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ABSTRACT
We reconstruct the underlying density field of the 2 degree Field Galaxy Redshift Survey
(2dFGRS) for the redshift range0.035 < z < 0.200 using the Wiener Filtering method.
The Wiener Filter suppresses shot noise and accounts for selection and incompleteness ef-
fects. The method relies on prior knowledge of the 2dF power spectrum of fluctuations and
the combination of matter density and bias parameters however the results are only slightly
affected by changes to these parameters. We present maps of the density field in two different
resolutions:5h−1 Mpc and10h−1 Mpc. We identify all major superclusters and voids in the
survey. In particular, we find two large superclusters and two large local voids. A version of
this paper with full set of colour maps can be found at http://www.ast.cam.ac.uk∼pirin.

Key words: galaxies:distances and redshifts - cosmology: large-scale structure of Universe -
methods: statistical

1 INTRODUCTION

Historically, redshift surveys have provided the data and the test
ground for much of the research on the nature of clustering and the
distribution of galaxies. In the past few years, observations of large
scale structure have improved greatly. Today, with the development

of fibre-fed spectrographs that can simultaneously measurespectra
of hundreds of galaxies, cosmologists have at their fingertips large
redshift surveys such as 2 degree Field (2dF) and Sloan Digital Sky
Survey (SDSS). The analysis of these redshift surveys yieldinvalu-
able cosmological information. On the quantitative side, with the
assumption that the galaxy distribution arises from the gravitational
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2 Erdog̃du et al.

instability of small fluctuations generated in the early universe, a
wide range of statistical measurements can be obtained, such as
the power spectrum and bispectrum. Furthermore, a qualitative un-
derstanding of galaxy distribution provides insight into the mech-
anisms of structure formation that generate the complex pattern of
sheets and filaments comprising the ‘cosmic web’ (Bond, Kofman
& Pogosyan 1996) we observe and allows us to map a wide variety
of structure, including clusters, superclusters and voids.

Today, many more redshifts are available for galaxies than di-
rect distance measurements. This discrepancy inspired a great deal
of work on methods for reconstruction of the real-space density
field from that observed in redshift-space. These methods use a va-
riety of functional representations (e.g. Cartesian, Fourier, spherical
harmonics or wavelets) and smoothing techniques (e.g. a Gaussian
sphere or a Wiener Filter). There are physical as well as practical
reasons why one would be interested in smoothing the observed
density field. It is often assumed that the galaxy distribution sam-
ples the underlying smooth density field and the two are related by a
proportionality constant, the so-called linear bias parameter,b. The
finite sampling of the smooth underlying field introduces Poisson
‘shot noise’1. Any robust reconstruction technique must reliably
mitigate the statistical uncertainties due to shot noise. Moreover, in
redshift surveys, the actual number of galaxies in a given volume is
larger than the number observed, in particular in magnitudelimited
samples where at large distances only very luminous galaxies can
be seen.

In this paper, we analyse large scale structure in the 2 degree
Field Galaxy Redshift Survey (2dFGRS, Collesset al.2001), which
has now obtained the redshifts for approximately 230,000 galax-
ies. We recover the underlying density field, characterisedby an
assumed power spectrum of fluctuations, from the observed field
which suffers from incomplete sky coverage (described by the an-
gular mask) and incomplete galaxy sampling due to its magnitude
limit (described by the selection function). The filtering is achieved
by a Wiener Filter (Wiener 1949, Presset al. 1992) within the
framework of both linear and non-linear theory of density fluctu-
ations. The Wiener Filter is optimal in the sense that the variance
between the derived reconstruction and the underlying truedensity
field is minimised. As opposed toad hocsmoothing schemes, the
smoothing due to the Wiener Filter is determined by the data.In
the limit of high signal-to-noise, the Wiener Filter modifies the ob-
served data only weakly, whereas it suppresses the contribution of
the data contaminated by shot noise.

The Wiener Filtering is a well known technique and has been
applied to many fields in astronomy (see Rybicki & Press 1992).
For example, the method was used to reconstruct the angular dis-
tribution (Lahavet al. 1994), the real-space density, velocity and
gravitational potential fields of the 1.2 Jy-IRAS (Fisher et al.
1995) andIRAS PSCz surveys (Schmoldtet al.1999). The Wiener
Filter was also applied to the reconstruction of the angularmaps
of the Cosmic Microwave Background temperature fluctuations
(Bunn et al. 1994, Tegmark & Efstathiou 1995, Bouchet & Gis-
pert 1999). A detailed formalism of the Wiener Filtering method as
it pertains to the large scale structure reconstruction canbe found
in Zaroubiet al. (1995).

This paper is structured as follows: we begin with a brief re-

1 Another popular model for galaxy clustering is the halo model where the
linear bias parameter depends on the mass of the dark matter halos where
the galaxies reside. For this model, the mean number of galaxy pairs in a
given halo is usually lower than the Poisson expectation.

view of the formalism of the Wiener Filter method. A summary
of 2dFGRS data set, the survey mask and the selection function
are given in Section 3. In section 4, we outline the scheme used
to pixelise the survey. In section 5, we give the formalism for the
covariance matrix used in the analysis. After that, we describe the
application of the Wiener Filter method to 2dFGRS and present de-
tailed maps of the reconstructed field. In section 7, we identify the
superclusters and voids in the survey.

Throughout this paper, we assume aΛCDM cosmology with
Ωm = 0.3 andΩΛ = 0.7 andH0 = 100h−1kms−1Mpc−1.

2 WIENER FILTER

In this section, we give a brief description of the Wiener Fil-
ter method. For more details, we refer the reader to Zaroubiet
al. (1995). Let’s assume that we have a set of measurements,
{dα} (α = 1, 2, . . . N) which are a linear convolution of the true
underlying signal,sα, plus a contribution from statistical noise,ǫα,
such that

dα = sα + ǫα. (1)

The Wiener Filter is defined as thelinear combination of the ob-
served data which is closest to the true signal in a minimum vari-
ance sense. More explicitly, the Wiener Filter estimate,sWF

α , is
given bysWF

α = Fαβ dβ where the filter is chosen to minimise the
variance of the residual field,rα:

〈|r2
α|〉 = 〈|sWF

α − sα|2〉. (2)

It is straightforward to show that the Wiener Filter is givenby

Fαβ = 〈sαd†
γ〉〈dγd†

β〉−1, (3)

where the first term on the right hand side is the signal-data corre-
lation matrix;

〈sαd†
γ〉 = 〈sαs†γ〉, (4)

and the second term is the data-data correlation matrix;

〈dαd†
β〉 = 〈sγs†δ〉 + 〈ǫαǫ†β〉. (5)

In the above equations, we have assumed that the signal and
noise are uncorrelated. From equations 3 and 5, it is clear that, in
order to implement the Wiener Filter, one must construct aprior
which depends on the mean of the signal (which is 0 by construc-
tion) and the variance of the signal and noise. The assumption of a
prior may be alarming at first glance. However, slightly inaccurate
values of Wiener Filter will only introduce second order errors to
the full reconstruction (see Rybicki & Press 1992). The dependence
of the Wiener Filter on the prior can be made clear by defining sig-
nal and noise matrices asCαβ = 〈sαs†β〉 andNαβ = 〈ǫαǫ†β〉. With

this notation, we can rewrite the equations above so thats
WF is

given as

s
WF = C [C + N]−1

d. (6)

The mean square residual given in equation 2 can then be calculated
as

〈rr†〉 = C [C + N]−1
N. (7)

Formulated in this way, we see that the purpose of the Wiener
Filter is to attenuate the contribution of low signal-to-noise ra-
tio data. The derivation of the Wiener Filter given above follows
from the sole requirement of minimum variance and requires only
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a model for the variance of the signal and noise. The Wiener Fil-
ter can also be derived using the laws of conditional probability if
the underlying distribution functions for the signal and noise are
assumed to be Gaussian. For the Gaussian prior, the Wiener Filter
estimate is both the maximumposteriorestimate and the mean field
(see Zaroubiet al.1995).

As several authors point out (e.g. Rybicki & Press 1992,
Zaroubi 2002), the Wiener Filter is a biased estimator sinceit pre-
dicts a null field in the absence of good data, unless the field itself
has zero mean. Since we constructed the density field to have zero
mean, we are not worried about this bias. However, the observed
field deviates from zero due to selection effects and so one needs to
be aware of this bias in the reconstructions.

It is well known that the peculiar velocities of galaxies distort
clustering pattern in redshift space. On small scales, the random
peculiar velocity of each galaxy causes smearing along the line of
sight, known asthe finger of God. On larger scales, there is com-
pression of structures along the line of sight due to coherent infall
velocities of large-scale structure induced by gravity. One of the
major difficulties in analysing redshift surveys is the transforma-
tion of the position of galaxies from redshift space to real space. For
all sky surveys, this issue can be addressed using several methods,
for example the iterative method of Yahilet al.(1991) and modified
Poisson equation of Nusser & Davis 1994. However, these methods
are not applicable to surveys which are not all sky as they assume
that in linear theory, the peculiar velocity of any galaxy isa result of
the matter distribution around it, and the gravitational field is dom-
inated by the matter distribution inside the volume of the survey.
For a survey like 2dFGRS, within the limitation of linear theory
where the redshift space density is a linear transformationof the
real space density, a Wiener Filter can be used to transform from
redshift space to real space (see Fisheret al. (1995) and Zaroubiet
al. (1995) for further details). This can be written as

sWF (rα) = 〈s(rα)d(sγ)〉〈d(sγ)d(sβ)〉−1d(sβ), (8)

where the first term on the right hand side is the cross-correlation
matrix of real and redshift space densities ands(r) is the position
vector in redshift space. It is worth emphasising that this method
is limited as it only recovers the peculiar velocity field generated
by the mass sources represented by the galaxies within the survey
boundaries. It does not account for possible external forces. This
limitation can only be overcome by comparing the 2dF survey with
all sky surveys.

3 THE DATA

3.1 The 2dFGRS data

The 2dFGRS, now completed, is selected in the photometricbJ

band from the APM galaxy survey (Maddox, Efstathiou & Suther-
land 1990) and its subsequent extensions (Maddoxet al. 2003, in
preparation). The survey covers about2000 deg2 and is made up
of two declination strips, one in the South Galactic Pole region
(SGP) covering approximately−37◦.5 < δ < −22◦.5, −35◦.0 <
α < 55◦.0 and the other in the direction of the North Galactic Pole
(NGP), spanning−7◦.5 < δ < 2◦.5, 147◦.5 < α < 222◦.5. In ad-
dition to these contiguous regions, there are a number of randomly
located circular 2-degree fields scattered over the full extent of the
low extinction regions of the southern APM galaxy survey.

The magnitude limit at the start of the survey was set at
bJ = 19.45 but both the photometry of the input catalogue and the

dust extinction map have been revised since and so there are small
variations in magnitude limit as a function of position overthe sky
which are taken into account using the magnitude limit mask.The
effective median magnitude limit, over the area of the survey, is
bJ ≈ 19.3 (Collesset al.2001).

We use the data obtained prior to May 2002, when the sur-
vey was nearly complete. This includes 221 283 unique, reliable
galaxy redshifts. We analyse a magnitude-limited sample with red-
shift limits zmin = 0.035 andzmax = 0.20. The median redshift is
zmed ≈ 0.11. We use 167 305 galaxies in total, 98 129 in the SGP
and 69 176 in the NGP. We do not include the random fields in our
analysis.

The 2dFGRS database and full documentation are available
on the WWW at http://www.mso.anu.edu.au/2dFGRS/.

3.2 The Mask and The Radial Selection Function of 2dFGRS

The completeness of the survey varies according to the position in
the sky due to unobserved fields, particularly at the survey edges,
and unfibred objects in the observed fields because of collision con-
straints or broken fibres.

For our analysis, we make use of two different masks (Colless
et al. 2001; Norberget al. 2002). The first of these masks is the
redshift completeness mask defined as the ratio of the numberof
galaxies for which redshifts have been measured to the totalnum-
ber of objects in the parent catalogue. This spatial incompleteness
is illustrated in Figure 1. The second mask is the magnitude limit
mask which gives the extinction corrected magnitude limit of the
survey at each position.

The radial selection function gives the probability of observ-
ing a galaxy for a given redshift and can be readily calculated from
the galaxy luminosity function:

Φ(L)dL = Φ∗

(

L

L∗

)α

exp

(

− L

L∗

)

dL

L∗
. (9)

where for the concordance model:α = −1.21± 0.03, log10 L∗ =
−0.4(−19.66±0.07+5 log10(h)) andΦ∗ = 0.0161±0.0008h3

(Norberget al.2002).
The selection function can then be expressed as

φ(r) =

∫ ∞

L(r)
Φ(L)dL

∫ ∞

Lmin
Φ(L)dL

, (10)

where L(r) is the minimum luminosity detectable at luminos-
ity distancer (assuming the concordance model), evaluated for
the concordance model,Lmin = Min(L(r), Lcom) andLcom is
the minimum luminosity for which the catalogue is complete and
varies as a function of position over the sky. For distances con-
sidered in this paper, where the deviations from the Hubble flow
are relatively small, the selection function can be approximated as
φ(r) ≈ φ(zgal). Each galaxy,gal, is then assigned the weight

w(gal) =
1

φ(zgal)M(Ωi)
(11)

whereφ(zgal) andM(Ωi) are the values of the selection function
for each galaxy and angular survey mask for each celli (see Section
4), respectively.

4 SURVEY PIXELISATION

In order to form a data vector of overdensities, the survey needs
to be pixelised. There are many ways to pixelise a survey: equal

c© 0000 RAS, MNRAS000, 000–000
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4 Erdog̃du et al.

Figure 1. The redshift completeness masks for the NGP (top) and SGP (bottom) in Equatorial coordinates. The gray scale shows the completeness fraction.

Figure 2. An illustration of the survey pixelisation scheme used in the anal-
ysis, for10h−1 Mpc (top) and5h−1 Mpc (bottom) target cells widths. The
redshift ranges given on top of each plot.

sized cubes in redshift space, igloo cells, spherical harmonics, De-
launey tessellation methods, wavelet decomposition, etc.Each of
these methods have their own advantages and disadvantages and
they should be treated with care as they form functional bases in
which all the statistical and physical properties of cosmicfields are
retained.

The pixelisation scheme used in this analysis is an ‘igloo’ grid
with wedge shaped pixels bounded in right ascension, declination
and in redshift. The pixelisation is constructed to keep theaverage
number density per pixel approximately constant. The advantage
of using this pixelisation is that the number of pixels is minimised
since the pixel volume is increased with redshift to counteract the
decrease in the selection function. This is achieved by selecting a
‘target cell width’ for cells at the mean redshift of the survey and
deriving the rest of the bin widths so as to match the shape of the
selection function. The target cell widths used in this analysis are
10h−1 Mpc and5h−1 Mpc. Once the redshift binning has been cal-
culated each radial bin is split into declination bands and then each
band in declination is further divided into cells in right ascension.
The process is designed so as to make the cells roughly cubical.
In Figure 2, we show an illustration of this by plotting the cells in
right ascension and declination for a given redshift strip.

Although advantageous in many ways, the pixelisation
scheme used in this paper may complicate the interpretationof the
reconstructed field. By definition, the Wiener Filter signalwill ap-
proach to zero at the edges of the survey where the shot noise may
dominate. This means the true signal will be constructed in anon-
uniform manner. This effect will be amplified as the cell sizes get
bigger at higher redshifts. Hence, both of these effects must be con-
sidered when interpreting the results.

c© 0000 RAS, MNRAS000, 000–000
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5 ESTIMATING THE SIGNAL-SIGNAL CORRELATION
MATRIX OVER PIXELS

The signal covariance matrix can be accurately modelled by an
analytical approximation (Moody 2003). The calculation ofthe
covariance matrix is similar to the analysis described by Efs-
tathiou and Moody (2001) apart from the modification due to three-
dimensionality of the survey. The covariance matrix for the‘noise
free’ density fluctuations is〈Cij〉 = 〈δiδj〉, whereδi = (ρi − ρ̄)/ρ̄
in the ith pixel. It is estimated by first considering a pair of pixels
with volumesVi andVj , separated by distancer so that,

〈Cij〉 =

〈

1

ViVj

∫

Celli

δ(x)dVi

∫

Cellj

δ(x + r)dVj

〉

(12)

=
1

ViVj

∫

Celli

∫

Cellj

〈δ(x)δ(x + r)〉dVidVj (13)

=
1

ViVj

∫

Celli

∫

Cellj

ξ(r)dVidVj (14)

where the isotropic two point correlation functionξ(r) is given by

ξ(r) =
1

(2π)3

∫

P (k)e−ik·rd3k, (15)

and therefore,

〈Cij〉 =
1

(2π)3ViVj

∫

P (k)d3k

×
∫

Celli

∫

Cellj

e−ik(ri−rj )dVidVj . (16)

After performing the Fourier transform, this equation can be written
as

〈Cij〉 =
1

(2π)3

∫

P (k)S(k,Li)S(k,Lj)C(k, r)d3k, (17)

where the functionsS andC are given by,

S(k,L) = sinc(kxLx/2)sinc(kyLy/2)sinc(kzLz/2) (18)

C(k, r) = cos(kxrx) cos(kyry) cos(kzrz), (19)

where the labelL describes the dimensions of the cell (Lx, Ly ,
Lz), the components ofr describes the separation between cell cen-
tres,k= (kx, ky, kz) is the wavevector andsinc(x) = sin(x)

x
. The

wavevector,k is written in spherical co-ordinatesk, θ, φ to simplify
the evaluation ofC. We define,

kx = k sin(φ) cos(θ) (20)

ky = k sin(φ) sin(θ) (21)

kz = k cos(φ). (22)

. Equation 17 can now be integrated overθ andφ to form the kernel
Gij(k) where,

Gij(k) =
1

π3

∫ π/2

0

∫ π/2

0

S(k,Li)S(k,Lj)C(k, r) sin(φ)dθdφ, (23)

so that,

〈Cij〉 =

∫

P (k)Gij(k)k2dk. (24)

In practice we evaluate,

〈Cij〉 =
∑

k

PkGijk, (25)

wherePk is the binned bandpower spectrum andGijk is,

Gijk =

∫ kmax

kmin

Gij(k)k2dk, (26)

where the integral extends over the band corresponding to the band
powerPk.

For cells that are separated by a distance much larger than the
cell dimensions the cell window functions can be ignored, simpli-
fying the calculation so that,

Gijk =
1

(2π)3

∫ kmax

kmin

sinc(kr)4πk2dk, (27)

wherer is the separation between cell centres.

6 THE APPLICATION

6.1 Reconstruction Using Linear Theory

In order to calculate the data vectord in equation 6, we first esti-
mate the number of galaxiesNi in each pixeli:

Ni =

Ngal(i)
∑

gal

w(gal), (28)

where the sum is over all the observed galaxies in the pixel and
w(gal) is the weight assigned to each galaxy (equation 11). The
boundaries of each pixel are defined by the scheme described in
Section 4, using a target cell width of10h−1 Mpc. The mean num-
ber of galaxies in pixeli is

N̄i = n̄Vi, (29)

whereVi is the volume of the pixel and the mean galaxy density,n̄,
is estimated using the equation:

n̄ =

Ntotal
∑

gal

w(gal)

∫ ∞

0
drr2φ(r)w(r)

, (30)

where the sum is now over all the galaxies in the survey. We note
that the value for̄n obtained using the equation above is consis-
tent with the maximum estimator method proposed by Davis and
Huchra (1982). Using these definitions, we write theith compo-
nent of the data vectord as:

di =
Ni − N̄i

N̄i
. (31)

Note that, the mean value ofd is zero by construction.
Reconstruction of the underlying signal given in equation 6

also requires the signal-signal and the inverse of the data-data cor-
relation matrices. The data-data correlation matrix (equation 5) is
the sum of noise-noise correlation matrixN and the signal-signal
correlation matrixC formulated in the previous section. The only
change made is to the calculation ofC where the real space corre-
lation functionξ(r) is now multiplied by Kaiser’s factor in order to
correct for the redshift distortions on large scales. So

ξs =
1

(2π)3

∫

P S(k) exp(ik · (r2 − r1))d3k, (32)

c© 0000 RAS, MNRAS000, 000–000



6 Erdog̃du et al.

whereP S(k) is the galaxy power spectrum in redshift space,

P S(k) = K[β]P R(k), (33)

derived in linear theory. The subscriptsR andS in this equation
(and hereafter) denote real and redshift space, respectively.

K[β] = 1 +
2

3
β +

1

5
β2 (34)

is the direction averaged Kaiser’s (1987) factor, derived using dis-
tant observer approximation and with the assumption that the data
subtends a small solid angle with respect to the observer (the latter
assumption is valid for the 2dFGRS but does not hold for a wide
angle survey, see Zaroubi and Hoffman, 1996 for a full discussion).
Equation 33 shows that in order to apply the Wiener Filter method,
we need a model for the galaxy power spectrum in redshift-space
which depends on the real-space power spectrum spectrum andon
the redshift distortion parameter,β ≡ Ωm

0.6/b.
The real-space galaxy power spectrum is well described by a

scale invariant Cold Dark Matter power spectrum with shape pa-
rameter,Γ for the scales concerned in this analysis. ForΓ, we use
the value derived from the 2dF survey by Percivalet al.(2001) who
fitted the 2dFGRS power spectrum over the range of linear scales
using the fitting formulae of Eisenstein and Hu (1998). Assuming
a Gaussian prior on the Hubble constanth = 0.7 ± 0.07 (based on
Freedmanet al.2001), they findΓ = 0.2±0.03. The normalisation
of the power spectrum is conventionally expressed in terms of the
variance of the density field in spheres of8h−1 Mpc, σ8. Lahavet
al. (2002) use 2dFGRS data to deduceσS

8g(Ls, zs) = 0.94 ± 0.02
for the galaxies in redshift space, assumingh = 0.7 ± 0.07 at
zs ≈ 0.17 andLs ≈ 1.9L∗. We convert this result to real space
using the following equation:

σR
8g(Ls, zs) = σS

8g(Ls, zs)/K1/2[β(Ls, zs)] . (35)

whereK[β] is Kaiser’s factor. For our analysis, we need to useσ8

evaluated at the mean redshift of the survey for galaxies with lumi-
nosityL∗. However, one needs to assume a model for the evolution
of galaxy clustering in order to findσ8 at different redshifts. More-
over, the conversion fromLs to L∗ introduces uncertainties in the
calculation. Therefore, we choose an approximate value,σR

8g ≈ 0.8
to normalise the power spectrum. Forβ, we adopt the value found
by Hawkinset al. (2002),β(Ls, zs) = 0.49 ± 0.09 which is es-
timated at the effective luminosity,Ls ≈ 1.4L∗, and the effective
redshift,zs ≈ 0.15, of the survey sample. Our results are not sen-
sitive to minor changes inσ8 andβ.

The other component of the data-data correlation matrix is the
noise correlation matrixN. Assuming that the noise in different
cells is not correlated, the only non-zero terms inN are the diag-
onal terms given by the variance - the second central moment -of
the density error in each cell:

Nii =
1

N̄2
i

Ngal(i)
∑

gal

w2(gal). (36)

The final aspect of the analysis is the reconstruction of the
real-space density field from the redshift-space observations. This
is achieved using equation 8. Following Kaiser (1987), using dis-
tant observer and small-angle approximation, the cross-correlation
matrix in equation 8 for the linear regime can be written as

〈s(r)d(s)〉 = 〈δrδs〉 = ξ(r)(1 +
1

3
β), (37)

wheres and r are position vectors in redshift and real space, re-

spectively. The term,(1 + 1
3
β), is easily obtained by integrating

the direction dependent density field in redshift space. Using equa-
tion 37, the transformation from redshift space to real space simpli-
fies to:

sWF (r) =
1 + 1

3
β

K[β]
C [K[β]C + N]−1

d. (38)

As mentioned earlier, the equation above is calculated for linear
scales only and hence small scale distortions (i.e.fingers of God)
are not corrected for. For this reason, we collapse in redshift space
the fingers seen in 2dF groups (Ekeet al.2003) with more than 75
members, 25 groups in total (11 in NGP and 14 in SGP). All the
galaxies in these groups are assigned the same coordinates.As ex-
pected, correcting these small scale distortions does not change the
constructed fields substantially as these distortions are practically
smoothed out because of the cell size used in binning the data.

The maps shown in this section were derived by the technique
detailed above. There are 80 sets of plots which show the density
fields as strips inRA andDec, 40 maps for SGP and 40 maps for
NGP. Here we just show some examples, the rest of the plots canbe
found in url: http://www.ast.cam.ac.uk/∼pirin. For comparison, the
top plots of Figures 10, 11, 14, and 15 show the redshift spaceden-
sity field weighted by the selection function and the angularmask.
The contours are spaced at∆δ = 0.5 with solid (dashed) lines de-
noting positive (negative) contours; the heavy solid contours cor-
respond toδ = 0. Also plotted for comparison are the galaxies
(red dots) and the groups withNgr number of members (Ekeet
al. 2003) and9 6 Ngr 6 17 (green circles),18 6 Ngr 6 44
(blue squares) and45 6 Ngr (magenta stars). We also show the
number of Abell, APM and EDCC clusters studied by De Propris
et al. (2002) (black upside down triangles). The middle plots show
the redshift space density shown in top plots after the Wiener Filter
applied. As expected, the Wiener Filter suppresses the noise. The
smoothing performed by the Wiener Filter is variable and increases
with distance. The bottom plots show the reconstructed realdensity
field s

WF (r), after correcting for the redshift distortions. Here the
amplitude of density contrast is reduced slightly. We also plot the
reconstructed fields in declination slices. These plots areshown in
Figures 7 and 8.

We also plot the square root of the variance of the residual
field (equation 2), which defines the scatter around the mean recon-
structed field. We plot the residual fields corresponding to some of
the redshift slices shown in this paper. (Figures 3 and 4). For better
comparison, plots are made so that the cell number increaseswith
increasingRA. If the volume of the cells used to pixelise the survey
was constant, we would expect the square root of the variance∆δ
to increase due to the increase in shot noise (equation 7). However,
since the pixelisation was constructed to keep the shot noise per
pixel approximately constant,∆δ also stays constant (∆δ ≈ 0.23
for both NGP and SGP) but the average density contrast in each
pixel decreases with increasing redshift. This means that although
the variance of the residual in each cell is roughly equal, the rel-
ative variance (represented by∆δ

δ
) increases with increasing red-

shift. This increase is clearly evident in Figures 3 and 4. Another
conclusion that can be drawn from the figures is that the bumps
in the density field are due to real features not due to error inthe
reconstruction, even at higher redshifts.

6.2 Reconstruction Using Non-linear Theory

In order to increase the resolution of the density field maps,we re-
duce the target cell width to5h−1 Mpc. A volume of a cubic cell
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Figure 3. The plot of overdensities in SGP for the each redshift slice for 10h−1 Mpc target cell size shown above. Also plotted are the variances of the residual
associated for each cell.The increase in cell number indicates the increaseRA in each redshift slice.

Figure 4. Same as in figure 3 but for the redshift slices in NGP shown above.

of side5h−1 Mpc is roughly equal to a top-hat sphere of radius
of about3h−1 Mpc. The variance of the mass density field in this
sphere isσ3 ≈ 1.7 which corresponds to non-linear scales. To re-
construct the density field on these scales, we require accurate de-
scriptions of non-linear galaxy power spectrum and the non-linear
redshift space distortions.

For the non-linear matter power spectrumP R
nl (k), we adopt

the empirical fitting formula of Smithet al. (2003). This formula,
derived using the ‘halo model’ for galaxy clustering, is more accu-
rate than the widely used Peacock & Dodds (1996) fitting formula
which is based on the assumption of ‘stable clustering’ of virial-
ized halos. We note that for the scales concerned in this paper (up
to k ≈ 10hMpc−1), Smith et al. (2003) and Peacock & Dodds
(1996) fitting formulae give very similar results. For simplicity we
assume linear, scale independent biasing in order to determine the
galaxy power spectrum from the mass power spectrum, whereb
measures the ratio between galaxy and mass distribution,

P R
nl = b2P m

nl , (39)

whereP R
nl is the galaxy andP m

nl is the matter power spectrum. We
assume thatb = 1.0 for our analysis. While this value is in agree-
ment with the result obtained from 2dFGRS (Lahavet al. 2002,
Verdeet al. 2002) for scales of tens of Mpc, it does not hold true
for the scales of5h−1 Mpc on which different galaxy populations
show different clustering patterns (Norberget al.2002, Madgwick
et al.2002, Zehaviet al.2002). More realistic models exist where
biasing is scale dependent (e.g. Seljak, 2000 and Peacock & Smith,
2000) but since the Wiener Filtering method is not sensitiveto small
errors in the prior parameters and the reconstruction scales are not
highly non-linear, the simple assumption of no bias will still give
accurate reconstructions.

The main effect of redshift distortions on non-linear scales is
the reduction of power as a result of radial smearing due to viri-
alized motions. The density profile in redshift space is thenthe
convolution of its real space counterpart with the peculiarveloc-
ity distribution along the line of sight, leading to dampingof power
on small scales. This effect is known to be reasonably well approxi-

mated by treating the pairwise peculiar velocity field as Gaussian or
better still as an exponential in real space (superpositions of Gaus-
sians), with dispersionσp (e.g. Peacock & Dodds 1994, Ballinger
et al.1996 & Kanget al.2002). Therefore the galaxy power spec-
trum in redshift space is written as

P S
nl(k, µ) = P R

nl (k, µ)(1 + βµ2)2D(kσpµ) , (40)

whereµ is the cosine of the wave vector to the line of sight,σp

has the unit ofh−1 Mpc and the damping function ink-space is a
Loretzian:

D(kσpµ) =
1

1 + (k2σ2
pµ2)/2

. (41)

Integrating equation 40 overµ, we obtain the direction-averaged
power spectrum in redshift space:

P S
nl(k)

P R
nl (k)

=
4(σ2

pk2 − β)β

σ4
pk4

+
2β2

3σ2
pk2

+

√
2(k2σ2

p − 2β)2arctan(kσp/
√

2)

k5σ5
p

. (42)

For the non-linear reconstruction, we use equation 42 instead of
equation 33 when deriving the correlation function in redshift
space. Figure 5 shows how the non-linear power spectrum is
damped in redshift space (dashed line) and compared to the lin-
ear power spectrum (dotted line). In this plot and throughout this
paper we adopt theσp value derived by Hawkinset al. (2002),
σp = 506±52kms−1. Interestingly, by coincidence, the non-linear
and linear power spectra look very similar in redshift space. So, if
we had used the linear power spectrum instead of its non-linear
counterpart, we still would have obtained physically accurate re-
constructions of the density field in redshift space.

The optimal density field in real space is calculated using
equation 8. The cross-correlation matrix in equation 38 cannow
be approximated as

〈s(r)d(s)〉 = ξ(r, µ)(1 + βµ2)
√

D(kσpµ) . (43)
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Figure 5. Non-linear power spectra for z=0 and the concordance model
with σp = 506kms−1 in real space (solid line), in redshift space from
equation 42 (dashed line), both derived using the fitting formulae of Smith
et al. (2003) and linear power spectra in redshift space derived using linear
theory and Kaiser’s factor (dotted line).

Again, integrating the equation above overµ, the direction aver-
aged cross-correlation matrix of the density field in real space and
the density field in redshift space can be written as

〈s(r)d(s)〉
〈s(r)s(r)〉 =

1

2k2σ2
p

ln(k2σ2
p(1 +

√

1 + 1/k2σ2
p))

+
β

k2σ2
p

√

1 + k2σ2
p +

β

k3σ3
p

arcsinh(k2σ2
p). (44)

At the end of this paper, we show some examples of the non-
linear reconstructions (Figures 9, 12, 13 and 16). As can be seen
from these plots the resolution of the reconstructions improves rad-
ically, down to the scale of large clusters. Comparing Figure 15 and
Figure 16 where the redshift ranges of the maps are similar, we con-
clude that 10h−1 Mpc and 5h−1 Mpc resolutions give consistent
reconstructions.

Due to the very large number of cells, we reconstruct four
separate density fields for redshift ranges0.035∼<z∼<0.05 and
0.09∼<z∼<0.11 in SGP,0.035∼<z∼<0.05 and0.09∼<z∼<0.12 in NGP.
There are 46 redshift slices in total. The number of cells forthe
latter reconstructions are in the order of 10 000.

To investigate the effects of using different non-linear redshift
distortion approximations, we also reconstruct one field without the
damping function but just collapsing the fingers of god. Although
including the damping function results in a more physicallyaccu-
rate reconstruction of the density field in real space, it still is not
enough to account for the elongation of the richest clustersalong
the line of sight. Collapsing the fingers of god as well as includ-
ing the damping function underestimates power resulting innoisy
reconstruction of the density field. We choose to use only thedamp-
ing function for the non-linear scales obtaining stable results for the
density field reconstruction.

The theory of gravitational instability states that as the dynam-
ics evolve away from the linear regime, the initial field deviates
from Gaussianity and skewness develops. The Wiener Filter,in the
form presented here, only minimises the variance and it ignores the
higher moments that describe the skewness of the underlyingdis-
tribution. However, since the scales of reconstructions presented in
this section are not highly non-linear and the signal-to-noise ratio

is high, the assumptions involved in this analysis are not severely
violated for the non-linear reconstruction of the density field in red-
shift space. The real space reconstructions are more sensitive to the
choice of cell size and the power spectrum since the Wiener Filter
is used not only for noise suppression but also for transformation
from redshift space. Therefore, reconstructions in redshift space are
more reliable on these non-linear scales than those in real space.

A different approach to the non-linear density field reconstruc-
tion presented in this paper is to apply the Wiener Filter to the re-
construction of the logarithm of the density field as there isgood
evidence that the statistical properties of the perturbation field in the
quasi-linear regime is well approximated by a log-normal distribu-
tion. A detailed analysis of the application of the Wiener Filtering
technique to log-normal fields is given in Sheth (1995).

7 MAPPING THE LARGE SCALE STRUCTURE OF THE
2dFGRS

One of the main goals of this paper is to use the reconstructed
density field to identify the major superclusters and voids in the
2dFGRS. We define superclusters (voids) as regions of large over-
density (underdensity) which is above (below) a certain thresh-
old. This approach has been used successfully by several authors
(e.g. Einastoet al. 2002 & 2003, Kolokotronis, Basilakos & Plio-
nis 2002, Plionis & Basilakos 2002, Saunderset al.1991).

7.1 The Superclusters

In order to find the superclusters listed in Table 1, we define the
density contrast threshold,δth, as distance dependent. We use a
varying density threshold for two reasons that are related to the way
the density field is reconstructed. Firstly, the adaptive gridding we
use implies that the cells get bigger with increasing redshift. This
means that the density contrast in each cell decreases. The second
effect that decreases the density contrast arises due to theWiener
Filter signal tending to zero towards the edges of the survey. There-
fore, for each redshift slice we find the mean and the standarddevi-
ation of the density field (averaged over 113 cells for NGP and223
for SGP), then we calculateδth as twice the standard deviation of
the field added to its mean, averaged over SGP and NGP for each
redshift bin (see Figure 6). In order to account for the clustering ef-
fects, we fit a smooth curve toδth, usingχ2 minimisation. The best
fit, also shown Figure 6, is a quadratic equation withχ2/(number of
degrees of freedom) = 1.6. We use this fit when selecting the over-
densities. We note that choosing smoothed or unsmoothed density
threshold does not change the selection of the superclusters.

The list of superclusters in SGP and NGP region are given
in Table 1. This table is structured as follows: column 1 is the
identification, columns 2 and 3 are the minimum and the maxi-
mum redshift, columns 4 and 5 are the minimum and maximum
RA, columns 6 and 7 are the minimum and maximumDec over
which the density contours aboveδth extend. In column 8, we
show the number of Durham groups with more than 5 members
that the supercluster contains. In column 9, we show the number
of Abell, APM and EDCC clusters studied by De Propriset al.
(2002) the supercluster has. In the last column, we show the total
number of groups and clusters. Note that most of the Abell clus-
ters are counted in the Durham group catalogue. We observe that
the rich groups (groups with more than 9 members) almost always
reside in superclusters whereas poorer groups are more dispersed.
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The 2dFGRS: Wiener Reconstruction of the Cosmic Web9

Figure 6. The density thresholdδth as a function of redshiftz and the best
fit model used to select the superclusters in Table 1.

We note that the superclusters that contain Abell clusters are on av-
erage richer than superclusters that do not contain Abell clusters,
in agreement with Einastoet al. 2003. However, we also note that
the number of Abell clusters in a rich supercluster can be equal to
the number of Abell clusters in a poorer supercluster, whereas the
number of Durham groups increase as the overdensity increases.
Thus, we conclude that the Durham groups are in general better
representatives of the underlying density distribution of2dFGRS
than Abell clusters.

The superclusters SCSGP03, SCSGP04 and SCSGP05 can be
seen in Figure 10. SCSGP04 is part the rich Pisces-Cetus Super-
cluster which was first described by Tully (1987). SCSGP01, SC-
SGP02, SCSGP03 and SCSGP04 are all filamentary structures con-
nected to each other, forming a multi branching system. SCSGP05
seems to be a more isolated system, possibly connected to SC-
SGP06 and SCSGP07. SCSGP06 (figure 11) is the upper part of the
gigantic Horoglium Reticulum Supercluster. SCSGP07 (Figure 11)
is the extended part of the Leo-Coma Supercluster. The richest su-
percluster in the SGP region is SCSGP16 which can be seen in
the middle of the plots in Figure 12. Also shown, in the same fig-
ure, is SCSGP15, one of the richest superclusters in SGP and the
edge of SCSGP17. In fact, as evident from Figure 12, SCSGP14,
SCSGP15, SCSGP16 and SCSGP17 are branches of one big fila-
mentary structure. In Figure 13, we see SCNGP01, this structure is
part of the upper edge of the Shapley Supercluster. The richest su-
percluster in NGP is SCNGP06, shown in Figure 14. Around this,
in the neighbouring redshift slices, there are two rich filamentary
superclusters, SCNGP06, SCNGP08 (figure 15). SCNGP07 seems
to be the node point of these filamentary structures.

Table 1 shows only the major overdensities in the survey.
These tend to be filamentary structures that are mostly connected
to each other.

7.2 The Voids

For the catalogue of the largest voids in Table 2 and Table 3, we
only consider regions with 80 percent completeness or more and
go up to a redshift of 0.15. Following the previous studies (e.g.
El-Ad & Piran 2000, Bensonet al. 2003 & Shethet al. 2003),
our chosen underdensity threshold isδth = −0.85. The lists of
galaxies and their properties that are in these voids and in the

other smaller voids that are not in Tables 2 and 3 are given in url:
http://www.ast.cam.ac.uk/∼pirin. The tables of voids is structured
in a similar way as the table of superclusters, only we give sep-
arate tables for NGP and SGP voids. The most intriguing struc-
tures seen are the voids VSGP01, VSGP2, VSGP03, VSGP4 and
VSGP05. These voids, clearly visible in the radial number den-
sity function of 2dFGRS, are actually part of a big superholebro-
ken up by the low value of the void density threshold. This super-
hole has been observed and investigated by several authors (e.g.
Crosset al.2002, De Propiset al.2002, Norberget al.2002, Frith
et al. 2003). The local NGP region also has excess underdensity
(VNGP01,VNGP02, VNGP03, VNGP04, VNGP05, VNGP06 and
VNGP07, again part of a big superhole) but the voids in this area
are not as big or as empty as the voids in local SGP. In fact, by
combining the results from 2 Micron All Sky Survey, Las Cam-
panas Survey and 2dFGRS, Frithet al. (2003) conclude that these
underdensities suggest that there is a contiguous void stretching
from north to south. If such a void does exist then it is unexpectedly
large for our present understanding of large scale structure, where
on large enough scales the Universe is isotropic and homogeneous.

8 CONCLUSIONS

In this paper we use the Wiener Filtering technique to reconstruct
the density field of the 2dF galaxy redshift survey. We pixelise the
survey into igloo cells bounded byRA, Dec and redshift. The cell
size varies in order to keep the number of galaxies per cell roughly
constant and is approximately 10h−1 for Mpc high and 5h−1

Mpc for the low resolution maps at the median redshift of the sur-
vey. Assuming a prior based on parametersΩm = 0.3, ΩΛ = 0.7,
β = 0.49, σ8 = 0.8 andΓ = 0.2, we find that the reconstructed
density field clearly picks out the groups catalogue built byEke
et al. (2003) and Abell, APM and EDCC clusters investigated by
De Propriset al. (2002). We also reconstruct four separate density
fields with different redshift ranges for a smaller cell sizeof 5 h−1

Mpc at the median redshift. For these reconstructions, we assume a
non-linear power spectrum fit developed by Smithet al.(2003) and
linear biasing. The resolution of the density field improvesdramat-
ically, down to the size of big clusters. The derived high resolution
density fields is in agreement with the lower resolution versions.

We use the reconstructed fields to identify the major super-
clusters and voids in SGP and NGP. We find that the richest su-
perclusters are filamentary and multi branching, in agreement with
Einastoet al. 2002. We also find that the rich clusters always re-
side in superclusters whereas poor clusters are more dispersed. We
present the major superclusters in 2dFGRS in Table 1. We pickout
two very rich superclusters, one in SGP and one in NGP. We also
identify voids as underdensities that are belowδ ≈ −0.85 and that
lie in regions with more that 80% completeness. These underdensi-
ties are presented in Table 2 (SGP) and Table 3 (NGP). We pick out
two big voids, one in SGP and one in NGP. Unfortunately, we can-
not measure the sizes and masses of the large structures we observe
in 2dF as most of these structures continue beyond the boundaries
of the survey.

The detailed maps and lists of all of the reconstructed den-
sity fields, plots of the residual fields and the lists of the galax-
ies that are in underdense regions can be found on WWW at
http://www.ast.cam.ac.uk/∼pirin.

One of the main aims of this paper is to identify the large
scale structure in 2dFGRS. The Wiener Filtering technique pro-
vides a rigorous methodology for variable smoothing and noise
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suppression. As such, a natural continuation of this work isus-
ing the Wiener filtering method in conjunction with other meth-
ods to further investigate the geometry and the topology of the
supercluster-void network. Shethet al. (2003) developed a pow-
erful surface modelling scheme, SURFGEN, in order to calculate
the Minkowski Functionals of the surface generated from theden-
sity field. The four Minkowski functionals – the area, the volume,
the extrinsic curvature and the genus – contain informationabout
the geometry, connectivity and topology of the surface (cf.Mecke,
Buchert & Wagner 1994 and Shethet al. 2003) and thus they will
provide a detailed morphological analysis of the superclusters and
voids in 2dFGRS.

Although not applicable to 2dFGRS, the Wiener reconstruc-
tion technique is well suited to recovering the velocity fields from
peculiar velocity catalogues. Comparisons of galaxy density and
velocity fields allow direct estimations of the cosmological param-
eters such as the bias parameter and the mean mass density. These
comparisons will be possible with the upcoming 6dF Galaxy Sur-
vey (http://www..mso.anu.edu.au/6dFGS) which will measure the
redshifts of 170,000 galaxies and the peculiar velocities of 15,000
galaxies by June 2005. Compared to 2dFGRS, the 6dF survey
has a much higher sky-coverage (the entire southern sky downto
|b| > 10◦). This wide survey area would allow a full hemispheric
Wiener reconstruction of large scale structure so that the sizes and
masses of the superclusters and voids can be determined.
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Figure 7. Reconstructions of the 2dFGRS SGP region in slices of declination for10h−1 Mpc target cell size . The declination range is given on top each plot.
The contours are spaced at∆δ = 1.0 with solid (dashed) lines denoting positive (negative) contours; the heavy solid contours correspond toδ = 0
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Figure 8. Reconstructions of the 2dFGRS NGP region in slices of declination for10h−1 Mpc target cell size. The declination range is given on top each plot.
The contours are spaced at∆δ = 1.0 with solid (dashed) lines denoting positive (negative) contours; the heavy solid contours correspond toδ = 0
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Figure 9. Reconstructions of the 2dFGRS SGP region for the redshift range:0.047 6 z 6 0.049 for 5h−1 Mpc target cell size. The contours are spaced
at ∆δ = 0.5 with solid (dashed) lines denoting positive (negative) contours; the heavy solid contours correspond toδ = 0. The red dots denote the galaxies
with redshifts in the plotted range. a) Redshift space density field weighted by the selection function and the angular mask. b) Same as in a) but smoothed by
a Wiener Filter c) Same as in b) but corrected for the redshiftdistortion. The overdensity centred on: 1)RA ≈ −23.5, Dec ≈ −30.0 is SCSGP03 (see Table
1); 2) RA ≈ 0.0, Dec ≈ −30.0 is SCSGP04; 3)RA ≈ 36.0, Dec ≈ −29.3 is SCSGP05. The underdensity centred onRA ≈ −20.5, Dec ≈ −30.0 is
VSGP01; 2)RA ≈ −8.5, Dec ≈ −29.3 is VSGP02; 3)RA ≈ 18.0, Dec ≈ −28.5 is VSGP04; 4)RA ≈ 32.2, Dec ≈ −29.5 is VSGP05. (see Table 2).

Figure 10. Reconstructions of the 2dFGRS SGP region for the redshift range:0.057 6 z 6 0.061 for 10h−1 Mpc target cell size. Same as in figure 9.The
overdensity centred on: 1)RA ≈ −23.5, Dec ≈ −30.0 is SCSGP03 (see Table 1); 2)RA ≈ 0.0, Dec ≈ −30.0 is SCSGP04, this overdensity is part of the
Pisces-Cetus Supercluster; 3)RA ≈ 36.0, Dec ≈ −29.3 is SCSGP05. The underdensity centred onRA ≈ −10.0, Dec ≈ −30.0 is VSGP12 (see Table 2).

Figure 11. Reconstructions of the 2dFGRS SGP region for the redshift range:0.068 6 z 6 0.071 for 10h−1 Mpc target cell size. Same as in figure 9.The
overdensity centred on: 1)RA ≈ 39.0, Dec ≈ −34.5 is SCSGP07 (see Table 1) and is part of Leo-Coma Supercluster; 2) RA ≈ 0.0, Dec ≈ −30.0 is
SCSGP06 and is part of Horoglium Reticulum Supercluster; (see Table 1).

Figure 12. Reconstructions of the 2dFGRS SGP region for the redshift range:0.107 6 z 6 0.108 for 5h−1 Mpc target cell size. Same as in figure 9.The
overdensity centred on: 1)RA ≈ 1.7, Dec ≈ −31.0 is SCSGP16 (see Table 1); 2)RA ≈ 36.3, Dec ≈ −30.0 is SCSGP15. 3)RA ≈ −15.0,
Dec ≈ −30.0 is SCSGP17.The underdensity centred on: 1)RA ≈ −25.0, Dec ≈ −35.2 is VSGP25 (see Table 2); 2)RA ≈ 11.3, Dec ≈ −24.5 is
VSGP22; 3)RA ≈ 48.0, Dec ≈ −30.5 is VSGP20.

Figure 13. Reconstructions of the 2dFGRS NGP region for the redshift range:0.039 6 z 6 0.041 for 5h−1 Mpc target cell size. Same as in figure 9.The
overdensity centred onRA ≈ 153.0, Dec ≈ −4.0 is SCNGP01 and is part of the Shapley Supercluster (see Table1). The underdensities are VNGP01,
VNGP02, VNGP03, VNGP04, VNGP05, VNGP06 and VNGP07 (see Table 3)

Figure 14. Reconstructions of the 2dFGRS NGP region for the redshift range:0.082 6 z 6 0.086 for 10h−1 Mpc target cell size. Same as in figure 9.The
overdensity centred onRA ≈ 194.0, Dec ≈ −2.5 is SCNGP06 (see Table 1).

Figure 15. Reconstructions of the 2dFGRS NGP region for the redshift range:0.100 6 z 6 0.104 for 10h−1 Mpc target cell size. Same as in figure 9.The
overdensity centred on: 1)RA ≈ 170.0, Dec ≈ −1.0 is SCNGP08 (see Table 1). The underdensity centred on: 1)RA ≈ 150.0, Dec ≈ −1.5 is VNGP18
(see Table 3); 2)RA ≈ 192.5, Dec ≈ 0.5 is VNGP19; 2)RA ≈ 209.0, Dec ≈ −1.5 is VNGP17.

Figure 16. Reconstructions of the 2dFGRS NGP region for the redshift range:0.103 6 z 6 0.108 for 5h−1 Mpc target cell size. Same as in figure 9.
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Table 1. The list of superclusters

No zmin zmax RAmin RAmax Decmin Decmax Ngr > 9 Nclus Ntotal

(1950) deg (1950) deg (1950) deg (1950) deg

SCSGP01 0.048 0.054 −11.5 −3.2 −37.5 −25.5 23 9 27
SCSGP02 0.054 0.057 −22.3 0.0 −35.5 −33.0 9 1 9
SCSGP03 0.057 0.064 −29.4 −17.5 −37.5 −22.5 23 8 26
SCSGP04 0.057 0.068 −10.0 +10.0 −35.5 −24.0 34 14 37
SCSGP05 0.054 0.064 32.5 39.0 −33.0 −25.5 14 7 18
SCSGP06 0.064 0.082 45.5 55.0 −35.0 −24.0 26 7 31
SCSGP07 0.064 0.071 18.5 40.0 −35.0 −31.0 10 4 11
SCSGP08 0.068 0.075 −38.5 −33.0 −35.0 −22.5 9 3 11
SCSGP09 0.075 0.082 −27.0 −17.5 −37.5 −22.5 20 9 24
SCSGP10 0.082 0.093 −17.5 −9.5 −36.0 −29.0 18 9 21
SCSGP11 0.086 0.097 −33.0 −27.0 −34.5 −24.0 14 4 15
SCSGP12 0.093 0.097 −22.0 −17.4 −36.0 −34.8 4 1 5
SCSGP13 0.093 0.097 0.0 3.8 −36.0 −34.8 3 0 3
SCSGP14 0.093 0.104 16.0 24.6 −33.0 −28.2 8 1 8
SCSGP15 0.097 0.115 28.0 44.6 −35.2 −24.6 34 18 41
SCSGP16 0.100 0.119 1.5 21.9 −35.2 −26.5 93 20 98
SCSGP17 0.100 0.108 −27.1 −3.0 −35.2 −26.5 38 7 43
SCSGP18 0.150 0.166 1.5 31.8 −33.0 −26.5 18 6 22
SCSGP19 0.162 0.177 22.8 34.5 −35.2 −24.6 13 5 15
SCSGP20 0.181 0.202 −17.5 −3.15 −35.5 −24.6 13 4 14

SCNGP01 0.035 0.068 147.5 174.5 −6.5 2.5 59 6 61
SCNGP02 0.048 0.061 210.0 218.5 −5.0 0.0 19 0 19
SCNGP03 0.068 0.075 150.0 155.0 −1.0 2.5 6 0 6
SCNGP04 0.068 0.075 158.0 166.5 −1.0 2.5 8 1 9
SCNGP05 0.071 0.082 171.0 184.0 −3.5 2. 5 27 6 28
SCNGP06 0.079 0.094 185.0 202.5 −7.5 2.5 77 7 79
SCNGP07 0.086 0.101 147.0 181.5 −5.5 2.5 31 4 34
SCNGP08 0.090 0.131 165.0 185.0 −6.3 2.5 51 10 57
SCNGP09 0.103 0.114 158.5 163.0 −1.3 2.5 8 1 9
SCNGP10 0.103 0.118 197.0 203.0 −3.75 1.25 22 0 22
SCNGP11 0.123 0.131 147.0 173.0 0.0 2.5 3 2 3
SCNGP12 0.119 0.142 210.0 219.0 −4.0 1.3 19 2 20
SCNGP13 0.131 0.142 173.0 179.0 −6.25 −1.3 5 2 6
SCNGP14 0.131 0.142 185.0 193.0 −6.25 1.3 7 0 7
SCNGP15 0.131 0.138 155.0 160.0 −6.3 1.3 9 1 9
SCNGP16 0.142 0.146 166.0 174.0 −0.3 1.3 5 0 5
SCNGP17 0.142 0.146 194.0 199.0 −2.5 1.3 1 0 1
SCNGP18 0.146 0.150 204.0 210.0 −2.5 1.3 4 0 4
SCNGP19 0.173 0.177 181.0 184.0 −1.0 −4.0 3 0 3
SCNGP20 0.181 0.185 185.5 193.0 −1.0 −4.0 1 0 1

.

c© 0000 RAS, MNRAS000, 000–000



The 2dFGRS: Wiener Reconstruction of the Cosmic Web15

Table 2. The list of voids in SGP

No zmin zmax RAmin RAmax Decmin Decmax

(1950) deg (1950) deg (1950) deg (1950) deg

VSGP01 0.035 0.051 −27.5 −17.3 −37.5 −22.5
VSGP02 0.035 0.051 −17.3 0.0 −33.0 −25.5
VSGP03 0.035 0.048 0.9 11.5 −34.5 −28.5
VSGP04 0.035 0.051 12.4 23.6 −30.5 −26.0
VSGP05 0.035 0.054 23.6 40.8 −33.5 −26.0
VSGP06 0.035 0.042 32.8 37.3 −33.5 −28.5
VSGP07 0.035 0.051 39.5 46.4 −31.5 −28.5
VSGP08 0.035 0.042 46.4 51.0 −31.5 −28.5
VSGP09 0.039 0.044 −35.5 −30.0 −34.5 −28.5
VSGP10 0.039 0.041 10.0 17.5 −33.5 −29.5
VSGP11 0.041 0.044 15.5 22.5 −33.5 −28.5
VSGP12 0.057 0.061 −12.8 −8.2 −31.5 −28.5
VSGP13 0.082 0.086 5.4 8.0 −31.5 −28.5
VSGP15 0.082 0.089 41.8 49.3 −31.5 −28.5
VSGP16 0.086 0.089 12.5 16.3 −31.5 −28.5
VSGP17 0.086 0.089 31.0 33.5 −32.5 −28.5
VSGP18 0.089 0.097 −8.2 −5.95 −30.5 −29.5
VSGP19 0.089 0.093 42.7 45.5 −30.5 −29.5
VSGP20 0.093 0.104 46.4 52.5 −32.5 −28.2
VSGP21 0.093 0.100 28.2 32.8 −31.5 −28.5
VSGP22 0.097 0.104 7.7 12.5 −32.0 −28.5
VSGP23 0.097 0.100 −12.8 −11.5 −32.0 −28.5
VSGP24 0.100 0.108 −31.8 −25.3 −28.5 −25.5
VSGP25 0.100 0.112 −25.3 −21.9 −34.5 −33.0
VSGP26 0.112 0.119 −7.0 −3.7 −31.5 −28.5
VSGP27 0.112 0.115 1.5 5.4 −30.0 −27.0
VSGP28 0.112 0.115 25.9 28.2 −30.0 −27.0
VSGP29 0.112 0.115 41.0 46.4 −30.0 −27.0
VSGP30 0.115 0.119 26.2 30.5 −34.5 −31.5
VSGP31 0.119 0.123 −35.0 −30.8 −28.5 −25.5
VSGP32 0.119 0.123 −27.0 −25.5 −28.5 −26.5
VSGP33 0.119 0.123 −12.8 −10.0 −28.5 −25.5
VSGP34 0.119 0.123 41.5 49.3 −38.8 −31.8
VSGP35 0.119 0.127 11.2 16.5 −28.2 −27.5
VSGP36 0.123 0.131 −26.4 −22.4 −31.5 −28.5
VSGP37 0.123 0.127 −12.8 −8.2 −30.0 −27.0
VSGP38 0.131 0.142 −26.4 −19.5 −34.5 −31.5
VSGP39 0.131 0.138 32.3 37.5 −35.2 −24.8
VSGP40 0.138 0.142 30.3 33.5 −33.5 −29.0

.
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Table 3. The list of voids in NGP

No zmin zmax RAmin RAmax Decmin Decmax

(1950) deg (1950) deg (1950) deg (1950) deg

VNGP01 0.035 0.054 147.0 160.0 −4.0 1.5
VNGP02 0.035 0.041 166.0 171.0 −1.0 2.5
VNGP03 0.035 0.046 171.0 181.2 −1.5 2.5
VNGP04 0.035 0.051 183.0 189.0 −1.5 2.5
VNGP05 0.035 0.046 189.0 197.0 −1.5 2.0
VNGP06 0.035 0.046 202.2 206.0 −1.5 2.0
VNGP07 0.037 0.046 204.2 215.6 −2.0 0.0
VNGP08 0.041 0.051 163.8 169.8 −4.5 2.5
VNGP09 0.049 0.061 177.0 196.4 −3.5 2.5
VNGP10 0.054 0.057 165.5 173.0 −1.5 2.5
VNGP11 0.057 0.061 163.5 166.0 0.0 1.5
VNGP12 0.054 0.061 206.0 208.0 −1.5 0.5
VNGP13 0.071 0.075 176.0 179.0 −1.0 0.5
VNGP14 0.079 0.094 186.5 204.2 −7.5 0.5
VNGP15 0.092 0.097 150.8 160.2 −7.5 −6.0
VNGP16 0.093 0.100 147.0 149.5 −6 1.5
VNGP17 0.094 0.101 204.0 211.5 −3.5 2.5
VNGP18 0.099 0.115 147.5 153.6 −4.0 1.0
VNGP19 0.099 0.120 188.8 197.0 −3.0 2.5
VNGP20 0.112 0.120 176.6 178.0 0.5 2.5
VNGP21 0.110 0.115 211.6 217.0 −2.5 −0.5
VNGP22 0.110 0.123 200.2 205.0 −3.25 2.5
VNGP23 0.123 0.131 169.0 174.0 −4.0 −1.25
VNGP24 0.127 0.131 182.5 188.0 0.0 2.5
VNGP25 0.127 0.131 197.5 202.0 −1.25 0.5
VNGP26 0.134 0.142 179.5 187.5 −2.0 2.5
VNGP27 0.134 0.138 204.0 207.0 −1.5 0.0
VNGP28 0.138 0.150 147.0 154.6 −3.5 2.5
VNGP29 0.142 0.150 162.0 166.0 −4.0 1.5
VNGP30 0.142 0.150 172.6 178.0 −1.0 2.5

.

c© 0000 RAS, MNRAS000, 000–000


	INTRODUCTION
	Wiener Filter
	The Data
	The 2dFGRS data
	The Mask and The Radial Selection Function of 2dFGRS

	Survey Pixelisation
	Estimating The Signal-Signal Correlation Matrix Over Pixels
	The Application
	Reconstruction Using Linear Theory
	Reconstruction Using Non-linear Theory

	Mapping the Large Scale Structure of the 2dFGRS
	The Superclusters
	The Voids

	Conclusions
	REFERENCES

