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This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model
of molecular and colloidal electrostatics that removes the mathematical singularities that have to
date been accepted as an intrinsic part of the conventional boundary integral equation method. The
essence of the present boundary regularized integral equation formulation consists of subtracting
a known solution from the conventional boundary integral method in such a way as to cancel out
the singularities associated with the Green’s function. This approach better reflects the non-singular
physical behavior of the systems on boundaries with the benefits of the following: (i) the surface
integrals can be evaluated accurately using quadrature without any need to devise special numerical
integration procedures, (ii) being able to use quadratic or spline function surface elements to represent
the surface more accurately and the variation of the functions within each element is represented to
a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate
electric fields, even at boundaries, accurately and directly from the potential without having to solve
hypersingular integral equations and this imparts high precision in calculating the Maxwell stress
tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric
configurations in which different parts of the boundary can be very close together without being
affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be
found accurately at surface separations down to near contact, and (v) having the simplicity of a
formulation that does not require complex algorithms to handle singularities will result in significant
savings in coding effort and in the reduction of opportunities for coding errors. These advantages
are illustrated using examples drawn from molecular and colloidal electrostatics. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4960033]

I. INTRODUCTION

Quantitative estimates of the electrostatic interaction
between constituents in molecular and colloidal systems
are central to understanding the role of structures and
functions in areas ranging from biology, engineering to
material science. Specific applications include understanding
the translocation of DNA molecules in external fields1 or
in the vicinity of membranes,2 estimating the energetics of
protein complexation,3 modeling biomembrane mechanics,4

quantifying the effects of induced charges at dielectric
boundaries in soft condensed matter,5 modeling charge
transfer energies in electric cells,6 electrolyte theory,7 and
simulation studies of colloidal systems.8 In the majority
of cases, the focus is on the forces and energetics of
systems comprised of charged components in an aqueous
electrolyte. For general qualitative understanding and in many
instances even sufficient for quantitative precision, the linear
Debye-Hückel or the linearised Poisson-Boltzmann model has
served as an informative and tractable starting point that can

a)Electronic mail: Qiang.Sun@unimelb.edu.au
b)Electronic mail: evert@ihpc.a-star.edu.sg
c)Electronic mail: D.Chan@unimelb.edu.au

capture most of the important physical ingredients. This has
been recognized as such since the classic contributions of
Kirkwood9 on the solvation energies of ionic species and of
the Derjaguin-Landau-Verwey-Overbeek (DLVO) model10,11

of the interaction between colloidal particles developed in
the early part of the last century. Even at present, the
Kirkwood model of charged molecules treated as point
charges embedded in a continuum dielectric body that is
immersed in an implicit continuum solvent model electrolyte
is still very much in use for understanding the interaction
between complex biological molecules. Furthermore, the
available analytic solutions for simple geometries are valuable
benchmarks for complex computational methods in molecular
electrostatics. Similarly the paradigm introduced by the DLVO
theory still underpins current understanding in colloidal
interactions.

Understandably, the Kirkwood and DLVO models are
based on simple geometries such as spheres, cylinders, or
planes for which analytical solutions are available for the
Debye-Hückel equation for the electrostatic potential φ(x) in
an electrolyte,

∇2φ(x) − κ2φ(x) = 0, (1)

0021-9606/2016/145(5)/054106/12/$30.00 145, 054106-1 Published by AIP Publishing.
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where the ionic concentration of the electrolyte is charac-
terized by the Debye length, 1/κ. For general geometries,
the partial differential equation, Eq. (1), has to be solved
numerically using finite difference methods, finite element
methods, or boundary element methods.

The finite difference methods and finite element methods
are based on the discretization of the 3D domain. This
approach requires appropriate choice of variable grid
resolution that can faithfully represent complex surface shapes
and surface spacings as well as handling infinite domains. For
complex geometries, this can be challenging. However, these
methods generate large but sparse matrix equations for which
well-tested computational algorithms are available to handle
the numerical task.

In contrast, the boundary element method uses Green’s
identity to express the solution of Eq. (1) in terms of φ(x)
and its normal derivative ∂φ(x)/∂n ≡ n(x) · ∇φ(x) on the 2D
boundary, S, of the 3D domain where n(x) is the outward
unit normal of S at x. The values of these functions on
the boundary are obtained by solving the surface integral
equation,12

c0φ(x0) +

S

φ(x)∂G(x,x0)
∂n

dS(x) =

S

G(x,x0)∂φ(x)
∂n

dS(x),
(2)

where the points x and x0 both lie on the surface S that may
be the surface of a molecule or a colloidal particle. Here

G(x,x0) = exp(−κ |x − x0|)
|x − x0| (3)

is the Green’s function: ∇2G − κ2G = −4πδ(x − x0) of
Eq. (1). The constant, c0, in Eq. (2) is the solid angle at
x0. It is equal to 2π if the tangent plane of S at x0 is
defined, otherwise it has to be calculated from the local
geometry.13,14 As we shall see later, our formulation of the
boundary integral equation is independent of the value of
c0. Therefore, once the values of φ(x) and ∂φ(x)/∂n on the
surface, S, have been found, the value of φ(x) anywhere in
the 3D domain can be determined by an integral over the
surface.12

For an electrostatic problem, either φ(x) or ∂φ(x)/∂n
or a relation between them15 on the surface is known from
the boundary conditions appropriate to the problem. Thus
the unknown quantity in Eq. (2) can be found by solving a
problem in 2D. In contrast, finite difference or finite element
methods require solving a problem in 3D. This reduction in
dimension and hence the number of unknowns together with
the accurate account of conditions at infinity is a desirable
trade-off for a slightly more complex formulation that favors
the boundary element approach.

Traditionally, the boundary element method is regarded
to have two major disadvantages. First, the discretization
of Eq. (2) results in a dense matrix equation that has O(N3)
complexity, rendering it unsuited for large problems. However,
with the recent advent of fast solvers based on Krylov subspace
iteration methods together with fast Fourier transform and
singular value decomposition algorithms,16 the computational
cost can be reduced to a practically competitive level of

O(N log N). Second, the Green’s function formulation of
Eq. (2) contains singularities as x → x0 in the two surface
integrals that are inherent in the Green’s function, G, and
its normal derivative, ∂G/∂n. Such singular behavior is
a consequence of the mathematical formulation and does
not relate to any physical divergences on the boundary
surfaces. Although these integrals are bounded in spite of the
singularities in G and ∂G/∂n, that is, these singularities are
integrable, nonetheless, the mathematical complexity needed
to handle such singular behavior means that usually only
the simplest area elements are used to discretize S. By far
the most common approach is to represent S by a mesh of
planar triangular area elements and assume that φ and ∂φ/∂n
are constants within each element as the unknowns to be
determined.

A more serious consequence of the singular nature of
G and ∂G/∂n is that when problems involve having two
parts of the boundary being very close together, for example,
when the surfaces of two ions or colloidal particles are nearly
in contact, such singular behavior will limit the precision
for which the surface integrals can be evaluated numerically
because the near singular behavior at one surface can adversely
affect the precision of the evaluation of integrals on a nearby
surface.

A further problematic consequence of such singular
behavior is that in calculating the force between charged
entities, it is necessary to determine the electric field,
E = −∇φ, that enters into the Maxwell stress tensor. It
has been suggested that a boundary integral equation for
E can be found by taking the gradient of Eq. (2),17 resulting
in hypersingular integral equations in which more strongly
divergent integrals need to be interpreted as principal value
integrals. Numerical evaluation of such integrals requires
special care that impacts adversely on the achievable precision.
This hypersingular behavior arises from the interchange of
integration and differentiation—an ill-advised procedure for
integrals that do not converge absolutely.

Given the achieved advances in the development of
O(N log N) fast solvers for dense linear systems that arise from
the boundary integral solution of the Debye-Hückel equation,
it is timely to re-examine the foundation of the integral
equation, Eq. (2), and seek to eliminate the mathematical
singularities that originate from the Green’s function G(x,x0).
Such singularities, while long accepted in boundary integral
equations as unavoidable, do not have any actual physical
basis. Thus success in eliminating them will obviously
be very beneficial to many areas in chemical physics in
which molecular and colloidal electrostatics feature as key
components of a larger framework.

In Secs. II and III, we present a new formulation of
the boundary integral equation solution of the Debye-Hückel
equation that does not contain the traditional singularities.
The consequences of this non-singular formulation are as
follows:

1. The surface integrals can be evaluated accurately using
quadrature without any need to devise special numerical
integration procedures so that, for example, standard Gauss
quadrature can be used.
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2. We can use quadratic surface elements to represent the
surface S more accurately and the variation of the functions
within each element is represented to a consistent level of
precision by quadratic interpolation functions and opens
the possibility to use spline functions or higher order
functions to represent surfaces.

3. Electric fields, even at boundaries, can be evaluated
accurately and directly from the potential without having
to solve hypersingular integral equations and this imparts
high precision in calculating the Maxwell stress tensor and
consequently, intermolecular or colloidal forces.

4. Geometric configurations in which different parts of the
boundary are very close together will not cause numerical
instabilities, thus potentials, fields, and forces between
surfaces can be found accurately at surface separations
down to near contact.

5. The simplicity of the formulation in not requiring complex
algorithms to handle singularities means significant savings
in coding effort and reduction of opportunities for coding
errors.

6. Multiple domains connected by boundary conditions can
be implemented with relative ease.

Since the implementation of fast O(N log N) algorithms
is well-developed and documented, we will only focus on
the non-singular formulation of relevant physical problems
that will be called the boundary regularized integral equation
formulation—BRIEF, and we present numerical examples that
will highlight the precision that our approach can furnish.

II. MOTIVATION

To provide background to our boundary regularized
integral equation formulation (BRIEF) for the Debye-Hückel
equation, we first consider the boundary integral formulation
of the solution of the Laplace equation for φ,

∇2φ(x) = 0, (4)

for which the standard boundary integral equation on the
surface S that encloses the solution domain is12

c0φ(x0) +

S

φ(x)∂G0(x,x0)
∂n

dS(x) =

S

G0(x,x0)∂φ(x)
∂n

dS(x),
(5)

where the Green’s function for the Laplace equation (4) is

G0(x,x0) = 1
|x − x0| . (6)

The standard way to ameliorate the singularity in ∂G0/∂n
on the LHS of Eq. (5) is to note that the function [φ(x) − φ(x0)]
also satisfies the Laplace equation, Eq. (4), and therefore
the corresponding standard boundary integral equation for
[φ(x) − φ(x0)] is

S

[φ(x) − φ(x0)]∂G0(x,x0)
∂n

dS(x) =

S

G0(x,x0)∂φ(x)
∂n

dS(x).
(7)

Thus provided the function φ(x) is continuous at x0, the use of
Eq. (7) instead of Eq. (5) means that the remaining integrable

weak singularities can be accommodated by a local change of
variables when x → x0.

We now extend this approach to the case when φ(x)
satisfies the Debye-Hückel equation.

III. FORMULATION

For ease of future reference, we designate the boundary
integral equation in Eq. (2) derived from the conventional
boundary integral method as CBIM. Our objective is to remove
analytically the singularities in G and ∂G/∂n in Eq. (2), that
occur as x → x0. Such singularities are the consequence of
the mathematical derivation of Eq. (2) and have no intrinsic
physical basis. It is also worth noticing that the singular
behavior of G is in fact identical to G0 ≡ 1/|x − x0| since
G ≡ G0 + ∆G where ∆G ≡ [exp(−κ |x − x0|) − 1]/|x − x0| is
finite as x → x0. The same analysis can be applied to
∂G/∂n as well. The approach that we use to deal with
these singularities, a simple version of which is given in
Sec. II, is adapted from the de-singularisation of integral
equations that occur in fluid mechanics, elasticity, and
acoustics.14,18,19

We begin by first considering the function ψ(x) that
satisfies the Laplace equation for the same domain as where
Eq. (1) is valid,

∇2ψ(x) = 0. (8)

The corresponding conventional boundary integral equation
for ψ(x) for the same surface S is

c0ψ(x0) +

S

ψ(x)∂G0(x,x0)
∂n

dS(x) =

S

G0(x,x0)∂ψ(x)
∂n

dS(x),
(9)

where G0 is given by Eq. (6). In order to useψ(x) to remove the
singularities in Eq. (2), we require it to assume the following
special values at x = x0:

ψ(x0) = φ(x0), (10)
∂ψ(x0)
∂n

=
∂φ(x0)
∂n

. (11)

Thus subtracting Eq. (9) from Eq. (2), we can eliminate the
term c0φ(x0) to give

S


φ(x)∂G(x,x0)

∂n
− ψ(x)∂G0(x,x0)

∂n


dS(x)

=


S


G(x,x0)∂φ(x)

∂n
− G0(x,x0)∂ψ(x)

∂n


dS(x). (12)

To satisfy Eqs. (10) and (11), we can choose ψ(x) to have the
form

ψ(x) = φ(x0)g(x) + ∂φ(x0)
∂n

f (x), (13)

where g(x) and f (x) satisfy the Laplace equation with the
following conditions at x = x0:
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∇2g(x) = 0, g(x0) = 1, ∇g(x0) · n(x0) = 0, (14)

∇2 f (x) = 0, f (x0) = 0, ∇ f (x0) · n(x0) = 1, (15)

and this will ensure both integrands in Eq. (12) will not
be singular at x = x0. Note that the conditions on g(x) and

f (x) in Eqs. (14) and (15) are constraints on at a single
position x = x0 and are not general boundary data on a
surface.

Finally, we have the key result for our boundary
regularized integral equation formulation (BRIEF),


S


φ(x)∂G(x,x0)

∂n
− φ(x0)g(x)∂G0(x,x0)

∂n
+ φ(x0)∂g(x)

∂n
G0(x,x0)


dS(x)

=


S


∂φ(x)
∂n

G(x,x0) − ∂φ(x0)
∂n

∂ f (x)
∂n

G0(x,x0) + ∂φ(x0)
∂n

f (x)∂G0(x,x0)
∂n


dS(x). (16)

It can be shown that this integral equation contains no
singularities provided g(x) and f (x) have simple mathematical
smoothness properties,18 and so Eq. (16) can be solved by
straightforward numerical methods. It replaces Eq. (2), the
equation from the conventional boundary integral method
(CBIM) that contains singular integrands.16,17,20–22 This
equation connecting φ and ∂φ/∂n on the surface S is the
starting point of our boundary regularized integral equation
formulation (BRIEF) of molecular and colloidal electrostatics.
As we shall see, the absence of mathematical singularities
in the BRIEF simplifies numerical implementation and the
coding effort resulting in very significant improvements
in numerical precision even for problems that pose nearly
insurmountable difficulties for the CBIM.

There are many possible choices for g(x) and f (x)
satisfying Eqs. (14) and (15) that will ensure that Eq. (16) is
non-singular. For instance, we can take

g(x) = 1, f (x) = n(x0) · (x − x0). (17)

Although for this simple choiceψ(x) does not vanish at infinity
for external problems, its integral over the closed surface at
infinity can be found analytically and its magnitude is equal
to 4πφ(x0)14,18 while its sign depends on the direction of the
normal vector. However, there are other choices that may
better suit the problem at hand.19

Although we have presented the derivation of the BRIEF
by considering an integral equation on a single surface, S,
the generalisation to more complex surface topologies and
multiple domains is straightforward,16 see also the examples
below.

IV. IMPLEMENTATION AND EXAMPLES

To illustrate the utility and precision that can be
achieved by our boundary regularized integral equation
formulation (BRIEF), we benchmark against results from
recent approaches using the conventional boundary integral
method (CBIM) to calculate the solvation energy of the
venerable Kirkwood model of an ion in electrolyte. For
applications in colloidal electrostatics, we compare against
analytic results for the interaction between two spheres

available as infinite series expansions in terms of orthogonal
functions. We also present illustrative examples of systems
with surfaces that are almost in contact for which the geometry
can be quite challenging for the CBIM because of the presence
of singularities in the integral equation but in contrast pose no
numerical problems using BRIEF because of the absence of
singularities in the integrands.

A. Molecular electrostatics

1. Kirkwood ion

To benchmark against known analytic results, we consider
calculations of the solvation energy of a Kirkwood ion9

that was the first molecular electrostatics model on which
the conventional boundary integral method was tested.20

The model comprises a point charge, q embedded at a
location xs = (0,0,rs) from the center of a sphere of radius,
a (>rs), and dielectric constant, ϵ in, immersed in a solvent of
dielectric constant, ϵout. The solvent can also be an electrolyte
characterized by a Debye length, 1/κ. In addition, the spherical
ion can have a concentric outer shell or Stern layer, of radius,
b, that excludes ionic species in the thin layer, a < r < b. The
Stern layer may also have a different dielectric constant, ϵ st.
A schematic representation of the Kirkwood ion is given in
Fig. 1(b).

The potential φ is determined by the following equations
in different spatial domains:

∇2φ(x) = −(q/ϵ0ϵ in) δ(x − xs), 0 < r < a (18)
= 0, a < r < b (19)

= κ2φ(x), r > b. (20)

The solution inside the ion 0 < r < a can be written as the
sum of the coulomb potential due to the point ion and a
reaction potential,

φ(x) = q
4πϵ0ϵ in

1
|x − xs | + φreact(x), 0 < r < a. (21)

At the boundaries r = a and r = b, we have the continuity
conditions of φ and ϵ ∂φ/∂r , whereas φ vanishes as r → ∞.
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FIG. 1. Variation of the relative error in the solvation energy, Esolv with the number of nodes (upper horizontal axis and up arrows) or the edge length (lower
horizontal axis and down arrows) of the surface area elements for a Kirkwood ion comprised of a point charge embedded at position rs inside a sphere of radius,
a, dielectric constant, ϵin= 4 immersed in a solvent of dielectric constant, ϵout= 80 using our present method BRIEF compared to results of (a) Cooper et al.21

with a = 4 Å, rs = 0, in a dielectric solvent without a Stern layer (κ = 0 and b = a) and of Altman et al.16 with a = 20 Å, b = 22 Å, ϵst = 80, rs = 18 Å, in an
electrolyte 1/κ = 8 Å; and (b) for a = 10 Å, b = 12 Å, ϵst = 8, 1/κ = 8 Å, showing how the relative error of the solvation energy varies with the position, rs of
the embedded charge. The reference analytic results for the solvation energy in these examples are given in Appendix A.

The solution expressed in terms of infinite series is given in
Appendix A.

The solvation energy, Esolv is given in terms of the reaction
potential evaluated at the location of the point ion at x = xs,9

Esolv =
1
2

q φreact(xs). (22)

Details of using BRIEF to calculate φreact(xs) are given
in Appendix B. The surface of the Kirkwood sphere is
represented by triangular shaped quadratic elements. The
unknowns are potential values at the nodes of the elements.
The variation of the potential within each quadratic element
is obtained by quadratic interpolation of the nodal values. The
surface integral over each element is calculated by quadrature
and as the resulting linear system is not large, the linear
equations are solved by Gauss elimination.

In Fig. 1(a), we compare the relative error in Esolv obtained
by BRIEF for a Kirkwood ion to the corresponding results
obtained by CBIM in a dielectric solvent21 and an electrolyte
solvent16 for different mesh size or number of nodes used in
the evaluation of the surface integrals. It is evident that the
relative error obtained using the BRIEF that has no singular
integrals can be 2 orders of magnitude smaller than that
of the CBIM, or conversely for the CBIM to achieve the
same precision as the BRIEF, over a 100-fold increase in
the number of nodes will be required. These results clearly
demonstrate the superior efficiency of the BRIEF. In Fig. 1(b),
we quantify how the position of the point ion inside the solute
sphere can affect the relative error in the solvation energy.
We see that even when the ion is located at 1 Å from the
surface of a 10 Å radius solvent sphere, accurate results can
still be obtained by the BRIEF with a modest number of
nodes. When the distance of the ion from the surface of the
ion is comparable to the thickness of the Stern layer, the
rate of convergence with respect to the number of nodes is
slower.

2. Dumbbell zwitterion

To illustrate how our boundary regularized integral
equation formulation (BRIEF) can be used to calculate
accurately the potential and electric field E = −∇φ at the
surface of charged molecules without using the hyper-singular
boundary integral formulations (see Appendix C for details),
we consider an axisymmetric dumbbell shaped zwitterion
described in the body axis frame (X,Y, Z) where Z is the axis
of rotation and R2 = X2 + Y 2 by23 (see Fig. 2 (Multimedia
view))

�(Z + c)2 + R2�− 3
2 +

�(Z − c)2 + R2�− 3
2 = 2

�
c2 + d2�− 3

2 . (23)

A point charge, q or −q is placed at each of the foci at Z = ±c
inside the dielectric dumbbell that has dielectric constant
ϵ in. The zwitterion is immersed in a continuum electrolyte
characterized by dielectric constant ϵout and Debye length
1/κ. The dumbbell has length, 2a, with a narrow neck of
width 2d at Z = 0 in between two lobes of width 2b.

In Fig. 2 (Multimedia view), we show a pair of zwitterions
at separation 9.514 Å between their points of closest approach
with the surface potential φ on each zwitterion indicated by
a color scale. The corresponding external electric vector field
on the surface is calculated according to Eq. (C2). Also,
corresponding to Fig. 2(a) (Multimedia view), we show a
video of the variation of the surface potential as the relative
orientation of the zwitterions changes.

B. Colloidal electrostatics

1. Potential and field

We now illustrate the utility of the boundary regu-
larized integral equation formulation (BRIEF) in colloidal
electrostatics. In the Debye-Hückel model, the colloidal
particles of dielectric constant, ϵ in, are assumed to carry a
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FIG. 2. The surface potential φ in volts and the electric field at the surface of two dumbbell shapes zwitterionic molecules each of which is comprised a positive
and a negative elementary point charge at the foci of the dumbbells of dielectric constant ϵin= 4 in a solvent of dielectric constant ϵout= 80. The dumbbells have
length 2a = 20 Å and the waist has width 2d = 5 Å, so that b/a = 0.4757, c/a = 0.5303, and the exterior electrolyte is characterized by κa = 1.25. The distance
between the axes of the dumbbells is 14.5 Å, corresponding to a distance of closest approach of 9.514 Å. The surface of each dumbbell is represented by a mesh
of 1962 nodes connecting 980 quadratic elements. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4960033.1]

specified uniform surface charge density, σch. They interact
across an electrolyte characterized by ϵout and κ. Inside the
dielectric particle, the electrostatic potential, φ, obeys the
Laplace equation and in the outer electrolyte, φ is governed
by Eq. (1). The usual electrostatic boundary conditions
at the surface are the continuity of φ and the condition
[ϵ ∂φ/∂n]in − [ϵ ∂φ/∂n]out = σch/ϵ0. For simple geometries
such as for the interaction between two colloidal spheres, it is
possible to obtain explicit forms for φ in terms of infinite series
expansions of orthogonal functions.24 The boundary integral
method has been used as the starting point of a perturbation
calculation.25

We have verified that our non-singular boundary
regularized integral equation formulation (BRIEF) can
reproduce the infinite series solution for the force between two
spheres of the same size.24 Here we highlight the advantages

of the BRIEF in being able to calculate the potential very
accurately in the region between two very nearly touching
dielectric spheres—a problem that is very challenging using
the series expansion method or the conventional formulation
of the boundary integral method. The dielectric spheres
with ϵ in = 2, radii a and 3a are positioned at a minimum
separation h = a/1000. The spheres carry equal and opposite
uniform surface charge densities, ±σch and are immersed in an
electrolyte characterized by ϵout = 80 and κa = 1. The centers
of the spheres are located along the z-axis and the origin of
the Cartesian axes system is midway between the surfaces of
the nearly touching spheres with z = 0 being the median plane
(see Fig. 3(a)).

In Fig. 3(b), we show the variation of the potential in
the median plane obtained using the conventional boundary
integral method (CBIM in Eq. (C4)) and by the present

FIG. 3. (a) The configuration of 2 nearly touching spheres at a separation, h. The spheres carry equal and opposite surface charge densities with h/a = 10−3

and κa = 1. (b) Variation of the potential within the median plane z = 0 according to the CBIM and the BRIEF. The surface of the smaller sphere is represented
by 3072 linear elements comprising 1538 nodes and that of the surface of the larger sphere by 12 288 linear elements comprising 6146 nodes.
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FIG. 4. (a) The force between two dumbbell particles as a function of the relative orientation at separation κl = 0.4524 (see inset for definition of l). This
corresponds to a small distance of closest approach, κh = 10−3 between the dumbbells. At separation κl = 0.3, the narrow waists of the two dumbbells fit around
each other thereby restricting the relative orientation to be only within a limited range about π/2. (b) The corresponding torque about the y-axis. Each dumbbell
surface is represented by 1200 quadratic elements with 2402 nodes.

non-singular boundary regularized integral equation formu-
lation (BRIEF in Eq. (C7)). At this small separation (a/h
= 1000, or κh = 10−3), the numerical precision of calculating
the integral on one surface is adversely affected by the intrinsic
near-singular behavior of the CBIM from the nearby surface
is which evident in the large errors or variations in the region
|x |/a < 0.5. In contrast, the non-singular nature of the BRIEF
means that in the same region, the calculation of the potential
is not sensitive to the influence of proximal surfaces and
that the potential variation is smooth and well-behaved as
expected.

2. Forces and torques

The force acting on a colloid particle is calculated by
integrating the Maxwell stress tensor over the particle surface.
In the Debye-Hückel model, the i j-component of the Maxwell
stress tensor, σi j, is26

σi j = ϵ0ϵout


EiE j −

1
2


EkEk + (κφ)2


δi j


(24)

where Ei is the ith component of electric field E and δi j is
the Kronecker delta function. Thus, the ith component of the
force, F, acting on the particle is

Fi =


S

σi jn jdS, (25)

in which n j is the jth component of the outward surface
normal. The torque about the Cartesian axis i is calculated
using

Ti =


S

εi jkr j (σkmnm) dS, (26)

where εi jk is the three-dimensional Levi-Civita symbol and
r j is the jth component of the vector between the surface
node and the center of the particle. For a pair of particles,
we confirm that the numerical results for the force and torque
are consistent whether we integrate over the surface of one
particle or the other.

In Fig. 4, we show results for the force and torque
between two identically charged dumbbells, described by
Eq. (23), that carry a uniform surface charge density, σch. The
dumbbells have dielectric constant ϵ in = 2 and are immersed
in a solvent of dielectric constant ϵout = 80 and Debye length
1/κ = 7.955 Å. The relevant dimensionless parameters are
κa = 1, b/a = 0.4757, c/a = 0.5303, d/a = 0.25. We give
results for two separations: (i) at κl = 0.4524 (see Fig. 4(b)
for the definition), so that the distance of closest approach
between surfaces of the dumbbells at their widest part is very
small κh = 10−3; and (ii) at κl = 0.3, where the waists of the
2 dumbbells dovetail around each other so that the relative
orientation between the axes of the dumbbells is confined
within a limited range around π/2. These results show that
present non-singular boundary regularized integral equation
formulation (BRIEF) is very robust and being able to furnish
stable numerical results when the system parameters such as
separation and size ratios are at quite extreme limits.

V. CONCLUSIONS

The boundary integral method is a very powerful
approach for studying molecular and colloidal electrostatics.
Its principal advantage from the physical point of view is that
the solution is cast in terms of solving for unknowns on the
surfaces that define the charged system. This is particularly
beneficial if the surfaces have complex and important facets or
when the primary interest is in the potentials and electric fields
near surfaces or forces at small separations. Unlike volume
based methods such as finite difference or finite element
methods, one does not have to be concerned with multi-scale
meshing issues of the 3D domain or with the behavior of the
potential and field at infinity.

The technical challenge of boundary integral methods in
giving rise to dense matrix systems that required impractical
execution times has been overcome with the development
of fast algorithms that are of very acceptable O(N log N)
complexity.28 The remaining hurdle facing the wider adoption
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of the boundary integral method is the appearance of
mathematical singularities in the conventional boundary
integral method. While these singularities have no physical
origin, they make it very difficult to use higher order methods
to represent surfaces more accurately or to develop algorithms
to evaluate the surface integrals with higher precision.

In this paper, we have focused on a general formulation
of the boundary integral method for the Debye-Hückel model
that removes the singular behavior that has to date been
accepted as an intrinsic part of the conventional boundary
integral equation method. By re-casting the problem in a
way that better reflects the non-singular physical behavior
of the system, we have shown with examples drawn from
molecular and colloidal electrostatics that this is a robust,
efficient, and accurate approach. The removal of physically
irrelevant singularities affords considerable savings in coding
effort and results in orders of magnitude improvement
in numerical precision for the same problem size. The
enhanced accuracy also allows the electric field at boundaries
to be calculated easily and accurately without having to
solve hypersingular integral equations. As a consequence,
physically important quantities such as forces and torques
can be calculated easily. These advances should therefore
provide an impetus to use the present non-singular boundary
regularized integral equation formulation (BRIEF) to tackle
complex and important problems. The present framework can
easily be accommodated in existing boundary integral codes
with the addition of a few lines of new code whereas all
existing code that handles the singularities can be discarded.
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APPENDIX A: KIRKWOOD ION POTENTIAL
DISTRIBUTION

By positioning the point ion of charge, q, on the z-axis
at xs = (0,0,rs), the electrostatic potential, φ(x), inside and
outside a Kirkwood ion with a Stern layer is governed by
Eqs. (18)-(20). The analytic solution of which can be expressed
as infinite series in Legendre polynomials, Pn(cos θ), of order
n that depends on the polar angle θ measured relative to the
z-axis,9

φ(x) = q
4πϵ0ϵ in

∞
n=0

rn<
rn+1
>

Pn(cos θ)

+
q

4πϵ0ϵ ina

∞
n=0

An
rn

an
Pn(cos θ), 0 < r < a (A1)

=
q

4πϵ0ϵ sta

∞
n=0


Bn

rn

an
+ Cn

an+1

rn+1


Pn(cos θ),

a < r < b, (A2)

=
q

4πϵ0ϵouta

∞
n=0

Dnkn(κr)Pn(cos θ), r > b. (A3)

The first sum in Eq. (A1) is the spherical harmonic
expansion of the coulomb potential due to the point
charge at xs with r> ≡ max(r,rs) and r< ≡ min(r,rs).
The second sum in Eq. (A1) is the reaction potential,
φreact(x) — see Eq. (21). In Eq. (A3), kn(z) is a modified
spherical function of the second kind of order n.27 If the
solvent in the region r > b is a dielectric, kn(κr) is to
be replaced by (b/r)n+1. The 4 coefficients An, . . . ,Dn are
determined by the continuity of φ and ϵ(∂φ/∂r) at r = a and
r = b.

The continuity of φ and ϵ(∂φ/∂r) at r = a gives

1
ϵ in

( rs
a

)n
+

1
ϵ in

An =
1
ϵ st

(Bn + Cn), (A4)

−(n + 1)
( rs

a

)n
+ nAn = nBn − (n + 1)Cn (A5)

and at r = b gives

1
ϵ st


Bn

(
b
a

)n
+ Cn

( a
b

)n+1

=

1
ϵout

kn(κb)Dn, (A6)

nBn

(
b
a

)n
− (n + 1)Cn

( a
b

)n+1
= (κb)k ′n(κb)Dn. (A7)

These 4 equations can readily be solved for An. For a
dielectric solvent with κ = 0, we make the replacements
kn(κb)Dn → Dn and (κb)k ′n(κb)Dn → −(n + 1)Dn.

From Eqs. (21) and (22), the solvation energy, Esolv can be
expressed in terms of the reaction potential, φreact(x) evaluated
at the point ion, (r, θ) = (rs,0),9

Esolv =
1
2

q *
,

q
4πϵ0ϵ ina

∞
n=0

An

rns
an

+
-
. (A8)

APPENDIX B: NUMERICAL IMPLEMENTATION

As an example of how our boundary regularized
integral equation formulation (BRIEF) given by Eq. (16)
can be discretized to give a linear system to be solved
for the unknown potential, we consider the Kirkwood
ion defined by Eqs. (18)-(20). This simple model has all
the physical features of general problems in molecular
electrostatics in which a charged molecule is modeled
as having point ions embedded in a dielectric region of
dielectric constant, ϵ in, that is immersed in an electrolyte of
dielectric constant, ϵout, and ionic concentration characterized
by a Debye length, 1/κ. In addition, a thin dielectric
Stern layer of dielectric constant, ϵ st, that excludes
ionic species separates the electrolyte from the charged
molecule.

Such a system comprises two boundaries that are the
inner, Sin, and outer, Sout, surfaces of the Stern layer (see
Fig. 5). The potential is therefore defined by implementing
the BRIEF, Eq. (16), at these two surfaces that result in a pair
of coupled surface integral equations. The usual electrostatic
boundary conditions for the continuity of φ and (ϵ ∂φ/∂n)
are applied at these two surfaces. On the inner surface, Sin, we
have
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φst, in = φin, (B1)
∂φst, in

∂n
=
ϵ in

ϵ st

∂φin

∂n
, (B2)

where φin and ∂φin/∂n are the potential and its normal
derivative within the particle that are on Sin and φst, in and
∂φst, in/∂n are the potential and its normal derivative within
the Stern layer that are on Sin. Similarly, on the outer surface,
Sout, we have

φst,out = φout, (B3)

∂φst,out

∂n
=
ϵout

ϵ st

∂φout

∂n
, (B4)

where φout and ∂φout/∂n are the potential and its normal
derivative within the particle that are on Sout and φst,out and
∂φst,out/∂n are the potential and its normal derivative within
the Stern layer that are on Sout.

Using Eq. (16) for the potential distribution in the region
prescribed by Eq. (18), we can write a relation between the
potential φin and its normal derivative ∂φin/∂n on Sin that is
the surface of the molecule or the inner surface of the Stern
layer as


Sin


φin(x)∂G0

∂n
− φin(x0)g(x)∂G0

∂n
+ φin(x0)∂g(x)

∂n
G0


dS(x)

−

Sin


∂φin(x)
∂n

G0 −
∂φin(x0)
∂n

∂ f (x)
∂n

G0 +
∂φin(x0)
∂n

f (x)∂G0

∂n


dS(x) = q

4πϵ0ϵ in|x0 − xs | . (B5)

For the potential in the Stern layer prescribed by Eq. (19), the surface integrals of the BRIEF will be taken on both the inner
surface, Sst, in, and the outer surface, Sst,out, of the Stern layer as


Sin


φin(x)∂G0

∂n
− φin(x0)g(x)∂G0

∂n
+ φin(x0)∂g(x)

∂n
G0


dS(x)

−

Sin

ϵ in

ϵ st


∂φin(x)
∂n

G0 −
∂φin(x0)
∂n

∂ f (x)
∂n

G0 +
∂φin(x0)
∂n

f (x)∂G0

∂n


dS(x)

+


Sout


φout(x)∂G0

∂n
− φout(x0)g(x)∂G0

∂n
+ φout(x0)∂g(x)

∂n
G0


dS(x)

−

Sout

ϵout

ϵ st


∂φout(x)
∂n

G0 −
∂φout(x0)

∂n
∂ f (x)
∂n

G0 +
∂φout(x0)

∂n
f (x)∂G0

∂n


dS(x) = 0, (B6)

where Eqs. (B1)–(B4) have been used.
Finally, the integrals from the BRIEF for the potential in the external domain are


Sout


φout(x)∂G

∂n
− φout(x0)g(x)∂G0

∂n
+ φout(x0)∂g(x)

∂n
G0


dS(x)

−

Sout


∂φout(x)
∂n

G − ∂φout(x0)
∂n

∂ f (x)
∂n

G0 +
∂φout(x0)

∂n
f (x)∂G0

∂n


dS(x)

+


S∞


φout(x)∂G

∂n
− φout(x0)g(x)∂G0

∂n
+ φout(x0)∂g(x)

∂n
G0


dS(x)

−

S∞


∂φout(x)
∂n

G − ∂φout(x0)
∂n

∂ f (x)
∂n

G0 +
∂φout(x0)

∂n
f (x)∂G0

∂n


dS(x) = 0. (B7)

The integrals over the surface at infinity, S∞ in the last two terms in Eq. (B7) can be easily simplified to 4πφout(x0) when g(x)
and f (x) are chosen according to Eq. (17) thus giving

4πφout(x0) +

Sout


φout(x)∂G

∂n
− φout(x0)g(x)∂G0

∂n
+ φout(x0)∂g(x)

∂n
G0


dS(x)

−

Sout


∂φout(x)
∂n

G − ∂φout(x0)
∂n

∂ f (x)
∂n

G0 +
∂φout(x0)

∂n
f (x)∂G0

∂n


dS(x) = 0. (B8)
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FIG. 5. Schematic sketch of the physical problem simulated by the boundary
regularized integral equation formulation (BRIEF).

In Eqs. (B5)–(B8), G ≡ G(x,x0) is given in Eq. (3) and
G0 ≡ G0(x,x0) is given in Eq. (6).

To solve Eqs. (B5)–(B8) to obtain φin φout, ∂φin/∂n, and
∂φout/∂n numerically, the surfaces, Sin and Sout, are discretized
by using quadratic triangular area elements on which each
element is bounded by 3 nodes on the vertices and 3 nodes
on the edges, see Fig. 6 for a total of N nodes on the surface.
The coordinates of a point in each element and the function
values there are obtained by quadratic interpolation from the
values at the nodes using the standard quadratic interpolation
function (ν ≡ 1 − ξ − η),

χ = ν(2ν − 1) χ1 + ξ(2ξ − 1) χ2 + η(2η − 1) χ3

+ 4νξ χ4 + 4ξη χ5 + 4ην χ6, (B9)

in terms of the local coordinates (ξ,η) (see Fig. 6).
The solution of the potentials and their normal derivatives

on the surfaces is expressed in terms of the values at the N
surface nodes. As illustrated in Fig. 5, when two observation
points, x0in and x0out, are chosen to be located on the inner
surface, Sin, and outer surface, Sout, of the Stern layer,
respectively, the surface integral equations, Eqs. (B5)–(B8),
can be expressed as a system of linear equations,

H 0
in(x0in) · φin − G0

in(x0in) ·
∂φin

∂n
=

q
4πϵ0ϵ in|x0in − xs | ,

(B10)

H 0
in(x0in) · φin −

ϵ in

ϵ st
G0

in(x0in) ·
∂φin

∂n
+H 0

out(x0in) · φout

− ϵout

ϵ st
G0

out(x0in) ·
∂φout

∂n
= 0, (B11)

H 0
in(x0out) · φin −

ϵ in

ϵ st
G0

in(x0out) · ∂φin

∂n
+H 0

out(x0out) · φout

− ϵout

ϵ st
G0

out(x0out) · ∂φout

∂n
= 0, (B12)

�
4πI +Hout(x0out)

�
· φout − Gout(x0out) · ∂φout

∂n
= 0, (B13)

where I is the identity matrix, the elements of the
matrices H 0

in(x0in), H 0
out(x0in), G0

in(x0in), and G0
out(x0in) are the

results of integrals (influence matrices) over the surface
elements involving the unknown 4N-vector (φin φout, ∂φin/∂n,
∂φout/∂n) corresponding to Eqs. (B5) and (B6) as x0in is on
Sin, andH 0

in(x0out),H 0
out(x0out),Hout(x0out), G0

in(x0out), G0
out(x0out),

and Gout(x0out) are the results of integrals over the surface
elements corresponding to Eqs. (B6) and (B8) as x0out is on
Sout. Since the surface integral equations (B5)–(B8) do not
have any singular behavior, these matrix elements can be
calculated accurately using standard Gauss quadrature. The
above set of equations is a 4N × 4N linear system for the
unknown complex 4N-vectors, φin φout, ∂φin/∂n, ∂φout/∂n on
the surface in the final form



H 0
in(x0in) 0 −G0

in(x0in) 0
H 0

in(x0in) H 0
out(x0in) −(ϵ in/ϵ st)G0

in(x0in) −(ϵout/ϵ st)G0
out(x0in)

H 0
in(x0out) H 0

out(x0out) −(ϵ in/ϵ st)G0
in(x0out) −(ϵout/ϵ st)G0

out(x0out)
0

�
4πI +Hout(x0out)

�
0 −Gout(x0out)





φin

φout

∂φin/∂n
∂φout/∂n



=



q/(4πϵ0ϵ in|x0in − xs |)
0
0
0



. (B14)

FIG. 6. The interpolation scheme on a quadratic surface element in the local
surface variables (ξ, η).

APPENDIX C: CALCULATING THE POTENTIAL
AND FIELD

The absence of singular integrals in the BRIEF means
that the potential on the surface, S, can be evaluated accurately
without numerical instabilities. Consequently, the electric
field on the surface can be calculated without the need to
solve hypersingular integral equations.17 Suppose we seek the
electric field, E = −∇φ at node k on the mesh that represents
the surface S, shown in Fig. 7. Consider one of the surface
elements, m, assumed for simplicity to be a planar triangle with
vertices at xA (node k), xB, and xC. The normal component of
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FIG. 7. Calculating the electric field at node k by averaging over all area
elements that share the node.

the electric field of node k at xA estimated from element m is
Ek,m is given by ∂φ/∂n from the boundary integral equation,
and tangential components of Ek,m can be estimated via finite
differencing using the potential values at the nodes of this area
element m,




(xA − xB) · (−Ek,m) ≈ φ(xA) − φ(xB),
(xA − xC) · (−Ek,m) ≈ φ(xA) − φ(xC),

nk · (−Ek,m) ≈
(
∂φ

∂n

)
k

.

(C1)

Now all components of Ek,m can be found by solving Eq. (C1).
However, all area elements that share node k also contribute
to the estimate of the electric field of node k at xA, therefore
the field Ek at node k will be the weighted contribution from
Nk such elements according to

Ek =

Nk
m=1

wm Ek,m. (C2)

The weight, wm, corresponding to element m is taken to be
inversely proportional to its area, Sm,

wm =
1/SmNk
n=1 1/Sn

. (C3)

Also, BRIEF provides a robust way to calculate the
potentials at field positions with the same level of accuracy
within the entire solution domain. In CBIM, the loss of
accuracy due to the near singularity when the field position is
close to the boundaries is usually more difficult to deal with
compared to the singular behavior on the boundaries.

To calculate the potential accurately at position xp in the
3D domain, we first use the CBIM to get φ(xp), with c0 = 4π,

4πφ(xp) +

S

φ(x)∂G(x,xp)
∂n

dS(x)

=


S

G(x,xp)∂φ(x)
∂n

dS(x). (C4)

In the same manner, from Eq. (9), we have

4πψ(xp) +

S

ψ(x)∂G0(x,xp)
∂n

dS(x)

=


S

G0(x,xp)∂ψ(x)
∂n

dS(x), (C5)

in which the x0 used to construct ψ(x) in Eq. (13) is chosen
as the node position that is closest to xp. Subtracting Eq. (C5)
from Eq. (C4) yields

4πφ(xp) = 4πψ(xp)
−

S


φ(x)∂G(x,xp)

∂n
− ψ(x)∂G0(x,xp)

∂n


dS(x)

+


S


G(x,xp)∂φ(x)

∂n
− G0(x,xp)∂ψ(x)

∂n


dS(x).

(C6)

The near singular behavior when xp is close to the boundary
can be eliminated by subtracting the BRIEF in Eq. (16) from
the above boundary integral equation (C6). This then provides
a numerically robust expression for φ(xp) whose accuracy is
not affected by the distance between xp and any boundary,

4πφ(xp) = 4πψ(xp)
−

S


φ(x)


∂G(x,xp)

∂n
− ∂G(x,x0)

∂n


− ψ(x)


∂G0(x,xp)

∂n
− ∂G0(x,x0)

∂n


dS(x)

+


S

�
G(x,xp) − G(x,x0)� ∂φ(x)

∂n
−
�
G0(x,xp) − G0(x,x0)� ∂ψ(x)

∂n


dS(x). (C7)

This expression for the potential φ(xp) at any point xp in the
solution domain given by Eq. (C7) contains no singular or
near singular behavior and will give equally good precision
irrespective of the location of the field point xp.

1J. M. Kim and P. S. Doyle, J. Chem. Phys. 125, 074906 (2006).
2S. Buyukdagli and T. Ala-Nissila, J. Chem. Phys. 144, 084902 (2016).
3B. Kim, J. Song, and X. Song, J. Chem. Phys. 133, 095101 (2010).

4G. V. Miloshevsky, A. Hassanein, M. B. Partenskii, and P. C. Jordan, J. Chem.
Phys. 132, 234707 (2010).

5S. Tyagi, M. Suzen, M. Sega, M. Barbosa, S. S. Kantorovich, and C. Holm,
J. Chem. Phys. 132, 154112 (2010).

6T. Xiao and X. Song, J. Chem. Phys. 141, 134104 (2014).
7A. W. Lange and J. M. Herbert, J. Chem. Phys. 134, 204110 (2011).
8C. Alvarez and G. Tellez, J. Chem. Phys. 133, 144908 (2010).
9J. G. Kirkwood, J. Chem. Phys. 2, 351 (1934).

10B. Derjaguin and L. Landau, Acta Physicochim. URSS 14, 633 (1941).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  136.186.72.17 On: Thu, 25 Aug

2016 04:51:57

http://dx.doi.org/10.1063/1.2222374
http://dx.doi.org/10.1063/1.4942177
http://dx.doi.org/10.1063/1.3474624
http://dx.doi.org/10.1063/1.3442414
http://dx.doi.org/10.1063/1.3442414
http://dx.doi.org/10.1063/1.3376011
http://dx.doi.org/10.1063/1.4896763
http://dx.doi.org/10.1063/1.3592372
http://dx.doi.org/10.1063/1.3486558
http://dx.doi.org/10.1063/1.1749489
http://dx.doi.org/10.1016/0079-6816(93)90013-L


054106-12 Sun, Klaseboer, and Chan J. Chem. Phys. 145, 054106 (2016)

11E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic
Colloids (Elsevier, 1948).

12A. A. Becker, The Boundary Element Method in Engineering: A Complete
Course (Mcgraw-Hill, 1992).

13V. Mantic̆, J. Elasticity 33, 191 (1993).
14Q. Sun, E. Klaseboer, B. C. Khoo, and D. Y. C. Chan, R. Soc. Open Sci. 2,

140520 (2015).
15S. L. Carnie and D. Y. C. Chan, J. Colloid Interface Sci. 161, 260 (1993).
16M. D. Altman, J. P. Bardhan, J. K. White, and B. Tidor, J. Comput. Chem.

30, 132 (2009).
17B. Lu, D. Zhang, and J. A. McCammon, J. Chem. Phys. 122, 214102 (2005).
18E. Klaseboer, Q. Sun, and D. Y. C. Chan, J. Fluid Mech. 696, 468 (2012).
19Q. Sun, E. Klaseboer, B. C. Khoo, and D. Y. C. Chan, Eng. Anal. Boundary

Elem. 43, 117 (2014).

20B. J. Yoon and A. M. Lenhoff, J. Comput. Chem. 11, 1080 (1990).
21C. D. Cooper, J. P. Bardhan, and L. S. Barba, Comput. Phys. Commun. 185,

720 (2014).
22A. H. Juffer, E. F. F. Botta, B. A. M. van Keulen, A. van der Ploeg, and H.

J. C. Berendsen, J. Comput. Phys. 97, 144 (1991).
23A. T. Chwang and T. Y. Wu, J. Fluid Mech. 63, 607 (1974).
24A. B. Glendinning and W. B. Russel, J. Colloid Interface Sci. 93, 95 (1983).
25L. N. McCartney and S. Levine, J. Colloid Interface Sci. 30, 345 (1969).
26G. M. Bell, S. Levine, and L. N. McCartney, J. Colloid Interface Sci. 33, 335

(1970).
27M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

(National Bureau of Standards, 1970).
28J. P. Bardhan, M. D. Altman, D. J. Willis, S. M. Lippow, B. Tidor, and J. K.

White, J. Chem. Phys. 127, 014701 (2007).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  136.186.72.17 On: Thu, 25 Aug

2016 04:51:57

http://dx.doi.org/10.1007/BF00043247
http://dx.doi.org/10.1098/rsos.140520
http://dx.doi.org/10.1006/jcis.1993.1464
http://dx.doi.org/10.1002/jcc.21027
http://dx.doi.org/10.1063/1.1924448
http://dx.doi.org/10.1017/jfm.2012.71
http://dx.doi.org/10.1016/j.enganabound.2014.03.010
http://dx.doi.org/10.1016/j.enganabound.2014.03.010
http://dx.doi.org/10.1002/jcc.540110911
http://dx.doi.org/10.1016/j.cpc.2013.10.028
http://dx.doi.org/10.1016/0021-9991(91)90043-K
http://dx.doi.org/10.1017/S0022112074001819
http://dx.doi.org/10.1016/0021-9797(83)90388-0
http://dx.doi.org/10.1016/0021-9797(69)90401-9
http://dx.doi.org/10.1016/0021-9797(70)90228-6
http://dx.doi.org/10.1063/1.2743423

