubjName�S� � fv�� v�� v�g and so

x� � v� and y� � v�� Thus val�Nodes�x�� root�Department�Lecturer�Lname��
� f�l��g and val�Nodes�y�� root�Department�Lecturer�Lname�� � f�l��g

and so the XFD is violated� We note that if we change val of node v�	 in Figure
� to �l	� then the XFD is satis�ed�

Consider next the XFD root�Department�Head� root�Department� Then
vr�v� and vr�v� are two distinct paths instances in Paths�root�Department�
and val�v�� � v� and val�v�� � v�� Also

N �root�Department�Head 
 root�Department� � fv�� v�g and so x� �
v� and y� � v�� Thus val�Nodes�x�� root�Department�Head�� � f�h��g and
V al�Nodes�y�� root�Department�Head�� � f�h��g and so the XFD is satis�ed�
We note that if we change val of node v
 in Figure � to �h�� then the XFD is
violated�

� Mapping from relations to XML

As our technique for mapping relations to XML Trees is done via nested relations�
we �rstly present the de�nitions for nested relations�

Let U be a �xed countable set of atomic attribute names� Associated with
each attribute name A � U is a countably in�nite set of values denoted by
DOM �A� and the set DOM is de�ned by DOM � �DOM �Ai� for all Ai � U �
We assume that DOM �Ai� 
DOM �Aj� � � if i �� j� A scheme tree is a tree
containing at least one node and whose nodes are labelled with nonempty sets
of attributes that form a partition of a �nite subset of U � If n denotes a node in
a scheme tree S then�

	 ATT �n� is the set of attributes associated with n�
	 A�n� is the union of ATT �n�� for all n� � Ancestor�n��
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Fig� �� A XML tree illustrating the de�nition of an XFD

Name     Sid

  Major   Class

  Exam   Project

Fig� �� A scheme tree

Figure � illustrates an example scheme tree de�ned over the set of attributes
fName� Sid� Major� Class� Exam� Projectg�

De�nition ��� A nested relation scheme �NRS� for a scheme tree S� denoted
by N �S�� is the set de�ned recursively by�

�i� If S consists of a single node n then N �S� � ATT �n��
�ii� If A � ATT �ROOT �S�� and S�� � � � � Sk� k � 
� are the principal subtrees

of S then N �S� � A � fN �S��g � � �fN �Sk�g�

For example� for the scheme tree S shown in Figure �� N �S� � fName� Sid�

fMajorg� fClass� fExamg� fProjectggg� We now recursively de�ne the domain
of a scheme tree S� denoted by DOM �N �S���

De�nition ��� �i� If S consists of a single node n with ATT �n� � fA�� � � � � Ang
then DOM �N �S�� � DOM �A��� � � � �DOM �An��



�ii� If A � ATT �ROOT �S�� and S�� � � � � Sk are the principal subtrees of S�
then DOM �N �S�� � DOM �A� � P �DOM �N �S���� � � � � � P �DOM �N �Sk���
where P �Y � denotes the set of all nonempty� �nite subsets of a set Y �

The set of atomic attributes in N �S�� denoted by Z�N �S��� is de�ned by
Z�N �S�� � N �S� 
 U � The set of higher order attributes in N �S�� denoted
by H�N �S��� is de�ned by H�N �S�� � N �S� � Z�N �S��� For instance� for
the example shown in Figure �� Z�N �S�� � fName� Sidg and H�N �S�� �
ffMajorg� fClass� fExamg� fProjectggg�

Finally we de�ne a nested relation over a nested relation scheme N �S�� de	
noted by r��N �S��� or often simply by r� when N �S� is understood� to be a
�nite nonempty set of elements from DOM �N �S��� If t is a tuple in r� and Y is
a nonempty subset of N �S�� then t�Y � denotes the restriction of t to Y and the
restriction of r� to Y is then the nested relation de�ned by r��Y � � ft�Y �jt � rg�
An example of a nested relation over the scheme tree of Figure � is shown in
Figure ��

A tuple t� is said to be a subtuple of a tuple t in r� if there exists Y � H�N �S��
such that t� � t�Y � or there exists a tuple t�� de�ned over some NRS N�� such
that t� is a subtuple of t and there exists Y� � H�N�� such that t� � t��Y��� For
example in the relation shown in Figure � the tuples

� CS�

� fmid�year� finalg� fProject A� Project B� Project Cg � and
� Project A � are both subtuples of

� Anna� Sid�� fMaths� Computingg� fCS�

� fmid�year� finalg�
fProject A� Project B�Project Cgg ��

Name Sid fMajorg fClass fExamg fProjectgg
Anna Sid	 Maths CS	

 Mid�year Project A

Computing Final Project B
Project C

Bill Sid� Physics P	

 Final Prac 	
Prac �

Chemistry CH�

 Test A Experiment 	
Test B Experiment � 	

Fig� �� A nested relation�

We assume that the reader is familiar with the de�nition of the nest operator�
�Y �r

��� and the unnest operator� �fY g�r
��� for nested relations as de�ned in ���

���
The translation of a relation into an XML tree consists of two phases� In the

�rst we map the relation to a nested relation whose nesting structure is arbitrary
and then we map the nested relation to an XML tree�

In the �rst step we let the nested relation r� be de�ned by ri � �Yi���ri���� r	 �
r� r� � rn� 
 � i � n where r represents the initial �
at� relation and r� rep	



resents the �nal nested relation� The Yi are allowed to be arbitrary� apart from
the obvious restriction that Yi is an element of the NRS for ri�

In the second step of the mapping procedure we take the nested relation and
convert it to an XML tree as follows� We start with an initially empty tree� For
each tuple t in r� we �rst create an element node of type Id and then for each
A � Z�N �r��� we insert a single attribute node with a value t�A�� We then repeat
recursively the procedure for each subtuple of t� The �nal step in the procedure
is to compress the tree by removing all the nodes containing nulls from the tree�
We now illustrate these steps by an example�

Example 
� Consider the 
at relation shown in Figure ��

Name Sid Major Class Exam Project

Anna Sid	 Maths CS	

 Mid�year Project A
Anna Sid	 Maths CS	

 Mid�year Project B
Anna Sid	 Maths CS	

 Final Project A
Anna Sid	 Maths CS	

 Final Project B

Fig� �� A �at relation�

If we then transform the relation r in Figure � by the sequence of nestings
r� � �PROJECT �r�� r� � �EXAM �r��� r� � �CLASS�fEXAMg�fPROJECTg�r���
r� � �MAJOR�r�� then the relation r� is shown in Figure �� We then transform
the nested relation in Figure � to the XML tree shown in Figure �

Name Sid fMajorg fClass fExamg fProjectgg
Anna Sid	 Maths CS	

 Mid�year Project A

Final Project B

Fig� �� A nested relation derived from a �at relation�

We now recall the result from �
�� which establishes the correspondence be	
tween satisfaction of FDs in relations and satisfaction of XFDs in XML� We
denote by Tr� the XML tree derived from r��

Theorem �� Let r be a �at relation and let A � B be a FD de�ned over r�
Then r strongly satis�es A � B i� Tr� strongly satis�es pA � qB where pA
denotes the path in Tr� to reach A and qB denotes the path to reach B�

� Redundancy free mappings from relations to XML

We now give our de�nition of redundancy taken from �
��� Firstly� let us denote
by P� the set of paths that appear on the l�h�s� or r�h�s� of any XFD in �� the
set of XFDs for the application�
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A E E

A A A

E root

Id

Name Sid Id Id
“Anna” “Id1”

Major

“Maths”

Exam
“mid-year”

Exam

“final”

Id Id

Project

“Project A”

A Class

“CS100

A Project

“Project B”

Fig� 	� A XML tree derived from a nested relation

De�nition ��� Let T be an XML tree and let v be a node in T � Then the change
from v to v�� resulting in a new tree T �� is said to be a valid change if v �� v�

and val�v� �� val�v���

We note that the second condition in the de�nition� val�v� �� val�v��� is auto	
matically satis�ed if the �rst condition is satis�ed when lab�v� � E�

De�nition �	� Let P be a consistent set of paths and let � be a set of XFDs
such that P� � P and let T be an XML tree that conforms to P and satis�es
�� Then T is de�ned to contain redundancy if there exists a node v in T such
that every valid change from v to v�� resulting in a new XML tree T �� causes �
to be violated�

We now illustrate this de�nition by an example�

E

E E

A A A A

Project Project

Id Name Id Name
“p1” “n1” “p1” “n1”

E

E

S

Employee

Phone

S

“p1”

A Emp#

“e1”

root

Fig� 
� XML tree illustrating redundancy�



Example �� Let P be the set of paths froot� root�Project� root�project�Id�

root�Project�Name� root�Employee� root�Employee�Phone�

root�Employee�Emp�� root�Employee�Phone�Sg� Consider the set of � of
XFDs froot�Project�Id� root�Project�Nameg and the XML tree T shown
in Figure �� Then T contains redundancy because T is consistent with P

and satis�es � yet every valid change to either of the Name nodes results in
root�Project�Id� root�Project�Name being violated�

One important bene�t of an XML tree being redundancy free� as we shall
now show� is that it eliminates certain update problems in a similar fashion to
the way that eliminating redundancy in relations eliminates update problems
�

��

De�nition �
� Let P be a consistent set of paths and let � be a set of XFDs
such that P� � P and let T be an XML tree that conforms to P and satis�es
�� Then T is de�ned to have a modi�cation anomaly if there exists a node v in
T such that there exists some valid change to v that results in � being violated�

For instance� the tree in Figure � has a modi�cation anomaly since the change
of the val of either of the Name nodes to ��n��� results in � being violated� We
then have the following important result�

Theorem �� Let P be a consistent set of paths and let � be a set of XFDs such
that P� � P and let T be an XML tree that conforms to P and satis�es �� Then
T has no redundancy i� T has no modi�cation anomaly�

Proof�

If� The contrapositive� that if T contains redundancy then it has a modi�ca	
tion anomaly follows directly from the de�nitions�

Only If�We shall show the contrapositive that if T has a modi�cation anomaly
then it contains redundancy� It follows directly from the de�nition of an XFD is
that if one valid change to v results in the violation of � then all valid changes
to v result in the violation of �� Thus if T has a modi�cation anomaly then it
will also contain redundancy� �

Next� we have the main result of the paper which shows that all mappings
from a relation to an XML tree are redundancy free provided that the relation
scheme is in BCNF�

Theorem �� Let 	 denote the set of all mappings from relations to XML trees
as de�ned in Section �� Let R�A�� � � � � An� denote a relation scheme� let �R
denote a set of unary FDs de�ned over R and let rel�R� denote the set of all re�
lations de�ned over R which satisfy �R� Let T� be the set de�ned T� � fT j�r �
rel�R��
 � 	�T � 
�r��g� Then every tree in T� is redundancy free i� R is in
BCNF�

Proof� See Appendix� �



We note that in the case of the relational scheme not being in BCNF� then
some mappings result in redundancy whereas others are redundancy free� This
is shown in the following example�

Example �� Consider the relation scheme R�A�B�C�� the set � of FDs fA� Bg
and the relation r de�ned over R shown in Figure �� Suppose we then map r

to an XML document in two ways� In the �rst� we use the mapping 
� which
does no nesting� The resulting tree is shown in Figure 
� �a�� This tree contains
redundancy since any valid change to either of the B nodes results in the violation
of the XFD root�Id�A� root�Id�B� In the second mapping� 
�� we �rst nest
on C and then on B then convert to a tree� The resulting tree is shown in Figure

� �b�� This tree contains no redundancy since every valid change to the B node
results in the XFD root�Id�A� root�Id�Id��B still being satis�ed�

A B C

a� b� c�

a� b� c�

Fig� �� A �at relation�

E root

A A

“a1”
A B

“b1”

A C

“c1”

A A

“a1”

A B

“b1”

A C

“c2”

E Id E Id

E root

A B

“b1”

A C

“c1”

A C

“c2”

E Id

E IdA a

“a1”

E Id

(a)

(b)

Fig� ��� XML trees from di
erent mappings�

� Conclusions

The problem that we have addressed in this paper is one related to this process of
exporting relational data in XML format� The problem is that if one converts a



relation to an XML document� under what circumstances is the XML document
redundancy free� Being redundancy free is an important property of an XML
document since� as we show� it guarantees the absence of certain types of update
anomalies in the same fashion that redundancy elimination and BCNF ensures
the elimination of update anomalies in relational databases �

��

Drawing on some previous work by the authors �
��
�� that formally de�ned
functional dependencies and redundancy in XML documents� we show that for a
very general class of mappings from a relation to an XML document� the XML
document is always redundancy free if and only if the relation is in Boyce	Codd
normal form �BCNF�� This result gives systems designers a great degree of 
exi	
bility in deciding how to map relations to XML without introducing redundancy�
We also show that if the relation is not in BCNF then some mappings produce
XML documents with redundancy whereas other mappings produce redundancy
free XML documents�
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� Appendix

Before proving Theorem �� we need some preliminary de�nitions and lemmas�

De�nition ��� Let A and B be attributes in U and let S be a scheme tree de�ned
over U � Then A and B are de�ned to be siblings if A and B are members of the
label for a node� A is an ancestor of B is if A is a member of the label of a node
which is the ancestor of a node for which B is a member of the label� and A and
B are unrelated if A and B are not siblings and A is not an ancestor of B and
B is not an ancestor of A�

For example� in the scheme tree shown in Figure �� Name and Id are siblings�
Name is an ancestor of Exam and Major and Project are unrelated�

Also� we need the following result from ���� Let us denote the NRS of nested
relation r� by N �r���

Lemma �� For any nested relation r� and any Y � N �r��� �fY g��Y �r
��� � r��

We note the well known result ��� that the converse of the above lemma does
not hold� i�e� there are nested relations such that �Y ��fY g�r

��� �� r��

Lemma �� Let r and r� be as de�ned in the procedure given in Section ��
�

and let A � U and B � U � Also� let t�A be a subtuple in r� in which A is
an atomic attribute and let t�B be a subtuple in r� in which B is an atomic
attribute� If t�A�A� � a and t�B �B� � b then there exists a tuple t in r such that
t�A�B� �� a� b � if any of the following conditions are true�

�i� A and B are siblings in N �r�� and t�A � t�B �
�ii� A is an ancestor of B in N �r�� and t�B is a subtuple of t�A�
�iii� B is an ancestor A in N �r�� and t�A is a subtuple of t�B �
�iv� A and B are unrelated in N �r���

Proof� Suppose that �i� is satis�ed� We shall show by induction that there
exists a tuple t � ���r�� such that t�A�B� �� a� b � from which it follows that
t � r by Lemma 
� Since the ordering of unnesting is immaterial we unnnest
r� by �fY�g � � ��fYn��g�r

��� Let Yi be the NRS in the unnesting in which A

and B are atomic attributes� Initially� we have a subtuple t�A in r� for which
t�A�A�B� �� a� b �� Assume inductively then that �fYjg � � ��fYn��g�r

��� i� 
 �
j contains the subtuple t�A� It follows from the de�nition of unnest that t�A
is will still be a subtuple �fYj��g � � ��fYn��g�r

�� and so by induction t�A is a
subtuple in �fYi��g � � ��fYn��g�r

��� From the de�nition of unnest� it follows that
�fYig � � ��fYn��g�r

�� will contain a tuple t such that t�A�B� �� a� b � and the
property will then still hold� by a similar inductive argument and the de�nition
of unnest� for �fYjg � � ��fYn��g�r

��� j � i and so the property is proven�
Consider �ii�� Let Yi denote the NRS in the construction of r� in which A

appears as an atomic attribute and let Yj denote the NRS in the construction
of r� in which B appears as an atomic attribute� Since A is an ancestor of B
the unnesting on Yi will be performed before Yj in the total unnest� We �rstly



note that since t�A is a subtuple in r� then it follows by a simple inductive
argument similar to the one just given and de�nition of unnest that t�A will be
a subtuple in �fYi��g � � ��fYn��g�r

�� and t�A has the subtuple t�B � It then follows
by de�nition of unnest that there will be a tuple t in �fYig � � ��fYn��g�r

�� such
that t�A� �� a � and t has the subtuple t�B � Then again by induction and the
de�nition of unnest there will be a tuple t� in �fYjg � � ��fYn��g�r

�� such that
t��A�B� �� a� b � and again by induction and the de�nition the same property
will hold for �fYkg � � ��fYn��g�r

��� k � j and so the result is proven�
The result �iii� follows � by symmetry using the same argument as in �ii��
Consider �iv�� Let Yi denote the NRS in the construction of r� in which A

appears as an atomic attribute and let Yj denote the NRS in the construction of
r� in which B appears as an atomic attribute� Suppose that the unnesting on Yi
is performed �rst� Then usiong the same arguments as for the previous cases it
follows that there exists a tuple t in �fYig � � ��fYn��g�r

�� such that t�A� �� a ��
The using the same arguments as before it follows that there will exist a tuple
t� in �fYjg � � ��fYig � � ��fYn��g�r

�� such that t�A�B� �� a� b � and the same
property will then also hold for �fYkg � � ��fYn��g�r

��� k � j and so the result is
proven� �

Lemma �� If t is a tuple in r such that t�A�B� �� a� b � and t is the only
tuple in r such that t�A�B� �� a� b � and A and B are siblings in N �r��� then
there exists only one subtuple t�� in r�� de�ned over a NRS N�� such that A and
B are atomic attributes in N� and t���A�B� �� a� b ��

Proof�We shall prove the result by induction on the nesting operations� Let
Yi be the NRS in which A and B appear as atomic attributes� Initially the result
is true for r and suppose inductively that it is true for rj� where j � i� 
� Then
by property �i� of the nest operator the result will be true after we nest rj on Yj
and so the property is true for rj��� Consider then ri � �Yi���ri���� By property
�ii� of the nest operator� if there exists a tuple t with t�A�B� �� a� b � before
nesting on Yi then after the nesting there will be a subtuple t� de�ned over Yi
such that t��A�B� �� a� b �� It then follows by a similar inductive argument
and property �ii� of the nest operator that each relation rj� j � i will contain
the subtuple t� and so the result is proven�

To prove the second part� suppose to the contrary that there are two subtu	
ples t�� and t

�
� such that t�� and t

�
� are de�ned over N� and A and B are siblings�

Then because the nest operator does not result in duplicate tuples� then there
must exist another atomic attribute C such that either C is a sibling of A and B
and t���C� � c� �� t���C� � c�� or there exists atomic attribute C such that A and
B are ancestors of C and there exists a subtuple of t��� call it t

�
�� and a subtuple

of t��� call it t
�
� such that t���C� � c� �� t���C� � c�� Then using a similar argument

to the one used in lemma �� this implies that there is a tuple t � r such that
t�A�B�C� �� a� b� c� � and a tuple t� � r such that t��A�B�C� �� a� b� c� � and
so t and t� must be distinct which is a contradiction and so the second part of
the lemma is established� �



Lemma �� If t is a tuple in r such that t�A�B� �� a� b � and t is the only
tuple in r such that t�A�B� �� a� b � and A is an ancestor of B in N �r��
then there exists a subtuple t�� �de�ned over NRS N ��� and one �and only one�
subtuple t�� �de�ned over NRS N ����� such that A is an atomic attribute in N ��

and t���A� �� a � and t�� is a subtuple of t�� and B is an atomic attribute in N ���

and t���B� �� b ��

Proof�We shall prove the result by induction on the nesting operations� Let
Yi be the NRS in which A appears as the atomic attribute and let Yj be the
NRS in which B appears as the atomic attribute� Since A is an ancestor of B
we have that i � j� Initially r contains a tuple t with t�A�B� �� a� b �� The
same argument as used in the previous lemma then shows that rk� where k � j�
will contain a tuple tk such that tj�A�B� �� a� b �� Consider then the e�ect of
nesting on Yj � By de�nition of the nest operator� after the nesting it will contain
a tuple tj and t�j� a subtuple of tj � such that tj �A� �� a � and t�j�B� �� b �� It
then follows by a similar inductive argument and properties of the nest operator
that each relation rk� i � k � j will have the same property� Consider then
the e�ect of nesting on Yi� By property �ii� of the nest operator� after the nest
on Yi � there will exist a subtuple ti in ri�� and t�i� a subtuple of ti� such that
ti�A� �� a � and t�i�B� �� b �� Using a similar inductive argument one can
show that the same property remains true for all rj� j � i and so the result is
proven�

To prove the second part� suppose to the contrary that there are two subtu	
ples t�� and t�� of t�� such that t�� and t�� are de�ned over N ��� andt���B� � t���B��
Then because the nest operator does not result in duplicate tuples� then there
must exist another atomic attribute C such that either C is a sibling of B and
t���C� � c� �� t���C� � c�� or there exists atomic attribute C such that B is an
ancestor of C and there exists a subtuple of t��� call it t

�
�� and a subtuple of t���

call it t�� such that t���C� � c� �� t���C� � c�� Then using a similar argument
to the one used in lemma �� this implies that there is a tuple t � r such that
t�A�B�C� �� a� b� c� � and a tuple t� � r such that t��A�B�C� �� a� b� c� � and
so t and t� must be distinct which is a contradiction and so the second part of
the lemma is established�

�

Lemma �� If t is a tuple in r such that t�A�B� �� a� b � and t is the only tuple
in r such that t�A�B� �� a� b � and A and B are unrelated in N �r�� then there
exists a tuple t�� in r� and there exists subtuples t�� �de�ned over NRS N ��� and
t�� �de�ned over NRS N ���� of t��� such that A is an atomic attribute in N �� and
t���A� �� a � and B is an atomic attribute in N ��� and t���B� �� b � and neither
t�� nor t�� are subtuples of each other� Also� if there exist subtuples t�� �de�ned
over NRS N ��� and t�� �de�ned over NRS N ���� of t��� such that t���A� �� a �

and t���B� �� b � then t�� � t�� and t�� � t���

Proof�We shall prove the result by induction on the nesting operations� Let
Yi be the NRS in which A appears as the atomic attribute and let Yj be the



NRS in which B appears as the atomic attribute� Since A and B are unrelated
it does not matter which nest is performed �rst� We shall choose arbitrarily Yj
to be nested �rst�� Initially r contains a tuple t with t�A�B� �� a� b �� The
same argument as used in the previous lemma then shows that rk� where k � j�
will contain a tuple tk such that tj�A�B� �� a� b �� Consider then the e�ect of
nesting on Yj � By de�nition of the nest operator� after the nesting it will contain
a tuple ti and t�i� a subtuple of ti� such that ti�A� �� a � and t�i�B� �� b �� It
then follows by a similar inductive argument and properties of the nest operator
that each relation rk� i � k � j will have the same property� Consider then the
e�ect of nesting on Yi��� By property �ii� of the nest operator� after the nest
on Yi�� there will exist a subtuples ti and t�i in ri such that ti�A� �� a � and
t�i�B� �� b � but ti and t�i are not subtuples of each other� Using a similar
inductive argument one can show that the same property remains true for rj�
j � i and so the result is proven�

The second part of the lemma can be established using similar arguments to
those used in the previous lemmas� �

Proof of Theorem �

If� We shall show the contrapositive that it T contains redundancy then R is
not in BCNF� Let �R � fAi� � Aj� � � � � � Ain � Ajng� Let r be any relation in
rel�R�� 
 any mapping in 	 and let T � 
�R�� We �rstly note that by Theorem

� T satis�es the set of XFDs �� � fpAi�

� pAj�
� � � � � pAin

� pAjn
g� So if T

contains redundancy� then this means that there exists an XFD pAik
� pAil

in �� and two nodes v� and v� in Paths�pAj
� such that val�v�� � val�v�� and

either� �a� two distinct nodes v� in Nodes�x�� pAk
� and v� in Nodes�y�� pAl

� such
that val�v�� � val�v�� or �b� x� � y��

We consider �a� �rst� We now consider several exhaustive subcases� �a�
� v�
and v� are siblings� �a��� Parent�v�� is an ancestor of v�� �c� Parent�v�� is an
ancestor of v�� �d� Parent�v�� and Parent�v�� are unrelated�

Consider �a�
�� By the construction procedure and since x� �� y�� this implies
that there exist two subtuples t�� and t�� in r� such that A and B are atomic
attributes in both subtuples and t��Aik � Ail � � t��Aik � Ail� �� a� b �� It then
follows from Lemma � �i� that there exists tuple t� and t� in r such that
t��Aik � Ail� �� a� b � and t��Aik � Ail� �� a� b �� Moreover� by Lemma �� t�
and t� are distinct� This implies that Aik cannot be a superkey since r satis�es
�R and t� and t� are identical on Aik and so BCNF is violated�

Consider �a���� By the construction procedure for T � there exist subtuples t��
and t�� in r

�� where t� is a subtuple of t�� such that Aik is an atomic attribute in
t� and Ail is an atomic attribute in t�� and t���Aik � �� a � and t���Ail � �� b ��
where a � val�v�� and b � val�v��� Then since x� �� y�� by the construction
procedure it follows that there exist subtuples t�� and t�� in r�� where t�� is a
subtuple of �� and t�� is distinct from t��� such that Aik is an atomic attribute in
t�� and Ail is an atomic attribute in t�� and t���Aik� �� a � and t���Ail � �� b ��
So using Lemma � �iii�� this implies that there exists two tuples t� and t� in r

such that t��Aik� Ail � �� a� b � and t��Aik� Ail � �� a� b �� It also follows from



Lemma � that t� and t� are distinct� It then follows� as for case �a�
�� that R is
not in BCNF�

By symmetry� case �a��� is handled in the same fashion as case �a����
Consider case �a���� By the construction procedure for T � if T contains re	

dundancy then there exist subtuples t�� and t�� in r� such that Aik is an atomic
attribute in t�� and Ail is an atomic attribute in t�� and t���Aik � �� a � and
t���Ail� �� b �� where a � val�v�� and b � val�v��� Then since x� �� y�� by the
construction procedure for T it follows that there exist subtuples t�� and t

�
� in r

��
where t�� is distinct from t��� such that Aik is an atomic attribute in t�� and Ail
is an atomic attribute in t�� and t���Aik � �� a � and t���Ail� �� b �� So using
Lemma � �iv�� this implies that there exists two tuples t� and t� in r such that
t��Aik � Ail� �� a� b � and t��Aik � Ail� �� a� b �� It also follows from Lemma
� that t� and t� are distinct� It then follows� as for case �a�
�� that R is not in
BCNF�

Consider then case �b�� Let v� be any node in Nodes�x�� pAk
�� Since x� � y�

and because of the construction procedure for T � the only case that can arise is
when Parent�v�� is an ancestor of v� and v�� Then� by the construction procedure
for T � there exist subtuples t��� t

�
� and t�� in r�� where t�� and t�� are subtuples of

t��� such that Aik is an atomic attribute in t�� and Ail is an atomic attribute in t��
and t�� and t���Aik � �� a � and t���Ail� � t���Ail �� b �� where a � val�v�� and
b � val�v��� So using Lemma � �iii�� this implies that there exists two tuples t�
and t� in r such that t��Aik � Ail� �� a� b � and t��Aik � Ail� �� a� b �� It also
follows from Lemma � that t� and t� are distinct� It then follows� as for case
�a�
�� that R is not in BCNF�

Only If� Suppose that R is not in BCNF and so there exists a FD Ai � Aj
such that Ai is not a superkey� Then from a well known theorem in relation the	
ory �

�� there exists a relation consisting of two tuples which satis�es �R and
such that t��Ai� Aj� � t��Ai� Aj �� Construct then a mapping from r to T which
contains no nesting at all� i�e� the mapping is as shown in Figure 

� Then T

contains redundancy since any change to the value of either Aj nodes results in
the XFD root�Id�Ai � root�Id�Aj being violated� �

E root

A

“a1”
A
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A

“c1”

E Id

.       .Ai Aj An A
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Fig� ��� XML trees from di
erent mappings�


