
A Formal Syntax for Probabilistic Timed Property Sequence Charts

Pengcheng Zhang†, Lars Grunske∗, Antony Tang∗, Bixin Li†
†School of Computer Science and Engineering, Southeast University, Nanjing, China

E-mail: {pchzhang,bx.li}@seu.edu.cn
∗Faculty of ICT, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

E-mail: {lgrunske,atang}@swin.edu.au

Abstract—Probabilistic properties are considered as the most
important requirements for a variety of software systems,
since they are used to formulate extra-functional requirements
such as reliability, availability, safety, security and performance
requirements. Currently, several probabilistic logics have been
proposed to specify such important properties. However, due
to the inherent complexity of the underlying temporal logics,
these probabilistic logics are rather complex and software
developers have problems using them to correctly specify the
intended properties. To overcome this problem, we define a
formal and graphical property specification language called
Probabilistic Timed Property Sequence Charts (PTPSC) which
is a probabilistic extension of Property Sequence Charts (PSC).
We illustrate the use of PTPSC in the context of a vehicle-to-
vehicle communication device for avoiding traffic accidents.

Keywords-Probabilistic Properties, Property Sequence Chart,
Probabilistic and Timed Property Sequence Chart.

I. INTRODUCTION

Probabilistic properties are considered as the most im-
portant requirements for software in among other medical,
avionic, automotive and telecommunication systems [13].
These probabilistic properties are required to formulate
extra-functional requirements such as reliability, availability,
safety, security and performance requirements.

To specify probabilistic properties, probabilistic temporal
logics such as PCTL (Probabilistic Computation Tree Logic)
[9], PCTL* [4], PTCTL (Probabilistic Timed CTL) [11] and
CSL (Continuous Stochastic Logic) [5] have been proposed.
Although for these logics, probabilistic specification pat-
terns [7] enriched with a structured English grammar have
been proposed, the textual notations are rather complex and
software developers have problems using them to correctly
specify the intended properties. To ease the specification, a
graphical specification formalism for probabilistic properties
is desired. This specification formalism needs to balance
expressive power and simplicity of use, i.e., the specification
should be as simple as possible, without losing expressive
power.

Based on these two design rationales Autili et al. [3]
have already proposed a non-probabilistic scenarios-based
property specification notation called Property Sequence
Chart (PSC). PSC provides a complete graphical front-end
for software developers so they do not have to deal with
any particular textual or logical formalism. In our previous
work [16], PSC has been enriched with time constructs
(called Timed PSC or TPSC) to specify timing properties

for real-time systems. However, current PSC and TPSC
still cannot specify probabilistic properties. Consequently,
in order to help software developers to specify probabilistic
properties we propose a probabilistic extension of PSC and
TPSC, called PTPSC.

The rest of the paper is organized as follows: Section
II and III introduce an example and provide some back-
ground on PSC and TPSC. Section IV describes the main
contributions of this paper, the PTPSC language. Section V
concludes the paper and presents a list of future work.

II. AN ILLUSTRATIVE EXAMPLE

To illustrate the concepts described in this paper we use
a system for preventing car collisions as an example. This
system uses Dedicated Short Range Communication (DSRC)
devices for vehicle-to-vehicle (V2V) communication to no-
tify neighboring vehicles of their relative positions [15].
Vehicles that are equipped with the device can communicate
their positions and compute collision trajectories [12]. DSRC
communication goes through two steps: (i) establishing com-
munication through handshaking, and each vehicle would
assign a channel for communicating data; (ii) communicate
positional data, i.e. GPS, at regular intervals (one second),
when the channels are free. If the two vehicles are close
enough and a collision might occur, the V2V device would
warn the driver. The warning should appear at a point when
there is enough time for the driver to react and avoid an
accident. However, if the latency of communication is high,
say one second, and the channels are busy or the vehicle
position is not communicated in time, it is possible that by
the time the vehicle position is sent through to a neigh-
boring vehicle, the collision is imminent. In a study [10],
it has been found that the probability of DSRC message
reception is 82% at 0m distance, and drops off to 30%
at 300m distance, assuming there are no objects such as
other vehicles obstructing the line of sight. An improved
DSRC device developed in Australia has recorded improved
reliability of 90% at 100m distance without any obstructions.
We are using this data in our model.

Let us consider a probabilistic scenario between two
vehicles. Assuming the two vehicles head in the same
direction, one behind another with a distance of 100m, the
probability that a message can be exchanged successfully
every second is 90%. If the forward vehicle V1 is stationary
and the trailing vehicle V2 is traveling at 100km/hr, there

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.56

488

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.56

502

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.56

502

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.56

500

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.56

500

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on April 28,2010 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

is 7.3s before V2 must stop to avoid colliding with V1, it
would depend on the V2V device receiving the message in
time to warn the driver and the driver in V2 acting upon that
warning immediately – with a probability of 0.99 [15]. This
real-life example comprises both the probabilistic and timing
properties that affect the reliability and safety requirements
of the collision avoidance system. We use PTPSC to model
a simple scenario involving two vehicles, and it can be
expanded to model scenarios involving multiple vehicles.

III. PRELIMINARIES: PSC AND TPSC

PSC is an extended graphical notation of a subset of
UML 2.0 sequence diagrams, which is proposed in [3] to
specify temporal properties. Figure 1 shows the PSC graph-
ical elements. A PSC graphical specification is composed of
a set of component instances, messages, constraints and op-
erators. Two basic message types are available: arrowMSGs
and intraMSGs. The arrowMSGs have three subtypes: Reg-
ular, Required and Fail. Regular messages (labeled with
e:msg) are used to define the precondition for a desired
(or an undesired) interaction. Required messages (labeled
with r:msg) must be exchanged by the system and are used
to express mandatory interactions. Fail messages (labeled
with f:msg) should never be exchanged and are used to ex-
press undesired interactions. IntraMSGs are used to describe
constraints that restrict the future and past exchange of
messages (arrowMSGs). Constraints are classified into two
categories: unwanted message constraints, chain constraints.
An unwanted message constraint is specified for a set of
intraMSGs the system must not exchange. In other words,
an unwanted message constraint describes the event(s) or
interactions that are disallowed between two component
instances. Chain constraints are defined as a sequence of
dependent intraMSGs, and are further classified as wanted
and unwanted. Wanted chain constraints are satisfied if the
messages are exchanged following the sequence imposed by
the chain specifications. Unwanted chain constraints require
that the messages do not occur in the sequence specified in
the chain specification.

Constraints are also classified into past constraints, and
future constraints. Past constraints specify message ex-
changes, wanted or unwanted, before a specific message
exchange event takes place, and future constraints specify
the constraints afterwards. Graphically, past constraints are
closely located to the arrow source and future constraints
are closely located to the arrow target of an arrowMSGs.
Formally, arrowMSGs and the different constraints types can
be defined as follows:

Definition 1: (ArrowMSG Constraints) Let 𝐶, 𝐴𝑀 , and
𝐼𝑀 denote the finite set of component instances, ar-
rowMSGs and intraMSGs in the system. Let 𝑚 be a message
label, 𝑏 be an unwanted message constraint, and 𝑔 be a chain
constraint, which are formally defined as follows:

Figure 1. The PSC Graphical Notation

∘ 𝑚 = 𝑐𝑖.𝑚.𝑐𝑗 , where 𝑚 ∈ 𝐴𝑀 ∪ 𝐼𝑀, 𝑐𝑖, 𝑐𝑗 ∈ 𝐶,
which denotes a message exchanged between two com-
ponents;

∘ b={𝑚1, 𝑚2,...,𝑚𝑛}, where 𝑚̄𝑖 = 𝑐𝑗𝑖 .!𝑚𝑖.𝑐𝑘𝑖 (𝑖 =
1, ..., 𝑛), 𝑚𝑖 ∈ 𝐼𝑀 ; 𝑐𝑗𝑖 , 𝑐𝑘𝑖 ∈ 𝐶, and “!𝑚𝑖” means
𝑚𝑖 is not exchanged;

∘ g=(𝑚1, 𝑚2,...,𝑚𝑛), where 𝑚𝑖 = 𝑐𝑗𝑖 .𝑚𝑖.𝑐𝑘𝑖 (𝑖 =
1, ..., 𝑛), 𝑚𝑖 ∈ 𝐼𝑀 ; 𝑐𝑗𝑖 , 𝑐𝑘𝑖 ∈ 𝐶.

PSC has five operators: loose, strict, parallel, loop and
alt, which define how arrowMSGs can be composed. The
loose operator defines the order of messages, however any
other messages can occur between the messages. The strict
operator explicitly specifies a strict ordering between a pair
of messages; no other message is allowed in between. The
parallel, loop and alt operators specify parallel merging (i.e.,
interleaving), iteration and alternative behavior, respectively.

In our previous work [16], we have proposed a timed
extension of PSC, called Timed PSC or TPSC, based on
annotated clock constraints and clock reset.

Definition 2: (Clock Constraints) For a set of clocks 𝑋 ,
a clock constraint 𝛿 from the set of clock constraints Φ(𝑋)
can be defined as follows [1], [2]:

𝛿 := 𝑥 < 𝑐 ∣ 𝑥 ≤ 𝑐 ∣ 𝑥 > 𝑐 ∣ 𝑥 ≥ 𝑐 ∣ ¬𝛿 ∣ 𝛿1 ∧ 𝛿2
where 𝑥 ∈ 𝑋 is a clock variable, and 𝑐 ∈ ℕ is a constant,

assuming discrete time.
Two functions ∣= and [[𝛿]] need to be defined. The function

∣= evaluates for each value of a clock 𝑣(𝑥) if the clock
constraint is fulfilled or not. The function [[𝛿]]={𝑣(𝑥) ∣ 𝑣(𝑥)
∣= 𝛿 } denotes all the values of a clock which satisfy
𝛿. We assume that a clock constraint 𝛿 is homogenous,
meaning that the clock constraint is fulfilled only for a single
connected set of clock values. Two additional functions
are defined: [[𝑝𝑟𝑒(𝛿)]]={𝑥1 ∣ 𝑥1 < 𝑚𝑖𝑛([[𝛿(𝑥)]])} and
[[𝑠𝑢𝑐𝑐(𝛿)]]={𝑥2 ∣ 𝑥2 > 𝑚𝑎𝑥([[𝛿(𝑥)]])} that describe all
clock values that do not fulfill the clock constraint and which
happen before and after the clock constraint.

Example ⊳ For example, if 𝛿(𝑥) = 2 ≤ 𝑥 ∧ 𝑥 ≤ 4,
[[𝑝𝑟𝑒(𝛿)]] = {𝑣(𝑥) ∣ 𝑣(𝑥) < 2}, and [[𝑠𝑢𝑐𝑐(𝛿(𝑥))]] =
{𝑣(𝑥) ∣ 𝑣(𝑥) > 4}. ⊲

Definition 3: (Clock Reset) A clock reset for a clock 𝑥
is defined as 𝑣(𝑥) := 0. Normally, we use 𝜓 as a set of
clock resets.

489503503501501

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on April 28,2010 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

D1:Driver V1:Vehicle V2:Vehicle

r:communication; x<=1,y:=0
r:stop; y<=7.3

b;x<=1

b={V3:Vehicle.!handshake.V1:Vehicle}

e:handshake; x:=0

g=(V1:Vehicle.stopSignal.D1:Driver)

g; y=0

Figure 2. A TPSC property example

Based on these definitions, the PSC arrowMSGs and the
different constraint types as given in Definition 1 can be
extended with clock constraints and clock reset. We refer
to [16] for a detailed description of the TPSC syntax and
semantics.

Example ⊳ Figure 2 shows a TPSC specification of a
scenario in the given example without probability. It shows
that V1 may receive a handshake(a regular message) from
V2 and the two vehicles must have communicated a required
message with each other. There is a past unwanted message
constraint 𝑏 which means that there are no other vehicles,
such as V3 in the example, to handshake with V1. Let’s
assume that V1 is travelling in the same direction as V2
and the velocity of V1 is 100km/h, where V2 has stalled
and stopped on the road around the bend, and that they are
100m apart. V2 broadcasts its location to V1, there is 7.3s
elapsed time for the driver of V1 to stop (a required message)
and avoid the collision [15]. Before this message, there is a
past wanted chain constraint 𝑔 which means V1 must send
stopSignal to the driver first. While the TPSC specification is
enough to represent timing properties for a real-time system,
it cannot be used to represent probabilistic properties as in
our engineering example. ⊲

IV. PROBABILISTIC TIMED PROPERTY SEQUENCE

CHARTS (PTPSC)

This section defines an extension of the PSC [3] and
TPSC [16] property specification formalisms, called PTPSC.
First the informal ideas of using probability in TPSC are
explained. Then a precise and structured syntax definition
of PTPSC is followed.

A. Extending TPSC with Probability

The idea of adding probability into TPSC is motivated
by the work of Refsdal et al. [14], which adds probability
to UML sequence diagrams. In this work each message or
operator can be annotated with a probability. However, there
are some slight differences between PSC and UML sequence
diagrams. Firstly, TPSC is a specification for timing prop-
erties. Secondly, the messages in TPSC represent different
types, so the semantics of adding probability constructs to
these different types of messages is also different. Thirdly,

D1:Driver V1:Vehicle V2:Vehicle

r:communication; x<=1,y:=0

r:stop; y<=7.3

p>=0.89

b;x<=1

b={V3:Vehicle.!handshake.V1:Vehicle}

e:handshake; x:=0

g; y=0

g=(V1:Vehicle.stopSignal.D1:Driver)

Figure 3. A PTPSC property example

according to the idea of live sequence charts [6], we add
pre-charts to PTPSC. The messages in the pre-charts are
restricted to the regular type. Following the pre-chart in
PTPSC, a main-chart is enriched with a probability operator.

Example ⊳ Figure 3 shows the PTPSC property of the
example. According to the scenario, the probability for
message communication is 0.9 and for message stop is 0.99.
Consequently, the joint probability for these two independent
messages to happen is 0.99 ∗ 0.9 ≈ 0.89. As explained
before, we can add a set of messages with a probabilistic
operator, so the two messages r:communication and r:stop
are added with a probabilistic operator of ≥ 0.89. ⊲

B. PTPSC Syntax

The PTPSC syntax is given in Table I. An italic setting
is used for non-terminals. Literal terminals are delimited
by quotation marks (“”). We use the terminal symbol ∙
to denote the sequential composition of two messages and
the notation ↓ to connect two operands in an operator. The
symbol “𝜆” is used to denote the empty constraint of an
arrowMSG. The symbols 𝛿, 𝛿′, and 𝛿′′ are used to represent
clock constraints for messages, past constraints and future
constraints, respectively, and they are defined in Definition 2.
𝜓, 𝜓′, and 𝜓′′ represent the sets of reset clocks for mes-
sages, past constraints and future constraints, respectively.
They are defined in Definition 3. ArrowMSG constraints
(𝑃𝑎𝑠𝑡𝐶𝑜𝑛 and 𝐹𝑢𝑡𝑢𝑟𝑒𝐶𝑜𝑛) which can be 𝑈𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝑀𝑠𝑔,
𝑊𝑎𝑛𝑡𝑒𝑑𝐶ℎ𝑎𝑖𝑛 or 𝑈𝑛𝑤𝑎𝑛𝑡𝑒𝑑𝐶ℎ𝑎𝑖𝑛 constraints are defined
in Definition 1. 𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙 is a message label which is also
defined in Definition 1. Rule (1) shows the main structure of
PTPSC which is composed of a pre-chart (𝑃𝑟𝑒𝑇𝑃𝑆𝐶) and
a main-chart (𝑇𝑃𝑆𝐶 ∙ (𝑂𝑝 ∣ 𝑂𝑝𝐹𝑎𝑖𝑙)) with a probability
𝑝𝑟𝑒𝑞(0 ≤ 𝑝𝑟𝑒𝑞 ≤ 1), where ⊳⊲∈ {<,≤, >,≥}.

The rules of the grammar are divided into three categories:
rules for the pre-chart (2-15), rules for the main-charts (16-
35) and rules for the messages (36-43). The rules for the
pre-chart can be further grouped into rules for the pre-
chart operators 𝑃𝑟𝑒𝑂𝑝 (3-10) and rules for the message
sequences (𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞) (11-15) that are used as operands
by the operator rules. In a pre-chart only regular messages
(labeled with e:msg) are allowed. As defined in Rule (2)

490504504502502

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on April 28,2010 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

Start (1) 𝑃𝑇𝑃𝑆𝐶 :== 𝑃𝑟𝑒𝑇𝑃𝑆𝐶 + 𝒫⊳⊲𝑝𝑟𝑒𝑞 (𝑇𝑃𝑆𝐶 ∙ (𝑂𝑝 ∣ 𝑂𝑝𝐹𝑎𝑖𝑙))

𝑃𝑟𝑒𝑇𝑃𝑆𝐶 (2) 𝑃𝑟𝑒𝑇𝑃𝑆𝐶 :== 𝜀 ∣ 𝑃𝑟𝑒𝑇𝑃𝑆𝐶 ∙ 𝑃𝑟𝑒𝑂𝑝
𝑃𝑟𝑒𝑂𝑝 (3) 𝑃𝑟𝑒𝑂𝑝 :== 𝑃𝑟𝑒𝐿𝑜𝑜𝑠𝑒 ∣ 𝑃𝑟𝑒𝑆𝑡𝑟𝑖𝑐𝑡 ∣ 𝑃𝑟𝑒𝑃𝑎𝑟 ∣ 𝑃𝑟𝑒𝐴𝑙𝑡 ∣ 𝑃𝑟𝑒𝐿𝑜𝑜𝑝

(4) 𝑃𝑟𝑒𝐿𝑜𝑜𝑠𝑒 :== “Loose(”+𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡+“)”
(5) 𝑃𝑟𝑒𝑆𝑡𝑟𝑖𝑐𝑡 :== “Strict(”+𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛+“)”
(6) 𝑃𝑟𝑒𝑃𝑎𝑟 :== “Par(”+𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑟𝑒𝑃𝑎𝑟+“)”
(7) 𝑃𝑟𝑒𝐿𝑜𝑜𝑝 :== “Loop(”+𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡+“)”
(8) 𝑃𝑟𝑒𝐴𝑙𝑡 :== “Alt(”+𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑟𝑒𝐴𝑙𝑡+“)”
(9) 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑟𝑒𝑃𝑎𝑟 :== (𝜀 ∣ 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑟𝑒𝑃𝑎𝑟) ↓ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛

(10) 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑟𝑒𝐴𝑙𝑡 :== (𝜀 ∣ 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑟𝑒𝐴𝑙𝑡) ↓ (𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡)
𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞 (11) 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞 :== 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑢𝑡𝑢𝑟𝑒

(12) 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛 :== (𝜀 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞) ∙ 𝑒𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛

(13) 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 :== (𝜀 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛) ∙ 𝑒𝑀𝑠𝑔𝑃𝑎𝑠𝑡

(14) 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑢𝑡𝑢𝑟𝑒 :== (𝜀 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞) ∙ 𝑒𝑀𝑠𝑔𝐹𝑢𝑡𝑢𝑟𝑒

(15) 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛 :== (𝜀 ∣ 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛) ∙ 𝑒𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛

𝑇𝑃𝑆𝐶 (16) 𝑇𝑃𝑆𝐶 :== 𝜀 ∣ 𝑇𝑃𝑆𝐶 ∙ 𝑂𝑝
𝑂𝑝 (17) 𝑂𝑝 :== 𝐿𝑜𝑜𝑠𝑒 ∣ 𝑆𝑡𝑟𝑖𝑐𝑡 ∣ 𝑃𝑎𝑟 ∣ 𝐴𝑙𝑡 ∣ 𝐿𝑜𝑜𝑝

(18) 𝐿𝑜𝑜𝑠𝑒 :== “Loose(”+ 𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛+“)”
(19) 𝑆𝑡𝑟𝑖𝑐𝑡 :== “Strict(”+𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛+“)”
(20) 𝑃𝑎𝑟 :== “Par(”+𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑎𝑟+“)”
(21) 𝐿𝑜𝑜𝑝 :== “Loop(”+𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛+“)”
(22) 𝐴𝑙𝑡 :== “Alt(”+𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝐴𝑙𝑡+“)”
(23) 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑎𝑟 :== (𝜀 ∣ 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑃𝑎𝑟) ↓ 𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛

(24) 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝐴𝑙𝑡 :== (𝜀 ∣ 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝐴𝑙𝑡) ↓ (𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛)
𝑂𝑝𝐹𝑎𝑖𝑙 (25) 𝑂𝑝𝐹𝑎𝑖𝑙 :== 𝐿𝑜𝑜𝑠𝑒𝐹𝑎𝑖𝑙 ∣ 𝑆𝑡𝑟𝑖𝑐𝑡𝐹𝑎𝑖𝑙 ∣ 𝐴𝑙𝑡𝐹𝑎𝑖𝑙

(26) 𝐿𝑜𝑜𝑠𝑒𝐹𝑎𝑖𝑙 :== “Loose(”+𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑎𝑖𝑙+“)”
(27) 𝑆𝑡𝑟𝑖𝑐𝑡𝐹𝑎𝑖𝑙 :== “Strict(”+𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛 ∙ 𝑓𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛 +“)”
(28) 𝐴𝑙𝑡𝐹𝑎𝑖𝑙 :== “Alt(”+𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝐹𝑎𝑖𝑙+“)”
(29) 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝐹𝑎𝑖𝑙 :== (𝜀 ∣ 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝐴𝑙𝑡 ∣ 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝐹𝑎𝑖𝑙) ↓ 𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑎𝑖𝑙

𝑀𝑠𝑔𝑆𝑒𝑞 (30) 𝑀𝑠𝑔𝑆𝑒𝑞 :== 𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑢𝑡𝑢𝑟𝑒 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛

(31) 𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 :== (𝜀 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛) ∙ (𝑒𝑀𝑠𝑔𝑃𝑎𝑠𝑡 ∣ 𝑟𝑀𝑠𝑔𝑃𝑎𝑠𝑡)
(32) 𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑢𝑡𝑢𝑟𝑒 :== (𝜀 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞) ∙ (𝑒𝑀𝑠𝑔𝐹𝑢𝑡𝑢𝑟𝑒 ∣ 𝑟𝑀𝑠𝑔𝐹𝑢𝑡𝑢𝑟𝑒)
(33) 𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛 :== (𝜀 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞) ∙ (𝑒𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛 ∣ 𝑟𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛)
(34) 𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛 :== (𝜀 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛) ∙ 𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛

(35) 𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑎𝑖𝑙 :== ((𝜀 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛)∙ 𝑓𝑀𝑠𝑔𝑃𝑎𝑠𝑡) ∣ ((𝜀 ∣ 𝑀𝑠𝑔𝑆𝑒𝑞)∙
𝑓𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛)

𝐴𝑟𝑟𝑜𝑤𝑀𝑠𝑔 (36) 𝑒𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛 :== “e:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+“𝜆”
(37) 𝑒𝑀𝑠𝑔𝑃𝑎𝑠𝑡 :== “e:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+𝑃𝑎𝑠𝑡𝐶𝑜𝑛+𝛿′+“,”+𝜓′

(38) 𝑒𝑀𝑠𝑔𝐹𝑢𝑡𝑢𝑟𝑒 :== “e:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+𝐹𝑢𝑡𝑢𝑟𝑒𝐶𝑜𝑛+“;”+𝛿′′+“,”+𝜓′′

(39) 𝑟𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛 :== “r:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+“𝜆”
(40) 𝑟𝑀𝑠𝑔𝑃𝑎𝑠𝑡 :== “r:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+𝑃𝑎𝑠𝑡𝐶𝑜𝑛+𝛿′+“,”+𝜓′

(41) 𝑟𝑀𝑠𝑔𝐹𝑢𝑡𝑢𝑟𝑒 :== “r:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+𝐹𝑢𝑡𝑢𝑟𝑒𝐶𝑜𝑛+“;”+𝛿′′+“,”+𝜓′′

(42) 𝑓𝑀𝑠𝑔𝑁𝑜𝐶𝑜𝑛 :== “f:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+“𝜆”
(43) 𝑓𝑀𝑠𝑔𝑃𝑎𝑠𝑡 :== “f:”+𝑀𝑠𝑔𝐿𝑎𝑏𝑒𝑙+“;”+𝛿+“,”+𝜓+𝑃𝑎𝑠𝑡𝐶𝑜𝑛+𝛿′+“,”+𝜓′

Table I
PTPSC SYNTAX

a pre-chart can be empty (denoted by 𝜀) or a sequence of
operators 𝑃𝑟𝑒𝑂𝑝 in the pre-chart. If the last message of a
sequence has a future constraint and the first message of
the next sequence has a past constraint, constraint conflict
may occur. Consequently, we restrict that the last message
of an operand in Loose, Alt and Loop only have past
constraints or no constraints, as given by 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑃𝑎𝑠𝑡

and 𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝑁𝑜𝐶𝑜𝑛. To provide a clear semantics, the
operators Par and Strict can contain only messages without
any constraints. Consequently, a special type of message

sequence (𝑃𝑟𝑒𝑀𝑠𝑔𝑆𝑒𝑞𝐴𝑙𝑙𝑁𝑜𝐶𝑜𝑛) is defined for these op-
erators. With Rule (13) we disallow past constraints on
messages if the previous message has a future constraint.

The rules for the main-chart can be further grouped into
rules for the operators 𝑂𝑝 (17-24), rules for the operators
𝑂𝑝𝐹𝑎𝑖𝑙 (25-29) where the last message is a fail message,
and rules for the message sequences (𝑀𝑠𝑔𝑆𝑒𝑞) (30-35). 𝑂𝑝
and 𝑀𝑠𝑔𝑆𝑒𝑞 are defined in the similar way in pre-chart
except that required messages are also permitted. 𝑂𝑝𝐹𝑎𝑖𝑙

operators contain message sequences, which end with a

491505505503503

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on April 28,2010 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

fail message 𝑀𝑠𝑔𝑆𝑒𝑞𝐹𝑎𝑖𝑙. Since no other messages should
follow a fail message, operators 𝑃𝑎𝑟 and 𝐿𝑜𝑜𝑝 cannot have
fail messages.

The syntax of basic arrowMSGs are defined in Rules (36-
45). A fail message cannot have a future constraint because
when a fail message happens the future of the system does
not need to be considered [3].

Example ⊳ Parsing from right to left, the property of the
example can be defined by the derivation sequence (1,17,18,
31,40,31[𝜀],40,16[𝜀],2,3,4,12[𝜀],36,2[𝜀]). Most of the rules
describe the composition of the messages, whereas Rule (36)
defines the message e:handshake, and Rule (40) is used for
the messages r:communication and r:stop. ⊲

V. CONCLUSION AND FUTURE WORK

In this paper we have defined a formal syntax for a
probabilistic property specification language called PTPSC.
Based on the PTPSC syntax, PTPSC can be used to help
designers to specify probabilistic properties for real-time
system. We have also shown how to use PTPSC in a
case study for specifying a probabilistic property of an
automotive safety device to avoid traffic accidents.

In the future, we plan to define a full formal semantics
for the proposed PTPSC specification based on the seman-
tic domain Timed Büchi Automaton (TBA) and statistical
hypothesis testing. We will also investigate how to integrate
PTPSC in different verification environments, such as model
checking and run-time verification. In [8], an approach has
been proposed to monitor probabilistic properties specified
by a subset of CSL. The approach may also be modified and
used for PTPSC specification.

ACKNOWLEDGMENT

This work is supported partially by the Natural Sci-
ence Foundation of Jiangsu Province of China under
Grant No.BK2007513, partially by National High Tech-
nology Research and Development Program under Grant
No.2008AA01Z113, partially by the National Natural Sci-
ence Foundation of China under Grant No.60773105 and
partially by the Program for New Century Excellent Talents
in University under Grant No.NCET-06-0466.

Correspond to Bixin Li, bx.li@seu.edu.cn

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in
dense real-time,” Information and Computation, vol. 104,
no. 1, pp. 2–34, 1993.

[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994.

[3] M. Autili, P. Inverardi, and P. Pelliccione, “Graphical sce-
narios for specifying temporal properties: an automated ap-
proach,” Automated Software Engineering, vol. 14, no. 3, pp.
293–340, 2007.

[4] A. Aziz, V. Singhal, and F. Balarin, “It usually works:
The temporal logic of stochastic systems,” in Proc. 7th Int.
Conference on Computer Aided Verification, CAV 95, ser.
LNCS, vol. 939. Springer, 1995, pp. 155–165.

[5] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate sym-
bolic model checking of continuous-time markov chains,” in
Proc. 10th International Conference on Concurrency Theory,
CONCUR 99, ser. LNCS, J. C. M. Baeten and S. Mauw, Eds.,
vol. 1664. Springer, 1999, pp. 146–161.

[6] W. Damm and D. Harel, “LSCs: Breathing life into message
sequence charts,” Formal Methods in System Design, vol. 19,
no. 1, pp. 45–80, 2001.

[7] L. Grunske, “Specification patterns for probabilistic quality
properties,” in 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18,
2008, Robby, Ed. ACM, 2008, pp. 31–40.

[8] L. Grunske and P. Zhang, “Monitoring probabilistic proper-
ties,” in Proc. 7th joint meeting of the European Software
Engineering Conference (ESEC) and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE) ESEC-FSE 09, 2009, pp. 183–192.

[9] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal Aspects of Computing, vol. 6, no. 5,
pp. 512–535, 1994.

[10] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Her-
rtwich, “Design of 5.9 GHz DSRC-based vehicular safety
communication,” IEEE Wireless Communication, vol. 16,
no. 2, pp. 36–43, 2006.

[11] M. Z. Kwiatkowska, G. Norman, D. Parker, and J. Sproston,
“Performance analysis of probabilistic timed automata using
digital clocks,” Formal Methods in System Design, vol. 29,
no. 1, pp. 33–78, 2006.

[12] U. D. of Transportation, Vehicle Safety Communications
Project. Washington D.C.: National Highway Traffic Safety
Administration, 2006.

[13] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner, “Soft-
ware engineering for automotive systems: A roadmap,” in In-
ternational Conference on Software Engineering, ICSE 2007,
Workshop on the Future of Software Engineering, FOSE
2007, L. C. Briand and A. L. Wolf, Eds., 2007, pp. 55–71.

[14] A. Refsdal, K. E. Husa, and K. Stølen, “Specification and
refinement of soft real-time requirements using sequence
diagrams,” in FORMATS ’05, ser. LNCS, vol. 3829. Springer,
2005, pp. 32–48.

[15] A. Tang and A. Yip, “Collision avoidance timing analysis of
DSRC-based vehicles,” Accident Analysis and Prevention, p.
In Press, 2009.

[16] P. Zhang, B. Li, and M. Sun, “A timed extension of prop-
erty sequence chart,” in 11th IEEE High Assurance Systems
Engineering Symposium(HASE’08). Nanjing, China: IEEE
Computer Society, 2008, pp. 197–206.

492506506504504

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on April 28,2010 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

