
Specifying Roles within Agent-Oriented Software Engineering

Kevin Chan Leon Sterling

University of Melbourne

{kchan,leon}@cs.mu.oz.au

Abstract

Roles are an essential concept within agent-oriented

software engineering (AOSE). Role definitions in current

AOSE methodologies are usually claimed to be for use at

the requirements level. However, in most methodologies,

they are too low level, specifying too much detail. In this

paper, we present a "higher level" role specification. The

role specification method described in this paper works

together with other agent specification/analysis methods

that we and others have developed. However, we believe

that role specification may also be used with non-agent-

based systems, and provide a useful abstraction for

specifying the requirements of any software system.

1. Introduction

Software agents have been an active area of research

for many years. In the last few years, agent-oriented

software engineering (AOSE) has become an active sub-

area. AOSE is focused on methodologies for creating

predictable, reliable, and stable agent-based systems. A

number of methodologies have been proposed in recent

times, including Gaia [13], MESSAGE [15], ROADMAP

[6], Tropos [3] and Prometheus [10]. There has also been

a wide variety of work on techniques and concepts to

support AOSE methodologies (e.g., [9], [12], [1], [5], and

[8]).

In this paper, we focus on role specifications. Roles

are an important part of many current AOSE

methodologies. Role specifications are the first artifacts

created by many methodologies. Most current AOSE

methodologies [13] [6] [10] agree that role specifications

are useful during the requirement analysis or gathering

phases of developing agent-based systems. However, the

role specifications in most AOSE methodologies contain

too much implementation bias for the requirements phase.

In this paper, we describe a new role specification method

that removes the bias, enabling the method to be applied

more easily during the requirements phase.

Our described role specification method may also be

useful for analyzing/capturing the requirements of non-

agent-based systems. In some ways, our role

specifications are at a similar level of abstraction to UML

Use Cases. People have long been designing complex

human systems (for example, a company) in terms of

interacting, intelligent agents. Using role specifications to

describe software systems may enable modelers to

leverage off this familiarity, to conceptualize and describe

the software system with greater ease.

2. Conceptualising Roles

Roles are present in human organizations. For

example, roles at a university include "Head of

Department" and "Lecturer". Roles may be performed by

more than one person (e.g. there are many lecturers at a

university), and one person may simultaneously take on

multiple roles (e.g. one person may be both a head of

department and a lecturer). Roles define a person’s

responsibilities and function in an organization. Roles

also define how people interact with each other (e.g.

Students would ask a lecturer for lecture notes. They

would not ask the head of department.) Roles in agent-

based systems are much the same. They define the

responsibilities and function of agents in an agent-based

system.

In this paper, the role specification method we propose

caters for agent-based systems in which:

Agents are objects at the granularity of a process.

o Agents have their own thread of

processing

Agents in the system can be heterogeneous

o Agents can be implemented in different

languages and using different

architectures

Agents exist in an open, dynamic system

o Agents can enter/exit the system

o New, unfamiliar agents can be introduced

o As new agents may be introduced into

the system, we need to be able to query

agents to determine their abilities

o To ensure new/unfamiliar agents behave

as expected, agent behavior should be

auditable

Interactions between agents can change at run

time

o For example, agents may start interacting

with new agents who have recently

joined the system

Agents can change their behavior during run time

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

o For example, agents may use learning to

modify their behaviors to improve their

performance.

Additionally, role specifications should be informal,

but structured. As [14] points out, "if agent-oriented

techniques are ever to become widely used outside the

academic community, then informal, structured methods

for agent-based development will be essential". The role

specifications we describe are of the formality of UML,

the de facto standard for modeling object-oriented

systems). (There has been work on Agent UML, which

adapts UML for use in specifying agents [9] [1] [5].

However, for the types of agents we are considering,

these specifications are more suited for specifying

architectural design and not for requirements.)

We propose specifying roles using three levels of

description (See Figure 1):

Role Specification: This model is at the

requirements level. It specifies what the role will

do without specifying how the role will do it. This

is like the "interface" for an agent. An agent can

fulfill multiple role specifications simultaneously.

Role Design Specification: This model is at the

early architectural design level. This specifies a

way for the agent to implement the role. This

includes describing which other roles it needs to

interact with in order to implement the role. Note

that there can be more than one role design

specification for a given role specification. i.e.,

there may be more than one way to fulfill the role.

An agent may implement multiple role design

specifications simultaneously for a single role

specification. This would enable the agent to

choose and apply the role design that is most

suitable for the current situation. Or, a system may

have a number of agents that fulfill the same role,

but with each agent using a different role design.

In this case, the agent that is currently most suited

to fulfill the role does the job.

Role Implementation Specification: This model is

closely related to the Role Design Specification,

and is also at the architectural design level. This

holds information about the agent design

specification that is specific to an agent

framework/environment. For example, the details

about the format of agent messages, and details

about parameter types. Note that this model does

not contain details about the agent design (e.g.

agent's internal cognitive model, algorithms, etc.).

This model is intended as a data dictionary for

storing framework-specific details about role

design specifications, allowing these details to be

removed from the role design specifications. The

information is useful for determining how to build

new agents that can work with existing agents.

Figure 1. Three Levels of Role Specification.

We start by creating Role Specifications, then use

them to derive Role Design Specifications and Role

Implementation Specifications. The three models work

together to take us from the requirements phase to the

early stages of architectural design. We specify the

functionality of the roles, ways in which the roles can

interact to achieve their purpose, and some details about

the communication between roles. These models can be

used as an input to the architectural design phase of

development. The system could eventually be

implemented using an agent-oriented language such as

JACK [4], or a more common object-oriented language

such as Java.

While the three models are designed to work together,

this paper focuses on the Role Specification model and

how it is used during the requirements phase.

Agent

Role

Specification

Role

Design

Specification

Role

Implementation

Specification

Agent Framework

fulfills

has

implemented using

is compatible with

1

1..*

1

1..*

1

1..*

1

1

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

3. Role Specification

Role specifications specify the functionality of roles

and are derived during the requirements phase. Role

specifications are focused on what the role does, but does

not describe how these tasks should be achieved. We do

not want to describe how roles are fulfilled as that is a

design decision. They are in some ways like "interfaces"

for agents. Agents interact with each other via their roles.

Complex human organizations (such as a university or

a company) are made up of interacting, intelligent agents.

As we are familiar with these organizations and how they

operate, specifying complex software systems as societies

of interacting roles may be a natural metaphor that

enables us to specify software systems more easily.

We specify Role Specifications in terms of:

Responsibilities: Specify what the role will do in

reaction to changes in the environment. Most of a

role's functionality can be specified as

responsibilities.

Initiatives: Specify proactive behaviors, tasks that

the agent will perform even if it's not reacting to

any specific event.

Facilities: Tasks that other agents can request of

this role. These are like object-oriented methods,

except that agents have autonomy meaning that

the agent can decide whether it will perform the

request.

Role specifications should be as cohesive as possible.

The Responsibilities, Initiatives and Facilities specified

for a role should be targeted at a single purpose. If it

makes sense for an agent to have a number of related but

different purposes, the agent should fulfill a set of roles.

We should not specify bloated roles for these cases.

3.1 Responsibilities

Responsibilities are specified as follows:

This describes the condition for activating the

responsibility, the outcome that the agent’s behavior

should achieve, and any constraints on this responsibility.

For example, suppose we had an Indexer role that was

responsible for maintaining the index for a web site's

internal search engine. One of its responsibilities may be:

This specifies that when a new page is added, the

index should be updated to include the new page within

24 hours after the page is added.

We do not specify how the "Condition" is detected.

We only state what the condition is. We want to keep this

flexible at the role specification level. An agent may be

able to detect this in multiple ways, and we do not want to

constrain the way it does it yet. For example, the agent

may be able to detect a new page by waiting for an event

from another agent. Or, if that's not available, the agent

may have to poll/monitor the directories where web files

might be added. New methods may appear as new

agents/roles are introduced into the system. The role

specification should be flexible enough to support future

enhanced implementations that cannot be implemented

currently. We leave the details of how it's done to the role

design.

We specify the expected "Outcome" required in

response to the "Condition" rather than the behavior

required. Again, we want to keep this flexible in the role

specification. An agent may achieve the desired outcome

in a number of different ways, we do not want to

constrain how an agent will achieve the required

outcome. Using the example from before, an agent

implementing the Indexer role may choose to update the

index whenever a new file is added, or it might wait to

collect a number of files before indexing them all together

at a time when the server load is low. Also, specifying

Responsibilities in terms of outcomes also means that an

agent can change its own behavior (e.g., through

improving its performance through learning) and still

satisfy the Responsibility. As with conditions, when new

agents/roles are added to the system, there may be better

ways available to implement the role. Again, we leave the

details of how it's done to the role design.

Additionally, an "Outcome" is usually visible, and

specifying responsibilities in terms of outcomes instead of

behaviors enables auditing of agent behavior. As agents

may perform tasks in a large variety of ways, it would be

very difficult to determine whether an agent is fulfilling

its role properly by observing the steps that the agent

takes to achieve the task. "Outcomes" are easier to

observe and verify. The ability to audit agent behavior is

an important property of open agent systems; new,

unfamiliar agents may be added to the system.

The "Constraint" allow us to specify requirements on

how the responsibility is performed. In the Indexer

example above, we specified a constraint on how long

before the index needed to be updated. Agents may

perform better than required. The constraints are the

New Page Added Index is updated to

match

Within 24 hours

Condition Outcome

Constraint

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

minimal performance accepted while still satisfying the

role.

3.2 Initiatives

Initiatives specify pro-active behaviors. These are

specified as outcomes that the agent must ensure are true.

We specify these as Outcomes with Constraints.

Specifying in terms of Outcomes has the same benefits as

it did for Responsibilities. The format of an Initiative is as

follows:

Again, using the Indexer role described earlier, a

possible Initiative for that role may be:

This Initiative specifies that the role should ensure that

invalid entries should not remain in the index for longer

than a week.

We specify this as an Initiative as there are perhaps no

specific events that the agent can detect to ensure that the

index hasn't been corrupted. (For example, users may

have used a "back door" method to delete or modify files

without the indexer agent knowing it.) We keep this

flexible in the role specification, and leave it to the role

design to specify how to ensure this holds. For example,

the agent may be to do nightly audits, or it may regularly

sample entries in the index and verify that they are still

valid.

3.3 Facilities

Facilities are requests that other agents or users can

ask of this role. The agent can decide when/if/how they

handle the request. A request may fail if the agent is

unable to perform the task. Facilities can be for many

types of requests. For example, requests for a second

opinion on something. (Perhaps an agent can seek the

opinion of a number of agents to help it make a decision.)

We specify Facilities as follows:

Requested-Outcome (Parameters)

: Specifiable-Constraints

Using the Indexer role as an example, a Facility for

that role may be:

Subdirectory index updated (Subdir-Name)

: Completion-Time

This Facility states that we can ask the agent

performing the "Indexer" role to update the index for all

the files in the directory specified by the parameter

"Subdir-Name". It also states that the request can include

a "Completion-Time" constraint to specify how long the

agent can take to complete the task. For example, we may

specify that the request be completed within the hour.

(The request may fail if the agent is unable to satisfy this

constraint.)

As with Responsibilities and Initiatives, we specify the

desired Outcome, but not how the Outcome is achieved.

The details of how it is achieved are left to the role

designs.

4. Discussions and Related Work

In this section, we discuss the role specifications used

in three current AOSE methodologies: Gaia, ROADMAP

and Prometheus. We examine these methodologies in

particular because roles play an important part in them.

4.1 Gaia Roles

In Gaia [13], roles are specified and refined during the

requirements analysis phase. They are intended to

describe the requirements of the system. Gaia roles are

defined by four attributes: responsibilities, permissions,

activities, and protocols. We focus on the responsibilities.

The responsibilities attribute in the primary way

through which Gaia specifies the functionality of roles.

Responsibilities are specified in terms of:

Liveness properties: "states of affairs that an

agent must bring about, given certain

environmental conditions" [14]

Safety properties: "invariants" that the agent

must maintain. The agent must ensure "that an

acceptable state of affairs is maintained across

all states of execution" [14]

In some ways, liveness properties are similar to the

"Responsibilities" in our method, while safety properties

are similar to the "Initiatives" in our method.

Safety properties are expressed as predicates. For

example:

coffeeStock > 0

This means that the agent must ensure that the coffee

stock is always greater than 0. Safety properties are

specified at a similar level of detail to "Initiatives" in our

method.

No invalid entries are in the index

For longer than a week

Outcome

Constraint

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

Liveness expressions in Gaia are specified using

"liveness expressions", which are based on the life-cycle

expressions of FUSION. An example liveness expression

[13]:

CoffeeFiller

= (Fill.InformWorkers.CheckStock.AwaitEmpty)

This expression says the CoffeeFiller role consists of

executing the protocol Fill, followed by the protocol

InformWorkers, followed by the activity CheckStock,

followed by the protocol AwaitEmpty. The " " denotes

that this sequence of protocols and activities is repeated to

infinity.

Protocols are defined in Gaia's Protocol Model.

Protocols are described with the attributes:

Purpose: What the protocol does

Initiator: Role(s) that starts the interaction

Responder: Roles(s) that the initiators interact

with

Inputs: Information used by the role initiator

Outputs: Information supplied by/to the

responder during the interaction

Processing: Brief textual description of any

processing that protocol initiator performs

during the interaction

Protocols "define the way that it [a role] can interact

with other roles" [14]. While protocols are more complex

than object-oriented method calls (with dialogues

between agents, etc), protocols are defined almost at the

level of method calls. (They describe inputs, outputs and

processing.) So, roles in Gaia are described at a

procedural level. They prescribe the steps that an agent

takes when fulfilling a role. These role specifications do

not support the flexibility of allowing multiple ways of

fulfilling a role. The information in the Gaia role model is

similar to the information contained in our "Role Design"

model.

4.2 ROADMAP Roles

ROADMAP [6] builds on Gaia. It adopts the liveness

and safety expressions used in Gaia. As a result, its role

definitions also contain more design information than

there should be.

In the ROADMAP meta-model [7], the concept of

evaluation functions is added to ROADMAP role

specifications. Evaluation functions represent

performance qualities that we want the role to exhibit. For

example, "Reliability() > 8" specifies that the agent must

ensure the value of the evaluation function "Reliability()"

is kept above 8. This concept is similar to the constraints

specified in our role specifications.

4.3 Prometheus Roles

In Prometheus [10], "roles" are referred to as

"functionalities". Prometheus functionalities are

described as follows:

Name

Short natural language description

List of actions

List of relevant percepts

Data used

Data produced

Interactions with other functionalities

The description of "interactions with other

functionalities" specifies what message the role sends and

receives from other roles. This constrains how the role

interacts with other agents, and constrains which other

roles the given role can interact with. In effect, this

describes one particular way in which the role can be

fulfilled. In our role specification method, this

information is described in the Role Design Specification.

However, Prometheus functionalities do not specify

the details of how an agent should fulfill a role. So,

Prometheus functionalities have less implementation bias

than role specifications in Gaia and ROADMAP.

The role specifications defined in the methodologies

discussed are more similar to our Role Design

Specifications than our Role Specifications. A reason for

this is that the role specifications in these methodologies

were not created with the requirements for dynamic, open

systems that we specified in section 2. The Role

Specification model we described has less

implementation bias than the role specifications used in

these methodologies. Reducing implementation bias

makes the method more effective as a requirements tool

as we should not be specifying design information during

the requirements phase.

5. Conclusions and Further Work

In this paper, we described a new way of specifying

agent roles, and examined how roles are specified in

other, current AOSE methodologies. The method

described contains less implementation bias than other

AOSE methodologies, making the method more suitable

for use during the requirements phase.

We also described how the Role Specifications

described are used in conjunction with Role Design

Specifications and Role Implementation Specifications

mode in order to lead the modeler from the requirements

phase to early architectural design. We will describe the

other two models in more detail in a future paper.

The role specification method described in this paper

is currently being used for a project with the Smart

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

Internet Cooperative Research Centre. We intend to

refine the method as we apply it to more projects.

6. References

[1] Bernhard Bauer, Jörg P. Müller, James Odell, “Agent

UML: A Formalism for Specifying Multiagent

Interaction”, Agent-Oriented Software Engineering, Paolo

Ciancarini and Michael Wooldridge eds., Springer-

Verlag, Berlin, pp. 91-103, 2001.

[2] Grady Booch, James Rumbaugh, and Ivar Jacobson,

The Unified Modeling Languge User Guide, Addison-

Wesley, 1999.

[3] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto

Giunchiglia and John Mylopoulos, "A knowledge level

software engineering methodology for agent oriented

programming", Proceedings of the Fifth International

Conference on Autonomous Agents, ACM Press,

Montreal, Canada, Jörg P. Müller and Elisabeth Andre

and Sandip Sen and Claude Frasson", pp. 648--655, 2001.

[4] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas,

“JACK Intelligent Agents – Components for Intelligent

Agents in Java”, Technical Report, Agent Oriented

Software Pty. Ltd., Melbourne, Australia, 1998.

[5] M. Huget, “Agent uml class diagrams revisited”,

Technical Report ULCS-02-013, Department of

Computer Science, University of Liverpool, 2002.

http://citeseer.nj.nec.com/article/huget02agent.html

[6] Juan, T., Pearce, A. and Sterling, L., "ROADMAP:

Extending the Gaia Methodology for Complex Open

Systems", Proceedings of the First International Joint

Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS), p3-10, Bologna, Italy, July 2002.

[7] Juan, T. and Sterling, L., “A Meta-Model for

Intelligent Adaptive Multi-Agent Systems in Open

Environments" (poster), Proceedings 2nd International

Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS), Melbourne Australia, July, 2003.

[8] James Odell, H. Van Dyke Parunak, and Mitch

Fleischer, “The Role of Roles in Designing Effective

Agent Organizations”, Software Engineering for Large-

Scale Multi-Agent Systems, Alessandro Garcia et al,

LNCS, Springer, 2003.

[9] James Odell, H. Van Dyke Parunak, Bernhard Bauer,

“Extending UML for Agents”, Proc. of the Agent-

Oriented Information Systems Workshop at the 17th

National conference on Artificial Intelligence, Gerd

Wagner, Yves Lesperance, and Eric Yu eds., Austin, TX,

pp. 3-17accepted paper, AOIS Worshop at AAAI 2000.

[10] Padgham, L. and Winikoff, M., "Prometheus: A

Methodology for Developing Intelligent Agents",

Proceedings of the Third International Workshop on

Agent Oriented Software Engineering, at AAMAS 2002.

July, 2002, Bologna, Italy.

[11] Lin Padgham and Michael Winikoff, “Prometheus:

A Pragmatic Methodology for Engineering Intelligent

Agents”, Proceedings of the workshop on Agent-oriented

methodologies at OOPSLA 2002, November 4, 2002,

Seattle.

[12] H. Van Dyke Parunak and James Odell,

“Representing Social Structures in UML”, Agent-

Oriented Software Engineering Workshop II, Michael

Wooldridge, Paolo Ciancarini, and Gerhard Weiss, eds.,

Springer, Berlin, 2002, pp. 1-16.

[13] Wooldridge, M., Jennings, N. and Kinny, D., “The

Gaia Methodology for Agent-Oriented Analysis and

Design”, Journal of Autonomous Agents and Multi-Agent

Systems, 3 (3), 2000, 285-312.

 [14] M. Wooldridge and P.Ciancarini, “Agent-Oriented

Software Engineering: The State of the Art”, In P.

Ciancarini and M. Wooldridge, editors, Agent-Oriented

Software Engineering, Springer-Verlag Lecture Notes in

AI Volume 1957, January 2001.

[15] Giovanni Caire, Francisco Leal, Paulo Chainho,

Richard Evans, Francisco Garijo, Jorge Gomez, Juan

Pavon, Paul Kearney, Jamie Stark, and Phillipe Massonet,

“Agent oriented analysis using MESSAGE/UML”, in

Michael Wooldridge, Paolo Ciancarini, and Gerhard

Weiss, editors, Second International Workshop in Agent-

Oriented Software Engineering (AOSE-2001), pp. 101-

108, 2001.

[16] Daniela E. Herlea, Catholijn M. Jonker, Jan Treur,

and Niek J. E. Wijngaards, “Specification of Behavioural

Requirements within Compositional Multi-agent System

Design”, Proceedings of the 9th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World:

Multi-Agent System Engineering ({MAAMAW}-99),

Volume 1647, Springer-Verlag: Heidelberg, Germany,

Francisco J. Garijo and Magnus Boman, pp. 8-27, 1999.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

