Zen and the Art of University Rankings in Art and Design

Abstract Rankings in higher education are now common, but do they mean anything? Can they accurately reflect the quality of an institution? University rankings, while imperfect, serve as a proxy for comparative measures of quality. This paper begins by providing a philosophical and historical profile of the notion of “quality,” considers what might constitute quality in higher education, and examines how rankings specifically convey this impression for the disciplines of art and design. The paper illustrates the wider role played by rankings in the highly competitive international higher education sector by exploring the various types of rankings, their methodologies, and the criteria they use to measure institutions. It highlights how different rankings measure different research and teaching activities, and the various tensions that can arise across disciplinary boundaries; among institutional and departmental priorities; in research, teaching and learning; and across national and international dimensions within the fields of art and design when rankings compare unique offerings quantitatively.
Introduction

National and global rankings of higher education institutions have become a mundane part of academic life. As the international mass higher education system exists within a wider context of increasing global competition and international benchmarking, there is a growing demand for rankings that gauge and track the quality of higher learning institutions and the departments within them. Universities and other higher learning institutions use rankings to stimulate investment in research and development, attract new students and researchers, and eventually bolster their claims of prestige. Rankings help undergrad and graduate students weigh their options and contribute to decisions about where they might best invest their time, money, and effort to obtain a useful degree.

But what does it all mean? Can the quality of an institution be conveyed via linear measurement? If so, what criteria are being used for such measurements, and are these criteria fair across a global, diverse system of higher education providers? What are rankings actually trying to measure, and what impact does this measurement have on art and design disciplines?

There are many higher education rankings, and depending on where institutions sit within them, some are likely to be taken more seriously than others. Ultimately, rankings are used to compare the quality of one school against another. However, each ranking uses a different set of criteria—research output, teaching and learning indicators, measures of reputation, or a combination of all three—and weights criteria differently when measuring quality. Some use quantitative metrics and others use qualitative judgments. The universities source some of this data themselves, and other information they sourced from bibliographic databases like Scopus. None of these rankings are perfect in an absolute sense, because “quality” itself is an elusive, fluid, and often implicit concept that (usually) uniquely applies to a specific context.

Like it or not, university and discipline-based rankings have become international proxy measures for quality. Some global rankings, like the Academic Ranking of World Universities (ARWU)1—founded in 2003—focus solely on institutions’ research performance. Research performance rankings do not gauge the teaching and learning quality of the institutions, and tend to favor old, comprehensive universities who excel in citation-based disciplines like science, medicine, engineering, and technology. The ARWU does not feature any highly specialized institutes or schools of art and design. Other prominent rankings systems like the Times Higher Education World University Ranking and the QS World University Ranking—both founded in 2004—combine research performance indicators with measures of teaching and learning and self-reports from the academic community and employers that quantify reputation. Once again, no specialized art and design institutions feature in the overall university rankings. They do appear in discipline-specific rankings for art and design. In the United States, the U.S. News and World Report Education Rankings—which began as early as 19832—also offer a number of rankings and sub-rankings. One of these ranks the “Best Value Schools” by calculating economic value in terms of annual “quality” ratings as these correlate with the institution’s net cost of attendance.3 The U.S. News overall university rankings contain no schools specializing in art and design.

Of course, providing transparency about the quality of our universities is an admirable goal. Increasingly, students in our more commercial and international higher education environment are demanding qualitative and quantitative information that can help them make more informed choices, and most would agree that students should be able to access this kind of information. Governments, particularly those who fund higher education, also want to ensure they are getting “value for money,” and want clearer evidence of output quality from the

1 The ARWU was founded by the Chinese government to determine how its universities compared to international ones. It was originally known as the Shanghai Jiao Tong Ranking. “About Academic Ranking of World Universities,” accessed January 16, 2017, http://www.shanghairanking.com/aboutarwu.html.

institutions they invest in. Governments are also keen to compare the performance of their institutions against other nations, and there is evidence that rankings are influencing national quality assurance systems and national research policies. International university ranking even looks to some like a global comparison of knowledge-based economies, where universities are the core producers of new knowledge and expertise. Government and institutional policies are increasingly being influenced by global rankings because they provide internationally comparable data, which in turn influences market position and reputation. A nation that can claim a high percentage of institutions ranked among the top 50 schools internationally enjoys an excellent source of good publicity. This claim creates a halo effect that attracts international students and exceptional knowledge-based talent, and drives a virtuous cycle of teaching and research engagement with other high-quality institutions or industry. In a knowledge-based economy, the demonstration of high-quality higher education is critical.

The global reach of university rankings has shifted institutional accountability towards more precise measurements of quality. Institutions are increasingly required to produce clearer evidence and more accurate indicators of achievement and performance. Such proof is generally much easier to calculate and produce using research citation data than it is for teaching and learning to assess from self-reports. Thus, the act of ranking itself favors large, science-based research institutions. As a result, the criteria used to create rankings muddy the notion of what quality in higher education actually means. Research metrics dominate teaching and learning metrics, largely because they are easier to measure.

Global rankings plot complex, multidimensional characteristics on a linear scale and create a simplistic, easily digestible view of quality. The final comparative results become more important than the criteria used to determine them. Despite objections to the fact that research-biased rankings have blurred the dimensions of quality, top-ranking institutions only add fuel to the fire. A linear ranking creates winners and losers. Winners highlight their success, creating a virtuous cycle of attracting the best staff and the best students. Moving up one place in the U.S. News and World Report Education Ranking can lead to a one percent increase in students the following year. Ranking has created a vertical stratification of higher education institutions, which then fuels the marketization of higher education and the status of institutions serving a competitive knowledge economy.

The Notion of Quality

Understanding quality as a concept is difficult because of how the term is used in language—it has multiple meanings across contexts, and people interpret these meanings differently. Value-laden terms like “standard,” “criteria,” “quality,” and “excellence” appears interchangeable when there are no clear and precise distinctions, but their meanings are inherently different in different domains. Generally speaking, what constitutes “high quality” for one person is unlikely to be the same for another. How quality is measured—what criteria are used—largely depends on context and purpose. As Pirsig says in his famous work *Zen and the Art of Motorcycle Maintenance*:

“Quality ... you know what it is, yet you don’t know what it is. But that’s self-contradictory. But some things are better than others, that is, they have more quality. But when you try to say what the quality is, apart from the things that have it, it all goes poof! There’s nothing to talk about. But if you can’t say what Quality is, how do you know what it is, or how do you know that it even exists? If no one knows what it is, then for all practical purposes it doesn’t exist at all. But for all practical purposes it really does exist. What else
are the grades based on? Why else would people pay fortunes for some things and throw others in the trash pile? Obviously some things are better than others ... but what's the betterness? ... So round and round you go, spinning mental wheels and nowhere finding anyplace to get traction. What the hell is Quality? What is it?"

In the early twentieth century, the work of Frederick W. Taylor, an influential engineer, manufacturing manager, and business consultant would impact the concept of quality indelibly. His 1911 monograph *The Principles of Scientific Management* promoted a centralized management system of inspection that would provide quality control to all parts of an organization – ostensibly as part of a wider national effort to conserve natural and human resources, and limit waste. To Taylor, monitoring and ensuring quality – by perfecting production methods and processes through scientific evaluation – would provide clear indicators for proper production management, and eventually lead to more efficient and profitable scaling of production quantities. “In preparation for this system the writer realized that the greatest obstacle to harmonious cooperation between workmen and management lay in the ignorance of the management as to what really constitutes a proper day’s work for a workman.”

Quantifying the process of production led to a standard against which to compare the work of individual workers, and the quality of the production process itself. Quality management and “quality control” was born.

Massive logistical coordination during World War II further influenced this new practice of quality management. Centralized quality control through inspections was considered best practice, but massively increased production volumes had begun to stretch that system to its limits. Sample inspections – single units taken from larger batches – became the norm, and management standards turned to controlling the manufacturing and assembly process. However, those involved in quality control were focusing more on the management of procedures and processes that enabled quality, and less on the quality of the actual outcome, or output. The assumption was that consistent processes would produce consistent levels of quality. It was then – circa 1940 – that the term quality control shifted to “quality assurance.”

Around the same time, Japanese industrial practices began to influence the development of the quality movement. Having lost most of its industrial infrastructure during World War II, Japan seized the opportunity to reconstruct their economy with quality as a guide. Two Americans, Edward Deming and Joseph Juran, had developed statistical methods of quality control that had been largely ignored in their country. In the early 1950s, Deming and then Juran introduced slightly different philosophies of statistical quality control to Japanese management. Deming devised a model of input, throughput, and output, with measurements at each point. He built his production philosophy mostly around quality measurement, customer satisfaction, and continuous improvement. Juran introduced a three-step process of quality planning, quality control, and quality improvement. The focus was again on continuous improvement – but quality was defined as “fitness-for-use.”

By the mid-1960s, Japan’s Total Quality Management (TQM) method became the next big thing in the drive to ensure quality. Japan’s success coincided with the decline of many western economies, and TQM was often highlighted as a key factor in Japan’s economic health. TQM established quality processes at every level of the organization. It was initially destined to be an industrial model of mass production and consumption. But in the 1970s, when manufacturing declined in many Western economies, TQM began to infiltrate service-based industries. As a result, quality became more widely embedded within management frameworks. It focused on

10 Frederick Winslow Taylor, *The Principles of Scientific Management* (New York: Harper and Brothers, 1919), 53. It should be noted here that Taylor never explained what he meant by the term “proper.”
internal issues like teamwork, continuous improvement, and learning, while still ensuring products and services were provided to customers.

As a result of this shifting emphasis toward service, a number of new quality assessment methods and standards were developed in the late 1970s and 1980s, including Total Quality Service, Six Sigma and ISO 9000. Since many of these commercial standards and methods were designed to ensure the overall quality of an organization and its operations, many systems began to infiltrate into other forms of private and public service, including education.

Within the older, elite system of higher education—a selected few institutions hosting small numbers of staff and students—high quality was expected and understood to exist, but there was very little evidence to support this. There was evidence of peer-review and external examination—Oxford and Cambridge examinations are still a throwback to that era. However, as higher education shifted from an elite to a mass system,11 and from a predominantly public system to a private one, institutions became more and more like businesses. They adopted a number of commercial quality assessment systems to demonstrate to governments—and to students, to some degree—that quality is central to their organization. However, what has become clear is that many commercially focused quality assessment systems are not entirely compatible with the education sector. Concepts like “product,” “service,” “stakeholder,” and “customer”—integral to the competitive model—are fundamentally incompatible with the educational model. Educational products are often unknown, or yet to be discovered; services are fluid and relative—especially where teaching and learning are concerned, and there are many types of customers and stakeholders.

Quality in Higher Education

As we have seen, there are multiple views and interpretations of what constitutes quality in higher education. Harvey and Green12 proposed five definitions: quality as exceptional, quality as perfection or consistency, quality as fitness for purpose, quality as value for money, and quality as transformation. Each definition approaches the notion of quality from a different perspective and uses a different set of criteria to measure it.

Quality in higher education is thus a relative concept. Firstly, quality is relative to the individual thinking about it or judging it. There is no clear consensus of what is good, and we typically do not mutually agree about how or when good becomes better or worse. Secondly, quality is relative to whatever is being judged. Quality only exists within a context, and must be specifically framed around the question “quality of what exactly, and quality serving what purpose, exactly?” For higher education, quality can be a process and an outcome resulting from a number of processes. Quality is often discussed—and disguised—in the context of a university’s constituent activities, including its curriculum, teaching, research, student learning, assessment, student experience, and the number of students expected to a course.

Much of the research concerning quality in higher education relates to either context or stakeholders, or both. For example, a study13 of US college presidents revealed that they view quality from three different perspectives: meritocratic, social, and individualistic. The meritocratic view assesses quality in relation to the scholarly norm. The social view focuses on fitness-for-purpose, or the degree to which institutions satisfy the needs of their stakeholders. The individualistic view focuses on students’ personal growth. In each case, quality is framed differently.

Within higher education, “quality assurance” has become a catchall phrase for both internal and external quality systems. Anderson et al. define quality assurance

as “the means by which an institution is able to confirm that the standards (of teaching and learning in the case of this report), set by the institution itself or another awarding body, are being maintained and enhanced.” 14 Quality assurance is thus a process of improvement and maintenance in which the institutions set their own standards, and then measure their achievements against those standards. Quality assurance is being increasingly confused with external systems of accountability. As Harvey and Newton note, “accountability and improvement are not two related dimensions of quality, rather they are quite distinct and there is no intrinsic tension between them. Quality assurance has created an illusory tension by pretending that quality is intrinsically linked to the process of monitoring quality, an illusion that is exemplified in the ‘fitness-for-purpose’ approach.” 15 In other words, quality assurance does not necessarily assess quality, it only monitors the performance of achievements against an institution’s own set of standards, with no external, objective benchmark to compare those standards to.

Commercial paradigms of quality, which focus on customer satisfaction or meeting customer needs, do not sit well in an educational setting. They have led various authors to ask who the customers in higher education are, exactly. Lomas 16 argues that higher education is simply unable to understand who its customers are. Understandably, the changing dynamics of higher education in recent decades—from a public to private paradigm—have led to more interest in students’ perspectives on quality. The student is a consumer, so the feedback loop between students and institutions now goes in both directions—there are satisfaction and lived experience surveys to compliment midterm and final reports. Students’ perceptions of quality are important and should be recognized, but generally they are not used in any of the international rankings systems. However, there are nationally based rankings and tables that specifically list student satisfaction, usually derived from national student surveys, like The Complete University Guide, published in the UK, and The Good Universities Guide in Australia.

Some rankings have emerged that allow consumers—whoever they may be—to select the criteria they want to use to evaluate institutions. The most prominent model is U-Multirank, 17 first developed for the German higher education system by the Centre for Higher Education Development. U-Multirank is now international, and institutional participation is optional. The ranking system allows end-users to choose up to five criteria related to teaching, research, facilities, graduation rates, international orientation, etc. These criteria are given high, middle and low priority, and the system filters the potential options of institutions that broadly fit those criteria. Essentially, the consumer controls the criteria used to make comparisons, but that control does not result in a linear ranking per se. While there is no disciplinary filter for art and design as of yet, it’s only a matter of time before subject-specific data becomes available.

Do Rankings Connote Quality?

Few higher education institutions or their academic staff would admit to delivering poor quality in what they do. But nobody is able to precisely articulate what they mean by quality, or indicate the criteria they have applied to assess it. Any form of comparison is often disregarded—particularly by the institution with the lower score—because institutions have different missions and thus different measures of quality. The exception is when institutions perform well on comparative measures and the results are used to enhance their reputation or used for marketing purposes. Quality is not a one-dimensional concept that can be measured easily, but rankings have become so easy to understand that almost everyone accepts them.

Historically, institutions like Oxford, Cambridge, and Harvard have promised
the highest quality in education. They retain high levels of prestige and reputation, which closely allies them with the notion of high quality, and buoys their symbolic capital in the quality debate. More recently, the association between research and prestige—and therefore high quality—has been strengthened by the publication of global university rankings. The global exposure of rankings has meant that high research performance is now a proxy measurement for high quality per se. Most academics know that research performance has little to do with teaching and learning quality, and therefore provides the world with an incomplete assessment of an institution. Even though high-ranking, research-focused institutions enjoy the symbolic capital of prestige, and can attract high-caliber students, is the quality of teaching and learning at these institutions any better than institutions that start with less academically-prepared students? The answer is a matter of perspective.

The Times Higher Education World University Ranking and the QS World University Ranking do include some measurable dimensions of teaching and learning. Some of these indicators are metric based—student to staff ratios, the percentage of staff with doctoral degrees, and so on—while other indicators are based on a global survey of academics and employers, with multipliers applied depending on the response. Figure 1 indicates the variation of criteria used across four major ranking systems, and the weight allocated to each criterion expressed as a percentage.

If one were to combine these percentages across the four rankings, the number and influence of teaching and learning indicators is very low (see Figure 2). Research indicators often dominate simply because precise measurements of teaching and learning quality are difficult. Broadly speaking, there are three different ways to measure teaching and learning quality: by gauging the caliber of prospective students, or the amount of value added by the learning received, or the success graduates have obtaining employment and impacting society. Yet there is no precise way to measure any of these. Some rankings aim to measure teaching and learning via quantitative indicators, but frankly this is a kind of “pseudo-quantification.” Measuring the quality of teaching and learning with metrics is a meaningless application of numbers to answer questions that are not ideally suited to quantitative analysis. This is the primary reason why most rankings do not attempt to measure teaching and learning. Although quantifying teaching and learning sounds like a useful exercise, it is a seductive trap. It becomes easy to lose sight of what one is trying to measure and the purpose of measuring it in the first place. As one critique of the U.S. News and World Report Education Rankings demonstrates, not only the number of criteria selected but also the variations to the weighting of those criteria are factors so opaque and full of implicit ideological choices that the use of such data cannot be justified.

During the coming 2017/2018 academic year, the UK government will be testing a Teaching Excellence Framework (TEF). The TEF will predominantly use course satisfaction and employment data from the Higher Education Statistics Agency’s “Destination of Leavers from Higher Education” survey, and current student experience assessments from the National Student Survey conducted by the Higher Education Funding Council for England. The Times Higher Education newspaper even created a mock league table using this data showing Oxford and Cambridge outside of the top ten institutions. Similarly, Australia has developed its Quality Indicators for Learning and Teaching (QILT) by combining a range of surveys similar to those used in the UK. The government-funded Graduate Destination Survey, Student Experience Survey, Course Experience Questionnaire and Employer Satisfaction Survey all contribute to comparative indicators of teaching and learning quality. Surveying students is obviously the most direct way of obtaining data related to teaching and learning. But are students always the best, most objective judges of high quality, especially given the consumer bias often present once fees

21 The survey covers four countries: England, Northern Ireland, Scotland, and Wales. For more information, see http://www.hefce.ac.uk/innss/.

have been levied and paid?

Even if transparent tools and comparable data sets can help people to form reliable conclusions about institutional performance, problems may arise should institutions attempt to direct internal behavior toward those data sets. In that case, the criteria for measuring performance would likely dictate the institution’s approach to teaching and learning. In fact, this is already the case with research—many universities are now directing their research policies and incentives toward increasing certain metrics. Rankings are clearly influencing university research policies and incentives.²⁴

Ultimately, the danger is that rankings will create very homogenous types of
institutions whose offerings all promise the same level of quality. Targeting ever-higher rankings encourages institutional isomorphism rather than diversity and differentiation. Is this what academia wants? The range and character of existing indicators is already driving behaviors at an institutional level. Performance indicators are already being used to manipulate—and, some would argue, control—the system. Whoever dictates the type of indicator and the scale or threshold of achievement expected is in a position to dominate not only the process but also the result. As Broadfoot suggests, “Though the prevailing assessment discourse has persuaded both policy-makers and managers of the desirability of panoptic surveillance as a key to quality and efficiency, in reality: ‘the idea that if we calibrate our instruments more finely, we can somehow achieve perfect measurement of quality is a modern illusion, created by computers and statisticians who make a living out of it.”

Articulating, judging and measuring quality in higher education to such a degree also creates interdisciplinary tension within institutions, especially for art and design departments that exist within comprehensive universities. Specific, unique guidelines and recommendations about research topics and formats, publication platforms, teaching and learning styles, student to staff ratios, and degrees offered have been overwhelmingly affected by indicators and incentives that likely

distort quality at the disciplinary level. It seems ridiculous for art and design to aim to achieve the same quality standards as the so-called “hard” sciences—especially considering that the disciplines themselves are not individually ranked using the same criteria. In the 2016 QS World University Rankings, teaching and learning indicators like reputation make up 40% of any institution’s overall rank (see Figure 1). But when it comes to individual subject rankings, QS reputation indicators may represent anywhere from twenty-five to one hundred percent of a discipline’s overall rank. For example, reputational indicators comprise only fifty percent of the overall individual philosophy, environmental science, and civil/structural engineering rankings—the other fifty percent QS derives from citation indicators—while one hundred percent of the art and design discipline ranking is derived from reputation indicators alone.

Quality is clearly a relative concept that can vary enormously from institution to institution. Arbitrary though this may be, the way perceived quality informs an institution’s reputation sends an important signal to both prospective students and potential employers. A survey of employers in the United Kingdom showed that eighty percent regarded institutional reputation as the most important indicator of graduate standards.

Graduates are (only) as “good” as the institution where they graduated. Such perceptions can only serve to make ranking even more influential within competing institutions.

On the one hand, while quantitative data does not actually reflect the complex nature of teaching and learning, qualitative judgments of quality through surveys are also imperfect. When assessing the quality of student outcomes, judgments might vary from academic to academic working for the same institution—and may differ even more among academics working in the same discipline at completely different institutions. Comparative judgments in degree programs are largely based on tacit values and assumptions. In the UK for example, research has suggested that up to fifteen per cent of students would have obtained a different grade classification if they had attended another institution.

The QS and the Times Higher Education World University Rankings both use reputational surveys, but have often been criticized for their lack of data transparency and quantifiable metrics. Many see surveys as easier ways to ‘game’ the system. For the QS, universities are asked yearly to submit eight hundred new names that the QS can solicit to participate in the survey—four hundred academic contacts and four hundred employer contacts. As of the 2015/2016 academic year, the number of names in that database has risen to over 75,000 academics and employers. Of course, institutions likely submit only candidates that serve their interests and are likely to rank them high in the survey. Specialized institutions can provide eight hundred names within a narrow field or discipline, whereas a comprehensive university has to submit eight hundred names across twenty or more disciplines. It follows that institutional decisions about which names to include could be motivated by shifting priorities and the need to boost or safeguard rankings in one discipline or another. For disciplines like art and design, it is probably harder to get enough relevant names on that list if they have to compete with unrelated disciplines like environmental science, medicine, engineering, technology, and so on. What does the parent institution wish to make itself known for?

The QS first published its discipline-specific art and design ranking in 2015. The QS currently restricts respondents to academics and employers. In their overall university-ranking tally, the QS draws 40% from academic survey results, and 10% from employer survey results (as indicated in Figure 1). Unlike other QS subject rankings, no research citations are used to contribute to the art and design department rankings. The impact of art and design research is notoriously difficult to gauge. Gemser and de Bont, for example, found distinct differences in citation

impact after publication in design-focused journals versus design-related journals.31 As a result, publication citation data for art and design does not necessarily provide a good indicator for research performance, especially from Scimago and Leiden which collect data from Scopus (Elsevier) and Web of Science (Thomson Reuters).

Figure 3 provides the ranking for the top fifteen institutions listed on the QS Art and Design subject-specific ranking for 2016. It also shows their 2015 ranking, as well as the overall institutional ranking on the QS, Times and ARWU rankings. There are some stark contrasts between the subject-based ranking for art and design and the overall institutional rankings, largely because of the different metrics used and the emphasis on research citation impact in the overall rankings. Over half of the top 15 art and design institutions do not feature at all in the overall university rankings.

To the wider art and design community that includes academics and employers, the ranking of most institutions on that list is probably not a surprise, but can we genuinely say that those institutions are better than the institutions ranked between 15-50, or indeed after 50? In reality what is the difference in quality between an institution ranked 20th and one ranked 100th? One might even argue that some of the institutions listed in the QS Art and Design ranking top 15 do not house an ‘art and design’ department proper. MIT, for example, offer a course in Integrated Design Management, and have an extremely important School of Architecture – ranked number one on the QS subject ranking for Architecture – but do not have a school of art and design, nor do they offer courses in the disciplines of fine arts or design per se. Some institutions may have fine arts departments, or possibly even architecture, and as a result, the reputations among the communities of art, design, and architecture have been blurred. Arguably the quality and character of art, design, and architecture courses, and the perception of what constitutes quality within each of those sub-communities of practice would vary enormously. Perhaps art and design should be separated into two separate disciplines, and also clearly segregated from architecture? How, using which criteria, does one judge the quality of any interdisciplinary or collaborative teaching, practice, and research that takes place?

Even within the discipline of art and design, there is disagreement regarding quality indicators. Most public higher education systems have their own performance rankings systems and league tables whose character and criteria for assessment vary considerably. In the 2014 UK Research Excellence Framework (REF) assessment for art and design, Reading University was ranked first, followed by The Courtauld Institute of Art—neither of which featured in the QS Art and Design rankings. The Royal College of Art—first in the QS overall ranking—and Reading University tied for nineteenth in the UK REF. Neither ranking system is “correct” in any objective sense of course, but institutions are trying to do as well across as many different rankings as possible—considering the differences in criteria they are seeking to satisfy, there is a sense that many institutions and departments must try to be all things to all people. A further analysis of the top performing UK institutions listed on the QS Art and Design ranking in comparison with other UK performance tables can be seen in Figure 4. The table illustrates just how different the performance of the same institution might be, depending on the methodology of the league table or ranking system.

Since even more rankings systems are likely to appear over the next decade, the problem of appealing to such disparity in criteria and assessment methodology looks like it might be here to stay. Since the ARWU started in 2003, over twenty global rankings for higher education have emerged, and each year more are introduced. Research and reputation will continue to play a large factor in the overall performance of international rankings. However, at the national level, measures like student satisfaction, graduate employment, as well as research performance are likely to have a higher influence. High-quality teaching and learning, and high-quality research, no matter how they are measured, are the goals for each institution. Higher education institutions must find their own path and schools of art and design must navigate along them without losing sight of their own objectives. As Boyle and Bowden say, “quality is never attained in an absolute sense; it is constantly being sought.”

Concluding Remarks

Despite the existence and emergence of university and discipline-specific rankings, it seems obvious that there can exist no single, unanimous notion of what constitutes overall institutional or academic program quality. While some institutions...
rest on the laurels of their past performance and well-established reputations, rankings systems are shaping public opinion more and more powerfully, especially given the advances in the digital technologies that support them. Traditional notions of cachet and prestige we view as implicit judgments of quality are largely based on 'gut feeling' rather than on any verifiable, external reference point. More and more stakeholders are demanding stronger, more reliable evidence, and in response, ranking systems and league tables have shifted towards more quantitative data to support judgments of quality. Research metrics form the backbone of the criteria used to make these decisions because metrics can be counted, and impact can—supposedly—be quantified, and thus research output has become the dominant proxy representing the overall quality of an institution. Increasingly, some rankings are using reputational surveys, which they argue are peer-reviewed, professional judgments of quality. Arguably, a favorable reputation is entirely subjective and, some believe, easily ‘gamed.’ The idea of a completely objective and accurate academic institution ranking system—discipline notwithstanding—is perhaps a seductive illusion. It is hard enough to achieve consensus regarding the criteria for which quality is judged, let alone ascertain objectively how well X, Y, or Z performs against those criteria.

Nevertheless, rankings are here to stay, and institutions need to understand how they work to get the best possible results—if indeed they care about their own ranking. Generally speaking, considering the number of different ranking systems out there, and the fact that some rankings can be interpreted in a variety of ways—given the ways that indicators are weighted, and data gathered—institutions should not necessarily prioritize one ranking over another, nor should rankings necessarily begin to dictate university policies and incentives. Otherwise, they really will drive homogeneity across the domain of education.