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ABSTRACT
The mass evaporation rate of globular clusters evolving in a strong Galactic tidal field is derived
through the analysis of large, multimass N-body simulations. For comparison, we also study
the same evaporation rates using MOCCA Monte Carlo models for globular cluster evolution.
Our results show that the mass evaporation rate is a dynamical value, that is, far from a constant
single number found in earlier analytical work and commonly used in the literature. Moreover,
the evaporation rate derived with these simulations is higher than values previously published.
These models also show that the value of the mass evaporation rate depends on the strength
of the tidal field. We give an analytical estimate of the mass evaporation rate as a function
of time and galactocentric distance ξ (RGC, t). Upon extrapolating this formula to smaller
RGC values, our results provide tentative evidence for a very high ξ value at small RGC. Our
results suggest that the corresponding mass-loss in the inner Galactic potential could be high
and it should be accounted for when star clusters pass within it. This has direct relevance to
nuclear cluster formation/growth via the infall of globular clusters through dynamical friction.
As an illustrative example, we estimate how the evaporation rate increases for an ∼105 M�
globular cluster that decays through dynamical friction into the Galactic Centre. We discuss
the findings of this work in relation to the formation of nuclear star clusters by inspiralling
globular clusters.
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1 IN T RO D U C T I O N

A more detailed examination of the evaporation rate of globular
clusters (ξ ) obtained through modern N-body models is granted
given that the value of ξ is often used. A recent example is the work
of Gnedin, Ostriker & Tremaine (2014) that uses the evaporation
rate in their study of nuclear star cluster formation through the inspi-
ralling of globular clusters into the galactic nuclei. The evaporation
rate is also used by Gieles, Heggie & Zhao (2011) in their study of
the evolution of star clusters in a tidal field.

Ambartsumian (1938) and Spitzer (1940) established a dimen-
sionless evaporation rate ξ that takes the following expression:

ξ ≡ − trh

M

dM

dt
(1)

where trh is the half-mass relaxation time given by

trh = 0.14N

ln �

√
r3

hm

GM
, (2)
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where � = 0.4N is the argument of the Coulomb logarithm, N is
the number of stars, M the globular cluster mass, G the gravitational
constant and rhm the half-mass radius (Spitzer & Hart 1971). We
should note that for single mass models, M is proportional to N.

Initial estimates of ξ were obtained analytically by Ambartsum-
ian (1938), who found ξ = 0.0074 and later by Hénon (1961), who
found ξ = 0.045. Spitzer & Chevalier (1973) recalculate the value
of ξ and find that this quantity is dependent on the ratio between
the tidal radius and the half-mass radius rt/rhm. Spitzer & Chevalier
(1973) find ξ = 0.015 and ξ=0.05 for different rt/rhm ratios.

Lee & Goodman (1995) carried out a detailed study of the evap-
oration rate for post-collapse globular clusters using a multimass
Fokker–Planck code. They find that the mass-loss rate ξ is roughly
constant for most of the evolution of the globular cluster – their
fig. 1.

While the publications cited above are among those that estab-
lished the foundations of star cluster dynamics, their results were
none the less obtained making several approximations. Among the
simplifications used are star clusters in isolation, that is, free from
tidal interactions, star clusters with single-mass stars, just schematic
stellar evolution and star clusters in the steady post core-collapse
regime.
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The reality underlying cluster evaporation and mass-loss, how-
ever, is much more complicated than these pioneering works cited
above fully addressed. For example, the inclusion of realistic stellar
evolution and the associated mass-loss breaks the one-to-one con-
nection between mass-loss and evaporation, since stars can reduce
their masses due to stellar evolution without actually evaporating
from the cluster.

We have now the ability to accurately simulate globular clus-
ters throughout an entire Hubble time of evolution. Baumgardt &
Makino (2003) performed a series of N-body models of globular
clusters in tidal fields using NBODY4. These models were used to
show that stellar evolution plays an important role in the mass-loss
rate of globular clusters, particularly during the early stages of their
lifetimes. Baumgardt & Makino (2003) also showed how the exter-
nal tidal field plays a crucial role in determining the dissolution time
for globular clusters. Other studies have addressed different envi-
ronmental effects on cluster disruption and mass-loss such as bulge
and disc shocking (Gnedin & Ostriker 1997) and radial anisotropy
(Leigh et al. 2013; Webb, Sills & Harris 2013; Brockamp et al.
2014; Webb et al. 2014).

Hong et al. (2013) make a distinction between the evaporation
rate of single and multimass models of globular clusters, i.e. ξ (N)
�= ξ (M). Hong et al. (2013) use a definition of the mass evaporation
rate ξ (M) that we adopt here. The mass evaporation rate that we
refer through this paper is not limited to evaporation of stars from
two body interactions. Our dimensionless mass evaporation rate
includes all mechanisms of mass-loss. Our method folds into a
single ξ parameter all physical processes of mass-loss such as tidal
interactions with the host galaxy, stellar evolution, relaxation-driven
mass-loss, etc.

Gieles & Baumgardt (2008) studied the escape rate of stars from
tidally limited star clusters with different radii. The main differ-
ences between this work and the work of Gieles & Baumgardt
(2008) are that our simulations include stellar evolution, primordial
binaries and a more advanced description of the tidal field. Gieles &
Baumgardt (2008) assumed a point mass potential. Also, for multi-
mass models, star-loss rates and mass-loss rates are not equivalent,
we show this in the following sections.

Here, we study the dimensionless mass-loss rates using a more so-
phisticated treatment for the Galactic potential than adopted in pre-
vious studies, with an emphasis on the inner regions of the Galaxy.
In our simulations, the galactic potential is modelled with three dis-
tinct components: bulge, disc and halo. The additive gravitational
force of each of these three components is computed for each star
of the simulation.

In this work, we derive the value of ξ for globular clusters in
a strong tidal field using mainly N-body simulations, but we also
use the Monte Carlo code MOCCA, which provides results with min-
imal computational expense, as well as a detailed stellar evolution
prescription.

Throughout this work, we consider a Hubble time to be 13.8 Gyr,
in agreement with the latest cosmological findings of the Planck
Collaboration XIII (2016).

2 A S I M U L AT E D G L O BU L A R C L U S T E R
E VO LV I N G I N A ST RO N G TI DA L F I E L D

In this section, we describe the codes used to simulate globular
cluster evolution. We begin with the N-body simulations before
moving on to describe the Monte Carlo models, since our focus

Table 1. Parameters of simulated star clusters.

Label RGC N Mi Code

1 4 kpc 200k 1.3 × 105 M� NBODY6
2 4 kpc 200k 1.3 × 105 M� NBODY6
3 4 kpc 100k 6.3 × 104 M� NBODY6
4 6 kpc 100k 6.3 × 104 M� NBODY6
5 8 kpc 100k 6.3 × 104 M� NBODY6
6 10 kpc 100k 6.3 × 104 M� NBODY6
7 20 kpc 100k 6.3 × 104 M� NBODY6
8 50 kpc 100k 6.3 × 104 M� NBODY6
9 4 kpc 200k 1.3 × 105 M� MOCCA

10 50 kpc 100k 6.3 × 104 M� MOCCA

in this paper is the former. The Monte Carlo models are meant to
complement and compare the results of our N-body simulations.

2.1 N-body simulations

2.1.1 Models setup

An up-to-date version of the code NBODY6 is used to carry out the
simulations (Aarseth 1999). This version includes the gravitational
potential of a Milky Way–type galaxy (Aarseth 2003). The Galactic
potential is modelled using a bulge mass of MB = 1.5 × 1010 M�
and disc mass of MD = 5 × 1010 M�. The geometry of the disc
is modelled following the formulae of Miyamoto & Nagai (1975)
with the following scale parameters a = 4.0 kpc and b = 0.5 kpc.
A logarithmic halo is included such that the circular velocity is
200 km s−1 at 8.0 kpc from the Galactic Centre. The tidal field
generated by the host galaxy is taken into account for the calculation
of the equations of motion of all stars within the simulated globular
cluster. Our simulations begin when all the stars in the globular
cluster are formed, all residual gas removed and the cluster is in a
stable orbit around its host galaxy. The initial velocity distribution
of stars follows virial equilibrium.

The simulations were run on Graphic Processing Units (GPUs),
specifically NVIDIA Tesla C2070 cards mounted on the GPU Su-
percomputer for Theoretical Astrophysics Research at Swinburne
University (gSTAR). The setup of these models has previously been
described in detail in Madrid, Hurley & Sippel (2012) and Madrid,
Hurley & Martig (2014).

We define a escape radius for stars as it was previously defined in
Madrid et al. (2012, 2014). That is, stars are lost from the simulation
when they have positive energy and when their distance to the centre
of the cluster exceeds two tidal radii. The tidal radius (von Hoerner
1957) is a dynamical quantity, which is in turn we define using the
approximation of Küpper et al. (2010):

rt �
(

GMC

2�2

)1/3

. (3)

where � is the angular velocity.

2.1.2 Initial conditions

In this section, we describe a series of N-body models with a large
number of star particles, i.e. N = 200 000 (labels 1 and 2, Table 1).
5 per cent of these stars are in binary systems, that is, a total of 10 000
stars are binaries. These simulations are among the largest direct N-
body simulations carried out to the present day (Heggie 2011, 2014;
Wang et al. 2016). Each model takes about 2 months to be completed
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running on one GPU. Simulations with even larger numbers of
particles and initial masses would need much more computing time,
since this time-scale is proportional to N∼2−3, where N is the number
of particles.

These simulations are multimass N-body models that follow the
prescriptions of the Kroupa (2001) initial mass function (IMF). This
IMF and N = 200 000 yields an initial mass of M = 1.3 × 105 M�.
The minimum stellar mass is Mmin = 0.1 M� and the maximum
stellar mass is Mmin = 50 M�. NBODY6 includes stellar and binary
evolution (Hurley, Pols & Tout 2000; Hurley, Tout & Pols 2002).

The initial spatial distribution of the globular cluster follows a
Plummer (1911) model and the initial metallicity is Z = 0.001.
We should note that the Plummer model is an idealized spatial
distribution altered during the first evolutionary steps by the host
galaxy tidal field and internal dynamical evolution. The simulated
globular cluster analysed in this section was set to evolve at a
galactocentric distance of Rgc = 4 kpc. At this distance from the
Galactic Centre, the simulated globular cluster experiences a strong
tidal field that is the additive gravitational potential of bulge and
disc (Madrid et al. 2014).

The initial half-mass radius is rhm = 6.2 pc, a slightly extended
cluster, and the initial tidal radius according to the standard formula
is ∼52 pc, with the cluster tidally filling at birth. Stars are allowed
to have orbits that go beyond the tidal radius and then return to the
star cluster. As mentioned before, stars are only removed from the
simulation when their orbits exceed more than two tidal radii.

As formulated in Madrid et al. (2014), our simulated star clusters
have an initial inclination of ∼22.◦5 with respect of the disc. With
this inclination, star clusters are simulated in a general orbit as
opposed to a specific co-planar or perpendicular inclination with
respect of the disc. The initial inclination we use also implies that
the star cluster has a maximum height of 2 kpc that is similar to the
disc scale-height.

In the interest of reducing numerical uncertainties, simulations
were carried out twice (labels 1 and 2, Table 1) with a different seed
number for the random number generator used in the distributions
that describe the initial masses, positions and velocities of the stars.
Results of the otherwise identical simulations are then averaged.

2.2 Monte Carlo simulations

2.2.1 Models setup

An up-to-date version of the MOCCA code is used to carry out the
Monte Carlo simulations for globular cluster evolution (Giersz et al.
2013; Hypki et al. 2013). The gravitational potential of the Milky
Way is modelled with a much simpler point-mass, with a total mass
equal to that of the enclosed Galaxy mass at the cluster’s Galacto-
centric distance RGC from the Galactic Centre. We should note that
at equal host galaxy mass and equal galactocentric distance, the
tidal field is stronger in a point mass potential than with a logarith-
mic potential. All orbits through the Galactic potential are circular
within the MOCCA framework.

The simulations were performed on a PSK2 cluster at the Nico-
laus Copernicus Astronomical Centre in Poland. Each simulation
is run on one CPU. The cluster is based on AMD (Advanced
Micro Devices, Inc.) Opteron processors with 64-bit architecture
(2–2.4 GHz). The setup of these models has previously been de-
scribed in detail in Giersz et al. (2013) and Leigh et al. (2013).

The MOCCA code treats the escape process in tidally limited clus-
ters in a realistic manner as it is described in Fukushige & Heggie
(2000). Here, the escape of an object from the system is not instan-

taneous but delayed in time. As was pointed out in Fukushige &
Heggie (2000) and Baumgardt (2001), the process of escape from
a cluster in a steady tidal field is complex. Some stars that fulfill
the energy criterion for escape (i.e. the condition that the energy of
the star exceeds the critical energy) can still be trapped inside the
potential well. Some of those stars can be scattered back to lower
energies before they escape from the system. These two factors
cause the cluster lifetime to scale non-linearly with relaxation time
for tidally limited clusters Baumgardt (2001), in contrast to what
would be expected from the standard theory, see details in Giersz
et al. (2013). The MOCCA simulation results are presented in Fig. 5.
To minimize the statistical fluctuations connected with generation
of the MOCCA initial models (labels 9 and 10, Table 1), we used
exactly the same masses, positions and velocities as for the N-body
runs (labels 1 and 2, Table 1).

3 MA S S E VA P O R AT I O N R AT E

Previous studies cited above consider the evaporation rate as a
constant value during the entire lifetime of a globular cluster. As
pointed out by Takahashi & Portegies Zwart (2000), the value of the
evaporation rate in the calculations of Lee & Goodman (1995) is
always less than 1 (ξ < 1) due to the absence of stellar evolution. In
the models of Lee & Goodman (1995), the evaporation rate increases
with time from ∼0.002 at the beginning of the globular cluster
lifetime to ∼0.05. After the cluster has evolved for ∼30 per cent of
its lifetime, the evaporation rate derived by Lee & Goodman (1995)
asymptotes to a constant value of ∼0.05 until the cluster fully
dissolves. The results of the N-body and MOCCA models performed
for this study show that the behaviour of the mass evaporation rate
for a cluster under a substantial tidal field varies over time and
cannot be approximated by a constant single value, as shown in the
top panel of Fig. 1. As mentioned above in the introduction, our
dimensionless mass evaporation rate folds into a single parameter
all mechanisms of mass-loss.

When stellar evolution is included in the mass evaporation rate,
as we do here, ξ reaches its highest values at the beginning of the
globular cluster lifetime and then decreases, which is the opposite
of the results presented by Lee & Goodman (1995).

The initial value of the mass evaporation rate for the models
represented in Fig. 1 is ξ = 6.9. The mass-loss induced by stellar
evolution rapidly tapers off within the first Gyr of the star cluster
lifetime and the evaporation rate decreases to ξ < 1 before 500 Myr.

The mass evaporation rate reaches its lowest value of ξ = 0.07
after a Hubble time of evolution, see Fig. 1 top panel. Even at its
lowest value, ξ is higher than some previous analytical estimates
(Hénon 1961; Lee & Goodman 1995). The much higher value of ξ

is due to the realistic modelling of the tidal field and the inclusion
of stellar evolution in the simulations.

The mass evaporation rate plotted in Fig. 1 reflects the different
dominant regimes of mass-loss a globular cluster undergoes: mass-
loss due to stellar evolution and mass-loss owing to tidal interac-
tions and internal dynamics (Lamers, Baumgardt & Gieles 2010;
Kruijssen et al. 2012; Leigh et al. 2012a).

Lamers et al. (2010) find three different phases of mass-loss
for star clusters: (a) mass-loss dominated by stellar evolution, (b)
mass-loss dominated by ‘dissolution’ or dynamical effects and (c)
the third phase being after core collapse. Our models are in good
agreement with the results of Lamers et al. (2010). In particular,
we find good agreement on the rapid and early mass-loss due to
stellar evolution. We also agree on the second phase of mass-loss
being dominated by tidal interactions and dynamical processes.
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Figure 1. Mass evaporation rate (top panel) and the two physical values used in equation (1): mass-loss rate (middle panel) and half-mass relaxation time
(bottom panel). The mass evaporation rate ξ of a globular cluster in a strong tidal field varies over time: an initial rapid decrease due to stellar evolution is
followed by a linear decay phase. This figure uses the average values from models 1 and 2 (Table 1).

This second phase is fitted with a power law by Lamers et al.
(2010) similar to what we describe and fit as a linear decay. A
difference with the work of Lamers et al. (2010) is that the simulated
globular clusters discussed in this section do not reach core collapse
during a Hubble time of evolution. Core collapse is actually reached
at 15 Gyr.

The mass evaporation rate and the first time derivative of the total
globular cluster mass (dM/dt) have a bump at ∼1.3 Gyr. This bump
is due to stellar evolution processes. At 1.3 Gyr is when the main-
sequence turn-off mass is ∼1.8 M� for a metallicity of Z = 0.001
(Pols et al. 1998). This is significant because it is the mass at which
stars switch from having non-degenerate to degenerate cores on the
giant branch. Thus, post-giant branch time-scales change and the
stellar mass-loss rate changes. Also, for any binary interactions that
strip giant envelopes, the resulting star will now be a helium white
dwarf instead of going through a naked helium star phase, which
also affects the amount of mass-loss (Hurley et al. 2000, 2002).

The evolution of the half-mass relaxation time closely follows that
of the half-mass radius. For example, the early increase in trh is the
result of an initial expansion phase for the cluster. Stellar evolution
is the main driver of mass-loss during the early lifetime of globular

clusters. Rapid mass-loss causes, in turn, a reduced gravitational
pull resulting in an expansion. For tidally filling clusters, after the
initial expansion, the half-mass radius steadily decreases as the tidal
radius of the cluster decreases and in turn we see trh decreasing. A
detailed study of the size scale of star clusters is given in Madrid
et al. (2012).

NBODY6 properly accounts for the important effects of disc shock-
ing when the star cluster is formed and settled in a stable orbit
(Madrid et al. 2014). However, the early effects of impulsive shocks
in the gas-rich progenitor galaxy (Kruijssen 2015) or the interac-
tions of the star cluster with giant molecular clouds are not modelled
in the current version of NBODY6. More sophisticated hydrodynamic
simulations are needed to properly parametrize this correction to
the dimensionless mass-loss rate.

What is the dependence of the mass evaporation rate on the
initial mass of the star cluster? We can briefly address this ques-
tion by comparing the two models with different initial masses
(1.3 × 105 M� and 6.3 × 104 M� – labels 1 and 3 (Table
1). For a star cluster under the influence of a strong tidal field,
i.e. on an orbit with RGC = 4 kpc, the mass evaporation rate is
almost identical during the early phases of evolution when ξ is
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Figure 2. Total mass and number of stars remaining in the simulated star
cluster. These quantities have been normalized by their initial values. This
figure represents the average values for models 1 and 2 in Table 1.

dominated by mass-loss due to stellar evolution. The overall evolu-
tion of ξ is equivalent for the two models with different masses that
we consider.

3.1 Total mass and number of stars

The total mass and number of stars that remain bound to the glob-
ular cluster are plotted in Fig. 3. Mass-loss rates of large N-body
simulations have been discussed elsewhere (Madrid et al. 2012).
The inclusion of stellar evolution makes the globular cluster lose
mass at a faster rate than the rate at which stars are lost during the
initial 12 Gyr of evolution. The mass-loss rate and star-loss rate
osculate at 12 Gyr and are almost identical until dissolution.

The behaviour of the mass and number of stars over time is
fundamentally different from that obtained with early work with
very low N. In the star clusters simulated by Giersz & Heggie
(1996), mass-loss and star-loss rates are identical during the initial
phases of evolution to later continuously diverge until dissolution.
This difference can be explained, at least in part, by a different
IMF and the fact that the maximum stellar mass is higher in our
simulations.

Also, the evolution of the total number of stars (N) over time,
plotted in Fig. 2, is curved and different from the linear relation,
followed by N in the models of Gieles et al. (2011). Our results
suggest higher star-loss rates than those of the models presented by
Gieles et al. (2011).

As mentioned in previous sections, earlier analytical work mostly
used single mass models where ξ (M) ≡ ξ (N) (Gieles et al. 2011).
In Fig. 3, we plot the value of ξ as a function of mass (M) and as a
function of number of stars that remain bound to the cluster (N). The
latter is obtained replacing M by N on equation (1). The difference
between the two expressions is naturally more pronounced during
earlier stages of evolution (<3 Gyr), when ξ (N) is less than ξ (M).
The main factor contributing to this difference is stellar evolution
and the fact that we ran multimass models. Fig. 3 shows that at
about 4 Gyr of tidal striping takes over stellar evolution as the main
mass-loss mechanism.

Figure 3. Dimensionless evaporation rate as function of mass ξ (M) and as
a function of number of stars ξ (N). ξ (N) is obtained by simply replacing
M by N in equation (1). The difference between the two curves reflects the
fact that these are multimass models that include a prescription for stellar
evolution. These are the average values for models 1 and 2 in Table 1.

Figure 4. Time evolution of the dimensionless mass evaporation rate in our
N-body models for a globular cluster in pseudo-isolation (RGC = 50 kpc,
dashed) and a globular cluster in a strong tidal field (RGC = 4 kpc, solid).
From the average values of models 1 and 2 (at RGC = 4 kpc) and model 8
(at RGC = 50 kpc).

4 R E C OV E R I N G E A R L I E R A NA LY T I C A L
F I N D I N G S

In this section, we compare the results for a globular cluster evolving
in a strong tidal field and a globular cluster in pseudo-isolation. We
also show that the N-body and MOCCA models presented here can
recover earlier analytical findings discussed in Section 1.

Fig. 4 shows the time evolution of ξ for two globular clusters in
different tidal environments, taken from the results of our N-body
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Figure 5. Time evolution of the dimensionless mass evaporation rate in our
MOCCA Monte Carlo models for a globular cluster in pseudo-isolation (RGC

= 50 kpc, black dots) and a globular cluster in a strong tidal field (RGC =
4 kpc, blue squares). The results of the N-body models shown in Fig. 4 are
also plotted here as solid lines.

simulations. We plot in this figure the evaporation rates for globular
clusters on circular orbits at 4 kpc (same as Fig. 1) and 50 kpc from
the Galactic Centre. The dimensionless mass-loss rate is clearly
different and thus a function of the tidal field.

The mass evaporation rate of the globular cluster evolving in
pseudo-isolation at 50 kpc (label 8, Table 1) from the Galactic Centre
asymptotes to a nearly constant value after ∼4 Gyr of evolution. This
behaviour is in good agreement with previous analytical work that
considered globular clusters evolving in isolation. The numerical
value of the evaporation rate derived with our simulations at RGC =
50 kpc asymptotes to ξ ≈ 0.04, thus recovering earlier analytical
work (Hénon 1961).

5 C O M PA R I S O N W I T H MOCCA M O N T E C A R L O
M O D E L S

For comparison, we show in Fig. 5 the time evolution of the mass
evaporation rate for two globular clusters once again in different
tidal environments, taken from the results of our MOCCA Monte
Carlo models. These models are chosen to have identical initial
conditions as the N-body models shown in Fig. 4 (see Section 2.2).
We carefully select MOCCA models that are tidally filling at small
RGC and tidally underfilling at large RGC. Two MOCCA models at
Galactocentric radii of 50 kpc (black dots) and 4 kpc (blue squares)
are shown in Fig. 5.

Fig. 5 shows that the MOCCA simulations are in good agreement
with the mass-loss rates ξ seen in the N-body models. In particular,
MOCCA and N-body models agree well on the elevated mass-loss
rates due to stellar evolution seen up to about 3 Gyr. Later on, the
MOCCA model at RGC = 4 kpc evolves faster than the N-body model
counterpart, that is, this MOCCA model reaches core-collapse faster
than the N-body model. Post core-collapse, MOCCA models recover
earlier analytical predictions for ξ cited in the Introduction and
section above. The slightly greater value of ξ for the MOCCA model
evolving at RGC = 4 kpc can be explained by the stronger tidal

field generated by the point mass potential at small galactocentric
distances.

We also see increased scatter in the MC results, which is due to the
fact that, when calculating ξ at each time-step, the MC method must
sample randomly along the stars’ orbits to obtain their positions,
which induces artificial fluctuations in ξ between time-steps. The
N-body models avoid this issue altogether by tracking the positions
of each star directly at each time-step.

6 EVA P O R AT I O N R AT E A S A FU N C T I O N O F
T I M E A N D G A L AC TO C E N T R I C D I S TA N C E

It can be seen in Figs 1, 3 and 4 that the time evolution of ξ between 3
and 10 Gyr can be approximated by a linear function of the simplest
form: g(t) = a × t + b. This linear phase of evolution for ξ follows
the rapid decline from large values due to stellar evolution.

We fitted linear functions of the form described above to a series
of N-body models of globular clusters at different galactocentric
distances in order to make a sketch of the evolution of ξ as a
function of time and as a function of RGC, thus deriving ξ (RGC, t).

The models we use to derive ξ (RGC, t) are the models presented
in Madrid et al. (2012). These are models with an initial number
of stars N = 100 000 and initial mass Minit ≈ 6.3 × 104 M�. We
use the models that evolved at 4, 6, 8, 10, 20 and 50 kpc from the
Galactic Centre (labels 3–8, Table 1). We have taken the approach
of keeping the initial half-mass radius identical for each model. This
means the models at small galactocentric distance start tidally filling
and become progressively tidally under filling as RGC increases.

We obtain the following expression for ξ (RGC, t)

ξ (RGC, t) = a × log(t) + b (4)

where a(RGC) and b(RGC) are

a(RGC) = −10(3.0×exp(−4.0×log(RGC−1.05))−1.2) (5)

and

b(RGC) = 10(2.5×exp(−4.0×(log(RGC−0.4))−0.5) (6)

with t in Myr and RGC in kpc, we give the details of its derivation
in the appendix.

In Fig. 6, we use equation (4) to sketch the evolution of ξ for a
globular cluster that decays into the Galactic Centre. We consider
a globular cluster that inspirals into the Galactic Centre through
dynamical friction. The dynamical friction time-scale is given by
Binney & Tremaine (1987) in their equations 7–26. A globular
cluster with an initial mass of Minit ∼ 105 M� and orbiting at RGC

= 15 kpc would take ∼13 000 Gyr to decay into the Galactic Centre
by dynamical friction alone. That is, a thousand times a Hubble
time. The mass evaporation rate and the distance to the centre of
the galaxy are depicted on the top panel of Fig. 6. ξ undergoes a
marked increase as the globular cluster approaches the centre of the
galaxy (see below). We do not directly address the magnitude of the
dynamical friction time-scale, as this has been looked at in detail in
previous studies, e.g. Gnedin et al. (2014).

For a globular cluster that inspirals to the Galactic Centre, the
dimensionless mass evaporation rate, as given by equation (4), in-
creases by a factor of 32 during the time the orbit of the globular
cluster decays from RGC = 14 kpc to RGC = 4 kpc. The trend is
clear towards the centre of the galaxy where our results suggest
that ξ continues to increase within the inner 4 kpc. As ξ is ex-
trapolated inwards, it re-approaches the very high values seen very
early on due to stellar evolution. We should note that the factor of 32
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Figure 6. Evolution of ξ (Rgc, t) for a globular cluster that decays into the
Galactic Centre. The top panel depicts the evolution of ξ for a globular cluster
that inspirals into the Galactic Centre following the dynamical friction time-
scale given by Binney and Tremaine (1987). We find a marked increase of
the value of ξ as the globular cluster approaches the centre of the galaxy.
Note that top and bottom quantities scale as the inverse of the other and this
is highlighted by the log y-scale of the bottom panel.

increase is also dependent on the initial conditions of the star cluster,
for instance, its initial half-mass radius.

The extrapolation of our results to lower galactocentric distances
illustrates that the value of ξ could reach or even exceed the previous
maximum value of ∼6.9 due to stellar evolution. This result serves
to highlight the importance of developing a better understanding
on how a globular cluster responds to extreme tidal striping by
the galactic potential in the inner regions of a galaxy. A more
detailed analysis of the behaviour of ξ towards the core of the
galaxy, including a more detailed modelling of the bulge potential,
will be presented by Rossi et al. (in preparation).

Our results support the conclusions reached by Webb & Leigh
(2015), namely that modern simulations of GC evolution are still
underestimating the mass-loss. The authors presented a method
for estimating the total initial masses in Galactic globular clusters,
using only the total cluster luminosity or mass and the slope of
the present-day stellar mass function. The results of Webb & Leigh
(2015) are in good agreement with earlier findings of Vesperini &
Heggie (1997) and Kruijssen (2009).

An evaporation rate that clearly rises as the globular cluster ap-
proaches the Galactic Centre should certainly be accounted for in
future models that propose to explain the formation of nuclear star
clusters by infalling globular clusters, e.g. Gnedin et al. (2014).

In terms of the overall mass-loss rates, using the recent results
of Webb & Leigh (2015) and Cai et al. (2016), we expect that
the time-averaged mass-loss rate for any given eccentricity can be
approximately set equal to the rate for a circular orbit at a given
Galactocentric distance, which is slightly larger than pericentre,
typically, but obviously smaller than apocentre for the eccentric
orbit. It is not known, however, how an eccentric orbit affects the
dynamical friction time-scale itself. Functions like the ones pro-

vided for ξ (RGC, t) can be used to properly calculate the fate of a
GC that loses mass as it spirals into the nucleus due to dynamical
friction.

7 FO R M AT I O N O F N U C L E A R STA R
C L U S T E R S B Y IN S P I R A L L I N G G L O BU L A R
CLUSTERS

Globular clusters are affected by dynamical friction that makes
them inspiral into the centre of their host galaxy, possibly providing
material to create nuclear star clusters (Tremaine, Ostriker & Spitzer
1975; Leigh, Böker & Knigge 2012b; Antonini 2013; Arca-Sedda
& Capuzzo-Dolcetta 2014; Gnedin et al. 2014).

A caveat to the above theory is the dissolution of infalling globu-
lar clusters before reaching the nuclear region. Dynamical friction
is a function of mass. While a globular cluster as an entire en-
tity can experience enough dynamical friction to infall into the
Galactic Centre, its individual stars, once lost due to tidal heat-
ing, are practically unaffected by dynamical friction (Tremaine
et al. 1975).

Dynamical friction time-scales dictate that only massive globular
clusters that orbit a galaxy within a few (∼3–6 kpc) would spiral to
the Galactic Centre during a Hubble time, see the example for the
Andromeda galaxy by Binney & Tremaine (1987). We have shown
here that it is precisely in this region that the evaporation rate of
globular clusters is higher than previously thought. This implies a
smaller mass budget to build nuclear star clusters from infalling
globular clusters. Our models show that any globular cluster spi-
ralling into the nucleus will lose a significant fraction of its total
initial mass, with that fraction being close to unity (Webb & Leigh
2015).

Arca-Sedda & Capuzzo-Dolcetta (2014) recently modelled the
origin of nuclear star clusters from migratory globular clusters.
They found that when the effects of tidal shocks were included in
their models, the number of globular clusters that effectively spiral
into the nucleus of the galaxy decreased by a factor of 5. Arca-
Sedda & Capuzzo-Dolcetta (2014) even found that for their models
of massive galaxies with tidal heating, the number of globular clus-
ters falling into the Galactic Centre drops to zero, preventing the
formation of a nuclear star cluster.

Through this work, we have shown that when stellar evolution
and the galactic tidal field are included into the models of globular
clusters, their dimensionless mass evaporation rate is much higher
than previously presented. We have also derived the dependence of
ξ on galactocentric distance and time, quantifying how the evap-
oration rate of globular clusters is enhanced as they approach the
Galactic Centre.

We would like to highlight the importance of properly under-
standing mass-loss in the inner Galactic potential, which is still
highly uncertain. In particular, our results show that mass-loss in the
inner Galaxy could be significant. Even accounting for all sources
of mass-loss in our estimate for ξ , our theoretical extrapolation sug-
gests, it could rise above even the ξ values we see at early times
when stellar evolution dominates (included in our ξ (M) estimate).
Although our simple theoretical extrapolation of the mass-loss rate
to the inner Galactic potential diverges at r = 0 (see Fig. 5), the
true mass-loss rate should not become infinite. Whether or not the
true mass-loss rate does indeed get this high is an open question
and could significantly affect previous estimates of the mass-loss
rates used for calculations involving nuclear star cluster formation
via globular cluster inspiral.
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Hénon M., 1961, Ann. Astrophys., 24, 369
Hong J., Kim E., Lee H. M., Spurzem R., 2013, MNRAS, 430, 2960
Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543
Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897
Hypki A., Giersz M., 2013, MNRAS, 429, 1221
Kroupa P., 2001, MNRAS, 322, 231
Kruijssen J. M. D., 2009, A&A, 507, 1409
Kruijssen J. M. D., 2015, MNRAS, 454, 1658
Kruijssen J. M. D. et al., 2012, MNRAS, 421, 1927
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A P P E N D I X : D E R I VAT I O N O F ξ (RGC, t)

This appendix presents the details of the derivation of ξ (RGC, t). In
order to derive ξ (RGC, t), we assume that ξ varies smoothly as a
function of RGC and that it takes the following general functional
form:

ξ (RGC, t) = f (RGC) × g(t) (A1)

for some unknown functions f and g.
We also assume that the temporal component takes the following

form g(t) = a × log(t) + b. As mentioned in Section 5, the linear
part of the temporal evolution of ξ for the numerical models is
between 3 and 10 Gyr. Replacing g(t) into the general expression
for ξ , we obtain:

ξ (RGC, t) = f (RGC) × (a × log(t) + b) (A2)

or

ξ (RGC, t) = f (RGC) × a × log(t) + f (RGC) × b, (A3)

By absorbing the constants a and b into the functions f and g,
respectively, ξ (RGC, t) can be re-written as

ξ (RGC, t) = a(RGC) × log(t) + b(RGC). (A4)

We fit straight lines to the value of ξ (t) derived with the simula-
tions between ∼3 and 10 Gyr.

We then take the slopes (i.e. a) and y intercepts (i.e. b) of the
fitted lines (in blue in Fig. A1 of the appendix). The slopes and
intercepts define six points (one for each galactocentric distance)
in the log (RGC) − log (a) and log (RGC) − log (b) space, as shown
in Fig. A2. Using least-squares linear regression, these points are
described by the following expressions:

a(RGC) = −10(3.0×exp(−4.0×log(RGC−1.05))−1.2) (A5)

and

b(RGC) = 10(2.5×exp(−4.0×(log(RGC−0.4))−0.5). (A6)

We thus can finally write ξ (RGC, t) as

ξ (RGC, t) = a × log(t) + b (A7)

with t in Myr and RGC in kpc.
As mentioned above, this expression of ξ (RGC, t) is valid between

∼3 and 10 Gyr. For a representation of ξ (RGC, t) between 0 and
3 Gyr, we suggest a linear interpolation between an initial global
value of 6.9 to the value given by equation (3) at 3 Gyr for the orbit
of choice. A minimum of 0.05 can be applied to equation (3) to
make it valid at later times.

The equations derived for ξ (RGC, t) are meant as an example of
the proposed method for calculating ξ (t) from a series of cluster
simulations for a given set of initial conditions. It is valid for a
given initial half-mass radius rhm,i (and concentration) and initial
total cluster mass Mi. We fix these two quantities in deriving our
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Figure A1. Fits to the values of ξ for the following galactocentric distances,
from top to bottom: 4, 6, 8, 10, 20, 50 kpc.

equations in this appendix, which results in different initial degrees
of tidal filling as a function of galactocentric distance. This is meant
to provide a reasonable, albeit approximate, method of calculating
a solution to the dynamic mass-loss rate (which changes over time
due to various effects, such as stellar evolution) as RGC decreases
due to dynamical friction by iterating between the equations for
ξ (RGC, t) provided by our N-body simulations evolved at different
RGC. Hence, our solution for ξ (t) for a globular cluster with a given
set of initial rh,i and Mi values should appear as a line tilted in the
time-ξ plane in the figure shown in this appendix. The slope of this
line should change if the rate of decrease of galactocentric distance
due to dynamical friction changes.

In future work, we intend to populate a grid of ξ (RGC, t) solutions
by obtaining the parameters a and b in our fitting functions for
different rhm,i and Mi values in additional N-body simulations. That
is, we will apply the same method as described in this paper to

Figure A2. Slopes (i.e. a) and y intercepts (i.e. b) of the fitted lines (in blue
in Fig. A1 of the appendix). The solid lines show least-squares fits to the
data in ln–ln-space.

analogous sets of N-body models with different rh,i and Mi values.
This will populate the parameter space for ξ (t) relevant to the Milky
Way globular cluster population. Our method folds into a single ξ

parameter all of the relevant physics (e.g. stellar evolution mass-
loss, relaxation-driven mass-loss, etc.), such that a single analytic
function describes the complex interplay between these physical
processes.

Populating a grid in rhm,i and Mi with simulated clusters would
be prohibitively expensive using N-body simulations but entirely
feasible using the Monte Carlo method for globular cluster evolu-
tion. Our comparison to the MOCCA simulations could then be used
to interpret the results of the experiment described above.
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