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ABSTRACT 
Modeling traffic generated by Internet based multiplayer 
computer games has attracted a great deal of attention in the past 
few years. In part this has been driven by a need to simulate 
correctly the network impact of highly interactive online game 
genres such as the first person shooter (FPS). Packet size 
distributions and autocorrelation models are important elements in 
the creation of realistic traffic generators for network simulators 
such as ns-2 and OMNET++. In this paper we show that 
ARMA(1,1) models capture the time series behaviour of Quake4 
game traffic well. We also show that the random component of 
the ARMA models (the innovations) have distributions that 
appear to change little as the number of players increases. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Client/server, Distributed applications. 

General Terms 
Measurement, Performance, Theory. 

Keywords 
First Person Shooter, Online Games, Teletraffic Analysis, Traffic 
Engineering, Simulation, UDP, Traffic Modeling. 

1. INTRODUCTION 
Modeling traffic generated by Internet based multiplayer 

computer games has attracted a great deal of attention in the past 
few years [1-14]. Highly interactive genres such as the First 
Person Shooter (FPS) are of particular interest to network 
engineers. Like voice over IP (VoIP) and other interactive 
conference-style applications, FPS games are generally intolerant 
of packet loss, jitter and high latency. FPS games commonly use 
User Datagram Protocol (UDP) over IP for transport and so do not 
adjust packet rates in response to network congestion. Finally, 
FPS games are typically based on a client-server model for 

network traffic, with thousands or tens of thousands of FPS 
servers active on the Internet at any given time [15]. This has 
motivated research community interest in predicting and 
simulating the traffic load imposed on network links by 
multiplayer FPS games. 

Traffic in the client to server direction usually consists of 
small IP packets whose size distribution is independent of the 
number of players on a given server. However, traffic in the 
server to client direction usually shows distinct variation as the 
number of players increases [15]. Published work to date has 
typically involved empirical studies of FPS games in small test 
beds with up to 8 to 10 players. Traffic models have been created 
that match the statistical packet size distributions for each N-
player game, for N = 2, 3, and so on. A weakness of much of this 
modeling is that it has failed to capture the time series nature of 
game traffic. Most models have implicitly assumed that game 
traffic, while satisfactorily modeled by a particular distribution, is 
completely uncorrelated. That is, there is no relation between one 
packet size and the next.  

In this paper we show that Quake4 FPS game traffic is 
correlated, that the correlation can be well captured using an 
ARMA(1,1) model, and very significantly, the distribution of the 
random variations incorporated in the ARMA(1,1) model (the 
innovations) have some surprising similarities regardless of the 
number of players.  

To carry out this work, we used data gathered from game 
trials ran within the Centre for Advanced Internet Architectures 
during 2006 [4] 

The paper is structured as follows. Section 2 reviews the 
basic network architecture and traffic patterns of modern FPS 
games. Section 3 is a brief introduction to time-series modeling, 
particularly ARMA models. Section 4 demonstrates the 
effectiveness of ARMA(1,1) in modeling the time-series behavior 
of Quake4 games. Section 5 presents probability density functions 
of the innovations for the Quake4 models. Section 6 discusses 
future research and concludes the paper. 

2. FIRST PERSON SHOOTER GAMES 
2.1 Client-Server Architecture 

Multiplayer online games have an underlying requirement 
that game-state information is shared amongst all players in near 
real-time. Each game client acts as an interface between the local 
human player and the virtual game-world within which the player 
interacts with other players. In principle clients might be designed 
to communicate directly with each other in a peer-to-peer fashion. 
However, in practice, most FPS games use a client-server model 
(including the seven examples presented in this paper). Every 
client’s actions are sent in short messages to the server, and every 
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client is regularly updated with the actions taken by other players 
and their consequences. The server implements the game-world’s 
state machine, regulating client actions in order to maintain the 
game’s internal rules and minimize opportunities for cheating. 

2.2 Game State Updates 
A typical FPS game involves an ISP or game enthusiast 

hosting a game server on the Internet, and players joining the 
game using client software running on a home PC or IP-enabled 
game console. (Games can also be run on a private, local IP 
network – commonly referred to as ‘LAN parties’. For the 
purpose of this paper we focus on the case where both the game 
server and clients are all on the public Internet.) The game client 
updates and renders the game’s virtual world on the client’s 
screen based on messages received regularly from the game 
server. User inputs to the game client (actions such as walking, 
exploring or shooting weapons) are passed to the game server to 
be verified and propagated to other players. 

Game-state updates must occur in a timely and prompt 
manner, with minimal bias or favor towards any particular player. 
In FPS games, timeliness is achieved by sending a unicast IP 
packet to each client every Y milliseconds (ms). Y is typically in 
the range of 30 to 60ms – for example, the default update interval 
is 60ms for Half Life Deathmatch, 50ms for Quake III Arena and 
33ms for Half-Life 2 Deathmatch. To minimize bias, update 
packets to different clients are sent in back-to-back bursts (for 
example, a four-player Quake III Arena game server with the 
default configuration sends bursts of four back-to-back update 
packets every 50ms, one IP packet to each active client [15] ). 
Each client receives an update packet every Y ms regardless of 
how much in-game activity is occurring. The choice of Y for a 
given game depends on the available network capacity (longer Y 
for lower bandwidth demand) versus player expectations of 
smooth interactivity (shorter Y for more frequent updates). 

Clients send their own updates to the game server at less 
precisely defined intervals, often influenced by the client’s 
processor speed, graphics card settings and player activity. 
Typical intervals vary from 10ms to 40ms [15]. 

To maximize playability over a wide range of network 
conditions and consumer access technologies modern FPS games 
actively compress the data sent over the network. Simple 
compression involves the use of smallest possible bit-fields to 
carry variable data. More complex compression involves the 
server only sending information to a client about regions of the 
virtual world currently visible to the client. Since every client has 
a different perspective on the virtual world the server effectively 
customizes every client update packet for the client to which it is 
sent. (Although this minimizes the size of server to client packets, 
it also reduces the potential utility of multicasting server update 
packets to every client.) 

Clients generate events describing a single player’s activity. 
A typical human can trigger only a limited number of events in 
any given 10ms to 40ms window. Consequently packets from 
client to server are typically much smaller than the packets from 
server to client, and exhibit very limited variation in size. For 
example, client to server IP payload lengths range between 25 and 
45 bytes for Quake III Arena during active game play, with 90% 
of all packets between 28 and 38 bytes long. For Half-Life 2 
Deathmatch, packet lengths vary between 36 and 99 with 90% of 
all packets being between 57 and 75 bytes long [1, 7]. 

Packets in the server to client direction exhibit substantial 
variations in length as in-game activity surrounding a given client 
varies with time. For example, during active play of Quake III 
Arena for a 9-player game, packets from server to client range 
between 32 and 960 bytes with 90% being between 98 and 460 
bytes. For Half-Life 2 Deathmatch packet lengths during active 
play are between 16 and 1400 bytes with 90% between 95 and 
501 bytes [1, 7]. 

The in-game activity conveyed in a single update packet 
includes a component containing information that is proportional 
to the number of other players visible to a client at that point in 
time. The actual visibility of other players, and what they are 
doing at the time, itself depends on the number of players and the 
virtual world’s layout (the ‘map’). For example, maps with many 
walls and corridors will result in less visibility between players 
(and less information per update packet on average) than maps 
with wide-open areas. Likewise, a map containing many players 
will experience many more player-player interactions (per unit 
time) than a map with few players scattered around the virtual 
game world. 

2.3 Phases of Gameplay and Game Traffic 
In most FPS games there are three different phases of 

interaction between client and server that impact on network 
traffic. 

• A client connects to the server, and receives data from 
the server to update the client’s local virtual world information 
(map definitions, avatar ‘skins’, etc). 

• The client is connected to the server and the game is in 
progress (players run around the virtual world, shooting or 
otherwise interacting with each other). 

• The client is connected to the server, and the game has 
been paused as the server changes maps or restarts a previous map 
(after a player wins the previous ‘round’). 

Tight control over network jitter and packet loss is only 
essential during active game-play. During periods of player 
inactivity (initial client connection and server changing maps) the 
network can exhibit fluctuating latency, jitter and packet loss 
without affecting the player’s game experience. 

3. AR(1) AND ARMA(1,1) MODELS 
Mixed autoregressive / moving average (ARMA) models 

have been successfully used to model Variable Bit Rate video and 
ATM traffic [16]. We now show that they can be used to model 
the behaviour of Quake4 network traffic as well. 

Intuitively an ARMA(1,1) model captures the correlated 
nature of a time varying signal through a combination of an 
autoregressive (AR) component and a moving average (MA) 
component. The parameter (1,1) describes the number of terms in 
the AR and MA components respectively. 

For a Stationary time-series Xt, we define an ARMA(p,q) 
process as: 

 
  )()( tt ZBXB θφ =   (1) 

 
where φ(B) is the autoregressive polynomial of  degree p and θ(B) 
is the moving average polynomial of order q 
 

  1 1
p

p BB-... -(B) φφφ −=  (2) 

  Bθ... BθB q
q+++= 11)(θ  (3) 
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and B is the backshift operator defined as: 
 

 21,0  ...,iXXB itt
i ±±== −   (4) 

 
The innovations Ζt in (1) are assumed to be independent 
identically-distributed (iid) random variables with zero mean and 
variance σ 2. 

If θ(z) = 1 we have a pure autoregressive (AR) process, 
while if φ(z) = 1 we have a pure moving average process (MA) 

Traditional Box-Jenkins ARMA models describe stationary 
time-series [17]. Intuitively a time-series is stationary if the 
statistical properties such as the mean and the variance are not 
time dependent. Generally if the values of the time-series 
fluctuate about a constant mean value without a trend then the 
time-series is stationary. 

If the process is purely Markov than it can be modelled using 
an AR(1) model.  

An AR(1) process is a special case of the ARMA(p,q) 
process with θ(z) = 1 and p = 1. The model is given by the 
equation: 

 

  11 ttt ZXX += −φ   (5) 
 
Applying this to our packet length data (5) states that the 

current server to client packet payload size Xt is related to the size 
of the last packet sent Xt-1 and an error term Ζt (the innovations). 

 

4. ARMA(1,1) AND AR(1) MODELS OF 
QUAKE4 GAME TRAFFIC 

In this section we show that an ARMA(1,1) process is 
successful in modelling the server to client packet size 
distribution of Quake4 games more successfully than the simpler 
AR(1) process. 

Various ARMA models were fitted to the empirical data to 
determine whether the synthetic time-series model could better 
match the empirical data than does the simpler AR(1) model. The 
simplest ARMA model that can be fitted is the ARMA(1,1). 
Results for the AR(1) and ARMA(1,1) models are presented in 
Tables 1 to 4. 

Using the ARMA(1,1) models a probability distribution of 
packet lengths can be obtained. These are shown (dotted lines) 
with the empirical data in fig. 1. From the plots it appears that the 
ARMA(1,1) while introducing some smoothing, is successful in 
predicting the probability distribution of the packet lengths. 

In Tables 1 and 2 we compare statistics derived from 
simulations obtained from AR(1) and ARMA(1,l) models fitted to 
the empirical data. The variances of the data obtained from the 
AR(1) models are much poorer matches to the empirically derived 
variances than the variance of the ARMA(1,1) models. We can 
interpret this as suggesting that ARMA(1,1) models capture the 
autocorrelated nature of Quake4 traffic more effectively than a 
simple AR(1) model. 

 
 
 
 
 

Table 1. Variance of AR(1) model for Quake4 
Players Empirical Synthetic Innovations 

2 1163 1867 816 

3 2587 3624 2025 

4 3559 5346 2653 

5 7155 9153 6095 

6 9095 11400 7820 

7 11124 15022 9150 

 
Table 2. Variance of ARMA(1,1) model for Quake4. 

Players Empirical Synthetic Innovations 

2 1163 1181 674 

3 2587 2681 1647 

4 3559 3506 2171 

5 7155 6593 4909 

6 9095 8735 6415 

7 11124 10849 7497 
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Fig. 1. Empirical and Synthetic Quake4 Packet Size PDFs 
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5. ARMA(1,1) INNOVATIONS OF THE 
QUAKE4 TRAFFIC MODELS 

We now examine the innovations of the ARMA processes 
used to model the traffic. 

In any ARMA process the random behaviour of the process 
is characterised by its ‘innovations’. That is, each term in the 
sequence, while having a strong dependence on the previous 
value or values, deviates from the expected value in some random 
fashion. The sequence of these random values comprises the 
‘innovations’ of the sequence.  

Understanding the innovations enables us to predict the 
behaviour of the sequence. By knowing the probability 
distribution of the innovation sequence, an accurate representative 
sequence of samples can be generated. 

We now present an analysis of the innovation distributions 
for 2 to 7 player games for Quake4. In all cases we see that the 
innovation sequence has very similar probability density 
functions. The only difference between them is their width, which 
is related to the variance of the sample dataset. 

An important issue in understanding the nature of a timeseries 
is to identify the distribution of the innovations. Time series 
innovations are frequently modelled with Gaussian distributions or 
(less commonly) Laplace distribution. We now present Q-Q plots  
of the Quake4 2-player games comparing the empirically obtained 
distributions with theoretical distributions. A Q-Q plot is a 
qualitative measure of the effectiveness of a theoretical distribution 
in modelling an empirically obtained distribution. The sample 
quantiles are mapped against the theoretical quantiles. A good 
match will have all points of the mapping falling on a diagonal line. 
Clearly neither the Laplace or the Gaussian is a good model of the 
innovation distribution.. 

The Q-Q plots also show that the innovation distributions are 
not symmetric. Both the Laplace and Gaussian fail to capture the 
long-tail nature of the innovation distribution. While the 
ARMA(1,1) model appears a good model of Quake4 traffic, better 
understanding of the random component is needed. This is an area 
of future work. 
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Fig. 2. Q-Q plots comparing the innovations of the 

ARMA(1,1) model to a Gaussian distribution 2 and 7 player 
games 

−10 −5 0 5 10

−100

0

100

200

300

Laplace QQ Innovations  QUAKE4 2 pls

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

p= 1

−10 −5 0 5 10
−400

−200

0

200

400

600

Laplace QQ Innovations  QUAKE4 7 pls

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

p= 1

 
 

Fig. 3. Q-Q plots comparing the innovations of the 
ARMA(1,1) model to a Laplace distribution 2 and 7 player 

games 
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Fig. 4. Time series innovations of the ARMA(1,1) model for 

Quake4 2 to 7 player games 
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6. CONCLUSION AND FUTURE 
RESEARCH 

This paper has shown that ARMA(1,1) is a good model of 
the time series behavior of Quake4 first person shooter game 
traffic. It has also presented an analysis of the innovations of the 
model and has demonstrated that there are some interesting 
commonalities across the games. All games analysed have very 
similar innovation probability density functions, differing only in 
their scaling.  

Future research will attempt to apply these commonalities to 
developing models that can be extrapolated to larger number of 
players as well as implement simulations based on the 
ARMA(1,1) model. We will also investigate whether these 
techniques and commonalities hold with other FPS games as well 
as with different game genres. 

Understanding the nature of innovations means that good 
simulations of game traffic can be produced. It also may provide 
some insights into why game traffic behaves as it does. An 
interesting question for future research is to attempt to understand 
why (apart from scaling) the innovations are so similar across all 
the different games and numbers of players and to identify some 
way of characterising the innovation distribution. 

Finally, future research will involve the development of 
simulation systems that implement these models and can be 
applied to solve significant network problems.  
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