

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M., & Yongchareon, S. (2009). WS-
BPEL business process abstraction and concretisation.

Originally published in X. Zhou, H. Yokota, K. Deng, & Q. Liu (eds.) Proceedings
of the 14th International Conference on Database Systems for Advanced

Applications (DASFAA 2009), Brisbane, Australia, 21–23 April 2009.
Lecture notes in computer science (Vol. 5463, pp. 555–569). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/978-3-642-00887-0_49

Copyright © Springer-Verlag Berlin Heidelberg 2009.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

WS-BPEL Business Process Abstraction and
Concretisation

Xiaohui Zhao1, Chengfei Liu1, Wasim Sadiq2, Marek Kowalkiewicz2,
and Sira Yongchareon1

1 Centre for Complex Software Systems and Services
Swinburne University of Technology

Melbourne, Victoria, Australia
{xzhao, cliu}@groupwise.swin.edu.au,

575318X@student.swin.edu.au

2 SAP Research
Brisbane, Australia

{wasim.sadiq, marek.kowalkiewicz}@sap.com

Abstract. Business process management is tightly coupled with service-
oriented architecture, as business processes orchestrate services for business
collaboration at logical level. Given the complexity of business processes and
the variety of users, it is a sought-after feature to show a business process with
different views, so as to cater for the diverse interests, authority levels, etc., of
users. This paper presents a framework named FlexView to support process
abstraction and concretisation. A novel model is proposed to characterise the
structural components of a business process and describe the relations between
these components. Two algorithms are developed to formally illustrate the
realisation of process abstraction and concretisation in compliance with the
defined consistency rules. A prototype is also implemented with WS-BPEL to
prove the applicability of the approach.

1 Introduction

In service-oriented architecture (SOA), business processes are widely applied to
organise service composition and service orchestration [1-4]. As one of the leading
SOA advocators, the Web service community formally adopted business process
technology in 2001 by establishing the Business Process Execution Language for
Web Services (WS-BPEL) [5]. WS-BPEL supports the specification of both
composition schemas and coordination protocols to fulfil complicated B2B
interactions.

Reluctantly, most of current business process modelling languages, including WS-
BPEL, stick to a fixed description of business processes. Although WS-BPEL can be
used to define both abstract processes and executable processes, WS-BPEL is in lack
of mechanisms to automatically represent a business process with different views on
demand. The concept of “process view” has emerged recently to support for flexible

views on business process representation, and thereby separate the process
representation from executable business process models. This feature has been longed
for in the practical business process application environment, for the purpose of
authority control, privacy protection, process analysis, etc. [6, 7] For instance, users
may prefer to see part of the process details at a time, due to the complexity of the
business process. Users with different interests or different authority levels, may be
interested to or be allowed to see different views of the same business process. For
another instance, in a graphical displaying tool for business processes, the flexibility
on showing a reduced version of business process at a time is highly expected, due to
the limit of screen size. Similar functions can be found in other application areas. A
good example is google maps, which allows users to zoom in or zoom out a map,
while the displayed details on map automatically adapt to the scale level, for instance,
streets and roads are shown on a large scale map, yet a small scale map only shows
suburbs and towns.

To realise such “smart zooming” functions towards business process
representation, this paper proposes a framework named FlexView to support flexible
process abstraction and concretisation. With FlexView, users are allowed to define
and switch among the different views for a business process. A comprehensive model
defines the structural constructs of a business process and the relations between them.
Two algorithms formally illustrate how to enforce the process abstraction and
concretisation operations in compliance with structural consistency.

The remainder of this paper is organised as follows: Section 2 discusses the
requirements for supporting flexible views with a motivating example; Section 3
introduces a process component model with a set of rules on structural consistency,
and the algorithms for realising abstraction and concretisation; Section 4 addresses the
incorporation of FlexView into WS-BPEL, and also introduces the implementation of
a prototype; Section 5 reviews the related work and discusses the advantages of our
framework; concluding remarks are given in Section 6 with an indication for the
future work.

2 Motivating Example

Figure 1 (a) shows all details of the business process for a simplified sales
management service, where the process starts from receiving purchase orders, and
then handles the production, cost analysis and shipping planning concurrently, and
finally terminates by sending the invoice. Each task may interact with proper Web
service(s) to fulfil the assigned mission. The dashed arrows represent the
synchronisation dependencies between tasks, for example, the arrow between
“production” and “dispatch products” denotes that task “dispatch products” can only
start after the completion of “production”.

This business process mainly involves four departments, viz., sales department,
workshop, accounting department, and distribution centre. For a user from the
distribution centre, the user may only care about the shipping details, and thus the
user may choose to “zoom out” the details for production and cost handling. The user
can obtain the view for this business process as shown in Figure 1 (b). In this view,

the details for production and cost handling are abstracted into two new tasks, i.e.,
“handle production at workshop” and “handle cost calculation at accounting
department”. These two tasks hide the details yet preserve the existence of the
production and cost handling procedures. In this transformation, the related links are
hidden automatically, as well as the synchronisation link from “schedule production”
to “cost analysis”. The synchronisation link from “production” to “dispatch products”
is converted to connect “handle production at workshop” to “dispatch products”, as
these two tasks inherit the synchronisation dependency of the former one.

Concretisation

Abstraction
(d)

Production

AND
Split

AND
Join

Receive Order

Send Invoice

Price
Decomposition

Cost
Analysis

Schedule
Production

Handle
Shipping

at Distribution
Centre

(e)

Handle
Shipping at
Distribution

Centre

AND
Split

Handle
Production at

Workshop

Handle Cost
Calc. at

Accounting
Dept.

AND
Join

Receive Order

Send Invoice

(a)

Prepare
Shipping

Price
Decomposition

Cost
Analysis

Book
Shipping

Confirm
Booking

Dispatch
Products

Schedule
Production

Production

OR
Split

OR
Join

Outsource
shipping

Self
shipping

AND
Split

AND
Join

Receive Order

Send Invoice

Decide
Shipping

(c)

AND
Split

AND
Join

Receive Order

Send Invoice

Handle Cost
Calc. at

Accounting
Dept.

Handle
Production

at Workshop

OR
Split

OR
Join

Prepare
Shipping

(b)

Dispatch
Products

Handle
Production at

Workshop

AND
Split

AND
Join

Receive Order

Send Invoice

Decide
ShippingHandle Cost

Calc. at
Accounting

Dept.

Prepare
Shipping

Book Shipping

Confirm Booking

OR
Split

OR
Join

Outsource
shipping

Self
shipping

Fig. 1. Motivating example business process

Due to the screen size of the user’s computer, the user may want to check the details
of a single shipping option at a time. In this case, the process should change to the
view shown in Figure 1 (c). In this view, the shipping procedure is represented as an
Or-split/join structure, which contains a branch with task “prepare shipping”, and an
empty branch standing for the existence of an alternative shipping option. The user
may later on select to “zoom in” this empty branch to see the details for the
alternative option.

The users from other departments may not be authorised to see the shipping details.
Such users may only see the view shown in Figure 1 (d), where all the shipping
details are hidden in a new task “handle shipping at distribution centre”. The
synchronisation link from “production” to “dispatch products” is also hidden, as the
underlying synchronisation dependency is not effective for this view. Figure 1 (e)
displays a further abstracted view of the business process, which only outlines the
core part of the business process with three parallel tasks. The authorised users can
choose to concretise the interested part to see more details. In either process
concretisation (from the right to the left in Figure 1) or abstraction (from the left to
the right), the structure of the new views keeps consistent with the previous one.

To support process abstraction and concretisation functions, new mechanisms are
on demand to allow wrapping a sub process into a specific task or link, and releasing
the sub process back from a task or link. In details, we list the following technical
requirements:

− Maintain the relations between the hidden sub processes and the corresponding
tasks/links.

− Preserve the structural information of a business process, such as split/join
structures and synchronisation links, during process abstraction/concretisation.

− Support cascading abstraction/concretisation operations.
− Keep the structural consistency of process views during transformations.

Towards these requirements, our FlexView framework employs a process
component model to describe the structure of process views and structural
components, and maintain the relations between structural components. The
algorithms are designed to enable the procedure of abstraction and concretisation. A
set of defined rules regulate the structural consistency during the procedure. The
framework is implemented with WS-BPEL as a proof-of-concept.

3 Framework of FlexView

3.1 Process Component Model

To well describe the structure of a process view and maintain the relations between
structural components, we define a process component model. This model provides
the foundation for process abstraction and concretisation functions, and particularly
takes into account the characteristics of WS-BPEL.

Definition 1. (Gateway) Gateways are used to represent the structure of a control
flow. Here we define five types of gateways, namely Or-Split, Or-Join, And-Split,
And-Join, and Loop. Figure 2 shows the samples of these gateways, respectively. Or-
Split/Join and Loop gateways may attach conditions to restrict the control flow.

Definition 2. (Synchronisation Link) In an And-Split/Join structure, synchronisation
links are used to represent the synchronisation dependency between the tasks

belonging to different branches. For example, in Figure 2 (b), the synchronisation link
between ti and tj, represented as a dashed arrow, denotes that tj can only start after the
completion of ti. In WS-BPEL, such a synchronisation dependency is supported with
a <link> element.

Functions ind(m) and outd(m) define the number of edges which take m as the
terminating node and the starting node, respectively. Note ind and outd only count the
number of edges but not synchronisation links.

OR-
Split

ti

tj

OR-
Join

... AND
-Split

ti

tj

AND
-Join

... Loop
(cond)

ti

(a) (b) (c)

tl

tk

Fig. 2. Gateway samples

Function type: G→Type is used to specify gateway types, where Type={Loop, And-
Join, And-Split, Or-Join, Or-Split}. According to the natural characteristics of these
gateways, we can define the following rules in terms of the incoming and outgoing
degrees:

ind(g)=1, outd(g)=2 if g is at the starting position;

N/A g is not allowed at the ending
position;

if type(g) = “Loop”

ind(g)=2, outd(g)=2 Otherwise.

ind(g)=0, outd(g)> 1 if g is at the starting position;

N/A g is not allowed at the ending
position;

if type(g) = “And-
Split” or “Or-Split”

ind(g)=1, outd(g)> 1 Otherwise.

N/A g is not allowed at the starting
position;

ind(g)>1, outd(g)=0 if g is at the ending position
if type(g) = “And-

Join” or “Or-Join”

ind(g)>1, outd(g)=1 Otherwise.

Definition 3. (Sub Process) A sub process is a structural component of a business
process, and it also maintains the necessary information for sub process composition.
The structure of a sub process s can be modelled as an extended directed graph in the
form of tuple (N, G, E, L, ms, mt, L0), where

− N={n1, n2, …, nx}, ni∈N (1≤i≤x) represents a task of s.
− G={g1, g2, …, gy}, gi∈G (1≤i≤y) represents a gateway of s.
− E is a set of directed edges. An edge e=(m1, m2)∈E corresponds to the control

dependency between m1 and m2, where m1∈N∪G, m2∈N∪G.
− L is a set of synchronisation links. A synchronisation link l = (m1, m2)∈L

corresponds to the synchronisation dependency between m1 and m2, where
m1∈N∪G, m2∈N∪G.

− ms is the starting node of s, which satisfies that ms∈N∪G and ind(ms)=0.
− mt is the terminating node of s, which satisfies that mt∈N∪G and outd(mt)=0.

− ∀n∈N\{ ms, mt }, ind(n)=outd(n)=1. This property is guaranteed by the usage of
gateways.

− L0 is a set of hidden synchronisation links, i.e., the synchronisation links that have
a node not included in N or G. ∀l=(m1, m2)∈L0, (m1∈N∪G)∧(m2∉N∪G) or
(m1∉N∪G)∧(m2∈N∪G). The synchronisation links in L0 are not displayable as
they connect to foreign nodes, but such synchronisation link information is
preserved for sub process composition.

Definition 4. (Sub Process Hierarchy) A sub process hierarchy Γ(p) for business
process p maintains all the related sub processes and mapping information for process
representation. Γ(p) can be represented as tuple (S, δ, γ), where

− S is a finite set of distinct sub processes.
For a sub process s∈S,

∀l=(n1, n2)∈s.L∪s.L0∪s.G ∃s1∈S (n1∈s1.N∪s1.G)∧(n2∈s1.N∪s1.G),
or ∃s1∈S, s2∈S, (n1∈s1.N∪s1.G)∧(n2∈s2.N∪s2.G).

− s0∈S is the root sub process, which shows the most abstracted view of p.
− δ: E′→S′ (E′⊆ Es

Ss
.

∈
∪ and S′⊆S\{s0}) is a bijection describing the relations between

edges and sub processes. Correspondingly, we have the inverse function δ-1:
S′→E′.

− γ: N′→S′ (N′⊆ Ns
Ss

.
∈
∪ and S′⊆S\{s0}) is a bijection describing the relations between

nodes and sub process. Correspondingly, we have the inverse function γ-1: S′→N′.
− A sub process can only occur in one of the two inverse functions. This denotes that

∀s∈S\{s0}, if δ-1(s)≠null then γ-1(s)=null; if γ-1(s)≠null then δ-1(s)=null.

The sub processes of a sub process hierarchy can be defined in a nested way.
Figure 3 shows a sub process hierarchy example, where subp1, …, subp5 are five sub
processes in this hierarchy, and subp1 is the root sub process.

Fig. 3. Sub process hierarchy example

In this example, tasks ti and tj of sub process subp1 can be mapped to sub processes
subp2 and subp5 by functions γ(ti) and γ(tj), respectively. Further, task tk and edge em

of subp2 can be mapped to sub processes subp3 and subp4 by functions γ(tk) and δ(em),
respectively. A concretisation operation denotes the extension by replacing a task or
edge with the mapped sub process. Therefore, root sub process subp1 can be
concretised into combination subp1+subp2, subp1+subp5, or subp1+subp2+subp5,
where tasks ti and tj are replaced by the corresponding sub processes.
Correspondingly, the abstraction operation can be realised by wrapping a sub process
back into a task or edge with functions γ-1 and δ-1. Each result combination denotes a
partial view of the business process.

Such a sub process hierarchy is fully customisable for users, and thereby enables
the adaptation to user-defined partitions and categorisations according to different
levels of BPEL abstraction and concretisation.
Definition 5. (Process View) A process view represents the viewable part for a
business process at a time. In the sub process hierarchy, each process view
corresponds to a sub tree including the root sub process, where the mapped
tasks/edges are concretised with corresponding sub processes. A fully concretised
view, i.e., the view containing all the sub processes in this hierarchy, is equivalent to
the base business process, and the view containing only the root sub process is the
most abstracted view.

3.2 Consistency and Validity Rules

As explained in the motivating example, some rules are defined to guarantee the
structural consistency of process views during view abstraction and concretisation.
This section is to discuss the rules on preserving execution orders, branch subjection,
synchronisation dependencies, and so on.

• Preliminary

− A dummy branch denotes a branch in a split/join structure such that the branch
contains nothing but only one edge.

− A common split gateway predecessor (CSP), x, of a set of tasks, T, denotes a split
gateway such that x is the predecessor of each task in T.

− before(t1, t2) denotes that task t1 will be executed earlier than task t2. This means
that there exists a path from starting t1 to t2 in the corresponding directed graph,
while the path does not contain any go-back edge of a loop structure. Apparently,
before is a transitive binary relation.

− CSP(t1, t2) returns the set of common split gateway predecessors of t1 and t2, or
returns null if the two tasks have no common split gateway predecessors.

− branch(g, t1, t2) is a boolean function, which returns true if t1 and t2 lie in the same
branch led from split gateway g, otherwise returns false.

• Structural Consistency and Validity Rules

In regard to an abstraction/concretisation operation, the original process view v1 and
the result view v2 are required to comply with the following rules:
Rule 1. (Order preservation) As for the tasks belonging to v1 and v2, the execution
sequences of these tasks should be consistent, i.e.,

If t1, t2∈v1.N∩v2.N such that before(t1, t2) exists in v1, then before(t1, t2) also exists
in v2.
Rule 2. (Branch preservation) As for the tasks belonging to v1 and v2, the branch
subjection relationship of these tasks should be consistent, i.e.,

If t1, t2∈v1.N∩v2.N and g∈CSP(t1, t2) in v1, g∈CSP(t1, t2) in v2 such that X(g, t1, t2)
in v1, then X(g, t1, t2) in v2, where X∈{branch, ¬branch}.
Rule 3. (Synchronisation dependency preservation) If an abstraction operation
involves any tasks with synchronisation links, the synchronisation links should be
rearranged to preserve the synchronisation dependency. Assume that sub process s
comprising tasks t1 and t2 is to be abstracted into a compound task tc as shown in
Figure 4,

− for task tx∈s.N and tx has an outgoing synchronisation link l,
If ∀t∈s.N, before(t, tx) then the source task of l should be changed to tc, otherwise l

should be hidden.

− for task tx∈s.N and tx has an incoming synchronisation link l,
If ∀t∈s.N, ¬before(t, tx) then the target task of l should be changed to tc, otherwise

l should be hidden.

tc

t1

AND
Split

t2

t3

t4

t5
AND
Join

(a1) (a2) (a3) (b1) (b2)

t1

AND
Split

t2

t3

t4

t5
AND
Join

t1

AND
Split

t2

t3

t4

t5
AND
Join

tc

AND
Split

t3

t4

t5
AND
Join

t1

t2

AND
Split

t3

t4

t5

AND
Join

t1

t2

Fig. 4. Synchronisation link handling

In Figure 4, the transformation from (a1) to (a2), where t1 and t2 are hidden in task tc,
and the transformation from (a1) to (a3), where t4 and t5 are hidden in task tc, illustrate
the two mentioned scenarios, respectively.

In the case that a task involving a synchronisation link is abstracted into an edge,
the re-arrangement of synchronisation links is subject to Rule 1. For example, Figure
4 (b1) and (b2) illustrate the re-arrangements in cases that t2 and t4 are hidden in
edges.
Rule 4. (No empty Split/Join or Loop structures) If a loop structure contains no
tasks, or if a split/join structure contains only dummy branches, then the loop or
split/join structure should be hidden.
Rule 5. (No dummy or single branch in And-Split/Join structures) If an And-
split/join structure contains both dummy and non-dummy branches, then the dummy
branch(es) should be hidden. If the And-split/join structure contains only one non-

dummy branch, then the And-split/join structure will be degraded into a sequential
structure.
Rule 6. (Dummy branch in Or-Split/Join structures) If an Or-split/join structure
contains a dummy branch, then this dummy branch should remain to indicate the
existence of an alternative execution path. If an Or-split/join structure contains
multiple dummy branches, these branches should merge into one dummy branch.

3.3 Process Abstraction and Concretisation

To realise the view abstraction and concretisation under the restriction of structural
consistency, two algorithms are developed to formalise the procedures of process
view transformation.

Given a sub process hierarchy Γ(p)=(S, δ, γ), the following functions are to be used
in the algorithms: addEdge(s, e) inserts edge e into set E of sub process s. addTask(s,
t) inserts task t into set N of sub process s. addLink(s, l) inserts synchronisation link l
to set L of sub process s. removeLink(s, l) deletes synchronisation link l from set L of
sub process s. removeTask(s, t) deletes task t from set N of sub process s.
removeEdge(s, e) deletes edge e from set E of sub process s. combineSubProc(s1, s2)
combines the constitute sets, i.e., N, G, E, L and L0, of sub process s2 into sub process
s1. removeSubProc(s1, s2) removes the constitute sets of sub process s2 from sub
process s1. toSequence(s, g1, g2) flats a single branch split/join structure scoped by
gateways g1 and g2 in sub process s into a sequence structure, i.e., removes the two
gateways and re-connects the gateways’ adjacent nodes to the single branch.

Algorithm 1.
taskZoomIn(s, t) transforms sub process s into a more concrete sub process s′, by

concretising task t.

1 s′=s; subp=γ(t);
2 if t=s′.ms then s.ms=subp.ms;
3 if t=s′.mt then s.mt=subp.mt;
4 do while (∃e=(mx, t)∈s′.E)
5 removeEdge(s′, e); addEdge(s′, (mx, subp.ms));
6 loop
7 do while (∃e=(t, my)∈s′.E)
8 removeEdge(s′, e); addEdge(s′, (subp.mt, my));
9 loop

10 removeTask(s′, t); combineSubProc(s′, subp);
11 for each sync link l=(m1, m2)∈s′.L0
12 if (m1∈s′.N)∧(m2∈s′.N) then
13 addLink(s′, l); s′.L0=s′.L0\{l};
14 end if
15 for each sync link l=(m1, m2)∈s′.L\subp.L
16 if (m1=t) or (m2=t) then
17 removeLink(s′, l);
18 for each link l=(m1, m2)∈s′.L0\subp.L0
19 if (m1=t) or (m2=t) then s′.L0=s′.L0\{l};

20 return s′;

Lines 2-3 handle the connection in case that the task to concretise is the starting or
ending node. Lines 4-9 connect edges according to Rule1 and Rule 2. Line 10
replaces task t with sub process subp. Lines 11-14 reveal the hidden synchronisation
links if their source and target nodes are both visible during the concretisation. Lines
15-17 delete the synchronisation links that are involved with task t, because the newly
revealed synchronisation links from subp will replaces these links. Lines 18-19 sort
the hidden synchronisation links that are involved with task t.

The procedure of zooming in an edge is similar to Algorithm 1, and we here do not
detail it due to space limit.

Algorithm 2.
zoomOut(s, x) transforms sub process s into a more abstract sub process s′ by

abstracting the part containing task or edge x.

1 s′=s; ∃subp∈S such that x belongs to subp.
2 if δ-1(subp)≠null then
3 addEdge(s′, δ-1(subp));
4 else if γ -1(subp)≠null then addTask(s′, γ -1(subp));
5 end if
6 for each sync link l=(m1, m2)∈s′.L
7 if (m1∈subp.N∪subp.G) and (∀t∈subp.N, before(t, m1)) then
8 if γ -1(subp)≠null then
9 addLink(s′, (γ -1(subp), m2)); removeLink(s′, l);

10 else if δ-1(subp)≠null then
11 e= δ-1(subp)=(m3, m4); addLink(s′, (m3, m2)); removeLink(s′, l);
12 end if
13 else if (m2∈subp.N∪subp.G) and (∀t∈subp.N, ¬before(t, m2)) then
14 if γ -1(subp)≠null then
15 addLink(s′, (m1, γ -1(subp))); removeLink(s′, l);
16 else if δ-1(subp)≠null then
17 e= δ-1(subp)=(m3, m4); addLink(s′, (m1, m4)); removeLink(s′, l);
18 end if
19 end if
20 end for
21 s′=removeSubProc(s′, subp);
22 do
23 for each loop structure with loop gateway g in s′
24 if ∃e=(g, g)∈s′.E then removeLoop(s′, g); // remove empty loop structure
25 for each split/join structure scoped by split gateway g1 and join gateway g2, in s′
26 flag=0;
27 if (outd(g1)=ind(g2)=1) and (∃e=(g1, g2)∈s′.E) then
28 removeEdge(s′, e); toSequence(s′, g1, g2); flag=1;
29 end if
30 if (s′.type(g1)=And-split) AND (∃e=(g1, g2)∈s′.E) then removeEdge(s′, e);
31 if outd(g1)=ind(g2)=1 then
32 toSeqence(s′, g1, g2); flag=1;

33 end if
34 end for
35 loop until (flag=0)
36 return s′;

Lines 2-5 replace the sub process to abstract with the mapped task or edge. Lines
6-20 handle the synchronisation links according to Rule 3. If subp has an outgoing
link and the link leaves from the last node of subp, lines 7-12 rearrange the link to
preserve the synchronisation dependency. Similarly, lines 13-19 do the arrangement,
if subp has an incoming link and the link joins to the first node of subp.

Lines 22-35 iteratively check the structural consistency according to Rules 4-6,
until no conflicts exist. According to Rule 4, lines 23-24 and lines 27-29 delete empty
loop structures and empty split/join structures, respectively. According to Rules 5 and
6, line 30 deletes dummy branches in an And-split/join structure, and lines 31-33 flat
any split/join structures with single branches into sequential structures. Note, due to
the set definition, the dummy branches in an Or-split/join structure are already
combined together.

The result sub process from these algorithms can be easily converted to a process
view for representation, by discarding set L0.

4 Incorporation into WS-BPEL

To enable abstraction and concretisation for WS-BPEL processes, we first need to
incorporate the proposed model into WS-BPEL. As listed in Table 1, the main
structural constructs of our model correspond to proper WS-BPEL elements. In WS-
BPEL, every edge is implicitly represented, i.e., the execution sequence is determined
by the occurrence sequence of elements nested in <sequence>, <pick>, <flow>,
<while>, <switch> elements.

We have developed a prototype for the proof-of-concept purpose. This prototype is
based on SAP Research Maestro for BPEL, with extension on process views. This
prototype is purely programmed in Java, and utilises some packages from Tensegrity
Software [8] for user interface design. Extensible Stylesheet Language
Transformation (XSLT) [9] is selected as the technical tool to enforce process
abstraction and concretisation. The FlexView engine is responsible for handling the
generation of process views according to the user’s requests and the pre-defined sub
process hierarchy, while the Maestro is used as the displaying tool to represent
process views graphically. Users send requests for “zooming in” or “zooming out” the
representation of a business process through the FlexView engine, and see the result
views in the Maestro. The user interfaces of FlexView and Meastro are given in
Figure 5.

Table 1. WS-BPEL elements and our structural constructs

Structural construct WS-BPEL
element Description

Task sequence <sequence> Allow for sequential execution of tasks.

A pair of Or-Split/Join
gateways with conditions

<pick>

Perform the non-deterministic execution of
one of several paths depending on an
external event.

A Loop gateway with
conditions <while> Perform a specific iterative task repeatedly

until the given condition becomes false.
A pair of Or-Split/Join
gateways with conditions <switch> Perform a conditional behaviour with a set

of branches.
A pair of And-Split/Join
gateways <flow> Perform parallel execution of a set of

branches.

A synchronisation link

<link>

Support the synchronisation between tasks
or gateways on the branches inside a <flow>
element.

A sub process

<scope>

Originally used for defining the
compensation scope for fault handling in
WS-BPEL, yet here we use it to store the
structural content and contextual information
(such as variables and declarations), for sub
processes.

A dummy branch of a
split/join structure <empty> Originally used to denote a dummy task, yet

here we use it to stand for a dummy branch
of a split/join structure.

Fig. 5. View generation system architecture

In current version, users have to define the sub process hierarchy in advance.
However, we are developing necessary mining techniques to identify typical process
patterns for defining sub processes. With such support, our FlexView system can
automatically or semi-automatically create the sub process hierarchy.

5 Related Work and Discussion

Works on workflow/process views are related to ours. In regard to structural
consistency during the process transformations, Liu and Shen [10] proposed an order-
preserving approach for deriving a structurally consistent process view from a base
process. In their approach, the generation of “virtual activities” (compound tasks)
needs to follow their proposed membership rule, atomicity rule, and order
preservation rule. Recently, Eshuis and Grefen [11] formalised the operations of task
aggregation and process customisation, and they also proposed a series of
construction rules for validating the structural consistency. Martens [12] discussed the
verification on the structural consistency between a locally defined executable WS-
BPEL process and a globally specified abstract process based on Petri net semantics.
Compared with these work, first of all, our approach focused more on realising the
process transformation at technical level rather than theoretical level. Secondly, in the
mentioned works, the customisation process actually lost some tasks. Yet, our
approach preserved the hidden tasks and necessary mapping relations, and thus
supported both abstraction and concretisation operations. Finally, synchronisation
links were considered in our approach.

To support process privacy and interoperability, many works targeted at applying
workflow/process views in the inter-organisational collaboration environment. van
der Aalst and Weske [13] proposed a “top-down” workflow modelling scheme in
their public-to-private approach. Organisations first agree on a public workflow, and
later each organisation refines the part it is involved in, and thereafter generates its
private workflow. This work reflected a primitive idea of workflow view. In [14],
Schulz and Orlowska focused on the cross-organisational interactions, and proposed
to deploy coalition workflows to compose private workflows and workflow views
together to enable interoperability. Issam, Dustdar et al. [15] extracted an abstract
workflow view to describe the choreography of a collaboration scenario and compose
individual workflows into a collaborative business process. By deploying workflow
views in the workflow interconnection and cooperation stages, their approach allows
partial visibility of workflows and resources. Our previous works [16, 17] also
established a relative workflow model for collaborative business process modelling. A
relative workflow for an organisation comprises the local workflow processes of the
organisation and the filtered workflow process views from its partner organisations.
In this way, this approach can provide a relative collaboration context for each
participating organisation. Some follow-up work targeted at the instance
correspondence [18] and the process evolvement [19] in collaborative business
processes, as well as role-based process view derivation and composition [7]. In
supplement to these works, our approach provided a practical implementation solution
by incorporating the view concept into a popular standard business process modelling

language. The abstraction and concretisation functions were naturally applicable to
support privacy protection or perception control in the collaboration environment.

Proviado project [20] adopted process views for personalised visualisation of large
business processes, and they allowed some trade-off between the structural
consistency and the adequate visualisation. Our work firmly complied with the
proposed structural consistency and validity rules, and supported bi-directional
process view operations.

Our work is motivated by practical requirements from areas of process
visualisation, process analysis, user friendly process representation, and so on. The
work brings the process view concept to the technical level, and incorporates it into a
standard process modelling language. In summary, this work contributes to the
following aspects:

(1) Abstraction and concretisation functions towards process representations. With
these two operations, users are allowed to choose and switch among different views
of the same business process. In this way, our approach caters for the diversity of
users’ interests, authority levels, and so on. Although this paper chooses WS-BPEL as
the candidate model to apply abstraction and concretisation functions, the essential
idea of the proposed approach is applicable to most process models, like Business
Process Modelling Notations (BPMN) [21], Petri net based workflow models, etc.

(2) Information preservation and structural consistency during transformation. The
proposed model and developed algorithms guarantee that our process abstraction and
concretisation are lossless in information and consistent in structure. Consequently,
the two operations can be performed back and forth rather than one way only.

(3) Deployment in Web service domain using WS-BPEL language. The whole
framework is completely incorporated into WS-BPEL via a prototype, which applies
XSLT techniques and external repositories to realise WS-BPEL process abstraction
and concretisation.

6 Conclusions and Future Work

This paper proposed a framework to support abstraction/concretisation functions
towards flexible process view representation. A model was defined to describe the
process components and their relations, while a set of algorithms were developed to
enforce the abstraction/concretisation operations in compliance with the defined
structural consistency rules. The whole framework was incorporated into WS-BPEL
language, and a prototype was also developed for the proof-of-concept purpose.

Our future work is to refine the process component model, and further investigate
the techniques to automat the generation of the sub process hierarchy. Besides, we
plan to investigate similar use cases using BPMN as graphical representation.

Acknowledgement

The research work reported in this paper is supported by Australian Research Council
and SAP Research under Linkage Grant LP0669660.

7 References

1. Smith, H., Fingar, P.: Business Process Management - The Third Wave. Mehan-Kiffer Press
(2003)

2. Khoshafian, S.: Service Oriented Enterprise. Auerbach Publisher (2006)
3. Papazoglou, M.: Web Services: Principles and Technology. Prentice Hall (2007)
4. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Architectures and

Applications. Springer (2004)
5. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,

D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution
Language for Web Services (BPEL4WS) 1.1. (2003)

6. Zhao, X., Liu, C., Li, Q.: Challenges and Opportunities in Collaborative Business Process
Management. Information System Frontiers (2008)

7. Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M.: Process View Derivation and Composition
in a Dynamic Collaboration Environment. the 16th International Conference on Cooperative
Information Systems, Monterrey, Mexico (2008) 82-99

8. Tensegrity Software (www.tensegrity-software.com).
9. XSLT (http://www.w3.org/TR/xslt).
10. Liu, D.-R., Shen, M.: Workflow Modeling for Virtual Processes: an Order-Preserving

Process-View Approach. Information Systems 28 (2003) 505-532
11. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data & Knowledge

Engineering 64 (2008) 419-438
12. Martens, A.: Consistency between Executable and Abstract Processes. the 7th IEEE

International Conference on e-Technology, e-Commerce, and e-Services, Hong Kong, China
(2005) 60-67

13. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational Workflows.
International Conference on Advanced Information Systems Engineering (2001) 140-156

14. Schulz, K.A., Orlowska, M.E.: Facilitating Cross-organisational Workflows with a
Workflow View Approach. Data & Knowledge Engineering 51 (2004) 109-147

15. Issam, C., Schahram, D., Samir, T.: The View-Based Approach to Dynamic Inter-
Organizational Workflow Cooperation. Data & Knowledge Engineering 56 (2006) 139-173

16. Zhao, X., Liu, C., Yang, Y.: An Organisational Perspective on Collaborative Business
Processes. the 3rd International Conference on Business Process Management. Lecture
Notes in Computer Science, Nancy, France (2005) 17-31

17. Zhao, X., Liu, C.: Tracking over Collaborative Business Processes. the 4th International
Conference on Business Process Management (2006) 33-48

18. Zhao, X., Liu, C., Yang, Y., Sadiq, W.: Handling Instance Correspondence in Inter-
Organisational Workflows. the 19th International Conference on Advanced Information
Systems Engineering, Trondheim, Norway (2007) 51-65

19. Zhao, X., Liu, C.: Version Management in the Business Process Change Context. the 5th
International Conference on Business Process Management, Brisbane, Australia (2007) 198-
213

20. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. the 5th International
Conference on Business Process Management, Brisbane, Australia (2007) 88-95

21. OMG: Business Process Modeling Notation (BPMN 1.1). (2008)

