
TLP 4 (4): 429–494, 2004. C© 2004 Cambridge University Press

DOI: 10.1017/S1471068404002029 Printed in the United Kingdom

429

Logic-based specification languages for
intelligent software agents�

VIVIANA MASCARDI, MAURIZIO MARTELLI
DISI, Università di Genova, Via Dodecaneso 35, 16146, Genova, Italy

(e-mail: {mascardi,martelli}@disi.unige.it)

LEON STERLING
Department of Computer Science and Software Engineering, The University of Melbourne,

Victoria 3010, Australia
(e-mail: leon@cs.mu.oz.au)

Abstract

The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, lan-
guages, methodologies and toolkits for modeling, verifying, validating and prototyping complex
applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies
how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based
executable agent specification languages that have been chosen for their potential to be integrated
in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six
languages are ConGolog, AGENT-0, the IMPACT agent programming language, DyLOG, Concur-
rent METATEM and Ehhf . For each executable language, the logic foundations are described and
an example of use is shown. A comparison of the six languages and a survey of similar approaches
complete the paper, together with considerations of the advantages of using logic-based languages in
MAS modeling and prototyping.

KEYWORDS: agent-oriented software engineering, logic-based language, multiagent system

1 Introduction

Today’s software applications are typically extremely complex. They may involve het-
erogeneous components which need to represent their knowledge about the world, about
themselves, and about the other entities that populate the world, in order to reason about
the world, to plan future actions which should be taken to reach some final goal and to take
rapid decisions when the situation demands a quick reaction. Since knowledge and compet-
encies are usually distributed, the components need to interact to exchange information or
to delegate tasks. This interaction may follow sophisticated communication protocols. Due
to component and system complexity, applications of this kind are difficult to be correctly
and efficiently engineered. Indeed a very active research area has been working for almost

� Partially supported by the “Verifica di Sistemi Reattivi Basati su Vincoli (COVER)” project of the Programma
di Ricerca Cofinanziato MIUR, Bando 2002, and by the “Discovery” project of the Australian Research Council
number DP0209027.

430 V. Mascardi et al.

twenty years finding abstractions, languages, methodologies and toolkits for modeling,
verifying, validating and finally implementing applications of this kind.

The underlying metaphor is that the components of complex real-world applications
are intelligent agents. The agents interact, exchanging information and collaborating for
reaching a common target, or compete to control some shared resource and to maximize
their personal profit, building, in both cases, a society of agents, or multiagent system
(MAS).

An intelligent agent, according to a classical definition proposed by Jennings, Sycara
and Wooldridge (Jennings et al., 1998) is

“a computer system, situated in some environment, that is capable of flexible autonomous actions
in order to meet its design objectives.
Situatedness means that the agent receives sensory input from its environment and that it can perform
actions which change the environment in some way.

By autonomy we mean that the system should be able to act without the direct intervention of
humans (or other agents), and that it should have control over its own actions and internal state. [. . .]
By flexible, we mean that the system is:

• responsive: agents should perceive their environment and respond in a timely fashion to
changes that occur in it;

• pro-active: agents should be able to exhibit opportunistic, goal-directed behavior and take the
initiative when appropriate;

• social: agents should be able to interact, when appropriate, with other artificial agents and
humans.”

Research on Agent-Oriented Software Engineering (AOSE) (Petrie, 2000; Ciancarini and
Wooldridge, 2000) aims at providing the means for engineering applications conceptu-
alized as MASs. As pointed out in Ciancarini and Wooldridge (2000), the use of formal
methods is one of the most active areas in this field, where formal methods play three roles:

• in the specification of systems;
• for directly programming systems; and
• in the verification of systems.

We think that logic-based formal methods can be very effective for fitting all three roles.
In fact, the current predominant approach to specifying agents has involved treating the
agents as intentional systems that may be understood by attributing to them mental states
such as beliefs, desires and intentions (Dennett, 1987; Wooldridge and Jennings, 1995;
Wooldridge, 2000). A number of approaches for formally specifying agents as intention
systems have been developed, capable of representing beliefs, goals and actions of agents
and the ongoing interaction among them. A large number of logics appear successful at
formalizing these concepts in a very intuitive and natural way, including for example modal
logic, temporal logic and deontic logic.

Further, there are various logic-based languages for which a working interpreter or an
automatic mechanism for animating specifications exists. When these languages are used
to specify agents, a working prototype of the given specification is obtained for free and
can be used for early testing and debugging of specification. Most of the executable logic-
based languages suffer from significant limitations (very low efficiency, poor scalability
and modularity, no support for physical distribution of the computation nor for integration
of external packages and languages) which make them only suitable for building simple

Logic-based specification languages for intelligent software agents 431

prototypes. Nevertheless, even if these languages will never be used to build the final
application, their execution can give useful and very quick feedback to the MAS developer,
who can take advantage of this early testing and debugging for iteratively refining the MAS
specification.

Additionally, verification is the process of showing that an implemented system is cor-
rect with respect to its original specification. If the language in which the system is im-
plemented is axiomatizable, deductive (axiomatic) verification is possible. Otherwise, the
model checking semantic approach can be followed: given a formula ϕ of a logic L and a
model M for L, determine whether or not M |=L ϕ. There are logic-based languages
which have been axiomatized, allowing an axiomatic verification, and other languages
which can be used for model checking.

Logic-based formalisms are suitable for the stages of specification, direct execution and
verification of MAS prototypes. We could ask if some environment and methodology exist
that provide a set of logic-based languages for iteratively facing these stages inside a com-
mon framework, until a working prototype that behaves as expected is obtained. A prelim-
inary answer can come from ARPEGGIO. ARPEGGIO (Agent based Rapid Prototyping
Environment Good for Global Information Organization (Dart et al., 1999; Zini, 2000;
Mascardi, 2002)) is an open framework where specification, execution and verification of
MAS prototypes can be carried on choosing the most suitable language or languages from
a set of supported ones.

The rationale behind ARPEGGIO is that MAS development requires engineering
support for a diverse range of software quality attributes. It is not feasible to create one
monolithic AOSE approach to support all quality attributes. Instead, we expect that
different approaches will prove suitable to model, verify, or implement different quality at-
tributes. By providing the MAS developer with a large set of languages and allowing the se-
lection of the right language to model, verify or implement each quality attribute, ARPEG-
GIO goes towards a modular approach to AOSE (Juan et al., 2003b; Juan et al., 2003a).
ARPEGGIO is conceived as the framework providing the building blocks for the devel-
opment of an hybrid, customizable AOSE methodology. It is not conceived as an hybrid
system.

ARPEGGIO draws from three international logic programming research groups: the
Logic Programming Group at the Computer Science Department of the University of
Maryland, USA; the Logic Programming and Software Engineering Group at the Computer
Science & Software Engineering Department of the University of Melbourne, Australia;
and the Logic Programming Group at the Computer Science Department of the University
of Genova, Italy. An instance of the ARPEGGIO framework, CaseLP (Martelli et al.,
1999b; Martelli et al., 1999a; Marini et al., 2000; Zini, 2000; Mascardi, 2002), has been
developed and tested on different real-world applications. CaseLP provides a language
based on linear-logic, Ehhf (Delzanno, 1997; Delzanno and Martelli, 2001), to specify and
verify agent specifications. This language, described in Section 8.1, can also be executed,
allowing the direct programming of the code for the prototypical agents. Besides this high-
level language, CaseLP provides an extension of Prolog for directly developing the MAS
prototype. Although CaseLP demonstrates that the concepts underlying the ARPEGGIO
framework can be put into practice and can give interesting results, the set of languages
it provides is quite limited. Our motivation behind the development of ARPEGGIO is to

432 V. Mascardi et al.

provide a broader set of languages so that the prototype developer can choose the most
suitable ones to model and/or program different features of a MAS.

There are two main purposes of this paper. The first is to analyze a set of logic-based lan-
guages which have proven useful to specify, execute and/or validate agents and MAS pro-
totypes and which have been integrated or could be integrated into the ARPEGGIO frame-
work. The set we have chosen consists of ConGolog (De Giacomo et al., 2000), AGENT-0
(Shoham, 1993), the IMPACT agent language (Eiter et al., 1999), DyLOG (Baldoni et al.,
2000), Concurrent METATEM (Fisher and Barringer, 1991) and Ehhf (Delzanno
and Martelli, 2001). These languages have been chosen because, consistent with the
ARPEGGIO philosophy, a working interpreter exists for them and they provide useful
features for specifying agent systems. Other languages possess these features (see Sec-
tion 10) and could have been chosen for being analyzed in this paper and for a future
integration in ARPEGGIO. However we preferred to provide a focused survey of a small
subset of languages rather than a superficial description of a large set. In order to reach a
real understanding of the main features of the languages described in this paper we have
developed a common running example in all of them.

The second purpose of this paper is to describe the different logics and calculi the
executable languages we take into consideration are based on, in order to provide a com-
prehensive survey on formalisms suitable to model intelligent agents. Some executable
languages are based on more than one logic; for example Concurrent METATEM is based
on modal and temporal logic, and AGENT-0 is based on modal and deontic logic. The
classification we give of agent languages takes into account the predominant logic upon
which the language is based.

The structure of the paper is as follows:

• Section 2 describes the running example we will use throughout this paper to prac-
tically exemplify the features of the languages we will analyze;

• Section 3 introduces the situation calculus and the ConGolog agent programming
language based on it;

• Section 4 discusses modal logic and the AGENT-0 language;

• in Section 5 the main features of deontic logic are shown and the IMPACT program-
ming language is analyzed as an example of an agent language including deontic
operators;

• Section 6 discusses dynamic logic and the DyLOG agent language based on it;

• Section 7 describes temporal logic and the Concurrent METATEM agent program-
ming language;

• Section 8 introduces linear logic and analyses the Ehhf language included in the
CaseLP instance of the ARPEGGIO framework;

• Section 9 compares the agent programming languages introduced so far based on a
set of relevant AOSE features they can support;

• Section 10 discusses related work;

• finally, Section 11 concludes the paper.

Logic-based specification languages for intelligent software agents 433

buyer seller

contractProposal

refuse

accept

contractProposal

refuse

accept

contractProposal

acknowledge

acknowledge

Fig. 1. The contract proposal protocol.

2 Running example

To show how to define an agent in the various agent languages we discuss in this paper,
we use a simple example of a seller agent in a distributed marketplace which follows the
communication protocol depicted in Figure 1. The notation used in this figure is based on
an agent-oriented extension of UML (Odell et al., 2000a, Odell et al., 2000b); the diamond
with the × inside represents a “xor” connector and the protocol can be repeated more than
once (note the bottom arrow from the buyer to the seller labeled with a “contractProposal”
message, which loops around and up to point higher up to the seller time line).

The seller agent may receive a contractProposal message from a buyer agent. Ac-
cording to the amount of merchandise required and the price proposed by the buyer, the
seller may accept the proposal, refuse it or try to negotiate a new price by sending a
contractProposal message back to the buyer. The buyer agent can do the same (accept,
refuse or negotiate) when it receives a contractProposal message back from the seller.

The rules guiding the behavior of the seller agent are the following:

if the received message is contractProposal(merchandise, amount, proposed-
price) then

— if there is enough merchandise in the warehouse and the price is greater or equal
than a max value, the seller accepts the proposal by sending an accept message
to the buyer and concurrently ships the required merchandise to the buyer (if it is
not possible to define concurrent actions, answering and shipping merchandise
will be executed sequentially);

— if there is not enough merchandise in the warehouse or the price is lower or
equal than a min value, the seller agent refuses the proposal by sending a refuse
message to the buyer;

— if there is enough merchandise in the warehouse and the price is between min
and max, the seller sends a contractProposal to the buyer with a proposed

434 V. Mascardi et al.

price evaluated as the mean of the price proposed by the buyer and max (we will
sometimes omit the definition of this function, which is not of central interest in
our example).

In our example, the merchandise to be exchanged are oranges, with minimum and max-
imum price 1 and 2 euro, respectively. The initial amount of oranges that the seller pos-
sesses is 1000.

Our example involves features which fall in the intersection of the six languages and it is
therefore quite simple. An alternative choice to providing a simple unifying example would
consist of providing six sophisticated examples highlighting the distinguishing features of
each of the six languages. However, while sophisticated ad-hoc examples can be found
in the papers discussing the six languages, a unifying (though simple) example had not
been proposed yet. Consistent with the introductory nature of our paper and with the
desire to contribute in an original way to the understanding of the six languages, we
opted for the simple unifying example, which is both introductory and original. The about
seventy references included in the following six sections should help the reader in finding
all the documents she/he needs for deepening her/his knowledge about the six languages
discussed in this paper.

3 Situation calculus

The situation calculus (McCarthy, 1963) is well-known in AI research. More recently
there have been attempts to axiomatize it. The following description is based upon Pirri
and Reiter (1999).Lsit−calc is a second order language with equality. It has three disjoint
sorts: action for actions, situation for situations and a catch-all sort object for everything
else depending on the domain of application. Apart from the standard alphabet of logical
symbols (∧,¬ and ∃, used with their usual meaning),Lsit−calc has the following alphabet:

• Countably infinitely many individual variable symbols of each sort and countably
infinitely many predicate variables of all arities.
• Two function symbols of sort situation:

1. A constant symbol S0, denoting the initial situation.
2. A binary function symbol do : action× situation→ situation.
do(a, s) denotes the successor situation resulting from performing action a in
situation s.

• A binary predicate symbol �: situation× situation, defining an ordering relation on
situations. The intended interpretation of situations is as action histories, in which
case s � s′ means that s′ can be reached by s by a finite application of actions.

• A binary predicate symbol Poss : action× situation. The intended interpretation of
Poss(a, s) is that it is possible to perform the action a in the situation s.

• Countably infinitely many predicate symbols used to denote situation independent
relations and countably infinitely many function symbols used to denote situation
independent functions.
• A finite or countably infinite number of function symbols called action functions and

used to denote actions.

Logic-based specification languages for intelligent software agents 435

• A finite or countably infinite number of relational fluents (predicate symbols used to
denote situation dependent relations).
• A finite or countably infinite number of function symbols called functional fluents

and used to denote situation dependent functions.

In the axiomatization proposed in Levesque et al. (1998), axioms are divided into do-
main axioms and domain independent foundational axioms for situations. Besides axioms,
Levesque et al. (1998) also introduce basic theories of actions and a metatheory for the
situation calculus which allows to determine when a basic action theory is satisfiable and
when it entails a particular kind of sentence, called regressable sentences. Here we only
discuss domain independent foundational axioms for situations. Since the scope of this
paper is to provide introductory material which can be understood with little effort, we
will address neither domain axioms nor the metatheory for the situation calculus, both of
which require a strong technical background.

3.1 Foundational axioms for situations

There are four foundational axioms for the situation calculus, based on Pirri and Reiter
(1999), but simpler that the ones presented there. They capture the intuition that situations
are finite sequences of actions where the second order induction principle holds, and that
there is a “subsequence” relation among them. In the following axioms, P is a predicate
symbol.

do(a1, s1) = do(a2, s2)⇒ a1 = a2 ∧ s1 = s2 (1)

∀P · P (S0) ∧ ∀a, s · [P (s)⇒ P (do(a, s))]⇒ ∀s · P (s) (2)

Axiom 1 is a unique name axiom for situations: two situations are the same iff they are the
same sequence of actions. Axiom 2 is second order induction on situations. The third and
fourth axioms are:

¬ (s � S0) (3)

(s � do(a, s′)) ≡ (s 	 s′) (4)

Here s 	 s′ is an abbreviation for (s � s′) ∨ (s = s′). The relation � provides an ordering
relation on situations. Intuitively, s � s′ means that the situation s′ can be obtained from
the situation s by adding one or more actions to the end of s.

The above four axioms are domain independent. They provide the basic properties of
situations in any domain specific axiomatization of particular fluents and actions.

3.2 ConGolog

ConGolog is a concurrent programming language based on the situation calculus which
includes facilities for prioritizing the concurrent execution, interrupting the execution when
certain conditions become true, and dealing with exogenous actions. As stated by De
Giacomo, Lespérance and Levesque (De Giacomo et al., 2000), the adoption of a language
like ConGolog is a promising alternative to traditional plan synthesis, since it allows high-
level program execution. ConGolog is an extension of the programming language Golog

436 V. Mascardi et al.

(Levesque et al., 1997): in Section 3.2.1 we present Golog and in Section 3.2.2 we deal
with its extension ConGolog.

3.2.1 Golog

Golog is a logic-programming language whose primitive actions are drawn from a back-
ground domain theory.

Golog programs are inductively defined as:

• Given a situation calculus action a with all situation arguments in its parameters
replaced by the special constant now, a is a Golog program (primitive action).

• Given a situation calculus formula ϕ with all situation arguments in its parameters
replaced by the special constant now, ϕ? is a Golog program (wait for a condition).
• Given δ, δ1, δ2, δn Golog programs,

— (δ1; δ2) is a Golog program (sequence);
— (δ1 | δ2) is a Golog program (nondeterministic choice between actions);
— πv · δ is a Golog program (nondeterministic choice of arguments);
— δ∗ is a Golog program (nondeterministic iteration);
— {proc P1(

→
v1)δ1 end; . . . proc Pn(

→
vn)δn end; δ } is a Golog program (procedure:

Pi are procedure names and vi are their parameters).

Program Execution. Given a domain theory D and a program δ the execution task is to

find a sequence
→
a of actions such that:

D |= Do(δ, S0, do(
→
a, S0))

where

Do(δ, s, s′)

means that program δ when executed starting in situation s has s′ as a legal terminating
situation, and

do(
→
a, s) = do([a1, . . . , an], s)

is an abbreviation for

do(an, do(an−1, . . . , do(a1, s))).

Since Golog programs can be nondeterministic, there may be several terminating situations
for the same program and starting situation. Do(δ, s, s′) is formally defined by means of the
following inductive definition:

1. Primitive actions (a[s] denotes the action obtained by substituting the situation vari-
able s for all occurrences of now in functional fluents appearing in a):

Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s)

2. Wait/test actions (ϕ[s] denotes the formula obtained by substituting the situation
variable s for all occurrences of now in functional and predicate fluents appearing
in ϕ):

Do(ϕ?, s, s′)
def
= ϕ[s] ∧ s = s′

Logic-based specification languages for intelligent software agents 437

3. Sequence:

Do(δ1; δ2, s, s
′)
def
= ∃s′′ · Do(δ1, s, s

′′) ∧ Do(δ2, s
′′, s′)

4. Nondeterministic branch:

Do(δ1 | δ2, s, s
′)
def
= Do(δ1, s, s

′) ∨ Do(δ2, s, s
′)

5. Nondeterministic choice of argument (πx · δ(x) is executed by nondeterministically
picking an individual x, and for that x, performing the program δ(x)):

Do(πx · δ(x), s, s′) def= ∃x · Do(δ(x), s, s′)

6. Nondeterministic iteration:

Do(δ∗, s, s′)
def
= ∀P · {∀s1 · P (s1, s1) ∧ ∀s1, s2, s3 · [P (s1, s2) ∧ Do(δ, s2, s3)

⇒ P (s1, s3)]} ⇒ P (s, s′)

P is a binary predicate symbol. Saying “(x, x′) is in the set (defined by P)” is
equivalent to saying “P (x, x′) is true”. Doing action δ zero or more times leads from
the situation s to the situation s′ if and only if (s, s′) is in every set (and therefore, the
smallest set) such that:

(a) (s1, s1) is in the set for all situations s1.
(b) Whenever (s1, s2) is in the set, and doing δ in situation s2 leads to situation s3,

then (s1, s3) is in the set.

The above is the standard second order definition of the set obtained by nondetermin-
istic iteration.

We do not deal with expansion of procedures. The reader can see Levesque et al. (1997)
for the details.

3.2.2 ConGolog

ConGolog is an extended version of Golog that incorporates concurrency, handling:

• concurrent processes with possibly different priorities;
• high-level interrupts and
• arbitrary exogenous actions.

ConGolog programs are defined by the following inductive rules:

• All Golog programs are ConGolog programs.
• Given a situation calculus formula ϕ with all situation arguments in its parameters

replaced by the special constant now, and δ, δ1, δ2 ConGolog programs,

— if ϕ then δ1 else δ2 is a ConGolog program (synchronized conditional);
— while ϕ? do δ is a ConGolog program (synchronized loop);
— (δ1 ‖ δ2) is a ConGolog program (concurrent execution);
— (δ1〉〉δ2) is a ConGolog program (concurrency with different priorities);
— δ‖ is a ConGolog program (concurrent iteration);
— 〈ϕ→ δ〉 is a ConGolog program (interrupt).

438 V. Mascardi et al.

The constructs if ϕ then δ1 else δ2 and while ϕ? do δ are the synchronized versions of
the usual if-then-else and while-loop. They are synchronized in the sense that the test of the
condition ϕ does not involve a transition per se: the evaluation of the condition and the first
action of the branch chosen will be executed as an atomic action. The construct (δ1 ‖ δ2)

denotes the concurrent execution of the actions δ1 and δ2. (δ1〉〉δ2) denotes the concurrent
execution of the actions δ1 and δ2 with δ1 having higher priority than δ2, restricting the
possible interleavings of the two processes: δ2 executes only when δ1 is either done or
blocked. The construct δ‖ is like nondeterministic iteration, but where the instances of δ
are executed concurrently rather than in sequence. Finally, 〈ϕ → δ〉 is an interrupt. It has
two parts: a trigger condition ϕ and a body δ. The idea is that the body δ will execute
some number of times. If ϕ never becomes true, δ will not execute at all. If the interrupt
gets control from higher priority processes when ϕ is true, then δ will execute. Once it has
completed its execution, the interrupt is ready to be triggered again. This means that a high
priority interrupt can take complete control of the execution.

3.2.3 Semantics

The semantics of Golog and ConGolog is in the style of transition semantics. Two predic-
ates are defined which say when a program δ can legally terminate in a certain situation s
(Final(δ, s)) and when a program δ in the situation s can legally execute one step, ending in
situation s′ with program δ′ remaining (Trans(δ, s, δ′, s′)). Final and Trans are characterized
by a set of equivalence axioms, each depending on the structure of the first argument. To
give the flavor of how these axioms look like, we show the ones for empty program nil,
atomic action a, testing ϕ?, nondeterministic branch (δ1 | δ2) and concurrent execution
(δ1 ‖ δ2)

1. The reader can find the complete set of axioms for Final and Trans in De
Giacomo et al. (2000).

Trans(nil, s, δ′, s′) ≡ false
Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

Trans(ϕ?, s, δ′, s′) ≡ ϕ[s] ∧ δ′ = nil ∧ s′ = s

Trans(δ1 | δ2, s, δ
′, s′) ≡ Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′)

Trans(δ1 ‖ δ2, s, δ
′, s′) ≡

∃γ · δ′ = (γ ‖ δ2) ∧ Trans(δ1, s, γ, s
′)∨

∃γ · δ′ = (δ1 ‖ γ) ∧ Trans(δ2, s, γ, s
′)

The meaning of these axioms is that: (nil, s) does not evolve to any configuration; (a, s)

evolves to (nil, do(a[s], s)) provided that a[s] is possible in s; (ϕ?, s) evolves to (nil, s)
provided that ϕ[s] holds; (δ1 | δ2, s) can evolve to (δ′, s′) provided that either (δ1, s) or
(δ2, s) can do so; and finally, (δ1 ‖ δ2, s) can evolve if (δ1, s) can evolve and δ2 remains
unchanged or (δ2, s) can evolve and δ1 remains unchanged.

1 In order to define axioms properly, programs should be encoded as first order terms. We avoid dealing with this
encoding, and describe axioms as if programs were already first order terms.

Logic-based specification languages for intelligent software agents 439

Final(nil, s) ≡ true
Final(a, s) ≡ false
Final(ϕ?, s) ≡ false
Final(δ1 | δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)

Final(δ1 ‖ δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

These axioms say that (nil, s) is a final configuration while neither (a, s) nor (ϕ?, s) are.
(δ1 | δ2, s) is final if either (δ1, s) is or (δ2, s) is, while (δ1 ‖ δ2, s) is final if both (δ1, s) and
(δ2, s) are.

The possible configurations that can be reached by a program δ in situation s are those
obtained by repeatedly following the transition relation denoted by Trans starting from
(δ, s). The reflexive transitive closure of Trans is denoted by Trans*. By means of Final
and Trans* it is possible to give a new definition of Do as

Do(δ, s, s′)
def
= ∃δ′ · Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

3.2.4 Implementation

A simple implementation of ConGolog has been developed in Prolog. The definition of
the interpreter is lifted directly from the definitions of Final, Trans and Do given above.
The interpreter requires that the program’s precondition axioms, successor state axioms
and axioms about the initial situation be expressible as Prolog clauses. In particular, the
usual closed world assumption is made on the initial situation. Section 8 of De Giacomo
et al. (2000) describes the ConGolog interpreter in detail and proves its correctness under
suitable assumptions. The interpreter is included into a more sophisticated toolkit which
provides facilities for debugging ConGolog programs and delivering process modeling
applications by means of a graphical interface. Visit the Cognitive Robotics Group Home
Page (2002) to download the interpreter of both ConGolog and its extensions discussed in
the next section.

3.2.5 Extensions

Some variants of ConGolog have been developed in the last years:

• Legolog (LEGO MINDSTORM in (Con)Golog (Levesque and Pagnucco, 2000))
uses a controller from the Golog family of planners to control a MINDSTORM
robot. Legolog is capable of dealing with primitive actions, exogenous actions and
sensing; the Golog controller is replaced with an alternate planner. Visit the Legolog
Home Page (2000) for details.
• IndiGolog (Incremental Deterministic (Con)Golog (De Giacomo et al., 2002)) is

a high-level programming language where programs are executed incrementally to
allow for interleaved action, planning, sensing, and exogenous events. IndiGolog
provides a practical framework for real robots that must react to the environment and
continuously gather new information from it. To account for planning, IndiGolog
provides a local lookahead mechanism with a new language construct called the
search operator.

440 V. Mascardi et al.

• CASL (Cognitive Agent Specification Language (Shapiro et al., 2002)) is a frame-
work for specifying complex MASs which also provides a verification environment
based on the PVS verification system (Owre et al., 1996).
• A class of knowledge-based Golog programs is extended with sense actions in Reiter

(2001).

Most of the publications on Golog, ConGolog and their extensions can be found at the
Cognitive Robotics Group Home Page (2002).

3.2.6 Example

The program for the seller agent, written in ConGolog, could look as follows. The em-
phasized text is used for constructs of the language; the normal text is used for com-
ments. Lowercase symbols represent constants of the language and uppercase symbols are
variables. Predicate and function symbols are lowercase (thus, the Poss predicate symbol
introduced in the beginning of Section 3 is written poss in the example). These Prolog-
like conventions will be respected in all the examples appearing in the paper, unless stated
otherwise.

• Primitive actions declaration:

ship(Buyer, Merchandise, Required-amount)
The seller agent delivers the Required-amount of Merchandise to the Buyer.
send(Sender, Receiver, Message)
Sender sends Message to Receiver.

• Situation independent functions declaration:

min-price(Merchandise) = Min
The minimum price the seller is willing to take under consideration for Mer-
chandise is Min.
max-price(Merchandise) = Max
The price for Merchandise that the seller accepts without negotiation is equal or
greater than Max.

• Primitive fluents declaration:

receiving(Sender, Receiver, Message, S)
Receiver receives Message from Sender in situation S.
storing(Merchandise, Amount, S)
The seller stores Amount of Merchandise in situation S.

• Initial situation axioms:

min-price(orange) = 1
max-price(orange) = 2
∀ S, R, M. ¬ receiving(S, R, M, s0)
storing(orange, 1000, s0)

• Precondition axioms:

poss(ship(Buyer, Merchandise, Required-amount), S) ≡
storing(Merchandise, Amount, S) ∧ Amount � Required-amount

Logic-based specification languages for intelligent software agents 441

It is possible to ship merchandise iff there is enough merchandise stored in the
warehouse.
poss(send(Sender, Receiver, Message), S) ≡ true
It is always possible to send messages.

• Successor state axioms:

receiving(Sender, Receiver, Message,
do(send(Sender, Receiver, Message), S)) ≡ true

Receiver receives Message from Sender in do(send(Sender, Receiver, Message),
S) reached by executing send(Sender, Receiver, Message) in S. For sake of con-
ciseness we opted for a very simple formalization of agent communication. More
sophisticated formalizations can be found in (Marcu et al., 1995) and (Shapiro
et al., 1998).
storing(Merchandise, Amount, do(A, S)) ≡

(A = ship(Buyer, Merchandise, Required-amount) ∧
storing(Merchandise, Required-amount + Amount, S))
∨ (A �= ship(Buyer, Merchandise, Required-amount) ∧
storing(Merchandise, Amount, S))

The seller has a certain Amount of Merchandise if it had Required-amount +
Amount of Merchandise in the previous situation and it shipped Required-amount
of Merchandise, or if it had Amount of Merchandise in the previous situation and
it did not ship any Merchandise.

We may think that a buyer agent executes a buyer-life-cycle procedure concurrently with
the seller agent procedure seller-life-cycle. buyer-life-cycle defines the actions the buyer
agent takes according to its internal state and the messages it receives. The seller-life-cycle
is defined in the following way.

proc seller-life-cycle

while true do
if receiving(Buyer, seller, contractProposal(Merchandise, Required-amount, Price),
now)
then

if storing(Merchandise, Amount, now)
∧ Amount � Required-amount
∧ Price � max-price(Merchandise)
then ship(Buyer, Merchandise, Required-amount)
‖ send(seller, Buyer, accept(Merchandise, Required-amount, Price))
else

if (storing(Merchandise, Amount, now)
∧ Amount < Required-amount)
∨ Price � min-price(Merchandise)

then send(seller, Buyer, refuse(Merchandise, Required-amount, Price))

else

442 V. Mascardi et al.

if storing(Merchandise, Amount, now)
∧ Amount � Required-amount
∧ min-price(Merchandise) < Price < max-price(Merchandise)

then send(seller, Buyer,
contractProposal(Merchandise, Required-amount,
(Price+max-price(Merchandise))/2))

else nil

else nil

4 Modal logic

This introduction is based on Fisher and Owens (1995). Modal logic is an extension
of classical logic with (generally) a new connective � and its derivable counterpart �,
known as necessity and possibility, respectively. If a formula �p is true, it means that p is
necessarily true, i.e. true in every possible scenario, and �p means that p is possibly true,
i.e. true in at least one possible scenario. It is possible to define � in terms of �:

�p⇔ ¬�¬p

so that p is possible exactly when its negation is not necessarily true. In order to give
meaning to � and �, models for modal logic are usually based on possible worlds, which
are essentially a collection of connected models for classical logic. The possible worlds
are linked by a relation which determines which worlds are accessible from any given
world. It is this accessibility relation which determines the nature of the modal logic. Each
world is given a unique label, taken from a set S , which is usually countably infinite. The
accessibility relation R is a binary relation on S . The pairing of S and R defines a frame
or structure which underpins the model of modal logic. To complete the model we add an
interpretation

h : S × PROP→ {true, false}
of propositional formulae ∈ PROP in each state.
Given s ∈ S and a ∈ PROP,

〈S, R, h〉 |=s a iff h(s, a) = true

This is read as: a is true in world s in the model 〈S, R, h〉 iff h maps a to true in world s. In
general when a formula ϕ is true in a world s in a modelM, it is denoted by

M |=s ϕ

and if it is true in every world in the set S , it is said to be true in the model, and denoted by

M |= ϕ

The boolean connectives are given the usual meaning:

〈S, R, h〉 |=s ϕ ∨ ψ iff 〈S, R, h〉 |=s ϕ or 〈S, R, h〉 |=s ψ

〈S, R, h〉 |=s ϕ⇒ ψ iff 〈S, R, h〉 |=s ϕ implies 〈S, R, h〉 |=s ψ

Logic-based specification languages for intelligent software agents 443

The frame enters the semantic definition only when the modality � is used, as the formula
�ϕ is true in a world s exactly when every world t in S which is accessible from s (i.e.
such that s R t) has ϕ true. More formally,

〈S, R, h〉 |=s �ϕ iff for all t ∈ S, s R t implies 〈S, R, h〉 |=t ϕ

The models 〈S, R, h〉 and the semantics we introduced for connectives are also known as
Kripke models (or structures) and Kripke semantics, respectively (Kripke, 1963b; Kripke,
1963a; Kripke, 1965), from the name of the author who mainly contributed to developing
a satisfactory semantic theory of modal logic.

4.1 AGENT-0

Shoham’s paper Agent-Oriented Programming (Shoham, 1993) is one of the most cited
papers in the agent community, since it proposed a new programming paradigm that

promotes a societal view of computation, in which multiple “agents” interact with one another.

In this section we first introduce the basic concepts of the agent-oriented programming
(AOP) paradigm, and then we present the AGENT-0 programming language. This is often
referred to as the first agent programming language, even though

the simplifications embodied in AGENT-0 are so extreme that it may be tempting to dismiss it as
uninteresting (Shoham, 1993).

We opted for describing AGENT-0 as the language representing the class of languages
based on mental modalities because it was the first one to adopt this approach. Other agent
programming languages including mental modalities are 3APL (Hindriks et al., 1998a)
and AgentSpeak(L) (Rao, 1996) which will be discussed in Section 10.

For Shoham, a complete AOP system will include three primary components:

1. A restricted formal language with clear syntax and semantics for describing mental
states; the mental state will be defined uniquely by several modalities, such as belief
and commitments.

2. An interpreted programming language in which to define and program agents, with
primitive commands such as REQUEST and INFORM.

3. An “agentification process” to treat existing hardware devices or software applica-
tions like agents.

The focus of Shoham’s work is on the second component.
The mental categories upon which the AOP is based are belief and obligation (or com-

mitment). A third category, which is not a mental construct, is capability. Decision (or
choice) is treated as obligation to oneself.

Since time is basic to the mental categories, it is necessary to specify it. A simple point-
based temporal language is used to talk about time; a typical sentence will be

holding(robot, cup)t

meaning that the robot is holding the cup at time t.
As far as actions are concerned, they are not distinguished from facts: the occurrence of

an action is represented by the corresponding fact being true.

444 V. Mascardi et al.

Beliefs are represented by means of the modal operator B. The general form of a belief
statement is

Btaϕ

meaning that agent a believes ϕ at time t. ϕ may be a sentence like holding(robot, cup)t

or a belief statement: nested belief statements like B3
aB

10
b like(a, b)7, meaning that at time 3

agent a believes that at time 10 agent b will believe that at time 7 a liked b, are perfectly
legal in the AOP language.

The fact that at time t an agent a commits himself to agent b about ϕ is represented by
the sentence

OBLta,bϕ

A decision is an obligation to oneself, thus

DECt
af

def
= OBLta,a ϕ

The fact that at time t agent a is capable of ϕ is represented by

CANt
aϕ

Finally, there is an “immediate” version of CAN:

ABLEaϕ
def
= CANtime(ϕ)

a ϕ

where time(Btaψ) = t and time(pred(arg1, . . . , argn)
t) = t.

To allow the modalities introduced so far resemble their common sense counterparts,
some assumptions are made:

• Internal consistency: both the beliefs and the obligations are assumed to be internally
consistent.

• Good faith: agents commit only to what they believe themselves capable of, and only
if they really mean it.

• Introspection: agents are aware of their obligations.

• Persistence of mental state: agents have perfect memory of, and faith in, their beliefs,
and only let go off a belief if they learn a contradictory fact. Obligations too should
persist, and capabilities too tend not to fluctuate wildly.

AGENT-0 is a simple programming language that implements some of the AOP con-
cepts described above. Since AGENT-0 allows to define one program for each agent in-
volved in the system, it is no longer necessary to explicitly say which agent is performing
which action; as an example, the statement Btaϕ becomes (B(t(ϕ))) in the body of code
associated with agent a. In AGENT-0 the programmer specifies only conditions for making
commitments; commitments are actually made and later carried out, automatically at the
appropriate times. Commitments are only to primitive actions, those that the agent can
directly execute. Before defining the syntax of commitments, other basic definitions are
necessary.

Logic-based specification languages for intelligent software agents 445

Facts. Fact statements constitute a tiny fragment of the temporal language described in
the previous paragraph: they are essentially the atomic objective sentences of the form

(t atom)
and

(NOT (t atom))

For example, (0 (stored orange 1000)) is an AGENT-0 fact stating that at time 0 there
where 1000 oranges in the warehouse.

Private actions. The syntax for private actions is

(DO t p-action)

where t is a time point and p-action is a private action name. The effects of private actions
may or may not be visible to other agents.

Communicative actions. There are three types of communicative actions:

(INFORM t a fact)

where t is the time point in which informing takes place, a is the receiver’s name and
fact is a fact statement.

(REQUEST t a action)

where t is a time point, a is the receiver’s name and action is an action statement.

(UNREQUEST t a action)

where t is a time point, a is the receiver’s name and action is an action statement.

Nonaction. A “nonaction” prevents an agent from committing to a particular action.

(REFRAIN action)

Mental conditions. A mental condition is a logical combination of mental patterns which
may assume two forms:

(B fact)

meaning that the agent believes B or

((CMT a) action)

where CMT stands for commitment. The information about time is included in facts and
actions; an example of a mental pattern is (B (3 (stored orange 950))) meaning that the
agent believes that at time 3 there were 950 oranges left in the warehouse.

Capabilities. The syntax of a capability is

(action mentalcondition)

meaning that the agent is able to perform action provided that mentalcondition (see
above) is true. Throughout the example we will use this syntax which is inherited from
the original paper, even if a notation including the CAN keyword (namely, (CAN action
mentalcondition)) would be more appropriate.

Conditional action. The syntax of a conditional action is

(IF mentalcondition action)

meaning that action can be performed only if mentalcondition holds.

Message condition. A message condition is a logical combination of message patterns,
which are triples

(From Type Content)

446 V. Mascardi et al.

where From is the sender’s name, Type is INFORM, REQUEST or UNREQUEST and
Content is a fact statement or an action statement.

Commitment rule. A commitment rule has the form:

(COMMIT messagecondition mentalcondition (agent action)*)

where messagecondition and mentalcondition are respectively message and mental con-
ditions, agent is an agent name, action is an action statement and * denotes repetition
of zero or more times. The intuition behind the commitment rule (COMMIT msgcond
mntcond (ag1 act1) . . . (agn actn)) in the program defining the behavior of agent ag
is that if ag receives a message satisfying msgcond and its mental state verifies the
condition mntcond, it commits to agent ag1 about act1, . . . , and to agent agn about actn.
Note that commitment rules are identified by the COMMIT keyword and commitment
mental pattern (see the definition of mental conditions above) are identified by the CMT
keyword. We adopt this syntax to be consistent with the original paper even if we are
aware that using similar keywords for different syntactic objects may be confusing.

Program. A program is defined by the time unit, called “timegrain”, followed by the
capabilities, the initial beliefs and the commitment rules of an agent. Timegrain ranges
over m (minute), h (hour), d (day) and y (year).

4.1.1 Semantics

No formal semantics for the language is given.

4.1.2 Implementation

A prototype AGENT-0 interpreter has been implemented in Common Lisp and has been
installed on Sun/Unix, DecStation/Ultrix and Macintosh computers. Both the interpreter
and the programming manual are available to the scientific community. A separate imple-
mentation has been developed by Hewlett Packard as part of a joint project to incorporate
AOP in the New WaveTM architecture.

The AGENT-0 engine is characterized by the following two-step cycle:

1. Read the current messages and update beliefs and commitments.
2. Execute the commitments for the current time, possibly resulting in further belief

change.

Actions to which agents can be committed include communicative ones such as informing
and requesting, as well as arbitrary private actions.

4.1.3 Extensions

Two extensions of AGENT-0 have been proposed:

• PLACA (Thomas, 1995) enriches AGENT-0 with a mechanism for flexible man-
agement of plans. It adds two data structures to the agent’s state: a list of intentions
and a list of plans. Intentions are adopted is a similar way that commitments are; the
PLACA command (ADOPT (INTEND x)) means that the agent will add the intention
to do x to its intention list. Plans are created by an external plan generator to meet

Logic-based specification languages for intelligent software agents 447

these intentions. This approach gives the system the ability to dynamically alter plans
that are not succeeding.

• Agent-K (Davies and Edwards, 1994) is an attempt to standardize the message
passing functionality in AGENT-0. It combines the syntax of AGENT-0 (without
support for the planning mechanisms of PLACA) with the format of KQML (Know-
ledge Query and Manipulation Language (Mayfield et al., 1995)) to ensure that
messages written in languages different from AGENT-0 can be handled. Agent-K
introduces two major changes to the structure of AGENT-0: first, it replaces outgo-
ing INFORM, REQUEST, and UNREQUEST message actions with one command,
KQML, that takes as its parameters the message, the time, and the KQML type;
second, it allows many commitments to match a single message. In AGENT-0 the
multiple commitment mechanism was not defined and the interpreter simply selected
the first rule that matched a message.

4.1.4 Example

The AGENT-0 program for the seller agent may be as follows. Variables are preceded by
a “?” mark instead of being uppercase, coherently with the language syntax. Universally
quantified variables, whose scope is the entire formula, are denoted by the prefix “?!”.

timegrain := m

The program is characterized by a time-grain of one minute.

CAPABILITIES := ((DO ?time (ship ?!buyer ?merchandise ?required-amount ?!price))
(AND (B (?time (stored ?merchandise ?stored-amount)))

(� ?stored-amount ?required-amount)))

The agent has the capability of shipping a certain amount of merchandise, provided that,
at the time of shipping, it believes that such amount is stored in the warehouse.

INITIAL BELIEFS := (0 (stored orange 1000))
(?!time (min-price orange 1))
(?!time (max-price orange 2))

The agent has initial beliefs about the minimum price, maximum price and stored amount
of oranges. The initial belief about stored oranges only holds at time 0, since this amount
will change during the agent’s life, while beliefs about minimum and maximum prices hold
whatever the time.

COMMITMENT RULES := (COMMIT
(?buyer REQUEST

(DO now (ship ?buyer ?merchandise ?req-amnt ?price)))

(AND (B (now (stored ?merchandise ?stored-amount)))
(� ?stored-amount ?req-amnt)

448 V. Mascardi et al.

(B (now (max-price ?merchandise ?max)))
(� ?price ?max))

(?buyer (DO now
(ship ?buyer ?merchandise ?req-amnt ?price)))

(myself (INFORM now ?buyer
(accepted ?merchandise ?req-amnt ?price)))

(myself (DO now (update-merchandise ?merchandise ?req-amnt)))
)

The first commitment rule says that if the seller agent receives a request of shipping a
certain amount of merchandise at a certain price, and if it believes that the required amount
is stored in the warehouse and the proposed price is greater than max-price, the seller agent
commits itself to the buyer to ship the merchandise (ship is a private action), and decides
(namely, commits to itself) to inform the buyer that its request has been accepted and to
update the stored amount of merchandise (update-merchandise is a private action).

(COMMIT
(?buyer REQUEST

(DO now (ship ?buyer ?merchandise ?req-amnt ?price)))

(OR (AND (B (now (stored ?merchandise ?stored-amount)))
(< ?stored-amount ?req-amnt))

(AND (B (now (min-price ?merchandise ?min)))
(� ?price ?min)))

(myself (INFORM now ?buyer
(refused ?merchandise ?req-amnt ?price)))

)

The second rule says that if the required amount of merchandise is not present in the
warehouse or the price is too low, the seller agent decides to inform the buyer that its
request has been refused.

(COMMIT
(?buyer REQUEST

(DO now (ship ?buyer ?merchandise ?req-amnt ?price)))

(AND (B (now (stored ?merchandise ?stored-amount)))
(� ?stored-amount ?req-amnt)
(B (now (max-price ?merchandise ?max)))
(< ?price ?max)
(B (now (min-price ?merchandise ?min)))
(> ?price ?min))

(myself (DO now (eval-mean ?max ?price ?mean-price)))

Logic-based specification languages for intelligent software agents 449

(myself (REQUEST now ?buyer
(eval-counter-proposal ?merchandise ?req-amnt ?mean-price)))

)

Finally, the third rule says that if the price can be negotiated and there is enough mer-
chandise in the warehouse, the seller agent evaluates the price to propose to the buyer
agent (eval-mean is a private action) and decides to send a counter-proposal to it. We
are assuming that the buyer agent is able to perform an eval-counter-proposal action to
evaluate the seller agent’s proposal: the seller agent must know the exact action syntax if it
wants that the buyer agent understands and satisfies its request.

5 Deontic logic

This introduction is based on the book Deontic logic in Computer Science (Meyer and
Wieringa, 1993). Deontic logic is the logic to reason about ideal and actual behavior.
From the 1950s, von Wright (von Wright, 1951), Castañeda (Castañeda, 1975), Alchourrón
and Bulygin (Alchourrón and Bulygin, 1971) and others developed deontic logic as a
modal logic with operators for permission, obligation and prohibition. Other operators are
possible, such as formalizations of the system of concepts introduced by Hohfeld in 1913,
containing operators for duty, right, power, liability, etc. (Hohfeld, 1913). Deontic logic has
traditionally been used to analyze the structure of normative law and normative reasoning
in law. Recently it has been realized that deontic logic can be of use outside the area of
legal analysis and legal automation: it has a potential use in any area where we want to
reason about ideal as well as actual behavior of systems. To give an idea of what deontic
logic systems look like, we describe the OS Old System (von Wright, 1951) and the KD
Standard System of Deontic Logic (Åqvist, 1984).

5.1 The OS System

The OS system is based on two deontic operators: O, meaning obligation, and P meaning
permission. Let p be a proposition in the propositional calculus, then Op and Pp are
formulae in the OS deontic logic language.

The system consists of the following axioms and inference rule:

(OS0) All tautologies of Propositional Calculus
(OS1) Op ≡ ¬P¬p
(OS2) Pp ∨ P¬p
(OS3) P(p ∨ q) ≡ Pp ∨ Pq

(OS4) p≡q
Pp≡Pq

Axiom (OS1) expresses that having an obligation to p is equivalent to not being permitted
to not p; (OS2) states that either p is permitted or not p is; (OS3) says that a permission
to p or q is equivalent to p being permitted or q being permitted; (OS4) asserts that if
two assertions are equivalent, then permission for one implies permission for the other,
and vice versa. Later, it was realized that the system OS is very close to a normal modal

450 V. Mascardi et al.

logic, enabling a clear Kripke-style semantics using O as the basic necessity operator, at
the expense of introducing the validity of

(O�) O(p ∨ ¬p)

stating the existence of an empty normative system, which von Wright rejected as an
axiom.

5.2 The KD System

The KD System is a von Wright-type system including the F (forbidden) operator and
consisting of the following axioms and rules.

(KD0) All tautologies of Propositional Calculus
(KD1) O(p⇒ q)⇒ (Op⇒ Oq)

(KD2) Op⇒ Pp

(KD3) Pp ≡ ¬O¬p
(KD4) Fp ≡ ¬Pp

(KD5) Modus ponens: p p⇒q
q

(KD6) O-necessitation: p

Op

Axiom (KD1) is the so called K-axiom; (KD2) is the D-axiom, stating that obligatory
implies permitted; (KD3) states that permission is the dual of obligation and (KD4) says
that forbidden is not permitted. (KD1) holds for any modal necessity operator. Essentially,
it states that obligation is closed under implication. Whether this is desirable may be
debatable, but it is a necessary consequence of the modal approach. Note furthermore that
the O-necessitation rule (KD6), which is also part of the idea of viewing deontic logic as a
normal modal logic, implies the axiom rejected by von Wright

(O�) O(p ∨ ¬p)

So, if we want to view deontic logic as a branch of Kripke-style modal logic, we have to
commit ourselves to (O�).

As with other modal logics, the semantics of the standard system is based on the notion
of a possible world. Given a Kripke model 〈S, R, h〉 and a world s ∈ S we give the
following semantics to the modal operators:

〈S, R, h〉 |=s Op iff for all t ∈ S, s R t implies 〈S, R, h〉 |=t p

〈S, R, h〉 |=s Pp iff exists t ∈ S such that s R t ∧ 〈S, R, h〉 |=t p

〈S, R, h〉 |=s Fp iff for all t ∈ S, s R t implies 〈S, R, h〉 �|=t p

As already stated, the operator O is treated as the basic modal operator �: for Op being
true in world s we have to check whether p holds in all the worlds reachable from s, as
given by the relation R. This reflects the idea that something is obligated if it holds in all
perfect (ideal) worlds (relative to the world where one is). This semantics is exactly the
same semantics of �, as defined in Section 4. The other operators are more or less derived
from O. The operator P is the dual of O: Pp is true in the world s if there is some world
reachable from s where p holds. Finally, something is forbidden in a world s if it does not
hold in any world reachable from s.

Logic-based specification languages for intelligent software agents 451

5.3 The IMPACT agent language

We introduce the IMPACT agent programming language (Arisha et al., 1999; Eiter et al.,
1999; Eiter and Subrahmanian, 1999; Eiter et al., 2000) as a relevant example of use of
deontic logic to specify agents. To describe this language, we provide a set of definitions
on top of which the language is based.

Agent Data Structures. All IMPACT agents are built “on top” of some existing body of
code specified by the data types or data structures,T, that the agent manipulates and by a
set of functions, F, that are callable by external programs. Such functions constitute the
application programmer interface or API of the package on top of which the agent is being
built.

Based onT andF supported by a package (a body of software code) C, we may use
a unified language to query the data structures. If f ∈ F is an n-ary function defined in
that package, and t1, . . . , tn are terms of appropriate types, then C : f(t1, . . . , tn) is a code
call. This code call says “Execute function f as defined in package C on the stated list of
arguments.”

A code call atom is an expression cca of the form in(t, cc) or notin(t, cc), where t is
a term and cc is a code call. in(t, cc) evaluates to true (resp. false) in a given state if t is
(resp. is not) among the values returned by calling cc in that state. The converse holds for
notin(t, cc). For example,

in(〈InOut, Sender, Receiver, Message, Time〉, msgbox : getMessage(Sender))

is true in a given state if the term 〈InOut, Sender, Receiver, Message, Time〉 is among
the values returned by calling the getMessage(Sender) function provided by the msgbox
package in that state.

A code call condition is a conjunction of code call atoms and constraint atoms of the
form t1 op t2 where op is any of =, �=, <, �, >, � and t1, t2 are terms.

Each agent is also assumed to have access to a message box package identified by
msgbox, together with some API function calls to access it (such as the getMessage

function appearing in the code call atom above). Details of the message box in IMPACT
may be found in Eiter et al. (1999).

At any given point in time, the actual set of objects in the data structures (and message
box) managed by the agent constitutes the state of the agent. We shall identify a state O
with the set of ground (namely, containing no variables) code calls which are true in it.

Actions. The agent can execute a set of actions α(X1, . . . , Xn). Such actions may include
reading a message from the message box, responding to a message, executing a request,
updating the agent data structures, etc. Even doing nothing may be an action. Expressions
α(�t), where�t is a list of terms of appropriate types, are action atoms. Every action α has
a precondition Pre(α) (which is a code call condition), a set of effects (given by an add
list Add (α) and a delete list Del (α) of code call atoms) that describe how the agent state
changes when the action is executed, and an execution script or method consisting of a
body of physical code that implements the action.

Notion of Concurrency. The agent has an associated body of code implementing a notion
of concurrency conc(AS,O). Intuitively, it takes a set of actions AS and the current agent
state O as input, and returns a single action (which “combines” the input actions together)

452 V. Mascardi et al.

as output. Various possible notions of concurrency are described in Eiter et al. (1999). For
example, weak concurrent execution is defined as follows. Let AS be the set of actions in
the current status set, evaluated according to the chosen semantics. Weakly concurrently
executing actions in AS means that first all the deletions in the delete list of actions in AS
are done in parallel and then all the insertions in the add list of actions in AS are. Even
if some problems arise with this kind of concurrency, it has the advantage that deciding
whether a set of actions is weakly-concurrent executable is polynomial (Theorem 3.1 of
Eiter et al. (1999)).

Integrity Constraints. Each agent has a finite set IC of integrity constraints that the state
O of the agent must satisfy (written O |= IC), of the form ψ ⇒ χa where ψ is a code
call condition, and χa is a code call atom or constraint atom. Informally, ψ ⇒ χa has the
meaning of the universal statement “If ψ is true, then χa must be true.” For simplicity, we
omit here and in other places safety aspects (see Eiter et al. (1999) for details).

Agent Program. Each agent has a set of rules called the agent program specifying the
principles under which the agent is operating. These rules specify, using deontic modalities,
what the agent may do, must do, may not do, etc. Expressions Oα(�t), Pα(�t), Fα(�t), Do α(�t),
and Wα(�t), where α(�t) is an action atom, are called action status atoms. These action status
atoms are read (respectively) as α(�t) is obligatory, permitted, forbidden, done, and the
obligation to do α(�t) is waived. If A is an action status atom, then A and ¬A are called
action status literals. An agent program P is a finite set of rules of the form:

A ← χ&L1 & · · · &Ln (5)

where A is an action status atom, χ is a code call condition, and L1, . . . , Ln are action status
literals.

5.3.1 Semantics

If an agent’s behavior is defined by a program P, the question that the agent must answer,
over and over again is:

What is the set of all action status atoms of the form Do α(�t) that are true with respect to P, the
current state O and the set IC of underlying integrity constraints on agent states?

This set defines the actions the agent must take; Eiter et al. (1999) provide a series of
successively more refined semantics for action programs that answer this question, that we
discuss in a very succinct form.

Definition 1 (Status Set)
A status set is any set S of ground action status atoms over the values from the type domains
of a software package C.

Definition 2 (Operator AppP,O(S))
Given a status set S , the operator AppP,O(S) computes all action status atoms that may
be inferred to be true by allowing the rules in P to fire exactly once. It is defined in the
following way: let P be an agent program and O be an agent state. Then, AppP,O(S) =

{Head(rθ) | r ∈ P, R(r, θ, S) is true on O}, where Head(A ← χ&L1 & · · · &Ln) = A

and the predicate R(r, θ, S) is true iff (1) rθ : A← χ&L1 & · · · &Ln is a ground rule, (2)

Logic-based specification languages for intelligent software agents 453

O |= χ, (3) if Li = Op(α) then Op(α) ∈ S , and (4) if Li = ¬Op(α) then Op(α) /∈ S , for all
i ∈ {1, . . . , n}.

Definition 3 (A-Cl(S))
A status set S is deontically closed, if for every ground action α, it is the case that (DC1)

Oα ∈ S implies Pα ∈ S . A status set S is action closed, if for every ground action α, it is
the case that (AC1) Oα ∈ S implies Do α ∈ S , and (AC2) Do α ∈ S implies Pα ∈ S . It
is easy to notice that status sets that are action closed are also deontically closed. For any
status set S , we denote by A-Cl(S) the smallest set S ′ ⊇ S such that S ′ is closed under
(AC1) and (AC2), i.e. action closed.

Definition 4 (Feasible Status Set)
Let P be an agent program and let O be an agent state. Then, a status set S is a feasible
status set for P on O, if (S1)-(S4) hold:

(S1) AppP,O(S) ⊆ S ;
(S2) For any ground action α, the following holds: Oα ∈ S implies Wα /∈ S , and Pα ∈ S

implies Fα /∈ S .
(S3) S = A-Cl(S), i.e. S is action closed;
(S4) The state O′ = conc(Do (S),O) which results from O after executing (according to

some execution strategy conc) the actions in {α | Do (α) ∈ S} satisfies the integrity
constraints, i.e. O′ |= IC.

Definition 5 (Groundedness; Rational Status Set)
A status set S is grounded, if no status set S ′ �= S exists such that S ′ ⊆ S and S ′ satisfies
conditions (S1)–(S3) of a feasible status set. A status set S is a rational status set, if S is a
feasible status set and S is grounded.

Definition 6 (Reasonable Status Set)
Let P be an agent program, let O be an agent state, and let S be a status set.

1. If P is positive, i.e. no negated action status atoms occur in it, then S is a reasonable
status set for P on O, iff S is a rational status set for P on O.
2. The reduct ofP w.r.t. S and O, denoted by redS (P,O), is the program which is obtained
from the ground instances of the rules in P over O as follows.

(a) Remove every rule r such that Op(α) ∈ S for some ¬Op(α) in the body of r;
(b) remove all negative literals ¬Op(α) from the remaining rules.

Then S is a reasonable status set forPw.r.t. O, if it is a reasonable status set of the program
redS (P,O) with respect to O.

5.3.2 Implementation

The implementation of the IMPACT agent program consists of two major parts, both
implemented in Java:

1. the IMPACT Agent Development Environment (IADE for short) which is used by
the developer to build and compile agents, and

454 V. Mascardi et al.

2. the run-time part that allows the agent to autonomously update its reasonable status
set and execute actions as its state changes.

The IADE provides a network accessible interface through which an agent developer
can specify the data types, functions, actions, integrity constraints, notion of concurrency
and agent program associated with her/his agent; it also provides support for compilation
and testing.

The runtime execution module runs as a background applet and performs the following
steps: (i) monitoring of the agent’s message box, (ii) execution of the algorithm for up-
dating the reasonable status set and (iii) execution of the actions α such that Doα is in the
updated reasonable status set.

5.3.3 Extensions

Many extensions to the IMPACT framework are discussed in the book (Subrahmanian
et al., 2000) which analyzes:

• meta agent programs to reason about other agents based on the beliefs they hold;
• temporal agent programs to specify temporal aspects of actions and states;
• probabilistic agent programs to deal with uncertainty; and
• secure agent programs to provide agents with security mechanisms.

Agents able to recover from an integrity constraints violation and able to continue to
process some requests while continuing to recover are discussed in Eiter et al. (2002).
The integration of planning algorithms in the IMPACT framework is discussed in Dix
et al. (2003).

5.3.4 Example

The IMPACT example appears to be more complicated than the other ones because we
exemplify how it is possible to specify actions that require an access to external packages.
These actions are defined in terms of their preconditions, add and delete list which in-
volve the code call atoms that allow the real integration of external software. The ability
of accessing real software makes IMPACT specifications more complex than the others
we discuss in this paper but, clearly, also more powerful. We suppose that the IMPACT
program for the seller agent accesses three software packages:

• an oracle database where information on the stored amount of merchandise and its
minimum and maximum price is maintained in a stored merchandise relation;

• a msgbox package that allows agents to exchange messages, as described in Section 3
of Eiter et al. (1999); in particular, it provides the getMessage(Sender) function
which allows all tuples coming from Sender to be read and deleted from the message
box of the receiving agent; and
• a mathematical package math providing mathematical functions.

• Initial state:

The stored merchandise relation, with schema 〈name, amount, min, max〉,
initially contains the tuple 〈orange, 1000, 1, 2〉

Logic-based specification languages for intelligent software agents 455

• Actions:

— ship(Buyer, Merchandise, Req amount)

Pre(ship(Buyer, Merchandise, Req amount)) =
in(Old amount,
oracle:select(stored merchandise.amount, name, =, Merchandise)) ∧

in(Difference, math:subtract(Old amount, Req amount)) ∧
Difference � 0

Add(ship(Buyer, Merchandise, Req amount)) =
in(Difference,
oracle:select(stored merchandise.amount, name, =, Merchandise))

Del(ship(Buyer, Merchandise, Req amount)) =
in(Old amount,
oracle:select(stored merchandise.amount, name, =, Merchandise))

In order for the agent to ship merchandise, there must be enough merchand-
ise available: the precondition of the action is true if the difference Difference
between the stored amount of merchandise, Old amount, and the required amount,
Req amount, is greater than or equal to zero. The effect of shipping is that
the amount of available merchandise is updated by modifying the information
in the stored merchandise table: stored merchandise.amount becomes equal to
Difference, shared among the three equalities defining precondition, add list
and delete list. Add and Del denote the desired modifications to the database
through code calls. There is also a procedure, that we omit, that realizes this
action. In practice this procedure would also issue an order to physically ship the
merchandise.

— sendMessage(Sender, Receiver, Message)
This action accesses the msgbox package putting a tuple in the agent message
box. The msgbox package underlying this action is assumed to ensure that tuples
put in the message box are delivered to the receiver agent. The precondition of
this action is empty (it is always possible to send a message), the add and delete
lists consist of the updates to the receiver’s mailbox.
The notion of concurrency we adopt is weak concurrent execution introduced in
Section 5.3.

• Integrity constraints:

in(Min, oracle:select(stored merchandise.min, name, =, Merchandise)) ∧
in(Max, oracle:select(stored merchandise.max, name, =, Merchandise))⇒

0 < Min < Max
This integrity constraint says that the minimum price allowed for any merchand-
ise must be greater than zero and lower than the maximum price.

in(Amount,
oracle:select(stored merchandise.amount, name, =, Merchandise))⇒
Amount � 0

456 V. Mascardi et al.

This integrity constraint says that any amount of merchandise must be greater or
equal to zero.

in(〈o, Sender, Receiver, accept(Merchandise, Req amount, Price), T 〉,
msgbox:getMessage(Sender)) ∧

in(〈o, Sender, Receiver, refuse(Merchandise, Req amount, Price), T 〉,
msgbox:getMessage(Sender)⇒

false

This integrity constraint says that an agent cannot both accept and refuse an offer
(the o element in the tuple returned by the msgbox:getMessage(Sender) code call
means that the message is an output message from Sender to Receiver; the last
element of the tuple, T, is the time). Similar constraints could be added to enforce
that an agent cannot both accept and negotiate an offer and that it cannot both
refuse and negotiate.

in(Min, oracle:select(stored merchandise.min, name, =, Merchandise)) ∧
in(〈o, Sender, Receiver, accept(Merchandise, Req amount, Price), T 〉,

msgbox:getMessage(Sender)) ∧ Price < Min⇒
false

This integrity constraint says that an agent cannot accept a proposal for a price
lower than the minimum price allowed. Different from the previous ones, this
constraint involves two different packages, the oracle one and the msgbox one.

Other integrity constraints could be added to ensure the consistency of data
inside the same package or across different packages. Note that most of the above
constraints are enforced by the agent program. The reason why they should be
explicitly stated is that, in the case of legacy systems, the legacy system’s existing
interface and the agent both access and update the same data. Thus, the legacy
interface may alter the agent’s state in ways that the agent may find unacceptable.
The violation of the integrity constraits prevents the agent from continuing its
execution in an inconsistent state.

• Agent Program:

Do sendMessage(Seller, Buyer, accept(Merchandise, Req amount, Price))←
in(〈i, Buyer, Seller, contractProposal(Merchandise, Req amount, Price), T〉,

msgbox:getMessage(Seller)),
in(Max, oracle:select(stored merchandise.max, name, =, Merchandise)),
in(Amount, oracle:select(stored merchandise.amount, name, =, Merchandise)),
Price � Max, Amount � Req amount

This rule says that if all the conditions for accepting a proposal are met, namely

1. the seller agent received a contractProposal from the buyer (the first element
of the tuple in the first code call atom, i, says that the message is an input
message),

2. there is enough merchandise in the warehouse and
3. the proposed price is greater than the Max value),

Logic-based specification languages for intelligent software agents 457

then the seller sends a message to the buyer, saying that it accepts the proposal.

O ship(Buyer, Merchandise, Req amount)←
Do sendMessage(Seller, Buyer, accept(Merchandise, Req amount, Price))

This rule says that if the seller agent accepts the buyer’s proposal by sending a
message to it, it is then obliged to ship the merchandise.

Do sendMessage(Seller, Buyer, refuse(Merchandise, Req amount, Price))←
in(〈i, Buyer, Seller, contractProposal(Merchandise, Req amount, Price), T〉,

msgbox:getMessage(Seller)),
in(Min, oracle:select(stored merchandise.max, name, =, Merchandise)),
Price � Min

If the price proposed by the buyer is below the Min threshold, then the seller agent
refuses the proposal.

Do sendMessage(Seller, Buyer, refuse(Merchandise, Req amount, Price))←
in(〈i, Buyer, Seller, contractProposal(Merchandise, Req amount, Price), T〉,

msgbox:getMessage(Seller)),
in(Amount, oracle:select(stored merchandise.amount, name, =, Merchandise)),
Amount < Req amount

The proposal is refused if there is not enough merchandise available.

Do sendMessage(Seller, Buyer,
contractProposal(Merchandise, Req amount, Means))←
in(〈i, Buyer, Seller, contractProposal(Merchandise, Req amount, Price), T〉,

msgbox:getMessage(Seller)),
in(Max, oracle:select(stored merchandise.max, name, =, Merchandise)),
in(Min, oracle:select(stored merchandise.min, name, =, Merchandise)),
in(Amount, oracle:select(stored merchandise.amount, name, =, Merchandise)),
Price > Min, Price < Max, Amount � Req amount
in(Means, math:evalMeans(Max, Price))

This rule manages the case the seller agent has to send a contractProposal back to
the buyer, since the proposed price is between Min and Max and there is enough
merchandise available.

6 Dynamic logic

Our introduction to dynamic logic is based on Section 8.2.5 of Weiss (1999). Dynamic
logic can be thought of as the modal logic of action. Unlike traditional modal logics, the
necessity and possibility operators of dynamic logic are based upon the kinds of actions
available. As a consequence of this flexibility, dynamic logic has found use in a number of
areas of Distributed Artificial Intelligence (DAI). We consider the propositional dynamic
logic of regular programs, which is the most common variant. This logic has a sublanguage
based on regular expressions for defining action expressions – these composite actions
correspond to Algol-60 programs, hence the name of regular programs.

Regular programs and formulae of the dynamic logic language are defined by mutual
induction. Let PA be a set of atomic action symbols. Regular programs are defined in the

458 V. Mascardi et al.

following way:

• all atomic action symbols in PA are regular programs;
• if p and q are regular programs, then p ; q is a regular program meaning doing p and
q in sequence;

• if p and q are regular programs, then (p + q) is a regular program meaning doing
either p or q, whichever works;

• if p is a regular program, then p∗ is a regular program meaning repeating zero or
more (but finitely many) iterations of p;

• if ϕ is a formula of the dynamic logic language, then ϕ? is a regular program
representing the action of checking the truth value of formula ϕ; it succeeds if ϕ
is indeed found to be true.

(p + q) is nondeterministic choice. This action might sound a little unintuitive since a
nondeterministic program may not be physically executable, requiring arbitrary lookahead
to infer which branch is really taken. From a logical viewpoint, however, the characteriza-
tion of nondeterministic choice is clear. As far as ϕ? is concerned, if ϕ is true, this action
succeeds as a noop, i.e. without affecting the state of the world. If ϕ is false, it fails, and
the branch of the action of which it is part terminates in failure – it is as if the branch did
not exist.

Dynamic logic formulae are defined in the following way:

• all propositional formulae are dynamic logic formulae;
• if p is a regular program and ϕ is a dynamic logic formula, then [p]ϕ is a dynamic

logic formula which means that whenever p terminates, it must do so in a state
satisfying ϕ;

• if p is a regular program and ϕ is a dynamic logic formula, then 〈p〉ϕ is a dynamic lo-
gic formula which means that it is possible to execute p and halt in a state satisfying
ϕ;
• if ϕ and ψ are dynamic logic formulae, then ϕ ∨ ψ, ϕ ∧ ψ, ϕ ⇒ ψ and ¬ϕ are

dynamic logic formulae.

Let S be a set of states (or worlds). Let h be an interpretation function

h : S × PROP→ {true, false}

which says if a propositional formula belonging to PROP is true or false in a world
belonging to S . Let σ ⊆ S × PA× S be a transition relation.

The semantics of dynamic logic is given with respect to a model 〈S, σ, h〉 that includes a
set S of states, a transition relation σ and an interpretation function h.

In order to provide the semantics of the language we first define a class of accessibility
relations (β is a atomic action symbol from PA; p and q are regular programs; r, s and t,
with subscripts when necessary, are members of S):

s Rβ t iff σ(s, β, t)

s Rp;q t iff there exists r such that s Rp r and r Rq t
s Rp+q t iff s Rp t or s Rq t
s Rp∗ t iff there exists s0, . . . , sn such that s = s0 and t = sn

and for all i, 0 � i < n, si Rp si+1

s Rϕ? s iff 〈S, σ, h〉 |=s ϕ

Logic-based specification languages for intelligent software agents 459

In the following equivalences p ranges over regular programs and ϕ and ψ are dynamic
logic formulae.

If ϕ is a propositional formula, its semantics is given through the h interpretation func-
tion:

〈S, σ, h〉 |=s ϕ iff h(s, ϕ) = true

The semantics of ϕ ∨ ψ, ϕ ∧ ψ, ϕ⇒ ψ and ¬ϕ is given in the standard way:

〈S, σ, h〉 |=s ϕ ∨ ψ iff 〈S, σ, h〉 |=s ϕ or 〈S, σ, h〉 |=s ψ

〈S, σ, h〉 |=s ϕ⇒ ψ iff 〈S, σ, h〉 |=s ϕ implies 〈S, σ, h〉 |=s ψ

etc . . .

The semantics of 〈p〉ϕ and [p]ϕ is given as:

〈S, σ, h〉 |=s 〈p〉ϕ iff there exists t such that s Rp t and 〈S, σ, h〉 |=t ϕ

〈S, σ, h〉 |=s [p]ϕ iff for all t, s Rp t implies 〈S, σ, h〉 |=t ϕ

The reader can refer to the survey by Kozen and Tiurzyn (1990) for additional details.

6.1 DyLOG

In a set of papers (Giordano et al., 1998; Giordano et al., 2000; Baldoni et al., 1997;
Baldoni et al., 1998), Baldoni, Giordano, Martelli, Patti and Schwind describe an action
language and its extension to deal with complex actions. In this section we provide a short
description of the action language, taken from Baldoni et al. (2000), and we introduce an
implementation. The implementation language is called DyLOG.

Primitive actions. In the action language each primitive action a ∈ A is represented by a
modality [a]. The meaning of the formula [a]α, where α is an epistemic fluent, is that α
holds after any execution of a. The meaning of the formula 〈a〉α is that there is a possible
execution of action a after which α holds. There is also a modality � which is used to
denote those formulae holding in all states. A state consists in a set of fluents representing
the agent’s knowledge in that state. They are called fluents because their value may change
from state to state. The simple action laws are rules that allow to describe direct action
laws, precondition laws and causal laws.

Action laws define the direct effect of primitive actions on a fluent and allow actions
with conditional effects to be represented. They have the form

�(Fs → [a]F)

where a is a primitive action name, F is a fluent, and Fs is a fluent conjunction, meaning
that action a initiates F , when executed in a state where the fluent precondition Fs holds.

Precondition laws allow action preconditions, i.e. those conditions which make an ac-
tion executable in a state, to be specified. Precondition laws have form

�(Fs → 〈a〉true)

meaning that when a fluent conjunction Fs holds in a state, execution of the action a is
possible in that state.

460 V. Mascardi et al.

Causal laws are used to express causal dependencies among fluents and, then, to de-
scribe indirect effects of primitive actions. They have the form

�(Fs → F)

meaning that the fluent F holds if the fluent conjunction Fs holds too.
In the implementation language DyLOG the notation for the above constructs is the

following: action laws have the form a causes F if Fs, precondition laws have the form a
possible if Fs and causal laws have the form F if Fs.

Procedures. Procedures are defined on the basis of primitive actions, test actions and other
procedures. Test actions are needed for testing if some fluent holds in the current state and
for expressing conditional procedures and are written as

Fs?

where Fs is a fluent conjunction.
A procedure p0 is defined by means of a set of inclusion axiom schemas of the form

〈p1〉〈p2〉 . . . 〈pn〉ϕ⇒ 〈p0〉ϕ

where ϕ stands for an arbitrary formula.
In DyLOG implementations a procedure is defined as a collection of procedure clauses

of the form p0 isp p1 & . . . & pn (n � 0) where p0 is the name of the procedure and pi,
i = 1 . . . n is either a primitive action, a test action (written Fs?), a procedure name, or a
Prolog goal. Procedures can be recursive and they are executed in a goal directed way,
similarly to standard logic programs.

Planning. A planning problem amounts to determining, given an initial state and a goal
Fs, if there is a possible execution of a procedure p leading to a state in which Fs holds.
This can be formulated by the query

〈p〉Fs
The execution of the above query returns as a side effect an answer which is an execution

trace a1, a2, . . . , am, i.e. a primitive action sequence from the initial state to the final one,
which represents a linear plan.

To achieve this, DyLOG provides a metapredicate plan(p, Fs, as) where p is a procedure,
Fs a goal and as a sequence of primitive actions. plan simulates the execution of the
procedure p. If p includes sensing actions, the possible execution traces of p (represented
by sequences as of primitive actions) are generated according to the possible outcomes
of the sensing actions. When one (simulated) outcome leads to a final state where Fs is
not satisfied, the interpreter backtracks and alternative outcome is simulated. Execution is
separated from planning: a metapredicate exe(as) is provided to execute a plan.

Sensing. In general, it is not possible to assume that the value of each fluent in a state is
known to an agent, and it is necessary to represent the fact that some fluents are unknown
and to reason about the execution of actions on incomplete states. To represent explicitly
the unknown value of some fluents, an epistemic operator B is introduced in the language,
to represent the beliefs an agent has on the world. Bf will mean that the fluent f is known
to be true, B¬f will mean that the fluent f is known to be false, and fluent f is undefined
in the case both ¬Bf and ¬B¬f hold. In the following, u(f) stands for ¬Bf ∧¬B¬ f.

Logic-based specification languages for intelligent software agents 461

In DyLOG there is no explicit use of the operator B but the notation is extended with
the test u(f)?. Thus each fluent can have one of the three values: true, false and unknown.
An agent will be able to know the value of f by executing an action that senses f (sensing
action). One expresses that an action s causes to know whether f holds by the declaration s
senses f. By applying DyLOG’s planning predicate plan to a procedure containing sensing
actions a conditional plan is obtained. The branches of this plan correspond to the different
outcomes of sensing actions.

6.1.1 Semantics

As discussed in Baldoni et al. (1998), the logical characterization of DyLOG can be
provided in two steps. First, a multimodal logic interpretation of a dynamic domain descrip-
tion which describes the monotonic part of the language is introduced. Then, an abductive
semantics to account for non-monotonic behavior of the language is provided.

Definition 7 (Dynamic domain description)
Given a setA of atomic world actions, a setS of sensing actions, and a setP of procedure
names, let ΠA be a set of simple action laws for world actions, ΠS a set of axioms for
sensing actions, and ΠP a set of inclusion axioms. A dynamic domain description is a pair
(Π, S0), where Π is the tuple (ΠA,ΠS,ΠP) and S0 is a consistent and complete set of
epistemic literals representing the beliefs of the agent in the initial state.

Monotonic interpretation of a dynamic domain description. Given a dynamic domain de-
scription (Π, S0), let us callL(Π,S0) the propositional modal logic on which (Π, S0) is based.
The action laws for primitive actions in ΠA and the initial beliefs in S0 define a theory
Σ(Π,S0) inL(Π,S0). The axiomatization ofL(Π,S0), calledS(Π,S0), contains:

• all the axioms for normal modal operators
• D(B), namely, for the belief modality B the axiom Bp⇒ ¬B¬p holds;
• S4(�), namely, the three axioms �p⇒ p, �(p⇒ q)⇒ (�p⇒ �q) and

�p⇒ ��p;
• �ϕ⇒ [ai]ϕ, one for each primitive action ai in (Π, S0);
• 〈a+ b〉ϕ ≡ 〈a〉ϕ ∨ 〈b〉ϕ, one for each formula ϕ;
• 〈ψ?〉ϕ ≡ ψ ∧ ϕ, one for each formula ϕ;
• 〈a; b〉ϕ ≡ 〈a〉〈b〉ϕ, one for each formula ϕ;
• ΠP;
• ΠS.

The model theoretic semantics of the logic L(Π,S0) is given through a standard Kripke
semantics with inclusion properties among the accessibility relations. More details can be
found in Baldoni (1998).

Abductive semantics. The monotonic part of the language does not account for persistency.
In order to deal with the frame problem, it is necessary to introduce a non-monotonic
semantics for the language by making use of an abductive construction: abductive as-
sumptions will be used to model persistency from one state to the following one, when
a primitive action is performed. In particular, we will assume that a fluent expression F

462 V. Mascardi et al.

persists through an action unless it is inconsistent to assume so, i.e. unless ¬F holds after
the action.

In defining the abductive semantics, the authors adopt (in a modal setting) the style of
Eshghi and Kowalski’s abductive semantics for negation as failure (Eshghi and Kowalski,
1989). They introduce the notation Mα to denote a new atomic proposition associated
with α and a set of atomic propositions of the form M[a1][a2] . . . [am]F and take them as
being abducibles2. Their meaning is that the fluent expression F can be assumed to hold
in the state obtained by executing primitive actions a1, a2, . . . , am. Each abducible can be
assumed to hold, provided it is consistent with the domain description (Π, S0) and with
other assumed abducibles.

More precisely, in order to deal with the frame problem, they add to the axiom system
ofL(Π, S0) the persistency axiom schema

[a1][a2] . . . [am−1]F ∧M[a1][a2] . . . [am−1][am]F ⇒ [a1][a2] . . . [am−1][am]F

where a1, a2, . . . , am(m > 0) are primitive actions, and F is a fluent expression. Its meaning
is that, if F holds after action sequence a1, a2, . . . , am−1, and F can be assumed to persist
after action am (i.e. it is consistent to assume M[a1][a2] . . . [am]F), then we can conclude
that F holds after performing the sequence of actions a1, a2, . . . , am.

Besides the persistency action schema, the authors provide the notions of abductive
solutions for a dynamic domain description and abductive solutions to a query.

6.1.2 Implementation

DyLOG is defined by a proof procedure which constructs a linear plan by making assump-
tions on the possible results of sensing actions. The goal directed proof procedure, based on
negation as failure, allows a query to be proved from a given dynamic domain description.
The proof procedure is sound and complete with respect to the Kripke semantics of the
modal logicsL(Π, S0). An interpreter based on this proof procedure has been implemented
in SICStus Prolog. This implementation allows to use DyLOG as a programming lan-
guage for executing procedures which model the behavior of an agent, but also to reason
about them, by extracting from them linear or conditional plans. Details on the implement-
ation can be found in the ALICE Home Page (2000).

6.1.3 Extensions

In Baldoni et al. (2003a, 2003b), DyLOG agents are extended to represent beliefs of other
agents in order to reason about conversations. They are also enriched with a communication
kit including a primitive set of speech acts, a set of special “get message” actions and a set
of conversation protocols.

2 M is not a modality but just a notation adopted in analogy to default logic, where a justification Mα intuitively
means “α is consistent”.

Logic-based specification languages for intelligent software agents 463

6.1.4 Example

In the following example, the predicate is has its usual meaning as in Prolog programs: it
evaluates the value of the expression at its right and checks if this value unifies with the
term at its left.

• Functional fluents:

functionalFluent(storing/2).
functionalFluent(new message/2).
The amount of merchandise stored and the new incoming messages are facts
which change during the agent’s life. The number after the predicate’s name is
its arity.

• Unchangeable knowledge base (Prolog facts):

min-price(orange, 1).
max-price(orange, 2).
The minimum and maximum prices for oranges do not change over time.

• Initial observations:

obs(storing(orange, 1000)).
Initially, there are 1000 oranges the seller agent can sell.

• Primitive actions:

receive
This action senses if a fluent new message(Sender, Message) is present in the
caller’s mailbox. It is characterized by the following laws and routines:

Precondition laws:
receive possible if true.
It is always possible to wait for a new message to arrive.

Sensing:
receive senses new message(Sender, Message).
The receive action senses the value of the new message(Sender, Message)
functional fluent.

Sensing routine:
senses routine(, new message, Sender, Message) :-
A Prolog routine that we do not show here implements the sensing action
by waiting for messages matching the couple (Sender, Message) in the
caller’s mailbox.

send(Sender, Receiver, Message)
This action puts the couple (Sender, Message) in the Receiver’s mailbox by
modifying the state of the new message(Sender, Message) functional fluent of
the Receiver’s agent. For sake of conciseness, we avoid discussing all the details
of this action.
ship(Buyer, Merchandise, Req Amnt, Price)
This action ships the required merchandise to the Buyer agent. It is characterized
by the following action laws and precondition laws:

464 V. Mascardi et al.

Action laws:
ship(Buyer, Merchandise, Req Amnt, Price)

causes storing(Merchandise, Amount)
if storing(Merchandise, Old Amount) &

(Amount is Old Amount - Req Amnt).
Shipping some merchandise causes an update of the stored amount of that
merchandise.

Precondition laws:
ship(Buyer, Merchandise, Req Amnt)

possible if storing(Merchandise, Old Amount) &
(Old Amount � Req Amnt) &
max-price(Merchandise, Max) & (Price � Max).

Shipping merchandise is possible if there is enough merchandise left and
if the price is higher than the maximum price established for that mer-
chandise.

• Procedures:

seller agent cycle isp
receive &
manage message &
seller agent cycle.

The main cycle for the seller agent consists in waiting for a message, managing
it and starting waiting for a message again.

manage message isp
new message(Buyer,

contractProposal(Merchandise, Req Amnt, Price))? &
storing(Merchandise, Old Amount)? &
(Old Amount � Req Amnt) &
max-price(Merchandise, Max)? & (Price � Max) &
ship(Buyer, Merchandise, Req Amnt, Price) &
send(seller, Buyer, accept(Merchandise, Req Amnt, Price))

If all conditions are met to ship the merchandise, then the merchandise is shipped
and the seller sends a message to the Buyer in which it accepts the Buyer’s
proposal.

manage message isp
new message(Buyer,

contractProposal(Merchandise, Req Amnt, Price))? &
storing(Merchandise, Old Amount)? &
(Old Amount < Req Amnt) &
send(seller, Buyer, refuse(Merchandise, Req Amnt, Price))

If there is not enough merchandise, the seller agent refuses to send the mer-
chandise.

Logic-based specification languages for intelligent software agents 465

manage message isp
new message(Buyer,

contractProposal(Merchandise, Req Amnt, Price))? &
min-price(Merchandise, Min)? & (Price � Min)
send(seller, Buyer, refuse(Merchandise, Req Amnt, Price))

If the price is too low, the seller agent refuses to send the merchandise.

manage message isp
new message(Buyer,

contractProposal(Merchandise, Req Amnt, Price))? &
storing(Merchandise, Old Amount)? &
(Old Amount � Req Amnt) &
max-price(Merchandise, Max)? & (Price < Max) &
min-price(Merchandise, Min)? & (Price > Min) &
(New Price is (Price + Max) / 2) &
send(seller, Buyer, contractProposal(Merchandise, Req Amnt, New Price))

In case the conditions are met to send a counter-proposal to the Buyer agent, the
seller sends it with the price it is willing to accept.

7 Temporal logic

In this section we define a first-order temporal logic based on discrete, linear models
with finite past and infinite future, called FML (Fisher, 1992). FML introduces two new
connectives to classical logic, until (U) and since (S), together with a number of other
operators definable in terms ofU andS. The intuitive meaning of a temporal logic formula
ϕ Uψ is that ψ will become true at some future time point t and that in all states between
and different from now and t, ϕ will be true.S is the analogous of U in the past.

Syntax of FML. Well-formed formulae of FML (WFFf) are generated in the usual way
as for classical logic, starting from a set Lp of predicate symbols, a set Lv of variable
symbols, a set Lc of constant symbols, the quantifiers ∀ and ∃, and the set Lt of terms
(constants and variables). The set WFFf is defined by:

• If t1, . . . , tn are in Lt and p is a predicate symbol of arity n, then p(t1, . . . , tn) is in
WFFf .

• true and false are in WFFf .
• If A and B are in WFFf , then so are ¬A, A ∧ B, A UB, ASB, and (A).
• If A is in WFFf and v is inLv, then ∃v.A and ∀v.A are both in WFFf .

The other classical connectives are defined in terms of the ones given above, and sev-
eral other useful temporal connectives are defined in terms of U and S (we follow the
characterization provided in Finger et al. (1993) as well as the notation used there):

©ϕ ϕ is true in the next state [false Uϕ]
ϕ the current state is not the initial state, and ϕ was true in

the previous state [falseSϕ]
ϕ if the current state is not the initial state, then ϕ was true in

the previous state [¬ ¬ϕ]

466 V. Mascardi et al.

�ϕ ϕ will be true in some future state [true Uϕ]
�ϕ ϕ was true in some past state [trueSϕ]
�ϕ ϕ will be true in all future states [¬ �¬ϕ]
�ϕ ϕ was true in all past states [¬�¬ϕ]

Temporal formulae can be classified as follows. A state-formula is either a literal or a
boolean combination of other state-formulae.
Strict future-time formulae are defined as follows:

If A and B are either state or strict future-time formulae, then AUB is a strict future-
time formula.
If A and B are strict future-time formulae, then ¬A, A∧B, and (A) are strict future-
time formulae.

Strict past-time formulae are defined as the past-time duals of strict future-time formulae.
Non-strict classes of formulae include state-formulae in their definition.

Semantics of FML. The models for FML formulae are given by a structure which consists
of a sequence of states, together with an assignment of truth values to atomic sentences
within states, a domain D which is assumed to be constant for every state, and mappings
from elements of the language into denotations. More formally, a model is a tupleM =

〈σ,D, hc, hp〉where σ is the ordered set of states s0, s1, s2, . . . , hc is a map from the constants
intoD, and hp is a map from N×Lp intoDn → { true, false } (the first argument of hp is
the index i of the state si). Thus, for a particular state s, and a particular predicate p of arity
n, h(s, p) gives truth values to atoms constructed from n-tuples of elements ofD. A variable
assignment hv is a mapping from the variables into elements of D. Given a variable and
the valuation function hc, a term assignment τvh is a mapping from terms intoD defined in
the usual way.

The semantics of FML is given by the |= relation that gives the truth value of a formula
in a modelM at a particular moment in time i and with respect to a variable assignment.

〈M, i, hv〉 |= true
〈M, i, hv〉 �|= false
〈M, i, hv〉 |= p(x1, . . . , xn) iff hp(i, p)(τvh(x1), . . . , τvh(xn)) = true
〈M, i, hv〉 |= ¬ϕ iff 〈M, i, hv〉 �|= ϕ

〈M, i, hv〉 |= ϕ ∨ ψ iff 〈M, i, hv〉 |= ϕ or 〈M, i, hv〉 |= ψ

〈M, i, hv〉 |= ϕ Uψ iff for some k such that i < k, 〈M, k, hv〉 |= ψ

and for all j, if i < j < k then 〈M, j, hv〉 |= ϕ

〈M, i, hv〉 |= ϕSψ iff for some k such that 0 � k < i, 〈M, k, hv〉 |= ψ

and for all j, if k < j < i then 〈M, j, hv〉 |= ϕ

〈M, i, hv〉 |= ∀x · ϕ iff for all d ∈ D, 〈M, i, hv[d/x]〉 |= ϕ

〈M, i, hv〉 |= ∃x · ϕ iff there exists d ∈ D such that 〈M, i, hv[d/x]〉 |= ϕ

7.1 Concurrent METATEM

Concurrent METATEM (Fisher and Barringer, 1991; Fisher, 1993; Fisher and Wooldridge,
1993) is a programming language for distributed artificial intelligence based on FML.

Logic-based specification languages for intelligent software agents 467

A Concurrent METATEM system contains a number of concurrently executing agents
which are able to communicate through message passing. Each agent executes a first-order
temporal logic specification of its desired behavior. Each agent has two main components:

• an interface which defines how the agent may interact with its environment (i.e.
other agents);
• a computational engine, which defines how the agent may act.

An agent interface consists of three components:

• a unique agent identifier which names the agent.
• a set of predicates defining what messages will be accepted by the agent – they are

called environment predicates;
• a set of predicates defining messages that the agent may send – these are called

component predicates.

Besides environment and component predicates, an agent has a set of internal predicates
with no external effect.

The computational engine of an object is based on the METATEM paradigm of execut-
able temporal logics. The idea behind this approach is to directly execute a declarative
agent specification given as a set of program rules which are temporal logic formulae of
the form:

antecedent about past⇒ consequent about future

The past-time antecedent is a temporal logic formula referring strictly to the past, whereas
the future time consequent is a temporal logic formula referring either to the present
or future. The intuitive interpretation of such a rule is on the basis of the past, do the
future. The individual METATEM rules are given in the FML logic defined before. Since
METATEM rules must respect the past implies future form, FML formulae defining agent
rules must be transformed into this form. This is always possible as demonstrated in
Barringer et al. (1990).

7.1.1 Semantics

METATEM semantics is the one defined for FML.

7.1.2 Implementation

Two implementations of the imperative future paradigm described in this section have been
produced. The first is a prototype interpreter for propositional METATEM implemented in
Scheme (Fisher, 1990). A more robust Prolog-based interpreter for a restricted first-order
version of METATEM has been used as a transaction programming language for temporal
databases (Finger et al., 1991).

7.1.3 Extensions

Two main directions have been followed in the attempt of extending Concurrent META-
TEM, the first one dealing with single agents and the second one dealing with MASs.

468 V. Mascardi et al.

• Single Concurrent METATEM agents have been extended with deliberation and
beliefs (Fisher, 1997) and with resource-bounded reasoning (Fisher and Ghidini,
1999).
• Compilation techniques for MASs specified in Concurrent METATEM are analyzed

in Kellett and Fisher (1997a). Concurrent METATEM has been proposed as a co-
ordination language in Kellett and Fisher (1997b). The definition of groups of agents
in Concurrent METATEM is discussed in Fisher (1998) and Fisher and Kakoudakis
(2000).

The research on single Concurrent METATEM agents converged with the research on Con-
current METATEM MASs in the paper by Fisher and Ghidini (2002) where “confidence” is
added to both single and multiple agents. The development of teams of agents is discussed
in Hirsch et al. (2002).

7.1.4 Example

The Concurrent METATEM program for the seller agent may be as follows:

• The interface of the seller agent is the following:

seller(contractProposal)[accept, refuse, contractProposal, ship]
meaning that:
– the seller agent, identified by the seller identifier, is able to recognize a con-
tractProposal message with its arguments, not specified in the interface;
– the messages that the seller agent is able to broadcast to the environment,
including both communicative acts and actions on the environment, are accept,
refuse, contractProposal, ship with their arguments.

• The internal knowledge base of the seller agent contains the following rigid predic-
ates (predicates whose value never changes):

min-price(orange, 1).
max-price(orange, 2).

• The internal knowledge base of the seller agent contains the following flexible pre-
dicates (predicates whose value changes over time):

storing(orange, 1000).

• The program rules of the seller agent are the following ones (as usual, lowercase
symbols are constants and uppercase ones are variables):

∀ Buyer, Merchandise, Req Amnt, Price.
[contractProposal(Buyer, seller, Merchandise, Req Amnt, Price) ∧

storing(Merchandise, Old Amount) ∧
Old Amount � Req Amnt ∧
max-price(Merchandise, Max) ∧ Price � Max]⇒

[ship(Buyer, Merchandise, Req Amnt, Price) ∧
accept(seller, Buyer, Merchandise, Req Amnt, Price)]

If there was a previous state where Buyer sent a contractProposal message to
seller, and in that previous state all the conditions were met to accept the pro-
posal, then accept the Buyer’s proposal and ship the required merchandise.

Logic-based specification languages for intelligent software agents 469

∀ Buyer, Merchandise, Req Amnt, Price.
[contractProposal(Buyer, seller, Merchandise, Req Amnt, Price) ∧

storing(Merchandise, Old Amount) ∧
min-price(Merchandise, Min) ∧
Old Amount < Req Amnt ∨ Price � Min]⇒

refuse(seller, Buyer, Merchandise, Req Amnt, Price)
If there was a previous state where Buyer sent a contractProposal message to
seller, and in that previous state the conditions were not met to accept the Buyer’s
proposal, then send a refuse message to Buyer.

∀ Buyer, Merchandise, Req Amnt, Price.
[contractProposal(Buyer, seller, Merchandise, Req Amnt, Price) ∧

storing(Merchandise, Old Amount) ∧
min-price(Merchandise, Min) ∧
max-price(Merchandise, Max) ∧
Old Amount � Req Amnt ∧
Price > Min ∧ Price < Max ∧
New Price = (Max + Price) / 2]⇒

contractProposal(seller, Buyer, Merchandise, Req Amnt, New Price)
If there was a previous state where Buyer sent a contractProposal message to
seller, and in that previous state the conditions were met to send a contractPro-
posal back to Buyer, then send a contractProposal message to Buyer with a new
proposed price.

8 Linear logic

Linear logic (Girard, 1987) has been introduced as a resource-oriented refinement of clas-
sical logic. The idea behind linear logic is to constrain the number of times a given as-
sumption (resource occurrence) can be used inside a deduction for a given goal formula.
This resource management, together with the possibility of naturally modeling the notion
of state, makes linear logic an appealing formalism to reason about concurrent and dynam-
ically changing systems.

Linear logic extends usual logic with new connectives:

• Exponentials: “!” (of course) and “?” (why not?) express the capability of an action
of being iterated, i.e. the absence of any reaction. !A means infinite amount of
resource A.
• Linear implication: (lolli) is used for causal implication. The relationship between

linear implication and intuitionistic implication “⇒” is A⇒ B ≡ (!A) B

• Conjunctions: ⊗ (times) and & (with) correspond to radically different uses of the
word “and”. Both conjunctions express the availability of two actions; but in the case
of ⊗, both actions will be done, whereas in the case of & only one of them will be
performed (we shall decide which one). Given an action of type A B and an action
of type A C there will be no way of forming an action of type A B ⊗ C, since
once resource A has been consumed for deriving B, for example, it is not available
for deriving C. However, there will be an action A B&C. In order to perform this

470 V. Mascardi et al.

Table 1. A one-sided, dyadic proof system for linear logic

� Θ : F, F⊥
id

� Θ : Γ, F � Θ : ∆, F⊥

� Θ : Γ,∆
cut

� Θ, F : Γ, F

� Θ, F : Γ
abs

� Θ : Γ

� Θ : Γ,⊥
⊥

� Θ : Γ, F, G

� Θ : Γ, F
..

...........
...................................... G

..
...........
......................................

� Θ, F : Γ

� Θ : Γ, ?F
?

� Θ : 1
1

� Θ : Γ, F � Θ : ∆, G

� Θ : Γ,∆, F ⊗ G
⊗

� Θ : F

� Θ : !F
!

� Θ : Γ,�
�

� Θ : Γ, F � Θ : Γ, G

� Θ : Γ, F&G
&

� Θ : Γ, F[c/x]

� Θ : Γ, ∀x.F
∀

� Θ : Γ, F

� Θ : Γ, F ⊕ G
⊕l

� Θ : Γ, G

� Θ : Γ, F ⊕ G
⊕r

� Θ : Γ, F[t/x]

� Θ : Γ, ∃x.F
∃

action we have to first choose which among the two possible actions we want to
perform, and then do the one selected.

• Disjunctions: there are two disjunctions in linear logic,⊕ (plus), which is the dual of
&, and

..
...........
...................................... (par), which is the dual of⊗.⊕ expresses the choice of one action between

two possible types.
..

...........
...................................... expresses a dependency between two types of actions and can

be used to model concurrency.

• Linear negation: (·)⊥ (nil) expresses linear negation. Since linear implication will
eventually be rewritten as A⊥

..
...........
...................................... B, nil is the only negative operation of logic. Linear

negation expresses a duality

action of type A = reaction of type A⊥

• Neutral elements: there are four neutral elements: 1 (w.r.t. ⊗), ⊥ (w.r.t.
..

...........
......................................), � (w.r.t.

&) and 0 (w.r.t. ⊕).

Semantics. In Table 1 we provide the semantics of full linear logic by means of a proof
system. Sequents assume the one-sided, dyadic form � Θ : Γ. Θ and Γ are multisets of
formulae. Θ is the so-called unbounded part, while Γ is the bounded one. In other words,
formulae in Θ must be implicitly considered as exponentiated (i.e. preceded by ?) and thus
can be reused any number of times, while formulae in Γ must be used exactly once.

We opted for defining the semantics of linear logic by means of a proof system both
because understanding the proof rules requires less background than understanding an
abstract semantics and for consistency with the style used for the semantics of Ehhf . Other
semantics have been defined for linear logic: a complete description of phase semantics
and coherent semantics is given in Girard (1987) while game semantics is dealt with in
Blass (1992).

Logic-based specification languages for intelligent software agents 471

8.1 Ehhf
The language Ehhf (Delzanno, 1997; Delzanno and Martelli, 2001) is an executable spe-
cification language for modeling concurrent and resource sensitive systems, based on the
general purpose specification logical language Forum (Miller, 1996). Ehhf is a multiset-
based logic combining features of extensions of logic programming languages likeλProlog,
e.g. goals with implication and universal quantification, with the notion of formulae as
resources at the basis of linear logic. Ehhf uses a subset of linear logic connectives and a
restricted class of formulae as defined later. An Ehhf-program P is a collection of multi-
conclusion clauses of the form:

A1
..

...........
...................................... . . .

..
...........
...................................... An Goal,

where the Ai are atomic formulae, the linear disjunction A1
..

...........
...................................... . . .

..
...........
...................................... An corresponds to

the head of the clause and Goal is its body. Furthermore, A B is a linear implication.
Execution of clauses of this kind concurrently consumes the resources (formulae) they
need in order to be applied in a resolution step.

Given a multiset of atomic formulae (the state of the computation) Ω0, a resolution step
Ω0 → Ω1 can be performed by applying an instance A1

..
...........
...................................... . . .

..
...........
...................................... An G of a clause in

the program P , whenever the multiset Θ consisting of the atoms A1, . . . , An is contained in
Ω0. Ω1 is then obtained by removing Θ from Ω0 and by adding G to the resulting multiset.
In the Ehhf interpreter, instantiation is replaced by unification. At this point, since G may
be a complex formula, the search rules (i.e. the logical rules of the connectives occurring
in G) must be exhaustively applied in order to proceed. Such a derivation corresponds
to a specific branch of the proof tree of a multiset Ω. Ω represents the current global
state, whereas P describes a set of clauses that can be triggered at any point during a
computation.
Ehhf provides a way to “guard” the application of a given clause. In the extended type

of clauses
G1 & . . .& Gm ⇒ (A1

..
...........
...................................... . . .

..
...........
...................................... An Goal),

the goal-formulae Gi are conditions that must be solved in order for the clause to be
triggered.

New components can be added to the current state by using goal-formulae of the form
G1

..
...........
...................................... G2. In fact, the goal G1

..
...........
...................................... G2,∆ simply reduces to G1, G2,∆. Conditions over the

current state can be tested by using goal-formulae of the form G1&G2. In fact, the goal
G1&G2,∆ reduces to G1,∆ and G2,∆. Thus, one of the two copies of the state can be
consumed to verify a contextual condition. Universal quantification in a goal-formula ∀x.G
can be used to create a new identifier t which must be local to the derivation tree of the
subgoal G[t/x]. Finally, the constant � succeeds in any context and the constant ⊥ is
simply removed from the current goal.

8.1.1 Semantics

The Ehhf operational semantics is given by means of a set of rules describing the way se-
quents can be rewritten. See Delzanno and Martelli (2001) for all details and for the results
of correctness and completeness w.r.t. linear logic. According to the proof as computation
interpretation of linear logic, sequents represent the state of a computation.

472 V. Mascardi et al.

Sequents assume the following form (simplified for the sake of presentation):

Γ; ∆→ Ω,

where Γ and ∆ are multisets of D-formulae (respectively, the unbounded and bounded
context), and Ω is a multiset ofG-formulae which contains the concurrent resources present
in the state. The class of formulae is restricted to two main classes, D- and G-formulae
(D stands for definite clauses and G for goals):

D ::= D&D | ∀x · D | H G | D ⇐ G | H

G ::= G&G | G ..
...........
...................................... G | ∀x · G | D G | D ⇒ G | A | ⊥ | �

H ::= H ..
...........
...................................... H | Ar

A represents a generic atomic formula, whereas Ar is a rigid atomic formula, i.e. whose
top-level functor symbol is a constant.

The rules of Ehhf are divided into right rules (or search rules) and left rules. Right
rules are used to simplify goals in Ω until they become atomic formulae. They define the
behavior of the various connectives: � is used to manage termination, ⊥ to encode a null
statement, & to split a computation into two branches which share the same resources, ∀
to encode a notion of hiding,

..
...........
...................................... to represent concurrent execution,⇒ and to augment

the resource context (respectively, the unbounded and the bounded context).
Left rules define backchaining over clauses built with the connectives ⇐ and . As

described above, the rule for is similar to Prolog rewriting, except that multiple-headed
clauses are supported; besides, a clause can be reusable or not depending on which context
it appears in. The rule for⇐ allows to depart an independent branch in an empty context
(this is often useful to verify side conditions or make auxiliary operations).

8.1.2 Implementation

A working interpreter for Ehhf has been developed by Bozzano in Lambda Prolog, a
language originally developed by Miller and Nadathur, which offers support for higher-
order abstract syntax, a new and increasingly popular way to view the structure of objects
such as formulae and programs.

The code of the Ehhf interpreter can be downloaded from (Ehhf FTP Area, 1998),
where an example implementing the specification described in (Bozzano et al., 1999a) is
also downloadable.

8.1.3 Extensions

In the MAS context, Ehhf has been used to specify an architecture based on the BDI (Belief,
Desires, Intentions (Rao and Georgeff, 1995)) approach (Bozzano et al., 1999b) and to
verify the correctness of a MAS where agents were specified by means of event–condition–
action rules (Bozzano et al., 1999a).
Ehhf has also been used to model object-oriented and deductive databases (Bozzano

et al., 1997) and object calculi (Bugliesi et al., 2000).

Logic-based specification languages for intelligent software agents 473

8.1.4 Example

The Ehhf program for the seller agent may be as follows:

• Seller’s initial facts:

min-price(orange, 1).
max-price(orange, 2).
storing(orange, 1000).
seller-mailbox([]).
We assume that every agent has a mailbox which all the agents in the system can
update by calling a send predicate. The mailbox of the seller agent is initially
empty (we are using Prolog syntax for lists).

• Seller’s life cycle:

∀ Message, OtherMessages.
seller-mailbox([Message|OtherMessages])

..
...........
......................................

seller-cycle
manage(Message)

..
...........
......................................

seller-mailbox(OtherMessages)
..

...........
......................................

seller-cycle.
To satisfy the seller-cycle goal, the seller agent must have at least one message
in its mailbox. In this case, it consumes the seller-mailbox([Message| Other-
Messages]) and seller-cycle goals and produces the new goals of managing the
received message (manage(Message)), removing it from the mailbox (seller-
mailbox(OtherMessages), where the list of messages does not contain Message
any more) and cycling (seller-cycle).

• Seller’s rules for managing messages:

∀ Buyer, Merchandise, Req Amnt, Price.
Old Amount � Req Amnt &

difference(Old Amount, Req Amnt, Remaining Amnt) &

max-price(Merchandise, Max) & Price � Max⇒
manage(contractProposal(Buyer, Merchandise, Req Amnt, Price))

..
...........
......................................

storing(Merchandise, Old Amount)
storing(Merchandise, Remaining Amount)

..
...........
......................................

ship(Buyer, Merchandise, Req Amnt, Price)
..

...........
......................................

send(Buyer, accept(seller, Merchandise, Req Amnt, Price)).
The goals before the ⇒ connective are not consumed by the execution of the
rule: they are used to evaluate values (difference(Old Amount, Req Amnt, Re-
maining Amnt)), to compare values (Old Amount � Req Amnt and Price � Max)
and to get the value of variables appearing in facts that are not changed by the
rule (max-price(Merchandise, Max)). In this case, they succeed if the condi-
tions for shipping merchandise are met. The goals storing(Merchandise, Old A-
mount) and manage(contractProposal(Buyer, Merchandise, Req Amnt, Price))
are consumed; they are rewritten in storing(Merchandise, Remaining Amount)
(the information about stored merchandise is updated), ship(Buyer, Merchandise,
Req Amnt, Price) (the required amount of merchandise is shipped) and

474 V. Mascardi et al.

send(Buyer, accept(seller, Merchandise, Req Amnt, Price) (the message for in-
forming Buyer that its proposal has been accepted is sent). The ship predicate
will be defined by some rules that we do not describe here.

∀ Buyer, Merchandise, Req Amnt, Price.
min-price(Merchandise, Min) & Price � Min⇒

manage(contractProposal(Buyer, Merchandise, Req Amnt, Price))
send(Buyer, refuse(seller, Merchandise, Req Amnt, Price).

If the proposed price is too low (min-price(Merchandise, Min) & Price � Min)
the Buyer’s proposal is refused.

∀ Buyer, Merchandise, Req Amnt, Price.
storing(Merchandise, Old Amount) & Old Amount < Req Amnt⇒

manage(contractProposal(Buyer, Merchandise, Req Amnt, Price))
send(Buyer, refuse(seller, Merchandise, Req Amnt, Price)).

If there is not enough merchandise stored, the Buyer’s proposal is refused.

∀ Buyer, Merchandise, Req Amnt, Price.
Old Amount � Req Amnt &

min-price(Merchandise, Min) & Price > Min &

max-price(Merchandise, Max) & Price < Max &

eval-means(Max, Price, Means)⇒
manage(contractProposal(Buyer, Merchandise, Req Amnt, Price))

send(Buyer,
contractProposal(seller, Merchandise, Req Amnt, Means)).

If there is enough merchandise and the price proposed by Buyer is between the
minimum and maximum prices established by the seller, the means of Price and
Max is evaluated (eval-means(Max, Price, MeanPrice)) and a contractProposal
with this new price is sent to Buyer.

9 A comparison among the specification languages

In this section we compare the agent specification languages introduced so far along twelve
dimensions whose choice is mainly driven by (Juan et al., 2003a). Although it is difficult
to assess if the following twelve dimensions are all and the only ones relevant for charac-
terizing an agent programming language, we think that they represent a reasonable choice.

In Section 9.1 we introduce the twelve dimensions. For each one we explain why it
is relevant for characterizing an agent programming language. We also formulate some
questions whose answers, given in Section 9.2, help in understanding how each of the six
languages analyzed in this paper supports the given dimension.

9.1 Comparison dimensions

This paper is mainly concerned with the prototyping stage rather than with the development
of a final application. For this reason we avoid discussing all those technical details which
are not necessary for modeling, verifying and prototyping a MAS, such as efficiency,

Logic-based specification languages for intelligent software agents 475

support for mobility and physical distribution, support for integration of external pack-
ages. Indeed, we concentrate on dimensions related with the basic definition of an agent
quoted in the introduction (Jennings et al., 1998) (dimensions 2, 3, 4, 5), on dimensions
related with the agent representation and management of knowledge (dimension 6), on
dimensions related with the ability of a set of agents to form a MAS (dimensions 7, 8, 9),
and on dimensions which, although not peculiar of an agent programming language, are
particularly important for the correct development of agents and a MAS (dimensions 10,
11, 12).

1. Purpose of use. Understanding in which engineering/development stage the language
proves useful is necessary to adopt the right language at the right time.

• Is the language suitable for running autonomous agents in a real environment?
• Is the language suitable for MAS prototyping?
• Is the language suitable for verifying properties of the implemented MAS?

2. Time. Agents must both react in a timely fashion to actions taking place in their
environment and plan actions in a far future, thus they should be aware of time.

• Is time dealt with explicitly in the language?
• Are there operators for defining complex timed expressions?

3. Sensing. One of the characterizing features of an agent is its ability to sense and
perceive the surrounding environment.

• Does the language provide constructs for sensing actions (namely, actions which
sense the environment)?

4. Concurrency. Agents in a MAS execute autonomously and concurrently and thus it is
important that an agent language provides constructs for concurrency among agents
(external concurrency) and concurrency within threads internal to the agent (internal
concurrency).

• Does the language allow the modeling of concurrent actions within the same
agent?
• Does it support concurrency among executing agents?

5. Nondeterminism. The evolution of a MAS consists of a nondeterministic succession
of events.

• Does the language support nondeterminism?

6. Agent knowledge. The predominant agent model attributes human-like attitudes to
agents. The agent knowledge is often characterized by beliefs, desires and intentions
(Rao and Georgeff, 1995). Often, human beings are required to reason in presence of
incomplete and uncertain knowledge.

• Does the language support a BDI-style architecture?
• Does the language support incomplete agent knowledge?
• Does it support uncertainty?

7. Communication. Agents must be social, namely, they must be able to communicate
either with other agents and with human beings.

• Are communication primitives provided by the language?

476 V. Mascardi et al.

• Is it necessary for an agent to know details of another agent’s implementation
in order to communicate with it, or does communication take place on a more
abstract level?
• Is the programming language tied to some specific agent communication lan-

guage?

8. Team working. The ability to form team is becoming more and more important
in the intelligent agents research area as witnessed by the increasing number of
researchers which address this specific topic3. Building a team may involve coordin-
ation/negotiation protocols.

• Is the language suitable for defining and programming teams?
• Is the language suitable for expressing coordination/negotiation protocols?

9. Heterogeneity and knowledge sharing. In many real systems agents are heterogen-
eous since they were developed by different organizations with different (sometimes
opposite) purposes in mind.

• Which are the necessary conditions that agents must respect to interact?
• Do agents need to share the same ontology?
• Are agents able to cope with the heterogeneity of information?

10. Programming style. The language programming style may be more or less suitable
for implementing a given reasoning mechanism or a given agent architecture.

• Does the language support goal-directed reasoning, forward reasoning, react-
iveness?
• Does the agent programming language require to stick to a fixed agent model

or does it leave the choice to the programmer?

11. Modularity. Agent programs are typically very complex and a developer would be-
nefit from structuring them by defining modules, macros and procedures.

• Does the language provide constructs for defining modules, macros and/or pro-
cedures?

12. Semantics. Due to the complexity of languages for agent, providing a clear semantics
is the only means to fully understanding the meaning of the constructs they provide
and thus exploiting the potentialities of the language.

• Is a formal semantics of the language defined?
• Are there results explaining the link between system execution and formal

semantics?

9.2 The six languages compared along the twelve dimensions

Purpose of use. ConGolog allows the design of flexible controllers for agents living in
complex scenarios. Its extension IndiGolog provides a practical framework for real robots

3 For example, during the Second International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS) which took place in Melbourne in July 2003 an entire session was devoted to team working,
with four papers presented; a large number of documents on team work is published by the TEAMCORE
Research Group at the University of Southern California (The TEAMCORE Research Group Home Page,
2003).

Logic-based specification languages for intelligent software agents 477

that must sense the environment and react to changes occurring in it, and Legolog is an
agent architecture for running IndiGolog high-level programs in Lego MINDSTORM ro-
bots. CASL (Shapiro et al., 2002)) is an environment based on ConGolog which provides
a verification environment.

AGENT-0 is suitable for modeling agents and MAS. We are not aware of papers on the
suitability of AGENT-0 or its extensions for verifying MAS specifications or implementing
real agent systems.

IMPACT’s main purpose is to allow the integration of heterogeneous information sources
and software packages. It has been used to develop real applications ranging from combat
information management where IMPACT was used to provide yellow pages matchmaking
services to aerospace applications where IMPACT technology has led to the development
of a multiagent solution to the “controlled flight into terrain” problem. The IADE environ-
ment provides support for monitoring the MAS evolution.

DyLOG is suitable for building agents acting, interacting and planning in dynamic envir-
onments. A web agent system called WLog has been developed using DyLOG to demon-
strate DyLOG’s potential in developing adaptative web applications as software agents.

In Fisher (1994) a range of sample applications of Concurrent METATEM utilizing both
the core features of the language and some of its extensions are discussed. They include
bidding, problem solving, process control, fault tolerance. Concurrent METATEM has the
potential of specifying and verifying applications in all of the areas above (Fisher and
Wooldridge, 1997), but it is not suitable for the development of real systems.
Ehhf can be used for MAS modeling and verification, as discussed in (Bozzano et al.,

1999a). It is not suitable for running autonomous agents in a real environment.

Time. In ConGolog time instants correspond directly with situations: s0 is the agent’s
situation at time 0, do([a1, . . . , an], s0) is the agent’s situation at time n. We can think of
a succession of situations as a discrete time line. Most temporal modalities as found in
temporal logics can be expressed in situation calculus using quantification over situations.

In AGENT-0 time is included in all the constructs of the language. The operations
allowed on time variables are only mathematical operations (sums and differences). When
programming an agent, it is possible to specify the time grain of its execution.

Time is a central issue in Concurrent METATEM specifications: there are a lot of time-
based operators (“since, until, in the next state, in the last state, sometime in the past,
sometime in the future, always in the past, always in the future”) which allow the definition
of complex timed expressions.

As far as the other languages are concerned, time does not appear in expressions of the
language, either explicitly or implicitly.

Sensing. DyLOG is the only language which provides an explicit construct for defining
actions which sense the value of a fluent. However all the languages allow perception of
values of atoms that are present in their knowledge base. Whether this knowledge base
correctly maintains a model of the environment or not, and thus whether it is possible
to “sense” the surrounding environment or not, depends on the given specification. In
our running example, all the agents maintain the information about the stored amount of
oranges locally in their knowledge bases. In practice this information should be obtained

478 V. Mascardi et al.

by physically sensing the environment (the warehouse, in this case), since nothing ensures
that the agent’s information is consistent with the environment state.

It is worthwhile to note that, in a certain sense, the IMPACT agent programming lan-
guage is the only one which really senses its (software) environment by means of the code
calls mechanism: this mechanism allows an agent to get information by accessing external
software packages.

We also note that, although the ConGolog language does not support sensing prim-
itives, IndiGolog does, and that sensing in the situation calculus is discussed by Reiter
(2001).

Concurrency. ConGolog provides different constructs for concurrent execution of pro-
cesses; these processes may be either internal to a single agent or may represent different
agents executing concurrently. Thus, ConGolog supports both concurrency of actions
inside an agent and concurrency of agents.

The same holds forEhhf , where it is possible to concurrently execute either goals internal
to a single agent or goals for activating different agents. As an example of the last case,
if different agents were characterized by a cycle like the one depicted for the seller agent,
it would be possible to prove a goal like agent1-cycle ‖ agent2-cycle ‖ ... ‖ agentN-cycle
meaning that agent1 to agentN are executed concurrently.

As far as IMPACT is concerned, it associates a body of code implementing a notion of
concurrency to each agent in the system, to specify how concurrent actions internal to the
agent must be executed. Concurrency among agents cannot be explicitly specified.

The converse situation takes place with Concurrent METATEM, where concurrency
of internal actions is not supported; a Concurrent METATEM specification defines a
set of concurrently executing agents which are not able to execute internal concurrent
actions.

Both DyLOG and AGENT-0 do not support concurrency at the language level.

Nondeterminism. ConGolog allows for nondeterministic choice between actions, non-
deterministic choice of arguments and nondeterministic iteration.

Nondeterminism in the IMPACT language derives from the fact that the feasible, rational
and reasonable status sets giving the semantics to agent programs are not unique, thus
introducing nondeterminism in the agent’s behavior.

In DyLOG and Ehhf nondeterminism is introduced, as in usual logic programming
settings, by the presence of more procedures (rules, in Ehhf) defining the same predicate.

The main source of nondeterminism in Concurrent METATEM is due to nondetermin-
istic temporal operators such as “sometime in the past”, “sometime in the future”, which
do not identify a specific point in time, but may be verified in a range of time points.

AGENT-0 does not seem to support any kind of nondeterministic behavior.

Agent knowledge. A ConGolog model can include the specification of the agents’ mental
states, i.e. what knowledge and goals they have, specified in a purely declarative way
(Shapiro et al., 1998). With respect to incomplete knowledge,

ConGolog can accommodate incompletely specified models, both in the sense that the initial
state of the system is not completely specified, and in the sense that the processes involved are
nondeterministic and may evolve in any number of ways (Lespérance and Shapiro, 1999).

Logic-based specification languages for intelligent software agents 479

AGENT-0 allows for expressing beliefs, capabilities, commitments, obligations. It does
not allow the representation of intentions, goals and desires and it does not support reas-
oning mechanisms in presence of incomplete knowledge or uncertainty. PLACA adds
intentions and plans to the data structures provided by AGENT-0.

Beliefs of IMPACT agents consist of the values returned by the packages accessed by
the agent by means of the code call mechanism. No intentions and desires are ascribed
to IMPACT agents: an IMPACT agent is characterized by its obligations, permissions,
prohibitions. Two extensions of basic IMPACT agent programs, namely probabilistic and
meta agent programs, can deal with uncertainty and beliefs about other agents beliefs,
respectively.

Beliefs of DyLOG agents are represented by the values of the functional fluents char-
acterizing the agent’s knowledge. These values range over true, false and unknown. The
“unknown” value allows DyLOG agents to reason in presence of incomplete knowledge, as
discussed by Baldoni et al. (2001). Agents can perform hypothetical reasoning on possible
sequences of actions by exploring different alternatives. Recent extensions allow DyLOG
agents to represent beliefs of other agents to reason about conversation protocols (Baldoni
et al., 2003a,b).

The beliefs of Concurrent METATEM agents in a given time point consist of the
set of predicates true in that time point. Adding deliberation and explicit beliefs to Con-
current METATEM agents is discussed in Fisher (1997) and the extension of Concurrent
METATEM agents with confidence is dealt with in Fisher and Ghidini (2002).

In Ehhf beliefs are represented by true facts. Goals are neither explicitly represented nor
maintained in persistent data structures during the agent execution: they are managed in the
usual way in a logic programming setting. Ehhf does not provide language constructs for
representing desires, intentions and other mental attitudes, but it may be adopted to model
a BDI architecture (Bozzano et al., 1999b).

Communication. The specification of communicative multiagent systems in ConGolog is
discussed in Shapiro et al. (1998). A meeting scheduler multiagent system example is used
to show in practice the proposed approach.

Among AGENT-0 language constructs, there are the INFORM, REQUEST and UNRE-
QUEST communicative actions which constitute a set of performatives upon which any
kind of communication can be built. Communication in AGENT-0 is quite rigid since,
for agent A to request an action to agent B it is necessary to know the exact syntax of
the requested action. The receiver agent has no means to understand the content of a
request and perform an action consequently, if the action to be performed is not exactly
specified as the content of the message itself. This is clearly a strong limitation, which
recent agent communication languages, such as KQML (Mayfield et al., 1995) and FIPA
ACL (Foundation for Intelligent Physical Agents, 2002) have partially addressed. The
integration of AGENT-0 and KQML proposed in Davies and Edwards (1994) aims at
making communication management in AGENT-0 more flexible.

The same limitation affecting AGENT-0 also affects Concurrent METATEM: every
agent has a communicative interface which the other agents in the system must know in
order to exchange information. Despite this limitation, Concurrent METATEM has been
proposed both as a coordination language (Kellett and Fisher, 1997b) and as a language

480 V. Mascardi et al.

for forming groups of agents where agents have the ability to broadcast messages to the
members of a group (Fisher and Kakoudakis, 2000; Fisher, 1998).

The IMPACT language does not provide communication primitives as part of the lan-
guage, but among the software packages an agent may access there is a msgbox package
providing message box functionalities. Messages can have any form, adhering to some
existing standard or being defined ad-hoc for the application.

In Baldoni et al. (2003b) DyLOG agents are enriched with a communication kit in-
cluding a primitive set of speech acts, a set of special “get message” actions and a set of
conversation protocols. Exchanged messages are based on FIPA ACL.

An agent behavior driven by the reception of a message and the verification of a condi-
tion on the current state can be easily modeled in Ehhf . In Bozzano et al. (1999a) the trans-
lation of rules “on receiving MessageIn check Condition update State send MessageOut”
into Ehhf is shown. Messages can have any form.

Team working. The attention devoted to teamwork in a MAS setting is quite recent. For
this reason, none of the languages discussed so far encapsulates explicit constructs for team
specification and programming. The developer can define protocols for forming teams and
she/he can try to program agents which respect the given protocol. According to the support
given to communication (previous paragraph), the task of defining such protocols may be
more or less difficult.

With respect to the six languages we analyzed in this paper, the only papers explicitly
addressing the problem of forming groups are by Fisher and Kakoudakis (2000) and Fisher
(1998) dealing with flexible grouping in Concurrent METATEM. In Concurrent META-
TEM, a group is essentially a set consisting of both agents and further sub-groups. The
basic properties of groups are that agents are able to broadcast a message to the members
of a group, add an agent to a group, ascertain whether a certain agent is a member of a
group, remove a specified agent from a group, and construct a new subgroup.

We are not aware of similar extensions of ConGolog, AGENT-0, IMPACT, DyLOG
and Ehhf .

Heterogeneity and knowledge sharing. Agents programmed in the same language have
the potential to interact without respecting any specific condition. Whether the agents will
interact or not depends on the correctness of their code with respect to the specification
of the application. Whatever the language used is, if agent A sends a message Message
to agent B and the code of agent B does not include rules (or imperative statements, or
clauses) for managing Message, A and B will not be able to engage in a dialog.

Among the six languages discussed in this paper, IMPACT is the most suitable one to
cope with heterogeneity of data sources. Any information source or software application
can be accessed through an IMPACT program, provided it is properly “agentified”. IM-
PACT can be seen as a programming layer providing a uniform access to heterogeneous
sources of information and applications.

The other five languages are not conceived for accessing heterogeneous data sources and
for integrating the information contained in the data sources: they provide no support for
these two tasks.

Logic-based specification languages for intelligent software agents 481

In all of the six languages, agents may take advantage of sharing the same ontology to
interact, but they are not forced to do so. To make an example, DyLOG agents can refer
to a common ontology contained in the domain knowledge. This approach is described
in Baldoni et al. (2003). However, it is also possible to develop DyLOG agents without
explicitly defining a common ontology. When developing a MAS, the developer has in
mind the ontology the agents will refer to. Although it is a good practice to make it explicit,
this is not compulsory to guarantee the MAS working.

Programming style. The constructs provided by ConGolog allow to mimic both goal-
directed reasoning (“if the current goal is G then call the procedure to achieve G”) and
reactiveness (“interrupt as soon as the condition C becomes true”).

AGENT-0 programming style is reactive: depending on the message received by the
agent and on its current beliefs, a commitment rule can be used.

IMPACT implements a forward reasoning mechanism: the interpreter looks for all the
action status atoms which are true with respect to the current state, the agent program and
the agent integrity constraints.

For DyLOG a goal directed proof procedure is defined, which allows to compute a query
from a given dynamic domain description.

Concurrent METATEM is defined as a language for modeling reactive systems (Fisher,
1993). Thus, reactiveness is the predominant feature of Concurrent METATEM agents.
Ehhf supports a Prolog-like goal-directed reasoning mechanism.
All of the six languages are flexible enough to specify/implement agents adhering to

different agent models.

Modularity. All the languages described in this paper support modularity at the agent level,
since they allow the definition of each agent program separately from the definition of the
other agents.

ConGolog and DyLOG both support the definition of procedures. In ConGolog these
procedures are defined by macro expansion into formulae of the situation calculus, while
in DyLOG they are defined as axioms in the dynamic modal logic.

AGENT-0 does not support the definition of procedures, even if in Section 6.3 of
(Shoham, 1993) macros are used for readability sake. The macro expansion mechanism
is not supported by the AGENT-0 implementation.
Ehhf supports the definition of procedures as logic programming languages do, by de-

fining rules for solving a goal.
Finally, IMPACT and Concurrent METATEM do not allow the definition of procedures.

Semantics. All the languages discussed in this survey, except for AGENT-0, have a formal
semantics.

Semantics of ConGolog is given as a transition semantics by means of the predicates
Final(δ, s) and Trans(δ, s, δ′, s′). The possible configurations that can be reached by a
program δ in situation s are those which are obtained by repeatedly following the trans-
ition relation starting from (δ, s) and which are final. Different interpreters for languages
extending or slightly modifying ConGolog have been proven correct with respect to the
intended semantics of the language. See, for example, De Giacomo et al. (2000), McIlraith
and Son (2002) and Son et al. (2001).

482 V. Mascardi et al.

There are three different semantics which can be associated with an IMPACT agent pro-
gram, given its current state and integrity constraints: the feasible, rational and reasonable
status set semantics. Reasonable status set semantics is more refined than the rational one,
which is more refined than the feasible one. All of them are defined as a set of action status
atoms of the form Do α(�t) that are true with respect to the agent program P, the current
state O and the set IC of underlying integrity constraints. In Eiter and Subrahmanian
(1999), algorithms for evaluating the semantics of arbitrary agent programs are proposed
and their complexity is evaluated; computing the reasonable status set semantics of a proper
subset of IMPACT agent programs, called regular agents, is possible in polynomial time,
as demonstrated in Eiter et al. (2000).

The logical characterization of DyLOG is provided in two steps. First, a multimodal
logic interpretation of a dynamic domain description which describes the monotonic part
of the language is introduced. Then, an abductive semantics to account for non-monotonic
behavior of the language is provided. DyLOG is defined by a proof procedure which is
sound and complete with respect to the Kripke semantics of modal logic.

The semantics of Concurrent METATEM is the one defined for the first-order temporal
logic FML. It is a Kripke-style semantics given by the |= relation that assigns the truth
value of a formula in a model M at a particular moment in time i and with respect to
a variable assignment. The soundness, completeness and termination of the resolution
procedure discussed in Fisher (1991) have been established.

The Ehhf operational semantics is given by means of a set of rules describing the way
sequents can be rewritten. According to the proof as computation interpretation of linear
logic, sequents represent the state of a computation. Soundness and completeness results
are established with respect to linear logic.

10 Related work

To the best of our knowledge, there are only few previous attempts to analyze and compare
a large set of logic-based formalisms and calculi for multiagent systems.

Some issues such as Kripke models and possible world semantics, Shoham’s AGENT-0,
Concurrent METATEM etc. are briefly surveyed in Wooldridge and Jennings (1995), but
not specifically in a logic-based perspective.

A discussion on the adoption of logic programming and non-monotonic reasoning for
evolving knowledge bases (and, more in general, for intelligent agents) can be found in
Leite (2003). The book focuses on logic programming for non-monotonic reasoning and
on languages for updates. It analyzes and compares LUPS (Alferes et al., 2002), EPI
(Eiter et al., 2001), and introduces their extensions KUL and KABUL. For some of the
languages discussed in Leite (2003) a working interpreter exists: see the Implementations
of Logic Programs Updates Home Page (2002) for details. We will shortly describe LUPS
and KABUL in the sequel as representative examples of languages of updates.

The work which shares more similarities with ours is the paper “Computational Lo-
gic and Multi-Agent Systems: a Roadmap” (Sadri and Toni, 1999). That paper discusses
different formalisms with respect to the representation of the agent’s mental state, the
agent life-cycle, the ability to communicate following complex interaction protocols and
the capability of representing and reasoning about other agents’ beliefs. The languages

Logic-based specification languages for intelligent software agents 483

and systems analyzed in Sadri and Toni’s roadmap include INTERRAP (Müller et al.,
1998; Jung and Fisher, 1997; Müller, 1996), 3APL (Hindriks et al., 1998a; Dastani et al.,
2003), and the work by many others (Kowalski and Sadri, 1999; Shanahan, 2000; Baral and
Gelfond, 2000; Pereira and Quaresma, 1998; Gelder et al., 1988; Dell’Acqua et al., 1998,
1999; Dell’Acqua and Pereira, 1999; Hindriks et al., 1999; Carbogim and Robertson, 1999;
Poole, 1997). Our paper complements Sadri and Toni’s survey because, apart from the
IMPACT language and part of the work on CaseLP which are also discussed by Sadri and
Toni, we analyze different languages and approaches from different perspectives. Sadri and
Toni mainly aim at putting in evidence the contribution of logic to knowledge representa-
tion formalisms and to basic mechanisms and languages for agents and MAS modeling.
Our paper analyzes a subset of logic-based executable languages whose main features
are their suitability for specifying agents and MASs and their possible integration in the
ARPEGGIO framework. We think that a researcher interested in logic-based approaches
to multiagent systems modeling and prototyping can find an almost complete overview in
reading both Sadri and Toni’s paper and ours.

Other relevant logic-based approaches that are dealt with neither in Sadri and Toni
(1999), nor in this work are ALIAS, LUPS, KABUL, AgentSpeak(L) and the KARO
framework. Given more time and space, they could fit in the picture and in the future
we would like to check the feasibility of incorporating some of them in the ARPEGGIO
framework.

ALIAS (Abductive LogIc AgentS (Ciampolini et al., 2003)) is an agent architecture based
on intelligent and social logic agents where the main form of agent reasoning is abduc-
tion. ALIAS agents can coordinate their reasoning with other agents following several
coordination schemas. In particular, they can either cooperate or compete in the solution of
problems. The ALIAS architecture is characterized by two separate layers: the lower layer
involves reasoning while the upper layer involves social behavior.

Agent reasoning is specified by abductive logic programs consisting of a set of clauses
Head :- Body, where Head is an atom and Body is a conjunction of literals (atoms and
negation of atoms), plus a set of abducible predicates and a set of integrity constraints.

Agent interaction and coordination is specified in a logic language named LAILA (Lan-
guage for AbductIve Logic Agents) suitable for modeling agent structures from the view-
point of social behavior. LAILA provides high-level declarative operators such as the com-
munication operator >, the competition operator ;, the collaboration operator & and a
down-reflection operator ↓ which allows a local abductive resolution to be triggered. The
operational semantics of LAILA is discussed in Ciampolini et al. (2003).

The distinguishing features of ALIAS consist of its support for (i) coordinating the
reasoning of agents at a high level of abstraction, (ii) explicitly referring to the hypothetical
reasoning capabilities of agents from within the language, and (iii) providing the tools to
maintain the system (or part of it) consistent with respect to the integrity constraints.

A prototypical version of ALIAS has been implemented on top of Jinni (Jinni Home
Page, 2003), a logic programming language extended with primitives for concurrent pro-
gramming.

The main difference between ALIAS and the six languages discussed in our paper lies in
the background logic upon which the languages are based: ALIAS is based on first-order

484 V. Mascardi et al.

logic while all the six languages discussed in this paper encapsulate features of linear,
modal or temporal extensions of first-order logic.

ALIAS shares with Concurrent METATEM and AGENT-0 the support for communic-
ation at the language level. However, the communication primitives provided by ALIAS,
associated with a semantics of collaboration and competition and with the local abductive
reasoning operator (down-reflection), are more expressive than those provided by Concur-
rent METATEM and AGENT-0 and more suitable for tackling problems that require the
coordination of agent reasoning in presence of incomplete knowledge.

The agent reasoning form (abduction) is a shared feature between ALIAS and DyLOG.

The language LUPS (“the language for dynamic updates” (Alferes et al., 2002)) is
based on a notion of update commands that allow the specification of logic programs. Each
command in LUPS can be issued in parallel with other LUPS commands and specifies an
update action, basically encoding the assertion or retraction of a logic program rule. An
extension to LUPS, EPI (“the language around” (Eiter et al., 2001)), introduces the ability
to access external observations and make the execution of programs dependent on both
external observations and concurrent execution of other commands. EVOLP (EVOlving
Logic Programs (Alferes et al., 2002)) integrates in a simple way the concepts of both
Dynamic Logic Programming and LUPS.

KABUL (Knowledge And Behavior Update Language (Leite, 2003)) overcomes some
limitations of LUPS. In particular, it allows the specification of updates that depend on
a sequence of conditions (“assert a rule R if some condition Cond1 is true after some
condition Cond2 was true”), delayed effects of actions, updates that should be executed
only once, updates that depend on the concurrent execution of other commands, updates
that depend on the presence or absence of a specific rule in the knowledge base, and
inhibition of a command. Moreover, with respect to LUPS, KABUL provides more flexible
means to specify updates that will occur in the future and to deal with effects of actions.

AgentSpeak(L) (Rao, 1996) is a programming language based on a restricted first
order language with events and actions. The behavior of the agent is dictated by the
programs written in AgentSpeak(L). The beliefs, desires and intentions of the agent are
not explicitly represented as modal formulae. The current state of the agent, which is a
model of itself, its environment and other agents, is viewed as its current belief state; states
which the agent wants to bring about based on its external or internal stimuli can be viewed
as desires; and the adoption of programs to satisfy such stimuli can be viewed as intentions.
An operational semantics of AgentSpeak(L) is provided, as well as the proof theory of the
language. AgentSpeak(XL) (Bordini et al., 2002) integrates a task scheduler into Agent-
Speak(L) to ensure an efficient intention selection. Hindriks et al. (1998b) demonstrate
that every agent which can be programmed in AgentSpeak(L) can be programmed in
the already cited 3APL language. Hindriks et al. (1998b) write that, in their opinion, the
converse (simulating 3APL by AgentSpeak(L)) is not feasible and thus they conjecture
that 3APL has strictly more expressive power than AgentSpeak(L). A simulation of
ConGolog by 3APL has also been provided (Hindriks et al., 2000) showing that 3APL
and ConGolog are closely related languages.

Logic-based specification languages for intelligent software agents 485

The framework KARO (Knowledge, Abilities, Results and Opportunities (van Linder
et al., 1995)) formalizes motivational attitudes situated at two different levels. At the asser-
tion level (the level where operators deal with assertions), preferences and goals are dealt
with. At the practition level (the level where operators range over actions) commitments
are defined. The main informational attitude of the KARO framework is knowledge. The
fact that agent i knows ϕ is represented by the formula Kiϕ and is interpreted in a Kripke-
style possible worlds semantics. At the action level results, abilities and opportunities are
considered. The abilities of an agent are formalized via the Ai operator: Aiα denotes the
fact that agent i has the ability to do α. Dynamic logic is used to formalize the notions
of opportunities and results. doi(α) refers to the performance of action α by the agent i.
The formula 〈doi(α)〉ϕ represents the fact that agent i has the opportunity to do α and
that doing α leads to ϕ. The formula [doi(α)]ϕ states that if the opportunity to do α is
indeed present, doing α results in ϕ. Starting from these basic attitudes, preferences, goals
and commitments can be modeled. Different methods for realizing automated reasoning
within agent-based systems modeled using the KARO framework are discussed in Hustadt
et al. (2001a, 2001b).

11 Conclusion

In this paper we have systematically analyzed and compared six logic-based and execut-
able MAS specification languages. Although these languages were chosen on the basis of
their potential to be integrated in the ARPEGGIO framework, they are an interesting and
representative set of formalisms based on extensions of first order logic. We have discussed
the logic-based formalisms upon which the languages are built to allow the reader to
understand the theoretical foundations of the languages. We have demonstrated the use
of these languages by means of an example, and we have compared them along twelve
dimensions. Finally, we have surveyed other approaches adopting computational logic for
MAS specification.

Various advantages in using logic-based approaches for modeling and prototyping agents
and MAS should emerge from this paper: as pointed out by Wooldridge and Jennings
(1995, Section 2), agents are often modeled in terms of mental attitudes such as beliefs,
desires, intentions, choices and commitments. The main advantage in using logic and
modal logic in particular for modeling intentional systems is that it allows to easily and
intuitively represent intentional notions without requiring any special training. The possible
world semantics usually adopted for modal languages has different advantages: it is well
studied and well understood, and the associated mathematics of “correspondence theory”
is extremely elegant. Formal languages that support temporal operators are a powerful
means for specifying sophisticated reactive agents in a succinct fashion. Moreover, since
agents are expected to act, languages based on formal theories of action such as dynamic
logic and the situation calculus are extremely suitable to model agents’ ability to perform
actions.

According to the observations above, if we compare logic languages and object-oriented
formalisms for the specification of agents we note that logic languages are more suitable
than object-oriented languages to model agents. According to Odell (2002), autonomy
and interaction are the key features which differentiate agents and objects. Autonomy has

486 V. Mascardi et al.

two independent aspects: dynamic autonomy and nondeterministic autonomy. Agents are
dynamic because they can exercise some degree of activity, rather than passively provid-
ing services. With respect to dynamic autonomy, agents are similar to active objects. By
means of the running example we have shown that logic-based languages are suitable for
expressing the active behavior of agents in a concise and simple way. Agents may also
employ some degree of unpredictable (or nondeterministic) behavior. We have shown that
all of the six languages analyzed in this paper support some kind of nondeterminism. The
“or” connective and the “exists” quantifier introduce a degree of nondeterminism to all the
languages based on first order logic. Interaction implies the ability to communicate with
the environment and other entities. Object messages (method invocation) can be seen as the
most basic form of interaction. A more complex degree of interaction would include those
agents that can react to observable events within the environment. And finally in multiagent
systems, agents can be engaged in multiple, parallel interactions with other agents. Logic-
based languages prove their suitability in modeling agents that react to an event (logical
implications of the form if the event E took place then something becomes true can be used
for this purpose) and to reason about sophisticated conversations.

The last consideration of our paper deals with the implementation of a MAS prototype:
we have seen that different languages among the ones we discussed have an interpreter
which extends logic programming in some way. Using a logic programming language for
MAS prototyping has different advantages:

• MAS execution: the evolution of a MAS consists of a nondeterministic succession
of events; from an abstract point of view a logic programming language is a non-
deterministic language in which computation occurs via a search process.

• Meta-reasoning capabilities: agents may need to dynamically modify their behavior
so as to adapt it to changes in the environment. Thus, the possibility given by logic
programming of viewing programs as data is very important in this setting.

• Rationality and reactiveness of agents: the declarative and the operational inter-
pretation of logic programs are strictly related to the main characteristics of agents,
i.e., rationality and reactiveness. In fact, we can think of a pure logic program as
the specification of the rational component of an agent and we can use the opera-
tional view of logic programs (e.g. left-to-right execution, use of non-logical pre-
dicates) to model the reactive behavior of an agent. The adoption of logic program-
ming for combining reactivity and rationality is described in Kowalski and Sadri
(1996).

Acknowledgements

We want to thank Marco Bozzano (ITC - IRST, Trento, Italy) and Giorgio Delzanno
(University of Genova, Italy) for their useful suggestions. We also thank Matteo Baldoni
(University of Torino, Italy), for his clarification on some aspects related with DyLOG and
Paolo Torroni (University of Bologna, Italy) for his support in the description of ALIAS
and LAILA. Finally we thank the anonymous referees for their comments which helped to
improve the paper.

Logic-based specification languages for intelligent software agents 487

References

ALCHOURRÓN, C. E. AND BULYGIN, E. 1971. Normative Systems. Springer-Verlag.

ALFERES, J. J., BROGI, A., LEITE, J. A. AND PEREIRA, L. M. 2002. Evolving logic programs.
In Proceedings of the 8th European Conference on Logics in Artificial Intelligence (JELIA’02),
S. Flesca, S. Greco, N. Leone and G. Ianni, Eds. Spriger-Verlag, 50–61. LNCS 2424.

ALFERES, J. J., PEREIRA, L. M., PRZYMUSINSKA, H. AND PRZYMUSINSKI, T. C. 2002. LUPS:
A language for updating logic programs. Artificial Intelligence 138, 1–2, 87–116.

ALICE HOME PAGE. 2000. http://www.di.unito.it/ ãlice/.

ÅQVIST, L. 1984. Deontic logic. In Handbook of Philosophical Logic, Vol II, D. M. Gabbay and
F. Guenther, Eds. Reidel, pp. 605–714.

ARISHA, K., EITER, T., KRAUS, S., OZCAN, F., ROSS, R. AND SUBRAHMANIAN, V. S. 1999.
IMPACT: A platform for collaborating agents. IEEE Intelligent Systems 14, 2, 64–72.

BALDONI, M. 1998. Normal multimodal logics: Automatic deduction and logic programming
extension. PhD thesis, Dipartimento di Informatica, Università degli Studi di Torino, Italy.

BALDONI, M., BAROGLIO, C., MARTELLI, A. AND PATTI, V. 2003a. Reasoning about conversation
protocols in a logic-based agent language. In Proceedings 8th National Conference of the Italian
Association for Artificial Intelligence (AIIA’03), A. Cappelli and F. Turini, Eds. Springer-Verlag.
LNAI 2829.

BALDONI, M., BAROGLIO, C., MARTELLI, A. AND PATTI, V. 2003b. Reasoning about self and
others: communicating agents in a modal action logic. In Proceedings 8th Italian Conference on
Theoretical Computer Science (ICTCS’03), R. Gorrieri, C. Blundo and C. Laneve, Eds. Springer-
Verlag. LNCS.

BALDONI, M., BAROGLIO, C. AND PATTI, V. 2003. Applying logic inference techniques for gaining
flexibility and adaptivity in tutoring systems. In Proceedings 10th International Conference on
Human–Computer Interaction (HICII’03), C. Stephanidis, Ed. Lawrence Erlbaum, pp. 517–521.

BALDONI, M., GIORDANO, L., MARTELLI, A. AND PATTI, V. 1997. An abductive proof procedure
for reasoning about actions in modal logic programming. In Proceedings of the 2nd International
Workshop on Non-Monotonic Extensions of Logic Programming (NMELP’96), J. Dix, L. M.
Pereira, and T. C. Przymusinski, Eds. Springer-Verlag, pp. 132–150. LNAI 1216.

BALDONI, M., GIORDANO, L., MARTELLI, A. AND PATTI, V. 1998. A modal programming
language for representing complex actions. In Proceedings DYNAMICS’98: Transactions and
Change in Logic Databases. Held in conjunction with the Joint International Conference and
Symposium on Logic Programming (JICSLP’98), pp.1–15. Technical Report MPI-9808, Uni-
versity of Passau. http://daisy.fmi.uni-passau.de/dynamics/workshop98/
proceedings.html.

BALDONI, M., GIORDANO, L., MARTELLI, A. AND PATTI, V. 2000. Modeling agents in a logic
action language. In Proceeding Workshop on Practical Reasoning Agents. Held in conjunction
with the International Conference on Formal and Applied Practical Reasoning (FAPR’00).
London, UK.

BALDONI, M., GIORDANO, L., MARTELLI, A. AND PATTI, V. 2001. Reasoning about complex
actions with incomplete knowledge: A modal approach. In Proceedings 7th Italian Conference on
Theoretical Computer Science (ICTCS’01), A. Restivo, S. Ronchi Della Rocca, and L. Roversi,
Eds. Springer-Verlag, pp. 405–425. LNCS 2202.

BARAL, C. AND GELFOND, M. 2000. Reasoning agents in dynamic domains. In Logic-based
Artificial Intelligence, J. Minker, Ed. Kluwer Academic, pp. 257–280.

BARRINGER, H., FISHER, M., GABBAY, D., GOUGH, G. AND OWENS, R. 1990. METATEM: A
framework for programming in temporal logic. In Proceedings 1989 REX Workshop on Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness, J. W. de Bakker, W. P. de
Roever and G. Rozenberg, Eds. Springer-Verlag, pp. 94–129. LNCS 430.

488 V. Mascardi et al.

BLASS, A. 1992. A game semantics for linear logic. Annals of Pure and Applied Logic 56, 183–220.

BORDINI, R. H., BAZZAN, A. L. C., DE O. JANNONE, R., BASSO, D. M., VICARI, R. M. AND

LESSER, V. R. 2002. AgentSpeak(XL): Efficient intention selection in BDI agents via decision-
theoretic task scheduling. In Proceedings 1st International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’02), C. Castelfranchi and W. L. Johnson, Eds. ACM
Press, pp. 1294–1302.

BOZZANO, M., DELZANNO, G. AND MARTELLI, M. 1997. A linear logic specification of
Chimera. In Proceedings DYNAMICS’97: (Trans)Actions and Change in Logic Programming
and Deductive Databases . Held in conjunction with the International Logic Programming Sym-
posium (ILPS’97). http://daisy.fmi.uni-passau.de/dynamics/workshop97/
schedule.html.

BOZZANO, M., DELZANNO, G., MARTELLI, M., MASCARDI, V. AND ZINI, F. 1999a. Logic
programming & multi-agent systems: A synergic combination for applications and semantics. In
The Logic Programming Paradigm: a 25-Year Perspective, K. Apt, V. Marek, M. Truszczynski
and D. Warren, Eds. Springer-Verlag, pp. 5–32.

BOZZANO, M., DELZANNO, G., MARTELLI, M., MASCARDI, V., AND ZINI, F. 1999b. Multi-
agent systems development as a software engineering enterprise. In Proceedings 1st International
Workshop on Practical Aspects of Declarative Languages (PADL’99), G. Gupta, Ed. Springer-
Verlag, pp. 46–60. LNCS 1551.

BUGLIESI, M., DELZANNO, G., LIQUORI, L. AND MARTELLI, M. 2000. Object calculi in linear
logic. Journal of Logic and Computation 10, 1, 75–104.

CARBOGIM, D. AND ROBERTSON, D. 1999. Contract-based negotiation via argumentation
(preliminary report). In Proceedings Workshop on Multi-Agent Systems in Logic Programming
(MAS’99). Held in conjunction with the 16th International Conference on Logic Programming
(ICLP’99). http://www.cs.sfu.ca/conf/MAS99/papers99.html.

CASTAÑEDA, H.-N. 1975. Thinking and Doing. The Philosophical Foundations of Institutions.
Reidel, Dordrecht.

CIAMPOLINI, A., LAMMA, E., MELLO, P., TONI, F. AND TORRONI, P. 2003. Co-operation and
competition in ALIAS: a logic framework for agents that negotiate. Annals of Mathematics and
Artificial Intelligence 37, 1–2, 65–91.

CIANCARINI, P. AND WOOLDRIDGE, M. 2000. Agent-oriented software engineering: The state
of the art. In Proceedings 1st International Workshop on Agent-Oriented Software Engineering
(AOSE’00), P. Ciancarini and M. Wooldridge, Eds. Springer-Verlag, pp. 1–28. LNCS 1957.

COGNITIVE ROBOTICS GROUP HOME PAGE. 2002. http://www.cs.toronto.edu/
cogrobo/.

DART, P., KAZMIERCKAZ, E., MARTELLI, M., MASCARDI, V., STERLING, L., SUBRAHMANIAN,
V. S. AND ZINI, F. 1999. Combining logical agents with rapid prototyping for engineering
distributed applications. In Proceedings 9th International Conference of Software Technology and
Engineering (STEP’99), S. Tilley and J. Verner, Eds. IEEE Computer Society Press, pp. 40–49.

DASTANI, M., VAN RIEMSDIJK, B., F. DIGNUM AND MEYER, J.-J. 2003. A programming
language for cognitive agents: Goal directed 3APL. In Proceedings 1st Workshop on Programming
Multiagent Systems: Languages, Frameworks, Techniques, and Tools (ProMAS03). Held in
conjunction with the 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’03). http://www.cs.uu.nl/ProMAS/acceptedpapers.html.

DAVIES, W. H. AND EDWARDS, P. 1994. Agent-K: An integration of AOP & KQML. In
Proceedings Workshop on Intelligent Information Agents. Held in conjunction with the 3rd
International Conference on Information and Knowledge Management (CIKM’94), T. Finin and
Y. Labrou, Eds.

DE GIACOMO, G., LESPÉRANCE, Y., LEVESQUE, H. AND SARDIÑA, S. 2002. On the
semantics of deliberation in IndiGolog – from theory to implementation. In Proceedings 8th

Logic-based specification languages for intelligent software agents 489

International Conference in Principles of Knowledge Representation and Reasoning (KR’02),
D. Fensel, F. Giunchiglia, D. L. McGuinness, and M. A. Williams, Eds. Morgan Kaufmann,
pp. 603–614.

DE GIACOMO, G., LESPÉRANCE, Y. AND LEVESQUE, H. J. 2000. Congolog, a concur-
rent programming language based on the situation calculus. Artificial Intelligence 121,
109–169.

DELL’ACQUA, P. AND PEREIRA, L. M. 1999. Updating agents. In Proceedings Workshop on
Multi-Agent Systems in Logic Programming (MAS’99). Held in conjunction with the 16th
International Conference on Logic Programming (ICLP’99). http://www.cs.sfu.ca/
conf/MAS99/papers99.html.

DELL’ACQUA, P., SADRI, F. AND TONI, F. 1998. Combining introspection and communication with
rationality and reactivity in agents. In Proceedings 6th European Workshop on Logics in Artificial
Intelligence (JELIA’98), J. Dix, L. Fariñas del Cerro, and U. Furbach, Eds. Springer-Verlag,
pp. 17–32. LNAI 1489.

DELL’ACQUA, P., SADRI, F. AND TONI, F. 1999. Communicating agents. In Pro-
ceedings Workshop on Multi-Agent Systems in Logic Programming (MAS’99). Held in
conjunction with the 16th International Conference on Logic Programming (ICLP’99).
http://www.cs.sfu.ca/conf/MAS99/papers99.html.

DELZANNO, G. 1997. Logic & object-oriented programming in linear logic. PhD thesis, Università
di Pisa, Dipartimento di Informatica. Technical Report TD 2/97.

DELZANNO, G. AND MARTELLI, M. 2001. Proofs as computations in linear logic. Theoretical
Computer Science 258, 1–2, 269–297.

DENNETT, D. C. 1987. The Intentional Stance. MIT Press.

DIX, J., MUNOZ-AVILA, H. AND NAU, D. 2003. IMPACTing SHOP: Putting an AI planner into a
Multi-Agent Environment. Annals of Mathematics and AI 4, 37, 381–407.

EHHF FTP AREA. 1998. ftp://ftp.disi.unige.it/person/BozzanoM/Terzo/.

EITER, T., FINK, M., SABBATINI, G. AND TOMPITS, H. 2001. A framework for declarative update
specifications in logic programs. In Proceedings of the 17th International Conference on Artificial
Intelligence (IJCAI’01), B. Nebel, Ed. Morgan Kauffmann, pp. 649–654.

EITER, T., MASCARDI, V. AND SUBRAHMANIAN, V. S. 2002. Error-Tolerant Agents. In
Computational Logic: Logic Programming and Beyond – Essays in Honour of Robert A. Kowalski,
Part I, A. Kakas and F. Sadri, Eds. Springer-Verlag, pp. 586–625. LNAI 2407.

EITER, T. AND SUBRAHMANIAN, V. S. 1999. Heterogeneous active agents, II: Algorithms and
complexity. Artificial Intelligence 108, 1–2, 257–307.

EITER, T., SUBRAHMANIAN, V. S. AND PICK, G. 1999. Heterogeneous active agents, I: Semantics.
Artificial Intelligence 108, 1–2, 179–255.

EITER, T., SUBRAHMANIAN, V. S. AND ROGERS, T. 2000. Heterogeneous active agents, III:
Polynomially implementable agents. Artificial Intelligence 117, 1, 107–167.

ESHGHI, K. AND KOWALSKI, R. 1989. Abduction compared with negation as failure. In
Proceedings 6th International Conference on Logic Programming (ICLP’89), G. Levi and
M. Martelli, Eds. MIT Press, pp. 234–254.

FINGER, M., FISHER, M. AND OWENS, R. 1993. METATEM at work: Modelling reactive systems
using executable temporal logic. In Proceedings 6th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE’93), P. Chung,
G. L. Lovegrove, and M. Ali, Eds. Gordon and Breach Publishing, 209–218.

FINGER, M., MCBRIEN, P. AND OWENS, R. 1991. Databases and executable temporal logic. In
Proceedings of the Annual ESPRIT Conference 1991, Comission of the European Communities,
Ed. 288–302.

490 V. Mascardi et al.

FISHER, M. 1990. Implementing a prototype METATEM interpreter. Technical report, Department
of Computer Science, University of Manchester. SPEC Project Report.

FISHER, M. 1991. A resolution method for temporal logic. In Proceedings 12th International
Joint Conference on Artificial Intelligence (IJCAI’91), J. Mylopoulos and R. Reiter, Eds. Morgan
Kaufmann, pp. 99–104.

FISHER, M. 1992. A normal form for first-order temporal formulae. In Proceedings 11th
International Conference on Automated Deduction (CADE’92), D. Kapur, Ed. Springer-Verlag,
pp. 370–384. LNCS 607.

FISHER, M. 1993. Concurrent METATEM – A language for modeling reactive systems. In
Proceedings 5th International Conference on Parallel Architectures and Language, Europe
(PARLE’93), A. Bode, M. Reeve, and G. Wolf, Eds. Springer-Verlag, pp. 185–196. LNCS 694.

FISHER, M. 1994. A survey of Concurrent METATEM – the language and its applications. In
Proceedings 1st International Conference on Temporal Logic (ICTL’94), D. M. Gabbay and H. J.
Ohlbach, Eds. Springer-Verlag, pp. 480–505. LNCS 827.

FISHER, M. 1997. Implementing BDI-like systems by direct execution. In Proceedings 15th
International Joint Conference on Artificial Intelligence (IJCAI’97). Morgan Kaufmann, pp. 316–
321.

FISHER, M. 1998. Representing abstract agent architectures. In Proceedings 5th International
Workshop on Agent Theories, Architectures, and Languages (ATAL’98), J. P. Müller, M. P. Singh
and A. S. Rao, Eds. Springer-Verlag, pp. 227–241. LNAI 1555.

FISHER, M. AND BARRINGER, H. 1991. Concurrent METATEM processes – A language for
distributed AI. In Proceedings of the 1991 European Simulation Multiconference, E. Mosekilde,
Ed. SCS Press.

FISHER, M. AND GHIDINI, C. 1999. Programming resource-bounded deliberative agents. In
Proceedings 16th International Joint Conference on Artificial Intelligence (IJCAI’99), T. Dean,
Ed. Morgan Kaufmann, pp. 200–205.

FISHER, M. AND GHIDINI, C. 2002. The ABC of rational agent programming. In Proceedings
1st International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02),
C. Castelfranchi and W. L. Johnson, Eds. ACM Press, pp. 849–856.

FISHER, M. AND KAKOUDAKIS, T. 2000. Flexible agent grouping in executable temporal logic.
In Intensional Programming II (ISPLIP’99), M. Gergatsoulis and P. Rondogiannis, Eds. World
Scientific.

FISHER, M. AND OWENS, R. 1995. An introduction to executable modal and temporal logics. In
Proceedings Workshop on Executable Modal and Temporal Logics. Held in conjunction with the
13th International Joint Conference on Artificial Intelligence (IJCAI’93), M. Fisher and R. Owens,
Eds. Springer-Verlag, pp. 1–20. LNAI 897.

FISHER, M. AND WOOLDRIDGE, M. 1993. Executable temporal logic for distributed AI. In
Proceedings 12th International Workshop of Distributed AI (IWDAI’93), K. Sycara, Ed. pp. 131–
142.

FISHER, M. AND WOOLDRIDGE, M. 1997. On the formal specification and verification of multi-
agent systems. International Journal of Cooperative Information Systems 6, 1, 37–65.

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS. 2002. FIPA ACL message structure specific-
ation. Approved for standard, 2002-12-06. http://www.fipa.org/specs/fipa00061/.

GELDER, A. V., ROSS, K. A. AND SCHLIPF, J. S. 1988. Unfounded sets and the well-founded
semantics for general logic programs. In Proceedings of the 7th ACM Symposium on Principles of
Database Systems. ACM Press, 221–230.

GIORDANO, L., MARTELLI, A. AND SCHWIND, C. 1998. Dealing with concurrent actions in modal
action logic. In Proceedings 13th European Conference on Artificial Intelligence (ECAI’98),
H. Prade, Ed. Wiley, pp. 537–541.

Logic-based specification languages for intelligent software agents 491

GIORDANO, L., MARTELLI, A. AND SCHWIND, C. 2000. Ramification and causality in a modal
action logic. Journal of Logic and Computation 10, 5, 626–662.

GIRARD, J. Y. 1987. Linear logic. Theoretical Computer Science 50, 1, 1–102.

HINDRIKS, K., LESPERANCE, Y. AND LEVESQUE, H. 2000. An embedding of ConGolog in 3APL.
In Proceedings of the 14th European Conference on Artificial Intelligence (ECAI’00), W. Horn,
Ed. IOS Press, pp. 558–562.

HINDRIKS, K. V., DE BOER, F. S., VAN DER HOEK, W. AND MEYER, J.-J. C. 1998a. Control
structures of rule-based agent languages. In Proceedings 5th International Workshop on Agent
Theories, Architectures, and Languages (ATAL’98), J. P. Müller, M. P. Singh, and A. S. Rao, Eds.
Springer-Verlag, pp. 381–396. LNAI 1555.

HINDRIKS, K. V., DE BOER, F. S., VAN DER HOEK, W. AND MEYER, J.-J. C. 1998b. A formal
embedding of AgentSpeak(L) in 3APL. In Advanced Topics in Artificial Intelligence, G. Antoniou
and J. Slaney, Eds. Springer-Verlag, pp. 155–166. LNAI 1502.

HINDRIKS, K. V., DE BOER, F. S., VAN DER HOEK, W. AND MEYER, J.-J. C. 1999.
Semantics of communicating agents based on deduction and abduction. In Proceedings Workshop
on Agent Communication Languages. Held in conjuction with the 16th International Joint
Conference on Artificial Intelligence (IJCAI’99), F. Dignum and B. Chaib-draa, Eds. pp. 105–
118.

HIRSCH, B., FISHER, M. AND GHIDINI, C. 2002. Organising logic-based agents. In Proceedings
Second NASA/IEEE Goddard Workshop on Formal Approaches to Agent-Based Systems (FAABS
II).

HOHFELD, W. N. 1913. Fundamental legal conceptions as applied to judicial reasoning. Yale Law
Journal 23, 16–59.

HUSTADT, U., DIXON, C., SCHMIDT, R. A., FISHER, M., MEYER, J.-J. AND VAN DER HOEK,
W. 2001a. Reasoning about agents in the KARO framework. In Proceedings 8th International
Symposium on Temporal Representation and Reasoing (TIME’01), C. Bettini and A. Montanari,
Eds. IEEE Computer Society, pp. 206–213.

HUSTADT, U., DIXON, C., SCHMIDT, R. A., FISHER, M., MEYER, J.-J. AND VAN DER HOEK, W.
2001b. Verification within the KARO agent theory. In Proceedings 1st International Workshop on
Formal Approaches to Agent-Based Systems (FAABS’00), J. L. Rash, C. A. Rouff, W. Truszkowski,
D. Gordon and M. G. Hinchey, Eds. Springer-Verlag, pp. 33–47. LNAI 1871.

IMPLEMENTATIONS OF LOGIC PROGRAMS UPDATES HOME PAGE. 2002. http://centria.
di.fct.unl.pt/ j̃ja/updates/.

JENNINGS, N., SYCARA, K. AND WOOLDRIDGE, M. 1998. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems 1, 7–38.

JINNI HOME PAGE. 2003. http://www.binnetcorp.com/Jinni/.

JUAN, T., MARTELLI, M. MASCARDI, V., AND STERLING, L. 2003a. Creating and reusing AOSE
features. http://www.cs.mu.oz.au/ t̃lj/CreatingAOSEFeatures.pdf.

JUAN, T., MARTELLI, M., MASCARDI, V. AND STERLING, L. 2003b. Customizing AOSE
methodologies by reusing AOSE features. In Proceedings 2nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’03), J. S. Rosenschein, T. Sandholm,
M. Wooldridge and M. Yokoo, Eds. ACM Press, pp. 113–120.

JUNG, C. G. AND FISHER, K. 1997. A layered agent calculus with concurrent, continuous processes.
In Proceedings 4th International Workshop on Agent Theories, Architectures, and Languages
(ATAL’97), M. P. Singh, A. Rao, and M. Wooldridge, Eds. Springer-Verlag, pp. 245–258. LNAI
1365.

KELLETT, A. AND FISHER, M. 1997a. Automata representations for concurrent MET-
ATEM. In Proceedings 4th International Workshop on Temporal Representation and
Reasoning (TIME’97). IEEE Press, 12–19. http://www.computer.org/proceedings/
time/7937/7937toc.htm.

492 V. Mascardi et al.

KELLETT, A. AND FISHER, M. 1997b. Concurrent METATEM as a coordination language.
In Proceedings 2nd International Conference on Coordination Languages and Models
(COORDINATION’97), D. Garlan and D. Le Métayer, Eds. Springer-Verlag, pp. 418–421. LNCS
1282.

KOWALSKI, R. AND SADRI, F. 1996. Towards a unified agent architecture that combines rationality
with reactivity. In Proceedings International Workshop on Logic in Databases (LID’96),
D. Pedreschi and C. Zaniolo, Eds. Springer-Verlag, pp. 137–149. LNCS 1154.

KOWALSKI, R. AND SADRI, F. 1999. From logic programming towards multi-agent systems. Annals
of Mathematics and Artificial Intelligence 25, 3/4, 391–491.

KOZEN, D. AND TIURYN, J. 1990. Logics of programs. In Handbook of Theoretical Computer
Science. Volume B, J. van Leeuwen, Ed. pp. 789–840.

KRIPKE, S. 1963a. Semantical analysis of modal logic I. Normal propositional calculi. Zeitschrift
fur math. Logik und Grundlagen der Mathematik 9, 67–96.

KRIPKE, S. 1963b. Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94.

KRIPKE, S. 1965. Semantical analysis of modal logic II. Non-normal modal propositional calculi.
In The theory of models, Addison, Henkin, and Tarski, Eds. North-Holland, pp. 206–220.

LEGOLOG HOME PAGE. 2000. http://www.cs.toronto.edu/cogrobo/Legolog/
index.html.

LEITE, J. A. 2003. Evolving Knowledge Bases – Specification and Semantics. IOS Press. Frontiers
in Artificial Intelligence and Applications 81.

LESPÉRANCE, Y. AND SHAPIRO, S. 1999. On agent-oriented requirements engineering (position
paper). In Proceedings 1st Workshop on Agent-Oriented Information Systems (AOIS’99).
http://www.aois.org/99/PositionPapers.html.

LEVESQUE, H., PIRRI, F. AND REITER, R. 1998. Foundations for the situation calculus. Linköping
Electronic Articles in Computer and Information Science 3, 18.

LEVESQUE, H. J. AND PAGNUCCO, M. 2000. Legolog: Inexpensive experiments in
cognitive robotics. In Proceedings Second International Cognitive Robotics Workshop
(CogRob2000). Held in conjunction with the 14th European Conference on Artificial Intelligence
(ECAI’00). http://www-i5.informatik.rwth-aachen.de/LuFG/cogrob2000/
AcceptedPapers.html.

LEVESQUE, H. J., REITER, R., LESPÉRANCE, Y., LIN, F. AND SCHERL, R. B. 1997. Golog: A
logic programming language for dynamic domains. Journal of Logic Programming 31, 59–84.

MARCU, M., LESPÉRANCE, Y., LEVESQUE, H. J., LIN, F., REITER, R. AND SCHERL,
R. 1995. Distributed software agents and communication in the situation calculus. In
Proceedings International Workshop on Intelligent Computer Communication (ICC’95), pp. 69–
78. ftp://ftp.cs.toronto.edu/pub/cogrob/distribagents.ps.Z.

MARINI, S., MARTELLI, M., MASCARDI, V. AND ZINI, F. 2000. Specification of heterogeneous
agent architectures. In Proceedings 7th International Workshop on Agent Theories, Architectures,
and Languages (ATAL’00), C. Castelfranchi and Y. Lespérance, Eds. Springer-Verlag, pp. 275–
289. LNAI 1986.

MARTELLI, M., MASCARDI, V. AND ZINI, F. 1999a. A logic programming framework
for component-based software prototyping. In Proceedings 2nd International Workshop on
Component-based Software Development in Computational Logic (COCL’99), A. Brogi and
P. Hill, Eds.

MARTELLI, M., MASCARDI, V. AND ZINI, F. 1999b. Specification and simulation of multi-
agent systems in CaseLP. In Proceedings 1999 Joint Conference on Declarative Programming
(AGP’99), M. C. Meo and M. Vilares-Ferro, Eds. pp. 13–28.

MASCARDI, V. 2002. Logic-based specification environments for multi-agent systems. PhD thesis,
Computer Science Department of Genova University, Genova, Italy. DISI-TH-2002-04.

Logic-based specification languages for intelligent software agents 493

MAYFIELD, J., LABROU, Y. AND FININ, T. 1995. Evaluation of KQML as an agent communication
language. In Proceedings 2nd International Workshop on Agent Theories, Architectures, and
Languages (ATAL’95), M. Wooldridge, J. P. Müller and M. Tambe, Eds. Springer-Verlag, pp. 347–
360. LNAI 1037.

MCCARTHY, J. 1963. Situations, actions and causal laws. Technical report, Stanford University.
(Reprinted in Semantic Information Processing, M. Minsky Ed., MIT Press, 1968, pp. 110–117.)

MCILRAITH, S. AND SON, T. C. 2002. Adapting Golog for composition of semantic web services.
In Proceedings 8th International Conference in Principles of Knowledge Representation and
Reasoning (KR’02), D. Fensel, F. Giunchiglia, D. L. McGuinness, and M. A. Williams, Eds.
Morgan Kaufmann, pp. 482–496.

MEYER, J.-J. C. AND WIERINGA, R. J. 1993. Deontic logic in Computer Science. Wiley.

MILLER, D. 1996. Forum: A multiple-conclusion specification logic. Theoretical Computer
Science 165, 1, 201–232.

MÜLLER, J. P. 1996. The Design of Autonomous Agents – A Layered Approach. Springer-Verlag.
LNAI 1177.

MÜLLER, J. P., FISCHER, K. AND PISCHEL, M. 1998. A pragmatic BDI architecture. In Readings
in Agents, M. N. Huhns and M. P. Singh, Eds. Morgan Kaufman, pp. 217–225.

ODELL, J. 2002. Objects and agents compared. Journal of Object Technology 1, 1, 41–53.

ODELL, J., PARUNAK, H. V. D. AND BAUER, B. 2000a. Extending UML for agents. In Proceedings
2nd Workshop on Agent-Oriented Information Systems (AOIS’00). Held in conjunction with 17th
National conference on Artificial Intelligence (AAAI’00), G. Wagner, Y. Lespérance, and E. Yu,
Eds. pp. 3–17.

ODELL, J., PARUNAK, H. V. D. AND BAUER, B. 2000b. Representing agent interaction protocols
in UML. In Proceedings 1st International Workshop on Agent-Oriented Software Engineering
(AOSE’00), P. Ciancarini and M. Wooldridge, Eds. Springer-Verlag, pp. 121–140. LNCS 1957.

OWRE, S., RAJAN, S., RUSHBY, J. M., SHANKAR, N. AND SRIVAS, M. K. 1996. PVS: Combining
specification, proof checking, and model checking. In Proceedings Computer-Aided Verification,
CAV’96, R. Alur and T. A. Henzinger, Eds. Springer-Verlag, pp. 411–414. LNCS 1102.

PEREIRA, L. M. AND QUARESMA, P. 1998. Modelling agent interaction in logic programming. In
Proceedings 11th International Conference on Applications of Prolog (INAP’98), S. Fukuda, Ed.

PETRIE, C. J. 2000. Agent-based software engineering. In Proceedings 1st International Workshop
on Agent-Oriented Software Engineering (AOSE’00), P. Ciancarini and M. Wooldridge, Eds.
Springer-Verlag, pp. 59–76. LNCS 1957.

PIRRI, F. AND REITER, R. 1999. Some contributions to the metatheory of the situation calculus.
Journal of the ACM 46, 325–361.

POOLE, D. 1997. The independent choice logic for modelling multiple agents under uncertainty.
Artificial Intelligence 94, 1–2, 7–57.

RAO, A. S. 1996. AgentSpeak(L): BDI agents speak out in a logical computable language. In
Agents Breaking Away, W. V. de Velde and J. W. Perram, Eds. Springer-Verlag, pp. 42–55. LNAI
1038.

RAO, A. S. AND GEORGEFF, M. 1995. BDI agents: from theory to practice. In Proceedings
1st International Conference on Multi Agent Systems (ICMAS’95), V. Lesser, Ed. AAAI Press,
pp. 312–319.

REITER, R. 2001. On knowledge-based programming with sensing in the situation calculus. ACM
Transactions on Computational Logic (TOCL) 2, 4, 433–457.

SADRI, F. AND TONI, F. 1999. Computational logic and multi-agent systems: a roadmap. Technical
report, Department of Computing, Imperial College, London.

SHANAHAN, M. P. 2000. Reinventing Shakey. In Logic-Based Artificial Intelligence, J. Minker, Ed.
Kluwer Academic, pp. 233–253.

494 V. Mascardi et al.

SHAPIRO, S., LESPÉRANCE, Y. AND LEVESQUE, H. J. 1998. Specifying communicative
multi-agent systems. In Agents and Multi-Agent Systems – Formalisms, Methodologies, and
Applications, W. Wobcke, M. Pagnucco and C. Zhang, Eds. Springer-Verlag, pp. 1–14. LNAI
1441.

SHAPIRO, S., LESPÉRANCE, Y. AND LEVESQUE, H. J. 2002. The cognitive agent specification
language and verification environment for multiagent systems. In Proceedings 1st International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02), C. Castelfranchi
and W. L. Johnson, Eds. ACM Press, pp. 19–26.

SHOHAM, Y. 1993. Agent-oriented programming. Artificial Intelligence 60, 51–92.

SON, T. C., BARAL, C. AND MCILRAITH, S. 2001. Extending answer set planning with sequence,
conditional, loop, non-deterministic choice, and procedure constructs. In Proceedings AAAI
Spring Symposium on Answer Set Programming: Towards Efficient and Scalable Knowledge
Representation and Reasoning, A. Provetti and T. C. Son, Eds. AAAI Press, pp. 202–209.

SUBRAHMANIAN, V., BONATTI, P., DIX, J., EITER, T., KRAUS, S., ÖZCAN, F. AND ROSS, R.
2000. Heterogenous Active Agents. MIT Press.

THE TEAMCORE RESEARCH GROUP HOME PAGE. 2003. http://teamcore.usc.edu/
tambe/agent.html.

THOMAS, S. R. 1995. The PLACA agent programming language. In Proceedings 1st International
Workshop on Agent Theories, Architectures, and Languages (ATAL’94), M. Wooldridge and N. R.
Jennings, Eds. Springer-Verlag, pp. 355–370. LNCS 890.

VAN LINDER, B., VAN DER HOEK, W. AND MEYER, J.-J. C. 1995. Formalising motivational
attitudes of agents: On preferences, goals and commitments. In Proceedings 2nd International
Workshop on Agent Theories, Architectures, and Languages (ATAL’95), M. Wooldridge, J. P.
Müller and M. Tambe, Eds. Springer-Verlag, pp. 17–32. LNAI 1037.

VON WRIGHT, G. H. 1951. Deontic logic. Mind 60, 1–15. (Reprinted in G. H. von Wright, Logical
Studies, pp. 58–74. Routledge and Kegan Paul, 1957.)

WEISS, G. 1999. Multiagent Systems – A Modern Approach to Distributed Artificial Intelligence.
MIT Press.

WOOLDRIDGE, M. 2000. Reasoning about Rational Agents. MIT Press.

WOOLDRIDGE, M. AND JENNINGS, N. R. 1995. Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10, 2, 115–152.

ZINI, F. 2000. CaseLP, a rapid prototyping environment for agent-based software. PhD thesis,
Computer Science Department of Genova University, Genova, Italy. DISI-TH-2001-03.

