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Abstract 

 Ladle metallurgy operations are usually accompanied by gas stirring of the metal bath primarily 

to achieve chemical and thermal homogeneity, composition modification and removal of 

inclusions before the steel melt is poured to a caster. These all are important to produce a steel 

product with the desired quality. Hence, the quantity of volumetric gas flow rate passed through 

the metal bath needs to be monitored to maintain the desired level of stirring.  In industry, the 

level of stirring is often evaluated manually by operators using visual observation of the top 

surface turbulence, close attendance of the sound imparted and gas flow rate indicators. In 

general, judgments drawn from manual observations are qualitative in nature, and not suited to 

providing a precise level of stirring. To quantify the level of stirring, credible, consistent and 

quantifiable signals and a technique to analyze these signals for online stirring process control 

are required. Several researchers have used one-dimensional vibration, sound and image signals 

measured during stirring to develop algorithms to predict the degree of stirring inside the ladles. 

However, the optimum location of the vibration sensor and measuring the stirring reliably at low 

volumetric flow rate is not fully understood. Also, how the depth of different phases in ladle 

affects these measurements is not fully understood. 

The present work focuses on studying the low flow rate ladle stirring using vibration and 

bubbling sound signals generated during stirring. Vibration signal was used to quantify the 

amount of stirring and the sound signal was essential to determine the depth of the two layers. 

Laboratory experiments on two physical cold models and a plant trial were carried out.  The data 

were analysed using various statistical and signal processing techniques.  

There are several new findings from this research, which are important to ladle metallurgy in 

controlling the stirring process online. This study revealed that the accelerometer can be located 

on the ladle external wall, the ladle support or the tank external wall. The quality of information 

collected from the three locations provided was not significantly different.  

Vibration data collected from the cold/water model as well as the plant is highly structured and 

the degree of correlation between latent variables and stirring power is very strong especially 

when the bath level is constant. The frequency ranges where these strong linear relationships 

reside are different for different flow rate ranges. It was also found that most of the results from 

plant trials are consistent with the cold model studies.  Moreover, the study of the bubbling sound 

on the water model established that the bottom layer/molten steel depth and thickness of the top 
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layer/slag can be evaluated using the sound signal. The effect of plant variabilities such as porous 

plug position, number, and life, barrel life, slag line life on the vibration was not addressed in this 

study and these effects should be the focus of further research in this field. 

In summary, the outcome of this study is significant for secondary steelmaking. The sound signal 

provides information regarding the amount of metal and slag whereas the vibration signal can 

predict the amount of stirring intensity in the reactor. Hence, a complete online automation 

system should be able to be developed for controlling the stirring process in gas stirred ladles. 
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1 Introduction  

1.1 Theoretical Framework 

Ladle Metallurgy is an important step in producing high-quality steel. After tapping of molten 

steel from a primary steelmaking furnace such as Electric Arc Furnace (EAF) or Basic Oxygen 

Furnace (BOF), the liquid steel is subjected to additional refining in different processes grouped 

under ladle metallurgy or secondary steelmaking for high quality or specialty applications. 

Ladles are equipped with various accessories such as porous plugs/tuyeres or lances to facilitate 

the refining process. Strict control of secondary steelmaking operations is associated with 

producing high grades of steel in which the tolerances in chemistry and consistency are narrow. 

Ladle metallurgy processes comprise alloying, homogenization of temperature and composition, 

desulfurization, deoxidation, inclusion removal, and degassing processes.[1, 2] Ladle metallurgy 

(or the secondary steelmaking process) is a crucial stage where thermal and composition 

homogenization of the liquid metal takes place in ladles. In addition, chemistry adjustments and 

inclusion removal are also carried out in these reactors.[3, 4] These processes produce a steel with 

fewer impurities, and lower inclusion content resulting in uniform casts, better mechanical 

properties, and surface quality.[1, 2, 5]  

The secondary steelmaking refining processes are frequently facilitated by stirring the melt using 

inert gas purged through porous plugs usually located at the bottom of the vessel. The gas stirring 

plays an important role in achieving the key objectives of secondary steelmaking.[4, 6] Hence, 

monitoring the stirring process is vital in attaining the required steel quality from ladle 

metallurgy. 

1.2 Statement of the Problem 

The status of the stirring process is often assessed by looking at the turbulence on the top surface, 

paying attention to the audible sound imparted and observing flow meter gauges.[7, 8] However, 

this method of control may not be efficient because of several reasons.  First, the evaluation of the 

process from the top surface not only needs experienced operators but is also a qualitative 

approach. Second, gas losses at different parts of the ladle gas line result in a disparity between 

the actual amount of gas entering the metal bath and the measured flow rates outside the vessel. 
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In addition, the working conditions do not allow direct measurement of the process 

characteristics like temperature and composition.[9].  As a result, the true magnitude of stirring is 

difficult to estimate correctly.[7, 10-13] Moreover, the problem of visual control worsens when ladles 

are agitated at low gas flow rates because of leakage and working conditions.  

Hence, researchers have searched for signals that can be directly measured from the process and 

reliably used to evaluate stirring. In recent times, there has been much attention on the application 

of vibroacoustic and image signals to regulate the process online i.e. using these signals to predict 

the actual gas flow rate or stirring intensity in real time.[7, 8, 10, 12-19].  Vibration is the oscillation of a 

physical object about a fixed equilibrium position initiated by disturbances or forces. [20-23] The 

sound is created by alternate contraction and relaxation of waves in the medium. The propagation 

of sound is affected by the temperature, density, and viscosity of the medium. The sound 

intensity indicates the wave strength along a perpendicular surface the sound is passing 

through.[24] The multidimensional dynamic fluid turbulence during gas stirring inside causes the 

ladle wall to vibrate. In a similar manner when inert gas rises forming bubbles, the bubble 

formation, and disintegration process generates sound pressure.[25, 26] Hence, sound and vibration 

signals can be directly and continuously measured from the process to provide online 

information about the status of the stirring.[10] 

1.3 Aims 

This study has focused on studying the stirring process using sound and triaxial vibration signals. 

Specifically, this research paid particular attention to selecting the best vibration sensor location, 

using triaxial vibration signals to characterize stirring at low flow rates, and using the sound 

signal to estimate the amount of slag and liquid metal.  

1.4 Methodology 

This study was carried out on two physical cold models; one was constructed from a transparent 

material (Perspex) and the other built from stainless steel. A full-scale industrial gas stirred ladle 

was also investigated. A vibration study was carried out on plant and laboratory scales whereas 

the sound signal investigation was carried out on a laboratory cold model only. The physical cold 

models were designed based on geometric and dynamic similarity criteria.  Water and motor oil 

were used as working fluids to replicate liquid metal and slag respectively. The water-oil bath 
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was stirred by air. Vibration and sound signals caused by air/gas stirring were measured using a 

three-axis accelerometer and microphone respectively. Captured data was analysed by various 

signal processing and multivariate statistical techniques.  

Time domain triaxial vibration and sound signals are converted to the frequency domain using 

the Fast Fourier Transform (FFT).  In the plant trials, since vibration data was noisy, the Short-

Time Fourier Transform (STFT) was used to locate the power of the noise signal. The frequency 

range where the noise signal was dominant was ignored in the vibration analysis. Once the data 

was processed, the vibration data was analysed using principal component analysis (PCA) and 

partial least squares (PLS). Principal component analysis is a well-established tool for revealing 

highly structured data and reducing the number of variables by linearly suppressing the 

dimension of the variables to a reasonably few number of linear combinations which are known 

as principal components.[27-29]  After the highly structured frequencies were discovered, the next 

step was to find the relationship between the input data and output in these frequency ranges 

using partial least square (PLS). PLS is a widely used tool in different fields for modeling linear 

relations between a multivariate input matrix, 𝑿, and output matrix, 𝒀.[30] PLS deals with the 

variation in 𝑿 (predictors) and 𝒀 (responses) spaces simultaneously which makes it an ideal 

choice for process monitoring.[31] During PLS analysis, the input parameters were the airflow rate 

and depths of the top and bottom layer whereas the output matrix consisted of the vibration in 

the 𝑥, 𝑦 and 𝑧 axes.  

1.5 Thesis Outline 

The thesis consists of ten chapters. Chapter 2 introduces secondary steelmaking and the gas-

stirring phenomenon. It reviews the literature on stirring process control using vibration, sound 

and image signals. This chapter also introduces basic concepts of vibration and sound signals and 

their analysis techniques. The statistical techniques used in this study are also described in this 

chapter. Chapter 3 discusses the research questions that are addressed in this study. Chapter 4 

describes the methods applied in this study to address the research issues listed in chapter 3. 

The experimental results and discussion are presented in chapters 5, 6, 7 and 8. In Chapter 5 and 

6 cold model results are discussed whereas Chapter 7 describes the outcomes of the plant trial 

and the comparison with the cold model study. The laboratory scale study of bubbling sound is 
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discussed in Chapter 8. The discussion chapter, Chapter 9, explains the importance of the research 

outcome to industry and the limitations encountered. Finally, Chapter 10 summarizes 

conclusions from the results found in the current study and points out recommendations for 

future research. 
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2 Literature Review 

2.1 Secondary Steelmaking  

The modern steelmaking process begins with charging raw material (iron ore) to the blast furnace 

to produce pig iron. This hot iron and some steel scrap are then charged into the Basic Oxygen 

Furnace (BOF) where oxygen is injected to produce molten steel that has specific chemical and 

physical properties. In a similar manner, cold scrap metals are also used to produce molten steel 

using an Electric Arc Furnace (EAF).[32, 33] However, the BOF and EAF, which can be taken as 

primary steelmaking processes, cannot produce high-quality steel that can meet customer 

demand.[34] This problem led to the development of secondary steelmaking or ladle metallurgy. 

In secondary steel making, molten steel is tapped from the BOF and EAF for further refining and 

processing to a ladle furnace. Figure 2-1 shows the general process layout of steelmaking from 

the raw material to the continuous casting stage. 

 

Figure 2-1 Steelmaking process route [5] 

Secondary steelmaking processes are generally carried out in cylindrical vessels that are 

internally lined with refractory materials to protect the shell from melting due to the high heat.  

Figure 2-2 shows the general sketch of a ladle furnace and the other geometries related to it.[35] 
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Figure 2-2 Schematic of ladle inner structure with steel and  argon injection [35] 

A common technique to all these processes is the injection of pressurized gas (usually argon) 

through the porous plugs (also known as lances or tuyeres) to create the desired bath stirring.[34, 

35] The magnitude of the flow rate may vary from 0.001 to 0.015 Nm3 /min per tonne depending 

on the particular goal of the ladle refining operation. Inert gases can be injected by either 

symmetrical or asymmetrical positioned porous plugs. Studies have shown that nozzle 

geometries have no significant effect on bubble and liquid upward acceleration and therefore are 

not critical under ladle refining conditions [36, 37] On the other hand, inert gas flow rate, nozzle 

position and ladle geometry do have a large influence on the fluid dynamics and interaction and 

are being studied extensively.[38]  Generally, the roles of ladle stirring comprise all or some of the 

following essential activities:[34, 35, 39] 

 Temperature regulation and homogenization 

 Composition modification and homogenization 

  Removal inclusions 

Hence, ladles should be thoroughly agitated to achieve high thermal and compositional 

homogeneity while the final values of temperature and composition are attained. Gentle bubbling 

through the vessel can easily homogenize the temperature and facilitate the rate of removal of 

inclusions while strong stirring conditions can lead to slag droplet entrainment into the steel 

melt.[40] Pretorius defined a slag as “ionic solutions consisting of metal oxides and fluorides that 
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float on the top of the steel (completely liquid or partially liquid). Slags often contain both liquid 

and solid fractions.[41] As the solid fraction increases the fluidity of the slag decreases and it is 

evident that it changes eventually to a “crust” on the surface.” Slag is a by-product of steelmaking 

and refining process.[42, 43] 

The scope of secondary steelmaking (or Ladle metallurgy) is large and encompasses 

desulfurization, deoxidation, inclusion removal, alloying, and degassing processes.  

a. Desulfurization:  Sulfur is usually a harmful impurity in steel.  Excess amounts of sulfur 

reduce weldability and tend to aggravate brittleness.[44]  The concentration of sulfur in the 

continuous casting route should below 0.02 wt % for line pipe and ship plates. Some special 

steel plates require the percent composition of sulfur below 0.005 wt%. Other ultra-low-sulfur 

products should have steel with as low as 0.001% wt %.[45] Sulfur removal in primary 

steelmaking is not significant because of the oxidizing environment. Hence, further 

desulfurization is carried out in ladles. The process can reduce the sulfur content to or below 

0.01% and is a vital part of a modern integrated steel plant. This can be achieved by treatment 

of molten steel with synthetic slag on top and gas stirring.[4] 

b. Deoxidation: The drive to steel deoxidation is to remove most of the dissolved oxygen and 

in the oxides from the liquid steel.[46] Liquid metal dissolves some oxygen and this solubility 

decreases as the metal starts to solidify. Consequently, the remaining oxygen is rejected 

during solidification of the steel in ingot or continuous casting. This leads to defects such as 

blow holes and non-metallic inclusions and affects the structure of the cast metal. Hence, 

deoxidation takes place in secondary steelmaking operations to bring down the level of 

oxygen in the melt.[4] The stirring of the melt causes homogenization and promotes 

dissolution of the deoxidizer.[47] 

c. Inclusion Removal: Reactions that mainly develop during secondary steelmaking and 

solidification can result in inclusions such as oxides, sulfides, and other binary or more 

complex aggregates in steel products. It well understood that distribution, size, composition, 

and shape of these inclusions significantly affect corrosion and mechanical properties, 

castability, cold and hot workability, and machinability of steel.[48] Vigorous mixing in the 

melt is carried out by argon-rinsing to promote inclusion removal.[48] 

d. Alloy Addition: Additions of ferrous alloys to the metal bath is carried out to provide for 

chemical control. The process of alloying steel melts in ladles comprises three partial steps: 
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alloy addition, alloy solution, and alloy mixing.[49] Gas stirring mixes the alloys and 

homogenizes the composition of the liquid metal.[50] 

e. Vacuum Degassing: Generally, vacuum degassing refers to the exposure of molten steel to a 

low-pressure environment to removes gases from the steel bath. Vacuum degassing is a vital 

secondary steel making process. The existence of pressure dependent reactions makes this 

process essential. Gases such as nitrogen, oxygen, and hydrogen are found dissolved in liquid 

steel during steelmaking. Solubilities of these gases in a solid steel are very low. When liquid 

steel is solidified, excess nitrogen and hydrogen may form stable nitrides and unstable 

hydrides respectively. As a result, the excess hydrogen in solid steel tends to form𝐻2.  

Hydrogen gas, precluded by solid steel, accumulates in holes and develops high gas pressure 

inside the hole. When the steel is forged, the combination the high gas pressure in holes near 

the surface and hot working stresses have a tendency to form fine cracks in the surface region. 

Hydrogen also increases the brittleness of steel.  Nitrogen can be detrimental to steel because 

it affects aging and toughness characteristics.[4]  There are also applications where nitrogen 

can be beneficial.[51, 52] Attempts to avoid these cracks, brittleness, aging and toughness 

characteristics led to the development of vacuum degassing processes.[4]  Degassing is used 

to remove nitrogen and hydrogen from liquid steel.[33, 53-59] At low pressure (vacuum), the 

deoxidation product acquires much smaller values than in the atmospheric pressure which 

signifies the vacuum degassing can also be used for deoxidation and decarburization.  [60]   

In order to carry out degassing, a low pressure/vacuum must be maintained inside the 

tank/vessel by means of a pump system. There are generally three types of vacuum degassing 

processes: ladle degassing, vacuum tank and circulation degassing.[4, 6]  Tank degassing 

speeds-up intensive metal-slag interactions during the entire degassing process.[6, 61] This 

promotes sulfur and nitrogen removal from the liquid steel during the degassing treatment. 

However, carryover slag from primary steelmaking contains FeO, which may increase the 𝑂2  

content of the steel melt. Therefore, it is essential that carry over slag from primary 

steelmaking furnace be as low as possible to improve the effectiveness of degassing.[62] A 

schematic diagram of a tank vacuum degasser is shown in Figure 2-3. 
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Figure 2-3 Vacuum Tank Degasser [62] 

Percolation of argon below the melt is used for efficient mass transfer, homogenization and 

inclusion removal.  The locations of porous plugs play an important role in achieving the 

objectives of degassing. Argon injection facilitates the rate of vacuum degassing and 

decarburization by imparting stirring to the melt, causing circulation of liquid metal and 

enhancing the gas–metal interfacial area through the generation of bubbles that rise and drop. 

 

2.1.1 Ladle Stirring Phenomenon 

When gas is injected into the melt through the bottom plugs, jets or large bubbles are formed 

depending on the magnitude of the gas velocity. These bubbles collapse into tiny bubbles as they 

travel upward and entrain the melt to form a two-phase region called the plume.[38, 63] The plume 

rises to the surface in a conical shape. Themelis et al.[63]  observed that the liquid around the cone 

also speeds up and travels upward together with the plume. On the surface, the gas bubbles 

detach from the two-phase plume while the melt moves upwards and returns to the bath.[63]  This 

is shown in Figure 2-4. 
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Figure 2-4 Schematic representation of liquid bath and the plume [63] 

The energy exchange undertaken in this manner between the inert gas and the melt is responsible 

for mixing and other metallurgical interactions. According to Krishnapisharody and Irons[36], the 

momentum of the injected gas is lost after a short travel from the injector and it is the buoyancy 

of the rising gas that drives the plume afterward. Hence, plume properties are related to the 

plume Froude number, which is the ratio of inertial force to buoyancy force. The plume Froude 

number is defined using the plume velocity (𝑈𝑝),  void fraction (α) and bath height (𝐻) and is 

shown in Equation 2-1[36] Void fraction is the fraction of the volume that is occupied by the gas 

phase. 

𝐹𝑟𝑃 =
𝑈𝑃

2

∝𝑓 𝑔𝐻
  2-1 

The stirring power, defined as the capacity to homogenize the melt, is then due to the rising 

bubbles are driven by buoyancy.[40, 64] Szekely et al.[39] showed that the rate of mixing in ladle 

furnace depends on the rate of energy input or energy dissipation and the geometry of the 

vessel.[65] The rate of energy dissipation, which defines the rate of energy input is given by 

Equation 2-2a. 

𝜀 = 14.2
𝑄0𝑇

𝑀
log(1 +

𝐻

1.46
𝑃0)  2-2a 

�̅� = 0.86𝑄0.86𝐻0.25𝑅−0.58  2-2b 

where ε is the rate of energy dissipation (watt/tonne),𝑄0is the volumetric gas flow rate (Nm3/min), 

𝑇 is bath temperature (Kelvin), 𝑀 is liquid weight (tonne),   𝐻 is depth of gas injection or the bath 

SPOUT 
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height (m), and P0 is the pressure at the melt surface (bar). Some studies [66, 67] show that part of 

the energy imparted by gas to a two layer liquid bath is dissipated due to interfacial phenomenon 

such as emulsification. Minion et al.[10] indicated that the steel bath recirculation beneath the 

surface is crucial in studying and overcoming the problem of low flow rate stirring. [10] Sahai and 

Guthrie derived a macroscopic model that estimates the average steel bath recirculation from 

water model data shown in Equation 2-2b.[68] In Equation 2-2b, 𝑄 is volumetric gas flow rate 

(l/min), 𝐻 is the depth of liquid (m) and 𝑅 is the radius of the vessel (m). This gas stirring also 

aims to refine and remove inclusions from the molten steel.[69] Hence, monitoring  the steel stirring 

process plays a vital role in  ensuring the inert gas is doing its work properly and its consumption 

is efficient.[7] 

The relatively large size of ladles and harsh operating conditions imposes obstacles to the close 

study of the stirring process. Physical models, which obey geometric, kinematic and dynamic 

similarities with the full-scale industrial vessel, have been applied to study stirring and another 

related phenomenon.[35, 64, 70-79]  Steel melt and slag are commonly replicated by water and oil 

respectively. The density difference between these two fluids is crucial in that the oil floats above 

the water making it suitable to study various aspects of the ladle stirring process.[74-79] 

2.1.2 Ladle Eye and Upper Layer/Slag  

When pressurized gas is purged to the molten metal, the gas rises towards the top surface and 

tries to push the upper layer/slag upward creating a bulged region termed the spout. This can be 

easily recognized in Figure 2-4. In the case of very thin upper layer/slag or if the horizontal flow 

near the surface has the ability to push the slag away, the molten metal is exposed to air in the 

spout region. This area of bare metal is known the ladle eye and is shown schematically in Figure 

2-5.[73, 77, 80]  Ladle eye area is an important industrial phenomenon as it is the location of harmful 

reactions between the air and the metal.[80] It is the region where slag metal interaction, slag 

entrainment, metal losses to slag, and transport phenomenon linked with refining reactions take 

place. Other unwanted effects like energy losses, re-oxidation of steel, splash and fume formation 

occur in this region.[79, 80] There have been several studies on the spout and ladle eye.[72, 73, 76-82]As a 

result, various models have been proposed to demonstrate the relationships between the eye area 

and the operating parameters of the ladle furnace and geometry.[80] 
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Xu, Brooks, and Yang[80] compared the various models (which are based on industrial and 

laboratory data) of ladle eye area proposed by Subagyo et al.[74], Mazumdar et al.[81] and 

Krishnapisharody et al.[82] According to their analysis, Krishnapisharody and Irons’ model which 

is based on industrial data, had better reliability.[80] Krishnapisharody’s dimensionless ladle eye 

area model based on the assumption that the plume expands in conical fashion is given in 

Equation 2-3 and 2-4 [73] 

𝐴∗ =
𝐴𝑒

𝐻2
  2-3 

 

Figure 2-5 Sketch of ladle eye in ladle furnace 

𝐴∗ = 𝛼′ + 𝛽′ (
𝜌

∆𝜌
)

0.5

(
𝑈𝑝

2

𝑔ℎ
)

0.5

  2-4 

Where 𝛼′ and 𝛽′ are numerical constants, 𝐴∗ is a dimensionless area, 𝐴𝑒𝑠 is the exposed spout area 

measured at the slag air interface (m2), 𝐴𝑒 is the spout area (the surface area between liquid metal 

and air) (m2), 𝐻 is height of the bulk fluid (liquid steel/water) (m) and h -height of the upper layer 

(slag/oil) (m). Thus, the nondimensional area 𝐴∗ is dependent on non-dimensional density 

difference and Froude number. Equation 2-4 can be used for eccentric ladle stirring, if the eye 

does not interact with the ladle wall, which is the normal regime of industrial operations.[73] 

The close control of ladle eye dynamics is challenging in an industry. This is often because no 

mechanism is developed to provide continuous feedback data and the gas flow rate purged 
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through porous plugs is often monitored manually. Ladle eye dynamics should reliably be 

controlled for better quality products.[83] 

The height of metal and slag has significant importance in ladle metallurgy operations especially 

in terms of controlling heat loss, metal chemistry (O and N pick up), eye size and the heating 

characteristics of the electric arc heating system. The slag height and its rheology essentially 

depend on operating conditions and chemical composition respectively. Consequently, the 

determination of its physical characteristics like density, surface tension, viscosity, and thickness 

is not easy.[3, 39]  Literatures show that the properties of the slag such as density, surface tension 

and viscosity are also dependent on the composition of each component and working 

temperature.[84]Similar to the ladle eye, regulating slag characteristics is beneficial in developing 

a comprehensive process control in ladle metallurgy.[85] 

2.1.3 Ladle Metallurgy Control 

Ladle metallurgy is a common unit operation in most steelmaking melt shops and plays a vital 

role in ensuring the quality of steel products. The quality is achieved through adjusting and fine 

tuning of the molten steel’s composition and temperature and removing inclusions prior to 

casting.[86, 87] Hence, the parameters that should be monitored to make sure the final product is of 

quality are chemistry, temperature and inclusion characteristics. The common controlling 

techniques of these parameters are briefly described by Brooks et al.[39] 

a) Chemistry Control  

The chemical composition of the liquid steel should be homogenous and the final values of 

carbon, sulfur, phosphorus, oxygen, nitrogen, calcium, silicon, manganese, aluminum and other 

alloying elements have to be at the desired level. Measurement techniques range from direct 

methods, which are accurate but expensive, to indirect methods, which are fast and low-cost, but 

only reliable as relative indicators.[88] The composition values of these metals are often measured 

at three stages of the heat: initial, intermediate and final stages. Samples taken from the melt are 

analysed using optical emission spectrometry (OES), or destructive distillation techniques 

(LECO). The latter, though it is slow, it is better in accurately determining steel chemical 

composition of carbon levels, sulfur, oxygen, and nitrogen. OES performs rapid elemental 

analysis of solid metallic samples with optical emission spectrometry.[89, 90] 
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The composition of a slag is also commonly sampled manually at the initial and final stages. The 

analysis of samples using Inductively Coupled Plasma (ICP) or X-ray Fluorescence (XRF) 

techniques can take few hours to get the composition values. So, these results are more often used 

for analysis rather than for control purposes.[90] 

b) Temperature Control 

Thermal homogeneity as well as final melt temperature are critical to achieving a consistent 

quality in the production of castings and should be at proper values before casting takes place. 

Several techniques have been developed to measure liquid metal temperature. These include 

“spot” measurement, ladle wall temperature measurement, infrared pyrometry, radiation 

spectrometry [91], resistance thermometers, heat flow meters and computer models.[39, 89] 

Spot measurements are measured using a thermocouple several times during a heat. These 

sensors can give a reading within 10ms response time and associated error of ±5℃.[89] 

Thermocouples installed to the refractory base can indirectly measure the temperature of the steel 

melt in a real time.  However, this continuous monitoring technique can be hampered by metal 

build-ups and sensor damage, which can interfere with the main signal.  Continuous temperature 

monitoring can also be done using infrared pyrometry. These contactless sensors measure the 

infrared radiation from the surface of the body to estimate its temperature. This method is 

common in areas where surface conditions, geometry, and emissivity are not difficult to express. 

Due to the harsh working conditions surrounding the hot metal, these probes may not be 

convenient for use in steelmaking. Thermal numerical models have been developed for online 

applications in ladle furnace. The parameters evaluated include heat loss to the refractory lining, 

heat loss due to purging and heat gain due to arcing and heating effects.[92] These models do not 

contain any feedback parameters from the process. They are generally used as part of an operator 

guidance system.[39] 

c) Inclusion Characteristics 

To cope with the increasing demand for a high-quality steel, the amount of non-metallic oxide 

inclusions should be minimum and their composition, morphology, size, and distribution should 

be monitored during the process. Many traditional techniques directly evaluate inclusions in a 

two-dimensional section through solidified product samples.[88] In general, the chemistry, 
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number, size, and morphology of inclusions are not directly measured from heat to heat. 

Microscopic examinations of different grades of steel leaving the plant are used to evaluate these 

parameters.[39] Optical Microscopes (OM), rapid scanning electron microscope (SEM), spark 

emission,  ASPEX[93], Electron Microprobes (EMF) and Scanning Electron Microscopes (SEM) 

with Energy Dispersive Spectrometry (EDS) are used to evaluate the chemical composition of the 

inclusions in the steel. Total oxygen measurement and nitrogen pick up are indirect methods for 

inclusion measurement.[39, 88, 94]   

d) Metal and Slag Depth 

Evaluating the depth of the molten metal and thickness of the slag on the top help in monitoring 

the chemical composition (oxygen and nitrogen pickup), heat loss and heating characteristics of 

electric arc heating systems, and ladle eye size.[39, 95] 

The common way of slag thickness determination is dipping a steel rod into a ladle and 

measuring the melted part. This is usually used to determine the slag point of slag-metal 

interface.[96] Techniques such as radar reflectance, microwave radars, oxygen probes, 

electromagnetic field disturbance, and non-contact microwave have been developed by different 

industries/researchers to assess the metal-slag interface and slag thickness.[96-101] Inductive sensors 

have also been suggested for liquid metal measurement in the beginning of 1980s.[95] 

In ladle operations, monitoring the chemistry, temperature, inclusions and bath depths is 

achieved through the manipulation of melt gas stirring, electrode heating, and the addition of 

fluxes and reagents.[39] 

2.1.4 Ladle Gas Stirring  

Stirring is an important part of secondary steelmaking. It is usually performed by gas purging. 

Electromagnetic stirring is also another method of stirring. Electromagnetic stirring, EMS, is 

possible by the interaction between the magnetic field from the static induction coil placed 

outside the ladle furnace and the electrically conducting metal bath.[102] 

Argon gas can be injected in the steel ladle either through a deeply inserted refractory lance from 

the top into the molten steel bath or through a bottom purge-plug. Argon gas introduced via a 
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bottom purge plug is the more effective method of gas rinsing an argon injection on top of the 

bath through the top lance.[62, 103] Generally, purging plugs need to be resistant to thermal shock 

and deformation at working temperatures. These plugs are made of high alumina refractories. 

There are three types of purging plugs:  porous purging plug, slot purging plug, and linear core 

purging plug.[104]  

Figure 2-6 shows the different types of purging plugs. In capillary plugs, gas flows around 

channels whereas in linear plugs argon flows predominantly straight. Porous plugs are sintered 

high alumina refractory materials that have controlled porosity to allow for gas flow.[104] In 

purging plugs durability, permeability, and operational safety are important. Plugs are damaged 

by penetration of liquid metal into them through the back attack, as well as by peeling at the 

surface in contact with the melt. The back attack is caused by pressure fluctuations in the gas line 

due to formation and release of gas bubbles during molten metal stirring.[34] 

This image is unable to be reproduced online. 

Porous plug Slot/Capillary plug Linear/ Slit plug 

Figure 2-6 Kinds of purging plug systems[34] 

One purpose of stirring is to make a well-mixed metal. This helps in minimizing the thermal and 

compositional gradient, which is one crucial step in attaining high-quality steel products.[40].  

Depending on the objective of the ladle operation, the volumetric gas flow rate ranges from 0.001 

to 0.015 Nm3/ min/tonne.[38]  Other authors have reported the range of volumetric gas flow rate to 

be from 0.000833 to 0.0167 Nm3/ min/tonne.[105]  Moderate flow rate ranges (15 to 1020 l/min) are 

also applied to various ladle operations.[106-109] 

The nature of the operation does not give easy access to measure and quantify the degree of 

homogeneity inside ladle furnaces from the beginning to the end of the process. As a result, 

experts who are well accustomed to the operation tend to observe various features of the process 
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like injected gas flow rate, top surface dynamics, and bubbling sound to estimate the ladle 

stirring.[7, 8, 12, 39] Monitoring this process on this basis has its own shortcomings. The degree of 

mixing inside the bath may not be equivalent to the turbulence on the surface. The low flow rate 

stirring is also difficult to evaluate visually.[8] In addition, the amount of gas shown on flow 

meters may not be equal to the actual amount of gas entering the molten metal.  This is because 

of the losses encountered during service in various parts like refractories, pipes and hook-ups 

and resistance to gas flow developed by porous plugs.[7, 8, 10, 12-16, 39] This emphasizes that the 

measurement of the actual level of stirring is essential in establishing a control system and thereby 

enhancing process efficiency. 

In recent decades, there have been attempts to search for reliable signals that can be used in 

automating the stirring process.[17] The melt inside the vessel experiences high turbulence during 

inert gas bubbling. This dynamic behavior, in turn, forces the ladle wall to vibrate. Moreover, 

during the stirring process sound can be emitted due to the bubbling of the gas and certain 

metallurgical activities. Consequently, scholars started to use vibration and sound signals to 

analyse and predict the stirring power, ladle eye size, and optimum stirring conditions.[7, 15, 17, 39] 

Hence, a reasonable understanding of these signals is indispensable. The subsequent section 

introduces some of the concepts of vibration and sound signals. 

2.2 Sound and Vibration Signals 

2.2.1  Vibration Signals 

Vibration is a back-and-forth movement about a specific equilibrium position. This dynamic 

oscillation is due to a sudden or continuous application of force on a physical object. The nature 

of oscillations may be random, harmonic or periodic.   

Harmonic motion is the fundamental and simplest type of periodic motion expressed by 

sinusoidal functions. It represents the commonly encountered types of motion in many dynamic 

systems.[110] The relationship between time and position, of the object is given by Equation 2-5.[20, 

22, 110]  

𝑥 = 𝑥𝑜sin (2𝜋𝑓𝑡)  2-5 

http://en.wikipedia.org/wiki/Random
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where 𝑥0 is the amplitude, and 𝑓 is the frequency in Hz. The corresponding velocity and 

acceleration can be found by the first and second derivatives of Equation 2-5 respectively. Figure 

2-7 shows a periodic function which represents a repeating pattern. 

 

This image is unable to be reproduced online 

 

 

Figure 2-7 Harmonic function[20] 

Vibration can also be described as free or forced. If the object continues to vibrate after an applied 

force is removed it is free vibration, otherwise, it is forced.[20, 111] In general, vibratory systems are 

represented by three basic parameters. These are the spring, mass (or inertia) and damper. Each 

of them characterizes specific properties of the physical object. The elasticity or the ability to store 

potential energy of the object is modeled by springs whereas the mass and damper signify the 

ability to store kinetic energy and the way of losing energy respectively.  The loss of energy due 

to damping is very small but taking it into account is essential for an accurate prediction of 

system’s vibration response.[20, 22] The resistance offered by a fluid such as water, air, or oil when 

mechanical systems vibrate in a fluid medium is termed viscous damping.  Rao explained that 

the amount of dissipated energy is a function of size and shape of the vibrating body, the viscosity 

of the fluid, the frequency of vibration, and the velocity of vibrating body.[20] Coulomb or dry 

friction damping is due to friction between rubbing surfaces that are either dry or have 

insufficient lubrication.[20, 22] 

When a material is deformed, the internal planes slip and the friction between these planes cause 

energy to be absorbed or dissipated inside the material. This type of damping is known as 

hysteresis or material damping.  For elastic materials, the area of the loop in Figure 2-8 represents 

the energy loss per unit volume of the body per cycle due to damping. 

The internal loss factor, 𝜂, is a parameter useful in studying the response of vibrating structures. 

It consists of various energy loss mechanisms.  The two most common are: 1) structural (hysteretic 
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or viscoelastic) which is dependent on material property and 2) acoustic radiation which 

represents the loss to fluid medium from the surface.[23]  The total internal loss factor or damping 

mechanism is given in Equation 2-6. 

𝜂𝑡𝑜𝑡𝑎𝑙 = 𝜂𝑠 + 𝜂𝑟𝑎𝑑   2-6 
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Figure 2-8 Hysteresis loop for elastic materials [20] 

Here 𝜂𝑠 is the loss factor associated with energy dissipation within the structural element itself 

and 𝜂𝑟𝑎𝑑  is related to the acoustic radiation damping. Acoustic radiation damping is the radiation 

of a sound wave to the external environment.[112]  Figure 2-9 shows the relative and approximate 

loss factor values of commonly used materials. From this figure, steel and bricks have less loss 

factors than plastics.  
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Figure 2-9 Loss factor ranges of some common materials [113] 
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Ladle furnaces are often close to being cylindrical in shape and its approximate cross section is 

shown in Figure 2-9. 70-80% ladle refractory linings are made of alumina bricks and the shell is 

made of steel.[3, 114]  These materials have loss factors less than that of a plastic as shown in Figure 

2-10. The structural loss factor of steel is 0.006 and that of refractory is 0.015.[112] Thus, the 

material’s loss factors need to be considered when ladles are modeled for dynamic analysis. 

Refractory 
material 

Insulating 
material 

Steel shell

 

Figure 2-10 ladle wall cross section 

2.2.1.1 Forced Vibration with Viscous Damping 

Varieties of forces are applied to mechanical systems that result in vibration. The applied forces 

or displacement excitations can be harmonic, periodic, non-periodic or random in nature. 

Random excitation is unpredictable with time and must be presented using probability and 

statistics. If a force, 𝐹(𝑡), is applied on a viscously damped spring-mass system shown in Figure 

2-11, the equation of motion can be obtained using Newton’s Second Law and is given by 

Equation 2-7.[20] 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹0𝑐𝑜𝑠𝜔𝑡  2-7 

 

 

 

 

This image is unable to be reproduced online.  

 

 

 

 

 

Figure 2-11 Single-degree-of-freedom systems with viscous damper.[20] 
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Where 𝑚 is the mass or inertia, 𝑐 is the damping constant, 𝑘 is spring constant, 𝑡  is time , 𝐹0 the 

applied force and ω is the angular frequency. The general solution is the sum of the homogeneous 

solution, 𝑋 ℎ  (𝑡), and the particular solution, 𝑋𝑝(𝑡) given by Equation 2-8.  

𝑋𝑣 = 𝑋ℎ(𝑡) + 𝑋𝑝(𝑡)  2-8 

The homogenous solution is given in condition of free vibration, which dies out with time. 

𝑋𝑝(𝑡) = 𝐶1𝑒
(−𝜉+√𝜉2−1)𝜔𝑛𝑡

+ 𝐶2𝑒
(−𝜉−√𝜉2−1)𝜔𝑛𝑡  2-9 

Where 𝜉 is damping factor and 𝜔𝑛  is the natural frequency. The particular solution for a 

harmonically excited system is given by Equation 2-11.[20] 

𝑋𝑝 = 𝑋𝑐𝑜𝑠(𝜔𝑡 − 𝜙)  2-10 

Where, 

𝑋 =
𝐹0

√[(𝑘 − 𝑚𝜔2)2 + 𝑐2𝜔]
  2-11 

 and 

𝜙 = tan−1 (
𝑐𝜔

𝑘 − 𝑚𝜔2
) 

The amplitude ratio (𝑀 =
𝑋

𝛿𝑠𝑡
) and frequency ratio (𝑟) are given by Equation 2-12 and 13. 

𝑟 =
𝜔

𝜔𝑛

  2-12 

𝑀 =
𝑋

𝛿𝑠𝑡

=
1

√(1 − 𝑟2)2 + (2𝜉𝑟)2
  2-13 

 where 𝑋 is the dynamic amplitude and 𝛿𝑠𝑡  is the static amplitude. In regions of ≈ 𝜔𝑛  , the 

damping ratio has a significant effect on the amplitude and phase values. Figure 2-12 shows the 

relationship between amplitude and frequency ratios. 
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Figure 2-12 Variation of X and   with frequency ratio.[20] 

2.2.1.2 Response to Random Inputs 

The pattern of a random signal is not clear or predictable making it difficult to focus on its details. 

To overcome this, the signals are manipulated in terms of their statistical properties. In this case, 

a vibration response 𝑥(𝑡) is an ensemble of possible time histories resulting from the similar 

conditions.[21, 22] The mean and root-mean-square values of a random signal are defined and 

denoted in Equations 2-14 and 2-15.[21, 22] 

�̅� = lim
𝑇−∞

1

𝑇
∫ 𝑥(𝑡)

𝑇

0

𝑑𝑡  2-14 

𝑥2̅̅ ̅ = lim
𝑇−∞

∫ 𝑥2
𝑇

0

(𝑡)𝑑𝑡  2-15 

The autocorrelation, 𝑅𝑥𝑥(𝜏), gives a measure of how fast the signal 𝑥(𝑡) is changing and is 

computed using Equation 2-16.[21, 22] 

𝑅𝑥𝑥(𝜏) = lim
𝑇−∞

1

𝑇
∫ 𝑥(𝑡)

𝑇

0

𝑑𝑡  2-16 

The Fourier transform of the autocorrelation function, given in Equation 2-17,  defines the power 

spectral density (PSD) [21]. For a stationary signal, it shows the rate of change of mean square value 

with frequency: 

𝑆𝑥𝑥 =
1

2𝜋
∫ 𝑅𝑥𝑥(𝜏)𝑒−𝑗𝜔𝜏

∞

−∞

𝑑𝜏  2-17 
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Averaging of several signals is important to diminish the noise of similar frequencies and get the 

actual signal. The signal to noise ratio for time record averaging is given by Equation 2-18.[23] 

𝑆

𝑛
(𝑑𝐵) = 10 log10 𝑛  2-18 

 where 𝑛 is the number of measurements in a sample.  

2.2.1.3 Vibration Measurements  

Measurement of steelmaking operation quantities is crucial in analyzing processes using physical 

models or full scales.  [35] Vibration, as one measurable physical quantity, can be described in 

terms of displacement, velocity, or acceleration. The frequency content of these signals may be 

identical but low frequencies correspond to larger displacements while higher acceleration occurs 

at higher frequencies. The amplitude-time curves of displacement, velocity, and acceleration 

show the phases are different.[23]     

During the vibration analysis of basic oxygen steelmaking by Bramming et al[115]., when 

determining a feasible  end-point sensor to control basic oxygen steelmaking process by 

O’Leary[116] , and by Burty et al.[13, 15, 16] during ladle vibration analysis, the most practical method 

of vibration measurement was selected to be an accelerometer.[16, 115] Moreover, accelerometers 

have been the first choice in measuring absolute motion because of their specific characteristics.[23, 

117]  Accelerometers have negligible mass and physical dimensions, and wide frequency ranges.  

The ability to achieve corresponding velocities and displacement from measured acceleration 

using electronic integrators is also one advantage of accelerometers.[23, 117]   

When choosing an accelerometer, there are significant issues related to its performance, to be 

taken into account before commencing measurements. These are accelerometer-cold model mass, 

accelerometer mounting, and environmental conditions. The mass of the accelerometer greatly 

affects the actual vibration level measured especially on a light structure and at high frequencies. 

This results in a trade-off between frequency range and sensitivity as shown in the Figure 2-13 

below [23]. 
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Generally, the mass of the structure (cold model or full scale) should be greater than ten times of 

the mass of the accelerometer.[118] Inappropriate accelerometer mounting can result in false 

measurements. Five commonly used mounting techniques are via a threaded stud, cementing the 

stud, a thin layer of wax, a magnet, and a hand held probe. Among these, the threaded stud and 

the cement stud give better frequency responses.[23, 118] Figure 2-14 shows the comparison of 

frequency response curves at various mounting techniques. 
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Figure 2-14 Comparison of frequency response curves using different mounting techniques [118] 

The proper selection of the accelerometer position is also important in getting repeatable 

measurements [118].  Working temperature is an environmental factor that can influence the 

accuracy of the accelerometer. This is due to the piezoelectric material being sensitive to 
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Figure 2-13 Frequency response characteristics of accelerometers [23] 
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temperature increases beyond the design limit.[23, 118] Hence, the temperature where the 

measurement is taking place should be within the permissible range of the transducer. This is 

particularly important in steelmaking operations where  extreme temperature is common.  

2.2.1.4 Accelerometer Cross-axis sensitivity 

An accelerometer measures the vibration along a certain axis, the primary axis, and this measured 

value is affected by values in the other axes. This condition is termed cross axis sensitivity of the 

accelerometer. The maximum transverse sensitivity often does not go beyond 5%.[119]  McConnell 

et al. developed a theoretical model for a three-axis accelerometer cross-axis characteristics from 

a single axis accelerometer.[119] Figure 2-15 shows the orientation of axis sensitivity, primary 

sensing axis and cross-axis plane for an accelerometer.[119] 

The actual acceleration, 𝑎, can be found by multiplying the apparent acceleration, 𝑏, by the 

correction matrix [𝐶] as shown in Equation 2-19.[119] 

{𝑎} = [𝐶]{𝑏}  2-19 

The correction matrix, [C], is given approximately in Equation 2-20.  

[𝐶] = [

1 −𝜀𝑥𝑦 𝜀𝑥𝑧

−𝜀𝑦𝑥 1 −𝜀𝑦𝑧

−𝜀𝑧𝑥 −𝜀𝑧𝑦 1
]  2-20 
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Figure 2-15 Orientation of axis sensitivity, primary sensing axis and cross-axis plane for 

accelerometers [119] 
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Where ε is cross axis sensitivity coefficient that represent the ith direction acceleration- 

contribution to the actual axis measured. The true acceleration can be estimated using Equation 

2-21.[119] 

𝑎𝑥 = 𝑏𝑥 − 𝜀𝑥𝑦𝑏𝑦 − 𝜀𝑥𝑧𝑏𝑧

𝑎𝑦 = 𝜀𝑦𝑥𝑏𝑥 + 𝑏𝑦 − 𝜀𝑦𝑧𝑏𝑧

𝑎𝑧 = 𝜀𝑧𝑥𝑏𝑥 − 𝜀𝑧𝑦𝑏𝑦 + 𝑏𝑧

  2-21 

2.3 Sound Signal  

A wave in a material medium is a process by means of which a disturbance from equilibrium is 

transported through the medium carrying energy and momentum in the absence of mass transfer.  

[120] The longitudinal propagation of vibration as mechanical waves of pressure and displacement 

in a medium (solid, liquid or gas) with alternative expansion and compression of the medium 

with defined frequency is referred to as a sound wave.[18, 121] Animals including humans have 

specific sound perception frequency ranges. The frequency range of sound that can be sensed in 

a human being is   20Hz to 20kHz.[24] 

The characteristics of sound propagation are influenced by density and pressure of the medium. 

These factors, in turn, are affected by temperature, motion, and viscosity of the medium even 

though for media like air and water the viscosity effect is insignificant.[121] 

2.3.1.1 Sound waves in gas and liquids 

In the air, the sound is an adiabatic and nonlinear phenomenon in which the pressure and density 

are related by Equation 2-22. 

𝑃 = 𝛼𝜌𝛾  2-22 

 where 𝛼 is a constant and 𝛾 is the specific heat ratio of air.[120] For infinitesimal mass 𝑀 inhabiting   

a  mean volume of 𝑉0 and an infinitesimal change of volume 𝛿𝑉 and density 𝛿𝜌 , the acoustic 

pressure, 𝛿𝑝 = 𝑝 − 𝑃0 , is given by Equation 2-23 [120]: 

𝛿𝑝 = −(𝛾𝑅𝜌0𝑇0) (
𝛿𝑉

𝑉
)  2-23 

The way sound is created is similar in both gases and liquids and the volumetric strain is the key 

factor for sound wave existence [120]. However, small fractions of the gas can reside in liquids and 
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this influences the speed and intensity of sound. In addition, these gas bubbles can relieve the 

stress produced by volumetric strain and this lowers the bulk modulus but the average density 

doesn’t change significantly.[120] 

The speed of sound, 𝑐 , considering one-dimensional fluid motion is given by Equation 2-24.[113, 

120] 

𝑐 = √
𝑀𝑠

𝜌0

= √
𝛾𝑃

𝜌0

  2-24 

Where 𝑀𝑠 is adiabatic bulk modulus, 𝑃 is pressure, 𝛾 is specific heat ratio and 𝜌0 is density at 

equilibrium. Fahy explained that the bulk modulus is essentially a function of the type of liquid, 

hydrostatic pressure and temperature [120]. Similarly, a sound wave in a solid  can propagate in 

either longitudinal or transverse  mode and its speed  is given by Equation 2-25.[113, 120] 

𝑐 = √
𝐸

𝜌
  2-25 

 where 𝜌 and 𝐸 are the density and elastic modulus of the solid respectively.
 
 

For one-dimensional sound propagation, the sound wave disturbances travel by a constant speed 

c where the air particle oscillates back and forth in the direction of wave propagation (x-axis) with 

a velocity, u. For any plane wave traveling in the positive x-direction at any instant, the 

relationship in Equation 2-26 can be developed.[113] 

𝑝

𝑢
= 𝜌𝑐  2-26 

 For any plane wave traveling in the opposite (negative x) direction, Equation 2-27 is established. 

𝑝

𝑢
= −𝜌𝑐  2-27 

The quantity ρc is known as the characteristic impedance, Z, of the fluid. 

Acoustic impedance is important in regulating the transmission of sound and vibration through 

a system by properly selecting its value for the different components of the system forming the 
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transmission route. Impedance is also a key factor in the study of the interaction between solid 

and fluid systems in relation to sound absorption, reflection, and transmission [120]. Impedance 

heavily depends on frequency and the impedance at specific frequency shows how much sound 

pressure is generated by a given air vibration at that frequency.[122] 

The rate at which the sound wave does work on a surface of unit area in a direction perpendicular 

to the surface is the sound intensity and for one-dimensional plane wave, the sound intensity, I, 

is given by Equation 2-28. 

𝐼 =
𝑝2

𝜌𝑐
  2-28 

The sound power, P transmitted per unit area is given by integrating the intensity over any 

surface, S, around the source and is given by Equation 2-29.[113] 

𝑃 = ∫ 〈𝐼〉𝑑𝑆
𝑆

  2-29 

 where 〈𝐼𝑛〉 is the time averaged normal component of the intensity. Sound waves can be reflected, 

refracted or diffracted when traveling in a non-uniform medium or they come across a variable 

geometrical path. Interference of sound waves can also take place when identical waves meet 

from the same or different direction.[121]

 

Since sound pressure magnitudes and sound power experienced by a particle are huge, the 

logarithmic measures are often applied. The decibel, which represents a relative measurement, is 

the most common and the result is called level.   The sound pressure level is the physical variable 

used to describe sound strength is given by Equation 2-30.[24, 121] 

𝐿𝑝 = 10 log (
𝑝𝑟𝑚𝑠

2

𝑝𝑟𝑒𝑓
2 )  2-30 

 where 𝑝𝑟𝑒𝑓 is the reference pressure. The same manipulation is applied for the power and 

intensity levels. 
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2.3.2 Sound of Bubbles 

When liquid entrains gas bubbles, the volume pulsation of the bubbles imparts high sound 

pressure to the medium. The volume pulsation is explained by bubble wall oscillation that decays 

with time due to damping characteristics.[123] Strasberg et al. computed the instantaneous radius, 

𝑟 ,of the bubble using Equation 2-31.[123] 

𝑟(𝑡, 𝜃, 𝜑) = 𝑅0 + ∑ 𝑟𝑛
𝑛

𝑆𝑛(𝜃, 𝜑)exp (2𝜋𝑖𝑓𝑛𝑡)  2-31 

Where 𝑅0   is mean bubble radius, 𝑆𝑛 is surface harmonics of order 𝑛 as a function of angles 𝜃 and 

𝜑, 𝑟𝑛  is the oscillation amplitude related to the  𝑛𝑡ℎ   order, and 𝑓𝑛is the frequency of oscillation.  

The magnitude of sound pressure from bubble oscillation due to volume pulsation is given by 

Equation 2-32.[123]  

𝑝0 = 3𝛾𝑃0(
𝑟0

𝑑
)  2-32 

Where  𝑑 is distance from the centre of the bubble, 𝛾 is the ration of specific heats of the gas in the 

bubble, and   𝑃0  is the static pressure.  The sound pressure decreases with distance from the center 

of the bubble but increases with bubble radius. 

When bubbles divide or coalescence, the decaying sinusoidal pulse of sound is released like 

bubble formation. The excitation of volume pulsation in this regard is because of the difference 

between the equilibrium pressure inside the single larger bubble and that inside the smaller 

bubbles. The reduced surface tension pressure on the single larger bubble is the reason for the 

pressure difference.[25, 123, 124]   On coalescence, the size and number of secondary bubbles increased 

with flow rate and result in an increase of sound amplitude.[25, 124] Larger bubbles rising along 

somewhat irregular paths can generate continuous low-intensity sound concentrated at the 

frequency of free volume pulsation. The irregular ascending of the bubble is influenced by the 

rate of change of pressure fluctuation. This causes pulsation and thereby sound emission.[123] 
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2.3.3 Bubble Formation  

Bubble phenomena such as formation and growth are much-studied topics because of their 

importance in a wide range of the industrial process.[125-129] Various theories exist on how bubbles 

are formed. 
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Figure 2-16 bubble formation in a viscous liquid.[130] 

 Lubetkin [131] reported that bubble generation can be spontaneous or nonspontaneous. In a 

thermodynamic sense, the former is accompanied by a reduction in the free energy whereas the 

latter is accompanied by an increase in free energy. According to Lubetkin, bubbles may originate 

spontaneously from six rather separate and fundamentally independent sources. These six 

sources are cavitation, homogeneous nucleation, heterogeneous nucleation, Harvey nuclei, 

electrolysis, and pre-existing stable free bubbles.[131]  The formation of bubbles from each source 

is often followed by bubble growth to a microscopic level.[131] Large bubbles are unstable in a 

turbulent liquid. They often break up to form a swarm of smaller bubbles.[132] Lubetkin also 

categorized non-spontaneous bubble formation into attrition, entrainment, and sparging. 

Sparging refers to the injection of gas bubbles directly into the liquid using a pressurized gas. 

This is the same phenomenon as “stirring” in the case of secondary steelmaking.[131] Figure 2-16 

shows the formation of a bubble at a constant gas flow rate in an orifice of diameter 9.6 10-3 m. 

Gas bubbles exist in gas-liquid-solid, gas-liquid and gas-solid systems. The process of bubble 

formation in gas-liquid systems can be static or quasi-static in that it occurs slowly for a system 

with very small and/or constant gas flow rate conditions.[129, 133] The bubble formation is often 
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followed by a dynamic process such as bubble break-up, coalescence etc. A simultaneous breakup 

and coalescence of bubbles in viscous liquids is shown in Figure-17.[134] 

The size of the bubbles formed influences the direction of the rise, velocity, overall turbulence 

and trajectory in the liquid bath, which in turn can affect the performance of the reactor.[129] 
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Figure 2-17 Simultaneous breakups and coalescences [134] 

Kulkarni and Joshi reviewed the factors that affect the formation of bubbles. They reported that 

the operating parameters govern bubble formation. According to these authors, the factors that 

affect these phenomena are: [129]  

 liquid properties such as viscosity, surface tension, liquid density and nature of liquid 

(polar or non-polar)  

 the orifice configuration   

 the gas flow rate through the orifice 

 mode of operation 

 flow/static condition of the liquid 

The motion of a bubble in a liquid bath is possible mainly due to drag, viscous, gravity or/and 

buoyancy forces. A bubble detached from an orifice rises through a liquid due to buoyancy forces. 

The dynamics related to the rise are large because of bubble characteristics or/and the variation 

in the system properties with time. This phenomenon is very common in many industrial gas-

liquid reactors such as flotation tanks, absorbers, bubble columns, stirred gas-liquid 

hydrogenation reactors, etc. The rise of a bubble in the liquid is affected by many parameters like 

the properties of gas-liquid systems (density difference between gas and liquid, viscosity, surface 
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tension and density), liquid motion (direction), operating conditions (temperature, pressure, 

gravity), and bubble characteristics (shape and size).[129]  

Gas is usually percolated into the steel melt through porous plugs to stir the melt, thereby 

homogenizing the chemistry, and temperature throughout the liquid steel and promote metal-

slag interactions.[125] The injected gas rises vertically through the liquid steel due to buoyancy and 

lower density of the injected gas. The rate at which the bubbles ascends is a function of bubble 

size, and the bulk flow (in a “plume”) driven by gas flow.[26] As a bubble rises from an orifice and 

the static pressure decreases, the bubble expands and breakup can take place. [135, 136]  Figure 2-18 

shows the flow phenomenon observed during gas bubbling. The gas-liquid two-phase region is 

subdivided into two physically different regions: primary bubble, free bubble, plume, and spout 

respectively.[137] The bubble sizes, their spatial distributions and rise velocities are not significantly 

affected by inlet operating conditions.[38] 
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Figure 2-18 Characteristics of the two-phase plumes profile during moderate gas injection in 

a cylindrical vessel.[137] 

2.3.4 Sound Signal Measurements 

 Measurement of sound is undertaken by transducers known as microphones. Three main types 

of microphones exist today. These are ceramic, condenser and dynamic microphones. The sensing 

element in ceramic microphones is a piezoelectric crystal. These microphones have a very high 
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dynamic range as well as high-frequency response. They are the good choice for research 

applications where very small microphones are needed. However, care has to be taken in 

measuring sound pressure for vibrating structures, as they are equally sensitive to mechanical 

vibrations. Thus, they should be isolated from any vibrating surface.  

Dynamic microphones work on the generation of an electrical signal via a moving coil in a 

magnetic field. They exhibit superior sensitivity characteristics and are relatively unaffected by 

humidity fluctuations. However, the frequency response is lower than the other types of 

microphones.[23] 

In a condenser microphone, the sensing element is a capacitor in which the pressure difference 

deflects the diaphragm of the capacitor. Because of their wide frequency range, insensitivity to 

vibrations and extreme temperatures, they are the most universally used microphones. On the 

other hand, they are vulnerable to humidity and for small microphones, the sensitivity is lower.[23] 

Generally, condenser microphones are directly connected to a high input impedance, low output 

impedance preamplifier with a cable leading to the analyzing/recording instrumentation. The use 

of a preamplifier is purposely to isolate the device from the processing element and to amplify 

the transducer signal.[23] In almost all types of microphones, there exists a membrane, which reacts 

to the pressure or the particle velocity of an impacting sound wave. The dynamics of this 

membrane is transformed into electric currents or alternating electromotive forces by a linear 

transducing technique.[138] 

2.4 Signal Analysis  

2.4.1 Frequency Domain Analysis 

Physical phenomena that vary with time are usually described in terms of their amplitude 

fluctuation with time. These fluctuations are often difficult to anticipate because of their random 

nature.[139] Figure 2-19 is an illustration where several sample time records are taken at different 

times. Here, the maximum and minimum values in each of the recordings may vary considerably 

with time. According to Cohen, the frequency domain is useful in locating the source of the wave 

and provides an easier understanding of the waveform than in the time domain.[140] 
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The principles of the Fourier Transform help in transforming time functions of waves to the 

frequency domain. The Fourier method assumes waves are the sum of sinusoids of unequal 

frequency and thus the Fourier transform identifies each sinusoid with corresponding amplitude 

and phase to make a wave as a function of frequency.[141]  
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Figure 2-19 Ensemble of time History records defining random process [142] 

In digital computers where signals are analysed, the continuous point wave functions need to be 

presented by a discrete number of sample points to suit the analysis. The Fourier transform that 

does this is the Discrete Fourier Transform (DFT).[143-145] 

The main parameters that can affect the quality of the resulting data from FFT are the resolution, 

the number of averages, the maximum frequency, the type of window and the percent overlap. 

Here, the main objective is to optimize the data quality by making appropriate selections for the 

values of the parameters.[146]  FFT resolution represents the number of lines of information that 

appear on the FFT plot as shown in Figure 2-20. Each line will contain a range of frequencies, and 

the resolution of each line can be calculated simply by dividing the overall frequency (𝑓𝑚𝑎𝑥) by 

the number of lines. The maximum frequency, 𝑓𝑚𝑎𝑥, is the highest frequency recorded by an 

instrument. The waveform recorded by an instrument should be sampled at least twice the 

maximum frequency to avoid aliasing according to the Nyquist Theorem. This helps in 

generating the true waveform. Aliasing is the phenomena where a high frequency component 
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appears as if it is a lower frequency due to the selection of a low sampling frequency. The total 

sample time for getting valid FFT data can be manipulated from the maximum frequency and 

lines of resolution by the formula given in Equation 2-33 and 2-34.[141, 146] 
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Figure 2-20 FFT Resolutions[146] 

𝑇𝑜𝑏𝑠 =
#𝑙𝑖𝑛𝑒𝑠

𝑓𝑚𝑎𝑥

 
 2-33 

or  

𝑇𝑜𝑏𝑠 = 𝑁𝑠𝑎𝑚𝑝𝑙𝑒  2-34 

 where, 𝑓𝑚𝑎𝑥 is highest analysed frequency (Hz.), #lines  is total number of lines of FFT resolution, 

𝑁 is sample number collected and 𝑇(sample) is  sample period (in seconds.). The above terms are 

illustrated in the Figure 2-20 and 2-21. The application of FFT to manipulate Fourier transform 

requires the careful choice of  values of N and T.[141]   
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Figure 2-21 Sampling and observation time [146] 
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To improve the spectral resolution, the sample signal is multiplied by a time function, a window, 

before performing FFT. This is termed as windowing. A window is a mathematical function that 

is zero-valued outside of some chosen interval. Windowing may result in a good frequency 

resolution but the amplitude may be of weak resolution i.e. both cannot be achieved the same 

time. Hence, there are different window functions each having their own strength and weakness 

in achieving the specific resolution. In addition, windowing can help in minimizing leakage, 

which occurs when FFT algorithms are performed at sample discontinuities.[38, 141, 147]     

Several windowing functions are available. Hamming, Kaiser-Bessel, Flat-Top, Hanning, 

Rectangular (actually no window), are some window types.[38, 147] The most frequently used 

window is Hanning (raised cosine). In sine waves, it gives a better trade-off between amplitude 

and frequency resolution. It is a discrete window function given by Equation 2-35.[147] 

𝜔(𝑛) = 0.5 [1 − cos (
2𝜋𝑛

𝑁
)]  2-35 

where 𝑛 = 0, 1, 2, 3, … , 𝑁 − 1. As it can be seen in Figure 2-22 the Hanning Window creates an 

improved signal than the rectangular one. The Rectangular Window has a better trade–off 

between amplitude and frequency when sampled signal is periodic and the window fits exactly 

at the initial and final points. The Hamming window gives better frequency resolution at the 

expense of the amplitude. Its time window function is given by Equation 2-36.[147]   

𝜔(𝑛) = 0.54 − 0.46 [cos (
2𝜋𝑛

𝑁
)]  2-36 

where 𝑛 = 0, 1, 2, 3, … , 𝑁 − 1. 

The flattop is useful in providing very accurate amplitude and its time function is given by 

Equation 2-37.[146, 147] 

𝜔(𝑛) = 𝑎0 − [𝑎1 cos (
2𝜋𝑛

𝑁
) + 𝑎2𝑐𝑜𝑠 (

4𝜋𝑛

𝑁
)]  2-37 

Where 𝑎0  =  0.281, 𝑎1  =  0.521, 𝑎2 =  0.198.  
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Figure 2-22 Hanning window sampling [146] 

The typical signal path from measurement to storage is shown in the Figure 2-23 where the A/D 

converter represents the analogue to digital conversion. The A/D converter accomplishes the 

digitalization of analogue signals by sampling the applied analogue input signal and quantizing 

it to its digital representation.[148, 149] Mostly the A/D converter is specified by its amplitude 

resolution. Computer processing circuits work with binary numbers as 8-bit, 12-bit, 16-bit, etc. 

For example, an A/D converter specified with 8-bit resolution offers 256 intervals (or quantization 

levels) on an amplitude scale.[146] As the resolution increases, the dynamic range improves. After 

signals are processed as shown in Figure 2-23, they can be stored for further analysis such as with 

statistical techniques. 

 

Figure 2-23 Signal processing path[146] 

2.4.1.1 Statistical Errors Associated with Signal Analysis 

An infinite ensemble or a single data record of infinite time is difficult to analyse. During signal 

treatment, various errors may arise. Generally, in any signal, errors exist which can be random 

errors that come from statistical sampling or bias errors, which appear during data acquisition. 

Bias errors are systematic and occur in the same direction [23].  Errors that are created in the digital 

signal analysis are aliasing and leakage. Aliasing is due to an inappropriate sampling interval 

and leakage is the result of window selection.[23] 

Random and Bias Errors: 
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In signal analysis, there is a trade-off between analysis time and bandwidth [23]. A filter with a 

bandwidth of B Hz takes roughly  1/B seconds to respond to a signal that is applied to its input 

[23, 150, 151]. The relationship is as shown in Equation 2-38.  

𝐵𝑇 ≥ 1  2-38 

where B is resolution bandwidth in the case of digital signal analysis and a filter bandwidth of 

measurement for analogue signal analysis and T is the duration of the measurement. While 

averaging the data of a number of measurements, it is essential to make sure the correlation BT 

1 is fulfilled and several periods of the lowest frequency of interest are incorporated [23].  For a 

measurement acquired by an analogue spectrum analyser, the normalized random error is 

formulated by Equation 2-39.[23] 

𝜀𝑟 =
𝜎

𝑚
≈

1

(𝐵𝑇)0.5
  2-39 

where 𝜎 is the standard deviation and 𝑚 is the mean value. Therefore, 𝐵𝑇 ≥ 1  for small standard 

deviations. Equation 2-39 reveals two preconditions that oppose each other:  compared to 1/T, B 

has to be large for better statistical reliability whereas, for good resolution, B has to be small.[23] 

The smallest obtainable frequency resolution bandwidth, for a time record, T, digitized in a 

sequence of N equally spaced sampled values is expressed by Equation 2-40.[23] 

Δ𝑓 =
1

𝑇
 

 2-40 

It is clear from this that individual time record length, 𝑇, not the total amount of data (𝑇𝑡 = 𝑛𝑇), 

is taken to determine resolution bandwidth [23].  Nevertheless, the normalized random error is 

dependent on the overall volume of digitized data, Tt and is given by Equation 2-41.[23] 

𝜀𝑏 =
𝜎

𝑚
≈

1

(𝐵𝑒𝑇𝑡)0.5
 

 2-41 

where 𝐵𝑒 is resolution bandwidth for digital signal analysis. The normalized random error 

relationships given above are applicable to auto-spectral measurements.[23] 
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Unlike the random error, the normalized bias error is a function of resolution bandwidth, Be and 

half-power bandwidth, 𝐵𝑟 2𝜉𝑓𝑑 , of the system frequency response function, where 𝑓𝑑  is the 

damped natural frequency and 𝜉 is damping ration. The normalized bias error is approximately 

given by Equation 2-42.[23] 

𝜀𝑟 = −
1

3
(

𝐵𝑒

𝐵𝑟

)
2

 
 2-42 

The normalized bias error is applicable to both digital and analogue signals, and auto and cross-

spectral density measurements. Bias error appears at resonance frequencies in spectral 

approximations and has the influence in limiting the dynamic range of an analysis thereby 

underrating spectral peaks and overestimating spectral troughs[23].  The normalized RMS error 

for both analogue and digital signals can be expressed by Equation 2-43.  

𝜀 = (𝜀𝑟
2 + 𝜀𝑏

2)0.5  2-43 

Aliasing and leakage are avoided by choosing an appropriate sample interval and selecting 

suitable window type. Normalized random errors can be minimized by boosting the number of 

samples. Since bias errors occur at resonance frequencies, this error can be taken as negligible if 

signals are taken below the resonance.[23] 

2.5 Vibration Analysis Techniques  

Vibration data are frequently captured in the form of continuous electrical (analogue) signals 

generated by transducers, where each analogue signal portrays the instantaneous value of motion 

(displacement, velocity or acceleration) as a function of time. The Fourier transform of this time 

history data is known as frequency domain. Thus, techniques used to analyse vibration data can 

be grouped into two main categories: the time and frequency domain analysis.[110, 151] The most 

fundamental descriptions of a stationary vibration with a time history 𝑥(𝑡) are given by overall 

values of mean  µ𝑥, the mean-square   𝜓𝑥
2, and/or the variance 𝜎𝑥

2 .[151] These values are defined in 

Equation 2-44, 2-45 and 2-46 respectively.  

𝜇𝑥 = lim
𝑇⟶∞

1

𝑇
∫ 𝑥(𝑡)

𝑇

0

𝑑𝑡 
 2-44 
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𝜓𝑥
2 = lim

𝑇⟶∞

1

𝑇
∫ 𝑥2(𝑡)

𝑇

0

𝑑𝑡 
 2-45 

𝜎𝑥
2 = lim

𝑇⟶∞

1

𝑇
∫ [𝑥(𝑡) − 𝜇𝑥]2

𝑇

0

𝑑𝑡 
 2-46 

The mean value describes the central tendency ( a static value) of the vibration, while the standard 

deviation defines the dispersion of the vibration. The root means square (RMS) value is a measure 

of both the central tendency and dispersion. The (RMS) value of a vibration signal provides the 

information about the power content of the signal in time domain. Other time domain approaches 

include kurtosis and crest factor. Kurtosis is used as an indicator of major peaks in a set of data 

and crest factor is used to detect changes in the signal pattern.[152] An increase in overall RMS level 

may indicate that something has changed internally but not give any information to the cause. 

These causes can be picked up by spectrum monitoring or frequency domain analysis. Frequency 

domain analysis is the most common technique performed on signals.[117] This technique is briefly 

discussed in section 2.4.  

Vibration analysis has been widely used as the main diagnostic tool for most mechanical systems. 

Vibration analysis has also been used to investigate metallurgical operations.[10, 13, 15, 16, 153-155] 

Measurement and analysis of vibration in three axes have been also applied in steelmaking 

operations. The three signals in x-, y- and z- have been combined successfully using the 

multivariate statistical technique to analyse the process.[156] In gas stirred ladles, vibration signals 

are combined using certain multivariate techniques, which are described in the subsequent 

section. 

2.5.1 Multivariate Statistical Analysis 

Multivariate statistical analysis, unlike univariate, involves observation and analysis of more than 

one independent /outcome variable in a multivariate system. Regression analysis, canonical 

correlation, multiple modeling, cluster analysis, discrimination function analysis, factor analysis, 

principal component analysis (PCA), and Multi-Dimensional Scaling are some of the multivariate 

statistical techniques. Most of these techniques are applied to reduce the number of dimensions 

to establish a hypothesis.[27]. Multivariate techniques can be applied to data analysis, monitoring 

and control while multivariate statistical techniques can be used to establish nonparametric 



 

41 

 

models for process monitoring.[157, 158] Multiple regression, canonical correlation, and structural 

modeling try to investigate relationships among two or more variables and this relationship is 

used for the prediction of dependent variables. Cluster analysis is applied to a group of 

population or sample based on specific characteristics. The two common techniques that deal 

with internal data structure are factor analysis and principal component analysis. They are both 

variable reduction methods but they have basic differences. Principal components account for a 

maximal variance but factor analysis accounts for a common variance in the data.[159]  There are 

various techniques, which can be regarded as PCA extensions. Complex Principal Component 

Analysis (CPC), Nonlinear Principal Component Analysis (NLPCA), Probabilistic Principal 

Component Analysis, and Sparse Principal Component Analysis (SPCA). The above-mentioned 

techniques are described in the literature.[18, 30, 154, 158, 160-172] 

In steelmaking, after the melt is transferred from electric arc furnace and basic oxygen furnace to 

ladle furnaces, inert gas (usually argon) is injected to agitate the metal. During the stirring 

process, there is bubbling acoustic emission, ladle wall vibration and disturbance of the top 

surface initiated by the inert gas flow. These phenomena can be taken as multivariate signals to 

analyse the mixing process inside the ladle.[18] Thus, the application of multivariate techniques 

like multivariate statistical techniques, fuzzy logic, and neural networks is advantageous.[18] An 

artificial neural network (ANN) is a mathematically adjustable structure important in uncovering 

complex nonlinear relationships between inputs and outputs especially for processes that are not 

easy to be described by physical equations.[173] Fuzzy logic control is an attempt to simulate 

human thinking and natural language through computers. It uses expert knowledge to transform 

linguistic control techniques to automate one. As ANN offers many advantages, it may also have 

some limitations. It may have greater computational burden, “black box” nature, and proneness 

to overfitting.[174] The application of artificial neural networks and fuzzy logic for online ladle 

stirring process based on vibroacoustic technology may not be easy due to limited vibration and 

acoustic data.[18]   The small amount of data on inert gas losses may not be sufficient to exactly 

know the trend of the losses.[18]  In addition, the application and success story of artificial neural 

networks and fuzzy logic in the industry is very limited.[18, 175] 

Several researchers engaged in ladle stirring process online control used single axis vibration 

signals to analyse the mixing strength.[8, 10, 12-16, 18]  Due to the random nature of the signal, its 

statistical properties like the RMS value have been used to estimate the degree of agitation inside 
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the ladle.  Recently Xu et al. introduced a multivariate statistical technique to analyse the signals 

related to the process.  They used principal component analysis (PCA) to combine sound, one- 

dimensional vibration and ladle eye area as one signal to monitor the process online.[18] 

The current study deals with three-axis vibration and bubbling sound measurement from cold 

models and full-scale industrial ladles to investigate the actual stirring power.  In the literature, 

triaxial vibration has been described as crucial signals but the technique to analyse them is not 

well established. Triaxial vibration data can be either analysed taking each axis individually or 

combining the three axes using mathematical techniques.[176] Irem and Edward applied principal 

component analysis (or PCA) on their triaxial data to combine the three axes of measurement in 

into one “principal component” with the highest variance.[156, 176] It demonstrated the potential 

value of using triaxial vibration measurements in conjunction with a PCA-based methodology to 

regulate the vibrational behavior during helicopter flight.[156, 176]  Other studies that used PCA 

have also shown its effectiveness.[157, 158] Liu et al. used PCA model to design a control system on 

a multivariable and nonlinear maize production process.[157]  Luis and his co-researcher tried to 

include an adjustable gain and tuning rules for processes using PCA as a control method.[158] The 

output from PCA is also suitable to use for further multivariate statistical techniques. [177] 

2.5.1.1 Principal Component Analysis 

Principal component analysis (PCA) is a statistical procedure that was developed by Pearson I in 

1901.[157]  Due to its simplicity and non-parametric technique for collecting important information 

from most intricate data, PCA has emerged as a standard tool in modern data analysis.[28] The 

main goals of PCA are to extract essential information, simplify the representation and investigate 

the structure of the dataset.[178] It applies an orthogonal transformation to achieve linearly 

uncorrelated variables from sets of observations of possibly correlated ones. The new set of 

variables is called principal components (PC).  Principal components are uncorrelated to each 

other and are sorted such that the 𝑘𝑡ℎ PC has the biggest variance of the remaining. The 𝑘𝑡ℎ PC is 

orthogonal to the 𝑘𝑡ℎ − 1 PCs i.e. it is the direction of largest variation. Figure 2-24 shows the 

orthogonality of the first three PCs. The notion is to take the first few PCs as they catch most of 

the variation in the original dataset.  [179] However, during the analysis important and very 

powerful assumptions are made. These are linearity, orthogonality of principal components and 

the assumption that a large variance indicates useful structures.[28] 
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Figure 2-24 Orthogonality of the first three PCs of a data set [179] 

Mathematically if  ‘𝑿‘  is the original dataset matrix and  ‘𝒀’  is the new transformed matrix of the 

original dataset, then the goal of PCA is to find orthonormal matrix 𝑮 in Equation 2-47. 

𝒀 = 𝑮𝑿  2-47 

The rows of P are the principal components of 𝑿.[28] 

PCA comprises of several steps.[29]  Let 𝑿𝟎  be the original data matrix where its rows and columns 

correspond to process variables(n) and set of measurements(m) respectively, the  first step is to 

scale or  make it mean  centred. Then the new 𝑚 × 𝑛 matrix, 𝑿, is defined by Equation 2-48. 
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The covariance matrix is of 𝑿 then defined by Equation 2-49. 

𝑺𝒙 =
1

𝑛 − 1
𝑿𝑿𝑇   2-49 

𝑺 is a square symmetric 𝑚 × 𝑚  matrix and its diagonals are the variances of the process variables. 

By assumption, the diagonal large values correspond to interesting dynamics. The algebraic 

solution of PCA lies in the fundamental property of eigenvector decomposition. PCA computes 
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the orthogonal vectors (loading vectors) in order of variance defined by direction of loading 

vectors.[157] Singular value decomposition can be applied in manipulating the orthogonal vectors 

from the covariance; this is shown in Equation 2-50.  

𝑺𝒙 =
1

𝑛 − 1
𝑿𝑿𝑇 = 𝑬𝚲𝑬𝑻  2-50 

where 𝚲 is a diagonal 𝑚 × 𝑚 matrix. Here, the diagonal matrix 𝚲 = 𝑽𝑻𝑽 comprises non-negative 

real singular values with magnitude in a decreasing order. This is represented by Equation 2-51. 

𝜆1 ≥ 𝜆2 ≥ 𝜆3 … 𝜆𝑚 ≥ 0  2-51 

To effectively obtain the variation of the dataset, the loading vector corresponding to the largest 

‘𝑘’ singular values are kept in PCA. ‘𝑘’ is the number of principal components that grasp most of 

essential information. The proportion of variation explained by the first 𝑘𝑡ℎ principal 

components, 𝑟𝑘  , is given by Equation 2-52. 

𝑟𝑘 =
𝜆𝑘

∑ 𝜆1⟶𝑘

  2-52 

The final step in PCA is driving the new dataset, 𝒀, by multiplying the original dataset, 𝑿, by a 

diagonal matrix of principal components, as follows by Equation 2-53. 

𝒀 = 𝑮𝑿  2-53 

PCA deals with one set of the matrix only. To deal with two sets of the matrix, which are input 

and output, partial least square method becomes important in computing the latent variables on 

both sides simultaneously in a way to maximize the covariance between input and output. In 

ladle metallurgy, PCA has been used by Xu et al. and Graham et al. in their research to examine 

its importance in online process control.[7, 83] 

2.5.1.2 Partial Least Square Method (PLS) 

One of the most frequently encountered data-analytical challenges in science and technology is 

modeling responses using independent variables.[172] The traditional technique used to find a 

linear combination of the independent variables to predict the dependent variable is multiple 

linear regression analysis (MLR). However, MLR has its own limitations that influence the power 
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of prediction.  MLR fails to handle a dataset that consists any two linearly dependent columns 

i.e. a matrix that is not full column rank.[172, 180, 181]  In MLR, independent variables are assumed to 

be error free which indicates the ability to handle noisy data is poor. In addition, it may be 

difficult to analyse heterogeneous data using MLR.[172]    

 The partial least-squares regression method (PLS) is widely used in many areas of chemistry in 

this regard. This method was originally used in the field of econometrics in the 1960s by Herman 

Wold.[169, 171]  It gives few latent variables (LV) that pick up the majority of the information in the 

independent variables. This LVs are important to predict the dependent variable.[180]  As the PLS 

model deals with variation in input as well as output space simultaneously, nowadays it is 

becoming of great interest in industrial process control.[31, 172] PLS regression is essentially useful 

when a set of dependent variables are required to be predicted from a significant number of 

independent variables known as predictors.[169]  This multivariate statistical technique has the 

ability to handle data that is noisy, collinear and data with incomplete variables in both 

dependent and independent sets.  Another outstanding characteristic of PLS is that the accuracy 

of its model parameters can be enhanced by increasing the number of relevant observations and 

variables.[172] Hence, it can be regarded as a generalization of multiple linear regression. 

PLS regression (which also means projection to latent structure) tries to find a common structure 

between dependent variables and predictors by undertaking simultaneous decomposition to 

compute latent vectors which explain maximum covariance between dependent and predictor 

variables.[169] In other words, it uses a two-block predictive PLS model to describe the correlation 

between the two blocks of matrices.  

A simplified clarification of PLS is given by Figure 2-25. There are five input variables 𝑋1, 𝑋2, 𝑋3, 

𝑋4 and 𝑋5 and one output variable 𝑦1. If the change in 𝑋2  and 𝑋5   also affects the product quality 

𝑦1 at same time period, the variation in 𝑦2 is probably related to variation in 𝑋2  and 𝑋5 . In this 

scenario, the first latent variable 𝑡1 is a weighted average of 𝑋2 and 𝑋5 whose circumstances best 

describes 𝑦1.[31] 
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Figure 2-25 Schematic representation of PLS[31] 

The algorithm used to compute the PLS model can vary depending on the pattern/distribution of 

the data such as skewness, symmetry, uniformity, and number of peaks.[30, 172, 182-184]  The two 

common PLS algorithms discussed in the successive sections are the standard PLS termed as 

NIPALS (Nonlinear Iterative Partial Least Square) and SIMPLS PLS.  

2.5.1.3 Nonlinear Iterative Partial Least Square (NIPALS) 

Nonlinear Iterative Partial Least Square (NIPALS) algorithm was first introduced by Wold et 

al.[170]  It has been discussed in detail elsewhere.[171, 172, 185-187]  The model parameters are computed 

by the following three main phases.[171, 188] The first phase is termed the outer relation and is the 

decomposition of the predictor, 𝑿, and response, 𝒀, in to their scores and loadings as shown in 

Equation 2-54 to 2-56. 

𝐗 = 𝐓𝐏′ + 𝐄𝒓  
2-54 

𝐘 = 𝐔𝐂′ + 𝐅𝒓  
2-55 

𝒀 = 𝑿𝑪𝑾𝑻  
2-56 

𝒀 = 𝜷𝑿 + 𝒀𝒓𝒆𝒔  
2-57 

The residual matrices, 𝐸𝑟 and 𝐹𝑟, are worked to be minimum. The final PLS model is given by 

Equation 2-57. 𝑻, 𝑷, 𝑼, 𝑪, 𝑾 , 𝜷, and 𝒀𝒓𝒆𝒔 are 𝑥 −score, 𝑥 −loadings, 𝑦 −scores, 𝑦 −weights , 

𝑥 −weights, regression coefficient and  residual matrices respectively.[31, 172, 180, 181, 188]In the second 

phase which results in an improved predictive capacity of the model, scores of both datasets are 

manipulated to provide rotated components of 𝑿 and 𝒀 blocks. As a result, the model parameters 
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such as regression coefficient are computed in this step. The third step is to use the determined 

parameters to build the final prediction model.[181, 188]   

The PLS regression model is established from a training set of 𝑁 observation with 𝐾 𝑋 − 

independent variables denoted by 𝑥𝑘(𝑘 = 1, … , 𝐾) and 𝑀 𝑌 −dependent variables 𝑦𝑚 (𝑚 =

1, … , 𝑀).  Transformations on both input and output variables are done in order that their 

distributions be reasonably symmetrical. Logarithmic transformation is one way to transform 

data. To make analysis result easier to understand and visualize, 𝑿 and 𝒀 variables usually scaled 

and centered before analysis. Scaling is achieved by dividing each variable by the standard 

deviation to a unit variance and centering is computed by subtracting the average from each 

variable. 

In the PLS model, information regarding similarities /differences of variables is explained by the 

scores 𝑻 and 𝑼 in the given model. The weights 𝑾 and 𝑪 provide information on how the 

variables come together to build the quantitative relationship between 𝑌 and 𝑋. In other words, 

the relative importance of each X−variable is given by the weights 𝑾. Residuals are part of the 

data that are not included in the model. Small 𝒀-residuals are the evidence for a good fit in the 

model while large residual are a sign of weak prediction power.  Outliers are data that does not 

fit in the model. Residual of 𝑿 and 𝒀 data are used to identify these outliers.  

2.5.1.4 SIMPLS-PLS 

The algorithm proposed by de Jong, SIMPLS, computes the PLS parameters directly as a linear 

combination of the original variables. It is easy to interpret because it does not apply a breakdown 

of the dataset.  It meets normalization and orthogonality constraints and computes PLS 

parameters to maximize the covariance criterion.[7] 

The name “SIMPLS” is given to this method because it applies a straightforward statistical 

concept used to modify the standard PLS. The intention of this alternative PLS approach is to 

develop a predictive linear model �̂� = 𝑿𝑩 like NIPALS-PLS. The PLS factor 𝑇 is directly 

computed as a linear combination of the original centered 𝑋- variables. Compared to NIPALS, 

this approach has several advantages. Firstly, datasets 𝑿 and/or 𝒀 need not be deflated which as 

a result improves the analysis speed and memory requirements. Secondly, the interpretation of 

the analysis outcome is relatively easy. The derivation of the PLS regression model is also easier 

as the factors are represented as a linear combination of the original variables. 
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The generalised procedure according to SIMPLS algorithm for PLS is summarized by de Jong as 

Table 2-1.[30] 

Table 2-1 Summary of SIMPLS algorithm   

N Procedure  Remark 

1. Compute  the cross product   𝑺 = 𝑿′𝟎𝒀𝟎 

2. Compute singular value decomposition (SVD) of S  
for a=1 (a is number of output 

variables) 

3. Compute SVD of    𝑆 − 𝑃(𝑃′𝑃)−1𝑃′𝑆 for a>1 

4 Get weights 𝑟 = first singular vector  

5. Compute scores  𝒕 = 𝑿𝟎𝒓 

6. Compute loadings 𝑷 =
𝑿𝟎

′ 𝒕

(𝒕′𝒕)
 

7. Compute regression coefficient, 𝐵𝑃𝐿𝑆 𝑩𝑷𝑳𝑺 = 𝑹𝑻−𝒀𝟎 

In both NIPALS and SIMPLS, the covariance criterion is maximized and orthogonality of the 

successive scores is met. However, the final results are identical only when the number of Y-

variables is one.[30]  

Yenus et al. applied PLS techniques to find the correlation between process parameters and 

vibration in a cold model investigation of ladle stirring.[154] It was also applied in this research to 

analyse the cold model and plant data. Other studies that used vibration, sound or image signal 

by applying different analysis methods to automate the stirring process are reviewed in the next 

section. 

2.6 Ladle Vibration  

The improvement of steel product quality in ladle metallurgy depends on the ability to achieve 

high thermal and compositional homogeneity, slag metal interactions and inclusion removal rate 

through pressurized inert gas stirring of the ladle furnace. The gas is usually argon and purged 

through porous plugs placed at the bottom of the vessel.[39]  However, in reality, having direct 

and persistent control over temperature and composition is difficult due to the harsh operating 

conditions. Hence, the usual practice is to monitor the stirring process manually by giving more 
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attention to the sound imparted, observing the uppermost surface turbulence and magnitude of 

the gas flow in the gauges.[7, 8, 12, 39] Nevertheless, this approach has its own limitations. Firstly, the 

degree of mixing inside may be different even though the disturbance on the upper surface is 

similar. Secondly, at low flow rates, the visual control of weak stirring is difficult and complex.[8]  

Thirdly and most importantly, the indicated flow quantity may not be equal to the flow entering 

the ladle because of high resistance to gas flow by porous plugs and leaks developed during use 

in connections between pipes, hook ups, and refractories. Consequently, the resulting level of 

intensity may not be identical to that shown by the flow meters.[7, 39]   

Various researchers from both the academic and industrial communities have studied to use the 

vibration and sound signals imparted from the ladle furnace to control the steelmaking processes. 

The bubbling of inert gas causes molten steel turbulence and this, in turn, forces the ladle wall to 

vibrate.[17] Hence, measuring the wall vibration and bubbling sound and analyzing them may be 

helpful in understanding the status of the stirring process.[7, 15, 17, 39]   Furthermore, ladle eye area 

has also been studied using laboratory- and full-scale models in combination with other signals 

to describe the situation.[7]  Vibration of the wall is the most frequently used signal to describe the 

stirring intensity.[10, 12, 14-16, 19] Hydrophones, accelerometers, video cameras and signal processing 

instruments have been used to measure and process the signals.[7, 10, 12, 14-16, 18] 

Mucciardi[19] used an accelerometer to measure ladle vibration due to stirring to correlate the 

mixing power and vibration signal.  He reported that the degree of agitation in the metal bath is 

proportional to a representative value of the accelerometer signal raised to the power of 1.6. This 

investigation also showed that an accelerometer is a viable transducer for controlling the 

interaction between liquids and gases when direct contact with the liquid phase is not practical.  

Minion et al.[10] stated that there were no direct means of stir indication at lower flow rates during 

reheating and proposed a method, which utilizes the vibration signal to control the process.[10, 12] 

They took plant measurements and analysed it using the Fast Fourier Transform. They found that 

the vibration amplitude increases as the argon flow rate increases and the energetic frequency 

range are 50 to 70 Hz. Figure 2-26 shows the increase of RMS with an increase of bubbling rate. 

The peak frequency remains constant. They developed a control system based on continuous FFT 

analysis and a Programmable Logic Controller.[10] However, this control system had limited 

application at low flow rates and could not succeed commercially.[12]   
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Figure 2-26 RMS values and peak frequencies as function of gas flow rate[10] 

Kemeny et al.[12, 189] have measured the stirring energy using vibration signals to control the 

amount of flow of gas to the desired level. The measurement of the vibration was performed by 

an accelerometer attached radially on the wall of the ladle. They showed that the energetic 

frequency ranges are from 30 to 50 Hz and 70 to 90 Hz. According to Kemeny, since the frequency 

range, 70 to 90 Hz did not contain noise; their control system was devised in this range of 

frequency.[12]  Kemeny and his co-researchers have not described in the open literature the effect 

of slag thickness, molten steel level on vibration signal. Vibration based control system (TruStir) 

developed by Nupro Corporation was implemented in various steel plants such as Hadeed[190] 

and Dongbu[191]. It was reported that the monitoring system improved steel cleanliness and 

reduced argon consumption.[190]  

Burty and his co-researchers carried out a relatively comprehensive investigation on lab-scale 

water models, pilot scales and industrial ladles ranging from 90 to 300 tonne.[15, 16].  Measurements 

of vibration signals from all scales and liquid pressure fluctuation from the cold water were made 

using accelerometers and hydrophones respectively.[15, 16] The root means square value was used 
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to indicate the stirring energy. According to this research, the vibration and pressure fluctuation 

increases in a logarithmic way with flow rate. In addition, the slag layer between 0.1 to 0.4m thick 

has no significant influence on the ladle vibration.[16] For the 90-tonne ladle, the finding is that the 

energetic frequency range is between 20 and 200 Hz and the open eye appears when the flow rate 

is higher than 150 to 200 l/min and the vibration index is over 0.025 m/s2 per tonne [16]. According 

to the work of Burty et al., the optimum rinsing flow rate for the 90-tonne ladle was found to be 

100 l/min. 

Furthermore, they developed a relationship between the Froude number and vibration index (in 

m/s2) which is valid in the region between bubbling and coalescence.[13, 15, 16]  Figure 2-27 is drawn 

from Equation 2-58 for water and full-scale models. The figure shows a linear relationship 

between the vibration and Froude number. The values of A and B are given as 0.2939 and -0.4265 

respectively.[15]   
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 Figure 2-27 Increase of ladle vibration with the Froude number – Water scale 

models, pilot scale steel ladles, industrial plant data and numerical simulation.[15] 

They reported that the open eye area increases with flow rate and the trend were affected by the 

presence of thick slag in the range of 0.15 to 0.28 m. This finding conflicts with their result that 

the slag depth in the range of 0.1 to 0.4 m does not affect the vibration value. In addition, the 

recommended flow rate of 1.67x10-3 m3/s for inclusion removal is not clear as to whether it applies 
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to all ladle size. The research work by same authors published in 2011 claims that the quantity 

and rheology of slag do not affect the vibration signal.[13]  

A cold model-based experimental investigation was performed by Xu et al. to study ladle 

stirring.[7] This study used water and oil to simulate the molten steel and upper layer respectively. 

The aim of this investigation was primarily to show that the stirring control system can rely on a 

single signal which is a combination of vibration, sound and ladle eye area. 

𝑘 = 𝐴 log
𝑄2

𝑔0.5𝐷2.5
+ 𝐵 2-58 
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Figure 2-28  Relationship between stirring power and PC1.[7, 18] 

 

Principal component analysis (PCA) was the main tool applied to reduce the number of variables. 

Based on this work, the sound and vibration signals can pick up most of the variation in the 

system. Figure 2-28 shows that removing the image signal does not destroy the relationship 

between the combined signal and the stirring power. They also showed that the vibration 

amplitude increases with volume and flow rate. The dominant frequencies discovered by these 

authors were in the range of 1 to 120 Hz for vibration and 100 to 1500 Hz for sound signals. The 

sound intensity increases with flow rate but does not vary much when the upper layer is thicker 

than 0.015 m. The main limitation of this study is that it does not address the low flow rate-stirring 

phenomenon where there is no open eye. Moreover, the overall results of this analysis are not 

verified using industrial data of the corresponding vessel and experimental conditions.    

Further research was carried out by Yuriy et al.  on the vibration of a ladle furnace using cold 

models. They used flasks of 1000, 2000 and 2400 ml, and 2000 ml of water mixed with 400 ml of 
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alcohol.[8] They placed the sensor near the base of the flask.[8, 14] Their finding was similar in that 

the RMS value increases with an increase of flow rate and the energetic frequency range lies in 

the range of 0 to 200 Hz. They reported that the maximum correlation of flow rate and vibration 

amplitude is exhibited in the range of 0 to 40 Hz. According to these authors, the number of 

blowing units does not affect the vibration signal. In addition, they found that as the volume of 

water increases, the RMS value increases as shown in Figures 2-29 and 2-30.[8, 14] With regard to 

surface tension, at low flow rates there is a significant influence on vibration amplitude i.e. with 

a decrease of surface tension, the RMS value reduces.[8, 14] They also established a relationship 

between the RMS value and flow rate, Q, based on their laboratory experiment shown in Equation 

2-59.[8, 14] 

 

 

 

 

 

This image is unable to be reproduced online.  

 

 

 

 

Figure 2-29 RMS value of the detected vibration signal as a function of the gas flow rate for a 

160-tonne ladle furnace.[8] 

𝑉𝑅𝑀𝑆 = 𝑘𝑄0.285  
       2-59 

where 𝑘 is fluid height coefficient. Figure 2-30 illustrates the gas flow rate, the RMS value, and 

the effect surface tension. Even though, some of their results seem to agree with previous works, 

there are some issues not well addressed in their work. First, it is not clear whether the flasks 

tubes/cold models and flow rates were based on geometric, kinematic or dynamic similarities 

with the plant ladle furnaces. Secondly, the effect of upper layer was not studied. The argument 

behind their sensor’s position near the bottom of the tube was not explained. In addition, the 

issue of low flow rate stirring detection has not been well addressed.       
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Figure 2-30  RMS value of the vibro-signal on the gas flow rate under various blowing 

conditions.[8, 14]  

The research on ladle vibration to monitor stirring was also undertaken by Pylvänäinen et al.[192] 

and Fabritius et al.[193] Pylvänäinen et al.[192] pointed out that the results of their investigation 

supports the use of vibration measurements to effectively monitor gas stirring intensity online.  

In the present study, the low flow rate-stirring problem in gas stirred ladles has been addressed 

by measuring the real-time vibration of the ladle wall and the sound generated due to the liquid 

metal bath bubbling. The following Chapter describes the main objectives/issues of this research. 
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3 Research Issues  

 Ladle metallurgy operations are very crucial to producing high-quality steels that is a steel 

product with appropriate physical, chemical and mechanical properties for the intended 

application, which can serve reliably for the designed length of time. In ladle metallurgy, stirring 

is a mechanism through which the melt is well agitated to achieve a refined, and thermally and 

compositionally homogeneous liquid metal. These phenomena play a great role in producing the 

desired steel quality. The common and effective way of stirring is often carried out by purging 

argon through the bottom. Gas is injected through porous plugs at high pressure. The refining, 

mixing and inclusion removal processes may require a different degree of stirring. Vigorous gas 

stirring may lead to slag-steel mixing and slag entrainment, and this should be avoided. Hence, 

the argon flow to the metal bath should be in an appropriate quantity to achieve the intended 

liquid metal chemistry and temperature at the end of the operation and before the metal is poured 

to a caster. Ladle operators often evaluate the amount of bath stirring by observing the flow 

indicators, the size of bare metal on the top slag layer, and /or listening to the bubbling sound. 

This method of control generally focuses on system stability rather than system optimization. It 

is more of qualitative judgment and may not exactly evaluate the stirring status. In addition, gas 

leakage that occurs at various ladle components makes the flow gauges in particular and the 

manual monitoring, in general, less reliable. 

 Researchers from academia and industry have tried to automate the stirring process using 

signals that are generated during the process. The multidimensional dynamic fluid turbulence 

inside causes the ladle wall to vibrate. This vibration signal can be constantly measured by an 

accelerometer to provide online information about the status of the process.[10] In a similar 

manner, when inert gas rises forming bubbles, the bubble formation, coalescence, and 

disintegration process often generate sound.[25, 26] Hence, the sound and vibration signals that can 

be directly measured from the stirring process and used to explain various phenomena of the 

ladle stirring. These signals may continually change to manifest the changes in the degree of 

stirring occurring in the metal bath.  

This study has focused on studying low flow rate stirring process using sound and vibration 

signals. The key objectives of this study were as follows: 
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 To assess the effect of mounting a tri-axial accelerometer at different locations and 

then choose the optimum accelerometer location for efficient data gathering. 

 To investigate how the three-axis vibration signal measured at various 

experimental conditions describe low flow rate stirring. This includes 

investigating the structure of the vibration data and how these data are correlated 

with the process parameters and the amount of stirring inside the ladle/cold 

model apparatus. 

 To assess vibration data collected from the actual industrial ladle. This includes 

analyzing the structure of the data, the correlation between stirring indicators and 

latent variables and comparing with water model study results. 

 To compare and contrast laboratory and plant scale studies. 

 To investigate how  bubbling sound is correlated with low flow rate stirring  

 To investigate the effect of the bottom and top layer depths on the vibration and 

sound signals. 

These research questions were mainly addressed experimentally in the laboratory using physical 

cold models of 200 and 160-tonne ladles. Some plant trials have also been carried out in a Tata 

Steel site in the United Kingdom. The details of the physical modeling, experimental conditions, 

and analysis techniques are described in the next chapter. 
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4 Methodology  

This chapter describes the approaches used to address the research issues described in Chapter 

3. The study was experimental using physical cold models in a controlled environment and actual 

ladles in an industrial setting. Laboratory scale models were designed, constructed, and used in 

the laboratory to carry out the majority of the experiments to study the stirring process. Vibration 

and sound signals were measured from these laboratory scale models and a plant trial was 

undertaken to gather vibration in gas stirred ladle in a vacuum tank degasser.  Appropriate data 

acquisition hardware and software were applied to acquire and process the data. Data were 

analysed using various signal processing and statistical techniques. The procedure and theory of 

physical modeling, collection of data and analysis techniques are described in this chapter.  

4.1 Experimental Method 

McLeod defined an experiment as ” an investigation in which a hypothesis is scientifically tested. 

In an experiment, an independent variable (the cause) is manipulated and the dependent variable 

(the effect) is measured; any extraneous variables are controlled”[194]  The author classified an 

experiment as with laboratory/controlled or field experiments. In a similar manner, McLeod 

defined an independent variable as a “Variable the experimenter manipulates (i.e. changes) – 

assumed to have a direct effect on the dependent variable.” and dependent variable as a “ 

Variable the experimenter measures, after making changes to the independent variable that are 

assumed to affect the dependent variable." [194]  A scientific experiment may begin by defining 

problems followed by collecting, organizing and evaluating data to reach conclusions.[194] This 

research method helps clear out extraneous and unwanted variables that exist in the actual 

system. It gives higher control over relevant independent variables as compared to other research 

methods. In the experimental study, the cause and effect relationship can be easily determined 

by manipulating the independent variables. Another benefit of experimental research is that 

experiments can be repeated to verify if the already obtained results are reproducible.[194] 

Laboratory experimental designs are often replicated scenarios that may not represent all things 

that happen in the system being studied. Hence, the extent that results can be generalised to all 

conditions and real world applications may not be comprehensive. In this study, the issues are 
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addressed by carrying practical experiments on an actual industrial system and comparing 

results with the laboratory study. 

The current study used triaxial vibration signal and sound pressure as dependent variable and 

air flow rate and bath height as independent variables. It manipulated three independent 

variables to determine their effect on the dependent variables. Other process parameters related 

to ladle stirring such as pressure, temperature, plug position, number, and life were not varied 

during the laboratory study.  

The experiment was performed on two cold models and one full-scale industrial ladle. The first 

cold model was a plastic walled apparatus that has been used previously by Xu et al. for studying 

the stirring process using three different signals i.e. vibration, ladle eye size, and sound.[18] The 

second cold model was built from steel material aimed at comparing results with the plastic 

model and investigating the effect of the material on the vibration signal. It involved the physical 

modeling of gas stirred ladles consisting of two liquids that are immiscible with each other.  

Ladle metallurgy operations are often accomplished in ladles that vary in size and shape.[195] 

ladles are often slightly tapered cylindrical vessels, which are internally lined with refractory 

materials. The design of the bottom of the ladle has traditionally been flat but in recent times it is 

being restructured to a funnel shape.[196] The later geometry has been observed to enhance 

metallurgical performance in gas stirred ladles.[197, 198] The external shell is made of steel plates 

with a thickness that depends on the ladle capacity. The thickness ranges from 0.012 to 0.032 m 

for ladle capacities of 10 to 200 tonne and above.[199] Internally, a ladle is multi-layered to protect 

the outer shell from high temperature, decrease heat loss and increase mechanical strength. 

Specialized refractory bricks are located on the inner face and are important to contain the molten 

metal. A mass layer, safety layer, and insulation layer are layered in sequence from the brick to 

the external steel shell. The overall thickness of the ladle wall can reach up to 0.30 m. The top of 

the ladle is covered by a lid.[200, 201]  

During pyrometallurgical operations, pressurized gas injection into liquid metal through one or 

two purging plugs has been the foundation for several advances in steelmaking.[35, 195]  A large 

number of purging types and designs are available.[202] Plugs may be porous refractory material 

or segment-purging plugs.[104] The location, number, and size of purging plugs may also differ 
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from one ladle to the other. Plugs can be positioned at the center or on the sidewalls.  Standard 

stirring operations are carried out by percolating argon gas through the porous plug to the metal 

bath.  The choice of argon is due to its low solubility in steel and chemical inertness. 

The geometry, location of porous plugs and gas flow rates of two industrial ladles were replicated 

in a laboratory using established concepts in the literature on physical modeling.[36, 203, 204] 

4.1.1 Physical Modelling  

Modeling is a widely established scientific approach and has been used in steelmaking for 

decades. The two most common scientific models are physical and mathematical models. A  

general definition of a physical model is given by Steven Hughes [205] as “a physical system 

reproduced (usually at reduced scale) so that the major dominant forces acting on the system are 

represented in the model in correct proportion to the actual physical system”. It is an important 

precision device for estimating the behavior of a physical phenomenon.[206] Svendsen mentioned 

three research scenarios that can be studied using a physical model.  These are listed below:[207] 

a) Verifying a theoretical model from the acquired data 

b) Obtaining data for phenomena that are not been yet reachable to theoretical approaches 

c) Looking for a qualitative understanding of a phenomenon not yet known in detail 

Physical models have several distinct benefits.[205]They are cost effective considering the size and 

complexity of the actual full scales, more variables of the process can be included to establish 

complex relationships, they provide the opportunity to measure and monitor the physics in a 

controlled environment and they demonstrate visually what is happening. The inability to 

reproduce all real phenomenon in the model is the most important limitation of a physical 

model.[205] 

In ladle metallurgy, a physical model has been used to understand liquid metal flows and 

associated mass transfer.[35]  Designing a reasonably realistic model is not a straightforward 

procedure because steelmaking operations involve complex processes such as multi-phase 

turbulent flow, chemical reactions and mass transfer among metal, slag and gas. As a result, 

assumptions and idealizations are often applied. However, it is fundamental that certain 
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conditions are fulfilled in order for the model to correctly describe the events happening in the 

actual reactor. During ladle metallurgy operations, the fluid flow in a liquid metal cannot be 

visualized, the working temperature is very high, toxic or corrosive substances are usually 

present and industrial metal processing reactors are relatively large. These all make a direct 

experimental study of fluid flow, mixing and mass transfer in full-scale liquid processing ladles 

difficult.[35, 195] Representing the industrial ladle by a physical model makes a measurement of 

desired parameters more manageable and easier observation/visualization of the process at a 

reasonable cost.[35, 195, 208] 

A physical model of secondary steelmaking process can be a cold model or a high-temperature 

model depending on the working fluid. High-temperature models use molten steel while cold 

models may use mercury, water etc. to simulate molten metal. When building a physical model, 

four conditions of similarity need to be satisfied. These are:[35] 

a. Geometric similarity 

b. Mechanical similarity  

c. Chemical similarity 

d. Thermal similarity  

4.1.1.1 Geometric Similarity 

The geometric similarity requires the ratio of every corresponding geometric dimension of the 

model and the real system to be equal, constant and linear while respecting similarity of shapes 

at the same time. The geometric scaling factor, , can be defined using full-scale ladle geometric 

dimensions, diameter (𝐷𝑓) and height (𝐻𝑓), and respective dimensions in the physical model. The 

ratio of corresponding lengths, between model and full-scale systems is mathematically given in 

Equation 4-1.[204] 

𝐷𝑚

𝐷𝑓

=
𝐻𝑚

𝐻𝑓

= 𝜆 
4-1 

 where 𝑚 and 𝑓 refer to model and full-scale respectively. 
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Figure 4-1 shows the diameter and height on both scales. In the case of a tapered cylindrical ends, 

the extent of the taper should be identical i.e. the top and bottom diameters should be related by 

the geometric scaling factor. 

H
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m

Liquid steel
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Figure 4-1 Characteristic dimensions of a full scale and a model 

It is not always possible to replicate every length and shape in the physical model. This is because 

it is time-consuming and expensive to manufacture every single detail. Sometimes some parts 

may also be less important to include during modeling. In addition, the geometry of some parts 

of an industrial ladle may be affected by various phenomena such as slag and metal solidification, 

and refractory erosion occurring during ladle operations. Hence, some reasonable assumptions 

and approximations are done to simplify these problems during physical modeling.[35] 

4.1.1.2 Mechanical Similarity 

In general, mechanical similarity refers to the similarity of forces between the two scales. It 

constitutes three types of similarity criteria: static, kinematic and dynamic similarities.[203] Static 

similarity is useful when studying the behavior of structures. It mainly focuses on forces required 

to move or rotate the reactor. In secondary steel making, the ladle is normally kept stationary.[35, 

195]  In this study, the main aim is to investigate movement caused by gas stirring. Hence, for 

stationary ladles, a static similarity criterion was not considered in this investigation. Kinematic 

similarity requires that the geometrical shape of the flow paths of a particle in the full scale and 

the corresponding particles in the model are similar i.e. the length and time scales which refers 
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to velocities at corresponding points be similar between model and full-scale.[195, 204] In Figure 4-2, 

the velocity of a sample particle at 1, 2, 3 and 4 should be similar between the two scales. 

 

Liquid steel

Water

 

Figure 4-2 Sample flow path of a single particle 

In gas stirred ladles, ascending gas bubbles cause melt flow. The speed of the motion is a function 

of various interacting forces such as viscous, buoyancy, and inertial forces. The third form of 

mechanical similarity which is most important in this study is the dynamic similarity and is 

concerned with such forces.[195] This similarity criterion necessitates that forces in the full scale 

should be similar to the forces on the model at corresponding time and location. Guthrie and 

Mazumdar proposed the mathematical expression that shows the dynamic similarity between a 

full-scale system and a physical model. This is shown Equation 4-2.[35, 204] 

Where 𝐼, 𝑃, 𝑉, and   𝐺 refer to inertial, pressure, viscous and gravity forces.  Equation 4-2 can be 

rearranged to show equalities of ratios of forces that ensure dynamic similarity at corresponding 

times and locations.[35] These are given by Equation 4-3 to 4-5. Equation 4-3 to 4-5 make evident 

that the dynamic similarity criteria needs to respect equality of different dimensionless quantities. 

A list of these dimensionless numbers that are relevant to steelmaking can be found in 

literature.[35, 204]  These dimensionless quantities contain the physical  properties  of the model and 

full-scale important in developing mechanical and geometric similarities.[195] Some of them are 

useful in modelling steelmaking reactors. 

(
𝐹𝐼

𝐹𝑉

)
𝑚𝑜𝑑

= (
𝐹𝐼

𝐹𝑉

)
𝑓𝑢𝑙𝑙

 
 

4-3 

𝐹𝐼,𝑚

𝐹𝐼,𝑓

=
𝐹𝑃,𝑚

𝐹𝑃,𝑓

=
𝐹𝑉,𝑚

𝐹𝑉,𝑓

=
𝐹𝐺,𝑚

𝐹𝐺,𝑓

= 𝐶𝐹  4-2 
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(
𝐹𝐼

𝐹𝐺

)
𝑚𝑜𝑑

= (
𝐹𝐼

𝐹𝐺

)
𝑓𝑢𝑙𝑙

 
 

4-4 

(
𝐹𝐼

𝐹𝑃

)
𝑚𝑜𝑑

= (
𝐹𝐼

𝐹𝑃

)
𝑓𝑢𝑙𝑙

  4-5 

In geometrically similar systems, velocity boundary conditions are naturally comparable and 

therefore may not be a problem during physical modeling.[35] In this study, the ladle operation 

was assumed to have fluid flow, which is multidimensional, steady and isothermal. 

In ladle metallurgy, equality of all dimensionless groups may not be respected during physical 

modeling of liquid metal flow.[35] In homogeneous isothermal flows, viscous, inertial, pressure, 

and gravitational forces are significant and hence Froude, Reynolds, and Euler numbers are 

vital.[35] Dynamic similarity is fulfilled through the equality of Reynold and Froude numbers 

between the model and full scale.  Mathematically, Froude number and Reynold are given by 

Equations 4-6 and 4-7 respectively.[195, 203] 

Froude Number (Fr) =
Inertial Force

Buoyancy  Force
 

 4-6 

Reynolds Number (𝑅𝑒) =
Inertial Force

Viscous Force
 

 4-7 

In argon stirred ladles containing only liquid metal simulated by a physical cold model of water 

and air where 𝜆 < 1 , it is difficult to respect equivalence of these two numbers at same time.[35, 

195, 203] This is because  the kinematic viscosity of steel at 1873 K  is basically the same to that of 

water at room temperature.[203] Hence, it is vital to identify which forces are more important to 

construct dynamic similarity in argon stirred ladles. It was reported that inertial and buoyancy 

forces dominate in isothermal flow phenomenon in model studies of gas stirred ladle systems. 

The Froude number equality is more important than the other factors. As a result, it was used as 

the modelling criterion in this research.[36, 195, 203] Fluid flow in large-scale industrial refining ladles 

is turbulent in nature. Hence, the flow in the reduced scale model must ensure turbulent flow 

conditions as well.[203] This Froude number criterion is used to derive a relationship between plant 

flow rates and airflow rates in the model.  The relevant ladle Froude number is defined in the 

literature using plume rise velocity (𝑈𝑝) and the molten metal depth (𝐻).[36, 209] 
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𝐹𝑟 =
𝑈𝑝

2

𝑔𝐻
 

 
4-8 

Equation 4-8 shows that the plume rise velocity is a vital parameter in determining the amount 

of energy going to the system. In addition, the buoyancy is a function of liquid metal depth. The 

momentum of the plume is due to the buoyancy of the bubbles, not the injected gas momentum. 

Therefore, hydrodynamic conditions at the orifice or nozzle are not essential to the overall flow 

recirculation induced in ladles.[36, 203]   

For geometrically and dynamically similar systems, the scaling equation between plant operating 

flow rate (𝑄𝑓) and its corresponding air flowrate in the laboratory scale (𝑄𝑚) was derived by 

equating the Froude numbers in Equation 4-8 and the plume velocity definition in Equation 4-

9.[68] 

𝑈𝑝 ≈ 𝑄0.33𝐻0.25𝑅−0.58  4-9 

Where 𝑄, 𝐻 and 𝑅  refer to gas flow rate, metal bath height and vessel/ladle radius. Thus, the  

relationship between model and full scale gas flow rates expressed as a function the geometric 

scaling factor, 𝜆, is given by Equation 4-10.[203] 

The geometric scaling factor, 𝜆 , is selected in such a way that the type of liquid flow regimes in 

the ladle are preserved in model. Generally, flows in steelmaking are turbulent and therefore the 

reduced model should not be too small to respect flow similarity.[203] The models built for this 

study are 1/10 of the full-scale industrial ladles. Several studies have used this scaling factor 

successfully.[7, 154, 155, 210, 211] the selection flow rates in laboratory study were computed using 

Equation 4-10 from their corresponding plant gas flow rates. Once the scale factor was chosen, 

the next step was to select the working fluids that simulate liquid metal and slag. 

4.1.1.3 Selection of Slag and Simulation Fluid 

The kinematic viscosity of molten steel at 1873 K is almost equal to that of water at 298 K.  This 

guarantees the similarity of flows of both fluids.[35] In addition, water has other advantages that 

𝑄𝑚

𝑄𝑓

= 𝜆2.5 
 

4-10 
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make it popular for replicating liquid metal. It is readily available, suitable to work, economical, 

and makes flow visualization possible.[35]  

Steel slag is a by-product of steelmaking and steel refining processes. Most steel slags consist 

primarily of CaO, MgO, SiO2 , and FeO. The proportions of these oxides and the amount of other 

minor components change from batch to batch even in one plant depending on furnace 

conditions, raw materials, and type of steel made.[212] In ladles, the chemical composition of the 

slag depends on the grade of steel produced. Therefore, compared to BOF and EAF slags, the 

chemical composition of ladle slag is highly variable.[43] The viscosity of slag varies with 

temperature, oxide composition, basicity, and volume fraction of solid phases.[213] Hence, the 

composition and dynamic and physical property of slag are highly variable and are difficult to 

mimic with a single material. Though oil is far from being perfect to simulate slag, because of its 

immiscibility with water and availability, it has been successfully used in steelmaking water 

model investigations.  [7, 8, 14-16, 18, 37, 73, 76-80, 97, 214, 215] In this investigation, water and motor oil (ρ= 850 

kg /m3) were used to simulate molten steel and slag respectively. 

4.1.1.4 Model Material and Stirring Gas 

Two physical cold models that simulate ladles of different capacities are considered in this study. 

One is made of a transparent material (Perspex) and the other built from stainless steel. In both 

cases, the water-oil bath was stirred by pressurized air. Stainless steel has similar mechanical 

damping properties to steel. A damping factor is a dimensionless number that explains how the 

structure or material oscillations die away.  

Table 4-1 Mechanical properties of steel, stainless steel and acrylics [216-220] 

 

 

 

The higher the damping factor the quicker the dampening of the vibration. As it is shown in Table 

4-1, the damping factor collected from different sources shows that Perspex dampens vibration 

more than steel. Hence, stainless steel with similar damping properties was used to build the cold 

Material Damping factor 

Steel 0.0016-0.005  

Stainless steel 0.00085-0.006 

Acrylic (Perspex) 0.01-0.07 
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model.  In addition, stainless steel can easily be drawn in a conical shape to replicate the actual 

ladle geometry. 

4.1.1.5 Thermal and Chemical Similarity 

Thermal similarity is achieved if the ratio of temperature differences at corresponding times and 

locations is constant between two non-isothermal systems that already respect dynamic or 

kinematic similarity.[35] In this study, the ladle refining process is assumed isothermal at a 

constant temperature of 1873 K. In addition, during the cold model study, different working 

fluids were used at constant ambient temperature. Hence, the thermal similarity was not 

important in this research.  

Chemical similarity requires the ratio of the concentration of all chemical species in the full scale 

and model to have fixed relationship. This is useful to the model distribution and the reaction of 

constituents in the gas stirred metal bath.[35, 195] As the objective of the research is to assess the 

dynamic movement of ladle wall and bubbling sound due to fluid flow because of gas agitation, 

the chemical aspect of the process was not taken into account. 

Once the design of the physical model was completed, the physical dimensions were determined 

using the geometric scale factor and workshop drawing prepared to manufacture the cold model. 

The apparatus was then installed and data collection commenced. 

4.1.2 Physical Cold Model Limitations 

Dynamic similarity and idealization of flow require equality of Froude as well as Reynolds 

numbers between models and full scales. This is difficult to satisfy for other than full-scale 

models, which can be expensive, to some extent tiresome and can lead to uncertainties.[35, 221] The 

multiphase nature of steelmaking systems that consists of slag, gas, and metal make it difficult to 

ideally mimic through water models. Reasonable slag– metal interfacial tensions and slag–metal 

density are difficult to attain in any aqueous system. In addition, melt flow can be slowed by the 

interaction of the slag with liquid bath. This cannot be observed in water model, which 

contributes to the weakness of physical cold modeling.[222] Physical model investigations with oil 

as a top layer/phase and water as bottom layer/liquid are therefore approximate.[35] 
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4.2 Data Collection  

For vibration and sound pressure signal measurement, a measurement system that comprises 

sensors, data acquisition hardware, computer, software, data visualization techniques and 

storage formats were designed. The main elements of this system are described in section 4.2.1. 

4.2.1 Data Acquisition System 

Data acquisition (DAQ) systems are processes and/or products used to gather information to 

analyse or document some phenomenon. In this study, DAQ systems were used to collect 

vibration and sound signals from water models as well as an industrial ladle. The system 

consisted of sensors, signal conditioning, an Analogue to Digital Converter, cables, and a 

computer. Figure 4-3 shows how the DAQ components are arranged to collect data. 

A. Sensors  

Sensors were used to measure physical variables or signals emanating from gas/air stirred 

ladles/models and convert these into their proportional electrical signals suitable for the DAQ 

system to process. Essentially, two measurements were carried out in this study. These are wall 

vibration in terms of acceleration and bubbling sound in terms of sound pressure.  Additional 

sensors like flow meters and pressure gauges were also used to monitor the volumetric air/gas 

flow rate and the pressure respectively.   

The selection of the vibration sensor, an accelerometer, was based on cost, sensitivity, mounting 

technique, application environment, frequency and amplitude range.  The accelerometer was 

used in both the laboratory and the plant trial. Hence, it was selected to meet the operating 

requirement in both environments. A low-cost triaxial industrial accelerometer that measures 

acceleration in 𝑥, 𝑦 and 𝑧 directions was selected. Its specifications are presented in Table 4-2. The 

accelerometer was mounted using a standard stud on a smooth and flat surface on the external 

wall of the cold model. The mounting surface was wiped out and a light film of oil was spread 

prior to installation. The film of oil increases vibration transferability and improves the stiffness 

of the mounting. The high frequency operating range of the accelerometer is more efficient when 

the installation is made with a stud.  
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Figure 4-3 Data acquisition system setup 

Table 4-2 PCB Industrial Accelerometer general specification (ICP Model 604B31) 

No. Performance Value 

1 Sensitivity  95 mV/g  

2 Measurement range ±50 g 

3 Frequency range 0.5 to 5000 Hz 

4 Operating temperature 219 to 394 K 

5 Mounting technique Through threaded hole 

Sound pressure imparted from a bottom stirred physical cold model was measured using a 

microphone. The microphone selection considered the cost, polar pattern or directionality, 

frequency response, dynamic range and working temperature. The microphone has a 

preamplifier coupled with it to amplify weak signals. Table 4-3 shows the basic specification of 

the microphone used. The microphone was placed on the top with its head facing the water bath 

during signal capturing from the cold model. 

Table 4-3 PCB Microphone (ICP Model 130A23) general specification 

No Performance Value 

1 Sensitivity  14 mV/Pa 

2 Dynamic range (High) 150 dB 

3 Frequency range 20 to 20000 Hz 

4 Operating temperature 263 to 323 K 

5 Directionality  Unidirectional  
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The amount of pressurized air injected through the nozzle located on the bottom of the vessel 

was monitored by Acrylic flow meters of various volumetric airflow rate ranges. The meter uses 

a ball float to determine the flow rate reading. The flow meters were installed in a way that 

minimizes external vibrations and internal flow variations. A detailed description of the airflow 

meters used in this study is shown in Table 4-4.  

To prevent pressure fluctuation of the compressed air source, a pressure regulator was installed 

between a flow meter and the source. The pressure regulator can regulate up to 700 𝑘𝑃𝑎 and has 

an operating temperature range of 263 to 333 K. 

Table 4-4 Key Instruments Airflow meter descriptions 

No Performance Value 

1   Accuracy 

±5% Full Scale 
±3% Full Scale 

±3% Full Scale 

3 Floats black glass 

4 Maximum temperature 338 K 

5 Maximum pressure  690 kPa 

B. Analogue to Digital Converter Module 

The electrical signal coming from the sensors was transported to a module where analogue to 

digital conversion and further signal conditioning was carried out. This module was a four-

channel dynamic signal acquisition module with each channel having a maximum sampling rate 

of 51.2 kHz. It has a built-in anti-aliasing filter that adjusts to the given sampling frequency 

automatically. The operating temperature can go up to 343 K. Each sensor was connected to this 

module with a standard coaxial cable. This module, in turn, was linked to a computer with a USB 

cable. 

C. Computer  

The national instrument module (NI) was connected to a computer installed with Signal Express 

and MATLAB software. SignalExpress is used to as an interface to interact with NI9234 module, 

process and export data. MATLAB was mainly used to analyse data collected from the 

experiment. 
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4.2.2 Signal Measurement  

Vibration and sound pressure signals were captured using the accelerometer and microphone 

respectively as described in the previous section. Before starting the collection of data, the issue 

of background noise, sampling frequency, and sampling time was addressed. 

4.2.2.1 Background Noise 

The first step of the signal measurement was to evaluate the background noise by measuring the 

noise signal separately and comparing it with the actual signal. The signal to noise ratio (SNR)   

was used to determine the strength of the main signal with respect to noise.  A sketch of the main, 

and noise signals and SNR is shown in Figure 4-4.  SNR is given by Equation 4-11 [223] 
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Figure 4-4 Schematic description of SNR [223] 

𝑆𝑁𝑅𝑑𝐵 = 10 log10 [(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑃𝑛𝑜𝑖𝑠𝑒

𝑃𝑛𝑜𝑖𝑠𝑒

)]  4-11 

where 𝑃 is the signal’s power given by the root mean square (RMS) of the amplitude. SNR is a 

dimensionless number. 

The other technique used to filter out the noise signal was to determine the frequency range 

where the power of the noise signal is concentrated and ignore this frequency range in the 

analysis.  

4.2.2.2 Sampling Frequency 

In signals where the frequency content is roughly known, the sampling frequency has to be at 

least twice the highest frequency of the expected signal using the Nyquist criterion.[224] Due to 
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turbulent fluctuation caused by fluid flow in gas stirred ladles, the ladle wall vibration signal may 

not have distinct peaks in its frequency spectrum; instead, the spectrum may be composed of a 

broad range of frequencies. Cimbala [224] proposed a trial and error procedure to determine the 

sampling rate in such phenomenon. The principle is to sample the signal at different sampling 

rates and observe the location of two or more peak frequencies in the frequency spectra. The 

procedure is summarized below:  

i. Starting with sampling rates 𝑓1
′ 

ii. Sample at a high rate 𝑓2
′ , which is not integer multiple of 𝑓1

′ 

iii. Check the location of the two peak frequencies in both frequency spectrums. Peaks in the 

frequency spectra that appear at different frequencies indicate some aliasing errors are 

happening. 

iv. Continue sampling at a higher rate till the peaks in the spectra do not change or shift 

v. Sampling at a very high rate may cause poor frequency resolution  

Another criterion to be fulfilled is that the frequency spectrum should fall to zero amplitude near 

the folding frequency of the spectrum if the sampling frequency is high enough. If this is not the 

case, aliasing of higher frequency components may have occurred.[224] The sampling frequency 

of the sound pressure was determined using this method. 

4.2.2.3 Sample Time 

The recording length of the data acquisition of vibration and sound signals was computed by 

observing the spectral wave pattern at different sampling times. This involved taking the 

measurement for an extended period, 𝑇, and dividing the time history into 𝑁 divisions as shown 

in Figure 4-5. Once the signal is divided, the two divisions (𝑇2) are compared. If there is no 

difference between them, the sample time can be reduced to the time of the division. When a 

difference is noted, then the larger time is taken as a sampling time. The division starts with two 

and continues until the smallest division, 𝑡,  is found. This smallest time, 𝑡, represents the smallest 

sampling time that provide similar frequency spectrum among the dividends. Dividing further 

will cause the similarity of frequency spectrum to be distorted. Hence, a sample time of 𝑡 seconds 

was determined and used throughout the experiment assuming that reducing the sample time to 

𝑡 seconds does not affect the quality of the data.  
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After determining the sampling rate and sample time, the data was collected from the physical 

cold model. The sample time for the industrial data was determined from a single heat in which 

the flow rate remained constant.  The gathered data was analysed using various techniques of 

signal processing and statistics. 

 

Figure 4-5 Dividing the time history into N smaller time lengths. 

4.3 Data Analysis 

The time-dependent data collected from the laboratory and plant scales was put into a different 

group of datasets based on the objective of the study and/or to make it suitable for analysis. The 

specific grouping is discussed in detail in each particular chapter and its sections. In this section, 

the general analysis procedure and the techniques are briefly described. 

The datasets were analysed in the time and frequency domains. Time domain analysis involved 

the computation of the sum of the vibration and sound pressure amplitudes to observe the 

variation/trend with process parameters such as volumetric airflow rate, bottom layer depth, and 

top layer thickness. The sum of the absolute values of the amplitudes for a sample time 𝑡 was 

calculated using Equation 4-11. 



 

73 

 

𝐴𝑠𝑢𝑚 = ∑|𝐴(𝑡)|  4-11 

where 𝐴 is the vibration amplitude in 𝑚/𝑠2 or sound pressure in Pa.  the majority of the 

investigation was carried out in the frequency domain that applied various signal-processing 

methods. 

4.3.1 Signal Processing 

The acquired time varying signals from the transducers were brought into a mathematical 

integrator for conversion to individual frequency components by an FFT (Fast Fourier 

Transform).  In some portions of the study, the Short-Time Fourier Transform (STFT) and Power 

Spectral Density (PSD) were used to analyse the frequency content and the power of the signal 

as a function of the frequency. STFT was applied to locate the frequency range where the power 

of the noise signal is concentrated in the industrial data. In addition, the Savitzky-Golay (S-G) 

filter was used to smooth the digital plant data to minimize further the presence of background 

noise.  

During the bubbling sound study, PSD was applied to find the power present in the sound signal 

as a function of frequency. 

4.3.1.1 Fast Fourier Transform 

The concept of Fourier helps in transforming time functions of waves to the frequency domain.[141, 

225-227]. It shows how fast or how randomly the signal is changing. The vibration signal collected 

from the laboratory model and plant has three component signals: 𝑦  and 𝑧 components.  The 

sound pressure is a one-dimensional time signal. Each time function signal was transformed to 

its respective frequency domain using the Fast Fourier Transform (FFT) algorithm. A detailed 

explanation of the Fourier Transform can be found in the literature.[141, 143, 144, 228-230] The 

mathematical definition of the FFT for any signal 𝑥(𝑡) is given by Equation 4-12. 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡  4-12 
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where 𝑥(𝑡), exp (−𝑗2𝜋𝑓𝑡), 𝑡 are the time signal, frequency, complex oscillation, and t is the time 

axis of the signal respectively. 𝑓 is the single frequency parameter that determines the basis 

function in the family. There is one basis function for every 𝑓. The purpose of the transformation 

of the vibration signal was to prepare the data for further statistical analysis.  

4.3.1.2 Short Time Fourier Transform 

Raw plant vibration data is often full of noise. The sources of this unwanted signal can be crane 

movement, nearby ladle furnaces, and other related operations. In order to obtain the 

characteristic vibration signals caused by gas stirring from the vacuum tank degasser, the 

background noise has to be filtered out or reduced to a level that does not alter the end 

computation outcome. In this study, the industrial data was processed by STFT to remove the 

heavy noise. The Short-Time Fourier Transform (STFT) is a Fourier-related transform that can 

convert a non-stationary one-dimensional time signal to the two-dimensional frequency-time 

domain.[231-233] Mathematically it is defined by Equation 4-13.[233, 234]  

𝑇𝐹(𝑡, 𝑓) = |∫ 𝑦(𝜏)ℎ(𝜏 − 𝑡)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

|  4-13 

where ℎ(𝑡) is a short-time analysis window centred at 𝑡 = 0. This technique was applied here to 

identify the frequency band where the power of the noise is concentrated. The frequency ranges 

that contain high noise signal were not considered for further analysis.  The frequency ranges 

that have less noise component were further processed using Savitzky-Golay filter. 

4.3.1.3 Savitzky-Golay Filter 

To capture essential patterns and improve the signal to noise ratio without greatly destroying the 

signal, the plant data was smoothed using the Savitzky-Golay filter (S-G filter). S-G filter a widely 

used filter for reducing noise.[235-238] The benefits of this filter are: it adjusts boundaries 

automatically, it easy to program, it can deal with missing values, it performs smoothing faster, 

one parameter provides continuous control of the smoothness and permits quick cross validation.  

[239]   It smooths data using a local least square (LS) polynomial approximation.[236]  It acts on a 

vector of input samples 𝑥(𝑘) to give a smoothed vector of y(k).  This filter is defined 

mathematically in Equation 4-14.[234, 237, 238, 240-242] 
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Yj = ∑ Ci

i=(m−1)/2

i=−(m−1)/2

Yj+i      
m + 1

2
≤ j ≤ n −

m − 1

2
    4-14 

 where 𝑛 is sample size of the data (𝑋𝑗, 𝑌𝑗)  and 𝑗 = 1, … .,n. 𝑚 is number of convolution coefficients 

,𝐶𝑖. In this analysis, the S-G filter in MATLAB is utilized. The window width over which to do 

the polynomial fit and the order of the polynomial were chosen in a way that gives the best fit 

and better correlation between the latent variable and process parameters. 

4.3.1.4 Power Spectral Density 

Knowing the distribution of the signal’s strength in the frequency domain is important in order 

to use it in many applications. The power spectrum of a time series signal, 𝑥(𝑡), is used to compute 

power distribution across frequency components constituting that signal.[243-246]  The average 

power spectral density, 𝑆𝑥(𝑓) , of a random time signal 𝑥(𝑡)  is computed from the Fourier 

Transform and its autocorrelation, 𝑅𝑥(𝜏).[244, 247, 248]  The autocorrelation and power spectral density 

are given in Equation 4-15. 

𝑆𝑥(𝑓) = ∫ 𝑅𝑥
∞

−∞
(𝜏)𝑒−2𝑗𝜋𝑓𝜏𝑑𝜏,     where 𝑅𝑥(𝜏) = ∫ 𝑥(𝑡)

∞

−∞
𝑥(𝑡 + 𝜏)dt 4-15 

To analyse the acoustic pressure variation generated during bubble flow in gas stirred ladles, 

investigation of the frequency components was important. In the study of the bubbling sound 

from the physical cold model, the power spectral density of the sound pressure was used to 

compute the energy content of different frequency ranges. This was used to characterize the 

sound pressure with respect to process parameters such as volumetric gas flow rate and bath 

volume. The PSD was not applied to the vibration data. 

 The vibration data, once transformed to the frequency domain, was further analysed by two 

statistical approaches. These approaches were crucial in discovering essential relationships in the 

large vibration dataset. 

4.3.2 Statistical Techniques 

Most of the industrial processes are not so simple to be explained and controlled by simple laws 

of nature or a scientific law.[18]  This is partly because the number of variables affecting a certain 

process is large. Hence, these variables have to be measured and manipulated to be used as an 
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input to the control system.[249] In a similar manner, ladle metallurgy operations involve complex 

processes such as compositional changes through chemical reactions and multi-dimensional fluid 

flows and therefore a single mathematical model may not be sufficient to predict the process.[250] 

Xu et al. successfully measured vibration and sound signals generated from the metallurgical 

processes and used the multivariate statistical method to analyse the data. These methods are 

used to a summarized data to analyse the correlation between process variables and to unveil 

underlying structure.[27, 251-255] 

In this study, two multivariate statistical methods were applied to the three-variable frequency-

domain vibration data collected from the laboratory and plant scales. These are linear principal 

component analysis (PCA) and partial least square (PLS). The main weakness of these techniques 

is that they can only detect linear relationships but they also have many other advantages. 

The choice of PLS was due to its ability to analyse data with many, noisy, collinear, and even 

incomplete variables in both input and output data. PLS also has a desirable property that the 

precision of the model parameters improves with the increasing number of relevant variables and 

observations. PLS and PCA based industrial multivariate monitoring schemes have been shown 

good progress in the last two decades. PCA was selected to be one of the analysis tools because 

of the following reasons. It is a reliable, simple and nonparametric method of extracting 

important information from a large dataset. It has simple mathematical operations, which make 

it convenient for online analysis. PCA has success stories in industrial applications.[31, 175, 256]Its first 

few principal components can account for the maximum variance of the data.  The reduced 

components can also be utilized for further analysis.  In ladle stirring where several different 

signals can be extracted, it is very important if the most process descriptive variables are 

identified and used for its online control process.  The three vibration signals (along x, y and z) 

and sound signal have been found more important to effectively describe the stirring 

phenomenon in ladle metallurgy.[7] PCA was used to find the structure in the vibration data. 

4.3.2.1 Principal Component Analysis (PCA) 

 In gas stirred ladles different signals can be extracted that can describe the process and used for 

its online control. During ladle stirring, vibration and sound signals are generated during bottom 

gas agitation. The measured vibration signal has three components: 𝑥−, 𝑦 −, and 𝑧 −axis. PCA 
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was applied to combine these three signals and compute the structure of the datasets. PCA was 

applied in various frequency ranges in order to identify any highly structured frequency ranges. 

In addition, the best accelerometer location was chosen based on PCA.  The vibration data used 

to construct the state matrix for PCA was prearranged in the order of increasing flowrate, bottom 

layer depth and top layer thickness.  Then, the data was subdivided into different frequency 

ranges. In every frequency range, the absolute values of the vibration amplitudes that were 

captured at a specific flow rate and bath height were summed before PCA was applied.  PCA was 

then performed on the treated data. 

 PCA comprises several steps.[29]  Let X0 be the original data matrix where its rows and columns 

correspond to three axes of vibration (𝑛) and set of measurements (𝑚) respectively. The first step 

was to mean centre and scale X0. Then the new mean centered and scaled   𝑚𝑥𝑛 matrix 𝑋 was 

used to calculate the covariance matrix.  The covariance matrix is given by Equation 4-16.[28, 257] 

𝑪𝑥 =
1

𝑛 − 1
𝑋𝑋𝑇   4-16 

𝐶𝑋 is a square symmetric 𝑚𝑥𝑚 matrix and its diagonals are the variances of the process variables. 

These diagonal variables are assumed to describe the variability in the stirring process.  The next 

step was to compute the eigenvectors and eigenvalues of the covariance matrix. These provide 

vital information about the vibration data. It is important to remember that the sum of the lengths 

of the eigenvectors is equal to 1.[28, 29, 31, 158, 165, 226, 246, 257]. Solving the singular value decomposition 

(SVD) of the sample covariance, 𝐶𝑋 , gives the loading vectors. Loading vectors are computed 

loading and ordered by the amount of variance explained in the loading vector directions.[158] 

𝐶𝑋 =
1

𝑛 − 1
𝑋𝑇𝑋 = 𝑉Λ𝑉𝑇  4-17 

In Equation 4- 17, the diagonal matrix Λ contains the singular/eigenvalues in decreasing order. 

These singular values are non-negative quantities shown in Equation 4-18. 

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑚 ≥ 0  4-18 

A vital property of the Eigenvalues that their sum is equal to the sum of the diagonal elements of 

the covariance. In Equation, 4-18,  𝜆𝑖 corresponds to the 𝑖𝑡ℎ  principal component (𝑃𝐶). 𝑃𝐶𝑖 is the 

linear combination of the variables given by Equation 4-19. 
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𝑃𝐶𝑖 = 𝑉𝑖1𝑥1 + 𝑉𝑖2𝑥2 + ⋯ 𝑉𝑖𝑛𝑥𝑛 +  4-19 

These principal components show the amount of variance/data structure explained in each latent 

variable. Depending on the values of PCs, the frequency ranges with high data structure were 

identified. The identified frequency ranges were further analysed by partial least square (PLS). 

In PLS both input and output matrices are considered. The input matrix contained the 

experimental parameters whereas the output matrix consisted of the three accelerations in the 

three axes. 

4.3.2.2 Partial Least Square Regression  

PLS regression tries to find a common structure between dependent variables/output matrix and 

predictors/ input matrix by undertaking simultaneous decomposition to compute latent vectors 

that explain maximum covariance between dependent and predictor variables. The procedure 

used to apply PLS is discussed in detail by de Jong.[30] The summary of the procedure is 

summarized in Table 4-5.[30] This aims to develop predictive models for stirring status using 

vibration signals. In Equation 4-20 X is the predictor, B is regression coefficient and 𝒀𝒓𝒆𝒔 is the 

residual data. PLS analysis was carried out in different frequency ranges for a wide variety of 

data sets that are collected from two cold models and the plant scale.                                                                                         

Y = βX + 𝑌𝑟𝑒𝑠
  4-20 

4.3.2.3 PLS Model Validation 

To check how well the PLS model predicts new data, Cross-validation (CV) is a practical and 

reliable way to test this predictive significance. CV is a standard in PLSR analysis. CV is 

performed by dividing the data into a model training/learning and model test/validation set.[172]  

Divide the learning data 𝐿 randomly in to K segments 𝐿𝑘 of equal size. let 𝑓𝑘  be the predictor 

trained on 𝐿\𝐿𝑘 , the 𝑘 − 𝑓𝑜𝑙𝑑 cross validation estimate is given by Equation 4-2.[258] 

𝑀𝑆𝐸𝑃𝐶𝑉,𝐾 =
1

𝑛𝑘

∑ ∑(𝑓𝑘(𝑦𝑝𝑖) − 𝑦𝑟𝑖)
2

𝑖𝜖𝐿𝑘

𝐾

𝑘=1

  4-21 

where 𝑦𝑝 and 𝑦𝑟 are the predicted and response/measured variables  The Root Mean Square Error 

of Prediction (MSEP) was calculated to quantify how well each model predicted the training set 
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or test set. PLS models with low MSE have higher performance. PLS in Matlab uses either k-fold 

cross validation or  𝑥 and 𝑦 both to fit the model and to estimate the mean-squared errors without 

cross-validation. 

In this study, models developed by training data were validated by a new/test dataset. MSEP was 

also computed to observe how well these models predict the required parameters. Plant data was 

also used in PLS models derived from cold model data. 

4.4 Error Analysis 

In an experiment, there are two kinds of errors: systematic and random errors. [259] Generally, in 

any signal processing, errors can be random which are due to statistical sampling or bias errors, 

which appear during data acquisition. Bias errors are systematic and occur in the same direction 

[23]. Bias errors occur at resonance frequencies, this error can be negligible because signals were 

taken below the resonance Errors that are generated in the digital signal analysis are aliasing and 

leakage. Aliasing is due to an inappropriate sampling interval and leakage is the result of window 

selection.[23] 

4.4.1 Systematic Errors 

Systematic errors affect the accuracy of measurement.[259] They cannot be avoided or reduced by 

repeating the measurement. Common sources of systematic errors are a faulty reading of 

instruments by the user, faulty calibration of measuring instruments, or poorly maintained 

instruments.  To avoid systematic errors in the experiments of this study, accelerometers, flow 

meters and microphones were properly calibrated before used in the laboratory. Calibration was 

performed in compliance with ISO 9001, ISO 10012-1, ANSI Z540.3, and ISO 17025. In addition, 

sensors with relatively high sensitivity were selected for vibration and sound measurement.  

4.4.2 Random Errors 

Random errors are errors that influence the precision of a measurement. If random errors exist in 

an experiment, the measurements can vary from each other due to random and unpredictable 

variations in the measurement process. Common sources of random errors are problems 
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estimating a quantity that lies between the graduations (the lines) on an instrument and the 

inability to read an instrument because the reading fluctuates during the measurement.  

In laboratory scale study, the external sources of sound and vibration were minimized to a 

negligible value by using proper insulation and tightly fixing the apparatus to the ground. This 

helped to diminish the random error generated due to unwanted signals in the measurement. 

This is described in section 5.3.1 and 8.5.1. Selection of appropriate sample time, sampling 

frequency, and windows was also performed to eliminate or reduce aliasing and leakage. In plant 

data, various noise filtering and smoothing techniques were applied. This is discussed in section 

7.5 and 7.6.  

Errors caused by a flow meter and level reading were addressed by repeating the measurements 

in each experiment three times.  The standard deviation and mean were used to observe how the 

first principal components (PC1), the degree of linear correlation (𝑅2), and the percent of variation 

(PACVAR1) are close to each other for the three measurements. Since the most repeatable values 

were taken, the difference between the three selected values of each parameter was very small. 

To compute how precise these measurements are, statistical analysis was carried out. This 

consists of computing a central value and observing the distribution of the data around this 

central value. It uses two numbers: the mean and the standard deviation. For a set of 𝑁 measured 

values for some quantity 𝑥 , the mean and the standard deviation are computed from Equations 

4-22 and 4-23.[260] 

�̅� =
1

𝑥
∑ 𝑥𝑖

𝑁

𝑖=1

  4-22 

𝜎𝑥 = √
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

  4-23 

In general, PCA and PLS are techniques that can filter out noise, irrelevant or redundant data to 

reveal the underlying structure. This can help to minimize various errors introduced in the data.   
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4.5 Methodology Summary 

In summary, this research was carried out experimentally mostly in the laboratory using physical 

cold models of actual ladles of capacity 200 and 160 tonne. The 200-tonne ladle is constructed 

from plastic (Perspex) material and the 160-tonne ladle is built from stainless steel. Physical 

models were designed mainly based on geometric and dynamic similarity criteria. The two 

signals collected to study the ladle stirring are sound and vibration. The vibration was also 

measured from a vacuum degasser ladle in an industry. Appropriate data acquisition hardware 

and software were used to acquire process and analyse this data. Vibration data was mostly 

analysed by PLS and PCA whereas sound signal was investigated using signal processing 

techniques. Error analysis and cross-validation were also carried out to check the accuracy of data 

and validity of models. The research began by studying a plastic walled water model, which will 

be described in the following chapter. 
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5 Plastic Walled Cold Model Study 

5.1 Introduction  

This chapter describes the cold model study of a 200-tonne ladle. It was focused on measuring 

the amount of stirring in ladles using a three-axis vibration signal. It commenced by analyzing 

the optimum accelerometer location on the external wall of the plastic model. As described in 

Chapter 2 section 2.6, there is limited literature on detecting stirring of molten metal in ladle 

metallurgy by using vibration signal. Moreover, the low flow rate inert gas stirring phenomena 

is not fully understood. The issue of sensor location was also not addressed in the open literature. 

In addition, previous studies measured ladle vibration in one dimension only. Hence, this chapter 

describes the investigation that addresses the issue of accelerometer location, vibration data 

structure and the degree of stirring at various flow rate ranges and bath depths using a plastic 

walled physical cold model. The study measured triaxial vibration signal, applied PCA, and PLS 

to analyse the data. 

5.2 Experimental Setup 

A cold model, prepared using dynamic and geometric similarity criteria proposed by 

Krishnapisharody and Irons, was used in this study.[36] The detail theory and procedure of 

physical modeling is discussed in section 4.1.   

The cold model simulated a 200-tonne capacity industrial ladle that is scaled down to 1/10. Then 

the geometric dimensions and other process parameters were determined using this scaling 

factor. The vessel’s inner diameter is 0.42 m and the height is 0.50 m. The nozzle (diameter =0.003 

m) through which compressed air is injected is located at the bottom center. A summary of the 

parameters, which were used in the laboratory scale, is presented in Table 5-1.  

The compressed air flow rate was controlled by a standard acrylic rotameter which was 

assembled between a ball valve and pressure regulator. The air pressure was made to be at a fixed 

value by a pressure regulator at 0.20 MPa to prevent any fluctuation that may originate from the 

source. The ball valve was significant to halt the backflow of fluid from the vessel. A stud 

mounted triaxial PCB accelerometer was used for simultaneous multi-axis (x, y and z) vessel wall 

vibration measurement. Analogue vibration data obtained from the accelerometer was digitized 
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using a 4-channel C series dynamic signal acquisition module (National Instrument 9234) before 

it was exported to a computer. 

Table 5-1 working conditions in laboratory and plant scales 

Parameter  Industrial 

ladle 

Cold model (293 K) 

 Density  

, kg/m3 

Kinematic 

Viscosity 

,m2/s 

Surface 

Tension, N/m 

Molten metal water[261] 998.2 1.003x10-6 0.0728 

slag oil 878.7 326.00 x10-6 0.031 

Bubbling gas Argon air 1.23 15.11 x10-6 0.0729 

Plug/nozzle 

position 

centre  centre    

Scale factor 1 0.1    

Temperature 1873 K 293 K    

National Instrument SignalExpresss 2013 software was used to acquire, generate and save the 

signals. The list of sensors and accessories used in this experiment are described in Chapter 4 and 

shown Table 4-2 and Table 4-4. The vessel frame was tightly fixed to the concrete floor to make 

background noise negligible. The overall experimental setup is shown in Figure 5-1 and 5-2.  

Candidate locations of the accelerometer are positioned along the vertical axis on the external 

vessel wall. Figure 5-3 shows the three locations for mounting the accelerometer.  

 

Figure 5-1 Laboratory experimental setup 
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Figure 5-2 Sketch of experimental setup 

 

Figure 5-3 Accelerometer locations 

5.3 Experimental Conditions 

The main parameters of the stirring process that involved in this study are the depth of the molten 

metal (H), slag thickness (h), and volumetric gas flow rate (Q). Applying geometric and dynamic 

similarity criteria, the parameters’ values in the lab-scale were determined. Equation 4-10 which 

is based on plume Froude number similarity ((𝐹𝑟𝑝)
𝑚

= (𝐹𝑟𝑝)
𝑓
) was applied to determine the 

volumetric flow rates for cold model study. Flow rates considered in this study were computed 

from Equation 4-10 (𝑄𝑚 = 𝜆2.5𝑄𝑓) in order to be within the range of flow rates applied in ladle 

metallurgy.  

The experiment was carried out with a single layer (without top layer/ oil) and double layer (with 

the bottom and top layers). Generally, the bottom layer depth was varied from 0.1 m to 0.25 m at 
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intervals of 0.05 m through the experiment. Similarly, four top layer thicknesses were considered 

in this study: 0.005, 0.01, and 0.015 and 0.02 m.  

Three volumetric airflow rate ranges in the interval of 0.17x10-5 to 10.83x10-5 m3/s were considered 

in this study.  This flow interval corresponds to a range of 53.3 x10-5 to 3416.7 m3/s in actual 

industrial ladles. This flow rate range is within the operational range of flow rates in ladles.[38, 105, 

262] The vibration data was gathered by varying the parameters according to Table 5-2 for the 

single layer and Table 5-3 for the double layer studies. The single and double layer investigation 

done after the accelerometer location was selected.  

Table 5-2 Experimental conditions for single layer study 

Parameter  Water depth (m) Air flow rate (m3/s) x 10-5 

0.1 to 0.25  at 0.05 interval 0.17 to 0.83 at 0.17 interval 

0.1 to 0.25  at 0.05 interval 0.83 to 4.17   at 0.83  interval 

0.1 to 0.25  at 0.05 interval 3.33 to 10.83  at 0.83  interval 

Table 5-3 Experimental conditions for double layer study 

Parameter  Water depth (m) Oil depth(m) Air flow rate (m3/s) x 10-5   

0.1 

0.15 

0.2 

0.25 

0.1 

0.15 

0.2 

0.25 

0.1 

0.15 

0.2 

0.25 

Vibration data from each of the three locations shown in Figure 5-2 was collected using the 

experimental conditions presented in Table 5-4. 

Table 5-4 Experimental conditions for accelerometer location selection 

Water depth (m) Oil thickness (m) Flow rate(m3/s) x 10-5   

0.1 to 0.25 , 0.05 interval None  0.83 to 4.17 at 0.83 interval 

0.2 0.01 0.83 to 4.17 at 0.83 interval 
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The values of the key process parameters were determined so that the data acquisition covers a 

range of operating conditions that can generalise the outcome. The data acquisition began by 

measuring the background noise and comparing it with the main signal generated from the air 

bubbling of vessel bath. Then, sampling rate (𝐹𝑠) and sampling time/period (𝑇) were determined. 

These parameters were then used throughout the data acquisition process. 

5.3.1 Background Noise 

The vibration signal measured in the absence of vessel bath stirring was analysed in the time and 

frequency domains. This signal was compared to the vibration signal imparted during bath 

stirring. Figure 5-4 shows the amplitudes of the noise and main signal. It is evident that the 

amplitude of the background noise was insignificant. This outcome was also repeated in the 

frequency domain investigation, which is shown in Figure 5-5. 

 

Figure 5-4 Vibration amplitude of background noise and main signal 

The signal to noise ratio (SNR) was computed and was found to be very large which also confirms 

that the other sources of vibration do not affect the main signal. This signifies that filtering was 

not important for the cold model study. 



 

88 

 

 

 
Figure 5-5 Spectral variations of noise and main signal 

5.3.2 Sampling Rate 

The vibration signal was sampled at 1828 Hz. This was computed using the trial and error 

procedure proposed by Cimbala.[224] The procedure is described in section 4.2.2.2.  In addition, 

the minimum sampling frequency of the data acquisition module is 1828 Hz. At this sampling 

rate, the vibration frequency spectrum drops off towards zero amplitude near folding/Nyquist 

frequency. This is shown in Figure 5-6.  According to literature, this sampling frequency is high 

enough to sample the vibration signals.[224] This sampling rate was also compared with other 

studies, which were conducted on ladle vibration due to stirring, and was found to be higher.  [7, 

12]  Hence, 1828 Hz was used to sample the vibration data throughout the experiment. 

 
Figure 5-6 Vibration frequency spectrum at 0.83x10-5 m3/s and 0.10 m water bath height 

Noise signal (shown in red) 

Main signal 
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5.3.3 Sampling Time 

The minimum sampling time was computed by observing the frequency spectra at various 

sample times. The vibration signal was recorded for 120 seconds. Then, this recording was 

divided into smaller segments and a comparison of their frequency-amplitude plots was made. 

The smallest time length that provides identical frequency spectrum graphs was taken as the 

sample time. At this sample time, the quality of the measured data was not affected.  

Figures 5-7 and 5-8 represent what has been found during sample time manipulation. Figure 5-7 

shows the frequency-amplitude graph at 5-second sample time. It can be observed that the three 

plots are not identical. On the other hand, Figure 5-8 shows that the spectral variation of the 

amplitude is quite similar in the two plots. Hence the period or sample time for the whole 

vibration data gathering was taken to 6 seconds. Other studies have also shown that this sample 

time gives the desired data quality.[18] 

 
Figure 5-7 Frequency spectra at 5 seconds sample time 

 



 

90 

 

 
Figure 5-8 Frequency spectra at 6 seconds sample time 

5.3.4 Analysis Procedure 

The time-domain vibration signal was transformed into the frequency domain using FFT 

algorithm, found in Matlab version 2013a, before principal component analysis was applied.  

To identify the most informative frequency range, the whole frequency range was split into 

smaller ranges. The vibration amplitudes within these specific frequency ranges were analysed 

by principal component analysis. The analysis starts from a large to a smaller frequency range 

(10 Hz).  The sum of the vibration amplitude within the considered frequency range was 

calculated using Equation 5-1. This was used to build a matrix, which is an input for PCA analysis. 

𝑣𝑘 = ∑ 𝑣(𝑖)

𝑖+10

𝑖

  5-1 

Where 𝑘 = 𝑥, 𝑦 and 𝑧 accelerations and 𝑖 = 0, 10, 20 … 90,900 Hz. 

The matrix consists of the acceleration in the x, y and z directions at different experimental 

conditions. The goal was to linearly combine and suppress them to one or two latent variables 

using the algorithm of PCA found in Matlab 2013a. These helped to identify the most informative 



 

91 

 

frequency ranges. The data within these informative frequency ranges were analysed using the 

algorithm of PLS in Matlab 2013a. The concept of PCA and PLS are described in section 4.3.2.  In 

the PLS analysis, airflow rate, water depth, and top layer/oil thickness make the predictor matrix 

while the measured vibration along 𝑥, 𝑦 and 𝑧-axis make the response matrix. The number of 

variables is equal to three in each matrix. With the PLS, the aim is to extract a set of orthogonal 

matrices/latent variables with the best predictive power. The model to predict the vibration 

response is given by Equation 5-2.  

𝒀 = 𝜷𝑿 + 𝒀𝒓𝒆𝒔 5-2 

 where 𝑿 is the predictor matrix, 𝜷 is the regression coefficient, and 𝒀𝒓𝒆𝒔 is the residual matrix.  

The resulting response is correlated with the stirring power and average bath recirculation speed 

defined in Equation 2-2a and 2-2b respectively. The overall analysis scheme is presented in Figure 

5-9.  

 

Figure 5-9 Overall analysis scheme 
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During PCA and PLS analysis, mean values of first principal components (PC1) and percent 

variation (PCVAR1) were used to evaluate the structure in the data and the amount of variation 

explained by the first latent variables. The standard deviation was also computed using Equation 

4-22 to examine the precision of the results.  The maximum standard of deviation varied from 0.3 

to 1 in most of the calculations as the most repeatable outcomes were taken. 

5.4 Result and Discussion 

5.4.1 Optimum Sensor Location 

To determine the optimum sensor location, data gathered from the three locations were analysed 

using PCA. The sum of the first two principal components (PC1+PC2) was used to identify which 

location provided the maximum process variation.  

Table 5-5 shows the values of the first and second principal components different 

frequency ranges. Similarly, Table 5-6 shows the values of principal components from 

the double layer data analysis. The result shows that the signals with higher PC1 were 

found in two different frequency ranges for the single layer experiment. Moreover, the 

analyses reveal that the first principal component retains almost all of the structure in 

the data. The finding highlights that the frequency range where the useful information 

is situated varies slightly for the three locations with no significant differences for 

information. Less structured frequency ranges are included in both tables for 

comparison purposes. Though the sum of the two principal components is high, the 

choice of the best location was based on the value of the first latent variable. Therefore, 

location 2, which is at the mid-height of the rig, is chosen because of easy accessibility 

for mounting the accelerometer. 
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Table 5-5 PC1 and PC2 values for the single (without the top) layer study 

Sensor  location 1 2 3 

Flow rate(m3/s) x 10-5 0.83-4.17 0.83-4.17 0.83-4.17 

Frequency range (Hz) 50-60 70-80 30-40 50-60 60-70 80-90 

PC1 (%) 98 96 97 97 96 95 

PC2 (%) 1 2 2 3 3 4 

PC1+PC2 99 98 99 100 99 99 

Frequency range (Hz) 80-90 10-20 50-60 

PC1 (%) 82 72 89 

PC2 (%) 17 17 10 

PC1+PC2 99 89 99 

Table 5-6  PC1 and PC2 values for the double (with the top) layer study 

5.4.2 Single Layer Study 

The study conducted on the cold model in the absence of the upper layer/slag shows that 

the frequency range where the highest process variation obtained is different for low 

and high flow rate bubbling. Table 5-7 shows the frequency ranges in the investigated 

flow rates for the single layer study. It was found that specific frequency ranges capture 

the majority of the variation in the process and these frequencies vary with flow rate 

range. 

 

 

Water level =0.20 m , oil depth=0.01 m 

Sensor  location 1 2 3 

Flow rate (m3/s) x 10-5 0.83-4.17 0.83-4.17 0.83-4.17 

Frequency range (Hz) 60-70 110 to 120 50-60 60-70 70-80 160-170 

PC1 (%) 99 72 99.5 90 99 71 

PC2 (%) 1 27 0.5 9 1 29 

PC1+PC2 100 99 100 99 100 100 
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Table 5-7 PC1 and PC2 values at different frequency ranges and flow rates for the single 

(without the top layer) layer study 

Flow rate(m3/s) x 10-5 0.17-0.83 

Frequency range(Hz) 40-50 160-170 180-190 190-200 

PC1 (%) 76 68 96 90 

PC2 (%) 20 23 3 4 

PC1+PC2 96 91 99 94 

    

Flow rate (m3/s) x 10-5 0.83-4.17 

Frequency range (Hz) 10-20 50-60 60-70 170-180 

PC1 (%) 72 95 84 85 

PC2 (%) 19 3 13 11 

PC1+PC2 91 98 97 96 

     

Flow rate(m3/s) x 10-5 3.33-10.83 

Frequency range(Hz) 60-70 220-230 240-250 250-60 

PC1 (%) 76 79 88 74 

PC2 (%) 17 12 9 13 

PC1+PC2 93 91 97 91 

The first principal component or latent variable with maximum structure in each flow rate range 

was compared to the stirring power defined by Szekely et al.[65]  in Equation 2-2a, and the average 

steel bath recirculation speed as defined in Equation 2-2b. The results are shown in Figures 5-10 

to 5-12. Figure 5-10, 5-11 and 5-12 show a linear relationship between stirring energy and PC1 as 

well as bath recirculation speed and the dominant principal component. The first principal 

component predicts the stirring energy and bath recirculation speed quite well at all flow rates 

(0.96 ≥ 𝑅2 ≥ 0.85) analysed in this study.  
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(a) 

 
(b) 

Figure 5-10 Relationship between PC1 and a) stirring power b) steel bath recirculation speed for 

flow rate range of 0.17 to 0.83 x 10-5 m3/s 

(a) 

 
(b) 

Figure 5-11 Relationship between PC1 and a) stirring power b) steel bath recirculation speed for 

flow rate range of 0.83 to 4.17 x 10-5 m3/s 

𝑃𝐶1 = 0.57𝑥 + 0.58𝑦 + 0.58𝑧  5-3 

Equation 5-3 shows the loading vector of the first principal component/latent variable for the low 

flow rate range in the frequency range of 180 to 190 Hz. This reveals that the contribution of 

vibration along 𝑥, 𝑦 and 𝑧-direction to the overall stirring process variation is almost equal (33, 

R² = 0.9712
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33 and 34 %). This implies that vibrations in the three axes are equally useful in estimating the 

mixing status and developing on-line ladle stirring control. 

  

(a) (b) 

Figure 5-12 Relationship between PC1 and a) stirring power b) steel bath recirculation speed for 

flow rate range of 3.33 to 10.83 x 10-5 m3/s 

5.4.3 Double Layer Study 

The double layer data was analysed using PCA and PLS. PCA was applied in a similar manner 

to the single layer study to find the frequency ranges with maximal structure. PLS was applied 

in the identified frequency ranges on the input and output data to extract latent variables with 

high predictive power. Principal component analysis at a fixed water level and variable oil depth 

show that there are specific informative frequencies for of each the flow rate range selected. These 

informative frequency ranges are presented in Table 5-8. Table 5-8 shows that there is a strong 

structure in the data in specific frequency ranges in the flow rate ranges investigated. The 

maximum standard deviation computed for these values is ±0.76. 

Vibration data gathered by varying the depth of both layers have also been analysed using PCA. 

Most of the informative frequency ranges in the double layer have been found identical to those 

of the single layer study. Some of the informative frequency ranges that were found on the higher 

flow rate double layer stirring study are found to be similar to the study of Minion et al[4]., 

Kostetskii et al.[9] Kemeny et al.[11] and Yuriy et al.[15] These frequency ranges are 50 to 60 Hz, 60 

to 70 Hz. 
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Table 5-8 PC1 values for double layer (with oil on top) bubbling at different frequency ranges 

Flow rate (m3/s)  x 10-5 0.17-0.83 

Frequency range(Hz) 10-20 30-40 70-80 180-190 240-250 

PC1 (%) 46 98 76 96 90 

Flow rate (m3/s)  x 10-5 0.83-4.17 

Frequency range(Hz) 10-20 30-40 80-90 50-60 320-330 

PC1 (%) 70 98 83 95 98 

Flow rate (m3/s)  x 10-5 3.33-10.83 

Frequency range(Hz) 10-20 70-80 30-40 250-260 270-280 

PC1 (%) 80 85 98 97 83 

The identified frequency ranges in the double layer experiment retain most of the stirring process 

variation. However, the correlation of the first principal component with macroscopic models of 

stirring power and bath recirculation speed is not linear as in the single layer analysis. Figure 5-

13 shows the relationship between the highly structured vibration data in the frequency range of 

180 to190 Hz and 250 to 260 Hz. 

  

(a) (b) 

Figure 5-13 Relationship between PC1 and stirring power for the flowrates of a) 0.17 to 0.83 x 10-

5 m3/s b) 3.33-10.83 x 10-5 m3/s 

To alleviate this problem another multivariate statistical technique was used. PLS was applied to 

extract latent variables, which explain the highest variations in the process data (vibration) and 

most predictive of the stirring energy. Figure 5-14 shows the relationship between the latent 

variables of the input X and output Y  for the flow rate range of 0.17 to 0.83 x 10-5 m3/s, with 
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varying depths of the lower layer(water)  and the top layer (oil). This figure uncovers that the 

correlation is satisfactory. Considering a fixed bath level depth, i.e. both top and bottom layers 

depth remain constant, the correlation between the latent variables of predictor and response is 

found to be strong (Figure 5-14b). Figure 5-15a and 5-14b also show the linear relationship 

between the response variable and stirring energy and bath recirculation speed for different 

oil/slag depths. A similar analysis was also done on the other flow rate ranges (0.83 to 4.17 x 10-5 

m3/s and 3.33 to 10.83 x 10-5 m3/s). 

  

(a) (b) 

Figure 5-14 Relationship between X-score and Y-score a) both layers varying   b) fixed bath 

height (H=0.25 m, h=0.20 m) for a flow rate range of 0.17-0.83 x 10-5 m3/s  

  

(a) (b) 
Figure 5-15 Relationship between predicted response  and  a) stirring power  b) bath 

recirculation speed for a  flow rate range of 0.17 to 0.83 x 10-5 m3/s 
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The results are shown in Figures 5-16 to 5-19. The degree of linear correlation between the 

variables and parameters at fixed bath heights are very strong in all the three analyses , with  𝑅2 

is between 83 and 98 %.This indicates that if the slag depth and molten metal height are known, 

the control of mixing in ladles can be managed by studying the data in selected frequency ranges 

.  Figure 5-16 (a) and (b) reveal that the stirring power does not significantly change with changes 

in oil/slag depth. 

  

(a) (b) 

Figure 5-16 Relationship between X-score and Y-score a) both layers varying   b) fixed bath 

height (H=0.25 m, h=0.20 m) speed for flow rate range of 0.83 -4.17 x 10-5 m3/s 

  

(a) (b) 

Figure 5-17 Relationship between predicted response  and  a) stirring power  b) bath 

recirculation speed for a  flow rate range of 0.83 -4.17 x 10-5 m3/s 

The other finding from the partial least squares analysis is that the mean square error (MSE) is 

minimized if three latent variables are extracted to predict the response for double layer stirring. 

This is shown in Figure 5-19 for the high flow rate range. The phenomenon is similar to the two 
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other flow rate ranges. This demonstrates that in order to predict the vibration with minimal 

error, the value of the flow rate, water depth, and oil thickness need to be known and considered 

in the PLS model. 

 
 

(a) (b) 
Figure 5-18 Relationship between X-score and Y score a) both layers varying   b) fixed bath 

height (H=250 mm, h=20mm) speed for flow rate range of 3.33 to 10.83 x 10-5 m3/s 

 
 

(a) (b) 
Figure 5-19 Relationship between predicted response  and  a) stirring power  b) bath 

recirculation speed for a  flow rate range of 3.33 to 10.83 x 10-5 m3/s 

 
Figure 5-20 Relationship between mean square error (MSE) and number of latent variables 
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5.4.4 Comparison of Results  

The relationships established by Burty et al. and Yuriy et al. described by Equation 2-58 and 2-59 

respectively were checked using the vibration data collected from the plastic-walled model.  It 

was found that Equation2-58 agrees with the single layer bubbling vibration data.  The double 

layer data could not show any linear relationship between vibration and their Froude number. 

Figure 5-21a shows the correlation between vibration and Froude number in the single layer. In 

Figures 5-21b, the vibration data was collected for double layer bubbling where the top layer 

varies. 

In similar manner, Figure 5-22a and 5-22b were constructed from data collected by the current 

from the plastic walled cold model to compare the result with Equation 2-59. The vibration data 

was measured at low flow rates with and without the top layer. For the single layer data, it was 

found that the relationship is consistent in terms of an increase in RMS value with flow rate which 

is shown in Figure 5-22a. On the other hand, no distinct relationship was found in the data 

collected in the presence of a varying top layer using Equation 2-59. This is shown in Figure 2-

22b. 

  

(a) (b) 

Figure 5-21 Relationship between vibration energy and Froude number for data taken from 

this study a) single layer b) double layer c) double layer 
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(a) (b) 

Figure 5-22  RMS value of the vibro-signal on the gas flow rate under various blowing 

conditions a) Single layer data b) Double layer data 

 

5.5 Conclusions 

The objective of this study was to find the frequency ranges in the measured vibration signal that 

can retain the majority of the structure based on the percentage of variation explained by the first 

principal component. The partial least squares method was then applied to the input/predictors 

and output/response variables to obtain latent variables that maximize the covariance between 

predictor and response. The study was performed on three different airflow rate ranges and 

various bath levels for both single and double layer conditions on a plastic cold model. This lab-

scale model is a 1/10 scale of the actual 200-tonne ladle. 

It has been found that for the low flow rate range considered in this study, the frequency range 

that retains maximum structure is 180 to 190 Hz.  The first principal component in this frequency 

range can effectively predict both the amount of stirring energy and bath recirculation speed 

adequately for single layer data. However, for data gathered by varying the water and oil depth, 

the relationship has not been found to be linear. This was especially exhibited in the low flow rate 

range. On the other hand, PLS analyses unveiled a strong linear relationship between the 

predictor score and response score of the double layer data of fixed bath height in the frequency 

range of 180 to 190 Hz. Both the stirring power and bath recirculation speed showed a strong 

linear relationship with the response variable (vibration) predicted using PLS. 
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In the intermediate flow rate range study, the frequency ranges with strong structure are different 

from that of low flow rate ranges. The result of the present study reveals that the frequency ranges 

that capture most of the data variation are 50 to 60 Hz and 30 to 40 Hz for single and double layer 

data. An additional frequency range of 320 to 330 Hz was found in the double layer data. The 

dominant principal component in these flow ranges predicts the stirring energy and bath 

recirculation speed effectively (R2≥ 0.90). PLS analysis on the double layer data in the frequency 

range of 30 to 40 Hz shows that the latent variables of the predictors have a good predictive power 

of stirring in the vessel with a small mean square error. This is especially effective if the bath 

height is fixed and only the flow rate is varying. 

In general, the study shows that for a specific flow rate range, there is a corresponding frequency 

range where the experimental data is highly structured. This implies that process control can be 

more effective if the frequency range is chosen carefully. The latent variable of PCA in each 

frequency range predicts the amount of energy transferred to the ladle adequately in the single 

layer. Double layer data has also shown strong linear relationships when analysed using partial 

least squares. This is an important step in building a linear predictive model for the stirring status 

in ladles.  

Finally, this work strengthens the significance of triaxial vibration signal in developing online 

ladle stirring control by one or two latent variables if the frequency ranges are chosen wisely. 

PCA and PLS were important tools in this study to reveal a structure in the data and predict the 

stirring status respectively. The following chapters will focus on analyzing the vibration data 

from cold models of steel material and a subsequent industrial trial. 
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6 Steel-Walled Cold Model Study 

6.1 Introduction 

One of the most important requirements of a steel is its purity. The level of impurities such as 

phosphorous, sulfur, hydrogen, residual elements and inclusion determines its cleanness level. 

The removal of these impurities is a significant challenge for steelmakers.  In steel plants, ladle 

metallurgy operations are responsible for reducing these impurities. Specifically, vacuum tank 

degassing in ladle metallurgy helps remove undesirable gases, harmful inclusions and reduce 

carbon content.[46] In the vacuum degassing process, ladles are stirred by pressurized argon gas 

to achieve low hydrogen, oxygen, and carbon contents. The stirring energy can be calculated 

knowing the injected argon flow and liquid steel temperature.[263] Nevertheless, for industrial 

systems, accurate measurements of the argon flow are not rigorous, due to leakages in the system 

that are hard to assess.[263] As a result, the optimum stirring magnitude may not be correctly 

determined from the process. Measuring vibration from a tank degasser may help in evaluating 

the status of melt stirring. The study of stirring in Vacuum Tank Degasser (VTD) using tri-axis 

vibration signals was first carried out at a laboratory scale using a physical cold model of the 

VTD. 

In this chapter, the cold model study of ladle stirring in a Vacuum Tank Degasser (VTD) is 

discussed. This was part of an industrial study in collaboration with Tata Steel. The study started 

by building a replicate of the VTD using physical modeling concepts and procedures described 

in the methodology chapter. Vibration data was collected from the cold model to study the low 

flow rate-stirring phenomenon. The main objective of this project was to study the stirring process 

at low volumetric airflow rates using vibration signals measured from the cold model of the VTD. 

In the cold study, the second aim was to choose the optimum location of the accelerometer from 

the three candidate locations: the ladle wall, the ladle support, and the tank external wall. 

Vibration data measured from this VTD cold model was analysed using signal processing and 

multivariate statistical techniques described in the methodology chapter. 

6.2 Experimental Setup 

Physical cold models made of steel materials are not common in ladle metallurgy research. This 

is because the steel material is not transparent and cannot show fluid flow behavior during 
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experiments of secondary steelmaking studies. The objective of this research was to investigate 

the stirring phenomenon by measuring the vibration of the ladle wall during bubble flow in the 

steel melt. Hence, the transparency of the plastic walled tanks was not required and the study 

could be carried out on a steel walled model that more accurately represents the industrial 

reactor. This study was carried out in a laboratory using a cold model of the VTD operated by 

Tata Steel plant in the UK. Since the vibration response depends on the nature of the tank material 

[112, 217, 220, 264-267], the newly built physical cold model was made to replicate the material, tapered 

shape, and geometric dimensions of a 160-tonne ladle of the VTD. The VTD comprises a tank, a 

ladle and ladle supports together with gas purging and material addition apparatuses. During 

physical modeling, these three structures were replicated using geometric and dynamic modeling 

procedures discussed in the methodology chapter. The model was rigidly attached to a four-

legged metal frame. The frame was in turn firmly tightened to the ground. 

The laboratory model was a 1/10 geometric scale of a 160-tonne industrial ladle of the VTD. The 

geometric dimensions and amount of air flow rate in the cold model was computed using 

Equations 4-1 and 4-10. Molten metal and slag were simulated by water and oil respectively. Air 

was used to stir the liquid from the bottom of the vessel. Figure 6-1 is a schematic drawing 

showing the main dimensions of the ladle and the two porous plug positions at the bottom of the 

furnace. This basic geometry was used to construct the laboratory scale. Table 6-1 contains 

detailed information of the full scale and its corresponding laboratory scale. The flow rate ranges 

mentioned in this table are within the operational range of flow rates in ladles.[38, 105, 262] 

The compressed air flow rate was controlled using standard rotameters (±3 and ±5 % full-scale 

errors). The air pressure was set to a fixed value by a pressure regulator at 0.20 MPa. A stud 

mounted triaxial accelerometer (95 mv/g sensitivity and ±50 g measurement range) was used for 

simultaneous multi-axis (x, y, and z) vessel wall vibration measurement. The analogue vibration 

data coming from the accelerometer was digitized using a 4-channel C series dynamic signal 

acquisition module (NI 9234) before it was exported to a computer. National Instrument 

SignalExpresss 2013 software was used to acquire, generate and save signals. The overall 

experimental setup is shown in Figure 6-2. The vessel frame was tightly fixed to the concrete floor 

to make background noise negligible. A sample time of 6 seconds was taken throughout the 

experiment as it had been observed that reducing the sample time to 6 seconds resulted in no 
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reduction of the quality of the data.[154, 155] Data was sampled at 1828Hz to avoid any aliasing errors 

as explained in section 5.3.2. 

 

Figure 6-1 160 ton ladle inside dimensions and bottom view showing porous plug locations 

Table 6-1 Parameters and their values in the full and the laboratory scales in the 160-ton ladle 

Parameter Industrial ladle Model(λ=1/10) 

Vessel   

Height  (m) 4.460  0.446  

Top diameter (D1)* (m) 3.520  0.352  

Bottom diameter (D2)* (m) 3.025  0.302  

Nozzle 

Diameter (m) 0.110  0.003  

Number  2 2 

Position (m) R1.001@48𝑜  R100@48𝑜  

Working fluid 

Bath Liquid Steel melt + slag Tap water +motor oil 

Stirring gas 

Stirring  gas Argon Air 

Gas flow rate (𝑚
3

𝑠⁄ ) 0-1.6x10-2  0-6.67x10-5  

Gas pressure (𝑃𝑎) 106 2 x105 

Material Steel and refractory Stainless steel 
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Figure 6-2 Overall experimental setup 

6.3 Experimental Conditions 

The experiment was carried out with and without the top layer of oil at different volumetric 

airflow rates. The depth of both layers was varied during the course of the study. Other 

parameters such as pressure, nozzle position, and number of nozzles were kept constant. Two 

nozzles were used to inject air and the amount of flow was identical in both nozzles. The 

accelerometer was located at three different positions for gathering wall acceleration at various 

flow rates and bath volumes. Applying geometric and dynamic similarity criteria, the 

parameters’ values in the lab-scale were determined. Equation 4-10 which is based on plume 

Froude number similarity ((𝐹𝑟𝑝)
𝑚

= (𝐹𝑟𝑝)
𝑓

) was implemented to compute the volumetric flow 

rates for cold model study. Flow rates considered in this study were computed from Equation 4-

10 (𝑄𝑚 = 𝜆2.5𝑄𝑓) in order to be within the range of flow rates applied in ladle metallurgy. Table 

6-1 consists the flow rates computed using this relationships. 
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6.3.1 Accelerometer Locations  

The choice of an optimum location of the sensor depends on many factors like accessibility, ease 

of mounting, signal quality, and other industrial environmental factors.  For this study, the 

candidate locations considered were the vessel wall (C), the vessel support (B) and the tank 

external wall (A) which are shown in Figure 6-3 on a sketch of the actual vacuum degasser. The 

accelerometer was stud mounted on a flat smooth surface covered with a thin oil film. Figure 6-3 

shows these locations on the physical cold model. 

 

A

B

C

 
Figure 6-3 Sensor locations (A and B and C) on ladle and vacuum tank degasser wall 

 

Figure 6-4 Sensor candidate locations on the laboratory apparatus 

6.3.2 Air Flow Rate and Bath Height 

Air was injected into the bath through two-sidewall 0.003 m flush nozzles on the bottom plate of 

the apparatus. The airflow rate taken in this experiment was in the range of 6.67x10-6 to 40x10-6 

m3/s, which corresponds to 20.83x10-4 to 126.7x10-4 m3/s in the industrial ladle using the Froude 
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number similarity criteria for the 160-tonne capacity vacuum tank degasser.  Relatively higher 

flow rates were also considered. Water/steel melt and oil/slag depths are determined based on 

geometric similarity criteria with the scaling factor (λ=0.1). The water level was varied from 0.220 

to 0.280 m and the oil depth was varied from 0.005 to 0.02 m at 0.02 and 0.005 intervals 

respectively. The thorough set of experimental parameters is summarized in Table 6-2 and 6-3. 

Table 6-2 shows the experimental conditions used to choose the optimum location for the 

vibration sensor. The values of experimental inputs used to study the stirring flow rate are shown 

in Table 6-3.  

Table 6-2 Values of experimental parameters the three accelerometer locations 

S.N Layers Water Depth (m) Oil Depth (m) Air Flow Rate(m3/s) 

1 Single 0.15 

2 Single 0.20 

3 Single 0.25 

4 Single 0.30 

5 Double 0.28 0.02 

Table 6-3 Values of experimental parameters for a fixed accelerometer location 

S.N Layers Water Depth (m) Oil Depth (m) Air Flow Rate(m3/s) 

1 0.15 

2 0.20 

3 0.25 

4 0.30 

5 0.22 

6 0.24 

7 0.26 

8 0.28 

6.4 Data Analysis  

Vibration data collected at different blowing conditions was first treated with the FFT and then 

analysed by PCA and PLS. FFT, PCA, and PLS are discussed in the methodology chapter. The 

analysis started by investigating the data gathered for the selection of the optimum accelerometer 

placement. PCA was applied to the three variables of the vibration i.e. acceleration along the 

𝑥 −,𝑦 −, and 𝑧 −axis in different frequency ranges. The best sensor position was selected based 
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on the strength of the underlying structure, accessibility and mounting suitability. Data captured 

at the nominated sensor location was investigated first by PCA to unveil the underlying structure 

and then by PLS to find the relationship between latent variables of the blowing parameters and 

vessel wall accelerations. The overall analysis procedure is similar to the scheme shown in Figure 

5-9. 

6.5 Result and discussion 

6.5.1 Sensor Location 

The time-domain vibration signals from the three locations were first compared using the sum of 

the amplitudes at each sample time. Figure 6-5 shows a comparison of acceleration amplitudes 

for identical axes for the three locations. It is found that for the same experimental conditions, the 

amplitudes along two identical axes are not equal.  

(a) (b) 

 
 
 
 
 
 
                   
 
 
 
 

             
(c) 

Figure 6-5 Vibration Amplitude versus flow rate for each axes in each location 

Furthermore, principal component analysis was carried out to combine the three axes vibration 

data to see if any structure exists at various frequency ranges. This would allow the comparison 
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of the underlying relationship among the three candidates. The underlying relationship is 

explained by the data structure.  PCA analysis shows that the structure of the data is high at the 

three locations and in similar frequency ranges. Table 6-4 shows the values of the first principal 

components (PC1) and degree of linear correlation coefficients (R2) in the selected frequency 

ranges. The linear correlation coefficient (R2) shows how strongly the flow rate (𝑄) and latent 

variable (𝑃𝐶1) predict the vibration and stirring energy respectively. They were used to select a 

frequency range among the highly structured frequency ranges at each location. As can be seen 

from Table 6-4, the frequency ranges which show better structure and prediction at each location 

are different but the values of 𝑃𝐶1 and 𝑅2 do not have a significant difference. Hence, the sensor 

can be mounted on wall, support or tank as the structure is high in the three positions. This 

implies that the amount of information of the stirring process of the cold model does not depend 

on the sensor locations considered in this study. This result is useful in industry in many ways. 

It simplifies the difficulty of locating the sensor caused by hot components, accessibility and 

safety issues. In in the lab-scale and plant scales studies, the accelerometer was mounted on the 

tank external wall near the support. This location is convenient to mount and relatively cooler 

surface and hence less likely to affect   the accelerometer’s performance. 

Table 6-4 Values (𝑃𝐶1) and the degree of correlation (𝑅2) 

Single Layer Vessel Wall Vessel support Tank Wall 

Frequency  range (Hz) 30-40 20-30 170-180 

𝑷𝑪𝟏 82 99 95 

𝑷𝑪𝟐 14 0.5 3 

 (𝑄, 𝑉) (𝑃𝐶1, 𝜀) (𝑄, 𝑉) (𝑃𝐶1, 𝜀) (𝑄, 𝑉) (𝑃𝐶1, 𝜀) 

𝑹𝟐 0.87 0.88 0.86 0.88 0.89 0.87 

Double layer      

Frequency  range (Hz) 90-100 90-100 150-160, 

𝑷𝑪𝟏 99% 98% 99% 

𝑷𝑪𝟐 0.5 1 0.5 

𝑹𝟐 0.95 0.95 0.98 0.98 0.96 0.96 

Vibration data was then measured at different stirring conditions such as water height, oil depth 

and flow rate (shown in Table 6-3) with the accelerometer mounted on the tank external wall 
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shown in Figure 6-4 (right). The study was undertaken in the absence and presence of the top 

layer. In the double layer study, the data was subdivided into two volumetric airflow rate ranges. 

These are 6.67 to 23.33x10-6 m3/sec and 23.3 to 40 x10-6 m3/sec to study the stirring phenomenon in 

each range on the cold model.  The flow rate varied from 6.67 to 40 x10-6 m3/sec during single 

layer study. 

6.5.2  Single Layer Study 

Single layer refers to the water bath without oil on the top. Using the parameters in Table 6-3, the 

air was injected through two nozzles at the bottom to stir the water bath and the corresponding 

tri-directional wall movement was logged. PCA showed that the single layer data is highly 

structured. The whole frequency range, as well as most of the small frequency ranges, exhibits 

this strong structure.  In Table 6-4, specific frequency ranges were picked because the data in this 

frequency ranges show a strong relationship between latent variables and process parameters.  

Figure 6-6 shows the relationship between the first latent variable, which is a combination of the 

three axes vibration, and the stirring power for two frequency ranges. The stirring power is a 

function of the flow rate and bath volume.   In Figure 6-6b, the relationship shows that though 

the 150 to 160 Hz is highly structured frequency range, its correlation with the string energy is 

not strong for the single layer bubbling.  The total variance explained by each principal 

component (PC) is shown in Table 6-5.     

(a) 

 

(b) 

Figure 6-6 Relationship between PC1 and stirring energy in the frequency range of a) 170 to 180 

Hz b) 150 to 160 Hz 

For the frequency range of 170 to 180 Hz, the contribution of each variable to the total variance in 

each PC is obtained from the loading vectors in Table 6-5. Equation 6-1 shows that the variation 
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explained by PC1 comes proportionally from the variation in 𝑥, 𝑦 and 𝑧. The percentage variation 

of the system explained by 𝑥, 𝑦, and 𝑧 accelerations in the single layer is 38%, 32% and 30 % 

respectively 

Table 6-5 Values of loading vectors and PC for the single layer blowing data 

Score Loading vector 

𝑥 0.65 0.72 -0.25 

𝑦 0.55 -0.22 0.80 

𝑧 0.52 -0.66 -0.54 

 

Eigen value 0.0078 0.00037 0.00017 

Variance (𝑷𝑪) 94 4 2 

    

𝑃𝐶1 = 0.65𝑥 + 0.55𝑦 + 0.52𝑧  6-1  

6.5.3 Double Layer Study 

The double layer refers to a water bath with a top layer/oil on it. Air was injected into the water-

oil bath through dual sidewall nozzles located at the bottom. The amount of volumetric air flow 

rate was identical for each nozzle. Two airflow rate ranges were studied independently.  In each 

flow rate range, the water depth and oil depth were varied according to Table 6-3 at an increment 

of 0.02 and 0.005 m respectively. Vibration datasets were analysed first by PCA to find the hidden 

structure in specific frequency ranges and then by PLS to unveil the linear relationship and 

construct a linear prediction model. 

a) Flow rate range: 6.67x10-6 to 16.67 x10-6  m3/s 

The tri-axis acceleration data captured from the steel-walled cold model in this volumetric airflow 

rate range was treated first by FFT to transform the time domain signal to a spectral form. To 

unveil the structure in the data, PCA was applied to the whole dataset. The structure explains 

how much variation is explained by the principal components (𝑃𝐶𝑠) or latent variables, which 

each are a linear combination of the signals in the three axes.  It was found that the whole 

frequency range has a strong structure. 
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The loading vector in Table 6-6 shows that the total variation in PC1 has equal contributions from 

the variation in 𝑥, 𝑦 and 𝑧 data.  

In addition, the whole frequency range was subdivided into smaller ranges and analysed using 

PCA. The objective was to find the small frequency range where the structure concentrates. 

Industrial data is noisy and taking the full frequency range has a greater chance of including other 

sources of vibration, which may result in weakening the efficiency of the vibration-based online 

monitoring system. A small frequency range would prevent this from happening. 

Table 6-6 Values of loading vectors and PC for the double layer blowing data 

Score Loading vector 

𝑥 0.57 -0.41 0.71 

𝑦 0.577327 -0.41258 -0.70 

𝑧 0.58 0.812 0.002 

Eigen value 0.00223 1.41E-05 5.07E-06 

Variance (𝑷𝑪) 99 0.6 0.4 

Table 6-7 PC1 values of small frequency ranges 

Frequency range (Hz) 0 to 10 10 to 20 20 to 30 30 to 40 40 to 50 

PC1 (%) 94.41 82.40 75.10 86.50 99.33 

Frequency range (Hz) 50 to 60 60 to70 70 to 80 80 to 90 90 to 100 

PC1 (%) 98.87 96.12 97.74 99.10 91.63 

Frequency range (Hz) 100 to110 110 to120 120 to130 130 to 140 140 to 150 

PC1 (%) 90.61 94.44 95.22 92.80 97.88 

Frequency range (Hz) 150 to 160 160  to 170 170 to 180 180 to 190 190 to 200 

PC1 (%) 97.95 93.69 95.63 94.15 94.47 

Frequency range (Hz) 200 to210 210 to 220 220 to 230 230 to 240 240 to 250 

PC1 (%) 89.04 88.20 92.57 86.24 92.14 

Frequency range (Hz) 250 to 260 260 to 270 270 to 280 280 to 290 290 to 300 

PC1 (%) 77.25 78.03 87.57 72.16 85.98 

Table 6-7 shows that most of the small frequency ranges are highly structured.  On the other hand, 

the linear relationship between the first latent variable (PC1) and the stirring power was found 
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to be poor especially if both the top and bottom layers were varying. Figure 6-7 shows that the 

frequency range 40 to 50 Hz, though it has the high structure (PC1=99 %), its linear relationship 

with the stirring power is not strong. This procedure was repeated for the highly structured 

frequency ranges shown in Table 6-6 and similar results were obtained.  

Table 6-8 Values of PCVAR of different frequency ranges 

Frequency range (Hz) 
PCVAR1 (%) Total PCVAR (%) 

𝑌 𝑋 𝑌 𝑋 

0 to 10 14  33 17  100 

40 to 50 47 33 47.1 100 

50 to 60 68.5 33 69 100 

60 to 70 79 33 80 100 

70 to 80 89 33 90 100 

80 to 90 91 33 91.5 100 

90 to 100 82 33 86 100 

100 to 110 72 33 77 100 

110 to 120 76 33 79 100 

120 to 130 78 33 79 100 

130 to 140 70 33 71 100 

140 150 78 33 79 100 

150 to 160 79.5 33 79.5 100 

160 to 170 78 33 80 100 

170 to 180 64 33 64 100 

180 to 190 67 33 68 100 

190 to 200 66.5 33 68 100 

220 to 230 74 33 77 100 

240 to 250 72.5 33 75 100 
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Figure 6-7 Relationship between stirring power and PC1 in the range of 40 to 50 Hz 

To alleviate this problem, partial least square regression was applied. This technique deals with 

the variation in the three process parameters (regarded as the input matrix) and three 

accelerations (regarded as the output matrix) simultaneously to unveil a common structure. In 

Table 6-8 PCVAR refers to the percent of variation and PCVAR1 refers to the amount of variation 

explained by the first latent variable of PLS analysis. 𝑋 and 𝑌 are matrices containing the input 

(flow rate and bath levels) and output (vibration) parameters. Table 6-8 shows that in the 

frequency ranges of 70 to 80 and 80 to 90 Hz three latent variables explain most of the linear 

variation in the stirring process. Though PCA results showed that most of the frequency ranges 

of the vibration data have maximum structure, PLS showed that the hidden linear relationship 

between input parameters and wall vibration is best explained in specific frequency ranges. 

Figure 6-8 and 6-9 show how the input variable 𝑋 can predict the output variable 𝑌 in the 

frequency range of 80 to 90 Hz and 70 to 80 Hz respectively. In an industrial scenario, 𝑌𝑠𝑐𝑜𝑟𝑒  which 

is the linear combination of the three axes vibration signals, can be measured but 𝑋𝑠𝑐𝑜𝑟𝑒  which is 

the linear combination of the process parameters, is difficult to measure. Thus, 𝑌𝑠𝑐𝑜𝑟𝑒  can be used 

to predict the process parameters especially the volumetric gas flow rate.  
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Figure 6-8 Relationship between response scores (Y) and predictor scores (X) in 80 to 90 Hz 

 

Figure 6-9 Relationship between response scores (Y) and predictor scores (X) in 70 to 80 Hz 

To observe how the first latent variable of the vibration data predicts the amount and energy of 

agitation, the 𝑌𝑠𝑐𝑜𝑟𝑒  was correlated with bath recirculation speed (𝑈) and stirring power (𝜀). Figure 

6-10 and 6-11 shows these correlations. Figure 6-10 indicates that the speed of melt circulation 

can be estimated by measuring wall vibration. Figure 6-11 shows that the amount of energy 

imparted by the purged gas per unit time can be evaluated using the vibration signal along the 

three axes coming from the wall.  
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Figure 6-10 Relationship between bath recirculation speed and 𝑌𝑠𝑐𝑜𝑟𝑒  

 

Figure 6-11 Relationship between stirring power and 𝑌𝑠𝑐𝑜𝑟𝑒  

The aim of PLS is to develop a predictive model like Equation 6-2 of the stirring status using 

vibration signal. In Equation 6-2 𝑋 is the predictor, 𝛽 is regression coefficient and 𝑌𝑟𝑒𝑠 is the 

residual data. 

Y = βX + Y𝑟𝑒𝑠  6-2 
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The values of regression coefficient, 𝛽, are shown in Table 6-9. This shows the change in the 

output variable,𝑌 is largely contributed to the quantity adjustment of the flow rate. 

The accuracy of prediction can be influenced by the number of latent variables taken. Figure 6-12 

shows that in PLS analysis, the error generated when using a different number of latent variables 

for the vibration data. This, in turn, affects the prediction of gas flow rate using Equation 6-2. The 

minimum deviation or residual data is achieved when three latent variables are used. 

Table 6-9 Values of 𝛽 for the frequency range of 80 to 90 Hz 

Parameter Coefficients(𝛽) 

𝐻 0.024 0.081 0.063 

ℎ 0.08797 0.107641 0.090 

𝑄 0.945 0.939 0.965 

 

Figure 6-12 Mean square root error (MSE) and number of variables taken  

b)    Flow rate: 23.33 to 40x10-6 m3/sec 

The analysis procedure of the vibration data captured in this flow rate range was similar to the 

previous volumetric flow rate range study. The vibration data at the different top and bottom 

layer depths were measured when the water-oil bath was stirred by varying the volumetric 

airflow rate. Figure 6-13 shows that there is no linear relationship between the first latent variable, 

PC1, and the stirring power for vibration data obtained from double layer experiment. The values 

0

1

2

3

4

0.05 1.05 2.05 3.05 4.05

M
S

E

Number of latent variables



 

121 

 

of the first principal components at various frequency ranges for the double layer experiment are 

shown in Table 6-10. 

 

Figure 6-13 Relationship between stirring power and PC1 in the frequency range of 50 to 60 Hz 

Table 6-10 Values of PC1 for 23.33 to 40x10-6 m3/sec 

Frequency range (Hz) 0 to 10 10 to 20 20 to 30 30 to 40 40 to 50 

PC1 84.38 80.11 67.50 74.40 99.19 

Frequency range (Hz) 50 to 60 60 to 70 70 to 80 80 to 90 90 to 100 

PC1 98.14 82.85 89.19 92.24 57.21 

Frequency range (Hz) 100 to 110 110 to 120 120 to 130 130  to 140 140 to 150 

PC1 65.52 81.47 86.22 80.23 91.28 

Frequency range (Hz) 150 to 160 160 to 170 170 to 180 180 to 190 190 to 200 

PC1 91.05 73.43 86.45 82.31 79.02 

Frequency range (Hz) 200 to 210 210 to 220 220 to 230 230 to 240 240 to 250 

PC1 70.86 79.75 85.78 93.44 80.34 

Frequency range (Hz) 310 to 320 320 to 230 330 to 340 340 to 350 350 to 360 

PC1 70.86 75.8 88.4 92.2 81.03 

Table 6-11 shows that the percentage of variance explained in 𝑌 (vibration data) by the three PLS 

components (total PCVAR) is higher for the frequency range of 340 to 350 Hz than the other 

frequency ranges. Hence, this frequency range explains the maximum common structure 

between stirring process parameters and the vibration signal when both layers are varied. 
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Table 6-11 Values of PCVAR for different frequency ranges 

Frequency range (Hz) 
PCVAR1 (%) Total PCVAR (%) 

𝑌 𝑋 𝑌 𝑋 

40 to 50 31.7 33.3 32 100 

50 to 60 47.7 33.3 48 100 

60 to 70 19.6 33.3 26.5 100 

70 to 80 44 33.3 47.5 100 

80 to 90 40.5 33.3 43 100 

120 to 130 38 33.3 43 100 

140 to 150 60 33.3 62 100 

150 to 160 51 33.3 52 100 

170 to 180 51.5 33.3 53 100 

180 to 190 44 33.3 49 100 

220 to 230 56 33.3 59 100 

230 to 240 73 33.3 74 100 

240 to 250 58 33.3 69 100 

310-320 67 33.3 69 100 

320-330 78 33.3 79 100 

330-340 73.5 33.3 74.5 100 

340 to 350 79.6 33.3 80.5 100 

In this frequency range, the correlation between vibration and stirring process parameters scores 

were found to be strong. This is shown in Figure 6-14. Each score is a linear combination of its 

respective three variables i.e.  the input or the output variables.  Table 6-12 contains the values of 

regression coefficient, which indicates most of the vibration is caused by the gas flow rate. 

In the PLS regression model given by Equation 6-2, the regression coefficients for the input 

parameters shown in Table 6-12 shows that majority of the vibration response is contributed from 

the airflow rate. To examine the difference between the measured vibration and the vibration 

predicted using Equation 6-2, a new set of stirring parameters were used and the respective 
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vibration amplitude was computed. The new set of inputs used to test the model consists of the 

following parameters: 

 a constant water depth of 0.24 m 

  an oil thickness that varies from 0.005 to 0.02 m and  

 a volumetric airflow rate that increases from 41.67 to 83.33x10-6 m3/sec 

 

Figure 6-14 Relationship between 𝑋 and 𝑌-scores in the frequency range of 340 to 350 Hz  

Figure 6-15 shows that the predicted and measured vibration signals are almost equivalent with 

an average deviation of 10 % in each axis. This shows that the measured vibration from the ladle 

wall can predict the stirring power and bath recirculation speed with some tolerable error, which 

are functions of flow rate, and bath volume.  

 

Table 6-12 Values regression coefficient, 𝛽 

X 
Coefficients 

H 
-0.044 -0.211 0.074 

h 0.026 -0.0819 -0.063 

Q 0.911 0.827 0.919 
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Figure 6-15 Comparison between measured and predicted vibration signals (cross validation) 

c) Flow rate:( 41.67 to 83.33)x10-6 m3/s 

The flow rate in the steel walled cold model was varied from 41.67 x10-6 to 83.33x10-6 m3/s. This 

flow rate range corresponds to 131.67 to 263. 33 x10-6 m3/sec in the industrial scale.  

Table 6-13 PC1 values for the flow range of 41.67 to 83.33x10-6 m3/sec 

Frequency range (Hz) 0 to 10 10 to 20 20 to 30 30 to 40 40 to 50 

PC1 83.86 71.53 79.48 87.07 99.80 

Frequency range (Hz) 50 to 60 60 to 70 70 to 80 80 to 90 90 to 100 

PC1 99.42 93.78 78.08 96.15 95.40 

Frequency range (Hz) 100 to 110 110 to 120 120 to 130 130  to 140 140 to 150 

PC1 93.62 99.21 87.54 92.83 96.79 

Frequency range (Hz) 150 to 160 160 to 170 170 to 180 180 to 190 190 to 200 

PC1 84.17 85.96 96.55 96.01 90.70 

Frequency range (Hz) 200 to 210 210 to 220 220 to 230 230 to 240 240 to 250 

PC1 93.83 95.23 90.35 68.50 65.19 
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The vibration signal was measured for a fixed water height of 0.24 m and varying oil depth from 

0.005 to 0.020 m.  As ladle operations usually have a constant liquid metal depth, this assumption 

was reasonable.  The smaller frequency ranges of the vibration signal with their respective first 

principal component (PC1) are shown in Table 6-13.  There are few frequency ranges that can 

describe the majority of the structure in the data. However, similar to the findings in the previous 

sections, the linear relationship was not strong. PLS was applied taking two of the process 

parameters and vibration data as output and input matrices. 

Table 6-14 Values of PCVAR in the flow rate range of 41.67 to 83.33x10-6 m3/sec 

Frequency range (Hz) 
PCVAR1 (%) Total PCVAR (%) 

𝑌 𝑋 𝑌 𝑋 

50 to 60 99.4 22 0.5 79 

80 to 90 96 36 100 74 

130 to 140 93 87 100 92 

180 to 190 90 76 100 94 

190 to 200 90 90 100 92 

200 to 210 94 91 1 92 

210 to 220 95.5 94 100 96 

PLS analysis identified certain informative frequency ranges that best explain the variation in 

vibration as well as the stirring parameters simultaneously in these flow rates. These frequency 

ranges are shown in Table 6-14. In Table 6-14, 𝑌 is a matrix of the flow rate and working fluid 

depths whereas  𝑋 consists the vibration signals.  The frequency range 210 to 220 Hz is highly 

informative and can be used to predict the gas flow rate using the PLS model in Equation 6-2. 

6.5.4 Peak Frequencies  

Frequencies with maximum amplitude may indicate intensified stirring status[10] but in this 

investigation, they have not been found to significantly affect the overall stirring process 

variation. The peak frequencies of the three axes were computed for data where only oil depth 

varied.  The results show that peak frequencies computed from the 𝑥 −, 𝑦 − and 𝑧-axes do not 

vary much with the oil depth. Frequencies along the 𝑦 −axis are higher than the other axes. 
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Figure 6-16 Peak frequencies in the three axes 

Figure 6-16 shows the peak frequencies as a function of oil/slag depth. This trend is similar when 

the water level and airflow rate are varied. 

6.6 Conclusion  

The study of the physical cold model of a bottom purged Vacuum Tank Degasser (VTD) 

discovered several findings that can improve and simplify the online monitoring of the low flow 

rate-stirring problem. This study was focused first on analyzing the effect of the accelerometer 

location on the amount of stirring information that can be harnessed. Three main locations were 

taken in this investigation. These were the ladle external wall, the ladle support and the exterior 

wall of the tank. Vibration data captured from each position was analysed using PCA to find the 

quantity of information present per dataset and then select the optimum location. Vibration 

signals were then measured at different bubbling rates with and without the top layer. PCA and 

PLS were applied in order to find the structure of the vibration data and the correlation between 

stirring process parameters respectively. 

The investigation on optimum accelerometer location unveiled that the amplitude information 

harnessed from the three sensor positions considered in this study were not significantly different 

but the informative frequency ranges were different. Hence, placing the accelerometer on the tank 

external wall near the ladle supports can give the desired vibration signals. This result is valuable 

in the industry in many ways; it simplifies the difficulty of locating the sensor caused by 

temperature and accessibility and safety issues. 
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In general, this study was able to detect stirring using three-dimensional vibrations in the 

laboratory cold model. The detected vibration signals have a strong linear correlation with the 

stirring indicators like stirring power and bath recirculation speed.  It was found that the 

combined vibration signal can predict the stirring power and recirculation speed effectively for 

the studied experimental conditions. In addition, specific frequency ranges that contain the 

majority of the variation in the vibration data were identified for each flow rate range considered.  

Furthermore, both in the single and double layer vibration data, the overall variation was 

contributed equally from 𝑥, 𝑦 and 𝑧 axes. Thus, it can be concluded that measuring vibration from 

the three axes is advantageous. This result was also displayed during the plastic-walled cold 

model study. 

Finally, to verify the results of this investigation, an additional study was carried out at an 

industrial scale for the same VTD capacity and configuration. This is described in the following 

chapter. 
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7 Plant Scale Study: The Case of Vacuum Tank Degasser 

7.1 Introduction 

In this chapter, an industrial trial carried out at Tata Steel UK to supplement the cold model 

studies as described. The trial was carried out for a ladle in a vacuum tank degassing (VTD) plant.  

A sketch of this VTD is shown in Figure 7-1.Vibration measurement was undertaken at various 

working conditions and data was analysed by principal component analysis and partial least 

square regression. 

 

Figure 7-1 Schematic diagram of vacuum tank degasser 

Vacuum degassing of steel is carried out after the molten steel has left the furnace and before the 

steel is poured into ingots or processed through a caster. A vacuum tank degassing (VTD) plant 

is frequently used to produce steel grades with the best quality. A ladle containing the liquid steel 

melt is placed in a vacuum tank and is treated in a low-pressure environment below 1.33 KPa. 

Due to the equilibrium conditions under vacuum, unwanted elements dissolved in liquid steel 

such as nitrogen, hydrogen, and sulfur can be removed. A pressurized stirring gas (normally 

argon) is injected from the bottom to guarantee the necessary mixing of the liquid metal and to 

facilitate the refining reactions. 

The adjustment of the stirring intensity is usually difficult due to leakage and other various 

reasons discussed in the literature review section. To address these issues further, a physical cold 

model of a VTD was studied and described in Chapter 6. This chapter outlines a continuation of 

the study carried out on the steel-walled physical cold model. The work in this chapter is a study 

on an actual 160-tonne Vacuum Tank Degasser (VTD) to investigate the bottom gas stirring of the 

ladle in the VTD using tri-axes vibration signals. In the cold model study, investigation of 
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vibration data found that the data is highly structured. In certain frequency ranges, there is a 

relationship between the stirring indicators and the latent variables of the vibration data. This 

study was aimed at investigating the stirring phenomena at an industrial scale. This was essential 

to verify the results found in the cold model study. 

The collection, noise filtering, and analysis of the plant vibration data are described in different 

sections of this chapter. 

7.2 Experimental Setup 

The VTD process at Tata Steel UK is characterized by a ladle bottom diameter of 3.02 m, a heat 

weight of 140 to 160 tonne and melt temperature of 1873𝐾. The porous plugs are in the circle of 

radius 1 m at the angle of~ 48𝑜.  Figure 7-2 shows the major dimensions of a ladle of the VTD. 

The data for this experiment was gathered from this reactor.  

 
 

(a) (b) 

Figure 7-2 Sketch of a ladle in the VTD:  a) overall dimension b) porous plug position 

In the cold model study of the VTD, it was found that the amount of information collected from 

the ladle wall, ladle support and tank external wall was similar. Hence, in this industrial study, 

the accelerometer was installed on the tank external wall 1.7 m from the base of the tank.  Figure 

7-3 shows the position of the accelerometers, ladle configuration, and overall setup. The vibration 

sensor was a piezoelectric ICP Accelerometers and its detail specification is found in the 

methodology chapter section 4.2.1. 
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Accelerometer 1     
Accelerometer 2              

a) b)
 

Figure 7-3 a) Data acquisition setup in the plant and b) accelerometer orientation 

7.3 Experimental Conditions 

Argon gas was injected through two sidewall porous plugs at the bottom of a 160-tonne ladle. 

During the plant vibration measurement, the amount of metal and slag, plug life, plug position, 

barrel life and slag line life were different in each of the heats. One heat corresponds to one ladle 

operation. The barrel and slagline are distinct parts of the ladle lining. The slagline is a slightly 

thicker lined part of the lining at the height where the steelmaking slag is going to be in contact 

with it. This wears more rapidly than the ladle lining below the slag line, which is known as the 

barrel. The numbers of barrel and slag line lives are simply the number of heats that have been 

in contact with the ladle slagline and barrel since they were installed. It is common to see a barrel 

life in excess of the slagline life, as the slagline can be replaced independently of the barrel. A 

ladle of barrel life number 16 to 21 and slagline number 1 to 4 were used during the data 

collection.  The steel weight generally varied from 130 to 150 tonnes while the slag weight was 

between 1.8 and 3.6 tonnes. Some heats were carried out with new porous plugs and others with 

old plugs that served two to four heats. The volumetric gas flow rate generally varied from (583.33 

to 16650) x10-6 m3/s. For a single ladle operation, only the gas flow rate was assumed to vary 

throughout the stirring process. 

7.4 Data Collection 

Vibration data logging started and finished immediately after the ladle was placed on and was 

lifted from the supports respectively. The starting and finishing time was recorded for each heat 
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considered. Background noise was also measured in different circumstances when the vacuum 

degasser was not running. The main purpose was to analyse the background noise signal 

separately in order to understand how it affects the main signal’s strength. 

Vibration data was captured from 18 heats but due to incomplete supplementary information, 

only data from eight heats were used in the study. A list of the heat and the corresponding 

information required is listed Table 7-1.  A complete heat information refers to the heat that has 

time, flow rate, pressure and logging time information. The logging start time is the exact time 

the sensor/data logger started recording. This was required to locate the useful vibration data 

from the signal’s time history.  Table 7-2 shows the values of various parameters for each heat 

during vibration measurement. This data helped to create different datasets that explain various 

heating scenarios. 

Table 7-1 List of measured heat and related information availability 

S.N Heat ID Complete Heat information  Logging start time 

1 T0552Z Available Not available 

2 T0553Z Available Not available 

3 T0560Z Available Available 

4 T0561Z Available Available 

5 T0565Z Available Available 

6 T0566Z Available Available 

7 T0569Z Available Available 

8 T0571Z Available Available 

9 T0573Z Available Available 

10 T0574Z Available Available 

11 T0577Z Available Not available 

12 T0578Z Available Not available 

13 T0655Z Not available Available 

14 T0662Z Not available Available 

15 T0668Z Not available Available 

16 T0671Z Not available Available 

17 T0698Z Not available Available 

18 T0709Z Not available Available 
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Table 7-2 Heats with respective parameter values 

Heat ID Ladle 

ID 

Steel Weight 

(kg) 

slag 

weight 

Ladle 

Plug 

Barrel 

Life 

Slagline 

Life 

Plug 

Life 

Ladle 

Tare 

T0560Z 16 146840 2803 2 16 4 3 77.6T 

T0561Z 19 145881 1814 2 19 1 1 77.1T 

T0565Z 21 136681 4842 3 21 1 1 79T 

T0566Z 19 135261 3366 2 19 2 2 79.6T 

T0569Z 19 147995 1853 2 19 3 3 80.5T 

T0571Z 21 129166 3591 3 21 2 1 79T 

T0573Z 19 140869 2072 2 19 4 4 80.4T 

T0574Z 4 154295 1874 2 4 1 1 79.9T 

7.5 Signal Treatment and Refining 

In the VTD, the ladle is equipped with a porous plug at its bottom to purge argon gas and is 

placed in a vacuum tank.  The vacuum is created through a vacuum pumping system. Vacuum 

pump system is the motive power for the vacuum degassing processes for the liquid steel. 

Pressure is often kept below 0.5 KPa for efficient degassing.[62] Hence, purging of argon begins 

when the pressure reaches this value. 

Vibration data that corresponds to a stirring at or below 0.5 kPa of pressure was first separated 

out from each heat. Then, the data was arranged in a way that the flow rate is in an increasing 

order. During a ladle heat, the steel weight and slag depth are assumed constant. Figure 7-4 shows 

the pressure-time profile during argon injection. This profile help identify the duration of time 

where bubbling gas flows below the desired pressure i.e. 0.5 kPa. During each heat, the pressure 

was brought to a value less than 10 mbar for the actual stirring to commence. Three sample 

datasets were taken for analysis to compare the results and the most repeatable outcome was 

taken to describe the process 
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Figure 7-4 Pressure profile for part of T0560Z heat 

7.6 Background Noise 

While the degassing process was running, there were other sources of vibration viz. overhead 

crane, ladle furnace etc. The vibration signal coming out from these sources need to be filtered 

out to minimize its effect on the result of the plant trial. Short-time Fourier Transform (STFT) was 

applied to treat the noise signal. 

The Short Time Fourier Transform (STFT) is a Fourier-related transform that can convert a non-

stationary one-dimensional time signal to the two-dimensional frequency-time domain. This 

technique was applied here to identify the frequency band where the power of the noise is 

concentrated. There were various sources of background noise during vibration measurement of 

the vacuum degasser. 

Noticeable vibration sources that come from crane movement and nearby ladle furnaces are 

considered as significant vibration sources. By applying STFT on signals measured for these 

phenomena only, the frequency ranges where the power of these noise signals can be identified. 

Figure 7-5 illustrates the frequency-time graph of a vibration signal when the ladle furnace was 

running but the vacuum degasser had not started. In the 𝑥 − 𝑎𝑥𝑖𝑠, the power of the noise is 

concentrated between 0 and 50 Hz as it is indicated by enclosed boxes. This distributed power is 

also seen in the other 𝑦 − and 𝑧 −axes. In the 𝑦 − 𝑎𝑥𝑖𝑠 the frequency range 220 to 250 Hz shows 

higher power values. In the 𝑧 − 𝑎𝑥𝑖𝑠 the power of the noise is distributed between 500 to 550 Hz, 

and 700 to 800 Hz. Therefore, to minimize the effect of these noise signals in the analysis, these 

signals within these frequency ranges were disregarded. In addition, to capture essential patterns 
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and improve the signal to noise ratio without greatly destroying the signal, the plant data was 

smoothed using the Savitzky-Golay filter (S-G filter). After the signal is filtered and smoothed, 

the analysis started by determining the minimum sample time.  

 

 

 

Figure 7-5 STFT of background noise: a) x-axis, b) y-axis, and c) z-axis 

7.7 Sample Time Determination 

In a similar manner to the cold model studies, the minimum sample time for plant data needs to 

be determined. This sample time was determined for a constant gas flow rate. During the vacuum 

degassing process, the flow rate of argon remains constant for a minimum of 60 seconds. This 

a 
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was observed from the collected data. Hence, the 60 seconds was taken as an initial value for 

computing the smallest sample time. First, a one-minute time history was observed. As it can be 

seen from Figure 7-6, the time history of the three axes may not indicate how long the minimum 

sample time should be.  

 

Figure 7-6 Vibration time history for a time length 60 seconds 

The procedure for determining the sample time is similar to the water model study. The one-

minute vibration data of each heat was divided into small parts and then the spectrum of each 

compartment was observed.  The divisions, which show similar frequency-amplitude plots, were 

taken as a minimum sample time. The vibration time history of 60 seconds was subdivided into 

2, 3, 4, 6 and 12 parts at a time. The time lengths of these divisions correspond to 30, 20, 15, 10 and 

5 seconds respectively. Applying the Fast Fourier Transform on each part, the frequency spectra 

were observed. When a sample time of 15 seconds was considered, the frequency spectra of the 

four parts are not similar to each other. Figure 7-7 is the frequency spectra of the 𝑥-axis signal 

with 15-second sample time. The spectral variations of the amplitudes show better similarity 

when a 20-second sample time is taken than the other sample times. The corresponding spectra 

for 20-second samples are shown in Figures 7-8 to 7-10 𝑥 −, 𝑦 − and 𝑧 − axes data respectively. 

Hence, 20 seconds was taken as a sample time for the entire plant data analysis. 
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Figure 7-7 Frequency spectra of a 15-second time sample time for X-axis 

 

Figure 7-8 Frequency spectra of a 20-second sample time for the 𝑥 −axis data 
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Figure 7-9 Frequency spectra of a 20-second sample time for the  𝑦 −axis data 

 

Figure 7-10 Frequency spectra of a 20-second sample time for the 𝑍-axis data 



 

139 

 

In the cold model, the sample time was 6 seconds.  The variation may be due to different reasons. 

Scaling and the factors not included when physical modeling the process may have affected the 

sample time. A separate study may be required to identify the actual reason. 

Once the minimum sample time was determined, the time history of the vibration data from each 

heat was sub-divided where each division is 20 seconds long. Different datasets that correspond 

to different operating conditions were constructed. Each dataset was first analysed by PCA and 

then by PLS. 

7.8 Result and discussion 

Principal component analysis of the vibration data within each heat shows that the plant data is 

highly structured in specific frequency ranges.  Table 7-3 shows the values of the first components 

for the three sample datasets taken from the T0561Z heat. These principal components are a 

combination of the vibration signal in the  𝑥, 𝑦 and 𝑧-axes. 

Table 7-3 PC1 values for three samples of T0561Z heat at different frequency ranges 

Frequency range (Hz) PC1 values  Frequency range (Hz) PC1 values  

 1 2 3  1 2 3 

0 to 10 95 68.3 96.4 50 to 60 97.9 97.9 96 

10 to 20 98 99.5 99.3 60 to 70 94.3 87.1 87.0 

20 to 30 100 99.8 99.5 70 to 80 87.4 97.6 85.1 

30 to 40 100 98.5 99 80 to 90 88.5 80.0 70.8 

40 to 50 98 99.3 99 90 to 100 86.7 98.1 90.2 

0 to 914 98 98.3 98.3     

 

 1 2 3  1 2 3 

100 to 110 97.7 93.5 97.3 150 to 160 70.7 58.7 70.7 

110 to 120 75.5 95.7 90.9 160 to 170 53.6 86.4 92.4 

120 to 130 58.6 71.4 80.8 170 to 180 79.7 84.2 97.7 

130 to 140 91.3 85.0 85.1 180 to 190 57.7 62.4 77.4 

140 to 150 80.7 82.4 77.5 190 to 200 69.0 83.5 70.1 

 

 1 2 3  1 2 3 

200 to 210 82.6 62.9 70.0 250 to 260 97.7 96.4 99.4 

210 to 220 82.7 68.8 76.4 260 to 270 93.6 95.9 88.3 

220 to 230 90.9 98.2 92.7 270 to 280 75.7 90.0 94.9 

230 to 240 98.2 98.7 96.9 280 to 290 75.4 74.8 96.3 

240 to 250 95.8 98.3 96.0 290 to 300 96.4 90.2 58.5 
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The values PC1 and PC2 in Table 7-3 indicate that most of the underlying structure in the stirring 

process can be explained by the first principal component in many of the studied frequency 

ranges. In the other heats, the sum of first and second principal component can explain the 

variation in most of the frequency ranges.  This is shown in Table 7-4 for selected frequency 

ranges and the six heats considered in this study 

The contribution of the 𝑥-,𝑦- and 𝑧-axis vibration data was found to be similar. In Table 7-5, the 

loading vectors of the first latent variable are the coefficients of 𝑥, 𝑦 and 𝑧. This is shown in 

Equation 7-1. This agrees with the steel-walled cold model results. 

𝑃𝐶1 = 0.54𝑥 + 0.53𝑦 + 0.65𝑧  7-1 

Table 7-4 PC values of each heat 

Heat ID 

Frequency  

(Hz) PC1 (%) PC2 (%) Heat ID 

Frequency 

(Hz) 

PC1 

(%) 

PC2 

(%) 

50-60 97 1 50-60 80 16 

60-70 89 8 60-70 85 9 

70-80 86 10 70-80 70 12 

80-90 75 12 80-90 83 11 

90-100 92 3 90-100 87 5 

180-190 60 31 180-190 92 4 

                               

50-60 94 4 50-60 70 13 

60-70 97 2 60-70 88 10 

70-80 96 3 70-80 80 9 

80-90 98 1 80-90 82 13 

90-100 96 2 90-100 65 21 

180-190 93 1 180-190 62 31 

  

50-60 85 12 50-60 74 17 

60-70 83 15 60-70 85 7 

70-80 65 25 70-80 83 8 

80-90 72 16 80-90 77 14 

90-100 85 14 90-100 65 26 

180-190 73 11 180-190 70 18 
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Table 7-5 Values of Loading vectors, Eigenvalues and principal components for 60 to 70 Hz 

Score Loading vector 

𝑥 0.54 0.84 0.074 

𝑦 0.53 -0.40 0.74 

𝑧 0.65 -0.36 -0.67 

 

Eigen value 0.01052 0.01052 0.01052 

Variance (𝑃𝐶) 94 5 1 

No linear relationship between the latent variable and the volumetric gas flow rate is found. 

Figures 7-11a and 7-11b show the flow rate as a function of the latent variable when considering 

the data within the whole frequency range. This was also the case in the cold model study. Hence, 

plant data was further analysed by PLS to attempt to find any common structure between the 

stirring parameters and the vibration signal i.e. to uncover any linear relationship between input 

variables and the latent variable that is a combination of the three-axis vibration signal. PLS was 

applied to each dataset of a single heat and in the combination of heats. Various datasets were 

also formed by taking one varying parameter while keeping the others constant. 

  
               (a)                 (b) 

Figure 7-11 Relationship between PC1 and gas flow rate: a) 0 to 914 Hz b) 40 to 50 Hz 

Taking one heat at a time, the only input parameter that is assumed to vary throughout the 

process is the gas flow rate and hence the variation is mostly related to this parameter. Figure 7-
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12a shows a good linear correlation between the input and output PLS latent variable.  Figure 7-

12b shows how vibration can linearly predict volumetric gas flow rate. The frequency range that 

consistently gives this result is 60 to 70 Hz.   

  

(a) (b) 

Figure 7-12 Relationship between: a) input and output PLS components b) flow rate and predicted 

variable (Vibration) 

 

Figure 7-13 Relationship between PLS components in the whole frequency range 

The same procedure was followed to analyse each heat independently. The result found was 

similar to the single heat study with slight variation in the degree of correlation.  This is illustrated 

in Figure 7-13 and 7-14. The frequency range 60-70 Hz was consistently giving similar results in 
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the investigated heats. When the whole frequency range was analysed, the linear relationship 

was found to be weaker compared to the smaller frequency ranges. This is shown in Figure 7-13 

where the value of the linear correlation coefficient, R^2 is less than the value in the 60 to 70 Hz 

range shown in Figure 7-14. 

 

 

 

 

Figure 7-14 Relationship between input and output latent variables in T0565Z, T0566Z, T0573Z 

and T0574Z heats. 

Data from all heats were also combined and analysed by PLS in order to generalise the 

relationship and use it with any ladle operation. 

7.8.1 Data Analysis for Combined Heats 

After analyzing each heat individually, the next step was to analyse the entire combined data to 

unveil any structure or relationships. The flow rates were taken from each heat and ranked in an 
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increasing order. The respective vibration data was then used to construct a matrix for PCA 

analysis.  PCA revealed the strong structure in the data in specific frequency ranges. Table 7-6 

contains the values of principal components (PC) for the combined data. 

Table 7-6 PC values for combined data 

Heat ID PC1 (%) PC2 (%) Frequency Range (Hz) 

92 4 50-60 

94 3 60-70 

95 2 70-80 

93 6 80-90 

88 7 90-100 

95 3 180-190 

To examine the linear relationship between process parameters and vibration signal, the data 

within these frequency ranges were investigated using partial least squares. The gas flow rate 

varied from 583.33 to 16650 m3/s, which is the sum of the flows from the two porous plugs. The 

steel weight varied from 130 to 150 tonnes while the slag weight was between 1.8 and 3.6 tonnes. 

In addition, some heats were carried out with new porous plugs and others with old plugs that 

served from two to four heats. The location of these plugs was also different among the six heats. 

No linear relationship between stirring indicators and the latent variable was found in the 

combined data. This disparity could be due to a couple of reasons. Firstly, the underlying 

relationship could be non-linear. Secondly, the data comes from heats that have different process 

parameter values such as plug position, plug life, steel weight, slag weight, plug life, and barrel 

life that can contribute to data scattering. The sample size may be also too small, compared to the 

varying parameters, to construct the desired linear correlation. Hence, the relationship could be 

improved by carrying out separate and sufficient plant measurements for each parameter and 

analyzing the combined data by both linear and nonlinear data analysis techniques.  

To try to determine any relationships in the data when certain parameters are controlled, heats 

that have similar parameter value such as plug position, steel weight, plug life or slag weight 

were grouped to form five datasets. Each dataset has one constant parameter with the others 

varying. 
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7.8.2 Data Analysis with One Constant Parameter 

The parameters taken here are slag weight, metal weight, plug life, and position. In each dataset, 

one parameter is maintained constant and the other three are varying. The intention of this 

analysis was to identify which parameter affects the variation in the vibration signal during 

bubbling. Table 7-7 shows the underlying structure in each dataset when analysed by PCA. When 

the slag weight is kept constant, the data shows higher structure implying the variability of this 

parameter can play a larger role.  

PLS analysis of individual dataset could not find any linear relationship between PLS 

components of the vibration and the stirring parameters. This is shown in Figure 7-15.  

Table 7-7 PC values when one parameter was kept constant 
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PC1 (%) PC2 

(%) 

Frequency 

(Hz) 

80 13 50-60 94 3 50-60 

88 7 60-70 89 8 60-70 

90 6 70-80 96 1 70-80 

93 4 80-90 95 2 80-90 

92 5 90-100 89 6 90-100 

85 12 180-190 97 1 180-190 

 

79 8 50-60 94 3 50-60 

88 9 60-70 96 2 60-70 

93 1 70-80 96 1 70-80 

94 3 80-90 98 1 80-90 

93 2 90-100 91 4 90-100 

84 11 180-190 94 2 180-190 
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Figure 7-15 Relationship between input and output variables at a selected constant parameter 

7.8.3 Plug life 

Porous plugs are a means to inject gas through the bottom of the ladle. During service, the life of 

the plug may be exposed to metal build up, corrosion, cracking etc. that in turn affect the 

efficiency of the plugs in terms of gas purging into the steel melt.[268] The plug life number 

indicates the number of times the plug is used to inject gas. This section deals with investigating 

how the plug life affects the vibration. As the vibration is assumed to reflect the actual bubbling 

inside, the trend of vibration with plug life may indicate how the actual gas flow is affected as 

the plug becomes older.  

To observe how the amplitude of the vibration signal behaves with plug life, four plug lives (1 to 

4) were taken for analysis. All other parameters remain constant for these selected plug lives. 

Plug life 1 and 4 represent the newest and oldest respectively. The vibration signal with similar 

flow rate and vacuum pressure is recorded from each plug life. The result shows that the sum of 

vibration amplitudes within the 20-second time history slightly decreases as the plug becomes 
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older. Figure 7-16 shows summated amplitude as a function of plug number in the time domain. 

This may indicate that as the plug serves longer; metal build up prevents the passage of the gas. 

This results in less fluid turbulence and therefore decaying in ladle wall vibration. 

 

Figure 7-16 Vibration amplitude as a function of plug life number 

 

7.8.4 Comparison of Plant and Cold-Model Results 

When the results from both the data and steel-walled cold model data groups are examined, there 

are similarities and differences. In both cases, the structure is strong and the frequency ranges 

where this structure resides are the same. These frequency ranges include 60 to 70, 70 to 80, 80 to 

90 and 90 to 100 Hz. Table 7-8 shows the values of the first latent variable in the cold model and 

the plant data. There is a good agreement between cold model and plant studies in that the hidden 

structure is similar.  

Table 7-8 PC1 values of plant and water model data 

Frequency  (Hz) PC1 (%) 

 Plant Model 

60-70 94 96.3 

70-80 95 98 

80-90 93 99 

90-100 88 91 

The degree of correlation between the latent variables and process parameters in the plant data 

analysis was comparable to that of the cold model but only for a single heat data in the frequency 

ranges of 60 to 70 Hz. The plant data in the other frequency ranges show a poor linear 
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relationship. The strong structure identified in the data, however, suggests that further study is 

required to discover the underlying relationship.  

The PLS model developed from the cold model data was used to predict the gas flow rate of a 

plant and to observe how close this model can compute the flow rates taking ladle vibration as 

an input. Figure 7-17 shows two flow rates of a single heat, the apparent gas flow rate, which is 

measured during the plant trial, and the gas flow rate predicted from the PLS model. The data 

shows that the PLS model can be used to estimate the amount of stirring with some error. The 

flow rates are scaled and normalized using standard deviation. 

 

Figure 7-17 Prediction of plant gas flow rate using PLS model developed from cold model 

data 

The water model study found that the structure and degree of linear correlation were affected by 

the variation in the thickness of top layer/oil. When the top layer is varied, the structure as well 

as the strength of linear relationship decreases. In a similar manner, plant trials showed that the 

structure is high when heats with constant slag weight are combined and analysed. Industrial 

data that has variable slag weight were less structured. The linear relationship is stronger for cold 

model data than in the plant data of a single heat. The vibration data that comes from various 

heats show no linear relationships with stirring power and gas flow rate. This relationship could 

be improved by carrying out separate and sufficient plant measurements for each parameter and 

analyzing the combined data by both linear and nonlinear data analysis techniques. 
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7.9 Conclusions and Recommendations 

Plant scale studies showed that vibration data at low gas bubbling rates are highly structured 

when investigated using linear principal component analysis. The three signals were able to be 

linearly compressed into a single latent variable. This latent variable preserves above 80% of the 

variation in the stirring process. The frequency ranges where maximum information lies are in 

the range of 60 to 70, 70 to 80, 80 to 90, and 90 to 100 Hz. These frequency ranges were consistent 

in the plant and in the water model studies. 

The data within the informative frequencies were analysed by partial least squares to assess the 

linear relationship between the latent variables and process parameters such as apparent gas flow 

rate. The cold model data gave a strong linear correlation whereas the investigated plant data 

showed poor linear relationship for most of the cases. Plant data was taken from each heat and 

analysed independently to show a comparable degree of linear relationship as the cold model 

data for the frequency range of 60 to 70 Hz. The vibration signals in the 𝑥, 𝑦 and 𝑧 direction 

contributed comparable information which indicates the importance of three-dimensional 

vibration in stirring process control. 

In the plant data, those heats that had similar slag weight gave high values of first principal 

components, which signifies that the slag weight may affect the underlying structure. However, 

these should be verified by accommodating additional industrial data. Vibration data taken with 

different plug lives also showed a further decrease in vibration magnitude when plugs are used 

for a long time indicating major liquid metal build-up allowing less gas flow rate. 

The size of the plant data taken in this study is very small compared to the number of parameters 

varying during ladle operation. Current results should be verified by incorporating additional 

industrial data to see the effect of different parameters separately.  Typical noise sources such as 

crane movement and other nearby operations should also be identified and measured separately 

to easily filter them and reduce their effect on the correlation and structure of the data. 

In summary, these findings show that the stirring process may be monitored by combining the 

three axes vibration signals if the right frequency ranges are chosen carefully and the relationship 

is further studied using adequate plant trials and proper noise filtering techniques. 
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8 Bubbling Sound Signal Analysis 

8.1 Introduction 

Stirring using bottom gas injection is the common mechanism used to achieve uniform 

temperature and homogeneous composition in steel melts in ladle metallurgy. When injected, 

inert gas naturally rises through the molten metal or slag forming bubbles.  The formation and 

disintegration of bubbles generate sound.  Researchers found that the sound pulse is created 

when two bubbles, primary and secondary, are coalesced.[25, 26, 124, 129, 269] Bubble coalescence is the 

merging of two small bubbles to form a relatively large bubble. During the coalescence period, 

the sound pressure tends to increase [25, 26, 124]. The emission of sound can also be due to bubbles’ 

harmonic oscillation.[270] When a liquid entrains gas bubbles, the volume pulsation of the bubble 

imparts high sound pressure in the medium. The volume pulsation is explained by the bubble 

wall oscillation that decays with time due to damping characteristics.[123]  The importance of 

acoustic signal in steelmaking has been described by Zhang et al. [271] 

There is no study in the open literature that explains the behavior of sound pressure when molten 

steel is stirred at low flow rates, varying molten metal depth, and varying slag thickness. Hence, 

the objective of this study was to measure the sound pressure created during bath stirring in the 

laboratory scale cold model. The present work investigated the effect of bottom layer depth, top 

layer thickness and volumetric flow rate on the magnitude and frequency of the sound pressure. 

This may benefit ladle operators in estimating the exact amount of molten metal and slag depth 

in the ladle. This information is also important in evaluating the stirring status. 

8.2 Experiment Setup 

A cold model apparatus made of Perspex shown in Figure 8-1 was used to undertake sound 

pressure measurements. This cold model simulates a 200-tonne capacity industrial ladle by 

fulfilling geometric and dynamic similarity criteria proposed by Krishnapisharody and Irons. [36] 

This ladle is scaled down by 1/10 i.e. every geometric dimension and process parameters on the 

cold model were computed based on this scaling factor. The diameter and height of the cold 

model vessel are 0.42 m and 0.5 m respectively. The volumetric flow similarity is based on plume 

Froude number similarity and is given in Equation 4-10  [35]  
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 A centrally located 0.003 m diameter nozzle was assembled at the bottom for compressed air 

injection. Water and oil (ρ= 850 kg/m3) are used to simulate molten steel and slag respectively. 

The selection of water was due to its kinematic similarity with molten steel at working 

temperature, its easy availability and being widely used in cold model steelmaking studies.[35, 154]  

However, the physical and dynamic property of slag is highly variable and it is difficult to mimic 

it with a single material. Although oil is not an ideal choice to simulate slag, due to its 

immiscibility with water and availability, it has been successfully used in steelmaking cold model 

investigations in the plant.[7, 8, 14-16, 18, 37, 73, 76-80, 97, 214, 215]  

An integrated circuit piezoelectric (ICP) array microphone was used to sense the sound pressure. 

This microphone is of the condenser type and is “Free-Field” i.e. it is direction sensitive. The 

microphone was located centrally above the apparatus and pointed directly to the bath. A low 

impedance cable where the signal can be transported over long distances with a negligible signal 

loss was utilized to connect the microphone to a data logger. The data logger was NI 9234, which 

is a 4-channel C Series dynamic signal acquisition module from National Instruments.  It digitized 

the sound pressure signals at a maximum rate of 51.2 kHz. The amount of pressurized air was 

controlled by a standard acrylic rotameter (±3 % full-scale errors). The air pressure was made to 

be at a fixed value by a pressure regulator to prevent any fluctuations. Figure 8-1 shows the 

scheme of the experimental setup. 

 

Figure 8-1 Experimental setup for acoustic measurement 
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National Instrument SignalExpresss 2013 software was used to acquire, generate and save 

signals. The analysis of the collected data was performed in Matlab2013a. 

8.3 Experimental Conditions 

Applying geometric and dynamic similarity criteria, the parameters’ values in the lab-scale were 

determined. Equation 4-10 which is based on plume Froude number similarity ((𝐹𝑟𝑝)
𝑚

= (𝐹𝑟𝑝)
𝑓
) 

was applied to determine the volumetric flow rates for cold model study. Flow rates taken for 

this study were determined using Equation 4-10 (𝑄𝑚 = 𝜆2.5𝑄𝑓) in order to be within the range of 

flow rates applied in ladle metallurgy.  

Table 8-1 Experimental conditions for sound pressure experiment 

In the previous experimental study of ladle vibration[154], the experimental conditions considered 

were four bottom layer heights, four top layer heights and low volumetric air flow rate ranging 

from 0.83 to 4.17 x 10-5 m3/s. To be able to draw general conclusions in this study, similar 

experimental conditions were taken in the sound pressure measurement. The sound pressure 

data was gathered when the bath was stirred by pressurized air in the presence and absence of 

the top layer. The single layer experiment was carried out on four different water depths. During 

the double layer experiment, the top layer was varied from 0.005 to 0.02 m. For each bath level, 

the volumetric airflow rate was varied from 1 x10-5 to 4x10-5 m3/s   at 0.33 x 10-5 m3/s interval.  

Table 8.1 shows the flow rate intervals, water levels and oil depths considered in this experiment. 

Single layer refers to only water being used and double refers to the presence of a layer of oil on 

Layers Water Level (m) Oil Depth (m) Air Flow Rate ( m3/s ) 

single 0.1 0.00 1 to 4x10-5  

single 0.15 0.00 1 to 4x10-5  

single 0.15 0.00 1 to 4x10-5  

single 0.2 0.00 1 to 4x10-5  

single 0.25 0.00 1 to 4x10-5  

single 0.25 0.00 0.83 to 10.33x10-5 

double 0.1 0.005 to 0.02 1 to 4x10-5  

double 0.15 0.005 to 0.02 1 to 4x10-5  

double 0.25 0.005 to 0.02 1 to 4x10-5  

double 0.25  0.02 0.83 to 10.33x10-5 
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the top of the water. All flow rate ranges considered in this study are within the operational range 

of flow rates in ladle metallurgy.[38, 105, 262]. 

8.4 Analysis Procedure 

The analysis process began by evaluating the level of background noise, which came from various 

sources. All necessary steps were taken to ensure that the noise does not interfere with the main 

signal.  The next step was to determine the sampling frequency and the sampling time. The sound 

pressure data obtained at various experimental conditions were analysed in the time and 

frequency domains. The time domain investigates the magnitude of the sound signal in relation 

to flow rate and bath height. The FFT of the data was analysed to uncover certain properties of 

the sound pressure by taking specific frequency ranges at a time. Detail descriptions of the FFT 

are found in the literature.[141, 145, 228, 230] 

8.5 Signal Analysis 

8.5.1 External Noise 

In order to check whether the background noise is a significant part of the main signal, external 

sources of sound were measured in the absence of air bubbling at various times to detect spurious 

signals. This was initially performed without an acoustic insulator on the apparatus as shown in 

Figure 8-2a.    

 

Figure 8-2 Cold model apparatus a) without insulation b) with insulation 

Figure 8-3 shows the temporal variation of sound pressure of air conditioning equipment 

(external source) and water bubbling due to gas stirring at 16.67x10-6 m3/s and 33.33x10-6 m3/s 
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respectively. Figure 8-3 shows that the magnitude of the external noise is comparable to the main 

signal. 

 

Figure 8-3  Sound pressure  at 0.25 m water level  a) background noise b) noise + main signal at 

16.67x10-6 m3/s c)  noise + main signal at 33.33x10-6 m3/s 

To minimize the effect of background noise and increase the strength of the main signal, the 

apparatus was covered with a 0.009 m thick acoustic pin board, which is a sound dampening 

material made of woven polyester (see Figure 8-2b). This material has the ability to absorb and 

attenuate sound energy coming from external sources.[272]As shown in Figure 8-4a the magnitude 

and intensity of the external noise was reduced. This improved the signal to noise ratio (SNR) 

from almost 1 to 4.4. 

a

)

) 

b

c

)

) 
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Figure 8-4 Comparison of noise signal with main signal containing noise  a) no stirring (external 

noise) and with insulation b)  flow rates of 16.67x10-6 m3/s and c) flow rates of 33.33x10-6 m3/s) 

 

Figure 8-5 Sound pressure level (dB) for a) no stirring (external noise) b)  flow rates of 16.67x10-

6 m3/s and c) flow rates of 33.33x10-6 m3/s) 

In addition, the ambient/external noise alone and the main signals containing the external noise 

was analysed in the frequency domain using power spectral density (PSD). The concept of PSD 
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is described briefly in Chapter 4. The analysis was aimed at identifying the frequency range where 

the power of the signal is concentrated. Figure 8-5 shows the sound pressure level of external 

noise and the main signal containing external noise. It can be concluded that the power of the 

external noise signal is concentrated at low frequencies i.e. between 0 and 50 Hz. Consequently, 

to increase the strength of the signal, the signal in this frequency range was filtered out during 

frequency domain analysis. 

8.5.2 Sample Time Determination   

The recording length for this data acquisition was determined by observing the spectral wave 

pattern at different sampling times. First, the signal was recorded for 60 seconds. This sample 

time is subdivided into different recording lengths (30, 10, 6 and 5 seconds). The frequency 

domain of each recording length is given in Figures 8-6 to 8-9. The spectral patterns of 30, 10, and 

6 are very similar within the divisions while for the 5 sec sample time, the dividends start to show 

a difference. This was also reported in previous vibration signal analysis.[18, 154] Hence, it was 

determined that using a sampling time of 6 seconds would have little impact on the overall signal 

and could, therefore, be used as a data acquisition time. 

 

Figure 8-6 Spectral patterns of sound pressure at sample time of 30 seconds 
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Figure 8-7 Spectral patterns of sound pressure at sample time of 10 seconds 

 

a 

b 
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Figure 8-8 Spectral patterns of sound pressure at sample time of 6 seconds 

c 
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           Figure 8-9 Spectral patterns of sound pressure at sample time of 5 seconds 

8.6 Result and Discussion 

8.6.1 Bubbling Sound in the Single Layer 

8.6.1.1 Low Flow Rate Bubbling 

Data collected at four different water levels and low volumetric flow rates of 10-5 to 40x10-6 m3/s, 

without the upper layer, was analysed in the time and frequency domains. Time domain analysis 

of data shows that the average amplitude of sound pressure increases with flow rate when 

keeping the bath level constant. This profile is shown in Figure 8-10. However, this amplitude 

does not show any trend when the flow rate was fixed and bath height was varied. Figure 8-10 

and Figure 8-11 shows this result.  The temporal patterns in Figure 8-11 show no clear distinction 

among the four levels by keeping the flow rate constant. 
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Figure 8-10 Relationship between average sound pressure and flow rate 

 

Figure 8-11 Sound waves for a fixed flow rate of 1.67x10-6 m3/s and variable bath level 

As the time domain analysis could not unveil any difference in sound pressure created at different 

water levels when keeping the air flow rate constant, the data were analysed in the frequency 

domain using the Fast Fourier Transform.  In the frequency spectrum, the highest magnitude 

peak, f1, and second highest magnitude peak, f2, frequencies were investigated in each 

experimental condition as shown in Figure 8-9. Table 8-2 displays these peaks with respect to 

their air flow rate and water heights in the apparatus.  
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Figure 8-12 Peak frequencies at 0.15 m water level and 10-5 m3/s volumetric air flow rate 

The data in Table 8-2 displays the maximum peak frequencies under various experimental 

parameters. It has been found that the global peak frequencies exhibit negligible variation with 

flow rate.  However, as the level increases, the peak frequency shows a persistent increment of 

approximately 8 Hz for a 0.050 m bath level rise from 0.10 to 0.25 m.  Figure 8-13 shows how the 

peak frequency changes as a function of water depth and volumetric flow rate. 

Table 8-2 First and second peak frequencies for four water levels and varying flow rates 

 H=0.1 m  

Q (m3/s)x10-6 10 13.33 16.67 20 23.33 26.67 30 33.33 36.67 40 

f1(Hz) 145 142.4 144.4 143.7 144.5 143 142 143.6 142 142.5 

f2(Hz) 473.4 473.5 473.2 472.4 472 472.9 471 142 144.7 472 

 H=0.15 m 

f1(Hz) 150.9 152.5 150.4 152.6 151.1 152 152 151.8 152 152.6 

f2(Hz) 521.2 520.3 521.1 65.8 69 65 68.8 521 66.9 66 

 H=0.2 m 

f1(Hz) 159.5 160.2 158.7 159.5 159.5 159 158.9 159.9 159.6 157.8 

f2(Hz) 68.7 61.7 62.1 65.7 67 91.8 95.5 92.87 94.1 93.2 

 H=0.25 m 

f1(Hz) 165.6 167.3 166.9 169.2 168.8 168.6 168 167.3 168.2 166.5 

f2(Hz) 60.25 64.6 62.7 65.92 89.6 66.6 90.1 61.6 66.8 67.19 

Further analysis in the frequency domain was performed by analyzing the power spectral density 

(PSD). This was aimed at identifying frequency ranges where the energy content of the signal 

varies with the rise or fall of the bath level for the single layer study. When the signal amplitude 

or power of the signal is observed in the whole frequency range by computing the power spectral 
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density (PSD) of the sound pressure (shown in Figure 8-14) no difference could be visualized. 

Close examination of the PSD curve at various smaller frequency ranges reveals that the 

magnitude of the sound power either increases or decreases with the bath level depending on 

which frequency range is taken. For most of the flow rates considered,  the sound power increases 

with bath level in the frequency range of 125 to 130 Hz as it can be observed in Figure 8-15. 

 

Figure 8-13 Global peak frequency at different flow rate and bath heights 

 

Figure 8-14 PSD of sound pressure at 10-5 m3/s flow rate and the various heights 
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Figure 8-15 Sound power at 33.3x10-6 m3/s and 125 to 130 Hz 

 

Figure 8-16 Sound pressure at 33.3x10-6 m3/s and 160 to 185 Hz frequency range 

There are other frequency ranges, which show a trend, but for three bath heights only: 150, 200 

and 300 mm.  Figure 8-16 shows that the sound power decreases with increasing water depth in 

the frequency range of 160 to 185 Hz. In comparison, the sound power increases with increasing 

water depth in the frequency range of 685 to 700 Hz for the three water depths taken in this study. 

This is presented in Figure 8-17. 
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Figure 8-17 Sound pressure at 33.3x10-6 m3/s and 160 to 185 Hz frequency range 

8.6.1.2 High Flow Rates 

In ladle metallurgy, stirring occurs at different flow rates to satisfy various objectives. In the 

previous section, the study of ladle stirring at low flow rates has been investigated by analyzing 

the sound signal measured from the cold model.  

To observe how the bubbling sound pressure behaves at a relatively high flow rate, 

measurements were taken from the same cold model for the flow rate of 41.7x10-6 to 10.83 x10-6 

m3/s and two bath levels of 0.15 and 0.25 m.  

Table 8-3 First and second peak frequencies at different flow rate and water height 

Analyses in the time domain show that the sound wave magnitude increases with flow rate but 

the relationship with bath level is not linear. Figure 8-18 shows the relationship between the 

average sound pressure and the volumetric flow rates. Peak frequency analysis as shown in 

 H=0.15 m ,  h=0 (without the upper layer) 

Q (3x10-6 m3/s ) 41.67 50 58.33 66.67 75 83.33 91.67 100 108.33 

f1(Hz) 151 152 151 152 151 152 153 154 152 

f2(Hz) 66 522 522 522 523 521 522 521 522 

 H= 0.25 m 

f1(Hz) 167 168 167 168 167 165 166 168 168 

f2(Hz) 89 66 89 86 89 88 86 86 89 
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Figure 8-19 shows that the highest peak occurs at a higher frequency for the 0.25 m bath level 

than the 0.15 m bath level whereas the second peak occurs at higher frequency in the 0.15 m than 

the 0.25 m. This is shown in Figure 8-19 and Table 8-3.  However, the frequency at which both 

peaks occur remains more or less constant with flow rate. Figures 8-20 and 8-21 show the 

relationships between peak frequency and volumetric airflow rate and bath level for a single layer 

and higher flow rates. It suggests that the peak frequencies remain almost constant as flow rate 

changes. The peak frequencies only shifts when the bath level changes. 

 

Figure 8-18  Relationship between air flow rate and average sound pressure 

(a) (b) 

Figure 8-19 Peak frequencies at 10.83 x10-6 m3/s a) 0.15 m and b) 0.25 m bath level 
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Figure 8-20 First peak frequency at different flow rate and bath heights 

 

Figure 8-21 Second peak frequency at different flow rate and bath heights 

8.6.2 Bubbling Sound in Double Layer 

In ladles, the upper surface of the melt is usually covered by a slag of a certain thickness. This 

forms an upper layer and can affect the quality of the steel in different ways. In this study, this 

slag layer was replicated with oil. The water level was fixed and the oil depth was varied between 

0.005 and 0.02 m at intervals of 0.005 m.  The study analysed the variation of sound pressure with 

flow rate, and upper layer/oil depth. The bottom layer depths taken in this study are 0.10, 0.15 

and 0.25 m. 

8.6.2.1 H=0.25 m 

The sound signal from the double layer stirring was collected at a fixed water level and varying 

top/oil depth. This data was analysed in the time and frequency domains.  The analysis result 

shows that the average sound pressure linearly increases with flow rate as shown in Figure 8-22 

for the four oil depths. 
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However, the data shows that the average amplitude calculated over the whole time span rarely 

changes with oil depth in the volumetric airflow rate of the range of 6.67x10-6 to 40 x10-6 m3/s. 

To examine the effect of varying the upper layer while keeping the airflow constant, the data 

were analysed in the frequency domain.  Figure 8-23 and Table 8-4 show the values of peak 

frequency and their respective amplitude for each flow rate and oil depth. Computing the peak 

frequencies for each flow rate and oil depth shows that the global peak frequencies remain at a 

nearly constant value as both the injected volumetric airflow rate and upper layer thickness 

increases. This reveals that the global peak frequency is a function of the bottom layer thickness 

 

Figure 8-22  Relationship between sound pressure and flow rate 

 

Figure 8-23 Peak frequencies as a function of flow rate. 
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Table 8-4 First and second peak frequencies and their respective sound pressure amplitude 

value 

 H=0.250 m, h=0.005 m (with upper layer) 

Q (m3/s)x10-6 10 13.33 16.67 20 23.33 26.67 30 33.33 36.67 40 

f1(Hz) 167 169 169 168 170 168 167 169 170 168 

A1(Pa) 0.025 0.029 0.033 0.023 0.036 0.028 0.045 0.034 0.031 0.038 

f2(Hz) 658 60 88 86 85 85 86 87 84 85 

A2(Pa) 0.004 0.006 0.009 0.011 0.009 0.012 0.013 0.013 0.013 0.014 

 H=0.25 m, h=0.01 mm 

f1(Hz) 172 169 171 171 171 172 171 171 172 171 

A1(Pa) 0.018 0.020 0.026 0.035 0.046 0.048 0.030 0.029 0.041 0.033 

f2(Hz) 662 58 59 61 62 63 61 62 84 87 

A2(Pa) 0.004 0.003 0.007 0.008 0.014 0.015 0.016 0.019 0.019 0.020 

 H=0.25 m, h=0.15 m 

f1(Hz) 172 173 171 172 173 173 172 172 172 173 

A1(Pa) 0.022 0.028 0.028 0.030 0.040 0.041 0.050 0.049 0.032 0.026 

f2(Hz) 62 63 62 62 62 61 62 60 60 89 

A2(Pa) 0.048 0.006 0.007 0.008 0.016 0.016 0.018 0.017 0.02 0.017 

 H=0.25 m, h= 0.20 m 

f1(Hz) 171 173 172 173 173 172 171 172 173 174 

A1(Pa) 0.023 0.028 0.028 0.029 0.030 0.029 0.030 0.028 0.034 0.034 

f2(Hz) 763 764 765 63 88 87 91 89 64 87 

A2(Pa) 0.004 0.005 0.005 0.005 0.007 0.009 0.011 0.013 0.010 0.012 

 

Figure 8-24  Relationship between amplitude at peak frequencies and flow rate at four oil 

depths. 

To assess how the amplitude of the sound pressure at peak frequencies varies with experimental 

conditions, the amplitude at peak frequencies was plotted against the volumetric airflow rate as 
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shown in Figure 8-24. This figure suggests that no clear correlation has been found to detect the 

effect of the upper layer on the amplitude at peak frequency.  In a similar manner, the spectral 

variation of the sound pressure level was also examined to reveal any relationship that can tell 

the influence of increasing or decreasing oil/slag depth.  

Figure 8-25 shows the power (dB) of the sound wave in the frequency spectrum at a volumetric 

flow rate of 36.67x10-6 m3/s at a fixed water level of 0.25 m and four oil depths. Taking the whole 

frequency range, the power of the signal shows no clear difference between different depths of 

the upper layer. Considering the sound power in a narrow frequency range, it is found that the 

sound power (dB) varies in magnitude as the depth of the oil increases. Figure 8-26 shows the 

sound power (dB) in the frequency range of 760 to 775 Hz where the sound pressure level 

decreases with oil depth for the volumetric air flow rate of 36.67x10-6 m3/s. The arrows in Figure 

8-26 indicate the range where this tendency is observed for the four top layer thicknesses 

simultaneously. To check if this result repeats for the other volumetric airflow rates, the average 

sound power (dB) within the frequency range of 760 to 775 Hz was calculated for each upper 

layer thickness and plotted against the flow rate. Figure 8-27 shows that the average sound power 

exhibits negligible variation with volumetric airflow rate but increases with oil depth. 

 

Figure 8-25 Sound pressure level at 36.67x10-6 m3/s, 0.250 m thick lower layer and varying upper 

layer 
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Figure 8-26 Sound pressure level for the flow rate of 36.67x10-6 m3/s and H=0.25 m 

 

Figure 8-27  Variation of average sound pressure level with the depth of the upper layer in 

between 760 and 775 Hz 

Table 8-5 Peak frequency values within the frequency range of 700 to 800 Hz 

 H=0.25 m, h= 0.5 m (with upper layer) 

Q (m3/s)x10-6 10 13.33 16.67 20 23.33 26.67 30 33.33 36.67 40 

f1(Hz) 736 737 737 739 738 738 738 738 740 739 

 H=0.250 m, h= 0.10 m 

f1(Hz) 747 747 748 745 746 746 767 747 747 749 

 H= 0.25 m, h= 0.15 m 

f1(Hz) 753 752 754 755 753 754 755 752 752 755 

 H= 0.25 m, h= 0.20 m 

f1(Hz) 765 767 765 765 765 765 766 765 764 766 

Further analysis around this frequency range, i.e.  700 to 800 Hz, also revealed that the local peak 

frequency in this frequency range increases with an increase of oil depth.  Table 8-5 contains the 
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values of the peak frequencies at each airflow rate and bath level while Figure 8-28 shows the 

trend of peak frequency with flow rate and oil depth.  

 

Figure 8-28 Peak frequency values at different upper layer depths 

Figure 8-29 presents the frequency-amplitude plot for single and double layer air stirring. From 

this plot, it is clear that no peak is observed between 700 and 800 Hz in the single layer. The new 

peak appears during double layer bubbling. The spectral analysis shows that the peaks are 

generated during the double layer bubbling. 

 

 

Figure 8-29  Spectral patterns of sound pressure in the range of 700 to 800 Hz a) single layer:  

H= 0.250 m, Q= 40x10-6 m3/s b) double layer:  H=0.25 m, h= 0.20 m and Q= 40x10-6 m3/s 

8.6.2.2 H=0.10 m 

To determine if these peak frequencies persist when different water levels and same upper layer 

depths are used, a 0.01 m water level and an oil depth that varies from 0.005 to 0.020 m, was 
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stirred by identical volumetric airflow rate. The result shows that the peak frequencies exist in a 

different frequency range i.e. 800 to 900 Hz and 1300 to 1350 Hz. These peak frequencies do not 

exist in the single layer of identical bath depths and airflow rates. They only appear when the 

bath contains an upper layer/oil. Figure 8-31 shows the new frequency at 890 Hz. 

 

Figure 8-30 Peak frequencies when H= 0.10 and h=0.005 to 0.020 m. 

The values of peak frequencies when the flow rate and oil depth are varied is shown in Figure 8-

30. Other frequency ranges that show similar results were also found. As observed in Figures 8-

32 and 8-33, within the frequency range of 1700 to 1715 Hz the sound power and the average 

sound power for each flow rate decreases as oil depth increases. 

 
a) 

 
b) 

Figure 8-31 Peak frequencies at 66.67 m3/s a) single layer: H= 0.10 m and b) double layer, H=0.10 

and 0.020 m thick oil 
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Figure 8-32 Sound pressure level at 36.67x10-6 m3/s and water  level of 0.25 m with oil as an 

upper layer 

 

Figure 8-33 Variation of sound pressure level with the depth of the upper layer in between 1700 

and 1710 Hz 

8.6.2.3 H= 0.15 m 

The effect of the upper layer was studied by varying height of the bottom layer. These findings 

show that the peak frequencies increase with top layer thickness in a specific frequency range. 

Figure 8-34 shows two frequency ranges that exhibit this result. These are 1400 to 1450 Hz and 

500 to 550 Hz. This strengthens the analysis result made on a 0.25 m bottom layer depth. 
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Figure 8-34 Peak frequency variation in the double layer for water level of 0.15 m and oil depth 

that varies from 0.005 to 0.020 m 

The bubble breakup and coalescence are some mechanisms of sound generation. In ladles, some 

studies show that the bubble coalescence rate is function of gas volume fraction, 𝛼, and energy 

dissipates per unit mass of liquid, 𝜀.[273] In addition, the bubble break up frequency is also function 

rate of energy dissipation, 𝜀, to the liquid.[274] The gas volume fraction is function of the distance 

from bottom of the ladle, 𝑧 whereas the rate of energy dissipation is dependent on mass of the 

liquid. Hence, the change in peak frequencies when bath height varies may be related to the 

change in bubble breakup and coalescence frequencies. The reason why the peak frequencies 

remain constant with volumetric gas flow rate remains unclear. 

8.7 Conclusions 

The sound pressure measured from a bottom stirred laboratory-scale cold model was studied by 

varying the volumetric airflow rate, lower and upper layer depths. The data was analysed in the 

time and frequency domains. The time domain analysis clearly reveals an increase of sound 

pressure magnitude as the flow rate increases both for the single and double layer models. The 

effect of the water level height and the oil depths were not clear from the time domain analysis. 

The frequency domain analysis was able to uncover the effect of the bath level change. For the 

single layer, the increase in bath level resulted in an increase in peak frequency and, in the 

frequency range of 125 to 130 Hz, a decrease in sound power (dB). In the double layer study 

where the lower layer was fixed at 250 mm and the upper layer was varied from 0.005 to 0.020 m, 
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the frequency analysis uncovers certain results. In the frequency range of 700 to 800 Hz, the local 

peak frequency has shown a linear increase with an increase of the oil depth. In addition, the 

average sound power increases in the frequency range of 760 to 775 Hz and decreases in the 

frequency range 1700 to 1710 Hz with oil depth. For the double layer investigation, other water 

levels were also considered. The result was similar except that the frequency ranges where these 

peaks show an increase was different. On the other hand, the peak frequencies rarely change with 

volumetric airflow rate for both the single and double layer stirring.  

To sum up, the relationships found between sound amplitude and flow rate, peak frequency and 

top layer/slag height, peak frequency, and bottom layer/liquid metal are vital to control ladle 

stirring and steelmaking in general. More comprehensive investigations need to be carried out in 

the plant to verify these findings, apply or extend their applications in other steelmaking 

operations. 
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9 Discussion 

The steel melt poured into continuous casting operations should have a minimal temperature 

and chemical gradients as well as tight control of its impurities and inclusions to improve the 

quality of the final steel product. This is in part achieved by stirring molten steel by a pressurized 

gas, usually argon, in ladles. Low gas flow rates are intended to rinse the steel and attain thermal 

and/or chemical homogenization while intense stirring is often practiced to facilitate slag-metal 

reactions.[38, 103, 275]  Hence, monitoring the status of the stirring is vital in attaining the desired 

homogeneity, purity and cleanness, as well as ensuring optimization of gas/argon consumption.  

The current monitoring system is largely dependent on experienced operators which use 

feedback signals from the gas line back pressure,  indicated flow rates, surface turbulence, and 

the size of the slag opening on the top surface.[18, 189] Variable back pressure and gas leaks in the 

argon supply system, variable back pressure because of variable plug conditions and resistance 

to flow are some of the difficulties facing ladle operators in accurately evaluating stirring status 

in ladles.[7, 103]  It is obvious that the most reliable measurement of stirring is to make direct 

quantification of temperature and composition of the liquid metal over time. However, this is 

difficult because of the plant operating conditions and may not satisfy the criterion of real-time 

control. This is because it takes a significant length of time to measure the chemistry of the melt. 

Therefore, an indirect measurement of effect stirring needs to be established to address this 

problem.[18] The signals such as bubbling sound and ladle vibration due to gas stirring have been 

used to quantify the level of agitation.[8, 10, 12, 13, 15, 16, 154, 155] This online monitoring system is most 

beneficial when the operator cannot see the slag surface in a ladle and for weak purging 

conditions.[8]  

Mucciardi[19] used an accelerometer to measure ladle vibration due to stirring to correlate the 

mixing power and vibration signal. The study reported that an accelerometer is a suitable 

transducer for monitoring the interaction between liquids and gases when direct contact with the 

liquid phase is not possible.  
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The work of Minion et al. [10] focused in developing vibration signal based monitoring technique 

for ladle stirring. Kemeny and his co-researchers developed commercial sensors based on ladle 

vibration to predict the degree of stirring.[12, 189] Others like Burty et al.[13, 15, 16],Yuri et al.[8] and 

Kostetskii et al.[14] have measured vibration, sound and/or ladle eye size on industrial and 

laboratory scales to characterize the stirring process. Xu et al.[7]  used a different approach by 

combining the vibration, bubbling sound and ladle eye size to find the latent variable to predict 

the stirring power. Relationships developed between one-dimensional vibration and flow rate 

and Froude number by some researchers were not working for double layer water model data. 

This suggests that a detailed study is required for metal bubbling that consists significant amount 

of slag. Detecting the stirring status at low flow rates as well as the effect of vibration sensor 

location is also not fully understood. In addition, the effect of the top and bottom layers on the 

bubbling sound was not given much attention. Hence, this study focused on studying low flow 

rate stirring process using vibration and sound signals to automate the stirring process online. 

This research had several key objectives described in Chapter 3.  

The first key objective was to select an optimum vibration-sensor location. Industrial working 

conditions are harsh. The high-temperature surfaces, in particular, may affect the performance of 

the contact sensor. In some studies, the contactless laser vibrometer has been taken as a solution 

to cope with hot surfaces of the ladle.[15, 16] However, Laser Doppler Vibrometer (LDV) has 

limitations related to directional uncertainty, stand-off distance, poor signal to noise ratio for low 

diffusive surfaces, generation of image interference with rough surfaces and vulnerability to 

harsh industrial working conditions.[276, 277] An accelerometer was therefore chosen to measure 

vibration. The optimum location of the accelerometer was selected to undertake successful 

measurements.  

The factors that were considered in the selection criteria were; the amount information obtained, 

accessibility for installation and safety issues. The study of the sensor location was carried out at 

a laboratory scale using physical cold models. Six locations were studied. Three were on the 

external wall of the cold model apparatus whereas the other three are on the ladle/vessel support, 

the external wall of a tank of a vacuum degasser and on the exterior wall of the vessel/ladle.  In 

each location, the accelerometer was mounted on a flat smooth surface using a stud to have the 

test surface and the accelerometer well fused together due to the clamping force. This ensures 
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exact replication of motion of both bodies at all frequencies i.e. critical dynamic information can 

be obtained during vibration data acquisition. 

The study found that that the average vibration amplitudes are not similar in magnitude when 

identical axes are compared. To examine the amount of information available in each vibration 

dataset captured from each position, principal component analysis was applied. This revealed 

that the structure of the data is similar in the six locations. The sum of the first two latent variables 

can pick almost all of the information regarding the stirring process variation. However, the 

informative frequency ranges may shift their position with sensor location. The sensor can be 

mounted on wall, support or tank because all positions provide the equivalent magnitude of 

information. This implies that the amount of information of the stirring process of the cold model 

does not depend on the sensor locations considered in this study. This result is useful in the 

industrial applications in many ways. It simplifies the difficulty of locating the sensor caused by 

temperature, accessibility and safety issues. Hence, the outcome of this research shows the use of 

contact sensor/ accelerometer is not limited by a blistering heat of a ladle surface since the sensor 

can be mounted on a less hot surface of a part that is well assembled to the ladle system.   

Once the sensor optimum location was determined ladle vibration data was collected over a wide 

range of experimental conditions in the cold model study. Two physical cold models that 

replicate ladles of different capacity were used to investigate bottom gas stirring at different flow 

rate ranges. One model is made of plastic material, which is 1/10 of a 200-tonne ladle, and the 

other is made of stainless steel and is 1/10 of a 160-tonne ladle. In both cases, geometric and 

mechanical similarities are respected. The plastic cold model did not consider the wall material 

and vessel shape. This material property and geometric shape may influence the vibration signal.  

Hence, a second physical cold model was designed that has similar wall material and geometric 

shape with the industrial ladle to improve the accuracy of the vibration signal. The cold model 

was built from steel material to have comparable vibration dampening characteristics with the 

actual industrial ladle. The steel walled cold model study was part of an industrial project 

undertake in collaboration with Tata Steel. A plant trial was carried out to compare the results of 

the corresponding steel-walled cold model.   
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In the cold model studies. Equation 4-10 (𝑄𝑚 = 𝜆2.5𝑄𝑓) which is based on plume Froude number 

similarity criterion ((𝐹𝑟𝑝)
𝑚

= (𝐹𝑟𝑝)
𝑓

) was applied to determine the volumetric flow rates.  This 

helped the flow rates to be within the range of flow rates applied in ladle metallurgy.  

For the plastic-walled water model, the study was carried out at three flow rate intervals. The 

corresponding flow intervals in industrial scale are 0.53 to 2.63x10-3 m3/s, 2.63 to 13.02x10-3 m3/s, 

and 13.02 to 34.23x10-3 m3/s based on Froude number similarities. The top and bottom layers were 

also varying in each flow interval. The sensor was mounted on the external wall of the rig. 

The main analysis methods used in this study were linear PCA and PLS. The choice of PLS was 

due to its ability to handle extraneous, collinear and missing data. Another essential characteristic 

of PLS is its accuracy improves with more observations. The selection PCA based on its reliability 

and ability to detect the structure in a large dataset. Both PLS and PCA are simple and convenient 

for online monitoring. These techniques also have good success stories in industrial multivariate 

monitoring.[28, 30, 31, 166, 172, 256] 

 The study showed that the triaxial vibration data from each interval has maximum underlying 

structure. The first latent variable, which is a combination of the three axes vibration signals,   can 

efficiently predict both the amount of stirring energy and bath recirculation speed adequately for 

vibration data without the top layer. This indicates that ladles that operate with little or no slag, 

the vibration latent variables from principal component analysis can accurately and efficiently 

predict the stirring intensity. In most cases, tapping of steel into a ladle leads to the uncontrolled 

amount of slag carry over. The carryover slag may affect the level of melt recirculation and degree 

of turbulence in the liquid bath.[222] This means the dynamics of the ladle wall is also affected by 

the slag presence. Hence, a layer of oil was added at the top and varied throughout the 

experiment. The correlation between PCA latent variable and stirring indicators is not linear for 

this data. To find the linear relationship between the stirring process parameters and the 

corresponding induced vibration, partial least squares (PLS) was applied to the input parameters 

(flow rate and bath height) and vibration (response) matrices simultaneously. As a result, the 

linear combinations of the responses that explain maximum variation in the input parameters 

have a good linear relationship with stirring indicators. The relationship is stronger at fixed 

bottom and top layers. This robust linear relationship is exhibited in specific frequency ranges 

and the frequency ranges vary with sensor location and flow rate range.   
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A similar study carried out on a steel-walled water model, which is 1/10 of a 160-tonne ladle, 

showed that vibration data has underlying structure and the majority of this structure can be 

explained by the first latent variable. The common variation between vibration and process 

parameters were discovered in certain frequency ranges by applying PLS. To verify the results of 

the water model investigations, plant trials were performed on a 160-tonne vacuum degasser 

ladle. Six heat with different working conditions were considered in this plant trial. The study 

was carried out individually and in combination. 

Similar to cold model data, PCA showed that the vibration data of each heat and the combined 

are highly structured. The first two principal components can pick most of the stirring process 

variation. The frequency ranges that pick this structure are 60 to 70, 70 to 80, 80 to 90 and 90 to 

100 Hz. These frequency ranges were also observed in the water model studies. In the combined 

plant data, when slag weight shows little or no variation, the underlying data structure tends to 

be stronger. This was also the case in the cold model investigation where the variation of the top 

layer reduces the strength of the linear relationship.  

The data within the informative frequency ranges was further investigated by PLS to develop a 

model that predicts the stirring status. The prediction is good when considering only one heat in 

the frequency range of 60 to 70 Hz. On the other hand, when data from all heats are combined 

and analysed by PLS, the prediction was not possible i.e. the correlation between the latent 

variable of the process parameters and vibration is not linear. There are several possible 

explanations, which need to be addressed to identify which factor affects the relationship.  Firstly, 

the underlying relationship could be nonlinear. Secondly, the data comes from heats that have 

different process parameter values such as plug position, plug number, steel weight, slag weight, 

plug life, slag line life, and barrel life. In addition, some heats were carried out with new porous 

plugs and others with old plugs that served from two to four heats. The location of these plugs 

was also different in the six heats. Some heats had sidewall plugs whereas others were stirred by 

a sidewall and a central plug. Studies reported that flow patterns are strongly dependent on the 

number and positions of the porous plugs.[278] In Chapter 7, the effect of plug life on vibration 

magnitude was studied using four-plug lives.  The vibration slightly decays with plug life. This 

may be a sign of plug blockage by metal build-up allowing less gas flow rates. In a similar 

manner, the current study found that the variability in slag depth affects the structure of the 

vibration data. From Newton’s Laws, the mass of the molten metal also affects the acceleration.[279] 
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Hence, the variability of these parameters, steel weight, plug life, position and number, and slag 

weight, may have partly played a role in this relationship. The influence of barrel life and slag 

line life on bubble flow and then vibration is not available in the open literature. This suggests 

that comprehensive plant trials are necessary to establish an accurate stirring prediction model 

for plant data.    

Water model studies and plant trials show that the overall stirring process variation can be 

explained by the comparable variations of the oscillation along the 𝑥, 𝑦  and 𝑧 axes. This supports 

the notion that three-dimensional vibration signals are equally important in monitoring the 

stirring process online.   

In order to use the PLS regression model, knowledge of the liquid metal and slag weight is 

required. The peak frequencies of the sound signal can provide information on the thickness of 

the slag/top layer and depth of liquid metal. This helps in predicting the stirring power and 

amount of metal circulation using the developed models.  Thus, the stirring process can be 

monitored by combining the three axes vibration with the sound signals if the right frequency 

ranges are chosen carefully, and the relationship for plant data is further studied with adequate 

plant trials and proper noise filtering techniques.  

In general, the key findings of this study can be summarized as follows: 

 The accelerometer can be mounted on the ladle wall, the ladle support or the external 

wall of the tank (in the case of vacuum degasser). The location of the sensor does not 

affect the quality and amount of information found in the vibration signal. 

 There is a strong underlying structure in the laboratory as well as plant vibration data.   

 There is a strong linear relationship between first latent variable, which is a linear 

combination of the three axes vibration signal, and stirring indicators such as stirring 

power, molten metal recirculation speed, and gas flow rate.   

 There are specific informative frequency ranges where the high data structure and 

strong relationships exist. 

  The depth of the bottom layer/molten metal and thickness of the top layer/slag can 

predict from peak frequencies of the sound pressure signal. 
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 There is a strong linear relationship between average sound pressure generated during 

stirring and air/gas flow rate. 

Though this study contributed significant outcomes, it had also some weaknesses attributed to 

different scenarios. PLS and PCA have a weakness in that they do not detect any nonlinear 

relationships. Other techniques such as artificial neural networks may be applied in the future to 

discover any nonlinear correlations. During physical modeling, not all operating conditions and 

geometric configurations were replicated. For example, the physical and dynamic property of 

slag is highly variable and was difficult to mimic with a single material. The study used oil merely 

based on its immiscibility with and being lighter than water. Hence, the dynamic behavior of oil 

and slag may not be equivalent. The vibroacoustic method for ladle stirring monitoring appeared 

to be sensitive to the surface tension of the liquid.[8] In addition, a change of metal chemistry such 

as sulfur content may influence the size of the bubbles[280] which in turn can affect the bubble 

dynamics . The bubble dynamics has direct relationships with the sound and vibration signal. 

During the water model study, the issue of surface tension and chemistry variation were not 

considered which might alter the result somehow. Plant vibration study as well has not included 

the effect of variation in chemical composition during stirring on vibration signal. In the plant, a 

general relationship could not be established due to variability in plant operations and 

inadequate data. This means the separate measurement of all operating parameters may be 

required before the vibration signal can be used as a reliable measurement of stirring. The results 

obtained in this study apply only to stationary ladle. For ladle in ladle cars, the movement can 

create gravity modes that can give false vibration. 

However, beside these problems , the results from the cold model studies and plant trials show 

that ladle gas stirring can be automated using triaxial vibration and sound signals to meet high 

steel quality demands.  
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10 Conclusions and Recommendations 

10.1 Conclusions  

In the present work, vibration and sound signals were used to investigate ladle gas stirring. In 

the laboratory, two physical cold models of different capacity and design were used. A plastic-

walled and steel-walled cold models simulated 1/10 of 200 and 160-tonne ladles respectively. 

Geometric and Froude number similarity criteria were applied to replicate the geometry and the 

flow in these gas stirred ladles. Water and oil were used to simulate the molten metal and the 

top-layer slag respectively. Air at high pressure was injected through nozzles, located at the 

bottom of the laboratory apparatus, to stir the water-oil bath.  Vibration and sound signals were 

acquired during stirring by a tri-axial accelerometer and a microphone respectively at different 

volumetric airflow rates, water levels, and oil thicknesses. Vibration measurements were also 

carried out on an industrial scale. The vibration data was mainly analysed by PCA and PLS in 

the frequency domain whereas the sound signals were investigated using the FFT and the power 

spectral density. 

One aim of this study was to assess if the location of the accelerometer affects the amount of 

information about the stirring. In each cold model, three candidate locations were investigated. 

In the plastic-walled model, the locations were on the external wall of the apparatus whereas in 

the steel walled model the accelerometer was mounted on the ladle wall, the ladle support and 

the tank external wall. PCA was applied to compare and contrast the information in the data 

measured from the considered locations. Data were collected from the selected locations on each 

laboratory scale and full scales to carry out the study on ladle stirring. This study discovered 

important findings that can help in improving the online stirring process control. 

The study of optimum sensor location showed that the amount of information about stirring 

obtained from vibration data measured from the candidate location (the ladle external wall, the 

ladle supports, or the tank external wall) is very similar. The frequency range where this 

information is situated may slightly vary with accelerometer location with no significant 

differences in the size of the information. Hence, the quality of the vibration signal captured 

during melt stirring is not affected by the accelerometer location. This is an important finding for 

industrial applications as the accelerometer can be mounted on relatively cooler surfaces/parts 
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such as the ladle support or tank external wall to get similar information regarding the stirring 

process.  

The laboratory study as well as plant scale investigation found that the vibration data associated 

with stirring is highly structured. The  𝑥  , 𝑦 and 𝑧 accelerations are equally important in obtaining 

highly structured data. Specific frequency ranges that retain this structure are found in the cold 

model and plant trials. The frequency ranges tend to shift when different air/gas volumetric 

flowrate ranges were used to agitate the bath. This is a vital finding in addressing the low flow 

rate stirring detection problem in industrial ladles. Vibration latent variables (combination of  𝑥  

, 𝑦 and 𝑧 accelerations) computed in these frequency ranges have strong linear relationships with 

stirring indicators: the stirring power and bath recirculation speed models developed in water 

models by other researchers. These correlations are strong when known fixed water/liquid metal 

depth and oil/slag thickness are considered. The information about the metal and slag depths can 

be found from the sound signal analysis. 

The investigation of sound pressure generated from water model bubbling found that the peak 

frequencies increase when the depth of the bottom layer/water was increased. An increase in 

volumetric flow rate does not result in shifting the peak frequency when maintaining the bath 

level is constant. In addition, at a fixed bottom layer depth and variable top layer/oil thickness 

varies, new local frequencies emerge. The location of the local peak frequency that appears when 

a top layer is present in the bath is different for different water/molten metal depths. Moreover, 

the average sound pressure was found to increase linearly with an increase of volumetric airflow 

rate but no clear relationship is observed with bath height. Hence, the change in flow rate is 

related to the magnitude of sound pressure whereas peak frequencies are useful to detect the 

bottom and top layer depths. 

In summary, the accelerometer location does not affect the information content of the signal. 

Vibration data collected from two water models and the plant has maximum structure. The 

relationship between this structured data and stirring power is strong in specific frequency 

ranges for each volumetric gas flow rate range. The sound pressure signal is able to predict the 

water depth and oil thickness. PCA was used to find the structure of the dataset whereas PLS 

was an important tool to discover the linear relationship between input and output variables.  

The sound signal can provide information on the amount of metal and slag, which are vital inputs 
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to the PLS model. Hence, combining the results of vibration and bubbling sound study, the online 

monitoring of ladle stirring can be effective. 

To sum up, the accelerometer location does not affect the information content of the signal. 

Vibration data collected from two water models and the plant has maximum structure. The 

relationship between this structured data and stirring power is maximum at specific frequency 

ranges for each volumetric gas flow rate range. The sound pressure is able to predict the water 

depth and oil thickness. Hence, combining the results of vibration and bubbling sound study, the 

online monitoring of ladle stirring can be effective. 

10.2 Limitations, Recommendations, and Future Directions 

The results of the study are important in developing an effective online control system for ladle 

stirring process. However, the current study has some limitations that need to be addressed in 

future research.  

 The physical cold models may not be ideal replications of the industrial ladles.  Water 

and oil are approximate substitutions of molten metal and slag and the complex structure 

of the ladle and its accessories are difficult to model in the laboratory. This means a 

perfect flow that mimics the flows in gas stirred ladles may not be achieved in the 

laboratory. In addition, fluid properties such as damping and surface tension, chemistry 

change and gas properties at operating condition may not be appropriately replicated. 

This may affect the strength and quality of the vibration and sound signal. Hence, 

laboratory as well as plant scale studies should consider these factors. 

 The current vibration measurement was undertaken only on two ladle capacities. This 

study can be repeated for other ladle capacities to verify the result and check its 

reproducibility for the studied experimental conditions. In addition, apparent gas flow 

rates were used to build relationships, which may generate some errors due to gas 

leakage. 

 Considering the variability of the stirring process parameters in ladle operations, the 

plant trials need to be carried out in a comprehensive manner to draw important 

conclusions and verify water model results  
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 The sound pressure was measured from a cold model only. Industrial trials should be 

performed and analysed using efficient noise filtering techniques.  

 It is also important to apply a different analysis technique if the current results are 

consistent. Artificial neural network and fuzzy logic and nonlinear forms of PCA can be 

applied to the vibration data to detect any nonlinear relationship that exists in the stirring 

process.  

 Noise filtering is a big issue in vibration and sound signal measurement in an industry 

where various sources of noise can distract the main signal. Hence, this needs to be 

addressed by considering a wide range sources of noise to develop to filter out irrelevant 

signals. 

 Future research should focus on measuring vibration and sound stirring process 

parameters such as slag, plug life, position and number variability to measure vibration 

and sound to control the stirring process online. Relationships between chemical/ 

thermal homogeneity and vibration/acoustic signals can be studied for a more direct 

stirring control. 

To conclude, the current study has achieved encouraging results and if the above issues are 

resolved, online stirring process control in ladles can be undertaken efficiently and 

accurately. 
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Appendix A: Relationships Between PC1 and PC2  

The following figures show that the first two principal components are uncorrelated with each 

other, as would be expected in PCA. The data was taken from cold model as well as plant trials 

for selected frequency ranges. In the cold model, the volumetric air/gas flow rate varied from 

8.33x10-6 to 41.67x10-6 m3/s where as in the plant from 583.33 to 16650 x10-6 m3/s. 
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Plant Trails (Combined Heats) 
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Appendix B Mean Square Error (MSE) of PLS Regressions 

The correlation between MSE and number of PLS components for sample frequency ranges is 

shown below. 

Plastic-Walled Cold Model  
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Plant Trails (one Heat) 
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Appendix C: Matlab Based PCA and PLS Programs  

This sample program shows how cold model and plant vibration data are analysed. This sample 

is part of a program used to analyse the steel-walled cold model vibration data.  It performs the 

following tasks:  

o Data collection 

o Vibration magnitude analysis 

o Vibration spectrum analysis 

o PCA on vibration signals 

o PLS on vibration signals 

Program  

%% **Stee-Walled Cold Model Data ** 
%% PCA and PLSR Analysis 
%Data collected at the following experimtal conditions  
%Water height, H= 0.22: 0.02:0.280 m,  
%top layer thickness, h=0.005:0.005:0.020 m  
% Air flowrate, Q=6.67xE-6:6.67xE-6:40E-6 m^3/s** 
%% PCA inputs: Vibration along x-, y and z axes 

  
%% PCA  
clc 
clear all     
p=1; 
for i=0.22:0.02:0.280; 
   for n=5:5:20;   
       for j=0.4:0.2:1.4 %:0.1:0.5; 
          for k=1:1; 

     

  
        

file=['PT1H',num2str(i),'h',int2str(n),'Q',num2str(j),'LPM_',int2str(k

),'.xlsx']; 
        [type,sheets] = xlsfinfo(file); 

   
        sheetx=char(sheets(1,3)); 
        sheety=char(sheets(1,2)); 
        sheetz=char(sheets(1,1)); 
        x=xlsread(file, sheetx,'B11:B11010'); 
        y=xlsread(file, sheety,'B12:B11011'); 
        z=xlsread(file, sheetz,'B12:B11011'); 
        allData(:,p:p+2)=[x y z]; 
        p=p+3; 
          end 
      end  
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  end 
end 
xdata=allData(:,1:3:end); 
x1data=xdata; 
X1=abs(fft(x1data)); 

  
ydata=allData(:,2:3:end); 
y1data=ydata; 
Y1=abs(fft(y1data)); 

  
zdata=allData(:,3:3:end); 
z1data=zdata; 
Z1=abs(fft(z1data)); 

  
%% FFT Analysis 

  
Fs=1828;                          % sampling frequency 
T=1/Fs;                           %  sample time 
L=length(X1) ;      % length of the signal 
t=(0:L-1)*T ;                     %  Time vector 
NFFT=2^nextpow2(L); 
f=Fs/2*linspace(0,1,NFFT/2);      %  vibration frequencies  
length(f); 

  
for v=1:96; 
  Xfft_X1=abs(fft(x1data,NFFT)/L); 
  Xfft_X1_v=Xfft_X1(:,v); 
 figure(v) 
 plot(f,Xfft_X1_v(1:NFFT/2)),xlabel('Frequency, 

Hz'),ylabel('Amplitude, g'), grid minor; 
axis([0 914 0 0.6e-3]) 
end 

   
% y-axis 
for v2=1:96; 
Yfft_Y1=abs(fft(y1data,NFFT)/L); 
Yfft_Y1_v2=Yfft_Y1(:,v2); 
 figure(v2) 
 plot(f,Yfft_Y1_v2(1:NFFT/2)),xlabel('frequency, 

HZ'),ylabel('Amplitude, g'),title('Frequency vs Amplitude(X3)'), grid 

minor 
end 

  
%z-axis 
for v3=1:96; 
Zfft_Z1=abs(fft(z1data,NFFT)/L); 
Yfft_Z1_v3=Zfft_Z1(:,v3); 
figure(v3) 
plot(f,Yfft_Z1_v3(1:NFFT/2)),xlabel('frequency, 

HZ'),ylabel('Amplitude, g'),title('Frequency vs Amplitude(X3)'), grid 

minor 
end 

  
%% PCA for 1-914 based sum of values 
% frrequency 
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fx=sum(1:8192)*ones(44,1); 
fy=sum(1:8192)*ones(44,1); 
fz=sum(1:8192)*ones(44,1); 

  
%amplitude 
X=sum(Xfft_X1(1:8192,:)); 
Y=sum(Yfft_Y1(1:8192,:)); 
Z=sum(Zfft_Z1(1:8192,:)); 

  
M=[ X'  Y'  Z']; 
M=normc(M); 
% pca for 1-914 Hz 
coefff=pca(M); 
[coeff,score,latent] = pca(M); 

  
% principal componenets 
PC1=(latent(1)/sum(latent))*100; 
PC2=(latent(2)/sum(latent))*100; 
PC=[PC1;PC2]; 

  
%% PCA for 1-914 based sum of values 
% sum of amplitude in the freq. band of 0-300 ,301-600 and 601-914 Hz 
X1_1=sum(Xfft_X1(1:2689,:));   % 0-300 Hz 
X1_2=sum(Xfft_X1(2690:5378,:)); 
X1_3=sum(Xfft_X1(5379:8192,:)); 

  
Y1_1=sum(Yfft_Y1(1:2689,:)); 
Y1_2=sum(Yfft_Y1(2690:5378,:)); 
Y1_3=sum(Yfft_Y1(5379:8192,:)); 

  
Z1_1=sum(Zfft_Z1(1:2689,:)); 
Z1_2=sum(Zfft_Z1(2690:5378,:)); 
Z1_3=sum(Zfft_Z1(5379:8192,:)); 

  
%forming main matrix and applying pca 1-300 Hz 
M_1=[X1_1' Y1_1' Z1_1']; 
M_1=normc(M_1); 
coeff1=pca(M_1); 
[coeff,score,latent1] = pca(M_1); 

  
% Percent of variation explained by first and second latent variable 
PC11=(latent1(1)/sum(latent1))*100; 
PC21=(latent1(2)/sum(latent1))*100; 

  
%forming main matrix and applying pca 300-600 Hz 
M_2=[X1_2' Y1_2' Z1_2']; 
M_2=normc(M_2); 
% pca 1-300 
coeff2=pca(M_2); 
[coeff,score,latent2] = pca(M_2); 

  
% Percent of variation explained by first and second latent variable 
PC12=(latent2(1)/sum(latent2))*100; 
PC22=(latent2(2)/sum(latent2))*100; 
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%forming main matrix and applying pca 600-914 Hz 
M_3=[X1_3' Y1_3' Z1_3']; 
M_3=normc(M_3); 
% pca 1-300 
coeff3=pca(M_3); 
[coeff,score,latent3] = pca(M_3); 

  
% Percent of variation explained by first and second latent variable 
PC13=(latent3(1)/sum(latent3))*100; 
PC23=(latent3(2)/sum(latent3))*100; 
PC_300=[PC11 PC12 PC13 ]; % 0 to 914 at interval of 300 

  
%% %% PCA for 1-300  based on sum of values 
% sum of amplitude in the freq. band of 0-100 , 101-200 and 200-300 Hz 
X1_1a=sum(Xfft_X1(1:896,:));      
X1_1b=sum(Xfft_X1(897:1793,:));   
X1_1c=sum(Xfft_X1(1794:2689,:));  

  
Y1_1a=sum(Yfft_Y1(1:896,:)); 
Y1_1b=sum(Yfft_Y1(897:1793,:)); 
Y1_1c=sum(Yfft_Y1(1794:2689,:)); 

  
Z1_1a=sum(Zfft_Z1(1:896,:)); 
Z1_1b=sum(Zfft_Z1(897:1793,:)); 
Z1_1c=sum(Zfft_Z1(1794:2689,:)); 

  
%forming main matrix and applying pca 1-100 Hz 
M_1a=[X1_1a' Y1_1a' Z1_1a']; 
M_1a=normc(M_1a); 
coeff1a=pca(M_1a); 
[coeff,score,latent1a] = pca(M_1a); 

  
% Percent of variation explained by first and second latent variable 
PC11a=(latent1a(1)/sum(latent1a))*100; 
PC21a=(latent1a(2)/sum(latent1a))*100; 

  
%forming main matrix and applying pca 100-200 Hz 
M_1b=[X1_1b' Y1_1b' Z1_1b']; 
M_1b=normc(M_1b); 

  
coeff1b=pca(M_1b); 
[coeff,score,latent1b] = pca(M_1b); 

  
% Percent of variation explained by first and second latent variable 
PC11b=(latent1b(1)/sum(latent1b))*100; 
PC21b=(latent1b(2)/sum(latent1b))*100; 

  
%forming main matrix and applying pca 200-300 Hz 
M_1c=[X1_1c' Y1_1c' Z1_1c']; 
M_1c=normc(M_1c); 
coeff1c=pca(M_1c); 
[coeff,score,latent1c] = pca(M_1c); 

  
% Percent of variation explained by first and second latent variable 
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PC11c=(latent1c(1)/sum(latent1c))*100; 
PC21c=(latent1c(2)/sum(latent1c))*100; 

  
PC100=[PC11a PC11b PC11c ];   % 0 to 300 at interval of 100 

  
%% PCA for 300-600  based on sum of values 
% sum of amplitude in the freq. band of 300-401 , 300-400 and 400-600 

Hz 
X1_2a=sum(Xfft_X1(2690:3585,:));    
X1_2b=sum(Xfft_X1(3586:4481,:)); 
X1_2c=sum(Xfft_X1(4482:5378,:)); 

  
Y1_2a=sum(Yfft_Y1(2690:3585,:)); 
Y1_2b=sum(Yfft_Y1(3586:4481,:)); 
Y1_2c=sum(Yfft_Y1(4482:5378,:)); 

  
Z1_2a=sum(Zfft_Z1(2690:3585,:)); 
Z1_2b=sum(Zfft_Z1(3586:4481,:)); 
Z1_2c=sum(Zfft_Z1(4482:5378,:)); 

  
%forming main matrix and applying pca 300-400 Hz 
M_2a=[X1_2a' Y1_2a' Z1_2a']; 
M_2a=normc(M_2a); 
coeff2a=pca(M_2a); 
[coeff,score,latent2a] = pca(M_2a); 

  
% Percent of variation explained by first and second latent variable 
PC12a=(latent2a(1)/sum(latent2a))*100; 
PC22a=(latent2a(2)/sum(latent2a))*100; 

  
%forming main matrix and applying pca 400-600 Hz 
M_2b=[X1_2b' Y1_2b' Z1_2b']; 
M_2b=normc(M_2b); 
coeff2b=pca(M_2b); 
[coeff,score,latent2b] = pca(M_2b); 
PC12b=(latent2b(1)/sum(latent2b))*100; 
PC22b=(latent2b(2)/sum(latent2b))*100; 

  
%forming main matrix and applying pca 500-600 Hz 
M_2c=[X1_2c' Y1_2c' Z1_2c']; 
M_2c=normc(M_2c); 
coeff2c=pca(M_2c); 
[coeff,score,latent2c] = pca(M_2c); 

  
% Percent of variation explained by first and second latent variable 
PC12c=(latent2c(1)/sum(latent2c))*100; 
PC22c=(latent2c(2)/sum(latent2c))*100; 

  
PC300=[PC12a PC12b PC12c ];  
%% %% PCA for 1-100  
% sum of amplitude in the freq. band of 0-50 , 50-100  
X1_1a1=sum(Xfft_X1(1:448,:));    
X1_1a2=sum(Xfft_X1(449:896,:));  
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Y1_1a1=sum(Yfft_Y1(1:448,:)); 
Y1_1a2=sum(Yfft_Y1(497:992,:)); 

  
Z1_1a1=sum(Zfft_Z1(1:448,:)); 
Z1_1a2=sum(Zfft_Z1(497:992,:)); 

  
%forming main matrix and applying pca 1-50 Hz 
M_1a1=[X1_1a1' Y1_1a1' Z1_1a1']; 
M_1a1=normc(M_1a1); 
coeff1a1=pca(M_1a1); 
[coeff,score,latent1a1] = pca(M_1a1); 

  
% Percent of variation explained by first and second latent variable 
PC11a1=(latent1a1(1)/sum(latent1a1))*100; 
PC21a1=(latent1a1(2)/sum(latent1a1))*100; 

  
%forming main matrix and applying pca 50-100 Hz 
M_1a2=[X1_1a2' Y1_1a2' Z1_1a2']; 
M_1a2=normc(M_1a2); 
coeff1a2=pca(M_1a2); 
[coeff,score,latent1a2] = pca(M_1a2); 

  
% Percent of variation explained by first and second latent variable 
PC11a2=(latent1a2(1)/sum(latent1a2))*100; 
PC21a2=(latent1a2(2)/sum(latent1a2))*100; 

  
PC50=[ PC11a1 PC11a2 ];  

  
%% %% PCA for 1-100 ()  based on sum of values 
% sum of amplitude in the freq. band of 0-25, 25-50, 50-75, 50-100 Hz 
X1_1a11=sum(Xfft_X1(1:224,:));    
X1_1a12=sum(Xfft_X1(225:448,:)); 
X1_1a21=sum(Xfft_X1(449:672,:)); 
X1_1a22=sum(Xfft_X1(673:896,:)); 

  
Y1_1a11=sum(Yfft_Y1(1:224,:)); 
Y1_1a12=sum(Yfft_Y1(225:448,:)); 
Y1_1a21=sum(Yfft_Y1(449:672,:)); 
Y1_1a22=sum(Yfft_Y1(673:896,:)); 

  
Z1_1a11=sum(Zfft_Z1(1:224,:)); 
Z1_1a12=sum(Zfft_Z1(225:448,:)); 
Z1_1a21=sum(Zfft_Z1(449:672,:)); 
Z1_1a22=sum(Zfft_Z1(673:896,:)); 

  
%forming main matrix and applying pca 1-25 Hz 
M_1a11=[X1_1a11' Y1_1a11' Z1_1a11']; 
M_1a11=normc(M_1a11); 
coeff1a11=pca(M_1a11); 
[coeff,score,latent1a11] = pca(M_1a11); 

  
% Percent of variation explained by first and second latent variable 
PC11a11=(latent1a11(1)/sum(latent1a11))*100; 
PC21a11=(latent1a11(2)/sum(latent1a11))*100; 
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%forming main matrix and applying pca 25-50 Hz 
M_1a12=[X1_1a12' Y1_1a12' Z1_1a12']; 
M_1a12=normc(M_1a12); 
coeff1a12=pca(M_1a12); 
[coeff,score,latent1a12] = pca(M_1a12); 

  
% Percent of variation explained by first and second latent variable 
PC11a12=(latent1a12(1)/sum(latent1a12))*100; 
PC21a12=(latent1a12(2)/sum(latent1a12))*100; 

  
%forming main matrix and applying pca 50-75 Hz 
M_1a21=[X1_1a21' Y1_1a21' Z1_1a21']; 
M_1a21=normc(M_1a21); 
coeff1a21=pca(M_1a21); 
[coeff,score,latent1a21] = pca(M_1a21); 

  
% Percent of variation explained by first and second latent variable 
PC11a21=(latent1a21(1)/sum(latent1a21))*100; 
PC21a21=(latent1a21(2)/sum(latent1a21))*100; 

  
%forming main matrix and applying pca 75-100 Hz 
M_1a22=[X1_1a22' Y1_1a22' Z1_1a12']; 
M_1a22=normc(M_1a22); 
coeff1a22=pca(M_1a22); 
[coeff,score,latent1a22] = pca(M_1a22); 

  
% Percent of variation explained by first and second latent variable 
PC11a22=(latent1a22(1)/sum(latent1a22))*100; 
PC21a22=(latent1a22(2)/sum(latent1a22))*100; 

  
PC25=[ PC11a11 PC11a12 PC11a21 PC11a22]; %  
%% %% PCA for 1-50  
% sum of amplitude in the freq. band of 0-10, 10-20, 20-30, 30-40, 40-

50 Hz  
X1_1a111=sum(Xfft_X1(1:90,:));    
X1_1a112=sum(Xfft_X1(91:179,:)); 
X1_1a113=sum(Xfft_X1(180:269,:)); 
X1_1a114=sum(Xfft_X1(270:359,:)); 
X1_1a115=sum(Xfft_X1(360:448,:)); 

  
Y1_1a111=sum(Yfft_Y1(1:90,:)); 
Y1_1a112=sum(Yfft_Y1(91:179,:)); 
Y1_1a113=sum(Yfft_Y1(180:269,:)); 
Y1_1a114=sum(Yfft_Y1(270:359,:)); 
Y1_1a115=sum(Yfft_Y1(360:448,:)); 

  
Z1_1a111=sum(Zfft_Z1(1:90,:)); 
Z1_1a112=sum(Zfft_Z1(91:179,:)); 
Z1_1a113=sum(Zfft_Z1(180:269,:)); 
Z1_1a114=sum(Zfft_Z1(270:359,:)); 
Z1_1a115=sum(Zfft_Z1(360:448,:)); 

  
%forming main matrix and applying pca 1-10 Hz 
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M_1a111=[X1_1a111' Y1_1a111' Z1_1a111']; 
M_1a111=normc(M_1a111); 
coeff1a111=pca(M_1a111); 
[coeff,score,latent1a111] = pca(M_1a111); 

  
% Percent of variation explained by first and second latent variable 
PC11a111=(latent1a111(1)/sum(latent1a111))*100; 
PC21a111=(latent1a111(2)/sum(latent1a111))*100; 

  
%forming main matrix and applying pca 10-20 Hz 
M_1a112=[X1_1a112' Y1_1a112' Z1_1a112']; 
M_1a112=normc(M_1a112); 
coeff1a112=pca(M_1a112); 
[coeff,score,latent1a112] = pca(M_1a112); 

  
% Percent of variation explained by first and second latent variable 
PC11a112=(latent1a112(1)/sum(latent1a112))*100; 
PC21a112=(latent1a112(2)/sum(latent1a112))*100; 
%forming main matrix and applying pca 20-30 Hz 
M_1a113=[X1_1a113' Y1_1a113' Z1_1a113']; 
M_1a113=normc(M_1a113); 
coeff1a113=pca(M_1a113); 
[coeff,score,latent1a113] = pca(M_1a113); 

  
% Percent of variation explained by first and second latent variable 
PC11a113=(latent1a113(1)/sum(latent1a113))*100; 
PC21a113=(latent1a113(2)/sum(latent1a113))*100; 

  
%forming main matrix and applying pca 30-40 Hz 
M_1a114=[X1_1a114' Y1_1a114' Z1_1a114']; 
M_1a114=normc(M_1a114); 
coeff1a114=pca(M_1a114); 
[coeff,score,latent1a114] = pca(M_1a114); 

  
% Percent of variation explained by first and second latent variable 
PC11a114=(latent1a114(1)/sum(latent1a114))*100; 
PC21a114=(latent1a114(2)/sum(latent1a114))*100; 

  
%forming main matrix and applying pca 40-50 Hz 
M_1a115=[X1_1a115' Y1_1a115' Z1_1a115']; 
M_1a115=normc(M_1a115); 
coeff1a115=pca(M_1a115); 
[coeff,score,latent1a115] = pca(M_1a115); 

  
% Percent of variation explained by first and second latent variable 
PC11a115=(latent1a115(1)/sum(latent1a115))*100; 
PC21a115=(latent1a115(2)/sum(latent1a115))*100; 

   
PC10_0t50=[PC11a111 PC11a112 PC11a113 PC11a114 PC11a115];  
%% %% PCA for 50-100 Hz 
% sum of amplitude in the freq. band of 50-60, 60-70, 70-80, 80-90, 

90-100 Hz  
X1_1a121=sum(Xfft_X1(448:538,:));    
X1_1a122=sum(Xfft_X1(539:627,:)); 
X1_1a123=sum(Xfft_X1(628:717,:)); 
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X1_1a124=sum(Xfft_X1(718:807,:)); 
X1_1a125=sum(Xfft_X1(808:896,:)); 

  
Y1_1a121=sum(Yfft_Y1(448:538,:)); 
Y1_1a122=sum(Yfft_Y1(539:627,:)); 
Y1_1a123=sum(Yfft_Y1(628:717,:)); 
Y1_1a124=sum(Yfft_Y1(718:807,:)); 
Y1_1a125=sum(Yfft_Y1(808:896,:)); 

  
Z1_1a121=sum(Zfft_Z1(448:538,:)); 
Z1_1a122=sum(Zfft_Z1(539:627,:)); 
Z1_1a123=sum(Zfft_Z1(628:717,:)); 
Z1_1a124=sum(Zfft_Z1(718:807,:)); 
Z1_1a125=sum(Zfft_Z1(808:896,:)); 
%forming main matrix and applying pca 50-60 Hz 
M_1a121=[X1_1a121' Y1_1a121' Z1_1a121']; 
M_1a121=normc(M_1a121); 
coeff1a121=pca(M_1a121); 
[coeff,score,latent1a121] = pca(M_1a121); 

  
%forming main matrix and applying pca 60-70 Hz 
M_1a122=[X1_1a122' Y1_1a122' Z1_1a122']; 
M_1a122=normc(M_1a122); 
coeff1a122=pca(M_1a122); 
[coeff,score,latent1a122] = pca(M_1a122); 

  
%forming main matrix and applying pca 70-80 Hz 
M_1a123=[X1_1a123' Y1_1a123' Z1_1a123']; 
M_1a123=normc(M_1a123); 
coeff1a123=pca(M_1a123); 
[coeff,score,latent1a123] = pca(M_1a123); 

  
%forming main matrix and applying pca 80-90Hz 
M_1a124=[X1_1a124' Y1_1a124' Z1_1a124']; 
M_1a124=normc(M_1a124); 
coeff1a124=pca(M_1a124); 
[coeff,score,latent1a124] = pca(M_1a124); 

  
%forming main matrix and applying pca 90-100 Hz 
M_1a125=[X1_1a125' Y1_1a125' Z1_1a125']; 
M_1a125=normc(M_1a125); 
coeff1a125=pca(M_1a125); 
[coeff,score,latent1a125] = pca(M_1a125); 

  
% Percent of variation explained by first and second latent variable 
PC11a121=(latent1a121(1)/sum(latent1a121))*100; 
PC21a121=(latent1a121(2)/sum(latent1a121))*100; 

  
PC11a122=(latent1a122(1)/sum(latent1a122))*100; 
PC21a122=(latent1a122(2)/sum(latent1a122))*100; 

  
PC11a123=(latent1a123(1)/sum(latent1a123))*100; 
PC21a123=(latent1a123(2)/sum(latent1a123))*100; 
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PC11a124=(latent1a124(1)/sum(latent1a124))*100; 
PC21a124=(latent1a124(2)/sum(latent1a124))*100; 

  
PC11a125=(latent1a125(1)/sum(latent1a125))*100; 
PC21a125=(latent1a125(2)/sum(latent1a125))*100; 

  
PC10_50t100=[PC11a121 PC11a122 PC11a123 PC11a124 PC11a125];  
%% %% PCA for 100-200 Hz  
% sum of amplitude in the freq. band of 100-150 ,150-200 Hz  

  
X3_1b1=sum(Xfft_X1(896:1344,:));    
X3_1b2=sum(Xfft_X1(1345:1793,:));   

  
Y3_1b1=sum(Yfft_Y1(896:1344,:)); 
Y3_1b2=sum(Yfft_Y1(1345:1793,:)); 

  
Z3_1b1=sum(Zfft_Z1(896:1344,:)); 
Z3_1b2=sum(Zfft_Z1(1345:1793,:)); 

  
%forming main matrix and applying pca 100-150 Hz 
M_1b1=[X3_1b1' Y3_1b1' Z3_1b1']; 
M_1b1=normc(M_1b1); 
coeff1b1=pca(M_1b1); 
[coeff,score,latent1b1] = pca(M_1b1); 

  
%forming main matrix and applying pca 150-200Hz 
M_1b2=[X3_1b2' Y3_1b2' Z3_1b2']; 
M_1b2=normc(M_1b2); 
coeff1b2=pca(M_1b2); 
[coeff,score,latent1b2] = pca(M_1b2); 

  
% Percent of variation explained by first and second latent variable 
PC11b1=(latent1b1(1)/sum(latent1b1))*100; 
PC21b1=(latent1b1(2)/sum(latent1b1))*100; 

  
PC11b2=(latent1b2(1)/sum(latent1b2))*100; 
PC21b2=(latent1b2(2)/sum(latent1b2))*100; 

  

  
PC50_100to200=[ PC11b1 PC11b2 ];  
%% %% PCA for 100-150 Hz 
% sum of amplitude in the freq. band of 100-110,110-120, 120-130, 130-

140, 140-150 Hz  
X1_1b111=sum(Xfft_X1(896:986,:));   
X1_1b112=sum(Xfft_X1(987:1076,:)); 
X1_1b113=sum(Xfft_X1(1077:1165,:)); 
X1_1b114=sum(Xfft_X1(1166:1255,:)); 
X1_1b115=sum(Xfft_X1(1256:1344,:)); 

  
Y1_1b111=sum(Yfft_Y1(896:986,:)); 
Y1_1b112=sum(Yfft_Y1(987:1076,:)); 
Y1_1b113=sum(Yfft_Y1(1077:1165,:)); 
Y1_1b114=sum(Yfft_Y1(1166:1255,:)); 
Y1_1b115=sum(Yfft_Y1(1256:1344,:)); 



 

225 

 

  
Z1_1b111=sum(Zfft_Z1(896:986,:)); 
Z1_1b112=sum(Zfft_Z1(987:1076,:)); 
Z1_1b113=sum(Zfft_Z1(1077:1165,:)); 
Z1_1b114=sum(Zfft_Z1(1166:1255,:)); 
Z1_1b115=sum(Zfft_Z1(1256:1344,:)); 
%forming main matrix and applying pca 100-110 Hz 
M_1b111=[X1_1b111' Y1_1b111' Z1_1b111']; 
M_1b111=normc(M_1b111); 
coeff1b111=pca(M_1b111); 
[coeff,score,latent1b111] = pca(M_1b111); 

  
%forming main matrix and applying pca 110-120 Hz 
M_1b112=[X1_1b112' Y1_1b112' Z1_1b112']; 
M_1b112=normc(M_1b112); 
coeff1b112=pca(M_1b112); 
[coeff,score,latent1b112] = pca(M_1b112); 

  
%forming main matrix and applying pca 120-130 Hz 
M_1b113=[X1_1b113' Y1_1b113' Z1_1b113']; 
M_1b113=normc(M_1b113); 
coeff1b113=pca(M_1b113); 
[coeff,score,latent1b113] = pca(M_1b113); 

  
%forming main matrix and applying pca 130-140Hz 
M_1b114=[X1_1b114' Y1_1b114' Z1_1b114']; 
M_1b114=normc(M_1b114); 
coeff1b114=pca(M_1b114); 
[coeff,score,latent1b114] = pca(M_1b114); 

  
%forming main matrix and applying pca 140-150 Hz 
M_1b115=[X1_1b115' Y1_1b115' Z1_1b115']; 
M_1b115=normc(M_1b115); 
coeff1b115=pca(M_1b115); 
[coeff,score,latent1b115] = pca(M_1b115); 

  
% Percent of variations explained by first and second latent variable 
PC11b111=(latent1b111(1)/sum(latent1b111))*100; 
PC21b111=(latent1b111(2)/sum(latent1a121))*100; 

  
PC11b112=(latent1b112(1)/sum(latent1b112))*100; 
PC21b112=(latent1b112(2)/sum(latent1b112))*100; 

  
PC11b113=(latent1b113(1)/sum(latent1b113))*100; 
PC21b113=(latent1b113(2)/sum(latent1b113))*100; 

  
PC11b114=(latent1b114(1)/sum(latent1b114))*100; 
PC21b114=(latent1b114(2)/sum(latent1b114))*100; 

  
PC11b115=(latent1b115(1)/sum(latent1b115))*100; 
PC21b115=(latent1b115(2)/sum(latent1b115))*100; 

  
PC10_100t150=[PC11b111 PC11b112 PC11b113 PC11b114 PC11b115]; % 100 to 

150 Hz at interval of 10 
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%% %% PCA for 150-200 Hz 
% sum of amplitude in the freq. band of 150-160,160-170, 170-180,180-

190, 190-200 Hz  
X1_1b121=sum(Xfft_X1(1344:1434,:));    
X1_1b122=sum(Xfft_X1(1435:1524,:)); 
X1_1b123=sum(Xfft_X1(1525:1613,:)); 
X1_1b124=sum(Xfft_X1(1614:1703,:)); 
X1_1b125=sum(Xfft_X1(1704:1793,:)); 

  
Y1_1b121=sum(Yfft_Y1(1344:1434,:)); 
Y1_1b122=sum(Yfft_Y1(1435:1524,:)); 
Y1_1b123=sum(Yfft_Y1(1525:1613,:)); 
Y1_1b124=sum(Yfft_Y1(1614:1703,:)); 
Y1_1b125=sum(Yfft_Y1(1704:1793,:)); 

  
Z1_1b121=sum(Zfft_Z1(1344:1434,:)); 
Z1_1b122=sum(Zfft_Z1(1435:1524,:)); 
Z1_1b123=sum(Zfft_Z1(1525:1613,:)); 
Z1_1b124=sum(Zfft_Z1(1614:1703,:)); 
Z1_1b125=sum(Zfft_Z1(1704:1793,:)); 
%forming main matrix and applying pca 150-160 Hz 
M_1b121=[X1_1b121' Y1_1b121' Z1_1b121']; 
M_1b121=normc(M_1b121); 
coeff1b121=pca(M_1b121); 
[coeff,score,latent1b121] = pca(M_1b121); 

  
%forming main matrix and applying pca 160-170 Hz 
M_1b122=[X1_1b122' Y1_1b122' Z1_1b122']; 
M_1b122=normc(M_1b122); 
coeff1b122=pca(M_1b122); 
[coeff,score,latent1b122] = pca(M_1b122); 

  
%forming main matrix and applying pca 170-180 Hz 
M_1b123=[X1_1b123' Y1_1b123' Z1_1b123']; 
M_1b123=normc(M_1b123); 
coeff1b123=pca(M_1b123); 
[coeff,score,latent1b123] = pca(M_1b123); 

  
%forming main matrix and applying pca 180-190Hz 
M_1b124=[X1_1b124' Y1_1b124' Z1_1b124']; 
M_1b124=normc(M_1b124); 
coeff1b124=pca(M_1b124); 
[coeff,score,latent1b124] = pca(M_1b124); 

  
%forming main matrix and applying pca 190-200 Hz 
M_1b125=[X1_1b125' Y1_1b125' Z1_1b125']; 
M_1b125=normc(M_1b125); 
coeff1b125=pca(M_1b125); 
[coeff,score,latent1b125] = pca(M_1b125); 

  
% Percent of variation explained by first and second latent variable 
PC11b121=(latent1b121(1)/sum(latent1b121))*100; 
PC21b121=(latent1b121(2)/sum(latent1b121))*100; 
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PC11b122=(latent1b122(1)/sum(latent1b122))*100; 
PC21b122=(latent1b122(2)/sum(latent1b122))*100;  

  
PC11b123=(latent1b123(1)/sum(latent1b123))*100; 
PC21b123=(latent1b123(2)/sum(latent1b123))*100; 

  
PC11b124=(latent1b124(1)/sum(latent1b124))*100; 
PC21b124=(latent1b124(2)/sum(latent1b124))*100; 

  
PC11b125=(latent1b125(1)/sum(latent1b125))*100; 
PC21b125=(latent1b125(2)/sum(latent1b125))*100; 

  
PC10_150t200=[PC11b121 PC11b122 PC11b123 PC11b124 PC11b125]; % 150 to 

200 Hz at interval of 10 
%% %% PCA for 200-300 Hz  
% sum of amplitude in the freq. band of 0-50 , 50-100 Hz 
X1_1c1=sum(Xfft_X1(1793:2241,:));    
X1_1c2=sum(Xfft_X1(2242:2689,:));  

  
Y1_1c1=sum(Yfft_Y1(1793:2241,:)); 
Y1_1c2=sum(Yfft_Y1(2242:2689,:)); 

  
Z1_1c1=sum(Zfft_Z1(1793:2241,:)); 
Z1_1c2=sum(Zfft_Z1(2242:2689,:)); 

  
%forming main matrix and applying pca 200-250 Hz 
M_1c1=[X1_1c1' Y1_1c1' Z1_1c1']; 
M_1c1=normc(M_1c1); 
coeff1c1=pca(M_1a1); 
[coeff,score,latent1c1] = pca(M_1c1); 

  
%forming main matrix and applying pca 250-300 Hz 
M_1c2=[X1_1c2' Y1_1c2' Z1_1c2']; 
M_1c2=normc(M_1c2); 
coeff1c2=pca(M_1c2); 
[coeff,score,latent1c2] = pca(M_1c2); 

  
% Percent of variation explained by first and second latent variable 
PC11c1=(latent1c1(1)/sum(latent1c1))*100; 
PC21c1=(latent1c1(2)/sum(latent1c1))*100; 

  
PC11c2=(latent1c2(1)/sum(latent1c2))*100; 
PC21c2=(latent1c2(2)/sum(latent1c2))*100; 

  
PC50_200to300=[ PC11c1 PC11c2 ];  
%% PCA for 200-250 Hz   
% sum of amplitude in the freq. band of 200-210, 210-220,220-230, 230-

240, 240-250 Hz  
X1_1c121=sum(Xfft_X1(1793:1882,:));   % 200-210 Hz 
X1_1c122=sum(Xfft_X1(1883:1972,:)); 
X1_1c123=sum(Xfft_X1(1973:2061,:)); 
X1_1c124=sum(Xfft_X1(2062:2151,:)); 
X1_1c125=sum(Xfft_X1(2152:2241,:)); 
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Y1_1c121=sum(Yfft_Y1(1793:1882,:)); 
Y1_1c122=sum(Yfft_Y1(1883:1972,:)); 
Y1_1c123=sum(Yfft_Y1(1973:2061,:)); 
Y1_1c124=sum(Yfft_Y1(2062:2151,:)); 
Y1_1c125=sum(Yfft_Y1(2152:2241,:)); 

  
Z1_1c121=sum(Zfft_Z1(1793:1882,:)); 
Z1_1c122=sum(Zfft_Z1(1883:1972,:)); 
Z1_1c123=sum(Zfft_Z1(1973:2061,:)); 
Z1_1c124=sum(Zfft_Z1(2062:2151,:)); 
Z1_1c125=sum(Zfft_Z1(2152:2241,:)); 

  
%forming main matrix and applying pca 200-210 Hz 
M_1c121=[X1_1c121' Y1_1c121' Z1_1c121']; 
M_1c121=normc(M_1c121); 
coeff1c121=pca(M_1c121); 
[coeff,score,latent1c121] = pca(M_1c121); 

  
%forming main matrix and applying pca 210-220  Hz 
M_1c122=[X1_1c122' Y1_1c122' Z1_1c122']; 
M_1c122=normc(M_1c122); 
coeff1c122=pca(M_1c122); 
[coeff,score,latent1c122] = pca(M_1c122); 

  
%forming main matrix and applying pca 220-230 Hz 
M_1c123=[X1_1c123' Y1_1c123' Z1_1c123']; 
M_1c123=normc(M_1c123); 
% pca for 1-100 Hz 
coeff1c123=pca(M_1c123); 
[coeff,score,latent1c123] = pca(M_1c123); 

  
%forming main matrix and applying pca 230-240 Hz 
M_1c124=[X1_1c124' Y1_1c124' Z1_1c124']; 
M_1c124=normc(M_1c124); 
coeff1c124=pca(M_1c124); 
[coeff,score,latent1c124] = pca(M_1c124); 

  
%forming main matrix and applying pca 240-250 Hz 
M_1c125=[X1_1c125' Y1_1c125' Z1_1c125']; 
M_1c125=normc(M_1c125); 
coeff1c125=pca(M_1c125); 
[coeff,score,latent1c125] = pca(M_1c125); 

  
% Percent of variation explained by first and second latent variable 
PC11c121=(latent1c121(1)/sum(latent1c121))*100; 
PC21c121=(latent1c121(2)/sum(latent1c121))*100; 

  
PC11c122=(latent1c122(1)/sum(latent1c122))*100; 
PC21c122=(latent1c122(2)/sum(latent1c122))*100; 

  
PC11c123=(latent1c123(1)/sum(latent1c123))*100; 
PC21c123=(latent1c123(2)/sum(latent1c123))*100; 
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PC11c124=(latent1c124(1)/sum(latent1c124))*100; 
PC21c124=(latent1c124(2)/sum(latent1c124))*100; 

  
PC11c125=(latent1c125(1)/sum(latent1c125))*100; 
PC21c125=(latent1c125(2)/sum(latent1c125))*100; 

  
PC10_200t250=[PC11c121 PC11c122 PC11c123 PC11c124 PC11c125];  
%% %% PCA for 250-300 Hz   
% sum of amplitude in the freq. band of 250-260, 250-260, 260-270,270-

280, 280-290, 290-300 Hz  
X1_1c221=sum(Xfft_X1(2240:2330,:));    
X1_1c222=sum(Xfft_X1(2330:2419,:)); 
X1_1c223=sum(Xfft_X1(2419:2509,:)); 
X1_1c224=sum(Xfft_X1(2509:2599,:)); 
X1_1c225=sum(Xfft_X1(2599:2688,:)); 

  
Y1_1c221=sum(Yfft_Y1(2240:2330,:)); 
Y1_1c222=sum(Yfft_Y1(2330:2419,:)); 
Y1_1c223=sum(Yfft_Y1(2419:2509,:)); 
Y1_1c224=sum(Yfft_Y1(2509:2599,:)); 
Y1_1c225=sum(Yfft_Y1(2599:2688,:)); 

  
Z1_1c221=sum(Zfft_Z1(2240:2330,:)); 
Z1_1c222=sum(Zfft_Z1(2330:2419,:)); 
Z1_1c223=sum(Zfft_Z1(2419:2509,:)); 
Z1_1c224=sum(Zfft_Z1(2509:2599,:)); 
Z1_1c225=sum(Zfft_Z1(2599:2688,:)); 

  
%forming main matrix and applying pca 200-210 Hz 
M_1c221=[X1_1c221' Y1_1c221' Z1_1c221']; 
M_1c221=normc(M_1c221); 
coeff1c221=pca(M_1c221); 
[coeff,score,latent1c221] = pca(M_1c221); 

  
%forming main matrix and applying pca 2210-220  Hz 
M_1c222=[X1_1c222' Y1_1c222' Z1_1c222']; 
M_1c222=normc(M_1c222); 
coeff1c222=pca(M_1c222); 
[coeff,score,latent1c222] = pca(M_1c222); 

  
%forming main matrix and applying pca 220-230 Hz 
M_1c223=[X1_1c223' Y1_1c223' Z1_1c223']; 
M_1c223=normc(M_1c223); 
coeff1c223=pca(M_1c223); 
[coeff,score,latent1c223] = pca(M_1c223); 

  
%forming main matrix and applying pca 230-240 Hz 
M_1c224=[X1_1c224' Y1_1c224' Z1_1c224']; 
M_1c224=normc(M_1c224); 
coeff1c224=pca(M_1c224); 
[coeff,score,latent1c224] = pca(M_1c224); 

  
%forming main matrix and applying pca 240-250 Hz 
M_1c225=[X1_1c225' Y1_1c225' Z1_1c225']; 
M_1c225=normc(M_1c225); 
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coeff1c225=pca(M_1c225); 
[coeff,score,latent1c225] = pca(M_1c225); 

  
% Percent of variation explained by first and second latent variable 
PC11c221=(latent1c221(1)/sum(latent1c221))*100; 
PC21c221=(latent1c221(2)/sum(latent1c221))*100; 

  
PC11c222=(latent1c222(1)/sum(latent1c222))*100; 
PC21c222=(latent1c222(2)/sum(latent1c222))*100; 

  
PC11c223=(latent1c223(1)/sum(latent1c223))*100; 
PC21c123=(latent1c223(2)/sum(latent1c223))*100; 

  
PC11c224=(latent1c224(1)/sum(latent1c224))*100; 
PC21c224=(latent1c224(2)/sum(latent1c224))*100; 

  
PC11c225=(latent1c225(1)/sum(latent1c225))*100; 
PC21c225=(latent1c225(2)/sum(latent1c225))*100; 

  
PC10_250t300=[PC11c221 PC11c222 PC11c223 PC11c224 PC11c225];  

  

  
%% PC1 vs stirring Energy relationship 
clear CSM11 
h2=10e-

3*[225*ones(6,1);230*ones(6,1);235*ones(6,1);240*ones(6,1);245*ones(6,

1);250*ones(6,1);255*ones(6,1);260*ones(6,1);265*ones(6,1);270*ones(6,

1);275*ones(6,1);280*ones(6,1);285*ones(6,1);290*ones(6,1);295*ones(6,

1);300*ones(6,1)]; 

  
q2=10e-

3*[(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.

2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0

.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4

)';(0.4:0.2:1.4)';(0.4:0.2:1.4)']; 
Q=1.67e-5*(0.4:0.2:2.4)'; 
CSM=M_1a124*coeff1a124; % components of state matrix  
CSM1=CSM(:,1)'; 
CSM11=CSM1'; 

  
CSM2=CSM(:,2)'; 
CSM22=CSM2'; 
% Relationship between PC1 and PC2 
 plot (CSM11,CSM22, 'r+'), xlabel('PC1'),ylabel('PC2'),legend ('50-60 

Hz'), grid on 

  
Rhowater=1000 ;                     % water density in kg/m3 
Rhosteel=7500;                      % steel density in kg/m3 
r=210e-3;                           % rig radius in m 
h2=0.001*h2;                        % bath height in m  
q2=(0.001)*q2;                      % flow rate in m3/min 

  
Mbw1=((pi*r.^2.*h2)*Rhowater/1000);       % bath weight in tonn 
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P0=1;                                     % atmospheric pressure in 

atm 
T=293;                        % temperature in kelvin 
%% stirring power based on szekley model 

  
e1=14.23*(q2*T./Mbw1).*log(1+ (h2/1.46)*P0); % stirring power in w/t 
e1=normc(e1); 

  
%Relationship between PC1 and  stirring power 

  
figure(1) 
plot(CSM1',e1,'r.'), xlabel('PC1'),ylabel('Normalized stirring energy 

(w/t)'), title('180-190 Hz'), grid on 
mdl1 = fitlm(CSM1,e1); 
R1 = corrcoef(CSM1,e1);      % corrcoeff between PC1 and striing power 
Rsq1=mdl1.Rsquared.Adjusted;  % corrcoeff between PC1 and striing 

power 

  
% Relatinship between flow rate and vibration amplitude 
figure(2)  
plot(q2,Y','r.') ,xlabel('Q(l/min)'),ylabel('Normalized stirring 

energy(w/t)'), title('180-190 Hz'), grid on  
R2 = corrcoef(q2,Y1_1b124');   % corrcoeff between Q-flow rate and 

vibration magnitude 
mdl2 = fitlm(q2,Y1_1b124'); 
Rsq2=mdl2.Rsquared.Adjusted;  % corrcoeff between PC1 and striing 

power 

  
% Relatinship between PC1 and air flowrate   
figure(3) 
plot(CSM1(12:22),Q,'r.') , xlabel('PC1'),ylabel('Q(l/min)'), 

title('180-190 Hz'), grid on 
mdl3 = fitlm(CSM1(12:22),Q); 
Rsq3=mdl3.Rsquared.Adjusted;  % corrcoeff between PC1 and striing 

power 
R3 = corrcoef(CSM1(12:22),Q);        % corrcoeff between PC1 and Q-

flow rate 

  
%Relatinship between avarage speed of bath recirculation and PC1 
figure (4) 
U=0.86*q2.^0.33.*h2.^0.25*r^(-0.58); 
U=normc(U); 
plot(CSM1, U, 'r.'), xlabel('PC1'),ylabel('Normalized Steel 

Recirculation Speed (w/t)'), title(' 180-190 Hz'), grid on 

  
R4 = corrcoef(CSM1,U);   
mdl4 = fitlm(CSM1,U); % linear model 
Rsq4=mdl4.Rsquared.Adjusted;  % coefficient of determination between 

PC1 and striing power 
% disp ( 'pce qvi pcq pcu') 
Rsq = [ Rsq1 Rsq2 Rsq3 Rsq4 ]; 

  
%%  ++++++++++++++++++++++++++++++++++++++++++++Partial least squares 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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 % the PLS analysis takes the the flow rate, water depth and oil 

thickness 
 % as input/predictor matrix and the vibration as output/response 

matrix 
 % two types 
%% Input/predictor variables 
H=[0.22*ones(24,1);0.24*ones(24,1);0.26*ones(24,1);0.28*ones(24,1)]; 
Q=1.67E-

05*[(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0

.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(

0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)';(0.4:0.2:1.

4)';(0.4:0.2:1.4)';(0.4:0.2:1.4)']; 
ho1=1e-

3*[5*ones(6,1);10*ones(6,1);15*ones(6,1);20*ones(6,1);5*ones(6,1);10*o

nes(6,1);15*ones(6,1);20*ones(6,1);5*ones(6,1);10*ones(6,1);15*ones(6,

1);20*ones(6,1);5*ones(6,1);10*ones(6,1);15*ones(6,1);20*ones(6,1)]; 

  
ho=ho1; 
Xin=[ H ho Q ]; % Input Matrix 

  
Xin=zscore(Xin) % Normalizing the input matrix 
                                                                    %% 

full frequency range 
%% Pls for 1-914 Hz 
M=zscore(M_1c334); 
[XLz,YLz,XSz,YSz,BETAz,PCTVARz,MSEz] = plsregress(Xin,M,3); 
figure(3) 
plot (XSz(:,1),YSz(:,1), '+') 
% plot(1:3,cumsum(100*PCTVAR(2,:)),'-bo'); 
xlabel('Xscore'); 
ylabel('Yscore'); 
% prediction 
A=M; 
Y0=A-repmat(mean(A),size(A,1),1); 

  
Yresidualsfz=Y0-XSz*YLz'; 
n=size(Xin,1); 
Yfz = [ones(n,1),Xin]*BETA ; %+Yresiduals; 

  
figure (31) 
plot(e1(1:5),Yfz(1:5), '+') , xlabel('stirring energy'), 

ylabel('response in vibration'), grid on 
figure (32) 
plot(U(1:5),Yfz(1:5), '+') , xlabel('Recirculation Speed (m/s)'), 

ylabel('response in vibration'), grid on 
%% 180-190 Hz (manually chnnge the frequency range to perform the 

PLSR) 
M_1a122=zscore(M_1a122); 
[XL4z,YL4z,XSb4z,YSb4z,BETA4z,PCTVAR4z,MSE4z] = plsregress(M_1a122, 

Xin,3); 

  
figure (4) 
plot (XSb4z (:,1) ,YSb4z (:,1), '+') 
xlabel('Xscore'); 
ylabel('Yscore'); 
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% prediction 
A=M_1b124; 
Y0=A-repmat(mean(A),size(A,1),1); 

  
Yresidualsz=Y0-XSb4z*YL4z'; 
n=size(Xin,1); 
Yz = [ones(n,1),Xin]*BETA4z; % + Yresiduals; 
figure (41) 
plot(e1(1:5),Yz(1:5), '+') , xlabel('stirring energy'), 

ylabel('response in vibration'), grid on 
figure (42) 
plot(U(1:5),Yz(1:5), '+') , xlabel('Recirculation Speed (m/s)'), 

ylabel('response in vibration'), grid on 
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Appendix D: Summary of Publications and Presentations 

 List of Publications: 

1. Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; 2015. Vibration analysis in ladle 

metallurgy. APCChE 2015 Congress incorporating Chemeca 2015, Melbourne, 

Australia, 27 September - 1 October 2015. Paper no. 3126426. 

2.  Yenus, Jaefer, Brooks, Geoffrey, and Dunn, Michelle. 2016. Stirring Process Control in 

Ladle Metallurgy, 8th  High-Temperature Processing Symposium 2016, Melbourne, 

Australia, 1-2 February 2016.  

3. Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; 2016. Multivariate analysis of ladle 

vibration. Metallurgical and Materials Transactions B: Process Metallurgy and Materials 

Processing Science. Vol. 47, no. 4 (Aug 2016), pp. 2681–2689. 

4.  Yenus, Jaefer. Brooks, G.; Dunn, M.; 2016. Principal component analysis of vibration 

signal in ladle metallurgy. Proceedings AISTech 2016, Pittsburgh, Pennsylvania, 16-19 

May 2016. Vol. 2, pp. 1245-1253. 

 Paper under review: 

Yenus, J., Brooks G., and Dunn M., Goodwin T., Adderley M., and Li Z.  "Study of Low 

Flow Rate Ladle Bottom Gas Stirring Using Triaxis Vibration Signals". Paper submitted 

to Metallurgical and Materials Transaction B, May 2017. 

 List of Presentations: 

1. “Vibration Analysis of Ladle Gas Stirring Using a Physical Cold Model” at MPDE biweekly 

seminar, Swinburne University of Technology, Melbourne, Australia, May 23, 2017. 

2. “Vibration Analysis of Ladle Gas Stirring Using Cold Model and Plant Data” at AISTech 2017 

conference, Nashville, Tenn., USA , 9 May 2017. 

3. “Principal component analysis of vibration signal in ladle metallurgy” at AISTech 2016 

conference in Pittsburgh, Pennsylvania, USA, 18 May 2016. 

4. “Stirring Process Control in Ladle Metallurgy” at 8th High-Temperature Processing 

Symposium 2016, Melbourne, Australia, 2 February 2016. 

5. “Vibration analysis in ladle metallurgy” at APCChE 2015 Congress incorporating Chemeca 

2015 conference in Melbourne, Australia, 28 September 2015. 

6. “Vibration and Sound Signal Analysis in Ladle Metallurgy” at BlueScope Steel in 

Wollongong, Australia, 20 August 2014. 
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7. “Ladle Wall Vibration Measurement in Ladle Metallurgy” Poster presentation at The 6th  

Australia-China-Japan Joint Symposium on Iron and Steelmaking, Melbourne, Australia, 

24 November 2016. 




