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Abstract—Deadline assignment is to assign each subtask 

composing a distributed task with a local deadline such that 

the global deadline can be met. Today’s real-time systems often 

need to handle hundreds or even thousands of concurrent 

customer (or service) requests. Therefore, deadline assignment 

is becoming an increasingly challenging issue with a large 

number of parallel and distributed subtasks. However, most 

conventional strategies are designed to deal with a single 

independent task rather than a batch of many parallel tasks in 

a shared resource environment such as cloud computing. To 

address such an issue, in this paper, instead of assigning local 

deadline for each subtask, we propose a novel strategy which 

can efficiently assign local throughput constraints for a batch 

of parallel tasks at any time point along the system timeline. 

The basis of this strategy is a novel throughput consistency 

model which can measure the probability of on-time 

completion at any given time point. The experimental results 

demonstrate that our strategy can achieve significant time 

reduction in deadline assignment and achieve the most 

“consistency” between global and local deadlines compared 

with other representative strategies. 

Keywords-Deadline Assignment, Throughput, Parallel Tasks, 

Cloud Computing  

I.  INTRODUCTION 

Deadline assignment is a classic problem in distributed 
systems where each subtask composing a distributed task 
must receive a local deadline so that the global deadline can 
be met [3, 9, 20, 21]. The global deadline usually serves as 
an important QoS (Quality of Service) constraint specified in 
the Service Level Agreement (SLA) between the customer 
and the service provider. In general, a global deadline can be 
classified into two types, viz. hard deadline and soft deadline. 
A hard deadline means that if missed, it is a failure. A soft 
deadline means that if missed, the usefulness of a result will 
be deteriorated and thus degrades the service quality [10]. In 
the real world, hard deadlines are often applied in safety-
critical areas such as railway traffic control, automotive 
electronics, and aerospace electronic equipment [8]. In 
contrast, soft deadlines have a much broader application in 
the fields where the service quality for handling massive 
concurrent customer requests is the first priority such as e-
Government, e-Business and e-Science [13]. For example, a 
government taxation office needs to process thousands of tax 
declarations every day for individual and enterprise 
customers. Failures of completing these tasks in time will 

result in significant deterioration of customer satisfaction and 
even huge financial losses, e.g. the taxation office would 
have to pay a large amount of money to compensate the 
interest loss of tax payers for days of the delay over its 
official deadline. Therefore, on-time completion is critical 
for delivering services with satisfactory quality [6]. 
In order to meet the deadlines, a set of QoS management 

strategies are required. For example, a typical temporal QoS 
management framework proposed in [14] consists of three 
basic steps, viz. temporal constraint setting [12], temporal 
consistency monitoring [17], and temporal violation handling 
[18]. Specifically, the setting of temporal constraints is the 
first step in the framework which can be further divided into 
two sub-steps, viz. the setting of global deadlines, and the 
setting of local deadlines (i.e. deadline assignment). The 
global deadline can be either adopted by default (according 
to the system design) or specified through a negotiation on 
the price that the customer willing to pay and the level of 
service quality that the service provider would like to offer 
[13]. As for local deadlines, they are usually assigned by the 
system with a chosen deadline assignment strategy to ensure 
the on-time completion of subtasks. A local deadline plays 
an important role in the decision-making for resource 
provision and task scheduling [7, 21]. It also serves as the 
key objective for the monitoring of subtask execution which 
is very essential yet challenging in a distributed environment. 
Therefore, as proved in many studies, the setting of proper 
local deadlines has significant contributions to the successful 
on-time completion of distributed real-time tasks [13, 19].  
In this paper, we focus on soft real-time systems in the 

Cloud where tens, hundreds or even thousands of tasks are 
running in parallel at the same time. Meanwhile, since 
workflow systems are typical soft real-time distributed 
systems, many studies in the area of workflow or process 
management on temporal constraint settings are also 
investigated [2, 14, 15, 21]. Therefore, in this paper, the 
terms “task” and “subtask” are interchangeable with the 
terms “workflow” and “activity” respectively.  
Most of the current studies focus on the response time of 

a single task rather than the throughput of a large batch of 
parallel tasks. Compared with response time which measures 
how long a user submitted request takes to complete, 
throughput defines how many requests have been completed 
by the system in a basic time unit. Therefore, in general, for 
running a large batch of parallel tasks, throughput is a better 
performance indicator because it measures the overall system 



performance [11, 16]. For tasks running in the Cloud, given a 
set of soft deadlines, cloud service providers must be able to 
provide and maintain a certain level of system throughput so 
as to achieve satisfactory QoS, e.g. a specific confidence 
(probability) for on-time completion such as 90%. Such a 
“certain level of system throughput” is specified in the form 
of throughput constraints, which explicitly define the 
bottom-line throughput that a system should provide to 
achieve on-time completion. However, the setting of 
throughput constraints for a large batch of parallel tasks is a 
challenging issue. Specifically, there are three fundamental 
questions: Q1) how to measure the system throughput? Q2) 
how to estimate the probability of on-time completion? Q3) 
how to assign local throughput constraints? Details will be 
discussed in Section II.B. 
In this paper, to answer and address these above 

mentioned questions, first, we introduce the novel definitions 
for throughput constraints and candidate constraint points 
which are specifically designed for a large batch of tasks 
with soft deadlines; second, we propose a novel throughput 
consistency model which can measure the probability of on-
time completion at any given constraint point. Third, based 
on a queueing model which can predict activity durations in 
the Cloud, we propose a novel deadline assignment strategy 
which can efficiently assign local throughput constraints to 
any constraint points along the system timeline. Finally, a 
number of simulated workflows are employed to evaluate 
our strategy. The results have shown that our strategy can 
achieve significant time reduction in deadline assignment 
and achieve the most “consistency” between global and local 
deadlines (i.e. being most consistent between the on-time 
completion rates of global and local deadlines) compared 
with other representative generic strategies. 
The remainder of this paper is organized as follows. 

Section II introduces the related work and presents the 
problem analysis. Section III introduces a set of new 
definitions and proposes the novel throughput constraint 
setting strategy. Section IV demonstrates the evaluation of 
our strategy through simulation experiments. Finally, Section 
V addresses the conclusion and points out the future work.  

II. RELATED WORK AND PROBLEM ANALYSIS  

A. Related Work 

Deadline assignment is a well-known problem in many 
real-time distributed systems [20, 21]. Most strategies are 
designed using basic statistics and simple computation to 
guarantee a small time overhead which is very important in 
real-time systems. Kao and Garcia-Molina in [9] examined 
four classical strategies, viz. Ultimate Deadline (UD), 
Effective Deadline (ED), Equal Slack (EQS) and Equal 
Flexibility (EQF) for subtask deadline assignment in a 
distributed soft real-time environment. Specifically, UD sets 
the local deadline for a subtask the same as the global 
deadline. This method is not practical for real-time systems 
since it gives little control over the subtasks. For the other 
three strategies, the idea is to fairly distribute the time slack 
(i.e. the expected time redundancy between the mean 
response time and the global deadline) to the subtasks. 

However, different researchers may have different 
understanding about “fairness”, and thus leads to different 
approaches for slack distribution. For example, ED of a 
subtask is equal to the deadline of its global task minus the 
total expected time of its following subtasks. EQS divides 
the total remaining slack equally among the remaining 
subtasks. EQF divides the total remaining slack among the 
subtasks in proportion to their execution times and thus 
subtasks can share equal flexibility.  
Besides the above four generic methods, there are also 

some other strategies which are designed to optimize specific 
objectives. The work in [10] proposed a convex optimization 
framework which can effectively address the deadline 
assignment problem while maximizing the aggregate quality 
of service including time and cost. In [19], Marinca, Minet 
and George propose Fair Laxity Distribution (FLD) and 
Unfair Laxity Distribution (ULD) to maximize the number 
of acceptable flows. These two methods are based on the 
flow minimum sojourn time that should be guaranteed on 
each visited node. The difference between the two methods 
is the laxity distribution. FLD applies a fair laxity 
distribution between the visited nodes, whereas ULD tends 
to make use of the proportion of the workload to allocate the 
laxity between visited nodes. FLD and ULD are also 
compared with two other deadline assignment strategies 
including fair assignment (FA) and assignment proportional 
to workload (PTW). FA sets the deadline of a subtask equal 
to the end-to-end deadline divided by the number of subtasks, 
and PTW sets the deadline of each subtask according to the 
proportion of its workload. The studies shows that different 
scheduling algorithms should be used with different deadline 
assignment strategies to achieve the maximum number of 
acceptable flows.  
While all the above work adopts global deadline by 

default, the work in [12] proposes a probabilistic strategy for 
temporal constraint setting which considers both the setting 
of global deadlines and local deadlines. With a probability-
based temporal consistency model, a negotiation process 
between the user and the service provider is designed to 
support the setting of global deadlines and then automatically 
derive the local deadlines for each workflow activity. The 
global deadlines and the local deadlines have the same 
confidence for on-time completion such as 90%. The work in 
[13] also considers the updates of deadlines at runtime when 
the workflow execution is either ahead of or behind the 
schedule. However, they can only work on the response time 
of single tasks rather than the throughput of parallel tasks. 
Although many deadline assignment strategies have been 

proposed, to the best of our knowledge, there is so far no 
strategy dedicated to the setting of throughput constraints for 
a large batch of parallel tasks in a cloud computing 
environment.  

B. Problem Analysis 

To deal with a large batch of parallel tasks with soft 
deadlines in the Cloud, we need to address the following 
three fundamental questions: 
Q1) How to measure the system throughput? The generic 

definition of system throughput is how many tasks have been 



completed by the system in a basic observation time unit [4] . 
Here, a task must be finished completely to be accounted in 
the throughput measurement. Normally, the basic 
observation time unit is set to be small so as to support 
effective monitoring and control. However, in many 
distributed real-time systems, the task response time can be 
much longer than the basic observation time unit. Therefore, 
we need to also consider partial completion in the throughput 
measurement. Unfortunately, there is so far no definition on 
the system throughput which can define the partial 
completion for a large batch of parallel tasks with soft 
deadlines.  
Q2) How to estimate the probability of on-time 

completion? The probability (namely confidence) of on-time 
completion against specific deadlines is very important for 
both deadline assignment and runtime monitoring. The 
accuracy of the probability estimation relies significantly on 
the effective response time estimation of the subtasks or 
workflow activities. Conventional response time estimation 
basically employs random distribution models. However, 
these random distribution models are mainly based on static 
statistics rather than real-time system performance. Hence, 
their effectiveness will be deteriorated in the dynamic system 
environments such as cloud computing where the resources 
are elastically scaled according to the real-time system 
demand. Therefore, new estimation methods are required. 
Furthermore, to estimate the probability of on-time 
completion, a probability based temporal consistency model 
is required [13]. However, current temporal consistency 
models are only for response time constraints rather than 
throughput constraints. Therefore, a novel temporal 
consistency model needs to be defined.  
Q3) How to assign local throughput constraints? A set of 

throughput constraints is required to ensure the desired 
service quality, i.e. the probability of on-time completion. 
For the running of massive parallel and distributed 
workflows, a throughput constraint setting strategy is 
required to automatically assign a set of throughput 
constraints along the system timeline wherever necessary. 
However, there is so far no deadline assignment strategy 
dedicated to the setting of throughput constraints. 
Here, we propose two basic measurements which can be 

used to evaluate the performance of the deadline assignment 
strategies, viz. efficiency and consistency. Specifically, 
efficiency means that: 1) the time overhead for the deadline 
assignment strategy should be trivial; 2) the number of 
required constraints for runtime monitoring should be as 
small as possible. For most strategies, the total time overhead 
can grow very fast when dealing with a large batch of 
parallel tasks. Therefore, we need a strategy which can 
maintain its computation overhead. Meanwhile, the number 
of required constraints decides how many times a deadline 
assignment strategy needs to be repeated. It also determines 
the number of monitoring objectives at runtime, and thus 
decides the monitoring cost [13]. Therefore, we need a 
strategy which can monitor the system with a small number 
of constraints. As for consistency, it means that given a 
global deadline which can guarantee a specific level of 
service quality such as 90% on-time completion rate for the 

global task, the local deadlines can also guarantee a 
consistent service quality of 90% on-time completion rate for 
the local subtasks. In a cloud computing environment, the 
users are charged according to the promised service quality. 
If the provisioned service quality is lower than the promised, 
the service provider will have to pay the penalty. However, if 
the provisioned service quality is higher than the promised, 
namely the resource are over-provisioned, the potential extra 
cost will be covered by the service providers themselves. 
Clearly, neither higher nor lower service quality than the 
promised is desirable. Therefore, we need a strategy which 
can ensure a high consistency between the global and local 
deadlines. Both efficiency and consistency will be evaluated 
and compared in Section IV. 

III. A NOVEL DEADLINE ASSIGNMENT STRATEGY 

As discussed in Section II.B, current work mainly 
focuses on the response time of single distributed task. In 
this paper, we use system throughput for monitoring a batch 
of parallel tasks. It should be noted that in our strategy, the 
size of the “batch” is not a fixed value but rather determined 
by the system at runtime. The batch can start at any arbitrary 
time point as long as those parallel tasks are having the same 
deadline. This situation ensures that a common global 
deadline exists so that a deadline assignment strategy can be 
applied similarly to each individual task. In this section, we 
will answer the three problems analyzed in Section II.B in 
the following three subsections respectively.  

A. Workflow Throughput and Throughput Constraints 

Generally speaking, workflow throughput, namely the 
throughput of the workflow system, is the number of 
workflows that have been completed in a basic time unit [1, 
4]. Meanwhile, workflow throughput can also be measured 
by the number of workflow activities that have been 
completed in a basic time unit [11]. For the former definition, 
the objects being observed are the workflows, i.e. the 
monitoring system will only be notified when an entire 
workflow has been completed. This is obvious not effective 
for monitoring the running of a large batch of parallel 
workflows. It will be too late for violation handing strategies 
to take place when the workflows have already been finished 
[17]. As for the later definition, the objects being observed 
are the workflow activities, i.e. the monitoring system will be 
notified whenever a workflow activity has been completed. 
This is much more fine-grained but can result in more 
monitoring cost. In addition, the later definition does not 
differentiate the durations of workflow activities. For 
example, if one workflow activity running for 2 minutes and 
another one running for 20 seconds are completed at the 
same time, their contributions to the system throughput are 
treated the same, e.g. both accounted for one activity 
completion. However, it is evident that their actual 
contributions for meeting the soft deadlines are very different.  
Here we define some basic annotations: ia  is a workflow 

activity (equivalent to a subtask) with its mean, minimum, 
and maximum durations (i.e. response time) denoted as 

)( iaM , )( iad and )( iaD  respectively; the activity duration 



weight of ia  is denoted as iw  which represents the influence 

of the process structure such as sequence, parallelism, 
iteration and choice to the completion time of the entire 
workflow [12]; iWF  is a workflow (equivalent to a task) with 

its mean, minimum, and maximum completion time denoted 
as )( iWFM , )( iWFd  and )( iWFD  respectively; the basic time 

unit for monitoring (i.e. the interval for two consecutive 
monitoring) is denoted as bt . To model these time attributes, 

we need some basic statistics. Among them, the two most 
popular statistical values are the expected value iµ  and the 

standard deviation iσ  for the activity duration of ia .  

Definition 1 (Workflow Throughput). Given a batch of 
m parallel workflows },{ ,...21 mWFWFWFBatch  which starts at 

system time 0S , the completion of a workflow activity ia  

contributes to the completion of the entire batch of 
workflows with a value  of  TaMw ii /)(  where 

∑
=

=

m

i

iWFMT

1

)( . Here, assume at the current observation 

time point tS , the set of new completed activities from the 
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Given this new definition for workflow throughput, we 
can clearly measure how much activities completed during a 
basic time unit contributes to the completion of the entire 
batch. To ensure on-time completion, a global deadline 
together with a set of local milestones is assigned to facilitate 
the monitoring of workflow execution. In this paper, we will 
assign throughput constraints instead of conventional 
response time constraints. Given Definition 1, throughput 
constraints are the expected accumulated workflow 
throughputs that should be achieved at a specific system time 
point. Here, the formal definition for workflow throughput 
constraints is presented as follows. 

Definition 2 (Workflow Throughput Constraint). 
Given the same batch of workflows as defined in Definition 
1, the throughput constraint assigned at system time point tS  

is denoted as tS

S
THCons

0
| which means that the expected 

accumulated system throughput ∑
=

t

i

S

S
iTH

1
0
|  from 0S  to tS  

should be no less than the value of the assigned throughput 

constraint. The actual value of tS

S
THCons

0
|  will be decided by 

the constraint setting strategy. 
Throughput constraints can be assigned at any system 

time point and as many as required by the system. In general, 
the more dynamic the system performance, the larger the 
number of local throughput constraints are required. 
Meanwhile, different from conventional constraint setting 
where the response time constraints are assigned to 
workflow activity points, throughput constraint setting are 
assigned to the system time points [16]. In practice, since 

there is normally a basic time unit for system monitoring, i.e. 
bt , local throughput constraints should be assigned 

accordingly. In this paper, we name the candidate time points 
for constraint setting as candidate constraint point. The 
formal definition for candidate constraint point is presented 
as follows. 

Definition 3 (Candidate Constraint Point). Given the 
same batch of workflows in Definition 1, a system time point 

iS  along the workflow execution timeline is a candidate 

constraint point if btnSS 0i ×=−  ( ...3,2,1=n ).  

To address the problems such as how many constraint 
points should have and where the constraint points should be, 
it requires a strategy named temporal checkpoint selection 
[17]. However, since the focus of this paper is throughput 
constraint setting, we will leave the throughput checkpoint 
selection strategy as our future work. In this paper, to 
simplify our discussion, we will just use an intuitive strategy 
where a fixed time interval is defined so that the constraint 
points are equally distributed along the system timeline. 
More details will be illustrated in Section IV. 

B. A Novel Build-Time Throughput Consistency Model 

The estimation of on-time completion requires a temporal 
consistency model. According to the workflow lifecycle, a 
build-time temporal consistency model can help to check 
whether the targeted global deadline can be satisfied or not 
given the expected durations of workflow activities [13]. 
Therefore, it can help the user and the service provider to 
negotiate a proper global deadline. Meanwhile, during 
workflow execution, a runtime temporal consistency model 
can help to verify at any time point whether the deadline can 
be met or not, i.e. temporal consistency or inconsistency. In 
this paper, as we investigate the problem of deadline 
assignment which occurs at workflow build time, we focus 
on the build-time throughput consistency model. Here, to 
simplify the discussion of our work, we assume all the 
activity durations follow the normal distribution model 

),( 2
iiN σµ  where iµ  is the expected value and iσ  is the 

standard deviation. However, activity durations follow other 
distribution models such as uniform and exponential can also 
be transformed and have limited effects on the model [12]. 
Based on such an assumption, as discussed in [13], the 
completion time of the workflow can also be estimated with 
the weighted joint normal distribution of individual activity 
durations. A typical feature of normal distribution is the “ σ3  

rule” rule which depicts that for any sample coming from 
normal distribution model, it has a probability of 99.73% to 
fall into the range of [ ]iiii σµσµ 3,3 +− . Therefore, it is 

practical to eliminate the outliers and assume 

iii aMaD σ3)()( +=  and iii aMad σ3)()( −= . 

Definition 4 (Throughput Consistency Model). Given 
the same batch of workflows in Definition 1, and its final 
deadline denoted as )( mWFF , it is said to be of : 

1) Absolute Consistency (AC), if 
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Here, the factor of 3 is to make sure that αλ  follows the 

standard normal distribution model.  
In general, AC denotes the state that even when every 

activity is running with its maximum duration, the final 
deadline can still be met. In contrast, AI denotes that even 
when every activity is running with its minimum duration, 
the final deadline still cannot be met. Clearly, both AC and 
AI are two extreme situations while the rest can be 
represented by %α C which is a better measurement for 

describing the current service quality. For example, many 
commercial cloud service providers such as Amazon Web 
Service uses percentage values like 99%, 99.9% and 99.99% 
for service quality on reliability and availability. Similarly, a 
confidence value such as 90% of on-time completion is more 
practical for service providers to specify different levels of 
service quality. 

C. Throughput Constraint Setting Strategy 

As can be seen in Definition 4, the expected value and 
the standard deviation are the two major statistics used in the 
throughput consistency model. Actually, in most studies, the 
mean, minimum, and maximum durations are estimated 
using iµ and iσ  with representative distribution models such 

as normal, exponential and uniform [14]. These statistics are 
usually generated from large sample size and these 
distribution models are normally used in the scenarios where 
the system performance is relatively static and the activity 
durations are independent to each other. In this paper, we 
investigate the cloud computing environment where the 
underlying services are provisioned elastically according to 
the number of parallel workflows in the batch. However, 
conventional distribution models cannot adapt to such kind 
of changes, and thus results in inaccurate predictions. 
Therefore, unlike most of the current studies, we will adopt a 
latest work on the performance analysis of cloud computing 
centers where a queueing model can be used to estimate the 
activity durations [4]. A queueing model is much more 
powerful and capable of easily adapting to the changes of 
input tasks and number of services. Due to the space limit of 
this paper, we have to omit the detailed discussion for the 
rationale of the model design and present the queueing 
model used in our paper which is the same as the one 
proposed in [5] directly as follows. 

Definition 5 (A M/G/m/m+r Queueing Model). In a 
specific batch of workflows, for n  workflow activities of the 

same type, there are m  dedicated services where n  is 

normally much larger than m . The queueing model that we 

adopted is rM/G/m/m + which indicates that the inter-arrival 

time of requests is exponentially distributed, while task 
service times are independent and identically distributed 
random variables that follow a general distribution with 
mean value of iµ  for ia . It contains m services and the 

service order is FCFS. The capacity of the system is rm +  
which means that the buffer size for incoming request is 
equal to r, i.e. mn -  in this case.  

Based on such a model and given the basic statistics, 
together with the number of parallel workflow activities and 
the number of services for the current batch, we can 
efficiently obtain more accurate mean durations which 
reflect system changes. Please refer to [5] for the formulas of 
calculating the mean durations, and be noted that in this 
paper an activity duration is the execution time plus the 
waiting time. There are many tools available to facilitate the 
calculation such as popular QtsPlus [4]. Now, we present the 
novel throughput constraint setting strategy.  

Definition 6 (A Novel Throughput Constraint Setting 
Strategy). Given the same batch of workflows in Definition 
1, and its final deadline denoted as )( mWFF , at a candidate 

constrain point iS where btnSS 0i ×=−  

( 1
)(

...3,2,1 −=
bt

WFF
n m ), the  throughput constraint assigned 

at iS by our novel throughput constraint setting strategy is 

=)( iSCons  TaMW
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It can be easily seen that given the novel definition of 
workflow throughput, our constraint setting strategy is to 
assign the expected percentage of completion to the current 
constraint point. As there is practically no limit on the 
position of a constraint point when the basic time unit for 
monitoring bt is small enough, our strategy can efficiently 

assign throughput constraints as many as required along the 
system timeline.  

IV. EVALUATION 

In this section, we evaluate our strategy (denoted as TCS 
for Throughput Constraint Setting) and compared with 4 
other representative generic deadline assignment strategies [9] 
including Ultimate Deadline (UD), Effective Deadline (ED), 
Equal Slack (EQS) and Equal Flexibility (EQF), according to 
the two basic performance measurement discussed in Section 
II.B, viz. efficiency and consistency. We do not compare 



with other strategies such as Fair Laxity Distribution and 
Unfair Laxity Distribution in this paper because they are 
designed for different optimization objectives.  
The computation overhead for the generic strategies on 

each local deadline is small as they only include simple 
computation, but they have to be repeated for a large number 
of times [9]. As for our strategy, the computation overhead 
with the queueing model is relatively higher but still very 
small, and it only needs to be repeated for a few times since 
we use throughput constraints. Therefore, the total 
computation overhead for each strategy can be regarded as 
small and similar. Here, to simplify our experiments, we 
directly compare the number of required constraints for each 
strategy for the measurement of efficiency. As for the 
measurement of consistency, we need to specify a global 
constraint which can guarantee a specific global on-time 
completion rate (i.e. the service quality), and then compare 
the local on-time completion rate of each strategy, denoted as 
LR , with the global on-time completion rate, denoted as GR . 

Specifically, the consistency rate is defined as follows:   

Consistency Rate:    GRLRGR /-1 −  Formula (1) 

In this paper, since our focus is on deadline assignment, 
we do not discuss about the setting of global constraints. 
Therefore, we borrow the work in [13] which presents a 
probability based strategy to statistically guarantee the same 
on-time completion rate for both global and local constraints. 
Specifically in this paper, we set the confidence rate as 90% 
which is the same as in the previous works [12, 13, 17].  

A. Experimental Settings 

In our experiments, we simulate the running of a batch of 
parallel workflows in the Cloud. The basic experimental 
settings are shown in Table I.  

TABLE I.  EXPERIMENTAL SETTINGS 

 
 

Like in other literatures [9], to simplify our discussion 
and focus on the performance of the deadline assignment 
strategies, we only use a simple workflow with 10 sequential 
activities. However, our strategy as well as other strategies 
discussed in this paper can be easily applied to general 
workflows with different structures and more activities [13]. 
The number of parallel workflows increases from 20, 50, 100, 
500 to 1,000, which covers a typical range of concurrent user 
requests in a real-time business system. As for the number of 
cloud services, it is provisioned according to the number of 
parallel workflows to simulate the dynamic resource 
provisioning in the cloud. The maximum queue length is set 
as 50 which is a reasonable size for the execution of most 
business tasks. Therefore, except for the first round where 
the number of cloud services is set as 10 (since there is at 
least one service for one type of activity), the number of 
parallel workflows and the number of cloud services are set 
with a ratio of 5:1 given each workflow contains 10 activities. 
As for the activity durations, the mean execution time is first 
randomly generated from (30, 300) time units to cover a 
large searching space using normal distribution models. 
Afterwards, the queueing model proposed in [5] is adopted 
to simulate the actual system performance. The mean 
durations of our strategy are generated by the queueing 
model while others are calculated as the sum of the mean 
execution time and the expected waiting time in the queue of 
each cloud service as in [9]. For a fair comparison, our 
strategy selects 10 equally distributed constraint points along 
the system timeline, specifically 10% of the global deadline, 
20% of the global deadline, and so on so forth. As for other 
strategies, every activity is a constraint point since the local 
deadlines are assigned to each subtask. Each experiment is 
executed for 1,000 times to get the average values. 

B. Experimental Results 

The number of total constraints and the reduction rates 
are depicted in Table II.  

TABLE II.  REDUCTION RATES OF TOTAL CONSTRAINTS 

 
 
Since all the other strategies assign each workflow 

activity with a local constraint, the number of total 
constraints is the same as the number of total workflow 
activities in our experiments. In contrast, our strategy only 
assigns one throughput constraint at each constraint point 
regardless the number of parallel workflows. Therefore, our 
strategy only needs 10 constraints for each batch of parallel 
workflows. The reduction rates for each round of 
experiments are 98.0%, 99.0%, 99.5% 99.8% and 99.9 
respectively. This is a significant improvement over the 
efficiency for monitoring a large batch of parallel workflows. 



Next, we will present the results on the comparison of 
the consistency between global and local on-time 
completion rates.  

 

 

Figure 1.  Average Consistency Rates 

Figure 1 shows the average consistency rates for the 5 
rounds of experiments. Since our global deadline is set 
with 90% of on-time completion rate using the method in 
[13], the consistency rate here measures how much the 
local on-time completion rate approximates to 90%. As 
can be seen from Figure 1, our strategy TCS has the 
largest consistency rates in all the 5 rounds of experiments 
and with an average rate of 94.17%. As for the other 
strategies, EQF is the second best with an average rate of 
89.1%, but very close to the third best EQS with an 
average rate of 89.0%. UD and ED are almost the same 
with an average rate of 88.67%. We further take a look at 
two specific rounds of experiments which are the two 
extremes, viz. the smallest with 20 parallel workflows and 
the largest with 1,000 parallel workflows. The results are 
shown in Figure 2 and Figure 3 respectively. It is 
surprisingly to see that in Figure 2, EQF is better than TCS 
in 4 out of the total 9 constraint points. However, it is far 
less stable as TCS. We reckon this is a result of its 
adoption of random distribution models. The average 
consistency rate for TCS is 93.4%, which is still much 
better than EQF with an average of 89.9%. The other three 
strategies are all with an average around 88.9%. When the 
number of parallel workflows increases to 1,000, our 
strategy shows a significant advantage over the others at 
every constraint point. The average consistency rate for 
TCS is 94.3% and the maximum value achieved at the 
ninth constraint point is 99.1%. This is a clear evidence to 
demonstrate that TCS is better dealing with a large batch 
of parallel workflows than others. 
 

 

Figure 2.  Consistency Rates (20 Parallel Workflows) 

 

Figure 3.  Consistency Rates (1,000 Parallel Workflows) 

We also take an in-depth analysis of these generic 
strategies and their low consistency rates are the results of 
three major problems: 1) for UD, the local deadlines are 
often excessively large. Therefore, the local on-time 
completion rates can be very high but with no effects on 
the global ones; 2) for ED, only the execution time is 
considered in the distribution of the time slacks. However, 
for a large batch of parallel workflows, the major 
component of the activity duration is the waiting time 
which is normally much larger than the execution time; 3) 
for EQS and EQF, they indeed consider the waiting time 
of the activity itself but without the waiting time of other 
activities. In addition, the waiting time is calculated with 
simple estimation [9], and thus it is far less accurate than 
ours with the queueing model.   
To summarize, the experimental results successfully 

demonstrate that our strategy can effectively address the 
deadline assignment problem for a large batch of parallel 
workflows from tens to thousands, and even more can be 
expected. Our strategy beats all the other generic deadline 
assignment strategies in both “efficiency” and 
“consistency”, and the advantage is becoming more 
evident when the number of parallel workflows increases. 
In addition, the results show that our strategy can maintain 
a stable performance with different number of parallel 
workflows and different number of cloud services. This is 
very important in a cloud computing environment where 
the resources are dynamically provisioned according to the 
changing system demand. 

V. CONCLUSIONS AND FUTURE WORK 

Deadline assignment is a classic problem in distributed 
systems, but it is becoming increasingly challenging in the 
soft real-time systems where large batches of tasks are 
running in parallel in a shared resource environment such 
as cloud computing. It is intuitive that throughput is a 
better performance measurement than response time for 
the monitoring of large batch of parallel tasks. However, to 
the best of our knowledge, there is so far no existing work 
dedicated to the setting of throughput constraints to 
achieve targeted service quality, i.e. specific on-time 
completion rate for a large batch of parallel tasks running 
in the Cloud. To address such an issue, we have proposed 
a novel throughput consistency model which can measure 
the probability of on-time completion for a large batch of 
workflows, and a novel throughput constraint setting 
strategy which can assign a local throughput constraint at 
any given time point along the system timeline. The 
experimental results demonstrated that our strategy can 



achieve significant advantages over other generic 
strategies in both efficiency and consistency.     
Since this paper focused on the evaluation of the novel 

definition for throughput constraints and the novel 
throughput constraint setting strategy, the experiments 
were designed to be simple and fair for comparison 
purposes. Therefore, there is still large space for us to 
improve the experiments such as introducing real-world 
business processes, and more complicated resource 
provisioning and task scheduling policies. In the future, we 
will also investigate the checkpoint selection strategy to 
determine the best number of constraint points and achieve 
the targeted on-time completion rates.  
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