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ABSTRACT

We reconstruct the underlying density field of the 2 degreddFGalaxy Redshift Survey
(2dFGRS) for the redshift randge035 < z < 0.200 using the Wiener Filtering method.
The Wiener Filter suppresses shot noise and accounts fectgel and incompleteness ef-
fects. The method relies on prior knowledge of the 2dF poywectum of fluctuations and
the combination of matter density and bias parameters hemtbe results are only slightly
affected by changes to these parameters. We present mdgesd#Trisity field in two different
resolutions5h~! Mpc and10~~! Mpc. We identify all major superclusters and voids in the
survey. In particular, we find two large superclusters anal lavge local voids. A version of
this paper with full set of colour maps can be found at hisygM.ast.cam.ac.ukpirin.

Key words. galaxies:distances and redshifts - cosmology: largeestalcture of Universe -
methods: statistical

1 INTRODUCTION of fibre-fed spectrographs that can simultaneously meapeetra
of hundreds of galaxies, cosmologists have at their fingettirge
redshift surveys such as 2 degree Field (2dF) and SloandDigjity
Survey (SDSS). The analysis of these redshift surveys ine&du-
able cosmological information. On the quantitative sidéhwhe
assumption that the galaxy distribution arises from theitational

Historically, redshift surveys have provided the data amal test
ground for much of the research on the nature of clusteridg!laa
distribution of galaxies. In the past few years, observetiof large
scale structure have improved greatly. Today, with the ldgweent
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instability of small fluctuations generated in the earlyvense, a
wide range of statistical measurements can be obtainedi, &ic
the power spectrum and bispectrum. Furthermore, a queditan-
derstanding of galaxy distribution provides insight inte tmech-
anisms of structure formation that generate the completepaof
sheets and filaments comprising the ‘cosmic web’ (Bond, Kafm

view of the formalism of the Wiener Filter method. A summary
of 2dFGRS data set, the survey mask and the selection functio
are given in Section 3. In section 4, we outline the schemd use
to pixelise the survey. In section 5, we give the formalismtfe
covariance matrix used in the analysis. After that, we desdhe
application of the Wiener Filter method to 2dFGRS and preden

& Pogosyan 1996) we observe and allows us to map a wide variety tailed maps of the reconstructed field. In section 7, we ifletite

of structure, including clusters, superclusters and voids

Today, many more redshifts are available for galaxies tftan d
rect distance measurements. This discrepancy inspireeba deal
of work on methods for reconstruction of the real-space itiens
field from that observed in redshift-space. These methoglsaus-
riety of functional representations (e.g. Cartesian, leospherical
harmonics or wavelets) and smoothing techniques (e.g. astau
sphere or a Wiener Filter). There are physical as well astipedc
reasons why one would be interested in smoothing the olderve
density field. It is often assumed that the galaxy distriousam-
ples the underlying smooth density field and the two areedlby a
proportionality constant, the so-called linear bias paatemb. The
finite sampling of the smooth underlying field introducessBon
‘shot noise’!. Any robust reconstruction technique must reliably
mitigate the statistical uncertainties due to shot noiserddver, in
redshift surveys, the actual number of galaxies in a givéame is
larger than the number observed, in particular in magnitiniéed
samples where at large distances only very luminous galada
be seen.

In this paper, we analyse large scale structure in the 2 degre
Field Galaxy Redshift Survey (2dFGRS, Colle$sl.2001), which
has now obtained the redshifts for approximately 230,008xga
ies. We recover the underlying density field, characterlsg@n
assumed power spectrum of fluctuations, from the observitl fie
which suffers from incomplete sky coverage (described lyatin
gular mask) and incomplete galaxy sampling due to its madait
limit (described by the selection function). The filterirsgaichieved
by a Wiener Filter (Wiener 1949, Press$ al. 1992) within the
framework of both linear and non-linear theory of densitycfflis
ations. The Wiener Filter is optimal in the sense that théavae
between the derived reconstruction and the underlyingdemsity
field is minimised. As opposed &d hocsmoothing schemes, the
smoothing due to the Wiener Filter is determined by the data.
the limit of high signal-to-noise, the Wiener Filter modfitne ob-
served data only weakly, whereas it suppresses the cotnbribof
the data contaminated by shot noise.

The Wiener Filtering is a well known technique and has been
applied to many fields in astronomy (see Rybicki & Press 1992)
For example, the method was used to reconstruct the angstar d
tribution (Lahavet al. 1994), the real-space density, velocity and
gravitational potential fields of the 1.2 JyRAS (Fisheret al.
1995) and/ RAS PSCz surveys (Schmoldt al. 1999). The Wiener
Filter was also applied to the reconstruction of the angmiaps
of the Cosmic Microwave Background temperature fluctuation
(Bunn et al. 1994, Tegmark & Efstathiou 1995, Bouchet & Gis-
pert 1999). A detailed formalism of the Wiener Filtering imed as
it pertains to the large scale structure reconstructionbeafound
in Zaroubiet al. (1995).

This paper is structured as follows: we begin with a brief re-

1 Another popular model for galaxy clustering is the halo medere the
linear bias parameter depends on the mass of the dark matter Wwhere
the galaxies reside. For this model, the mean number of gadaixs in a
given halo is usually lower than the Poisson expectation.

superclusters and voids in the survey.
Throughout this paper, we assumé&@DM cosmology with
Qm = 0.3 andQy = 0.7 andHo = 100~ *kms ™ Mpc 1.

2 WIENERFILTER

In this section, we give a brief description of the Wiener- Fil
ter method. For more details, we refer the reader to Zaretibi

al. (1995). Let's assume that we have a set of measurements,
{da} (@ = 1,2,... N) which are a linear convolution of the true
underlying signals., plus a contribution from statistical noise,,

such that

do = So + €a.- 1

The Wiener Filter is defined as thi@ear combination of the ob-
served data which is closest to the true signal in a minimuria va
ance sense. More explicitly, the Wiener Filter estimafgf’, is
given bys ¥ = F, 5 ds where the filter is chosen to minimise the
variance of the residual field,:

(Iral) = (lsa™™ = sal®).

@
It is straightforward to show that the Wiener Filter is givan
©)

where the first term on the right hand side is the signal-daitaee
lation matrix;

Fap = (sad})(dyd}) ™",

(sadl) = (sasl), 4
and the second term is the data-data correlation matrix;
(dad) = (sy50) + (cach). 5)

In the above equations, we have assumed that the signal and
noise are uncorrelated. From equatibhs 3 &hd 5, it is cledy ith
order to implement the Wiener Filter, one must construptiar
which depends on the mean of the signal (which is 0 by construc
tion) and the variance of the signal and noise. The assumpfia
prior may be alarming at first glance. However, slightly icaate
values of Wiener Filter will only introduce second orderoesrto
the full reconstruction (see Rybicki & Press 1992). The dejeace
of the Wiener Filter on the prior can be made clear by definigg s
nal and noise matrices &%5 = (sas}) andNag = (ca€l;). With
this notation, we can rewrite the equations above sogldt is
given as

sV =C[C+N]"d. (6)

The mean square residual given in equélion 2 can then bdataidu
as

(rr) = C[C+ N]"'N. )

Formulated in this way, we see that the purpose of the Wiener
Filter is to attenuate the contribution of low signal-tose ra-
tio data. The derivation of the Wiener Filter given abovddabk
from the sole requirement of minimum variance and requirdg o
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a model for the variance of the signal and noise. The Wierler Fi
ter can also be derived using the laws of conditional prdibglif
the underlying distribution functions for the signal andseoare
assumed to be Gaussian. For the Gaussian prior, the Widtar Fi
estimate is both the maximuposteriorestimate and the mean field
(see Zaroubet al. 1995).

As several authors point out (e.g. Rybicki & Press 1992,
Zaroubi 2002), the Wiener Filter is a biased estimator sinpee-
dicts a null field in the absence of good data, unless the fieddf i
has zero mean. Since we constructed the density field to teawge z
mean, we are not worried about this bias. However, the obderv
field deviates from zero due to selection effects and so oedsi®
be aware of this bias in the reconstructions.

It is well known that the peculiar velocities of galaxiestdis
clustering pattern in redshift space. On small scales, dheam
peculiar velocity of each galaxy causes smearing alongirieeof
sight, known aghe finger of GodOn larger scales, there is com-
pression of structures along the line of sight due to cohiénéall
velocities of large-scale structure induced by gravitye@f the
major difficulties in analysing redshift surveys is the sfotma-
tion of the position of galaxies from redshift space to realee. For
all sky surveys, this issue can be addressed using sevetiabdse
for example the iterative method of Yakil al. (1991) and modified
Poisson equation of Nusser & Davis 1994. However, theseadsth
are not applicable to surveys which are not all sky as theyrass
that in linear theory, the peculiar velocity of any galaxg i®sult of
the matter distribution around it, and the gravitationdtfie dom-
inated by the matter distribution inside the volume of theveu
For a survey like 2dFGRS, within the limitation of linear timg
where the redshift space density is a linear transformatfae
real space density, a Wiener Filter can be used to transfoym f
redshift space to real space (see Figteal. (1995) and Zaroubet
al. (1995) for further details). This can be written as

s (ra) = (s(ra)d(s+)) (d(sy)d(s)) " d(sp), ®)

where the first term on the right hand side is the cross-atroel
matrix of real and redshift space densities a(rd is the position
vector in redshift space. It is worth emphasising that théthnd
is limited as it only recovers the peculiar velocity field geated
by the mass sources represented by the galaxies within theysu
boundaries. It does not account for possible external fortais
limitation can only be overcome by comparing the 2dF survitg w
all sky surveys.

3 THE DATA
3.1 The2dFGRSdata

The 2dFGRS, now completed, is selected in the photoméjric
band from the APM galaxy survey (Maddox, Efstathiou & Suther
land 1990) and its subsequent extensions (Madzta. 2003, in
preparation). The survey covers ab@000 deg?® and is made up
of two declination strips, one in the South Galactic Poleiaeg
(SGP) covering approximately37°.5 < § < —22°5, —35°0 <
«a < 55°.0 and the other in the direction of the North Galactic Pole
(NGP), spanning-7°.5 < § < 2°5, 147°.5 < a < 222°5. In ad-
dition to these contiguous regions, there are a number dbraty
located circular 2-degree fields scattered over the furexof the
low extinction regions of the southern APM galaxy survey.

The magnitude limit at the start of the survey was set at
by = 19.45 but both the photometry of the input catalogue and the
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dust extinction map have been revised since and so therenate s
variations in magnitude limit as a function of position otlee sky
which are taken into account using the magnitude limit masie
effective median magnitude limit, over the area of the syrie
by ~ 19.3 (Collesset al.2001).

We use the data obtained prior to May 2002, when the sur-
vey was nearly complete. This includes 221283 unique, biglia
galaxy redshifts. We analyse a magnitude-limited sampile reid-
shift limits zmin = 0.035 andzmax = 0.20. The median redshift is
Zmea =~ 0.11. We use 167 305 galaxies in total, 98 129 in the SGP
and 69 176 in the NGP. We do not include the random fields in our
analysis.

The 2dFGRS database and full documentation are available
on the WWW a http://www.mso.anu.edu.au/2dFCRS/.

3.2 TheMask and The Radial Selection Function of 2dFGRS

The completeness of the survey varies according to theiposit
the sky due to unobserved fields, particularly at the surdges,
and unfibred objects in the observed fields because of aoilin-
straints or broken fibres.

For our analysis, we make use of two different masks (Colless
et al. 2001; Norberget al. 2002). The first of these masks is the
redshift completeness mask defined as the ratio of the nuofber
galaxies for which redshifts have been measured to thenatat
ber of objects in the parent catalogue. This spatial incetepess
is illustrated in Figur&ll. The second mask is the magnitirdi |
mask which gives the extinction corrected magnitude lirhithe
survey at each position.

The radial selection function gives the probability of alyse
ing a galaxy for a given redshift and can be readily calcdl&tem
the galaxy luminosity function:

B(L)dL = & (%)a exp (— LL>

where for the concordance modeal:= —1.21 £ 0.03, log,( L« =
—0.4(—19.66 £ 0.07 + 5 log,,(h)) and®, = 0.0161 +0.0008%*
(Norberget al.2002).

The selection function can then be expressed as
B fw-) ®(L)dL

~ I e(nydr

dL
L

)

o(r) (10)
where L(r) is the minimum luminosity detectable at luminos-
ity distancer (assuming the concordance model), evaluated for
the concordance modelimin = Min(L(7), Leom) @nd Leom IS

the minimum luminosity for which the catalogue is completel a
varies as a function of position over the sky. For distanaas c
sidered in this paper, where the deviations from the Hubble fl
are relatively small, the selection function can be appnaxted as
o(r) = ¢(z4a1)- Each galaxygal, is then assigned the weight

1
P(2gat) M ($0)
whereg(z4q:) andM (Q;) are the values of the selection function

for each galaxy and angular survey mask for eachi¢slie Section
4), respectively.

w(gal) = (11)

4 SURVEY PIXELISATION

In order to form a data vector of overdensities, the survesdse
to be pixelised. There are many ways to pixelise a surveyalequ
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Figure 1. The redshift completeness masks for the NGP (top) and SG#iiippoin Equatorial coordinates. The gray scale shows thepteteness fraction.

SGP 0.050<z<0.054

—20 0

-20
-25

20

Dec

-30

-35
-40

|
S
S}

40

[}
<}

RA

SGP 0.049<z<0.051

-20
-25

-30

Dec

-35
—40

|
o~
o

-20 0 20

-
o
@
S

RA

Figure 2. Aniillustration of the survey pixelisation scheme used mdhnal-
ysis, for1l0h ' Mpc (top) andsh ! Mpc (bottom) target cells widths. The
redshift ranges given on top of each plot.

sized cubes in redshift space, igloo cells, spherical haitspDe-
launey tessellation methods, wavelet decomposition,Ech of
these methods have their own advantages and disadvantages a
they should be treated with care as they form functional base
which all the statistical and physical properties of cosfigiltls are
retained.

The pixelisation scheme used in this analysis is an ‘iglow g
with wedge shaped pixels bounded in right ascension, dizim
and in redshift. The pixelisation is constructed to keepaerage
number density per pixel approximately constant. The atadggn
of using this pixelisation is that the number of pixels is imised
since the pixel volume is increased with redshift to cowatethe
decrease in the selection function. This is achieved bycBetpa
‘target cell width’ for cells at the mean redshift of the seyvand
deriving the rest of the bin widths so as to match the shapbeof t
selection function. The target cell widths used in this gsial are
10A~! Mpc andsh~! Mpc. Once the redshift binning has been cal-
culated each radial bin is split into declination bands dmhteach
band in declination is further divided into cells in righttassion.
The process is designed so as to make the cells roughly ¢ubica
In Figure[2, we show an illustration of this by plotting thdlsén
right ascension and declination for a given redshift strip.

Although advantageous in many ways, the pixelisation
scheme used in this paper may complicate the interpretefitire
reconstructed field. By definition, the Wiener Filter signéll ap-
proach to zero at the edges of the survey where the shot naige m
dominate. This means the true signal will be constructedriara
uniform manner. This effect will be amplified as the cell sizet
bigger at higher redshifts. Hence, both of these effects beuson-
sidered when interpreting the results.

(© 0000 RAS, MNRASD0O, 000—000
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5 ESTIMATING THE SIGNAL-SIGNAL CORRELATION
MATRIX OVER PIXELS

The signal covariance matrix can be accurately modelledrby a
analytical approximation (Moody 2003). The calculationtbé
covariance matrix is similar to the analysis described bg- Ef
tathiou and Moody (2001) apart from the modification due te¢h
dimensionality of the survey. The covariance matrix for ‘th@se
free’ density fluctuations i§C;;) = (d;9;), whered; = (p; — p)/p

in theith pixel. It is estimated by first considering a pair of pixels
with volumesV; andV}, separated by distaneeso that,

1

ViV,
v )

= — 0(x)0(x + 1r))dV;dV;
ViVi Jeeu, Ceuj< ()5 ) !

757 o .
= &(r)dVidV;
ViVi Jeeu, Cell; !

where the isotropic two point correlation functi¢(r) is given by

(Ci5) = / 0(x)dV; o(x+ r)de> 12)
Cell; Cell;
(13)

(14)

_ 1 —ik-r ;3
€)= e [ P, (1)
and therefore,

1 ' 3
o) = G [rds
x / / e KT gy, (16)
J Cell; JCell;

After performing the Fourier transform, this equation cambitten
as

©) = o [PRSKLISKL)CHDEE @)
where the function§ andC are given by,

Sk,L) =
Ck,r) =

sinc(ky Lz /2)sinc(ky Ly /2)sinc(k. L /2)

cos(kazrg) cos(kyry) cos(k.rz),

(18)
(19)

where the label describes the dimensions of the cell,( L.,
L), the components afdescribes the separation between cell cen-
tres,k= (kz, ky, k=) is the wavevector ansinc(z) = S“;ﬂ The
wavevectork is written in spherical co-ordinatés 6, ¢ to simplify

the evaluation of”. We define,

kx = Kk sin(¢)cos(d) (20)
v = k sin(¢)sin(0) (21)
k. = k cos(¢). (22)

. EquatiorIV can now be integrated odemd¢ to form the kernel
Gij (k) where,

(Cij) = PuGun, (25)
k

whereP;, is the binned bandpower spectrum &g, is,
knlaw

Gijr = / Gij (k) K dk, (26)
k

where the integral extends over the band correspondingstbahd
power P.

For cells that are separated by a distance much larger tkan th
cell dimensions the cell window functions can be ignoreghsi-
fying the calculation so that,

ijk — (271')3

wherer is the separation between cell centres.

kW‘LaI
G / sind kr)4nk? dk, (27)
k

min

6 THE APPLICATION
6.1 Reconstruction Using Linear Theory

In order to calculate the data vectarin equatiorB, we first esti-
mate the number of galaxie$; in each pixel:

Ngai(3)

> wgal),

gal

N; = (28)

where the sum is over all the observed galaxies in the pixeél an
w(gal) is the weight assigned to each galaxy (equaidn 11). The
boundaries of each pixel are defined by the scheme descrmibed i
Section 4, using a target cell width 94 ~! Mpc. The mean num-
ber of galaxies in pixel is

N; =V, (29)

whereV; is the volume of the pixel and the mean galaxy density,
is estimated using the equation:

Niotal

w(gal)

gal
jooo drr2¢(r)w(r)’

where the sum is now over all the galaxies in the survey. We not
that the value fom obtained using the equation above is consis-
tent with the maximum estimator method proposed by Davis and
Huchra (1982). Using these definitions, we write #kie compo-
nent of the data vectat as:

n=

(30)

=—F

Note that, the mean value dfis zero by construction.
Reconstruction of the underlying signal given in equafibn 6

also requires the signal-signal and the inverse of the diata-cor-

relation matrices. The data-data correlation matrix (6qufd) is

di (31)

/2 pm/2 . . - . . :
Gi;j (k) = %/O /O S(k,L;)S(k,L;)C(k,r) sin(¢)d0de, (23)the sum of noise-noise correlation matfik and the signal-signal

so that,

(Ci;) = /P(k)Gij(k)k2dk. (24)
In practice we evaluate,

(© 0000 RAS, MNRASD00, 000—-000

correlation matrixC formulated in the previous section. The only
change made is to the calculation@fwhere the real space corre-
lation functiong(r) is now multiplied by Kaiser's factor in order to

correct for the redshift distortions on large scales. So

! / PS5 (k) explik - (ra — r1))d%k,

&= @y

(32)



6 Erdojdu et al.

whereP? (k) is the galaxy power spectrum in redshift space,

P%(k) = K[B]P™(k), (33)

derived in linear theory. The subscripisand S in this equation
(and hereafter) denote real and redshift space, resplgctive
KIg) =1+ 26+ 2 6° (34)
is the direction averaged Kaiser's (1987) factor, derivsithg dis-

tant observer approximation and with the assumption trextitita
subtends a small solid angle with respect to the observeldtter
assumption is valid for the 2dFGRS but does not hold for a wide
angle survey, see Zaroubi and Hoffman, 1996 for a full disicung.
Equatior:3B shows that in order to apply the Wiener Filterhoet

we need a model for the galaxy power spectrum in redshiftespa
which depends on the real-space power spectrum spectrumnand
the redshift distortion parametet,= Q,,%-¢ /.

The real-space galaxy power spectrum is well described by a
scale invariant Cold Dark Matter power spectrum with shape p
rameter" for the scales concerned in this analysis. Fowe use
the value derived from the 2dF survey by Percitdl. (2001) who
fitted the 2dFGRS power spectrum over the range of lineaescal
using the fitting formulae of Eisenstein and Hu (1998). Asisigm
a Gaussian prior on the Hubble constant 0.7 4 0.07 (based on
Freedmaret al.2001), they find" = 0.2£0.03. The normalisation
of the power spectrum is conventionally expressed in teritiseo
variance of the density field in spheresSéf* Mpc, os. Lahavet
al. (2002) use 2dFGRS data to dedugg (L., zs) = 0.94 £ 0.02
for the galaxies in redshift space, assuming= 0.7 &+ 0.07 at
zs &~ 0.17 and L, ~ 1.9L*. We convert this result to real space
using the following equation:

08y (Ls, 25) = 08 (Ls, 2) [ K2 [B(Ls, 26)] - (35)

where K[ 3] is Kaiser's factor. For our analysis, we need to use
evaluated at the mean redshift of the survey for galaxiels huiti-
nosity L*. However, one needs to assume a model for the evolution
of galaxy clustering in order to fing at different redshifts. More-
over, the conversion fromi; to L* introduces uncertainties in the
calculation. Therefore, we choose an approximate vaI@e,z: 0.8

to normalise the power spectrum. F&rwe adopt the value found
by Hawkinset al. (2002), 5(Ls, zs) = 0.49 &+ 0.09 which is es-
timated at the effective luminosity,s ~ 1.4L", and the effective
redshift,z; = 0.15, of the survey sample. Our results are not sen-
sitive to minor changes ias and .

The other component of the data-data correlation matrixas t
noise correlation matrifN. Assuming that the noise in different
cells is not correlated, the only non-zero termNrare the diag-
onal terms given by the variance - the second central momet -
the density error in each cell:

Nga1(3)

1
Nii = e Z w?(gal).

%

(36)
gal

The final aspect of the analysis is the reconstruction of the
real-space density field from the redshift-space obsemstiThis
is achieved using equati@h 8. Following Kaiser (1987), gislis-
tant observer and small-angle approximation, the cros®letion
matrix in equatiol8 for the linear regime can be written as

(s(r)d(3)) = (B} = E(r)(1 + 36),

wheres andr are position vectors in redshift and real space, re-

@7

spectively. The term(1 + %ﬂ), is easily obtained by integrating
the direction dependent density field in redshift spacendysgua-
tion[34, the transformation from redshift space to real sampli-
fies to:
Wy _ L3S
K[A]
As mentioned earlier, the equation above is calculatedifealt
scales only and hence small scale distortions fingers of Gojl
are not corrected for. For this reason, we collapse in réidshace
the fingers seen in 2dF groups (E&eal. 2003) with more than 75
members, 25 groups in total (11 in NGP and 14 in SGP). All the
galaxies in these groups are assigned the same coordiAates:
pected, correcting these small scale distortions doeshaotge the
constructed fields substantially as these distortions exetipally
smoothed out because of the cell size used in binning the data

The maps shown in this section were derived by the technique
detailed above. There are 80 sets of plots which show thdtgens
fields as strips iR A and Dec, 40 maps for SGP and 40 maps for
NGP. Here we just show some examples, the rest of the plotsecan
found in url: http://www.ast.cam.ac.ukpirin. For comparison, the
top plots of FigureEAAT 1 L 114, ahd] 15 show the redshift space
sity field weighted by the selection function and the angniask.
The contours are spacedAb = 0.5 with solid (dashed) lines de-
noting positive (negative) contours; the heavy solid corgacor-
respond toj = 0. Also plotted for comparison are the galaxies
(red dots) and the groups witN,, number of members (Eket
al. 2003) and9 < Ny < 17 (green circles)18 < Ny < 44
(blue squares) ands < N (magenta stars). We also show the
number of Abell, APM and EDCC clusters studied by De Propris
et al. (2002) (black upside down triangles). The middle plots show
the redshift space density shown in top plots after the WiEiteer
applied. As expected, the Wiener Filter suppresses thendle
smoothing performed by the Wiener Filter is variable andeases
with distance. The bottom plots show the reconstructeddessity
field s" ¥ (r), after correcting for the redshift distortions. Here the
amplitude of density contrast is reduced slightly. We alsxt fne
reconstructed fields in declination slices. These plotshosvn in
Figured¥ anfils.

We also plot the square root of the variance of the residual
field (equatiodR), which defines the scatter around the mezomr
structed field. We plot the residual fields correspondingotaes of
the redshift slices shown in this paper. (Figiiles 3 Bhd 4)bEtier
comparison, plots are made so that the cell number incredgges
increasingR A. If the volume of the cells used to pixelise the survey
was constant, we would expect the square root of the variardce
to increase due to the increase in shot noise (equidtion Wetw,
since the pixelisation was constructed to keep the shoenuis
pixel approximately constant)\é also stays constant\y ~ 0.23
for both NGP and SGP) but the average density contrast in each
pixel decreases with increasing redshift. This means ttabizgh
the variance of the residual in each cell is roughly equal,réi-
ative variance (represented %’5) increases with increasing red-
shift. This increase is clearly evident in FiguEés 3 dd 4other
conclusion that can be drawn from the figures is that the bumps
in the density field are due to real features not due to err¢inén
reconstruction, even at higher redshifts.

C[K[f)C+N]'d. (38)

6.2 Reconstruction Using Non-linear Theory

In order to increase the resolution of the density field meyeste-
duce the target cell width toh~! Mpc. A volume of a cubic cell

(© 0000 RAS, MNRASD0O, 000—000
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associated for each cell.The increase in cell number iteidhe increas& A in each redshift slice.

0.082<2<0.086

0.100<2<0.104

Wienered Dersity Contrast
T
ﬁﬁj—X—\«\
—
S

|
TWH Y,il

M !

= H

Wienerad Density Contrast

o 10 20 20
cell

Figure 4. Same as in figur€l 3 but for the redshift slices in NGP shown@bov

of side5h~! Mpc is roughly equal to a top-hat sphere of radius
of about3h ! Mpc. The variance of the mass density field in this
sphere isrs ~ 1.7 which corresponds to non-linear scales. To re-
construct the density field on these scales, we require afecde-
scriptions of non-linear galaxy power spectrum and the limear
redshift space distortions.

For the non-linear matter power spectrunf (), we adopt
the empirical fitting formula of Smitlet al. (2003). This formula,
derived using the ‘halo model’ for galaxy clustering, is maiccu-
rate than the widely used Peacock & Dodds (1996) fitting fdamu
which is based on the assumption of ‘stable clustering’ ofi
ized halos. We note that for the scales concerned in thisrape
to k ~ 10hMpc™!), Smithet al. (2003) and Peacock & Dodds
(1996) fitting formulae give very similar results. For sinaftly we
assume linear, scale independent biasing in order to digtertme
galaxy power spectrum from the mass power spectrum, where
measures the ratio between galaxy and mass distribution,

P =P, (39)
whereP% is the galaxy and®’} is the matter power spectrum. We
assume thai = 1.0 for our analysis. While this value is in agree-
ment with the result obtained from 2dFGRS (Latetval. 2002,
Verdeet al. 2002) for scales of tens of Mpc, it does not hold true
for the scales 06h~! Mpc on which different galaxy populations
show different clustering patterns (Norbexgal. 2002, Madgwick
et al. 2002, Zehavet al. 2002). More realistic models exist where
biasing is scale dependent (e.g. Seljak, 2000 and Peacockith,S
2000) but since the Wiener Filtering method is not sensitiemall
errors in the prior parameters and the reconstruction Seatenot
highly non-linear, the simple assumption of no bias willl gfive
accurate reconstructions.

The main effect of redshift distortions on non-linear ssate
the reduction of power as a result of radial smearing duerie vi
alized motions. The density profile in redshift space is tten
convolution of its real space counterpart with the peculigoc-
ity distribution along the line of sight, leading to dampioigpower
on small scales. This effect is known to be reasonably welt@p-

(© 0000 RAS, MNRASD00, 000—-000

mated by treating the pairwise peculiar velocity field as €a&an or
better still as an exponential in real space (superpositifrisaus-
sians), with dispersion,, (e.g. Peacock & Dodds 1994, Ballinger
et al. 1996 & Kanget al. 2002). Therefore the galaxy power spec-
trum in redshift space is written as

Pyi(k, 1) = Paf(k, 1) (1 + Bu®) > D(kopp) ,

wherey is the cosine of the wave vector to the line of sighj,
has the unit ok ~' Mpc and the damping function ik-space is a
Loretzian:

(40)

1
D(ko =
(kopp) 1+ (k202u2)/2

Integrating equatiofi~30 over, we obtain the direction-averaged
power spectrum in redshift space:

(41)

Pik) _ Aok —p)6 25
PE(k) ikt 302k?
N \/§(k2g§—25]€)52:5‘rctar(kap/\/§)‘ (42)
p

For the non-linear reconstruction, we use equafidn 42 ailstef
equation[3B when deriving the correlation function in réfish
space. Figurd]5 shows how the non-linear power spectrum is
damped in redshift space (dashed line) and compared torthe li
ear power spectrum (dotted line). In this plot and througtibis
paper we adopt the, value derived by Hawkingt al. (2002),
op = 506452kms . Interestingly, by coincidence, the non-linear
and linear power spectra look very similar in redshift sp&w if
we had used the linear power spectrum instead of its noasline
counterpart, we still would have obtained physically aateire-
constructions of the density field in redshift space.

The optimal density field in real space is calculated using
equatiorB. The cross-correlation matrix in equafich 38 maw
be approximated as

(s(r)d(s)) = &(r, u)(1 + B®)/ Do) - (43)
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Figure 5. Non-linear power spectra for z=0 and the concordance model
with o, = 506kms~! in real space (solid line), in redshift space from
equatio 2P (dashed line), both derived using the fittingrfdae of Smith

et al. (2003) and linear power spectra in redshift space derivedyuimear
theory and Kaiser’s factor (dotted line).

Again, integrating the equation above ovyerthe direction aver-
aged cross-correlation matrix of the density field in realcgpand
the density field in redshift space can be written as

SO e+ 1 1 R)
+ kfg 51+ k203 + kfg _arcsint(k*o?). (44)

At the end of this paper, we show some examples of the non-
linear reconstructions (FigurEs 81121 13 16). As careba s
from these plots the resolution of the reconstructions owes rad-
ically, down to the scale of large clusters. Comparing Fefll and
FigureI® where the redshift ranges of the maps are simi@acon-
clude that 10! Mpc and 5h~! Mpc resolutions give consistent
reconstructions.

Due to the very large number of cells, we reconstruct four
separate density fields for redshift rang@$35<z<0.05 and
0.09<250.11 in SGP,0.03552<50.05 and0.09<5z2<50.12 in NGP.
There are 46 redshift slices in total. The number of cellstlfier
latter reconstructions are in the order of 10 000.

To investigate the effects of using different non-lineatstaft
distortion approximations, we also reconstruct one fielth@tit the
damping function but just collapsing the fingers of god. Aligh
including the damping function results in a more physicaltgu-
rate reconstruction of the density field in real space, litistinot
enough to account for the elongation of the richest clusitnsg
the line of sight. Collapsing the fingers of god as well astidel
ing the damping function underestimates power resultingoisy
reconstruction of the density field. We choose to use onlyémep-
ing function for the non-linear scales obtaining stableitsgor the
density field reconstruction.

The theory of gravitational instability states that as tieain-
ics evolve away from the linear regime, the initial field dees
from Gaussianity and skewness develops. The Wiener Filtdre
form presented here, only minimises the variance and irggthe
higher moments that describe the skewness of the underig
tribution. However, since the scales of reconstructioes@nted in
this section are not highly non-linear and the signal-ts@aatio

is high, the assumptions involved in this analysis are ne¢regy
violated for the non-linear reconstruction of the densijdfin red-
shift space. The real space reconstructions are moreigerisithe
choice of cell size and the power spectrum since the WienerFi
is used not only for noise suppression but also for transdtion
from redshift space. Therefore, reconstructions in rétispace are
more reliable on these non-linear scales than those inpaaks

A different approach to the non-linear density field recarst
tion presented in this paper is to apply the Wiener Filtehtore-
construction of the logarithm of the density field as thergdsd
evidence that the statistical properties of the pertuobdteld in the
quasi-linear regime is well approximated by a log-normatritiu-
tion. A detailed analysis of the application of the Wiendtdfing
technique to log-normal fields is given in Sheth (1995).

7 MAPPING THE LARGE SCALE STRUCTURE OF THE
2dFGRS

One of the main goals of this paper is to use the reconstructed
density field to identify the major superclusters and voitshie
2dFGRS. We define superclusters (voids) as regions of large o
density (underdensity) which is above (below) a certaireghr

old. This approach has been used successfully by sevetaraut
(e.g. Einasteet al. 2002 & 2003, Kolokotronis, Basilakos & Plio-
nis 2002, Plionis & Basilakos 2002, Saundetsl. 1991).

7.1 TheSuperclusters

In order to find the superclusters listed in Table 1, we defirge t
density contrast threshold,,, as distance dependent. We use a
varying density threshold for two reasons that are relai¢lde way
the density field is reconstructed. Firstly, the adaptivdding we
use implies that the cells get bigger with increasing retishihis
means that the density contrast in each cell decreases . ethad
effect that decreases the density contrast arises due Witeer
Filter signal tending to zero towards the edges of the suiMagre-
fore, for each redshift slice we find the mean and the stamiard
ation of the density field (averaged over 113 cells for NGP22®i
for SGP), then we calculai®;, as twice the standard deviation of
the field added to its mean, averaged over SGP and NGP for each
redshift bin (see Figuild 6). In order to account for the erisy ef-
fects, we fit a smooth curve %, usingy? minimisation. The best
fit, also shown FigurEl6, is a quadratic equation with(number of
degrees of freedom) = 1.6. We use this fit when selecting tee ov
densities. We note that choosing smoothed or unsmoothegitglen
threshold does not change the selection of the superciuster

The list of superclusters in SGP and NGP region are given
in Table[d. This table is structured as follows: column 1 is th
identification, columns 2 and 3 are the minimum and the maxi-
mum redshift, columns 4 and 5 are the minimum and maximum
RA, columns 6 and 7 are the minimum and maximifirac over
which the density contours abowg, extend. In column 8, we
show the number of Durham groups with more than 5 members
that the supercluster contains. In column 9, we show the Bumb
of Abell, APM and EDCC clusters studied by De Propetsal.
(2002) the supercluster has. In the last column, we showotiaé t
number of groups and clusters. Note that most of the Abe#i-clu
ters are counted in the Durham group catalogue. We obseate th
the rich groups (groups with more than 9 members) almostyswa
reside in superclusters whereas poorer groups are morersksh

(© 0000 RAS, MNRASD00, 000—000
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Figure 6. The density threshold,;, as a function of redshift and the best
fit model used to select the superclusters in Table 1.

We note that the superclusters that contain Abell clustersaav-
erage richer than superclusters that do not contain Abeditets,
in agreement with Einastet al. 2003. However, we also note that
the number of Abell clusters in a rich supercluster can baleigu
the number of Abell clusters in a poorer supercluster, wigethe
number of Durham groups increase as the overdensity ireseas

Thus, we conclude that the Durham groups are in generalrbette

representatives of the underlying density distributiorRdFGRS
than Abell clusters.

The superclusters SCSGP03, SCSGP04 and SCSGPO05 can be
seen in Figur€Z10. SCSGPO04 is part the rich Pisces-Cetus-Supe

cluster which was first described by Tully (1987). SCSGP@1, S

SGP02, SCSGP03 and SCSGP04 are all filamentary structures co

nected to each other, forming a multi branching system. STBEG

seems to be a more isolated system, possibly connected to SC-
SGP06 and SCSGP07. SCSGPO06 (fifiute 11) is the upper part of th

gigantic Horoglium Reticulum Supercluster. SCSGPO7 (Féfid)
is the extended part of the Leo-Coma Supercluster. Thegiche

percluster in the SGP region is SCSGP16 which can be seen in

the middle of the plots in FiguledL2. Also shown, in the same fig
ure, is SCSGP15, one of the richest superclusters in SGPhand t

edge of SCSGP17. In fact, as evident from Fidure 12, SCSGP14,
SCSGP15, SCSGP16 and SCSGP17 are branches of one big fila

mentary structure. In FigufelL3, we see SCNGPO01, this simeids
part of the upper edge of the Shapley Supercluster. Thestiche
percluster in NGP is SCNGPO06, shown in Figliré 14. Around this
in the neighbouring redshift slices, there are two rich fiatary

superclusters, SCNGP06, SCNGPO08 (fiduie 15). SCNGP07 seem

to be the node point of these filamentary structures.

Table 1 shows only the major overdensities in the survey.
These tend to be filamentary structures that are mostly coedie
to each other.

7.2 TheVoids

For the catalogue of the largest voids in TaHle 2 and Tablee3, w
only consider regions with 80 percent completeness or made a
go up to a redshift of 0.15. Following the previous studieg.(e
El-Ad & Piran 2000, Bensoret al. 2003 & Shethet al. 2003),
our chosen underdensity thresholddis = —0.85. The lists of
galaxies and their properties that are in these voids andhen t

(© 0000 RAS, MNRASD00, 000—-000

other smaller voids that are not in Tablgs 2 khd 3 are givemlin u
http://www.ast.cam.ac.uk/pirin. The tables of voids is structured

in a similar way as the table of superclusters, only we giye se
arate tables for NGP and SGP voids. The most intriguing struc
tures seen are the voids VSGPO01, VSGP2, VSGP03, VSGP4 and
VSGPO5. These voids, clearly visible in the radial number-de
sity function of 2dFGRS, are actually part of a big superhoie-

ken up by the low value of the void density threshold. Thisestp
hole has been observed and investigated by several authgrs (
Crosset al. 2002, De Propigt al. 2002, Norberget al. 2002, Frith

et al. 2003). The local NGP region also has excess underdensity
(VNGPO01,VNGPO02, VNGPO03, VNGP04, VNGPO05, VNGP06 and
VNGPO7, again part of a big superhole) but the voids in thésmar
are not as big or as empty as the voids in local SGP. In fact, by
combining the results from 2 Micron All Sky Survey, Las Cam-
panas Survey and 2dFGRS, Frithal. (2003) conclude that these
underdensities suggest that there is a contiguous voittising
from north to south. If such a void does exist then itis unexgdly
large for our present understanding of large scale strectunere

on large enough scales the Universe is isotropic and honeogisn

8 CONCLUSIONS

In this paper we use the Wiener Filtering technique to retcoos
the density field of the 2dF galaxy redshift survey. We pselihe
survey into igloo cells bounded bR A, Dec and redshift. The cell
size varies in order to keep the number of galaxies per cefihty
constant and is approximately #07* for Mpc high and 5h~*
Mpc for the low resolution maps at the median redshift of tiie s
vey. Assuming a prior based on parametess = 0.3, Qx = 0.7,

B = 0.49, o0g = 0.8 andI" = 0.2, we find that the reconstructed
density field clearly picks out the groups catalogue builtEtke

et al. (2003) and Abell, APM and EDCC clusters investigated by
De Propriset al. (2002). We also reconstruct four separate density
fields with different redshift ranges for a smaller cell sidé& h~*

elVIpc at the median redshift. For these reconstructions, wens a

non-linear power spectrum fit developed by Sneittal. (2003) and
linear biasing. The resolution of the density field improdesmat-
ically, down to the size of big clusters. The derived higtohason
density fields is in agreement with the lower resolution igers.

We use the reconstructed fields to identify the major super-
clusters and voids in SGP and NGP. We find that the richest su-
perclusters are filamentary and multi branching, in agregmvéh
Einastoet al. 2002. We also find that the rich clusters always re-
side in superclusters whereas poor clusters are more gegpaie
present the major superclusters in 2dFGRS in Table 1. Wequitk
two very rich superclusters, one in SGP and one in NGP. We also
ﬁdentify voids as underdensities that are betbw —0.85 and that
lie in regions with more that 8@ completeness. These underdensi-
ties are presented in Table 2 (SGP) and Table 3 (NGP). We pick o
two big voids, one in SGP and one in NGP. Unfortunately, we can
not measure the sizes and masses of the large structureserweb
in 2dF as most of these structures continue beyond the baeada
of the survey.

The detailed maps and lists of all of the reconstructed den-
sity fields, plots of the residual fields and the lists of théaga
ies that are in underdense regions can be found on WWW at
http://www.ast.cam.ac.uk/pirin.

One of the main aims of this paper is to identify the large
scale structure in 2dFGRS. The Wiener Filtering technigue p
vides a rigorous methodology for variable smoothing andseoi
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suppression. As such, a natural continuation of this worlasis
ing the Wiener filtering method in conjunction with other met
ods to further investigate the geometry and the topologyhef t
supercluster-void network. Sheth al. (2003) developed a pow-
erful surface modelling scheme, SURFGEN, in order to cateul
the Minkowski Functionals of the surface generated fromctiie-
sity field. The four Minkowski functionals — the area, thewuole,
the extrinsic curvature and the genus — contain informadioout
the geometry, connectivity and topology of the surfaceNt€#cke,
Buchert & Wagner 1994 and Shethal. 2003) and thus they will
provide a detailed morphological analysis of the supetelssand
voids in 2dFGRS.

Although not applicable to 2dFGRS, the Wiener reconstruc-

tion technique is well suited to recovering the velocitydgfrom
peculiar velocity catalogues. Comparisons of galaxy deresid
velocity fields allow direct estimations of the cosmologjigaram-

eters such as the bias parameter and the mean mass densiig. Th

comparisons will be possible with the upcoming 6dF Galaxy Su
vey (http://www..mso.anu.edu.au/6dFGS) which will meeasihe
redshifts of 170,000 galaxies and the peculiar velocitfeE50000

Hawkins E., & the 2dFGRS team, 2002, MNRAS, in press.

Hogg D.W.et al., 2003, ApJ, 585, L5

Kaiser N., 1987, MNRAS, 227, 1

Kang X., Jing Y.P., Mo H.J., Bdrner G., 2002, MNRAS, 336, 892

Kolokotronis V., Basilakos S. & Plionis M., 2002, MNRAS, 331020.

Lahav O., Fisher, K.B., Hoffman, VY., Scharf, C.A. and Zarp&h, Wiener
Reconstruction of Galaxy Surveys in Spherical Harmoni&941 The
Astrophysical Journal Letters, 423, L93

Lahav O. & the 2dFGRS team, 2002, MNRAS, 333, 961.

Maddox S.J., Efstathiou G., Sutherland W.J., 1990, MNRAS, 233.

Maddox, S.J., 2003, in preperation.

Madgwick D. and 2dFGRS team, 2002, 333,133

Madgwick D. and 2dFGRS team, 2003, MNRAS, 344, 847
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Nusser A. & Davis M., 1994, ApJ, 421, L1

Norberg P. and 2dFGRS team, 2001, MNRAS, 328, 64

Norberg P. and 2dFGRS team, 2002, MNRAS, 332, 827

Peacock J.A. & Dodds S.J., 1994, MNRAS, 267, 1020

Peacock J.A. & Dodds S.J., 1996, MNRAS, 280, L19

Peacock J.A. & Smith R.E., 2000, MNRAS, 318, 1144
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galaxies by June 2005. Compared to 2dFGRS, the 6dF surveyPercival W. & the 2dFGRS team, 2001, MNRAS, 327, 1297

has a much higher sky-coverage (the entire southern sky down

|b] > 10°). This wide survey area would allow a full hemispheric

Wiener reconstruction of large scale structure so thatites aind
masses of the superclusters and voids can be determined.
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—37.5°<Dec<—33.8° —33.8°<Dec<—30.0°

—30.0°<Dec<—26.3" —26.2°<Dec<—22.5°

Figure 7. Reconstructions of the 2dFGRS SGP region in slices of datain for 10~ —! Mpc target cell size . The declination range is given on taghgsot.
The contours are spacedat = 1.0 with solid (dashed) lines denoting positive (negative)toars; the heavy solid contours correspond te: 0
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—7.5°<Dec< —4.5° —4.5°<Dec< —1.5°

—1.5°<Dec< 1.5° 1.5°<Dec< 4.5°

Figure 8. Reconstructions of the 2dFGRS NGP region in slices of datitin for 10~h—! Mpc target cell size. The declination range is given on taggsot.
The contours are spacedat = 1.0 with solid (dashed) lines denoting positive (negative)toars; the heavy solid contours correspond te: 0
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Figure 9. Reconstructions of the 2dFGRS SGP region for the redshifiez0.047 < z < 0.049 for 5h~1 Mpc target cell size. The contours are spaced
at Ad = 0.5 with solid (dashed) lines denoting positive (negative)toars; the heavy solid contours correspond te: 0. The red dots denote the galaxies
with redshifts in the plotted range. a) Redshift space dgfigld weighted by the selection function and the angulasknb) Same as in a) but smoothed by
a Wiener Filter c) Same as in b) but corrected for the redslsfortion. The overdensity centred on:RA ~ —23.5, Dec ~ —30.0 is SCSGPO03 (see Table
1); 2) RA = 0.0, Dec =~ —30.0 is SCSGP04; 3RA = 36.0, Dec ~ —29.3 is SCSGPO05. The underdensity centredfod ~ —20.5, Dec =~ —30.0 is
VSGPO01; 2)RA ~ —8.5, Dec ~ —29.3 is VSGP02; 3)RA =~ 18.0, Dec ~ —28.5 is VSGP04; 4)RA ~ 32.2, Dec =~ —29.5 is VSGPO05. (see Table 2).

Figure 10. Reconstructions of the 2dFGRS SGP region for the redshifie.057 < 2z < 0.061 for 10h~! Mpc target cell size. Same as in figllle 9.The
overdensity centred on: BA ~ —23.5, Dec =~ —30.0 is SCSGPO03 (see Table 1); BA =~ 0.0, Dec ~ —30.0 is SCSGPO04, this overdensity is part of the
Pisces-Cetus Supercluster;BA =~ 36.0, Dec ~ —29.3 is SCSGPO05. The underdensity centredidf ~ —10.0, Dec ~ —30.0 is VSGP12 (see Table 2).

Figure 11. Reconstructions of the 2dFGRS SGP region for the redshifjez0.068 < z < 0.071 for 10h—! Mpc target cell size. Same as in figlile 9. The
overdensity centred on: IRA = 39.0, Dec ~ —34.5 is SCSGPO07 (see Table 1) and is part of Leo-Coma Supercl@t&A ~ 0.0, Dec ~ —30.0 is
SCSGPO06 and is part of Horoglium Reticulum Superclustee {&@ble 1).

Figure 12. Reconstructions of the 2dFGRS SGP region for the redshifiez0.107 < z < 0.108 for 5~ Mpc target cell size. Same as in figiile 9.The
overdensity centred on: IRA =~ 1.7, Dec =~ —31.0 is SCSGP16 (see Table 1); HA = 36.3, Dec ~ —30.0 is SCSGP15. 3RA ~ —15.0,
Dec =~ —30.0 is SCSGP17.The underdensity centred onRY ~ —25.0, Dec =~ —35.2 is VSGP25 (see Table 2); ZA ~ 11.3, Dec =~ —24.5 is
VSGP22; 3)RA ~ 48.0, Dec ~ —30.5 is VSGP20.

Figure 13. Reconstructions of the 2dFGRS NGP region for the redshifgea0.039 < z < 0.041 for 5~ Mpc target cell size. Same as in figiille 9.The
overdensity centred oRA =~ 153.0, Dec =~ —4.0 is SCNGPO1 and is part of the Shapley Supercluster (see Tabkhe underdensities are VNGPO1,
VNGPO02, VNGPO03, VNGPO04, VNGPO05, VNGP06 and VNGPOQ7 (seeerapl

Figure 14. Reconstructions of the 2dFGRS NGP region for the redshifyez0.082 < 2 < 0.086 for 10h—! Mpc target cell size. Same as in figlile 9.The
overdensity centred oRA = 194.0, Dec =~ —2.5 is SCNGPO06 (see Table 1).

Figure 15. Reconstructions of the 2dFGRS NGP region for the redshifgez0.100 < z < 0.104 for 10h—! Mpc target cell size. Same as in figlile 9.The
overdensity centred on: BA = 170.0, Dec ~ —1.0 is SCNGPO08 (see Table 1). The underdensity centred cR:AL}xs 150.0, Dec ~ —1.5 is VNGP18
(see Table 3); 2RA ~ 192.5, Dec ~ 0.5 is VNGP19; 2)RA =~ 209.0, Dec =~ —1.5is VNGP17.

Figure 16. Reconstructions of the 2dFGRS NGP region for the redshifjez0.103 < z < 0.108 for 5~ ! Mpc target cell size. Same as in figllle 9.
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Table 1. The list of superclusters

No Zmin Zmax RAnmin RAmax Decmin Decmax Ngr' =9 Nepus Niotal
(1950) deg  (1950) deg  (1950) deg  (1950) deg

SCSGP01 0.048 0.054 -—-115 -3.2 —-375 —-255 23 9 27
SCSGP02 0.054 0.057 -—-22.3 0.0 —-35.5 —-33.0 9 1 9
SCSGP03  0.057 0.064 —29.4 —-17.5 —-375 —-225 23 8 26
SCSGP04 0.057 0.068 —10.0 +10.0 —-35.5 —24.0 34 14 37
SCSGP0O5 0.054 0.064 325 39.0 —33.0 —-255 14 7 18
SCSGP06 0.064 0.082 45.5 55.0 —-35.0 —24.0 26 7 31
SCSGP0O7 0.064 0.071 18.5 40.0 —35.0 —-31.0 10 4 11
SCSGPO08 0.068 0.075 -385 —-33.0 —-35.0 —22.5 9 3 11
SCSGP09 0.075 0.082 —-27.0 —-17.5 —-375 —-225 20 9 24
SCSGP10 0.082 0.093 -175 —-9.5 —-36.0 —29.0 18 9 21
SCSGP11 0.086 0.097 —33.0 —-27.0 —345 —24.0 14 4 15
SCSGP12 0.093 0.097 -22.0 —-17.4 —-36.0 —34.8 4 1 5
SCSGP13 0.093 0.097 0.0 3.8 —36.0 —34.8 3 0 3
SCSGP14 0.093 0.104 16.0 24.6 —-33.0 —28.2 8 1 8
SCSGP15 0.097 0.115 28.0 44.6 —35.2 —24.6 34 18 41
SCSGP16 0.100 0.119 1.5 21.9 —35.2 —26.5 93 20 98
SCSGP17 0.100 0.108 -—-27.1 -3.0 —35.2 —26.5 38 7 43
SCSGP18 0.150 0.166 1.5 31.8 —-33.0 —26.5 18 6 22
SCSGP19 0.162 0.177 22.8 345 —35.2 —24.6 13 5 15
SCSGP20 0.181 0.202 -17.5 -3.15 —-35.5 —24.6 13 4 14
SCNGPO1 0.035 0.068 147.5 174.5 —6.5 2.5 59 6 61
SCNGP02 0.048 0.061 210.0 218.5 -5.0 0.0 19 0 19
SCNGPO03 0.068 0.075 150.0 155.0 -1.0 2.5 6 0 6
SCNGP04 0.068 0.075 158.0 166.5 -1.0 25 8 1 9
SCNGPO5 0.071 0.082 171.0 184.0 —-3.5 2.5 27 6 28
SCNGPO06 0.079 0.094 185.0 202.5 —-7.5 25 i 7 79
SCNGPO07 0.086 0.101 147.0 181.5 —-5.5 2.5 31 4 34
SCNGP0O8 0.090 0.131 165.0 185.0 —6.3 25 51 10 57
SCNGP09 0.103 0.114 158.5 163.0 -1.3 2.5 8 1 9
SCNGP10 0.103 0.118 197.0 203.0 —-3.75 1.25 22 0 22
SCNGP11 0.123 0.131 147.0 173.0 0.0 2.5 2 3
SCNGP12 0.119 0.142 210.0 219.0 —4.0 1.3 19 2 20
SCNGP13 0.131 0.142 173.0 179.0 —6.25 -1.3 5 2 6
SCNGP14 0.131 0.142 185.0 193.0 —6.25 1.3 7 0 7
SCNGP15 0.131 0.138 155.0 160.0 —6.3 1.3 9 1 9
SCNGP16 0.142 0.146 166.0 174.0 —-0.3 1.3 5 0 5
SCNGP17 0.142 0.146 194.0 199.0 —-25 1.3 1 0 1
SCNGP18 0.146 0.150 204.0 210.0 —-2.5 1.3 4 0 4
SCNGP19 0.173 0.177 181.0 184.0 -1.0 —4.0 3 0 3
SCNGP20 0.181 0.185 185.5 193.0 -1.0 —-4.0 1 0 1
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Table 2. The list of voids in SGP

No Zmin Zmax RAmin RAmax Decpin Decmax
(1950) deg  (1950) deg (1950) deg  (1950) deg

VSGPO1 0.035 0.051 —-27.5 —-17.3 —-37.5 —22.5
VSGPO2 0.035 0.051 -—-17.3 0.0 —33.0 —25.5
VSGP03 0.035 0.048 0.9 11.5 —34.5 —28.5
VSGP04 0.035 0.051 12.4 23.6 —30.5 —26.0
VSGP05 0.035 0.054 23.6 40.8 —33.5 —26.0
VSGP0O6 0.035 0.042 32.8 37.3 —33.5 —28.5
VSGP0O7 0.035 0.051 39.5 46.4 —-315 —28.5
VSGP08 0.035 0.042 46.4 51.0 —-315 —28.5
VSGP0O9 0.039 0.044 355 —30.0 —34.5 —28.5
VSGP10 0.039 0.041 10.0 17.5 —-33.5 —29.5
VSGP11 0.041 0.044 155 22.5 —33.5 —28.5
VSGP12 0.057 0.061 —12.8 —-8.2 —-315 —28.5
VSGP13 0.082 0.086 5.4 8.0 —-31.5 —28.5
VSGP15 0.082 0.089 41.8 49.3 —-315 —28.5
VSGP16 0.086 0.089 12.5 16.3 —-31.5 —28.5
VSGP17 0.086 0.089 31.0 33.5 —-32.5 —28.5
VSGP18 0.089 0.097 —-8.2 —5.95 —-30.5 —29.5
VSGP19 0.089 0.093 42.7 45.5 —-30.5 —29.5
VSGP20 0.093 0.104 46.4 52.5 —-32.5 —28.2
VSGP21 0.093 0.100 28.2 32.8 —-315 —28.5
VSGP22 0.097 0.104 7.7 125 —32.0 —28.5
VSGP23 0.097 0.100 -—-12.8 —-11.5 —-32.0 —28.5
VSGP24 0.100 0.108 —-31.8 —25.3 —28.5 —25.5
VSGP25 0.100 0.112 —-25.3 —-21.9 —34.5 —33.0
VSGP26 0.112 0.119 —-7.0 —-3.7 —-31.5 —28.5
VSGP27 0.112 0.115 15 5.4 —30.0 —27.0
VSGP28 0.112 0.115 259 28.2 —30.0 —27.0
VSGP29 0.112 0.115 41.0 46.4 —30.0 —27.0
VSGP30 0.115 0.119 26.2 30.5 —34.5 —-31.5
VSGP31 0.119 0.123 -35.0 —30.8 —28.5 —25.5
VSGP32 0.119 0.123 -27.0 —25.5 —28.5 —26.5
VSGP33 0.119 0.123 -—-12.8 —10.0 —28.5 —25.5
VSGP34 0.119 0.123 41.5 49.3 —38.8 —31.8
VSGP35 0.119 0.127 11.2 16.5 —28.2 —-27.5
VSGP36 0.123 0.131 -26.4 —22.4 —-31.5 —28.5
VSGP37 0.123 0.127 —-12.8 —-8.2 —30.0 —27.0
VSGP38 0.131 0.142 -26.4 —-19.5 —34.5 —31.5
VSGP39 0.131 0.138 32.3 37.5 —35.2 —24.8
VSGP40 0.138 0.142 30.3 335 —33.5 —29.0

(© 0000 RAS, MNRASD00, 000—-000



16 Erdojdu et al.

Table 3. The list of voids in NGP

No

VNGPO1
VNGPO02
VNGPO3
VNGPO0O4
VNGPO5
VNGPO06
VNGPO7
VNGP08
VNGPO09
VNGP10
VNGP11
VNGP12
VNGP13
VNGP14
VNGP15
VNGP16
VNGP17
VNGP18
VNGP19
VNGP20
VNGP21
VNGP22
VNGP23
VNGP24
VNGP25
VNGP26
VNGP27
VNGP28
VNGP29
VNGP30

Zmin

0.035
0.035
0.035
0.035
0.035
0.035
0.037
0.041
0.049
0.054
0.057
0.054
0.071
0.079
0.092
0.093
0.094
0.099
0.099
0.112
0.110
0.110
0.123
0.127
0.127
0.134
0.134
0.138
0.142
0.142

Zmazx

0.054
0.041
0.046
0.051
0.046
0.046
0.046
0.051
0.061
0.057
0.061
0.061
0.075
0.094
0.097
0.100
0.101
0.115
0.120
0.120
0.115
0.123
0.131
0.131
0.131
0.142
0.138
0.150
0.150
0.150

RAmin
(1950) deg

147.0
166.0
171.0
183.0
189.0
202.2
204.2
163.8
177.0
165.5
163.5
206.0
176.0
186.5
150.8
147.0
204.0
147.5
188.8
176.6
211.6
200.2
169.0
182.5
197.5
179.5
204.0
147.0
162.0
172.6

RAmaw
(1950) deg

160.0
171.0
181.2
189.0
197.0
206.0
215.6
169.8
196.4
173.0
166.0
208.0
179.0
204.2
160.2
149.5
2115
153.6
197.0
178.0
217.0
205.0
174.0
188.0
202.0
187.5
207.0
154.6
166.0
178.0

Decpin
(1950) deg

—-4.0
-1.0
-1.5
-1.5
-1.5
-1.5
-2.0
—-4.5
—-35
-1.5
0.0
-1.5
-1.0
—-7.5
—-7.5
—6
—-35
—-4.0
-3.0
0.5
—-25
—-3.25
—-4.0
0.0
—-1.25
-2.0
-1.5
—-3.5
—-4.0
-1.0

Decmax

(1950) deg

15
25
2.5
25
2.0
2.0
0.0
2.5
25
2.5

15

0.5
0.5
0.5
—6.0
15
25
1.0
25

2.5

-0.5
2.5

—-1.25
2.5

0.5
2.5
0.0
2.5
15
2.5
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