

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Liu, Xiao; Wang, Dingxian; Yuan, Dong; Yang, Yun. (2013). A novel deadline
assignment strategy for a large batch of parallel tasks with soft deadlines in the

cloud.

Originally published in Proceedings of 15th IEEE International Conference on High
Performance Computing and Communications (HPCC2013), Zhangjiajie, China,

November 2013

Available from: http://trust.csu.edu.cn/conference/hpcc2013/

Copyright © 2013 IEEE.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://ieeexplore.ieee.org/.

http://trust.csu.edu.cn/conference/hpcc2013/
http://ieeexplore.ieee.org/

A Novel Deadline Assignment Strategy for a Large Batch of Parallel Tasks with Soft

Deadlines in the Cloud

Xiao Liu1, Dingxian Wang1, Dong Yuan2,Yun Yang3,2
1Software Engineering Institute, East China Normal University, Shanghai, China

2Faculty of Information and Communication Technology, Swinburne University of Technology, Melbourne, Australia
3School of Computer Science and Technology, Anhui University, Hefei, China

xliu@sei.ecnu.edu.cn, dingxianwang@gmail.com, {dyuan, yyang}@swin.edu.au

Abstract—Deadline assignment is to assign each subtask

composing a distributed task with a local deadline such that

the global deadline can be met. Today’s real-time systems often

need to handle hundreds or even thousands of concurrent

customer (or service) requests. Therefore, deadline assignment

is becoming an increasingly challenging issue with a large

number of parallel and distributed subtasks. However, most

conventional strategies are designed to deal with a single

independent task rather than a batch of many parallel tasks in

a shared resource environment such as cloud computing. To

address such an issue, in this paper, instead of assigning local

deadline for each subtask, we propose a novel strategy which

can efficiently assign local throughput constraints for a batch

of parallel tasks at any time point along the system timeline.

The basis of this strategy is a novel throughput consistency

model which can measure the probability of on-time

completion at any given time point. The experimental results

demonstrate that our strategy can achieve significant time

reduction in deadline assignment and achieve the most

“consistency” between global and local deadlines compared

with other representative strategies.

Keywords-Deadline Assignment, Throughput, Parallel Tasks,

Cloud Computing

I. INTRODUCTION

Deadline assignment is a classic problem in distributed
systems where each subtask composing a distributed task
must receive a local deadline so that the global deadline can
be met [3, 9, 20, 21]. The global deadline usually serves as
an important QoS (Quality of Service) constraint specified in
the Service Level Agreement (SLA) between the customer
and the service provider. In general, a global deadline can be
classified into two types, viz. hard deadline and soft deadline.
A hard deadline means that if missed, it is a failure. A soft
deadline means that if missed, the usefulness of a result will
be deteriorated and thus degrades the service quality [10]. In
the real world, hard deadlines are often applied in safety-
critical areas such as railway traffic control, automotive
electronics, and aerospace electronic equipment [8]. In
contrast, soft deadlines have a much broader application in
the fields where the service quality for handling massive
concurrent customer requests is the first priority such as e-
Government, e-Business and e-Science [13]. For example, a
government taxation office needs to process thousands of tax
declarations every day for individual and enterprise
customers. Failures of completing these tasks in time will

result in significant deterioration of customer satisfaction and
even huge financial losses, e.g. the taxation office would
have to pay a large amount of money to compensate the
interest loss of tax payers for days of the delay over its
official deadline. Therefore, on-time completion is critical
for delivering services with satisfactory quality [6].
In order to meet the deadlines, a set of QoS management

strategies are required. For example, a typical temporal QoS
management framework proposed in [14] consists of three
basic steps, viz. temporal constraint setting [12], temporal
consistency monitoring [17], and temporal violation handling
[18]. Specifically, the setting of temporal constraints is the
first step in the framework which can be further divided into
two sub-steps, viz. the setting of global deadlines, and the
setting of local deadlines (i.e. deadline assignment). The
global deadline can be either adopted by default (according
to the system design) or specified through a negotiation on
the price that the customer willing to pay and the level of
service quality that the service provider would like to offer
[13]. As for local deadlines, they are usually assigned by the
system with a chosen deadline assignment strategy to ensure
the on-time completion of subtasks. A local deadline plays
an important role in the decision-making for resource
provision and task scheduling [7, 21]. It also serves as the
key objective for the monitoring of subtask execution which
is very essential yet challenging in a distributed environment.
Therefore, as proved in many studies, the setting of proper
local deadlines has significant contributions to the successful
on-time completion of distributed real-time tasks [13, 19].
In this paper, we focus on soft real-time systems in the

Cloud where tens, hundreds or even thousands of tasks are
running in parallel at the same time. Meanwhile, since
workflow systems are typical soft real-time distributed
systems, many studies in the area of workflow or process
management on temporal constraint settings are also
investigated [2, 14, 15, 21]. Therefore, in this paper, the
terms “task” and “subtask” are interchangeable with the
terms “workflow” and “activity” respectively.
Most of the current studies focus on the response time of

a single task rather than the throughput of a large batch of
parallel tasks. Compared with response time which measures
how long a user submitted request takes to complete,
throughput defines how many requests have been completed
by the system in a basic time unit. Therefore, in general, for
running a large batch of parallel tasks, throughput is a better
performance indicator because it measures the overall system

performance [11, 16]. For tasks running in the Cloud, given a
set of soft deadlines, cloud service providers must be able to
provide and maintain a certain level of system throughput so
as to achieve satisfactory QoS, e.g. a specific confidence
(probability) for on-time completion such as 90%. Such a
“certain level of system throughput” is specified in the form
of throughput constraints, which explicitly define the
bottom-line throughput that a system should provide to
achieve on-time completion. However, the setting of
throughput constraints for a large batch of parallel tasks is a
challenging issue. Specifically, there are three fundamental
questions: Q1) how to measure the system throughput? Q2)
how to estimate the probability of on-time completion? Q3)
how to assign local throughput constraints? Details will be
discussed in Section II.B.
In this paper, to answer and address these above

mentioned questions, first, we introduce the novel definitions
for throughput constraints and candidate constraint points
which are specifically designed for a large batch of tasks
with soft deadlines; second, we propose a novel throughput
consistency model which can measure the probability of on-
time completion at any given constraint point. Third, based
on a queueing model which can predict activity durations in
the Cloud, we propose a novel deadline assignment strategy
which can efficiently assign local throughput constraints to
any constraint points along the system timeline. Finally, a
number of simulated workflows are employed to evaluate
our strategy. The results have shown that our strategy can
achieve significant time reduction in deadline assignment
and achieve the most “consistency” between global and local
deadlines (i.e. being most consistent between the on-time
completion rates of global and local deadlines) compared
with other representative generic strategies.
The remainder of this paper is organized as follows.

Section II introduces the related work and presents the
problem analysis. Section III introduces a set of new
definitions and proposes the novel throughput constraint
setting strategy. Section IV demonstrates the evaluation of
our strategy through simulation experiments. Finally, Section
V addresses the conclusion and points out the future work.

II. RELATED WORK AND PROBLEM ANALYSIS

A. Related Work

Deadline assignment is a well-known problem in many
real-time distributed systems [20, 21]. Most strategies are
designed using basic statistics and simple computation to
guarantee a small time overhead which is very important in
real-time systems. Kao and Garcia-Molina in [9] examined
four classical strategies, viz. Ultimate Deadline (UD),
Effective Deadline (ED), Equal Slack (EQS) and Equal
Flexibility (EQF) for subtask deadline assignment in a
distributed soft real-time environment. Specifically, UD sets
the local deadline for a subtask the same as the global
deadline. This method is not practical for real-time systems
since it gives little control over the subtasks. For the other
three strategies, the idea is to fairly distribute the time slack
(i.e. the expected time redundancy between the mean
response time and the global deadline) to the subtasks.

However, different researchers may have different
understanding about “fairness”, and thus leads to different
approaches for slack distribution. For example, ED of a
subtask is equal to the deadline of its global task minus the
total expected time of its following subtasks. EQS divides
the total remaining slack equally among the remaining
subtasks. EQF divides the total remaining slack among the
subtasks in proportion to their execution times and thus
subtasks can share equal flexibility.
Besides the above four generic methods, there are also

some other strategies which are designed to optimize specific
objectives. The work in [10] proposed a convex optimization
framework which can effectively address the deadline
assignment problem while maximizing the aggregate quality
of service including time and cost. In [19], Marinca, Minet
and George propose Fair Laxity Distribution (FLD) and
Unfair Laxity Distribution (ULD) to maximize the number
of acceptable flows. These two methods are based on the
flow minimum sojourn time that should be guaranteed on
each visited node. The difference between the two methods
is the laxity distribution. FLD applies a fair laxity
distribution between the visited nodes, whereas ULD tends
to make use of the proportion of the workload to allocate the
laxity between visited nodes. FLD and ULD are also
compared with two other deadline assignment strategies
including fair assignment (FA) and assignment proportional
to workload (PTW). FA sets the deadline of a subtask equal
to the end-to-end deadline divided by the number of subtasks,
and PTW sets the deadline of each subtask according to the
proportion of its workload. The studies shows that different
scheduling algorithms should be used with different deadline
assignment strategies to achieve the maximum number of
acceptable flows.
While all the above work adopts global deadline by

default, the work in [12] proposes a probabilistic strategy for
temporal constraint setting which considers both the setting
of global deadlines and local deadlines. With a probability-
based temporal consistency model, a negotiation process
between the user and the service provider is designed to
support the setting of global deadlines and then automatically
derive the local deadlines for each workflow activity. The
global deadlines and the local deadlines have the same
confidence for on-time completion such as 90%. The work in
[13] also considers the updates of deadlines at runtime when
the workflow execution is either ahead of or behind the
schedule. However, they can only work on the response time
of single tasks rather than the throughput of parallel tasks.
Although many deadline assignment strategies have been

proposed, to the best of our knowledge, there is so far no
strategy dedicated to the setting of throughput constraints for
a large batch of parallel tasks in a cloud computing
environment.

B. Problem Analysis

To deal with a large batch of parallel tasks with soft
deadlines in the Cloud, we need to address the following
three fundamental questions:
Q1) How to measure the system throughput? The generic

definition of system throughput is how many tasks have been

completed by the system in a basic observation time unit [4] .
Here, a task must be finished completely to be accounted in
the throughput measurement. Normally, the basic
observation time unit is set to be small so as to support
effective monitoring and control. However, in many
distributed real-time systems, the task response time can be
much longer than the basic observation time unit. Therefore,
we need to also consider partial completion in the throughput
measurement. Unfortunately, there is so far no definition on
the system throughput which can define the partial
completion for a large batch of parallel tasks with soft
deadlines.
Q2) How to estimate the probability of on-time

completion? The probability (namely confidence) of on-time
completion against specific deadlines is very important for
both deadline assignment and runtime monitoring. The
accuracy of the probability estimation relies significantly on
the effective response time estimation of the subtasks or
workflow activities. Conventional response time estimation
basically employs random distribution models. However,
these random distribution models are mainly based on static
statistics rather than real-time system performance. Hence,
their effectiveness will be deteriorated in the dynamic system
environments such as cloud computing where the resources
are elastically scaled according to the real-time system
demand. Therefore, new estimation methods are required.
Furthermore, to estimate the probability of on-time
completion, a probability based temporal consistency model
is required [13]. However, current temporal consistency
models are only for response time constraints rather than
throughput constraints. Therefore, a novel temporal
consistency model needs to be defined.
Q3) How to assign local throughput constraints? A set of

throughput constraints is required to ensure the desired
service quality, i.e. the probability of on-time completion.
For the running of massive parallel and distributed
workflows, a throughput constraint setting strategy is
required to automatically assign a set of throughput
constraints along the system timeline wherever necessary.
However, there is so far no deadline assignment strategy
dedicated to the setting of throughput constraints.
Here, we propose two basic measurements which can be

used to evaluate the performance of the deadline assignment
strategies, viz. efficiency and consistency. Specifically,
efficiency means that: 1) the time overhead for the deadline
assignment strategy should be trivial; 2) the number of
required constraints for runtime monitoring should be as
small as possible. For most strategies, the total time overhead
can grow very fast when dealing with a large batch of
parallel tasks. Therefore, we need a strategy which can
maintain its computation overhead. Meanwhile, the number
of required constraints decides how many times a deadline
assignment strategy needs to be repeated. It also determines
the number of monitoring objectives at runtime, and thus
decides the monitoring cost [13]. Therefore, we need a
strategy which can monitor the system with a small number
of constraints. As for consistency, it means that given a
global deadline which can guarantee a specific level of
service quality such as 90% on-time completion rate for the

global task, the local deadlines can also guarantee a
consistent service quality of 90% on-time completion rate for
the local subtasks. In a cloud computing environment, the
users are charged according to the promised service quality.
If the provisioned service quality is lower than the promised,
the service provider will have to pay the penalty. However, if
the provisioned service quality is higher than the promised,
namely the resource are over-provisioned, the potential extra
cost will be covered by the service providers themselves.
Clearly, neither higher nor lower service quality than the
promised is desirable. Therefore, we need a strategy which
can ensure a high consistency between the global and local
deadlines. Both efficiency and consistency will be evaluated
and compared in Section IV.

III. A NOVEL DEADLINE ASSIGNMENT STRATEGY

As discussed in Section II.B, current work mainly
focuses on the response time of single distributed task. In
this paper, we use system throughput for monitoring a batch
of parallel tasks. It should be noted that in our strategy, the
size of the “batch” is not a fixed value but rather determined
by the system at runtime. The batch can start at any arbitrary
time point as long as those parallel tasks are having the same
deadline. This situation ensures that a common global
deadline exists so that a deadline assignment strategy can be
applied similarly to each individual task. In this section, we
will answer the three problems analyzed in Section II.B in
the following three subsections respectively.

A. Workflow Throughput and Throughput Constraints

Generally speaking, workflow throughput, namely the
throughput of the workflow system, is the number of
workflows that have been completed in a basic time unit [1,
4]. Meanwhile, workflow throughput can also be measured
by the number of workflow activities that have been
completed in a basic time unit [11]. For the former definition,
the objects being observed are the workflows, i.e. the
monitoring system will only be notified when an entire
workflow has been completed. This is obvious not effective
for monitoring the running of a large batch of parallel
workflows. It will be too late for violation handing strategies
to take place when the workflows have already been finished
[17]. As for the later definition, the objects being observed
are the workflow activities, i.e. the monitoring system will be
notified whenever a workflow activity has been completed.
This is much more fine-grained but can result in more
monitoring cost. In addition, the later definition does not
differentiate the durations of workflow activities. For
example, if one workflow activity running for 2 minutes and
another one running for 20 seconds are completed at the
same time, their contributions to the system throughput are
treated the same, e.g. both accounted for one activity
completion. However, it is evident that their actual
contributions for meeting the soft deadlines are very different.
Here we define some basic annotations: ia is a workflow

activity (equivalent to a subtask) with its mean, minimum,
and maximum durations (i.e. response time) denoted as

)(iaM ,)(iad and)(iaD respectively; the activity duration

weight of ia is denoted as iw which represents the influence

of the process structure such as sequence, parallelism,
iteration and choice to the completion time of the entire
workflow [12]; iWF is a workflow (equivalent to a task) with

its mean, minimum, and maximum completion time denoted
as)(iWFM ,)(iWFd and)(iWFD respectively; the basic time

unit for monitoring (i.e. the interval for two consecutive
monitoring) is denoted as bt . To model these time attributes,

we need some basic statistics. Among them, the two most
popular statistical values are the expected value iµ and the

standard deviation iσ for the activity duration of ia .

Definition 1 (Workflow Throughput). Given a batch of
m parallel workflows },{ ,...21 mWFWFWFBatch which starts at

system time 0S , the completion of a workflow activity ia

contributes to the completion of the entire batch of
workflows with a value of TaMw ii /)(where

∑
=

=

m

i

iWFMT

1

)(. Here, assume at the current observation

time point tS , the set of new completed activities from the

last nearest observation time point 1−tS (i.e. btSS tt =− −1) is

denoted as t

t

S

S
a

1
|{}

−
, then the current system throughput is

defined as TaMWTH t

t

t

t

S

S

S

S
/)|{}(|

11 −−
×= .

Given this new definition for workflow throughput, we
can clearly measure how much activities completed during a
basic time unit contributes to the completion of the entire
batch. To ensure on-time completion, a global deadline
together with a set of local milestones is assigned to facilitate
the monitoring of workflow execution. In this paper, we will
assign throughput constraints instead of conventional
response time constraints. Given Definition 1, throughput
constraints are the expected accumulated workflow
throughputs that should be achieved at a specific system time
point. Here, the formal definition for workflow throughput
constraints is presented as follows.

Definition 2 (Workflow Throughput Constraint).
Given the same batch of workflows as defined in Definition
1, the throughput constraint assigned at system time point tS

is denoted as tS

S
THCons

0
| which means that the expected

accumulated system throughput ∑
=

t

i

S

S
iTH

1
0
| from 0S to tS

should be no less than the value of the assigned throughput

constraint. The actual value of tS

S
THCons

0
| will be decided by

the constraint setting strategy.
Throughput constraints can be assigned at any system

time point and as many as required by the system. In general,
the more dynamic the system performance, the larger the
number of local throughput constraints are required.
Meanwhile, different from conventional constraint setting
where the response time constraints are assigned to
workflow activity points, throughput constraint setting are
assigned to the system time points [16]. In practice, since

there is normally a basic time unit for system monitoring, i.e.
bt , local throughput constraints should be assigned

accordingly. In this paper, we name the candidate time points
for constraint setting as candidate constraint point. The
formal definition for candidate constraint point is presented
as follows.

Definition 3 (Candidate Constraint Point). Given the
same batch of workflows in Definition 1, a system time point

iS along the workflow execution timeline is a candidate

constraint point if btnSS 0i ×=− (...3,2,1=n).

To address the problems such as how many constraint
points should have and where the constraint points should be,
it requires a strategy named temporal checkpoint selection
[17]. However, since the focus of this paper is throughput
constraint setting, we will leave the throughput checkpoint
selection strategy as our future work. In this paper, to
simplify our discussion, we will just use an intuitive strategy
where a fixed time interval is defined so that the constraint
points are equally distributed along the system timeline.
More details will be illustrated in Section IV.

B. A Novel Build-Time Throughput Consistency Model

The estimation of on-time completion requires a temporal
consistency model. According to the workflow lifecycle, a
build-time temporal consistency model can help to check
whether the targeted global deadline can be satisfied or not
given the expected durations of workflow activities [13].
Therefore, it can help the user and the service provider to
negotiate a proper global deadline. Meanwhile, during
workflow execution, a runtime temporal consistency model
can help to verify at any time point whether the deadline can
be met or not, i.e. temporal consistency or inconsistency. In
this paper, as we investigate the problem of deadline
assignment which occurs at workflow build time, we focus
on the build-time throughput consistency model. Here, to
simplify the discussion of our work, we assume all the
activity durations follow the normal distribution model

),(2
iiN σµ where iµ is the expected value and iσ is the

standard deviation. However, activity durations follow other
distribution models such as uniform and exponential can also
be transformed and have limited effects on the model [12].
Based on such an assumption, as discussed in [13], the
completion time of the workflow can also be estimated with
the weighted joint normal distribution of individual activity
durations. A typical feature of normal distribution is the “ σ3

rule” rule which depicts that for any sample coming from
normal distribution model, it has a probability of 99.73% to
fall into the range of []iiii σµσµ 3,3 +− . Therefore, it is

practical to eliminate the outliers and assume

iii aMaD σ3)()(+= and iii aMad σ3)()(−= .

Definition 4 (Throughput Consistency Model). Given
the same batch of workflows in Definition 1, and its final
deadline denoted as)(mWFF , it is said to be of :

1) Absolute Consistency (AC), if

%100
))((

)|{}(
)(

0 ≤
−×

×

0m

WFF

S

SWFFm

aDW m

;

2) Absolute Inconsistency (AI), if

%100
))((

)|{}(
)(

0 ≥
−×

×

0m

WFF

S

SWFFm

adW m

;

3) %α Consistency (%α C), if

)|{}()|{}((

)|{}())((
3

)()(

)(

00

0

mm

m

WFF

S

WFF

S

WFF

S0m

aMWaDW

aMWSWFFm

×−×

×−−×
×=αλ where

αλ (33 ≤≤− αλ) is defined as the %α (1000 << α)

confidence percentile with the cumulative standard normal

distribution function of %
2

1
)(

2

2

α
πσ

λ
αλ

α =•=

−

∞−∫ dxF

x

l .

Here, the factor of 3 is to make sure that αλ follows the

standard normal distribution model.
In general, AC denotes the state that even when every

activity is running with its maximum duration, the final
deadline can still be met. In contrast, AI denotes that even
when every activity is running with its minimum duration,
the final deadline still cannot be met. Clearly, both AC and
AI are two extreme situations while the rest can be
represented by %α C which is a better measurement for

describing the current service quality. For example, many
commercial cloud service providers such as Amazon Web
Service uses percentage values like 99%, 99.9% and 99.99%
for service quality on reliability and availability. Similarly, a
confidence value such as 90% of on-time completion is more
practical for service providers to specify different levels of
service quality.

C. Throughput Constraint Setting Strategy

As can be seen in Definition 4, the expected value and
the standard deviation are the two major statistics used in the
throughput consistency model. Actually, in most studies, the
mean, minimum, and maximum durations are estimated
using iµ and iσ with representative distribution models such

as normal, exponential and uniform [14]. These statistics are
usually generated from large sample size and these
distribution models are normally used in the scenarios where
the system performance is relatively static and the activity
durations are independent to each other. In this paper, we
investigate the cloud computing environment where the
underlying services are provisioned elastically according to
the number of parallel workflows in the batch. However,
conventional distribution models cannot adapt to such kind
of changes, and thus results in inaccurate predictions.
Therefore, unlike most of the current studies, we will adopt a
latest work on the performance analysis of cloud computing
centers where a queueing model can be used to estimate the
activity durations [4]. A queueing model is much more
powerful and capable of easily adapting to the changes of
input tasks and number of services. Due to the space limit of
this paper, we have to omit the detailed discussion for the
rationale of the model design and present the queueing
model used in our paper which is the same as the one
proposed in [5] directly as follows.

Definition 5 (A M/G/m/m+r Queueing Model). In a
specific batch of workflows, for n workflow activities of the

same type, there are m dedicated services where n is

normally much larger than m . The queueing model that we

adopted is rM/G/m/m + which indicates that the inter-arrival

time of requests is exponentially distributed, while task
service times are independent and identically distributed
random variables that follow a general distribution with
mean value of iµ for ia . It contains m services and the

service order is FCFS. The capacity of the system is rm +
which means that the buffer size for incoming request is
equal to r, i.e. mn - in this case.

Based on such a model and given the basic statistics,
together with the number of parallel workflow activities and
the number of services for the current batch, we can
efficiently obtain more accurate mean durations which
reflect system changes. Please refer to [5] for the formulas of
calculating the mean durations, and be noted that in this
paper an activity duration is the execution time plus the
waiting time. There are many tools available to facilitate the
calculation such as popular QtsPlus [4]. Now, we present the
novel throughput constraint setting strategy.

Definition 6 (A Novel Throughput Constraint Setting
Strategy). Given the same batch of workflows in Definition
1, and its final deadline denoted as)(mWFF , at a candidate

constrain point iS where btnSS 0i ×=−

(1
)(

...3,2,1 −=
bt

WFF
n m), the throughput constraint assigned

at iS by our novel throughput constraint setting strategy is

=)(iSCons TaMW
WFFm

WFM

Cons ii S

S
m

m

i

i
S

S
/)|{}(

)(

)(

|
00

1 ××
∗

=

∑
= which

denotes the expected percentage of completion at system

time point iS . Since ∑
=

=

m

i

iWFMT

1

)(as in Definition 1, we

can have
)(

|{}(
)(0

m

S

S
i

WFFm

aMW
SCons

i

∗

×
=

）

.

It can be easily seen that given the novel definition of
workflow throughput, our constraint setting strategy is to
assign the expected percentage of completion to the current
constraint point. As there is practically no limit on the
position of a constraint point when the basic time unit for
monitoring bt is small enough, our strategy can efficiently

assign throughput constraints as many as required along the
system timeline.

IV. EVALUATION

In this section, we evaluate our strategy (denoted as TCS
for Throughput Constraint Setting) and compared with 4
other representative generic deadline assignment strategies [9]
including Ultimate Deadline (UD), Effective Deadline (ED),
Equal Slack (EQS) and Equal Flexibility (EQF), according to
the two basic performance measurement discussed in Section
II.B, viz. efficiency and consistency. We do not compare

with other strategies such as Fair Laxity Distribution and
Unfair Laxity Distribution in this paper because they are
designed for different optimization objectives.
The computation overhead for the generic strategies on

each local deadline is small as they only include simple
computation, but they have to be repeated for a large number
of times [9]. As for our strategy, the computation overhead
with the queueing model is relatively higher but still very
small, and it only needs to be repeated for a few times since
we use throughput constraints. Therefore, the total
computation overhead for each strategy can be regarded as
small and similar. Here, to simplify our experiments, we
directly compare the number of required constraints for each
strategy for the measurement of efficiency. As for the
measurement of consistency, we need to specify a global
constraint which can guarantee a specific global on-time
completion rate (i.e. the service quality), and then compare
the local on-time completion rate of each strategy, denoted as
LR , with the global on-time completion rate, denoted as GR .

Specifically, the consistency rate is defined as follows:

Consistency Rate: GRLRGR /-1 − Formula (1)

In this paper, since our focus is on deadline assignment,
we do not discuss about the setting of global constraints.
Therefore, we borrow the work in [13] which presents a
probability based strategy to statistically guarantee the same
on-time completion rate for both global and local constraints.
Specifically in this paper, we set the confidence rate as 90%
which is the same as in the previous works [12, 13, 17].

A. Experimental Settings

In our experiments, we simulate the running of a batch of
parallel workflows in the Cloud. The basic experimental
settings are shown in Table I.

TABLE I. EXPERIMENTAL SETTINGS

Like in other literatures [9], to simplify our discussion
and focus on the performance of the deadline assignment
strategies, we only use a simple workflow with 10 sequential
activities. However, our strategy as well as other strategies
discussed in this paper can be easily applied to general
workflows with different structures and more activities [13].
The number of parallel workflows increases from 20, 50, 100,
500 to 1,000, which covers a typical range of concurrent user
requests in a real-time business system. As for the number of
cloud services, it is provisioned according to the number of
parallel workflows to simulate the dynamic resource
provisioning in the cloud. The maximum queue length is set
as 50 which is a reasonable size for the execution of most
business tasks. Therefore, except for the first round where
the number of cloud services is set as 10 (since there is at
least one service for one type of activity), the number of
parallel workflows and the number of cloud services are set
with a ratio of 5:1 given each workflow contains 10 activities.
As for the activity durations, the mean execution time is first
randomly generated from (30, 300) time units to cover a
large searching space using normal distribution models.
Afterwards, the queueing model proposed in [5] is adopted
to simulate the actual system performance. The mean
durations of our strategy are generated by the queueing
model while others are calculated as the sum of the mean
execution time and the expected waiting time in the queue of
each cloud service as in [9]. For a fair comparison, our
strategy selects 10 equally distributed constraint points along
the system timeline, specifically 10% of the global deadline,
20% of the global deadline, and so on so forth. As for other
strategies, every activity is a constraint point since the local
deadlines are assigned to each subtask. Each experiment is
executed for 1,000 times to get the average values.

B. Experimental Results

The number of total constraints and the reduction rates
are depicted in Table II.

TABLE II. REDUCTION RATES OF TOTAL CONSTRAINTS

Since all the other strategies assign each workflow

activity with a local constraint, the number of total
constraints is the same as the number of total workflow
activities in our experiments. In contrast, our strategy only
assigns one throughput constraint at each constraint point
regardless the number of parallel workflows. Therefore, our
strategy only needs 10 constraints for each batch of parallel
workflows. The reduction rates for each round of
experiments are 98.0%, 99.0%, 99.5% 99.8% and 99.9
respectively. This is a significant improvement over the
efficiency for monitoring a large batch of parallel workflows.

Next, we will present the results on the comparison of
the consistency between global and local on-time
completion rates.

Figure 1. Average Consistency Rates

Figure 1 shows the average consistency rates for the 5
rounds of experiments. Since our global deadline is set
with 90% of on-time completion rate using the method in
[13], the consistency rate here measures how much the
local on-time completion rate approximates to 90%. As
can be seen from Figure 1, our strategy TCS has the
largest consistency rates in all the 5 rounds of experiments
and with an average rate of 94.17%. As for the other
strategies, EQF is the second best with an average rate of
89.1%, but very close to the third best EQS with an
average rate of 89.0%. UD and ED are almost the same
with an average rate of 88.67%. We further take a look at
two specific rounds of experiments which are the two
extremes, viz. the smallest with 20 parallel workflows and
the largest with 1,000 parallel workflows. The results are
shown in Figure 2 and Figure 3 respectively. It is
surprisingly to see that in Figure 2, EQF is better than TCS
in 4 out of the total 9 constraint points. However, it is far
less stable as TCS. We reckon this is a result of its
adoption of random distribution models. The average
consistency rate for TCS is 93.4%, which is still much
better than EQF with an average of 89.9%. The other three
strategies are all with an average around 88.9%. When the
number of parallel workflows increases to 1,000, our
strategy shows a significant advantage over the others at
every constraint point. The average consistency rate for
TCS is 94.3% and the maximum value achieved at the
ninth constraint point is 99.1%. This is a clear evidence to
demonstrate that TCS is better dealing with a large batch
of parallel workflows than others.

Figure 2. Consistency Rates (20 Parallel Workflows)

Figure 3. Consistency Rates (1,000 Parallel Workflows)

We also take an in-depth analysis of these generic
strategies and their low consistency rates are the results of
three major problems: 1) for UD, the local deadlines are
often excessively large. Therefore, the local on-time
completion rates can be very high but with no effects on
the global ones; 2) for ED, only the execution time is
considered in the distribution of the time slacks. However,
for a large batch of parallel workflows, the major
component of the activity duration is the waiting time
which is normally much larger than the execution time; 3)
for EQS and EQF, they indeed consider the waiting time
of the activity itself but without the waiting time of other
activities. In addition, the waiting time is calculated with
simple estimation [9], and thus it is far less accurate than
ours with the queueing model.
To summarize, the experimental results successfully

demonstrate that our strategy can effectively address the
deadline assignment problem for a large batch of parallel
workflows from tens to thousands, and even more can be
expected. Our strategy beats all the other generic deadline
assignment strategies in both “efficiency” and
“consistency”, and the advantage is becoming more
evident when the number of parallel workflows increases.
In addition, the results show that our strategy can maintain
a stable performance with different number of parallel
workflows and different number of cloud services. This is
very important in a cloud computing environment where
the resources are dynamically provisioned according to the
changing system demand.

V. CONCLUSIONS AND FUTURE WORK

Deadline assignment is a classic problem in distributed
systems, but it is becoming increasingly challenging in the
soft real-time systems where large batches of tasks are
running in parallel in a shared resource environment such
as cloud computing. It is intuitive that throughput is a
better performance measurement than response time for
the monitoring of large batch of parallel tasks. However, to
the best of our knowledge, there is so far no existing work
dedicated to the setting of throughput constraints to
achieve targeted service quality, i.e. specific on-time
completion rate for a large batch of parallel tasks running
in the Cloud. To address such an issue, we have proposed
a novel throughput consistency model which can measure
the probability of on-time completion for a large batch of
workflows, and a novel throughput constraint setting
strategy which can assign a local throughput constraint at
any given time point along the system timeline. The
experimental results demonstrated that our strategy can

achieve significant advantages over other generic
strategies in both efficiency and consistency.
Since this paper focused on the evaluation of the novel

definition for throughput constraints and the novel
throughput constraint setting strategy, the experiments
were designed to be simple and fair for comparison
purposes. Therefore, there is still large space for us to
improve the experiments such as introducing real-world
business processes, and more complicated resource
provisioning and task scheduling policies. In the future, we
will also investigate the checkpoint selection strategy to
determine the best number of constraint points and achieve
the targeted on-time completion rates.

ACKNOWLEDGMENT

The research work reported in this paper is partly
supported by National Natural Science Foundation of
China (NSFC) under No. 61300042 and No. 61021004,
Australian Research Council under LP0990393 and
LP130100324, the Fundamental Research Funds for the
Central Universities, and Shanghai Knowledge Service
Platform Project No. ZF1213. Yun Yang is the
corresponding author.

REFERENCES

[1] W. M. P. van der Aalst and K. M. V. Hee, Workflow Management:

Models, Methods, and Systems: The MIT Press, Cambridge, 2002.

[2] J. Eder, E. Panagos, and M. Rabinovich, "Time Constraints in

Workflow Systems", Proc. 11th International Conference on

Advanced Information Systems Engineering (CAiSE99), pp. 286-

300, Heidelberg, Germany, 1999.

[3] M. Garcia-Valls, R. Fern'ndez-Castro, I. Estevez-Ayres, P.

Basanta-Val, and I. Rodriguez-Lopez, "A Bounded-Time Service

Composition Algorithm for Distributed Real-time Systems", Proc.

2012 IEEE 14th International Conference on High Performance

Computing and Communication & 2012 IEEE 9th International

Conference on Embedded Software and Systems (HPCC-ICESS),

pp. 1413-1420, 2012.

[4] D. Gross, J. Shortle, J. Thompson, and C. Harris, Fundamentals of

Queueing Theory (Fourth Edition) John Wiley & Sons, 2008.

[5] K. Hamzeh, "Performance Analysis of Cloud Computing Centers

Using M/G/m/m+r Queuing Systems," Ieee Transactions on

Parallel and Distributed Systems, vol. 23, no. 5, pp. 936-943, 2012.

[6] K. Hwang, J. Dongarra, and G. Fox, Distributed and Cloud

Computing: From Parallel Processing to the Internet of Things:

Morgan Kaufmann, 2012.

[7] B. Javadi, P. Thulasiraman, and R. Buyya, "Cloud Resource

Provisioning to Extend the Capacity of Local Resources in the

Presence of Failures", Proc. 2012 IEEE 14th International

Conference on High Performance Computing and Communication

& 2012 IEEE 9th International Conference on Embedded Software

and Systems (HPCC-ICESS), pp. 311-319, 2012.

[8] J. Jonsson, "A Robust Adaptive Metric for Deadline Assignment in

Heterogeneous Distributed Real-Time Systems", Proc. 13th

International Parallel Processing and 10th Symposium on Parallel

and Distributed Processing (IPPS/SPDP), pp. 678-687, 1999.

[9] B. Kao and H. Garcia-molina, "Deadline Assignment in a

Distributed Soft Real-Time System " IEEE Transactions on

Parallel and Distributed Systems, vol. 8, no. 12, pp. 428--437,

1993.

[10] J. Lee, I. Shin, and A. Easwaran, "Convex Optimization

Framework for Intermediate Deadline Assignment in Soft and

Hard Real-Time Distributed Systems," Journal of Systems and

Software, vol. 85, no. 10, pp. 2331-2339, 2012.

[11] K. Liu, J. J. Chen, Y. Yang, and H. Jin, "A Throughput

Maximization Strategy for Scheduling Transaction-Intensive

Workflows on SwinDeW-G," Concurrency and Computation:

Practice and Experience, vol. 20, no. 15, pp. 1807-1820, 2008.

[12] X. Liu, J. Chen, and Y. Yang, "A Probabilistic Strategy for Setting

Temporal Constraints in Scientific Workflows", Proc. 6th

International Conference on Business Process Management

(BPM2008), vol. 5204, pp. 180-195, Milan, Italy, 2008.

[13] X. Liu, Z. Ni, J. Chen, and Y. Yang, "A Probabilistic Strategy for

Temporal Constraint Management in Scientific Workflow

Systems," Concurrency and Computation: Practice and Experience,

vol. 23, no. 16, pp. 1893-1919, 2011.

[14] X. Liu, J. Chen, and Y. Yang, Temporal QoS Management in

Scientific Cloud Workflow Systems: Elsevier, 2012.

[15] X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen, and Y.

Yang, The Design of Cloud Workflow Systems: Springer, 2012.

[16] X. Liu, Y. Yang, D. Cao, and D. Yuan, "Selecting Checkpoints

along the Time Line: A Novel Temporal Checkpoint Selection

Strategy for Monitoring a Batch of Parallel Business Processes,"

Proc. 35th International Conference on Software Engineering

(NIER Track), San Francisco, pp. 1281-1284, 2013.

[17] X. Liu, Y. Yang, Y. Jiang, and J. Chen, "Preventing Temporal

Violations in Scientific Workflows: Where and How," IEEE

Transactions on Software Engineering, vol. 37, no. 6, pp. 805-825,

2011.

[18] X. Liu, Z. Ni, Z. Wu, D. Yuan, J. Chen, and Y. Yang, "A Novel

General Framework for Automatic and Cost-Effective Handling of

Recoverable Temporal Violations in Scientific Workflow

Systems," Journal of Systems and Software vol. 84, no. 3, pp. 492-

509, 2011.

[19] D. Marincaa, P. Minet, and L. Georgeb, "Analysis of Deadline

Assignment Methods in Distributed Real-Time Systems,"

Computer Communications 27 (2004), vol. 27, no. 2004, pp.

1412–1423, 2004.

[20] B. Ravindran, "Engineering Dynamic Real-Time Distributed

Systems: Architecture, System Description Language and

Middleware," IEEE Transactions on Software Engineering, vol. 28,

no. 1, pp. 30-57, 2002.

[21] J. Yu and R. Buyya, "A Taxonomy of Workflow Management

Systems for Grid Computing," Journal of Grid Computing, no. 3,

pp. 171-200, 2005.

