
The ubuntu approach to teaching systems development:
Report on a South African study in progress

by JHO Pretorius & H Scheepers

Department of Informatics,
University of Pretoria, Pretoria,

South Africa
Email : jhopret@econ.up.ac.za & hscheep@econ.up.ac.za

Tel : +2712 420 3085

Fax : +2712 43 4501

Abstract

This paper looks at the problem of teaching an

undergraduate systems development course which

would enable students to develop systems which

are functionally "correct", and to be socially

sensitive to the impact of such systems on users
and the organization.

Keywords: systems development, curriculum, role
play, brain dominance profiles.

1. Introduction: the ubuntu concept

Ubuntu is derived from the Zulu word "abantu"

which means "people". It describes the value
system of the African people and is manifested by
actions such as caring for people, treating other
people like you would like others treat you,
treating others with respect, accepting differences
in people and listening to others. It is captured in
the expression "I am because they are and they are

because I am". Broadly speaking, therefore,

ubuntu is some kind of humanism - African
humanism.

In this paper we describe our approach to teaching
systems development within an undergraduate
course in Informations Systems at the University
of Pretoria. This approach attempts to incorporate
the concepts of ubuntu. Being a study in
progress, we are not yet in a position to report
conclusively about the success or not of the
approach. The purpose of this paper, therefore, is

0-8186-5870-3/95 $04.00 © 1995 IEEE
142

to share our ideas with other educators and to

invite comments to enable us to sharpen our

thoughts.

Information systems development, ie, the analysis,
design, construction and implementation of

information systems, can indeed be regarded as
being at the core of the field. The approach we
follow in teaching this very important part of our
discipline should reflect the philosophy and value
system which we uphold as Information Systems

people. Yet, while many information systems

people pay lip-service to the fundamental social

nature of information systems, it is often forgotten
that information systems are developed by people

for people, and should be studied as such. The

majority of undergraduate courses in information

systems development (lSD), and indeed also the
typical curriculum recommendations in this regard

(Nunamaker et a/., 1982) implicitly assume a

teleological approach to lSD (lntrona, 1993).
Introna (op. cit.) remarks: "The problem facing us

today is that most (if not all) systems development

projects in the commercial world are still executed

or managed with teleological "engineering" based
methodologies...... there is growing emphasis on
techno-rational methodologies such as information
engineering and CASE the problem of systems
development today is tackled with more
technological and teleological rigor than ever".

In order to describe our approach to combine the
teaching of certain technical skills (such as, eg,
the use of a CASE tool) with a sound

philosophical foundation, we have to provide a bit

of historic background to developments within our

department.

Some five years ago, we were still teaching a
"traditional" systems development course, in

which everything started with programming and

built up to systems analysis and design techniques.

In the process two things became clear to us.
First, that students, when they start learning about

information systems through the medium of
programming do not easily change that mind set,

and remain detail thinkers, who cannot wait to

start programming on a problem they have not yet

analysed or thought through. Second, even though
this approach remains their comfort zone, they

find it extremely difficult to solve the problems

inherent in program design. Exactly as at school,

where it is relatively easy ex post facto to

understand the solution of a mathematical problem

when presented by a teacher, they can follow a

successful program design, but are unsuccessful in

designing it themselves. In other words, their

problem-solving abilities were lacking in the

extreme.

The Department of Informatics at the University
of Pretoria has addressed the above two problems

as follows: first, our introductory course in lSD

develops the problem-solving skills of students

and second, we introduce them to systems analysis

and design before we teach them any

programming. One of the authors (Pretorius,

1994) has done extensive research into the

development of problem-solving skills in first year
students in information systems. This forms the

basis of the present study, but will not be further

discussed here. In this paper we report on our

current study of introducing not only the tools of
ISD, starting in the first academic year, but also of

establishing a sound philosophical basis for lSD

within the mind set of students, without explicitly

addressing it as something formidable.

The material discussed in this paper is not

intended to present a new approach to ISD, but
merely to document our (current) experience with

a particular (South) African version of an
approach that might be labeled quite differently in

a different society.

As pointed out by Hirschheim and Klein (1994),

"most information systems development methodo­
logies have traditionally concentrated on

143

producing functionally correct and efficient user

requirements, which would then form the basis of

system specifications. These methodologies draw
upon functionalist assumptions for their theoretical
base ... " Alternative philosophical bases, however,

provide the foundation for various lSD

methodologies, such as ETHICS (Mumford

(1983)), participative systems design (Mumford

(1981), Wood-Harper et al's (1985) multiview

methodology, and many others. Hirschheim and

Klein (1989) remarked that " .. all systems

developers approach the development task with a
number of explicit and implicit assumptions about

the nature of human organizations, the nature of

the design task, and what is expected of them.
These assumptions play a central role in guiding

the information systems development process".

They then discussed four paradigms of

information systems development, based on the

four paradigms identified by Burrell and Morgan

(1979) in the context of organizational and social
research, and showed how these paradigms are

reflected in lSD. As recently pointed out by

Hirschheim, Klein and Lyytinen (1994), a

Kuhnian paradigm (1970) "refers to the core set of

consistent assumptions that are held by a specific

research community and which guide its research
agenda ... ". In contrast, a framework (op. cit.)
"merely provides categories for interpreting and

relating the research literature metaphorically,

a framework is like a road map and those

committed to a paradigm set out on an expedition

with a uniform and prespecified tool-kit and

accurate maps to explore the terrain ... "

These distinctions obviously are important from a

research point of view. Our interest, however, is

in how we teach the philosophical foundations and
provide the student with a "tool-kit" (paradigm)

and a road map (framework) without totally

confusing the (under)graduate student in the

process. Thus, we cannot confront the student

with the full plethora of methodologies,

frameworks, paradigms and send them off into the

world to develop sound systems. Rather, we
introduce the ubuntu concept as a natural

extension of the world around them and thus as
the most obvious way to approach lSD. In
passing, we have to remark that the relationship

between ubuntu, emancipation and neohumanism
needs to be explored, but will not be undertaken
here. Hirschheim and Klein (1994) remark:
"Emancipation is typically thought to embrace two

dimensions: psychological and organizational.

The former calls for the full creative and

productive potential of individuals; the latter refers

to the establishment of social conditions, which

encourage effectiveness through organizational

democracy ... In principle, emancipatory thinking

entered lSD through the participatory design

movement

According to the same authors (op. cit.),

"neohumanism can suggest how to see old issues

in a new light and tackle many unresolved

problems of lSD in a novel way. Take, for

example, the issue of participation. Functionalism

recognizes the need for user participation in the

analysis, design and implementation of an

information system. Indeed, user involvement is

considered paramount to the success of a systems

development exercise. Participation is viewed as

a necessary but not sufficient condition for

success. Functionalism sees it primarily as a

means to an end: to get better information on

requirements, to build better system specifications,

to overcome resistance, to validate design options,

etc. All of these are valid concerns and are also

embraced by neohumanism. In addition, however,

neohumanism insists that participation is even

more important for social sense-making to create

shared understandings and to meet the ethical

imperatives of work arrangements in a democratic

society."

In a sense still to be made more precise in our

further work, we believe our ubuntu approach to

prepare the student, in the teaching environment,

where interaction with or participation by users is

obviously to a large extent excluded, for the

eventual work environment where ISD can be

practised using the appropriate "tool-kits"

(paradigms) and appropriate "road maps"

(frameworks).

In the following sections different aspects of our

ubuntu approach to lSD will be discussed. We

have to emphasise that there are various aspects of

the approach which we do not, as yet, really

understand. Thus our report should also be seen

as a travelogue.

2. Ubuntu systems
course

development

In our systems development course, apart from

144

teaching students the normal systems analysis and

design techniques, the following concepts are

focused on:

General systems thinking

Creativity

Brain dominance.

Each one of these concepts will be discussed in

the following paragraphs, followed by other

aspects related to the implementation of the

course. Where appropriate, we shall point out

how the ubuntu philosophy contributes to or

determines the realization of a particular concept.

2.1 General systems thinking

Students are introduced to the concepts of general

systems theory, such as the definition of "a

system", elements of a system, the purpose of

systems, boundary and environment of a system,

state of a system, behaviour of a system and

change in the system state, control of systems,

and, finally, "hard" versus "soft" systems. A

Creative Learning Model (CLM) (Pretorius, 1994)
is used to enable students to discover and

internalize these concepts, and Checkland's

(Checkland et a/, 1990) Soft Systems

Methodology (SSM) balances the traditional

"hard" systems techniques. Students first use

SSM during systems analysis, and only later apply

the traditional techniques.

General systems thinking helps students to realize

that any given system is part of a supra system

and thus forms part of a whole. Through the

process implied by the CLM students discover

interrelationships between different systems. The

holistic viewpoint which is thus developed helps

students to understand the functioning of a system

within an organization and the effect different

changes might have on it.

Through active practising of this approach in class

exercises, students develop the general systems

approach to become a natural way of looking at

things and of incorporating the role people play in

the environment and the world of work.

Our teaching of concepts from General Systems
Theory to students in their first academic year

implements our approach to acquaint them first

with systems thinking and concepts, and only later

with programming. Also, the importance of

ensuring the success of the whole and not (only)
of the parts is forcefully brought home. This is

indeed what ubuntu is all about - the importance

of group values.

2.2 Creativity

Davis (1994, p.16) recently stated ".... initially
(during systems analysis), as work begins, it is
very much an art because the ability to recognize

problems demands creativity."

Skills for creative problem solving form an
important part of the undergraduate course in ISO.

We believe that many of the problems confronting

the systems developer during each of the phases of
ISO will be unstructured, necessitating an

approach which will discover new and innovative

ideas and integrate these into workable solutions.

Some people have innate creative abilities. Lesser

mortals are limited by the pattern forming system

of the brain (De Bono, 1969). This system,

although it has its advantages, needs to be
overridden from time to time. Problem solvers
need to escape from limiting perspectives created

by this patterning system. After escaping, a

problem solver needs to generate ideas for solving
the problem. Creative techniques can be

employed for both the escape and the generation

of ideas. These are well-known De Bono (op.

cit.) techniques, such as PMI, CAF, AGO, FIP,

APC, OPV, QAF, the use of the construct "PO"

and cause and effect diagrams.

Students learn to understand that viewing a
problem from different angles different

perspectives for different people - might enable
them to solve the problem easier and in a more

effective manner. They learn that the real

problem in problem solving is often not the
solving of the problem, but understanding what to
solve.

2.3 Brain dominance

Differences in people's approach to problem

solving can partly be explained by the split brain
theory of Nedd Herman as described in Wonder
et al (1984). Torrance (in Neethling (1992))
subdivides this split brain model and distinguishes
four logic parts of the brain. Each of these four

145

parts of the brain are in certain unique ways

involved in the different actions people take, for
example, in the generation of different options

durin� the solving of a problem.

Each person has the capability to use all four parts
of his or her brain but has, because of different

factors, adapted to utilising different parts of the

brain in varying strengths. An example of this is

that certain people process information by
focusing on the detailed facts and analysing the

situation through that perspective while others

prefer to focus on the big picture and to ignore the
detail. The combination of these different styles
are labelled a brain dominance profile (refer to

Figure 1) where the four logical parts of the brain,

labeled the blue, green, yellow and red parts of the
brain are shown with their typical associated

characteristics.

During real world problem solving utilisation of

all four parts of the brain is essential. Davis

(1994, p 16 and 39) states that successful systems

builders must have the ability to assume certain
personality traits, for example:

Being a creative architect and innovator

Being a capable builder

Being a successful communicator.

This list can be extended with abilities that are

necessary for system building:

Listening

Collecting

Organising and structuring
Leading and decision making.

Each of these personality traits can be related to a

brain dominance type, for example:

The creative problem solver - a yellow
brain dominance profile
The listener - a red brain dominance
profile

The collector - a green brain dominance

profile
The organiser and structurer - a green
brain dominance profile

The leader and decision maker - a blue
brain dominance profile.

Thus, while the ability for whole brain thinking,

ie, assuming the necessary personality traits as

required, is a powerful ability which successful

system developers should acquire, developers
could also overcome their inabilities in this regard
by working together, especially when the group

members have complementary brain dominance

profiles. This is discussed in the next paragraph,

and it is here that the concept of ubuntu plays an

important role.

2.4 Whole brain teams

Teamwork forms an integral part of systems

development projects. In the teaching of lSD,

teamwork is therefore seen as an important
component of the curriculum, at least as far as the
practical work is concerned.

Katzenbach eta/. (1993, p. l l2) define teamwork

as follows:

"A team is a small number of people with

complementary skills who are committed to a
common purpose, set of performance goals, and
approach for which they hold themselves mutually

responsible."

Each of the individuals partaking in the group's
activities would typically have a different brain
dominance profile (ie, they would each
involuntary use different logical parts of their
brains in the solution of problems, etc). In

teamwork these differences must be utilised

synergistically.

This brings us to the concept of whole brain
thinking and whole brain teams. "Whole brain

thinking" is the capability of a person to utilise all
four sections of his or her brain in a given

situation. In a similar manner a group can have a
whole brain orientation if all four sections of the

brain is utilised within the different brain
dominance profiles of the group members. This
should make the group better problem solvers and

should help individuals to develop their own

problem solving ability.

2.5 Team member selection

The selection of individuals to form a team can, in
light of what was said above about "whole brain
teams" have important consequences for the result

of the team effort (Pretorius et al., 1994). A team

146

might be described as balanced or unbalanced
based on the brain dominance profile of the group.

A balanced group should have a whole brain

profile.

Pretorius et al (op. cit.) identify the following
types of brain dominant groups:

Yellow brain dominant groups - These

groups have innovative ideas but their

ideas are not always practical, they lack

people skills and especially if there are

no red brain dominant person in the
group, conflict handling in these groups

are ineffective. Systems that are
developed by such a group have an

innovative approach but are seldom
complete and lack documentation and
structure.
Blue brain dominant groups - These

groups rehash present ideas and have no
or very little innovative ideas. Their

conflict handling is also not very

effective. These groups would often use
existing unsuccessful systems as their
starting point for new systems

development.

Green brain dominant groups - The
same as for the blue brain dominant

group.

Red brain dominant groups -Logically,

these groups would focus intensely on the

role of people in the system, and would

involve the user as an active participant.

In practice, however, red brain dominant

persons prefer to associate themselves

with other groups, rather than forming a

group on their own.

Balanced groups - These groups have

innovative ideas that are workable
solutions, displaying effective conflict

handling as well as effective people
skills. Systems that are developed by this

group are complete, function well in trial
tests, are user friendly and well
documented.

By working in (balanced) teams, students learn
basic ubuntu skills such as conflict handling,

communication, open mindedness and respect for
other people. Naturally, all of this does not
simply "happen", and the team/groupwork must be
properly structured to ensure the successful
manifestation of the above ubuntu skills. First,

while we do not yet have an instrument to

determine brain dominance, and teams are in a

first pass simply formed on an alphabetical basis,

we do advise students on the composition of their

team, thereby ensuring as far as possible the

balance of the team. Second, team/groupwork

forms an integral part of our teaching of systems

development and students quickly adapt to taking

this seriously as part of their preparation for the

world of work. They therefore find innovative

ways of working effectively in their groups,

without being given explicit guidelines for

behaviour. They have to discover these

themselves.

2.6 Cultivating the ubuntu approach

All of the above needs to be put into practice in

situations which would, for students, mirror reality
as much as possible. This has always been the

Achilles heel of ISD - that the typical case study

sadly lacks in complexity and reality, due to time

constraints.

One way in which this is overcome is through the

use of an extensive case study which has been

written in the Department of Informatics at the

University of Pretoria for South African

conditions. The case study describes a fictitious

Bank in detail, and different systems development

exercises and problems are stated around the given

background. This has the advantage that the

various situations can be cumulative and that quite

complex situations can be analysed. The case

study is used to sensitise students to real world

problems in systems development. Role play, in

which lecturers play several of the characters

described in the case study, is used to enhance the

experience of students with real world problems.

They conduct interviews with these "users" and

have to cope with typical real world problems

experienced during such interviews.

3. Conclusion

We have described our approach of teaching ISD

in an undergraduate curriculum for Information

Systems. Apart from teaching students the

"normal" technical skills, we attempt to lay a

philosophical foundation which would contribute
towards the development of systems which would,

apart from solving a pa1ticular business problem,
benefit the total system of people, organization

147

and society into which it is placed. We have

called this process the ubuntu process of systems

development, and are not yet in a position to put

this into the perspective of various other systems

development methodologies. It might be that this

should also not be done, and that the success of

the approach, which we would only be able to

establish following a longitudinal case study of

our students' success in their work environments,

would be sufficient to convince us of the viability

of the ubuntu approach.

References

Burrell, G. and Morgan, G. 1979. Sociological

Paradigms and Organizational Analysis.
Heinemann, London.

Checkland, P. and Scholes, J. 1990. Soft Systems

Methodology in Action, Chichester: John Wiley &

Sons.

Davis, W.S, 1994. Business Systems Analysis and

Design. Belmont, California: Wadsworth

Publishing Company.

De Bono, E. 1969. The Mechanism of Mind.
Londen: Penguin Books.

Hirschheim, R.A. & Klein, H.K. 1989. Four

Paradigms of Information Systems Development.

Comm of the ACM, Vol. 32, no. 10, pp. 1199 -
1216.

Hirschheim, R.A. & Klein, H.K. 1994. Realizing

Emancipatory Principles in Information Systms

Development: The Case for ETHICS. MIS

Quarterly, March, pp. 83 - 105.

Hirschheim, R.A., Klein, H.K. and Lyytinen,

Kalle. 1994. Exploring the Intellectual Structures

of Iriformation Systems Development: A Social
Action Theoretic Analysis. Working Document.

Introna, L.D. 1993. Notes on Ateleological

Information Systems Development, Working paper,
Department of Informatics, University of Pretoria.

Katzenbach, J.R., Smith, D.K., 1993. The

discipline of teams. Harvard Business Review,
March - April pp. Il l - 120.

Kuhn, T. 1970. The Structure of Scientific

Revolutions, 2 nd ed. University of Chicago

Press, Chicago.

Mumford, E. 1981. Partcipative Systems Design:

Strcture and Method. Svstems, Objectives,

Solutions. Vol 1, no. 1, pp. 5- 19.

Mumford, E. 1983. Designing Human Systems:

The ETHICS Method, Manchester Business

School, Manchester, UK.

Neethling, K. 1992. Creativity lets you do

wonders. Pretoria: Benedict books.

Nunamaker, J.F., Couger, J.D., Davis, G.B., 1982.

Information systems curriculum recommendations

for the 80s: Undergraduate and graduate programs.

Comm of the ACM, Vol. 25, no. 11, pp. 781 - 805.

Pretorius, J.H.O., 1994. Developing the problem

solving ability of first year students in information

systems. Unpublished Masters dissertation in the

Department of Informatics. University of Pretoria,

South Africa.

Pretorius, J.H.O., Scheepers, H. 1994. The

relationship between brain dominance and

successful information systems projects. 24th

South African Computer Lecturers Conference.

Wonder, J., Donovan, P. 1984. Whole Brain

Thinking: Working Both Sides of the Brain to

Achieve Peak Job Performance. New York:

William Morrow and Company, Inc.

Wood-Harper, A.T., Antill, L. and Avison, D.

1985. Information Systems Definition - A

Multiview Methodology. Basil Blackwell, London.

148

Fig 1 The four logical parts of the brain
Blue brain characteristics
(Analyzer):

• Analytical
• Logical
• Mathematical
• Technical
• Discerning
• Factual

Green brain characteristics
(Implementer):

• Procedural
• Precise
• Organized
• Reliable
• Practical
• Thorough

149

Yellow brain characteristics
(Innovator):

• Synthesizing
• lmaginatitive
• Holistic
• lnventitive
• Intuitive
• Artistic

Red brain characteristics
(Collaborator):

• Emotional
• Understanding
• Harmonizing
• Expressive
• Responsive
• Amicable

