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The truncated Wigner and positive-P phase-space representations are used to study the dynamics of a
one-dimensional Bose gas. This allows calculations of the breathing quantum dynamics of higher-order
solitons with 103 − 105 particles, as in realistic Bose-Einstein condensation experiments. Although
classically stable, these decay quantum mechanically. Our calculations show that there are large nonlocal
correlations and nonclassical quantum entanglement.

DOI: 10.1103/PhysRevLett.122.203604

A classical soliton [1,2] is a nondispersive pulse caused
by the balance of dispersion and nonlinearity in a nonlinear
wave. Their initial shape can be maintained during propa-
gation. Higher-order classical solitons have additional
spatiotemporal oscillations. Time invariant quantum sol-
itons can exist [3,4], but are completely delocalized in
phase and in space. When a coherent soliton is prepared
that is classically invariant, quantum effects change the
soliton shape. These have been theoretically predicted
[5–7] and experimentally verified [8–11].
Higher-order solitons have attracted much recent inter-

est, since their quantum fluctuations can become macro-
scopically large [12–16]. This leads to a macroscopic
quantum initiated decay with fragmentation into multiple
condensates, reminiscent of the decay of a false vacuum in
scalar quantum field theory [17]. In this Letter, we show
that these quantum effects are accompanied by nonlocal
dynamical correlations, which occur even before the soliton
decays. These fluctuations are largest for a Bose-Einstein
condensate soliton formed at mesoscopic particle number.
This may be testable in proposed experiments [15] in
bosonic 7Li, with 103 − 104 Bose condensed atoms. These
correlations survive to very large particle number, and we
obtain measurable predictions even for small density
changes.
One-dimensional (1D) attractive Bose gases form a

bright soliton in photonic [18] and Bose-Einstein conden-
sate environments [19–21]. The classical description is
known in optics as the nonlinear Schrödinger equation, and
in atomic physics as the Gross-Pitaevskii equation [22–24].
This equation uses a mean-field approximation equivalent
to assuming that operator products are factorizable. In order
to include the full quantum properties, beyond mean-field
methods are needed that include correlations, allowing

predictions of rich quantum features. These provide tests of
many-body quantum dynamics in a controlled, experimen-
tally accessible environment.
An early prediction in photonic systems was the gen-

eration of quantum squeezing and entanglement [5,6] in
one-dimensional bright solitons, verified experimentally in
photonic experiments [8,9,11]. More recently, there has
been interest in the quantum dynamical evolution of higher-
order solitons, which oscillate periodically in space at the
mean-field level. They can be generated from a funda-
mental soliton with a sech envelope by a rapid increase in
the coupling constant. In atomic gases, this is obtainable
through a Feshbach resonance to give a stronger coupling
regime with fewer particles than in photonics. Other
related studies include a mean-field treatment of quenches
[25] and static quantum treatments of solitons in potential
wells [26].
Here we use quantum phase space methods to analyze a

quench experiment in which the full many-body quantum
state is sampled probabilistically, allowing a calculation of
the dynamical evolution of nonlocal correlation functions.
These are good indicators of entanglement and possible
Bell violations in Bose-Einstein condensation (BEC) sys-
tems [27–31]. The main technique used is a truncated
Wigner (TW) method [32] that employs a 1=N expansion
for N particles, with N ¼ 103–105, and a Poissonian
number variance. The general approach has been verified
through accurate predictions of quantum squeezing in
optical fiber solitons [5,6,33]. All the local conservation
laws of the bright BEC soliton system are preserved [34].
We also confirm these results using the exact positive-P
and complex-P phase-space representations [35] up to the
first oscillation peak, and with pure number state initial
conditions.
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The density dynamics, but not correlations, have
been calculated previously. An approximate variational
prediction [13] using the many-body multiconfigurational
time-dependent Hartree for bosons method (MCTDHB)
predicted a sudden fragmentation into two equal fragments.
Later work [14] pointed out that this MCTDHB approxi-
mation failed to predict the known center-of-mass variance
growth. This is because the calculation used only two
modes, while there are seven or more condensate modes
present [16]. Other methods using exact eigenstates [15] or
the density matrix renormalization group approximation
[36] have several orders of magnitude fewer particles.
For Bose gases strongly confined in a one-dimensional

waveguide along the r direction with a transverse trapping
frequency ω⊥, the Hamiltonian in the occupation number
representation is given by

Ĥ1D ¼
Z

dr

�
−ℏ2

2m
Ψ̂† ∂2

∂r2 Ψ̂þ g
2
Ψ̂†2Ψ̂2

�
; ð1Þ

where Ψ̂ðrÞ is a one-dimensional quantum field operator.
The total many-body Hamiltonian includes two-body s-

wave collisions where g ¼ 2ℏaω⊥ is the interaction
strength. This is tunable, since the s-wave scattering length
a is a function of the external magnetic field via a Feshbach
resonance [37]. Taking a characteristic length scale r0,
particle number N, and timescale t0 where r20 ¼ ℏt0=2m,
the length, time, and field operator are transformed into
dimensionless form where z ¼ r=r0, τ ¼ t=t0, and
ψ̂ðzÞ ¼ Ψ̂

ffiffiffiffiffiffiffiffiffiffiffi
r0=N

p
. The interaction strength g is also trans-

formed into a scaled quantity C ¼ mgr0N=ℏ2. The corre-
sponding Hamiltonian [3,38] for a system of dimensionless
length L is

ĥ ¼
Z

L

0

dz½−ψ̂†ðzÞ∇2
z ψ̂ðzÞ þ Cψ̂†2ðzÞψ̂2ðzÞ�: ð2Þ

We assume an initial coherent state [39] for the BEC,
which has a Poissonian distribution of particle numbers.
This is a good approximation to the lowest observed
experimental BEC number fluctuations in small conden-
sates of 103 particles [40]. In the Wigner representation, the
field operator ψ̂ðzÞ is replaced by an appropriately scaled
stochastic field ψ ∼ ψ̂ [6,41,42], which in a symmetrically
ordered mapping is initially

ψðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
n0ðzÞ

p
þ 1ffiffiffi

2
p ηðzÞ: ð3Þ

Here ηðzÞ is a complex number with correlations
hηðzÞηðz0Þi ¼ 0 and hηðzÞη�ðz0Þi ¼ δðz − z0Þ= ffiffiffiffi

N
p

, while
n0ðzÞ ¼ hψ̂†ðzÞψ̂ðzÞi. An alternative approach is to use
the positive-P representation [5,35], which is exact, equiv-
alent to normal ordering, and has two stochastic fields
ψ ;ψþ with initial values ψðzÞ ¼ ψþðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

n0ðzÞ
p

.

The Bose gas is assumed to initially have a soliton size
that corresponds to a weakly attractive interaction C ¼ −2,
with n0ðzÞ ¼ sech2ðzÞ=2. At time τ ¼ 0, a rapid change of
interaction strength is activated by changing the coupling to
C ¼ −8. These parameters are chosen to be the same as that
of earlier studies [13,14,16]. This is equivalent to an
experimental system of photons or atoms with an inter-
action quench which increases the interaction strength by a
factor of 4, e.g., using a Feshbach resonance in the atomic
case [21].
The resulting quantum dynamical equation of motion in

the TW representation is

dψ
dτ

¼ i∇2
zψ − 2iCψðjψ j2 − 2ϵÞ þOð1=NÞ; ð4Þ

where ϵ ¼ 1=ð2NΔzÞ is an ordering correction for a
computational lattice spacing of Δz. The Oð1=NÞ term
represents higher-order differential operators in the phase-
space evolution equations, which are neglected here.
The quantum time-evolution dynamical equations in the

positive-P case are [5]

dψ
dτ

¼ i∇2
zψ − 2iCψþψ2 − i

ffiffiffiffiffiffiffiffi
2iC

p
ψηðτ; zÞ;

dψþ

dτ
¼ −i∇2

zψ þ 2iCψþ2ψ −
ffiffiffiffiffiffiffiffi
2iC

p
ψþηþðτ; zÞ; ð5Þ

with independent complex Gaussian stochastic noises
η; ηþ, having nonvanishing correlations

hηðτ; zÞηðτ0; z0Þi ¼ hηþðτ; zÞηþðτ0; z0Þi
¼ δðτ − τ0Þδðz − z0Þ= ffiffiffiffi

N
p

: ð6Þ

The partial differential equations were solved using an
interaction picture fourth-order Runge-Kutta method, using
two different public-domain software packages [43,44],
with identical results. Most results given here use the
approximate TW method, as it has much lower sampling
error for long times in this system. These were replicated up
to the first oscillation peak with the positive-P equations, as
a check on the method.
A similar calculation has been performed in

Refs. [16,34]. This demonstrated that all four local con-
servation laws are satisfied in the simulations. The time
evolution of the density of the classical soliton system near
the center (z ¼ 0) oscillates with constant period. However,
the true quantum condensate fragments into smaller Bose
condensates. Thus, the soliton gradually breaks up, causing
quantum fluctuations on macroscopic scales.
Here we investigate the quantum correlations caused by

this instability, and their behavior in the largeN limit. To do
this we investigate soliton experiments with different
number of particles N while keeping C constant, so the
classical results are the same due to the scaling factor used
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to define the dimensionless fields. We note that the
characteristic 1=N scaling of the quantum noise terms
leads to the expectation that quantum noise driven insta-
bilities will occur more slowly at larger particle number.
Defining ni ¼ nðziÞ≡ jψðziÞj2, the measurable quantum

correlations are given by the second-order intensity corre-
lationGð2Þðz1; z2Þ ¼ N2hψ̂†ðz1Þψ̂†ðz2Þψ̂ðz2Þψ̂ðz1Þi [45]. In
terms of the Wigner ensemble averages, this is

Gð2Þðz1;z2Þ¼N2hn1n2−ϵð1þδz1z2Þ½n1þn2− ϵ�iW: ð7Þ

The normalized correlation function is given by

gð2Þðz1; z2Þ ¼
hψ̂†ðz1Þψ̂†ðz2Þψ̂ðz2Þψ̂ðz1Þi

hn̂ðz1Þihn̂ðz2Þi
; ð8Þ

where we note that the product of annihilation and creation
operators is expressed in terms of the Wigner representa-
tion, so that the scaled number density is

hn̂ðzÞi ¼ hψ̂†ðzÞψ̂ðzÞi ¼ hnðzÞiW − ϵ: ð9Þ

The normalized correlation function is used to observe
the bunching ½gð2Þðz;zÞ>1� and antibunching ½gð2Þðz;zÞ<1�
amplitude of the soliton. According to the contour plot
displayed in Fig. 1, for the N ¼ 103 system, the 1D BEC
soliton develops a strong bunching region with peaks of
gð2Þ increasing from ∼1.1 at τ ¼ 1.0 [Fig. 1 (top)] to ∼2 at
τ ¼ 5.0 [Fig. 1 (bottom)].
When using the normally ordered positive-P represen-

tation, the normally ordered averages require no ordering
corrections. In this case, we define ni ≡ ψþðziÞψðziÞ, and
one finds that Gð2Þðz1; z2Þ ¼ N2hn1n2iP, and hn̂ðzÞi ¼
hnðzÞiP. This method has no N-dependent truncation,
which allows us to confirm that truncation errors are negli-
gible in the Wigner predictions, at least up to the first peak.
Figure 2 shows complete agreement of the two simulations
with N ¼ 1000, for gð2ÞðΔzÞ≡ gð2ÞðΔz=2;−Δz=2Þ. This
gives nonlocal anticorrelations and correlations at the first
peak, occurring at τ ¼ π=8.
At larger N values of N ¼ 105, the peak value of gð2Þ is

significantly reduced to ∼1.1 at τ ¼ 5.0, which appears to
give a weaker bunching within the soliton. Figures 3 and 4
show the time evolution of the nonlocal correlation,
gð2ÞðΔz=2;−Δz=2Þ at different times, for N ¼ 103 and
N ¼ 105, respectively. These graphs show that the strong-
est correlations occur near the peak intensities and are
almost unchanged with particle number. What changes
with N is the width in time of these correlations, as they
remain strong for a much longer time with smaller particle
number. The large anticorrelations at long times show that
fragmentation occurs to a highly asymmetric output, with a
much larger fragment occurring at þz than at −z, or vice
versa, leading to strongly negative correlations relative to
the vacuum level.

FIG. 1. Normalized second-order correlation gð2Þðz1; z2Þ for
N ¼ 103 at τ ¼ 1.0 (top) and τ ¼ 5.0 (bottom). Here C ¼ −8 and
L ¼ 20. Simulations have M ¼ 512 modes, 9 × 104 trajectories,
and 9 × 104 time steps. The contour plots show the region within
z ¼ �1.78. The diagonal axis shows the local correlation
gð2Þðz̄; z̄Þ, with z̄ ¼ ðz1 þ z2Þ=2. The antidiagonal axis shows
the nonlocal correlation gð2Þðz1; z2Þ where z1 ¼ −z2. The maxi-
mum sampling error is 10−2 and the maximum time-step
error is 10−6.

FIG. 2. Normalized second-order correlation gð2ÞðΔzÞ≡
gð2ÞðΔz=2;−Δz=2Þ for N ¼ 103, τ ¼ π=8, C ¼ −8. Simulations
have M ¼ 512 modes, 9 × 104 trajectories, and 9 × 104 time
steps. Graphs compare calculations with the truncated Wigner
(TW) method and exact positive-P representations, showing
complete agreement within the width of the graphed lines.
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Next, we ask are these simply classical correlations,
or do they have nonclassical, quantum features?
Classical correlations obey the Cauchy-Schwarz in-
equality (CSI), which in terms of the second-order corre-
lation functions, Gð2Þðz1; z2Þ ¼ N2h∶n̂ðz1Þn̂ðz2Þ∶i ¼
N2hψ̂†ðz1Þψ̂†ðz2Þψ̂ðz2Þψ̂ðz1Þi, is given by

Gð2Þðz1; z2Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð2Þðz1; z1ÞGð2Þðz2; z2Þ

q
: ð10Þ

Quantum correlations have been demonstrated with matter
waves using violations of the Cauchy-Schwarz inequality

[27]. One can introduce a correlation coefficient CCSI ¼
Gð2Þðz1; z2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð2Þðz1; z1ÞGð2Þðz2; z2Þ

q
to demonstrate that

the system possesses nonlocal fluctuations that are stronger

than any possible classical fluctuations, when CCSI > 1
[27,30,45,46]. For a system of identical bosons, the CSI is
violated if the coefficient CCSI is greater than unity. A
violation also implies that entanglement exists [47]. In our
simulations, we find small CSI violations (of order 10−3 at
most) which may not be observable but are nonetheless
suggestive of entanglement.
In fact, we are able to illustrate the existence and origin

of a very strong entanglement directly associated with the
nonlocal correlations, given the BEC is a pure state. For a
laboratory-prepared BEC, this is a good approximation. If
we label the states for locations with x < 0 and x ≥ 0 as
jψ−i and jψþi, respectively, then entanglement exists
between the subsystems at the two locations if it is not
possible to write the state in the factorized form
jψi ¼ jψ−ijψþi. Owing to super-selection rules for mas-
sive bosons [48,49], the pure state for the system is in an
eigenstate of total particle number Ntot ¼ N− þ Nþ, N�
being the particles with x ≷ 0. Hence, in terms of
number states jni� for the two locations, as
jψNi ¼

P
N
n¼0;1;:: cnjni−jN − niþ, where cn are probability

amplitudes. We see that there is always entanglement
unless only one cn is nonzero, in which case the number
difference ΔN ¼ N̂þ − N̂− is constant. Hence, a nonzero
variance in the number-difference ΔN is an immediate
proof of entanglement.
A typical number-difference variance result is shown in

Fig. 5, using the exact complex P-representation method

FIG. 3. Time evolution of the normalized second-order corre-
lation gð2ÞðΔzÞ, where N ¼ 103, C ¼ −8, and L ¼ 20. Simu-
lations with M ¼ 512 modes, 9.6 × 104 trajectories, and 9 × 104

time steps. These contours correspond to the correlation along the
antidiagonal axis in Fig. 1 which represent the nonlocal corre-
lation. The maximum sampling error is around 0.2% of gð2ÞðΔzÞ.

FIG. 4. Time evolution of the normalized second-order corre-
lation gð2ÞðΔzÞ, with N ¼ 105. Other parameters as in Fig. 3.
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FIG. 5. Time evolution of the normalized number-difference
variance, hðΔNÞ2i=N, with N ¼ 5 × 103, demonstrating creation
of an entanglement due to states more widely separated in number
difference with time. Here, hΔNi ¼ 0. The simulations haveM ¼
256 modes, with 5 × 104 trajectories and 104 time steps. The two
lines plotted are the �σ bounds due to the finite sampling error.
The solid lines use a pure initial number state and the exact
complex-P representation. An initial Poissonian state gives
virtually identical results, using either an exact positive-P
integration (dashed lines), or the approximate Wigner method
(dotted lines).
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with an initial pure number state. There is a small and
nearly unobservable entanglement even initially, due to the
nonlocal character of a pure Fock state. This rapidly
grows by more than an order of magnitude at the first
density maximum. Noting that hΔNi ¼ 0, the dramati-
cally increasing variance in ΔN with time indicates
an increased weighting in the entangled state jψNi of
states with a broader range of number difference ΔN.
The associated entropy of entanglement given by S ¼
−
P

nPðnÞ log2 ½PðnÞ� where PðnÞ ¼ jcnj2 is also nonzero,
but thus does not give information about the relative
contributions of the states with different ΔN.
The calculation was carried out efficiently with a

complex von Mises distribution for the initial P-function,
as recently used to analyze boson sampling experiments
[50,51]. These results also agree within sampling error with
quantum simulations from a Poissonian initial condition,
using either an exact positive-P or TW method.
Figure 6 shows how the normalized variance changes on

much longer timescales. The approximate TW method is
used for this, as the other methods have large sampling
errors on long timescales. The two results plotted have N
values that differ by a factor of 5, but nearly scale-invariant
normalized correlations.
To summarize, our quantum dynamical calculations

predict very strong nonlocal anticorrelations in 1D BEC
soliton breathers as they fragment. The oscillatory decay of
the nonlocal correlation depends on the particle number N,
with the position and the amplitude of the correlation peak
being relatively stable at large N, but with a reduced
peak width. There is also an extremely strong nonlocal

entanglement, as demonstrated by an exact positive-P
simulation using both number state and Poissonian initial
conditions. We interpret this as a generation of entangled,
correlated pairs of daughter solitons, which starts to occur
as soon as the first peak. At subsequent peaks we find that
the correlation becomes even stronger, indicating that it
should be readily observable.
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