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Abstract

In view of arising demand for indoor Location-Based Services (LBS), many indoor posi-
tioning systems (IPS) have been developed by utilizing various technologies and yet none
of them are gaining mainstream adoption. Perhaps the most promising IPS are those which
are based on smart-devices, because the smart-devices are increasingly widespread and
originally equipped with several useful sensors. This thesis aims at proposing accurate indoor
positioning methods that leverage on ready infrastructure like smart-devices and Wi-Fi access
points. Pedestrian Dead-Reckoning (PDR) is employed for its simplicity. In order to retain
the relatively high positioning accuracy of PDR for long-term positioning, the Received
Signal Strength Indicator values obtained from the site’s Wi-Fi access points are used in
two unique ways to mitigate the accumulative error of PDR. Besides, the estimated position
of individual pedestrian can also be refined via an iterative process based on information
derived from a Directed Graph. The Directed Graph is used to represent the relations among
the pedestrians and the site’s Wi-Fi access points. The proposed indoor positioning methods
had been tested at real sites within Swinburne University of Technology Sarawak Campus,
and were benchmarked against some existing indoor positioning methods. The test results
imply that the proposed methods outperform some existing methods in terms of positioning
accuracy.
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Chapter 1

Introduction

1.1 Motivation

The integration of Global Positioning System (GPS) technology into mobile devices like
laptops and smart-devices has resulted in a tremendous growth of Location-Based Services
(LBS) recently. LBS [66] can be defined as services that offer information, entertainment
and security to the end user through a mobile device according to the device’s geographical
location – to name a few, providing navigation guidance for the user to reach desired
destinations, streaming advertisements and coupons of nearby stores to potential customers,
and tracking people and assets for security purposes.

The core of reliable LBS is to track the target’s real-time location accurately. GPS has
been commonly acknowledged as the most reliable location-sensing system for civilian
use, which is able to achieve an accuracy up to 5 meters [27]. Unfortunately, GPS is only
usable when there’s Line-Of-Sight (LOS) connection to at least four satellites [26, 38], thus
rendering it unreliable in indoor environments [24, 47] where obstruction of satellites signals
due to obstacles like floors and walls can be very severe. Hence, the LBS to date are mostly
developed for outdoors. However, as people nowadays spend most of their time in indoors
[84] like multilevel offices, mega-malls, universities and transportation facilities, indoor LBS
are getting rather essential.

In view of the great potentials of indoor LBS, indoor positioning has become an in-
creasingly popular research topic. In fact, many solutions to indoor positioning, aka Indoor
Positioning Systems (IPS), have already been developed by utilizing various technologies
[16, 22, 47, 82, 84] encompassing cellular networks, Micro-Electro-Mechanical Systems
(MEMS) sensors [24], Wi-Fi [80], Ultrasound [78], Ultra-Wideband (UWB) [4], Radio
Frequency Identification (RFID) [9] and Bluetooth [85]. Though so, none of the existing IPS
are considered de facto standard for indoor positioning due to their uniqueness in various
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aspects such as accuracy and cost. While higher accuracy is naturally desirable for an IPS,
its corresponding cost remains a major concern that affects its popularity. The cost of an
IPS may depend on a variety of factors like resources and inconveniences, that are necessary
for its deployment. Oftentimes, higher accuracy comes with higher cost as the hardware
involved gets increased either in quantity or quality. For example, Active Bat [6] may be
more accurate than Active Badge [78] as their accuracies are centimetre-level and room-level,
respectively; but the former incurs higher cost because it requires comparatively greater
amount of sensors to be installed at the site [22].

Smart-devices (e.g. smart-phones and tablets) and Wi-Fi Access Points (AP) have been
widespread recently, thereby triggering a growing interest among researchers in utilizing
these ready infrastructure in designing their IPS as an effort to minimize deployment cost
while achieving sufficient positioning accuracy. Besides having wireless capabilities (e.g.
Wi-Fi and Bluetooth), smart-devices are also equipped with a variety of sensors such as
3-axial accelerometers, gyroscopes and magnetometers, which can be harnessed to provide
information about the user’s body movements. Therefore, Pedestrian Dead-Reckoning (PDR)
and Received Signal Strength Indicator (RSSI) based approaches namely Fingerprinting
and Lateration are among the most popular positioning techniques employed in these smart-
device based IPS. Certainly these techniques are not without limitations, yet they could
individually be refined or combined with one another via appropriate use of filters, settings,
etc to achieve even better performance in terms of accuracy and robustness.
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1.2 Research Objective

The key objective of this research is to propose a new solution to estimating the location of
smart-device-carrying pedestrian in a Wi-Fi enabled indoor environment, whilst meeting the
following criteria:

• Minimum cost: In order to ease the adoption of an IPS by the mass of pedestrians, its
associated cost ought to be kept minimum. Besides the resources (i.e. time, money
and labor) that are necessary for IPS installation and maintenance, the cost includes
the inconveniences that may be imposed on the user – for instance, requiring the
users to carry additional and/or dedicated hardware that might restrict their usual body
movements.

• Decent Accuracy: The metric used for evaluating the accuracy of an IPS is the dis-
crepancy (error) between its estimation result and pedestrian’s actual position. The
lower the discrepancy, the higher the accuracy. Higher accuracy is of course more
desirable, however compromises the cost. As the emphasis is placed on estimating
the indoor position of pedestrian for general LBS purposes, IPS that is able to tell the
pedestrian’s indoor location with meter-level accuracy should be sufficient since its
outdoor counterpart (i.e. GPS) has a similar level of accuracy as well. Centimeter-level
accuracy seems superfluous in indicating the pedestrian’s position on a map that depicts
the building’s indoor layout and segmentation (e.g. floors, rooms and walkways) at
reasonable resolution.

• Decent Robustness: Robustness of an IPS can be defined as its resilience and ability to
compute the pedestrian’s location despite the information obtained for computation is
incomplete. Information may be incomplete at times because of signal loss for some
reasons. For example, sole Wi-Fi -based Tri-Lateration shall fail entirely when less
than three Wi-Fi sources are available for provision of necessary signals. Therefore,
seamless cooperation between different positioning techniques or technologies is more
favored for the sake of higher robustness.
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1.3 Problem Statement

On the basis of research objective, the proposed solution is confined to leverage only the ready
infrastructure (i.e. smart-device and Wi-Fi access points) without introducing additional
hardware.

Indeed, there is a considerable amount of existing works that have utilized the same
infrastructure. Most of them were inspired thanks to a variety of sensors (e.g. accelerometers,
gyroscopes and magnetometers) originally embedded on the smart-device that enable the
implementation of PDR. PDR is attractive for being a stand-alone solution that estimates
the pedestrian’s position by detecting their step and heading based on data solely extracted
from the specified sensors. Unfortunately, these sensors especially the low-cost ones like
smart-device’s are bound to suffer from inherent biases and drifts, thereby jeopardizing
PDR’s long-term performance.

Alternatively, since the smart-device has the wireless capabilities to communicate with
surrounding Wi-Fi or Bluetooth counterparts, conventional positioning techniques such as
Lateration and Fingerprinting could be viable by making use of the wireless signals. Typically,
RSSI values of detected signals are measured and assumed to correspond the transceivers’
positions or separation distances based on theoretical or empirical models. However, the
assumption itself is barely practical because these radio signals are notorious for being erratic
at times owing to radio multipath, reflection, etc, especially in indoor environments where
obstacles are plenty. Nevertheless, the aforementioned positioning techniques have their
merits, and therefore the challenge lies in resolving their associated drawbacks in order to
achieve reliable indoor positioning.
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1.4 Contributions

The contributions of this work are:

• proposes a scheme that refines PDR-estimated position by making use of relatively
stronger RSSI as well as compass bearing.

• proposes a scheme that utilizes RSSI to correct PDR-estimated heading based on linear
regression.

• findings showing that the proposed schemes outperform some existing PDR-based
indoor positioning methods in terms of accuracy and robustness.

• uses Directed Graph to represent the relations among pedestrians.

• proposes a collaborative positioning method that derives information from the Directed
Graph to improve the positions estimated by PDR or Tri-Lateration via a Particle Filter
-based iterative process.

1.5 Thesis Structure

The rest of this thesis is organised into six chapters. Chapter 2 summarizes the fundamentals
of indoor positioning as well as some related works. Chapter 3 describes the setup and
preliminaries that were necessary for the evaluations of proposed methods. Chapter 4
discusses the two proposed schemes that improve PDR-estimates. Chapter 5 discusses the
proposed collaborative method that refines position estimates based on Directed Graph and
Particle Filter. Finally, Chapter 6 summarizes this thesis and provides some directions for
the future work.





Chapter 2

Background

This chapter gives an overview over the fundamentals of indoor positioning by discussing the
major types of signal measurements which are used to convey the geometric relation between
wireless sensors, and conventional positioning techniques including PDR and Lateration. In
addition, Bayesian filters namely Kalman filter and Particle filter are also briefly described, as
they have been widely employed to fuse multiple information for optimal estimates. Lastly, a
summary of some related works is also presented. Portions of the material presented in this
chapter had been published [45].

2.1 Geometric Measurements with Wireless Technologies

Various wireless technologies including RFID and Ultrasound have been favored among the
existing IPS, because their corresponding wireless transmissions could be useful in deriving
measurements that tell the geometric relation between the sensors. Nevertheless, the derived
measurements are fallible because the wireless signals (i.e. electromagnetic waves and
sound waves) are susceptible to wave phenomena (e.g. multipath, interference, reflection and
refraction) especially in indoor environments where obstacles made of various materials are
present. Some major geometric measurements based on wireless transmission are described
here. These geometric measurements provide core estimates (e.g. distance or angle) that are
required by certain conventional positioning techniques in computing the position. Note that
beacon node denotes the sensor which location is known, and mobile node represents the
sensor held by the moving object of interest (i.e. pedestrian).
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Time of Arrival (TOA)

TOA, also known as Time of Flight (TOF), is the time taken for a radio signal transmitted
from node A to arrive at node B. While measuring the TOA, the involved nodes must be
tightly synchronized, and the time-stamp of transmission signal is crucial. The distance
between the two nodes can be calculated by simply multiplying the measured TOA with
speed of the wave.

Time Difference of Arrival (TDOA)

TDOA is the time difference between the two TOAs, which can be measured in two different
ways: firstly, a reference signal broadcast by a mobile node to reach a pair of beacon nodes;
secondly, signals emitted by a pair of beacon nodes to reach a mobile node [16]. In either
ways, the beacon nodes have to be in sync. An TDOA results in a hyperbola that represents
the likely positions of the mobile node (say m) in relative to the two beacon nodes (say i and
j), based on the equation [47]:

di, j =
√
(xi− xm)2 +(yi− ym)2 +(zi− zm)2−

√
(x j− xm)2 +(y j− ym)2 +(z j− zm)2

(2.1)
where di, j denotes the constant range difference which can be calculated by multiplying
the measured TDOA with speed of the wave; x, y and z denote the coordinates in three
dimensional space.

Round Trip Time (RTT)

RTT is the time required for a signal sent by node A to arrive at node B followed by an
acknowledgement signal replied by node B after a response delay to reach node A. So, it’s
basically a summation of two TOAs and a response delay. As RTT is measured by node A by
keeping track of the times it sends the signal as well as receives the acknowledgement, this
eliminates the necessity of having synchronization like that of TOA measurement. However,
the difficulty lies in measuring the exact response delay which ideally has to be excluded
from RTT in order to derive the distance between the nodes. Nonetheless, the delay could be
ignored when it’s substantially smaller than the total transmission time [47]. The distance
between the two nodes is simply the multiplication between halved RTT and speed of the
wave.
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Phase Difference of Arrival (PDOA)

There are three main variants of PDOA, and they can be distinguished as Time Domain (TD),
Frequency Domain (FD) and Spatial Domain (SD) [55]. Note that the phase of the signal
received by the reader is expressed as:

φ = φp +φo +φb (2.2)

where φp denotes the phase accumulated due to electromagnetic propagation, φo denotes the
phase offset caused by hardware like cables and antenna components, and φb denotes the
backscatter phase from the mobile node.

TD-PDOA is the difference between the phases received by the beacon node at two
different time instances (say t1 and t2), which can be used to derive the mobile node’s radial
velocity (say Vr), as expressed by the equation:

Radial velocity, Vr =
c

4π f
(φt2−φt1)

t2− t1
(2.3)

where c is the light’s speed and f is the signal’s frequency. Nonetheless, the assumption
is that the mobile node’s moving speed, φo and φb are constant during the corresponding
interval.

FD-PDOA is the difference between the phases received by the beacon node at two
different frequencies (say f1 and f2), which can be used to estimate the distance between
mobile node and beacon node, as expressed by the equation:

Distance, d =− c
4π

(φ f2−φ f1)

f2− f1
(2.4)

Yet, the assumption is that the mobile node, φo and φb remain stationary during the FD-PDOA
measurement.

SD-TDOA is the difference between the phases received by two different antennas at the
same frequency channel, which can be used in deriving Angle of Arrival (AOA) as expressed
by the equation:

AOA, θ ≈ arcsin
[
− c

2π f
(φb−φa)

D

]
(2.5)

where D is the distance between two antennas on the antenna array. A simple illustration for
this is given in Figure 2.1. However, the assumption is that the transmitter is considerably far
from the antenna array, and signals received at the antennas are parallel. Further discussions
on AOA estimation algorithms using antenna array can be found in [17, 39].
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Fig. 2.1 Derivation of AOA from SD-TDOA.

Received Signal Strength Indicator (RSSI)

RSSI is a measure of power still present in the propagated radio wave when it is detected
by a receiver. The RSSI value is typically represented in dBm, on a scale particular to
the hardware chip-set. Greater RSSI value means shorter distance between transmitter and
receiver. Several theoretical and empirical models [50, 58, 65, 67] could be used to express
the correlation between RSSI and distance, and one of popular ones is shown below:

R = β −10n log10 d + ε (2.6)

where R denotes the RSSI obtained at distance d, β denotes the RSSI measured at a reference
distance which is usually 1 meter from the transmitter, n denotes the path loss exponent
which typically ranges from 2 to 6 for indoor environments, and ε denotes a Gaussian random
variable with zero mean and standard deviation σrssi. However, as the models assume that
RSSI varies logarithmically with increasing distance in any directions from the source, their
reliability are limited especially in indoor environments due to Non-Line-Of-Sight (NLOS)
conditions as well as other factors like hardware specifications (e.g. chipset and antenna) and
antenna’s orientation.
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2.2 Conventional Positioning Techniques

Proximity

This technique localizes the mobile node simply by binary connectivity between the mobile
node and the beacon node. The beacon nodes are usually uniformly distributed over the
area of interest. When the mobile node senses a beacon node via wireless communication,
it is considered to be within the transmission range of corresponding beacon node. In case
when two or more beacon nodes are detected simultaneously, only the one which contributes
the strongest signal strengths shall be referred. However, the technique’s limitation is that
it tells not the absolute position (i.e. coordinates) but relative whereabouts of mobile node.
For example, Cell Identification or Cell of Origin (COO) is a real-life application of this
technique that tells which zone the cellular telephone lies within by identifying its associated
cell tower. For indoor scenarios, the estimation resolution can be improved by covering the
site of interest with higher density of beacon nodes which are preferably low-cost such as
RFID tags [9].

Lateration

The concept of this technique is to deduce the mobile node’s position by knowing how far it
is apart from the reference node. The separation distance can be derived from measurements
like RSSI, TOA, TDOA, RTT and PDOA. With single separation distance known, the node’s
position may be any point on the circle of the corresponding reference node as illustrated in
Figure 2.2.

d1 

Beacon node 

Mobile node’s 
actual position 

Mobile node’s 
likely position 

Lateration 

Fig. 2.2 Illustration: Lateration

For 2-dimensional positioning, as illustrated in Figure 2.3, three separation distances are
typically used to find the intersection which signifies the mobile node’s likely position, and
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such procedure is particularly known as Tri-Lateration. Note that circles shall be replaced
by hyperbolas when separation distances are derived from TDOAs, and the reference nodes
must be non-collinear and non-collocated. When more than three separation distances
are considered, 3-dimensional positioning is made possible and the procedure is called
Multi-Lateration instead. In reality, the intersection is likely to happen at multiple points or
may not happen at all, due to wave phenomena like multipath and absorption that result in
poorly estimated separation distances. Therefore, the absolute position is usually finalized by
finding one exact point which fulfills all the measured separation distances simultaneously in
a Least-Squares sense [37, 62]. The estimation accuracy improves when more separation
distances get taken into consideration. GPS technology is one prominent example that
employs Multi-Lateration with TOA or TDOA -based distance measurements [70].

d1 

d2 

d3 

Tri-Lateration 

Beacon node 

Mobile node’s 
actual position 

Mobile node’s 
likely position 

Fig. 2.3 Illustration: Tri-Lateration
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Triangulation

An AOA only implies that the mobile node may lies on anywhere along the line heading in that
specific direction from the reference, as depicted in Figure 2.4. However, the use of two AOAs
at a time enables one to pinpoint the mobile node’s 2-dimensional location. As illustrated
in Figure 2.5, a triangle can be visualized by an intersection of two AOAs from different
reference nodes whose positions are known; hence, the mobile node’s can be deduced by
finding the missing sides and angles of the triangle (based on trigonometry). Such procedure
is known as Triangulation, otherwise called Multiangulation when more than two AOAs are
considered during the computation. [68]. The latter enables 3-dimensional positioning. More
AOAs considered means better estimation accuracy. However, the drawback of this technique
is its complexity and deployment cost due to the use of directional antennas or antenna arrays
for AOA measurements [4, 46]. Nevertheless, both Triangulation and Multiangulation have a
long history in robot localization, and a summary of their diverse algorithms can be found in
[59].

𝜃1 

AOA 

Beacon node 

Mobile node’s 
actual position 

Mobile node’s 
likely position 

Fig. 2.4 Illustration: Single AOA

𝜃1 
𝜃2 

known distance 

Triangulation 

Beacon node 

Mobile node’s 
likely position 

Fig. 2.5 Illustration: Triangulation
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Fingerprinting

The underlying concept of Fingerprinting (FP) is that each particular location within the
site of interest has a unique fingerprint. The fingerprint is actually a compilation of mea-
surements which may be derived from radio signals (e.g.RSSI) from surrounding beacon
nodes, magnetic field[10, 16, 60] and any other information that are location-dependent.
Specifically, the procedure of Fingerprinting consists of two phases: offline phase and online
phase. The offline phase serves to prepare the database prior to the online phase. In doing
so, the site of interest is first divided into sub-areas and each sub-area is represented by a
Reference Point (RP). At each RP, signals from deployed beacon nodes or related sensors
are sampled multiple times in compiling a fingerprint. All fingerprints are then stored in a
database along with position coordinates of their corresponding RPs. In the online phase, the
real-time measurements by mobile node are used to perform matching with the fingerprints
existing in the database, and hence coordinates of RP whose fingerprint yields the closest
match shall be the estimated position of mobile node. Some typical matching algorithms
are k-Nearest Neighbour (KNN), probabilistic methods, neural network, Support Vector
Machine (SVM) and smallest M-vertex polygon (SMP) [47]. More details on a variety of FP
methods can be found in [54].

Besides employing the right matching algorithm, the estimation accuracy improves by
distributing more RPs over the site of interest. More RPs means each RP’s denoted area
shrinks. However, the problem is that sometimes the measurements obtained at some RPs
might be very similar thereby causing their fingerprints hardly distinguishable. Therefore,
the allocation of RPs must be carefully done for optimal precision. Given a fixed amount
of RPs, FP’s reliability can be improved by taking more beacon nodes into consideration
[7, 30]. Though FP is well known for having high resilience towards NLOS conditions, the
major downside is its laborious and time-consuming site-survey for database start-up as well
as maintenance which is necessary to account for any changes made to the environment (e.g.
addition/removal of beacon nodes or walls). Even so, FP has been popular among the Wi-Fi
based IPS [25].
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Dead-Reckoning

Unlike all the aforementioned positioning techniques, Dead Reckoning (DR) is a self-
contained solution that requires no beacon nodes but only a single device like Inertial
Measurement Unit (IMU) which contains all the related sensors to be carried by mobile node.
The current position of mobile node is estimated by projecting forward its previous position
with known distance and heading. For 2-D scenario, the mobile node’s position P at time t
can be simply computed by:

Pt = [Xt Yt ]
⊺ (2.7a)

Xt = Xt−1 +D.cos(θt) (2.7b)

Yt = Yt−1 +D.sin(θt) (2.7c)

where X and Y denote coordinates in two dimensional space, θ is the heading and D is the
distance traveled within the time interval. The very beginning position and heading of mobile
node are often assumed known. Ideally, the consecutive positions can always be derived
by knowing the distance traveled and heading at following time intervals. There are two
ways to find the distance traveled: firstly, by double integration of successive acceleration
measurements; secondly, by detecting the number of steps by observing certain patterns
within the sensor data; the length of each step is either assumed to be constant [15, 49, 71] or
dependent on various parameters such as step frequency and acceleration variance [13, 43, 63].
Specifically, DR that employs step detection in estimating the distance traveled is regarded
as Pedestrian Dead-Reckoning (PDR). The heading is determined based on relative angular
displacement [77] or absolute direction derived from either individual or fusion of readings
from sensors like accelerometers, gyroscopes and magnetometers. However, as the sensors
inherently suffer from non-zero and non-Gaussian noises, the resultant estimations are prone
to accumulative errors thereby deteriorating DR’s reliability over time.
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2.3 Bayesian Filtering

The measurements taken by the sensors are never perfect, and so the estimates based on
them are bound to have random noises. Fortunately, if prior knowledge about the system’s
dynamics and the involved sensors is available, then Bayesian Filtering [12] can be applied to
merge them with the additional measurements/observations from other sensors to probabilis-
tically estimate the system’s states so that the error is minimized. In the context of indoor
positioning, oftentimes the state of interest is the position of tracked object and the system’s
dynamics is how the object advances from its original positions to new ones based on every
new sequence of available measurements/observations. Kalman Filter and Particle Filter are
two most commonly used Bayesian filters. Generally, the state-space model of the system is
expressed as follows:

xt = g(xt−1,ut−1,wt−1) (2.8)

zt = h(xt ,vt) (2.9)

where x is a vector representing the system’s state at time t; the function g(.) models the
system’s dynamics; z is the measurement otherwise known as measured state; the function
h(.) maps the state to a measurement; u is the control vector; and w and v denote the state’s
noise vector and measurement noise vector respectively.

Kalman Filtering

The Kalman Filter (KF) is a recursive means to optimally estimate the state of a linear
dynamics system whereby the noises are Gaussian, so that the variance of estimation errors
is minimum. There are some variations of Kalman Filter that are specifically designed
for non-linear dynamics system, but consequently the variance of estimation errors has
become approximately minimum instead [69]. Among the variations, Unscented Kalman
Filter (UKF) and Extended Kalman Filter (EKF) are two popular ones. Regardless, the
procedure of Kalman Filtering can be easily understood by firstly re-writing the model shown
by Equation (2.8) and Equation (2.9) into a linear model as follows:

xt = Axt−1 +But−1 +wt−1 (2.10)

zt = Hxt + vt (2.11)
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A, B and H are matrices; the process noise w and the measurement noise v are assumed inde-
pendent of each other, and zero-mean Gaussian with covariance matrix Q and R respectively.

Once the KF model is defined, the KF algorithm that comprises two stages namely Time
Update and Measurement Update shall be iterated at every new time step or whenever new
measurement zt is available. At every iteration, the stage Time Update comes first to obtain a
priori estimates of the state x and the error covariance P at time t according to the equations

x̂−t = Ax̂t−1 +But (2.12)

P−t = APt−1A⊺+Q (2.13)

where x̂t−1 and Pt−1 denote the a posteriori estimates of the state and error covariance
respectively at time t−1. The resultant a priori estimates namely x̂−t and P−t are then inputted
to the stage Measurement Update to generate the corresponding a posteriori estimates by
using the equations

Kt = P−t H⊺(HP−t H⊺+R)−1 (2.14)

x̂t = x̂−t +Kt(zt−Hx̂−t ) (2.15)

Pt = P−t −KtHP−t (2.16)

where K denotes the Kalman gain.
If one thinks that the measurement z is more credible than the prediction (a priori estimate

x̂−), then the covariance matrix R should be decreased for greater Kalman gain K, and hence
greater credibility is given to z in computing the aposteriori estimate x̂. An example of the
implementation of KF in indoor positioning is presented in Chapter 3.4.4.
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Particle Filtering

In contrast to Kalman Filter, Particle Filter (PF) is the optimal state estimator for non-linear
dynamics systems whereby the noises are non-Gaussian [24]. However, it requires relatively
higher computational time, which may be undesirable in certain cases where real-time
estimates are needed. There are several variants of Particle Filter [5, 12], such as Sampling
Importance Resampling (SIR) and Regularized Particle Filter (RPF). An example of SIR
PF application is presented in Section 4.2.1. Despite the variants, the procedure of Particle
Filtering can be generally described in 5 sequential steps:

1. Initially, a finite set of particles is generated to represent possible estimates of state x.

2. All particles are propagated according to a predefined state model.

3. Each particle is assigned a weight based on its similarity to the inputted measurements.
Higher similarity results in greater weight. All weights are normalized.

4. A new set of particles is generated by drawing particles from existing set of particles
in proportion to their assigned weights.

5. Iteration commences from step no.2 at every new time step or whenever new measure-
ment is available.

Basically, the concept behind PF is to use a finite set of independent random variables
called particles to approximately represent the posterior probability for any complex model
(which is probably non-Gaussian and multi-modal), and the posterior probability is evolved
with new measurements according to Bayes’ theorem. An example of the implementation of
PF in indoor positioning is presented in Chapter 3.4.2
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2.4 Related Work

This work focuses on investigating ways that complement Pedestrian Dead-Reckoning (PDR)
to achieve more reliable and robust indoor positioning. Therefore, this section documents
the state of the art with respect to the PDR, besides summarizing some existing indoor
positioning methods which are related to the methods proposed in this work.

Pedestrian Dead-Reckoning

Generally, there are three core components in the PDR algorithm: step detection, step/stride
length estimation and heading determination. The most common way in detecting a step
is by observing peaks in acceleration signals. Some works have considered readings from
gyroscopes and magnetometers in detecting steps [33]. The gait cycle of a human is composed
of two phases: Stance and Swing. Stance phase is when the foot flattens firmly on the ground
while Swing phase is when the foot swings forward to enter its Stance phase. The heel-
touching-ground event and heel-off-ground event that occur during transitions between the
two phases can cause spikes in the vertical acceleration, and so a step can be identified
by recognizing local minimum and/or local maximum within specifically sized sliding
windows [14, 81]. Regardless of the placement of the sensor/device, random jitters or
movements other than walking can contribute to unwanted acceleration peaks and hence the
false steps. To validate the detected step, thresholds have been introduced to be compared
against various parameters such as the variance/standard deviation of accelerations within
the sliding window [23, 57, 71], the magnitude difference between local maximum and local
minimum [31, 35, 77], and the period between two consecutively detected steps [23, 41].
As the gait cycles during normal walking are fairly consistent, similar waveforms can be
observed from sensor data. By measuring the similarities among the waveforms using
techniques like Dynamic Time Warping (DTW) and Auto-correlation, the occurrence of
step can thus be inferred [24, 44, 61]. For more robust detection of steps, classifiers are
developed to distinguish the pedestrian’s motion modes like walking, standing still and
irregular movements based on a set of features extracted from sensor data [23, 73].

Once a step is identified, its length is important to indicate the distance traveled. The
actual length of a step varies from person to person depending on factors like leg’s length and
walking speed. Persons that have longer legs tend to have bigger step length. Besides, bigger
step length is also usually observed from higher walking speed. To walk faster, naturally
the person increases the frequency of their gait cycle, and while doing so some body parts
like hip and foot may experience sharper changes in acceleration. Therefore, models that
relate the step length with frequency [23, 44, 57] or acceleration [31–33, 36, 79] have been
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attempted for online estimation of step length for different walking patterns. Nonetheless,
if the pedestrian walks normally at constant pace, implementing fixed step length for all
the detected steps throughout the walk is deemed a viable, not to mention computationally
much simpler, alternative because the variance of each step under such condition seems to be
negligible [8, 71]. Fixed step length can be predetermined either through trials [15, 49, 71]
or based on individual height and weight [14, 77, 81].

Aside from the inaccurately estimated distance traveled, erroneous heading has been
reported as the dominant source of positioning errors in PDR based systems [1, 23, 31, 33,
41, 49, 71]. Basically, the heading is derived based on readings from sensors i.e. gyroscopes,
accelerometers and magnetometers. Single integration of gyroscopes’ readings gives an-
gular displacement of the device while the digital compass composed of either individual
magnetometers or fusion of accelerometers and magnetometers tells the device’s absolute
orientation i.e. azimuth. The device’s orientation is not necessarily the pedestrian’s heading
as it is dependent on its placement on pedestrian e.g. in pocket or in swinging hand. If the
device’s orientation is aligned with pedestrian’s heading, azimuth values are typically used
to denote the pedestrian’s headings [14, 23, 29, 33, 35, 81]. Otherwise, the very beginning
heading of the pedestrian and/or device’s orientation must be known beforehand so that the
angular displacements computed using gyroscope or compass can be useful to deduce later
headings [31, 41]. Either way, the estimated headings are bound to have errors because the
compass is susceptible to unpredictable magnetic disturbances at times and the gyroscope’
accuracy drifts over time [1]. The coupling of both compass and gyroscope however, as
compared to each individual sensor, is able to achieve more reliable heading estimation
[15, 23, 32, 40, 44, 49, 77, 83]. The common idea is to compare both compass and gyroscope
data as an effort to mitigate the magnetic fluctuations or gyroscope’s inherent biases, and
hence fuse the data accordingly using techniques like Kalman filtering [32, 83], Particle
filtering [44] and complementary filtering [15, 40, 49].

One popular means used in mitigating the sensor’s inherent bias as well as the drift
that results from integration of biased sensor data over time is called Zero-Velocity-Update
(ZUPT) method. ZUPT method asserts that the foot is stationary at its Stance phase whereby
its acceleration and velocity are supposedly zero. So, any non-zero accelerations and
velocities that exist during Stance phase are considered errors and thus be reset to zero.
Reliable detection of Stance phase from pedestrian’s gait cycle is crucial to the effectiveness
of ZUPT method. Therefore, the relevant sensors are usually mounted on the foot [2, 19, 33,
48, 83] because the movement of foot, as compared to that of other body parts, gives more
apparent hints of gait cycles while walking.
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Various schemes have also been attempted to complement PDR by making use of external
or additional information. Some works like [41, 44, 57, 61] assume that the indoor map or
floor plan is available and so information like constraints and paths can be retrieved from the
map to rectify the estimated trajectory and heading. The corrections of estimated trajectory
and heading in [77] are triggered upon detecting a virtual landmark. Virtual landmarks are
identified by observing distinct signatures/patterns in the data extracted from magnetic and
inertial sensors as well as Wi-Fi signals – for instance, overhearing a unique set of Wi-Fi
access points at a particular corridor-turn. The actual location of each virtual landmark,
however, is derived by repetitive estimation via PDR expecting the outcome would eventually
converge to its actual location. In [23], besides having aids from Global Positioning System
(GPS), map matching is triggered upon detection of certain patterns in user’s movement
based on accelerometers’ reading. E.g. if the detected pattern is recognized as “using an
elevator”, the nearest elevator in vicinity is assumed as the user’s position. In [36], the
pedestrian is assumed carrying at least two mobile devices and the relative displacements
of the devices with respect to the center of motion are reasonably stable as he/she walks.
The devices individually estimate their own positions which is eventually corrected by a
customized Maximum A Posteriori estimation. RSSI-based distance measurements derived
from perceived wireless signals such as Ultrasound and Wi-Fi are used to complement PDR
in [15, 35, 49]. Certainly, the use of Bayesian filter like Kalman filter (KF) [69] and Particle
filter (PF) [5] is not uncommon among the existing works in fusing the available data and/or
estimates for more optimal estimation. In general, better positioning performance is assured
when more information is taken into consideration.

Collaborative Positioning

Another emerging means to gather more information for better position estimation is by
utilizing the collaboration among the pedestrians to share the information among them-
selves. Collaborative positioning method is made possible due to the existence of clusters of
pedestrians (who carry smart-devices) which is common in crowded places like mega-malls,
universities and airports. The information shared among the pedestrians for collaborative
positioning/navigation purposes can be of any types e.g. their relative/absolute position
estimates and sensors’ readings.

In [11], the FP-estimated position of a pedestrian is first corrected to a point where the
resultant of forces exerted by nearby pedestrians is met. The force exerted by each nearby
pedestrian corresponds to the confidence score which is computed based on the difference
between its position estimated by FP and that of a PF. The corrected estimate is then fed into
another PF to finalize the pedestrian’s estimated position.



22 Background

In [51], the pedestrians are expected to provide helpful feedback regarding their FP-
estimated positions, which shall be used to update the database’s credibility, thereby improv-
ing the subsequent FP estimates.

In [56], a group of pedestrians is assumed moving towards the same destination. Each
pedestrian is provided an RSSI map which serves to deduce a set of likely positions based on
real-time RSSI data. As the group moves, the set of likely positions shall be filtered according
to their PDR-estimated trajectories, which eventually contains only a single estimate that
concludes the group’s estimated position.

In [1], the magnetometer readings from multiple pedestrians that are deemed reliable by
a machine learning algorithm are fused by using consensus algorithms for more refined PDR-
estimated headings. However, the pedestrians are assumed moving in the same direction, and
at least one of them must have uncorrupted magnetometer readings.

In [29], the crowd of pedestrian is first categorized into groups based on two factors: firstly,
RSSI-based proximity among the pedestrians and secondly, similarity between pedestrians’
PDR-estimated trajectories. The PDR-estimated trajectory of each pedestrian shall be
adjusted to reasonably fit the average PDR-estimated trajectory of their group. The estimated
position of each pedestrian in the group is then re-adjusted according to the resultant of
forces caused by nearby pedestrians as well as the groups.

In [72], the differences between pedestrians’ PDR-estimated positions are constrained by
a KF where the ranges derived from UWB signals are inputted as observations.

In [81], all the pedestrians share the same indoor map which has virtual grids on it. The
pedestrians exchange information among themselves, which happens only when the distance
between them is short enough for their microphone to sense frequency peaks broadcast
from nearby pedestrians. The information received is the location of the center of grid
where nearby pedestrian’s PDR-estimated position lies in. The received locations are then
averaged and fused with PDR-estimated position via a KF to finalize the estimated position
of pedestrian.

In [28], the pedestrian’s position is estimated using Ultrasound based Multi-Lateration
where the references are beacon nodes and static nearby pedestrians.

In [31], PDR-estimated trajectory of the pedestrian is represented by a link structure
where the links symbolize straight paths made by the pedestrian and the joints’ angles denote
the pedestrian’s headings. When a pedestrian detects any nearby pedestrians, the joints’
angles of the involved pedestrians are re-estimated in a least-squares sense.

In [74], the FP-estimated positions of pedestrians are adjusted using a spring model where
estimated positions are represented as nodes and links/springs between the nodes have spring
constants determined based on distance between nearby pedestrians as well as confidence
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score of the FP estimates. The nodes get attracted or repulsed by the spring forces until
equilibrium state is achieved.

2.5 Summary

This chapter gives an overview of the fundamentals of indoor positioning by discussing the
major types of geometric measurements as well as the conventional positioning techniques.
Besides, Kalman Filter and Particle Filter which are commonly used to fuse multiple types
of measurements/information for better estimates are briefly described. In addition, state of
the art regarding PDR is documented. Lastly, some existing works that relate to the proposed
methods of this work are also summarized.





Chapter 3

Experimental Setup and Preliminaries

This chapter discusses about the preparation that is necessary prior to the evaluation of
proposed positioning methods which shall be presented in the following chapters.

3.1 Setup

Two different sites in Swinburne University of Technology Sarawak Campus as depicted
in Figure 3.1, were used to evaluate the positioning performance of the proposed methods.
Figure 3.2 and Figure 3.3 show partial area of site no.1 and site no.2 respectively. During
the experiments, the subject carried a Nexus 7 and walked along specific routes. All the
necessary data were retrieved from the Nexus 7 and then post-processed using a Matlab
program to compute the subject’s positions.

Hardware

The hardware involved are listed as follows:

1. Asus Google Nexus 7 (version 2013)

2. "TP-Link Wireless N" Access Point (Model No.:TL-WA701ND) or Router (Model
No.:TL-WR740N)

Their relevant specifications are shown in Table 3.1 and Table 3.2 respectively.
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Wi-Fi AP 

Site no.1 

Site no.2 

Fig. 3.1 Plane view of test-sites
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Fig. 3.2 Long corridor of site no.1.

Fig. 3.3 Open-plan office of site no.2.
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Table 3.1 Asus Google Nexus 7’s specifications

Operating System Android™ 4.3
CPU Quad-core 1.5 GHz
Memory 2GB RAM
WLAN Wi-Fi 802.11 a/b/g/n, dual-band
Sensor Accelerometer, gyro, proximity, compass

Table 3.2 Specifications of TP-Link Router/Access Point

Standards IEEE 802.11 b/g/n
Signal rates Up to 150Mbps
Frequency range 2.4 – 2.4835 GHz
Antenna type 5dBi Omni-directional antenna
Transmit power <20dBm (EIRP)
Beacon interval 100ms

Data Collection

An Android app was developed and run on the Nexus 7 in order to retrieve the necessary
data (i.e. 3-axial linear accelerations, 3-axial angular rates, azimuth readings and RSSI
values). The android app was written in Java using a software called Android Developer
Tools following the Application Program Interface (API) guides which are available from the
official website of Android Developers. All types of data were captured at a sampling rate of
50 Hz. Note that the actual refresh rate for RSSI measurements was approximately 1000ms.

Post-processing

The collected data were then inputted to a program written in Matlab. All types of collected
data, except the azimuths, were filtered prior to the computation of subject’s positions.
Specifically, a second-order low-pass Butterworth filter with 0.1 Hz cut-off frequency was
applied onto RSSI data. The accelerometers’ readings were first processed via a moving
average with a window size of 25, and subsequently a second-order low-pass Butterworth
filter with a cutoff frequency of 5 Hz. The gyroscopes’ readings were first processed via
a moving average with a window size of 25, and subsequently a second-order low-pass
Butterworth filter with a cutoff frequency of 1 Hz.
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3.2 RSSI-Distance Correlation

There are two types of wireless signals considered in this work: Wi-Fi and Bluetooth. For
either types of signals, the correlation between RSSI and distance can be expressed by
Equation (2.6) whose parameters’ values are shown in Table 3.3. The employed path-loss
model’s parameters’ values for Wi-Fi signal were approximated by finding the best-fit curve,
as depicted in Figure 3.4 where each shaped spot denotes the average value of RSSI readings
acquired over a period of ten seconds from specific AP at random location within the site.
The employed path-loss model’s parameters’ values for Bluetooth signal were adopted from
[74]. Nonetheless, it is worth pointing out that derived values may be empirically adjusted.

Table 3.3 Employed path-loss model’s parameters’ values

Signal type n β

Wi-Fi 2.56 37.52
Bluetooth 2.85 40.35
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Fig. 3.4 RSSI-Distance correlation at site no.2

From Figure 3.4, one can observe that the average RSSI values are considerably incon-
sistent even at similar distances. This is inline with the common fact that RSSI readings
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are erratic, and hence the reliability of the path-loss models are limited as they assume that
the RSSI varies logarithmically and isotropically from the transmitter. Other than signal
interference and NLOS conditions, the hardware itself is also one of the major factors that
contribute to erratic RSSI values. The hardware may vary in terms of its chip-set as well
as antenna type. Besides, the RSSI readings are also influenced by antenna’s orientation
[3, 20, 21, 75]. Nonetheless, the erratic RSSI data can be mitigated and made useful to a
certain extent by empirically tuning the parameters of path-loss models or using appropriate
fusion techniques along with some assumptions, as attempted in many existing works such as
[15, 31, 42, 49, 52, 61, 74]. More sophisticated modelling of RSSI-distance correlation can
be found in [52]. Note that in this work, the distances estimated based on RSSI values via a
path-loss model are simply rough estimates which shall then be utilized along with custom
filters and techniques to contribute better positioning accuracy.
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3.3 PDR Implementation

Conventional PDR is employed to estimate the pedestrian’s position on a per step basic by
using Equation (2.7). The pedestrian is assumed to be walking normally with the device
held either upright in hand or at waist level [15, 18, 64]. The assumption made is justifiable
because it is intended in this work to demonstrate that, even under such optimistically
controlled condition, PDR suffers primarily from erroneous headings. Needless to say, worse
can be expected if PDR were to work under challenging conditions (e.g. irregular walking
patterns and device placed in swinging hand/bag).

Step Detection

The length of each step is assumed fixed as the variance between each step’s length is very
small when a person walks normally [71]. To detect the walking steps of the pedestrian, firstly,
the norm of accelerations is computed from the raw 3-axis linear accelerations obtained from
the smart-device:

S̃a
rms [t] =

√
ã2

x [t]+ ã2
y [t]+ ã2

z [t] (3.1)

S̃a
rms is then processed by using a moving average filter with a window size of 25 to remove the

waveform’s mean value because only the variation in acceleration is needed. Subsequently a
second-order low-pass Butterworth filter with a cutoff-frequency of 5 Hz is applied to remove
the high-frequency noise, thereby producing smoother and clearer waveform to ease the
identification of the peaks in the waveform. A step event is identified when there is a local
maximum followed by a local minimum in the waveform. Note that threshold is necessary in
identifying the local extrema among the computed norms of accelerations, and it is defined
as 0.1 in this work. It is possible that the change in pedestrian’s heading may cause change
in the magnitude of accelerations and hence result in undesired signal peaks, in other words,
false step events. To avoid false step events, 3-axis angular velocities are used to compute
the norm of angular velocities first,

S̃w
rms [t] =

√
w̃2

x [t]+ w̃2
y [t]+ w̃2

z [t] (3.2)

then it is processed via a moving average filter with a window size of 25, and subsequently a
second-order low-pass Butterworth filter with a cutoff-frequency of 1 Hz. Then, any instance
of S̃w

rms that falls within a certain range of magnitude is removed to further eliminate the
unwanted noise so that the turn event can be easily identified. The turn event is recognized
by detecting a full cycle of sinusoidal-like waveform. So, any step event that occurs during
the turn event will be ignored. An example of this phenomenon is illustrated in Figure 3.5.
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Fig. 3.5 Identifying the Step Event and the Turn Event.

Heading Estimation

The heading of the pedestrian ϑt can be obtained in two ways. The first way requires the
pedestrian to hold the smart-device upright in hand so that the device’s orientation is inline
with pedestrian’s actual heading, and hence their heading is simply computed by:

ϑt = θ (3.3)

where θ denotes the azimuth value which is extracted directly from smart-device via An-
droid’s Application Program Interface (API). In contrast, the second way of acquiring ϑs, t
is applied when the device’s orientation is unknown, and hence pedestrian’s heading is
estimated by:

ϑt = ϑt−1 +∆θ (3.4)

where ∆θ is the change in azimuth during the turn event. However, it assumes that the device
is attached at the waist level of pedestrian and the initial heading (ϑ0) is known. Figure 3.6
shows an example on acquisition of ∆θ from the obtained azimuth values. Note that the
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waveforms shown in Figure 3.6 are resulted from firstly a 220 degree anticlockwise rotation
and subsequently a 120 degree clockwise rotation. According to the API guides provided
by official website of Android Developers, the azimuth values are derived from fusions of
readings of accelerometers and magnetometers. As accelerometers output bias will drift
according to ambient temperature and magnetometers may experience magnetic disturbances
due to ferromagnetic materials inside building, the derived azimuth values are bound to have
errors. In addition, imprecise detection of the turn event may also result in erroneous ∆θ .
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Fig. 3.6 Computing the change in Azimuth.
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3.4 Benchmarks

A number of some other positioning methods were prepared as benchmarks for the methods
proposed in this work, and they are listed as follows:

1. aTRI: RSSI -based Tri-Lateration

2. pSIR: Fusion of PDR and RSSI via Sampling Importance Resampling Particle Filter

3. pMCMC: Fusion of PDR and RSSI via Markov Chain Monte Carlo sampling

4. pKF: Fusion of PDR and Tri-Lateration via Kalman Filter

The selection of positioning methods for a fair comparison in terms of positioning perfor-
mance is rather difficult as the existing methods are uniquely designed to work optimally
with specific requirements. For instance, the Fingerprinting or landmarks based methods
can be highly reliable only when the number of references is high which would require
laborious and time-consuming site-surveys while some exploit external information like
nearby pedestrians, indoor map and GPS. In short, better positioning performance comes with
greater requirement in several aspects like available information, hardware and preparation
work. The four existing methods listed above are chosen as benchmarks mainly because they
can be executed by using the same hardware involved in the proposed methods.
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3.4.1 Algorithm of aTRI

Adapted from [53], aTRI estimates the position of pedestrian by using RSSI-derived distances
from three Wi-Fi APs whose locations are assumed known. In cases where more than three
APs are available, only APs whose RSSI values are top three highest among all are considered.

An iteration of aTRI algorithm is summarized by Algorithm 1 where t denotes the time
instance; P is estimated position of pedestrian; and da, db, dc are the distances estimated via
a path-loss model based on the RSSI values obtained from three individual APs whose 2-
dimensional Cartesian coordinates are represented by (xa, ya), (xb, yb) and (xc, yc) respectively.

Algorithm 1 An iteration of aTRI algorithm

1: A←
(
(db,t)

2− (dc,t)
2)− (

(xb)
2− (xc)

2)− (
(yb)

2− (yc)
2)

2: B←
(
(db,t)

2− (da,t)
2)− (

(xb)
2− (xa)

2)− (
(yb)

2− (ya)
2)

3: Ynum← B · (xc− xb)−A · (xa− xb)

4: Yden← (ya− yb)(xc− xb)− (yc− yb)(xa− xb)

5: Define Y-coordinate: Y ← Ynum ÷ Yden
6: Xnum← A−Y · (yc− yb)

7: Xden← xc− xb

8: Define X-coordinate: X ← Xnum ÷ Xden
9: Pt ←

[
X Y

]⊺
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3.4.2 Algorithm of pSIR

pSIR uses a Sampling Importance Resampling (SIR) Particle Filter to combine PDR with
RSSI-derived distance measurement. The use of SIR Particle Fitler in pSIR is very similar to
that of [35]. However, pSIR derives the distance via a path-loss model by using the RSSI
data, while [35] measures the distance based on propagation time of Ultrasound signals.
The latter way of distance measurement is comparatively more reliable, but it can only be
performed when the Ultrasound emitter is less than few meters apart from the pedestrian;
on the other hand, Wi-Fi signal can reach far longer distances, but pSIR utilizes only RSSI
values that pass the RSSI threshold which is to be set empirically. Besides, unlike [35] that
considers only single distance at a time, pSIR may consider multiple distances at a time if
multiple RSSI sources are seen. Having said that, this work simply assumes the positioning
performance of pSIR is equivalent to that of [35].

The pedestrian’s position is estimated on a per step basis. An iteration of pSIR algorithm
is summarized by Algorithm 2 where t denotes the time instance; P equates

[
X Y

]⊺ where
X and Y are the x- and y-coordinates of pedestrian; N is the sample size; S denotes a set of
samples; L is the step length; ϑ is the PDR-estimated heading; εx and εy are random noises
which are zero-mean Gaussian; σr is the standard deviation of measurement noise; D denotes
a set of distances between pedestrian and Wi-Fi APs whose RSSI values pass the desired
threshold; and λ is the distance between the k-th sample and the n-th AP. Initial position (P0)
is assumed known, and initial set of samples (S0) is generated from a Gaussian distribution
(N (P0,σ)).

The procedure of Algorithm 2 can be summarized as follows:

1. (Lines no.1 to 10): A set of samples is generated to represent the likely positions of
pedestrian. The weight of each generated sample is then assigned based on D.

2. (Lines no.11 to 14): All samples’ weights are normalized.

3. (Lines no.15 to 28): A new set of samples is drawn from the previously generated set
of samples, with probabilities proportional to their normalized weights.

4. (Line no.29): The mean of the new set of samples finalizes the estimated position of
pedestrian.
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Algorithm 2 An iteration of pSIR algorithm
1: for k← 1,N do
2: Generate a sample: S[k]t ← S[k]t−1 +L×

[
cosϑt sinϑt

]⊺
+
[
εx εy

]⊺
3: Compute sample’s weight, w[k]

t :
4: E← number of elements in D
5: if E > 0 then
6: w[k]

t ←∏
E
n=1

(
1√

2πσr
exp

(
− 1

2(σr)2 (D[n]−λ )2
))

7: else
8: w[k]

t ← 1
9: end if

10: end for
11: Compute total weight: W ← ∑

N
n=1 w[n]

t
12: for k← 1,N do
13: Normalize sample’s weight: w[k]

t ← w[k]
t ÷W

14: end for
15: Initialize cumulative distribution function (CDF): c[1]← 0
16: for k← 2,N do
17: Construct CDF: c[k] = c[k−1]+w[k]

18: end for
19: Start at the bottom of CDF: m← 1
20: Draw a starting point: u[k]←∼N (0, 1

N )
21: for k← 1,Ns do
22: Move along CDF: u[k] = uk + 1

N (k−1)
23: while uk > cm do
24: m← m+1
25: end while
26: Assign sample: S[k]t ← S[m]

t

27: Assign weight: w[k]
t = 1

N
28: end for
29: Pt ← 1

N ∑
N
l=1 S[l]t
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3.4.3 Algorithm of pMCMC

pMCMC employs Markov Chain Monte Carlo (MCMC) sampling in fusing PDR with RSSI-
derived distances, as adapted from [49]. In [49], it is reported that their MCMC-based fusion
scheme outperforms that of [34] which is based on Maximum Likelihood estimation.

The pedestrian’s position is estimated on a per step basis. An iteration of pMCMC
algorithm is summarized by Algorithm 3 where t denotes the time instance; P equates[
X Y

]⊺ where X and Y are the x- and y-coordinates of pedestrian; L is the step length; ϑ is
the PDR-estimated heading; εx and εy are random noises which are zero-mean Gaussian; N
is the sample size; E is the number of elements in D; D denotes a set of distances between
pedestrian and Wi-Fi APs whose RSSI values pass the desired threshold; σr is the standard
deviation of measurement noise; λA is the distance between proposed sample (s) and n-th
AP; λB is the distance between current sample (S[k−1]) and n-th AP.

Algorithm 3 An iteration of pMCMC algorithm

1: Initialize first sample: S[1]← Pt−1 +L×
[

cosϑt sinϑt
]⊺

+
[
εx εy

]⊺
2: for k← 2,N do
3: Propose a sample: s← S[k−1]+

[
εx εy

]⊺
4: Compute likelihood ratio, K:
5: if (E← number of elements in D) > 0 then
6: A←∏

E
n=1

(
1√

2πσr
exp

[
− 1

2(σr)2 (D[n]−λA)
2])

7: B←∏
E
n=1

(
1√

2πσr
exp

[
− 1

2(σr)2 (D[n]−λB)
2])

8: K← A÷B
9: else

10: K← 0
11: end if
12: Define acceptance ratio: α ← minimum value between K and 1.0
13: if α ≥ desired threshold then
14: Accept proposed sample: S[k]← s
15: else
16: Reject proposed sample: S[k]← S[k−1]

17: end if
18: end for
19: Compute mean of samples: Pt ← 1

N ∑
N
l=1 S[l]

The procedure of Algorithm 3 can be summarized as follows:
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1. The first element of the sample set (which comprises N number of elements) is
initialized based on a desired model, as detailed by line no.1.

2. A new sample is proposed by introducing random noise into the previous sample, as
detailed by line no.3.

3. The new sample is accepted as the next element of the sample set, only if the acceptance
ratio is not smaller than certain threshold. Otherwise, the next element shall be the
same as the previous element. The acceptance ratio is computed as detailed by lines
no.4 to 12.

4. Once all the elements of the sample set are computed, the mean of the sample set
finalizes the estimated position of pedestrian, as detailed by line no.19.
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3.4.4 Algorithm of pKF

Kalman Filter [69] has been employed to combine PDR with additional information like
nearby pedestrians’ locations (in [81]) and GPS readings (in [23]). In this work, none of those
additional information but the RSSI data is available. Therefore, the RSSI data are used to
compute the pedestrian’s position via aTRI whose estimate is then inputted as measurement
in the Kalman Filter to finalize the estimated position of pedestrian.

The pedestrian’s position is estimated on a per step basis. An iteration of pKF algorithm
is summarized by Algorithm 4 where t denotes the time instance; P equates

[
X Y

]⊺ where
X and Y are the x- and y-coordinates of pedestrian; L is the step length; ϑ denotes the
PDR-estimated heading; A, B and H are 2× 2 identity matrices; both Q and R are 2× 2
identity matrices multiplied by some appropriate scalars; z is pedestrian’s position estimated
simultaneously by aTRI. The initial position of pedestrian (P0) is assumed known, and initial
error covariance (P0) equates Q. Note that lines no.5 to 9 in Algorithm 4 are standard
equations for Kalman Filtering, as described in Chapter 2.3.

Algorithm 4 An iteration of pKF algorithm

1: Define control input: u← L×
[

cosϑt sinϑt
]⊺

2: if Pedestrian makes a turn then
3: Reset error covariance: Pt ← Q
4: end if
5: Predict next state: x← A×Pt−1 +B×u
6: Predict next covariance: Pt ← A×Pt−1×A⊺+Q
7: Compute Kalman gain: K← Pt×H⊺ (H×Pt×H⊺+R)
8: Update predicted state: x← x+K× (zt−H× x)
9: Update predicted covariance: Pt ← Pt−K×H×Pt

10: Pt ← x

The procedure of Algorithm 4 can be summarized as follows:

1. The pedestrian’s next position (i.e. x) is first predicted by by projecting forward the
previously estimated position (i.e. Pt−1) with known displacements, as detailed by line
no.5. The next covariance (i.e. Pt) is predicted by adding the current covariance (Pt−1)
with some random noise (i.e. Q), as detailed by line no.6.

2. The Kalman gain (i.e. K) is computed based on some random noise (i.e. R), as detailed
by line no.7. The Kalman gain shall be used to update both the predicted position and
predicted covariance, as detailed by lines no.8 to 9.
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3. The updated x finalizes the estimated position of pedestrian.

3.5 Summary

Two different sites within the Swinburne University of Technology Sarawak Campus were
used for the evaluations of the positioning methods proposed in this work. The hardware
required were Nexus 7 tablets and Wi-Fi routers/access points. All the necessary data were
retrieved from the Nexus 7 via an Android app and then post processed by a Matlab program
to estimate the subject’s locations. The path-loss model’s parameters’ values were defined by
best fitting the pre-collected RSSI data at known distances. Besides, the algorithms of PDR
as well as some other PDR-based positioning methods adapted from existing works are also
explained in this chapter.





Chapter 4

Indoor Positioning by Pedestrian
Dead-Reckoning with RSSI-based
schemes

As mentioned in Chapter 2.4, many efforts have already been made to enhance the posi-
tioning performance of PDR by employing different techniques in processing the data from
PDR-related sensors data (i.e. accelerometers, gyroscopes and magnetometers), as well as by
making use of additional but external information such as indoor map, GPS readings and
nearby pedestrians’ data. In view of widespread Wi-Fi routers or access points in indoor
environments, the RSSI of Wi-Fi signals has been favored by many researchers in developing
indoor positioning methods especially those which are based on Fingerprinting. The Fin-
gerprinting based methods are undoubtedly very promising, yet their relatively high setup
requirements are unfavorable.

This chapter presents two unique schemes that aim to aid smart-device -based PDR by
utilizing the RSSI of Wi-Fi signals. The first scheme (detailed in Chapter 4.1) adjusts the
PDR-estimated positions of pedestrian by detecting strong RSSI and subsequently requiring
pedestrian’s manual input. Admittedly, the first scheme is not viable in situations where
user intervention is not allowed. The second scheme (detailed in Chapter 4.2) rectifies the
PDR’s dominant error source, i.e. erroneous heading, upon detecting long straight trajectory
in pedestrian’s motion.
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4.1 Position Correction Scheme

The procedure of position correction scheme is briefly shown in Figure 4.1. Conventional
PDR algorithm (detailed in Chapter 3.3) is employed to provide initial estimates for pedes-
trian’s positions, assuming the pedestrian holds the smart-device upright in hand. The
correction on pedestrian’s estimated position is first executed upon observing strong RSSI
from Wi-Fi APs. Alternatively, further correction may be triggered with manual input from
the pedestrian. Such trigger is deemed reasonable in situations where pedestrian needs to
react accordingly to the system for further navigation guidance.

Ensure that the estimated position 
lies within acceptable region 

Detect strong RSSI 

Revise the estimated position 
based on compass bearing 

Fig. 4.1 Flowchart of Position Correction Scheme.

4.1.1 Methodology

As the pedestrian walks, the RSSI readings obtained by the smart-device (held by pedestrian)
from each visible APs are filtered and recorded as Rt,i, where i ∈ {1,2, · · · ,NA}, t denotes the
time instance and NA is the total number of visible APs. In the course of time, Rt,i is checked
against certain RSSI threshold Rth,i. The Rth,i corresponds to certain level of proximity
(represented by dth,i) that exists between the estimated position Pt and ith AP. If

(
Rt,i ≥ Rth,i

)
is met, then

(
dt,i ≤ dth,i

)
is expected. The dt,i is the distance between the estimated position

Pt and ith AP, and it is computed by

dt,i =

√
(Xt−Xi)

2 +(Yt−Yi)
2 (4.1)

where Xi and Yi are the Cartesian coordinates of ith AP.
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So, if
(
Rt,i ≥ Rth,i

)
and

(
dt,i ≤ dth,i

)
, then this Pt is within the “acceptable region” and

no further action is required. However, if
(
Rt,i ≥ Rth,i

)
but

(
dt,i ≥ dth,i

)
, then this Pt is not

accepted and shall be shifted radially towards the AP and subsequently relocated to a point
where

(
dt,i ≤ dth,i

)
is fulfilled. Such phenomenon can be illustrated by an example depicted

in Figure 4.2. Multiple acceptable regions can be assigned if the RSSI-distance relationship
is reliable over a longer distance, and would lead to more effective correction. Note that
the RSSI value in reality does not vary isotropically from the RSSI source; regardless, this
scheme simply assumes the opposite.

c 

A Acceptable region 1 

Acceptable region 2 

Wi-Fi AP 

B C A 

B 

C 

Actual position 

Estimated position 
before correction 

Estimated position 
after correction 

Fig. 4.2 Position ‘B’ is not accepted and is therefore being shifted radially to Position ‘C’.

The estimated position can be further improved by utilizing the compass bearing (denoted
as α i

t ) measured from ith AP to pedestrian. Whenever the condition
(
Rt,i ≥ Rth,i

)
is detected,

the pedestrian is prompted to turn towards the corresponding AP and then trigger the system
to capture α i

t at that moment. Note that the APs should be placed in a way whereby they can
be spotted easily by the pedestrian. Admittedly, such scheme is only applicable in a controlled
environment, e.g. museum; APs could be placed on top of certain displayed objects in the
museum, and so the visitors may approach an AP while viewing the displayed objects. The
sole purpose of having α i

t is to acquire vector displacement between pedestrian and AP.
Subsequently, the pedestrian’s estimated position is finalized according to the acquired vector
displacement, as illustrated by an example depicted in Figure 4.3 assuming that the captured
α i

t is 315◦ clockwise from North.



46 Indoor Positioning by Pedestrian Dead-Reckoning with RSSI-based schemes

West, 270° 

East, 90° B 

NW, 315° 
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D 
A 

South, 
180° North,  

360° or 0 ° 

Y 

X 

c 

Acceptable region 

Wi-Fi AP 

A 

B 

C 

Actual position 

PDR-estimated position 

Relocated position 
using RSSI 

D Relocated position 
using compass 

Fig. 4.3 Position ‘C’ is shifted to Position ‘D’ based on the acquired compass bearing.
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4.1.2 Evaluation

The proposed method had been tested in an open-plan office. A total of ten trials were
conducted. In each trial, the subject held a Nexus 7 upright in hand and walked along the
route beginning from ‘Start’ until ‘End’ as illustrated in Figure 4.4. Note that though the
condition

(
Rt,i ≥ Rth,i

)
may be fulfilled at any time along the route, the system was only

allowed to check whether condition
(
Rt,i ≥ Rth,i

)
was achieved at checkpoints (i.e. ‘C4’,

‘C8’, ‘C10’ and ‘C13’.) only and to trigger correction accordingly. The RSSI-distance
correlation of the site was considerably poor, as described in Chapter 3.2. In the experiment,
two RSSI thresholds were employed and defined as −45 dBm and −50 dBm that correspond
to 2 m and 5 m respectively, thereby resulting in two acceptable regions as indicated by
dotted circles (with different radii) shown in Figure 4.4. The RSSI thresholds were selected
not to be smaller than −50 dBm because RSSI values lower than -50dBm were deemed
relatively unreliable, besides avoiding the acceptable regions of an AP from overlapping
those of another AP.
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Fig. 4.4 Plane view of testbed.
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The proposed scheme is similar to those of [49], [35] and [15], in a sense that the pedes-
trian’s PDR-estimated position is refined upon being in vicinity of beacon nodes. Specifically,
Markov Chain Monte Carlo (MCMC) sampling is used in [49] to fuse PDR estimates with
distances derived from RSSI values which pass the threshold; Sampling Importance Resam-
pling (SIR) Particle Filter (PF) is employed in [35] to combine PDR estimates with distances
derived from nearby (not more than few meters away from) ultrasound device; in [15], the
pedestrian’s estimated position is directly assumed to be the position of beacon node whose
RSSI value is the highest and passes certain threshold. For comparison purposes, a total of
five positioning methods were considered in estimating the subject’s positions, and they are
listed as follows:

1. pPDR: Sole PDR, as explained in Chapter 3.6.

2. pSIR: PDR with Sampling Importance Resampling, as detailed in Chapter 3.7.2

3. pMCMC: PDR with Markov Chain Monte Carlo sampling, as detailed in Chapter
3.7.3.

4. pBN: Same as pPDR, but that the estimated position eventually gets replaced by the
position of Beacon Node whose RSSI value passes the threshold.

5. PM: Same as pPDR, but that the estimated position eventually gets adjusted by the
proposed correction scheme.
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Impact of varying number of deployed APs

The error metric is the absolute difference between estimated position and actual position.
The lower the error, the higher the positioning accuracy. Figure 4.5 shows the errors of all the
five different methods when the number of deploys APs varied according to the arrangements
shown in Table 4.1. From Figure 4.5, it can be observed that mean error of PM gradually
decreases as the number of APs deployed increases, with lowest mean error of 1.4 m and
standard deviation of 1.8 m while pPDR’s are constantly 3.2 m and 1.8 m because PDR is not
dependent on RSSI at all. Nonetheless, the improvement made on all methods except pPDR
by increasing the number of deployed APs from 2 to 4 units seems insignificant because
even the biggest difference between corresponding mean error is just 0.6 m. This is probably
owing to the PDR component of PM that can estimate relatively accurate though for a short
duration. The accumulative error of PDR will eventually become significant, and that is
exactly the time where the pedestrian needs to be close to the beacon nodes (i.e. APs) so that
strong RSSI values may be available for all these RSSI-dependent methods (i.e. pMCMC,
pSIR , pBN, PM) to execute appropriate correction. For example, as shown in Figure 4.6, the
estimated route beginning from the ‘Start’ deviates progressively from actual route due to
mere PDR with miscounted steps and primarily erroneous headings; once greatly improved
at checkpoint ‘C8’, the estimated route remains relatively close to the actual route all the way
from ‘C8’ until the ‘END’ with little improvement made at checkpoints ‘C12’ and ‘C13’;
therefore, in this case, ‘AP2’ is deemed not as necessary as ‘AP4’. Nevertheless, as more
APs are deployed along the route, there are more chances that the correction can be triggered
when necessary. Note that the estimated positions depicted in Fig. 4.6 are not mean values,
but computed on a per step basis; when a step event occurs, the filtered RSSI value (which
is not lower than the selected RSSI threshold) at that instant only shall be considered in
updating the PDR-estimated position.
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Table 4.1 Arrangements of Wi-Fi APs considered during experiment

Arrangement No. Sources of RSSI considered

1 AP1, AP2, AP3, AP4

2 AP1, AP2, AP3

3 AP1, AP3, AP4

4 AP1, AP2, AP4

5 AP2, AP3, AP4

6 AP1, AP2

7 AP1, AP3

8 AP1, AP4

9 AP2, AP3

10 AP2, AP4

11 AP3, AP4

2 3 4
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4

Number of APs deployed
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pPDR
pMCMC
PM
pSIR
pBN

Fig. 4.5 Errors of different methods Versus Number of APs deployed
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Impact of varying RSSI Threshold

The method PM had two RSSI thresholds set as−45 dBm and −50 dBm respectively while
the remaining methods except pPDR had only one RSSI threshold set as −50 dBm. The
RSSI thresholds have to be empirically defined for optimal estimation. If RSSI threshold is
too high, correction is unlikely to happen unless the pedestrian is indeed near an AP to obtain
sufficiently strong RSSI readings. If RSSI threshold is too low, correction gets triggered
unnecessarily and tends to fail because weak RSSI values are rather poor in implying the
distances between pedestrian and AP. Figure 4.7 and Figure 4.8 illustrate two examples of
outcomes of faulty correction caused by erratic RSSI value or inappropriate RSSI threshold.
In Figure 4.7, the condition

(
Rt,i ≥ Rth,i

)
was met and hence pedestrian turned towards ‘AP3’

and captured the α i
t (the bearing of pedestrian from ‘AP3’) to execute the proposed correction

scheme; however, as Rt,2 (RSSI from ‘AP2’) is greater than Rt,3 (RSSI from ‘AP3’) at that
moment, PM mistakenly assumed the pedestrian was within the acceptable region of ‘AP2’
instead of ‘AP3’ and therefore finalized the estimated position to a point where the bearing
of estimated position from ‘AP2’ fulfilled the captured α i

t . In Figure 4.8, the Rt,2 (RSSI from
‘AP2’) obtained by the pedestrian at checkpoint ‘C6’, which was supposedly lower than the
RSSI threshold, unexpectedly passed the RSSI threshold and therefore led to faulty pBN.

Basically, both PM and pBN expect that the pedestrian’s closest AP gives highest RSSI
value whenever the condition

(
Rt,i ≥ Rth,i

)
is met. In other words, the "acceptable region" of

an AP is not allowed to overlap with that of another AP. In contrast to them, the methods
pMCMC and pSIR theoretically can make use of RSSI readings from any APs at a time.
However, from Figure 4.9 that depicts the errors of pMCMC and pSIR for different RSSI
thresholds, it is apparent that the −50 dBm was the optimal RSSI threshold for both pMCMC
and pSIR in such test-site. Nonetheless, their errors are still worse than those of pBN and
pPM, as shown in Figure 4.5. This thus infers that both the methods pMCMC and pSIR
in the experiment ended up needing rather strong RSSI values (not lesser than −50 dBm),
just like PM and pBN, but yielding comparatively lower positioning accuracy. Such poor
performance of both pMCMC and pSIR was probably caused by rather poor RSSI data,
as their algorithms involve deriving the distances from RSSI values via certain path-loss
model. From Figure 4.10 which shows the average absolute difference between RSSI-derived
distances and actual distances at every checkpoint of the route, it is apparent that the RSSI
data obtained during the experiment are far from being reliable in deriving the distances
between pedestrian and APs. Note that RSSI-derived distances for all four APs were indeed
computed via the same path-loss model.
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Fig. 4.10 Average absolute difference between RSSI-derived distances and actual distances
at all checkpoints along the route.
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Discussion

Admittedly, the fact that the pedestrian is required to manually trigger the system to capture
the compass bearing (α i

t ) in order to acquire vector displacement for correction purpose may
render the proposed scheme not viable in applications where user intervention is prohibited.
This scheme is not practical as it inconveniences the user to disrupt normal movement
along a desired walking path to aid error correction. Nevertheless, the scheme is for further
improvement and not the core technique itself. PM without vector displacement just simply
ensures that the estimated position lies within the acceptable region, and when its acceptable
region is too small because of unreasonably high RSSI threshold, it becomes somewhat
similar to pBN which outperformed both pMCMC and PM in the experiment anyway.

Regardless, this work intends to emphasize the importance of having vector displacement
between pedestrian and AP, which is apparent especially in scenarios like the one shown in
Figure 4.11. In Figure 4.11, the PDR-estimated route is way too much swayed from the actual
route that it falls into the northern region of ‘AP4’ when approaching ‘C8’; knowing only
scalar displacements between pedestrian and ‘AP4’ can only shift the estimated positions
towards/outwards ‘AP4’ radially, just like how both pMCMC and pSIR do, and therefore
the resultant estimated positions still fall within the northern region of ‘AP4’; PM, which
knows the vector displacement between pedestrian and ‘AP4’, manages to shift the estimated
position happening at ‘C8’ all the way from the North-East of ‘AP4’ to the South of ‘AP4’
and the resultant estimated positions remain relatively closer to their actual positions.



4.1 Position Correction Scheme 57

8
10

12
14

16
18

20
22

24
26

28
30

32
34

246810121416182022

P
la

ne
 v

ie
w

 o
f T

es
tb

ed

C
oo

rd
in

at
e 

X

Coordinate Y

 

 

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

A
P

4

S
ta

rt

E
nd

A
ct

ua
l r

ou
te

pM
C

M
C

pS
IR

pB
N

P
M

pP
D

R

Fi
g.

4.
11

A
tr

ia
l’s

re
su

lt
w

he
re

P
M

co
ns

id
er

ab
ly

ou
tp

er
fo

rm
s

th
e

ot
he

rm
et

ho
ds

.



58 Indoor Positioning by Pedestrian Dead-Reckoning with RSSI-based schemes

4.2 Heading Correction Scheme

This scheme aims to correct the PDR-estimated headings ϑt by making use of the RSSI
data. Under this scheme, the pedestrian neither needs to approach any RSSI sources nor
provides manual inputs. The correction of PDR-estimated headings, however, gets triggered
only when the pedestrian’s movement constitutes a long straight trajectory. Such trigger is
deemed acceptable because long straight trajectory is commonly observed in pedestrian’s
daily movements, e.g. moving along long straight pathways in university, mega-mall, etc.
The procedure of the heading correction scheme is briefly shown in Figure 4.12.

Estimate positions of the corresponding 
trajectory by making use of the RSSI data 

Derive the heading based on 
Linear Regression 

Detect a long straight trajectory 

Update the pedestrian’s 
headings and positions 

Fig. 4.12 Flowchart of Heading Correction Scheme.
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4.2.1 Methodology

Detection of long straight trajectory

A straight trajectory can be identified by observing a series of sequential positions estimated
by Equation (2.7), for instance (Pt ,Pt+1,Pt+2, · · ·) which occurs between the turn events.
The size of the series implies the length of the straight trajectory. A straight trajectory is
considered long only when its series’ size passes the threshold η . It is undeniable that
the pedestrian’s trajectory across a long straight corridor/pathway may not be a completely
straight line at times. For example, slight deviation of course is performed to avoid bumping
into another person who is moving along the same route. Even so, the straight trajectories of
the pedestrian make before and after the course’s deviation can still be considered long if
their corresponding series’ size passes the threshold η . The threshold η has to be empirically
defined so that the detected straight trajectory is sufficiently long enough to enable a more
reliable derivation of heading. Note that the detected long straight trajectory is termed as
series from now on.

Use of RSSI data for estimation of series’ positions

The RSSI data Ri during the time-frame of series are used to estimate their corresponding di

(which denotes the distance between pedestrian and i-th AP) based on a radio propagation
model as follows:

Ri =−β −10n log10 di (4.2)

where β and n are predefined constants to fit the site’s RSSI-distance correlation [15, 74].
A Sampling Importance Resampling (SIR) Particle Filter (PF) is employed to fuse PDR

estimates (i.e. steps and headings) with RSSI-derived distances di in estimating the positions
of the entire series. Optimal estimation can be achieved by fine tuning the filter’s parameters.
Map information is commonly used in a PF to restrict the estimated positions to fall on
pathways instead of walls or obstacles [44, 57, 61]. However, in this work, indoor map is
considered not available and thus only the derived distances di are inputted as measurements
to the particle filter.

Let It = [xt ,yt ]
⊺ denote the position where xt and yt denote the coordinate x and y

respectively at time t. Given the initial position It−1, Ns samples of It are generated using the
proposed motion model:

Ik
t = Ik

t−1 +S× [cosϑt ,sinϑt ]
⊺+[εx,εy]

⊺ (4.3)
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where k = 1, . . . ,Ns and S is the step’s length. Both εx and εy are ∼N (0,σq
2) where σq

is the standard deviation of the process noise. The weight of each generated sample, wk is
computed by:

wk =

 ∏
NA
i=1

1√
2πσr

exp
[
− (di−gk

i )
2

2(σr)2

]
if NA ≥ 1

1 if NA = 0
(4.4)

where σr is the standard deviation of the measurement noise. gk
i is the distance between

sample Ik
t and i-th AP, computed by:

gk
i = ∥I

[k]
t −Wi∥ (4.5)

where Wi denotes the location of i-th Wi-Fi AP which is assumed known. Then, the weights
are normalized:

wk =
wk

∑
Ns
l=1 wl

(4.6)

Finally, Ns samples are drawn from the generated set of samples {Ik
t }

Ns
k=1 with probabilities

proportional to their w. With re-sampled set {Ik
t }

Ns
k=1, position It is simply the centroid of the

samples [35, 44]:

It =
1
Ns

Ns

∑
k=1

Ik
t (4.7)

Derivation of Heading based on Linear Regression

Once all the positions of the entire series (which is the detected long straight trajectory) are
computed, a simple linear regression line is to be determined through these positions. Simple
linear regression is a statistical method that models the relationships between a dependent
variable and an explanatory variable. As each position of the series has two variables namely
xt and yt , a right choice has to be made between regression of yt on xt and regression of xt

on yt .
Consider a case where an object travels in a direction inclining to the horizontal axis rather

than to the vertical axis. In such case, one can infer that the object’s horizontal displacement
is greater than its vertical displacement and hence regression of yt on xt is more appropriate
to resemble the object’s direction. Likewise deduction can be applied for the opposite case.
As for the series, the displacement made can be represented by the difference between the
series’ first and last positions as all the positions of series are sequentially estimated by a
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SIR PF. Let I f irst and Ilast denote the first and the last position of the series respectively. If
∥x f irst−xlast∥ ≥ ∥y f irst−ylast∥, then regression of yt on xt is chosen. Otherwise, regression
of xt on yt is chosen. The orientation of the linear regression line is regarded as the new
heading denoted as Θ. Admittedly, some estimated positions of the series could be outliers
due to erroneous RSSI readings. In this work, the outliers are indiscriminately considered
in deriving the new headings. The impact of the number of outliers on estimation accuracy
shall be looked into in future work.

Finally, the pedestrian’s headings ϑ during the time-frame of the series are replaced
by Θ. All the corresponding previously estimated positions Ps,t are re-estimated using
(Equation (2.7)) with this newly updated ϑ . An example of such phenomenon is illustrated
in Figure 4.13. Note that it is desirable to have longer series so that more estimated positions
can be considered to reliably derive the linear regression line.

Actual straight trajectory 

Initial estimated trajectory 

Re-estimated trajectory 
based on the orientation of 
the regression line 

Regression line 

series’ estimated positions 

Fig. 4.13 The original headings of the PDR-estimated trajectory are updated to the orientation
of the linear regression line. Hence, the estimated trajectory is re-estimated with updated
headings.
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4.2.2 Evaluation

Figure 4.14 and Figure 4.15 depict the plan views of the sites which were used to evaluate
the efficacy of proposed heading correction scheme in improving the positioning accuracy
of PDR. In terms of site’s area and no. of nodes deployed, the sites chosen are comparable
to those of [15, 35, 42, 76]. Though not shown, the sites are fully equipped with machines,
furniture as well as walls or barriers made of both glass and concrete. Furthermore, the
experiments were conducted during normal operating hours of the sites, which means a con-
siderable number of students and relevant staff were present at the sites. All these obstacles
and disturbances present at the sites undoubtedly contribute to erratic RSSI measurements.
The purpose of conducting the experiments in such scenario is to test the robustness of the
proposed method towards erratic RSSI values.
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Fig. 4.14 Plane view of test-site no.1.

A total of ten trials were conducted. In each trial, the subject held a Nexus 7 at their
waist and walked normally along the route, as illustrated in Figure 4.14 and Figure 4.15
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Fig. 4.15 Plane view of test-site no.2.

respectively, beginning from ‘Start’ until ‘End’. The ‘T1, T2, . . . T10’ indicate the positions
where the pedestrian changed its heading. Note that some pauses and minor path deviations
did occur because the pedestrians had to open doors as well as avoid bumping into other
persons while walking along the same pathways. Nevertheless, subject was asked to follow
the designated routes as closely as possible so that the occurrence of imprecise distance
traveled can be minimized and impact of erroneous heading onto PDR’s performance can
be apparently observed. The primary purpose of having the routes designated so was to test
the viability of the RSSI based heading correction and hence examine the improvement it
could bring to the conventional PDR. Table 4.2 and Table 4.3 tabulate the corresponding
route’s straight paths and the actual number of steps performed in each path. Nonetheless,
slightly miscounted number of steps is inevitable due to inaccurate step detection based on
noisy inertial data. The ground-truth was determined by marking the time-stamp of every
new position along the route.

The selection of positioning methods for a fair comparison in terms of positioning perfor-
mance is rather difficult as the existing methods are uniquely designed to work optimally
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Table 4.2 Route A in test-site no.1

Path No. Segment of Route No. of steps taken

1 Start – T1 5

2 T1 – T2 3

3 T2 –– T3 6

4 T3 —- T4 9

5 T4 —- T5 7

6 T5 —- T6 12

7 T6 —- T7 30

8 T7 —- T8 12

9 T8 —- T9 8

10 T9 –– T10 7

11 T10 – End 7

Table 4.3 Route B in test-site no.2

Path No. Segment of Route No. of steps taken

1 Start – T1 23

2 T1 – T2 6

3 T2 – End 23
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with specific requirements. For instance, the Fingerprinting or landmarks based methods
can be highly reliable only when the number of references is high which would require
laborious and time-consuming site-surveys while some exploit external information like
nearby pedestrians, indoor map and GPS. In short, better positioning performance comes with
greater requirement in several aspects like available information, hardware and preparation
work. The proposed method requires minimal information (i.e. RSSI, inertial and magnetic
measurements only) from the pedestrian’s device alone and no site survey. In this regard, the
proposed method is similar to the ones proposed in [49] and [35]. For comparison purposes,
a total of six positioning methods were considered in estimating the subject’s positions
throughout the routes, and they are listed as follows:

1. pPDR: Sole PDR, as detailed in Chapter 3.6.

2. aTRI: Tri-Lateration based on RSSI, as detailed in Chapter 3.7.1.

3. pSIR: Fusion of PDR and RSSI via Sampling Importance Resampling Particle Filter,
as detailed in Chapter 3.7.2.

4. pMCMC: Fusion of PDR and RSSI via Markov Chain Monte Carlo sampling, as
detailed in Chapter 3.7.3.

5. pKF: Fusion of PDR and Tri-Lateration via Kalman Filter, as detailed in Chapter
3.7.4.

6. PM: pPDR with proposed heading correction scheme.
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Impact of varying number of deployed APs

As all the selected positioning methods excluding pPDR make use of the RSSI data, their
respective robustness can thus be assessed based on their positioning performance under the
impact of varying availability and density of RSSI data. The availability and density of RSSI
data are proportional to the number of Wi-Fi APs deployed at the test-site. The number of
deployed APs was varied from (originally) 4 units to 2 units according to the arrangements
shown in Table 4.4. All the independent variables of respective methods (e.g. sample size,
process noise covariance, and measurement noise covariance) were empirically configured
to yield seemingly the best estimation results. In this work, they were configured only for
the original cases whereby 4 units of APs were available, as depicted by Figure 4.14 and
Figure 4.15. As for other cases whereby the number of APs was less than 4, the independent
variables were not configured accordingly. This was intended to simulate the situations where
the indoor positioning system, which is tuned beforehand under ideal condition, continues to
work even under unanticipated circumstances like sudden breakdown of certain AP at the
site.

Table 4.4 Arrangements of Wi-Fi APs considered during experiment

Arrangement No. Sources of RSSI considered

1 AP1, AP2, AP3, AP4

2 AP1, AP2, AP3

3 AP1, AP3, AP4

4 AP1, AP2, AP4

5 AP2, AP3, AP4

6 AP1, AP2

7 AP1, AP3

8 AP1, AP4

9 AP2, AP3

10 AP2, AP4

11 AP3, AP4
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Fig. 4.16 Route A: Methods’ errors versus No. of APs deployed.

From both Figure 4.16 and Figure 4.17, one can be observe that: (i) While pPDR remains
unaffected as the number of APs decreases because it’s independent of RSSI data, the
accuracy of all the other methods deteriorates. From the steepness of change in average
error when the number of APs decreases, it is apparent that the affected methods, arranged
in the order from highest to lowest degree of severity, are aTRI, pKF, pMCMC and lastly
pSIR and PM. It is unsurprising that aTRI suffered the most from reduced number of APs
because it relies on solely RSSI data, while other methods use both PDR and RSSI data to
complement the estimation of pedestrian’s position. Recall that the outcomes of aTRI serve
as measurements in pKF, therefore pKF’s deterioration rate is nearly as much as aTRI’s. Note
that aTRI requires RSSI readings from at least three APs, therefore its performance can’t be
tested in cases where only two APs are deployed. As for pMCMC and pSIR, apart from their
PDR component which is considerably reliable for short displacements, intakes of RSSI data
are also controlled whereby only the RSSI that passes the threshold Rth is used in calculating
the distance. This therefore somewhat tells why they are not as significantly influenced by
RSSI as aTRI and pKF are. Even so, pMCMC falls behind pSIR probably due to its MCMC
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Fig. 4.17 Route B: Methods’ errors versus No. of APs deployed.

sampling technique which, in comparison to SIR PF of pSIR, has higher demand for accurate
RSSI data; otherwise poor or lack of RSSI data tends to cause indiscriminate acceptance
of many subsequently generated samples that will eventually result in the average of the
generated samples to deviate unreasonably far from previous position estimate.

(ii) The performance of pPDR is rather good in case of route B that it surpasses all
methods except PM, as compared to its performance in the case of route A. One probable
explanation is that route B is less complicated than route A by having lesser turns and shorter
sum of distance traveled. Lesser turns made by pedestrian implies lower probability that
estimated heading ϑ gets jeopardized by imprecisely detected change in pedestrian’s heading
∆θ . Shorter distance traveled along a straight path implies lesser amount of accumulated error
caused by inaccurate ϑ as the pedestrian advances further. In addition, though inaccurate
∆θ is undesired, sometimes it does accidentally result in correct ϑ . Figure 4.18 illustrates
an example of such phenomenon. Therefore, it is safe to conclude that PDR’s reliability
is unpredictable because the sensors’ inherent biases might neutralize the previous flawed
estimations (i.e. distance traveled and heading) by chance. Being the primary key to steadily
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reliable PDR, the estimated heading ϑ needs to be corrected whenever necessary. However,
the timing for heading correction is often not known without the aid of external references
like GPS and indoor map.
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Fig. 4.18 The inaccurately detected ∆θ , supposedly to be 90 degrees as equal to the actual
change in pedestrian’s heading at the last junction of the route, accidentally causes the ϑs to
be in line with the actual heading. Nonetheless, error in pedestrian’s estimated position Ls
has been accumulated due to previous inaccurate headings.

(iii) PM outperforms all the other methods regardless of the number of APs deployed in
both cases, while being comparable with pPDR in case of route B. As previously mentioned,
PM is actually pPDR with conditionally improved headings, thus it should portray an
enhanced version of pPDR. The reason why PM is comparable with pPDR in the case of
route B as shown in Figure 4.16 is that the PDR’s accuracy had not deteriorated until the
stage where the heading correction can yield significant improvement. On the contrary, PM
excels in the case of route A (as shown in Figure 4.17) where pPDR has a 6.56 m mean error
with 4.15 m standard deviation which is considerably worse than its 2.15 m mean error with
1.28 m standard deviation achieved in the case of route B. By triggering heading correction
at single straight path namely path no.7 of route A, PM manages to improve PDR’s mean
error up to 49 %. PM’s performance can be more comprehensively demonstrated by its
propagation of average error over the route A, as shown in Figure 4.19 where the error is the
absolute difference between actual position and estimated position.
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From Figure 4.19, it can be observed that, beginning from the ‘Start’, aTRI being the
only method which relies on solely RSSI data suffers immensely probably due to poor
RSSI data while the deterioration of other methods is comparatively gradual because of
their PDR component hence making them more resilient towards erratic RSSI data. As the
very beginning heading is given, PM being the pure PDR and unaffected by RSSI at early
stages like the pPDR has the slowest rate of deterioration as the pedestrian advances further
along the route. During the period between ‘T6’ and ‘T7’ however, considering aTRI’s
error has been significantly improved, it seems that the RSSI data have become somewhat
useful to result in improvement on the accuracy of other RSSI-dependent methods while
pPDR’s error escalates primarily due to erroneous headings. Nonetheless, after ‘T7’, the
RSSI-dependent methods’ accuracy fluctuates as the reliability of RSSI data does. Unlike
pPDR, PM maintains its steady accuracy even after ‘T6’ because the interval between‘T6’
and ’T7’ (i.e. path no.7) is where the new headings derived from orientation of regression line
come into effect. As a result of that, the pedestrian’s headings since then were also improved,
as shown in Figure 4.20 which depicts the average discrepancies between actual headings
and estimated headings at each path of route A. For example, as shown in Figure 4.21a which
depicts one of the experiment results, PM as well as pPDR gradually deviates from the actual
route due to mere PDR with miscounted steps and primarily erroneous heading; yet, after
the heading ϑ at path no.7 gets aligned with the orientation of the regression line (which is
depicted in Figure 4.21b), PM remains comparatively close to the actual route.
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Fig. 4.20 Average heading error at each path of route A.
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(b) Derived regression line for path no.7 of route A.

Fig. 4.21 An example of experiment results.
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Heading Derivation based on Linear Regression

Table 4.5 and Table 4.6 tabulate the average heading errors for Route A and Route B
respectively. The heading error is the scalar discrepancy between actual heading and heading
derived based on linear regression (of series’ positions estimated by respective methods).
Note that the actual headings were the true azimuths for the designated routes. From Table 4.5
and Table 4.6, it is apparent that linear regression of series’ positions estimated by all methods
except pPDR result in average heading errors (highlighted in green) lower than those of
pPDR (highlighted in grey) especially when the path’s length is long. Recall that path no.7 is
the longest straight path of route A, and path no.1 and no.3 are among the longest straight
path of route B. As illustrated by a trial’s result shown in Figure 4.22, the route estimated by
aTRI itself seemingly deviates far from the actual route, yet the regression lines somewhat
resemble the true headings of route B. Some additional results are depicted in Figure 4.23.
Nonetheless, the accuracy of such heading derivation approach deteriorates as the number
of the APs decreases. Even so, the statistics shown have demonstrated that, in occasion
of long straight path, this technique may be feasible as an alternative to the conventional
heading estimator of PDR. Note that this scheme is basically PDR with conditional heading
correction; PDR is primarily used to estimate the positions of the pedestrian as he/she walks;
correction of estimated heading occurs only when a long straight trajectory is identified;
Figures 4.18, 4.21, 4.22 and 4.23 apparently show that heading correction significantly
enhances the PDR-estimated positions.
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Table 4.5 Average scalar discrepancies between actual headings and headings derived based
on linear regression of series’ positions estimated by respective methods in the case of route
A. Note that the values highlighted in grey are the heading errors of PM when the heading
correction is not applied; the values highlighted in green are smaller than those highlighted
in grey.

.

Path No.
Average Heading Error, (degree)

pPDR aTRI pKF pMCMC pSIR

2 7.9 40.0 18.1 38.6 29.1
3 6.3 8.1 6.9 21.4 7.4
4 9.8 52.1 12.1 32.7 8.3
5 8.7 94.9 32.0 84.7 46.7
6 12.9 75.0 23.6 50.8 24.5
7 27.4 2.8 6.8 7.3 3.1
8 35.6 46.3 55.4 54.9 58.6
9 33.4 92.5 52.6 91.5 77.4

10 30.3 141.0 39.9 126.9 65.5
11 28.6 28.5 32.9 12.7 44.4

(a) When No. of APs is 4

Path No.
Average Heading Error, (degree)

pPDR aTRI pKF pMCMC pSIR

2 7.9 58.2 16.4 44.4 25.8
3 6.3 31.5 16.2 20.5 7.2
4 9.8 73.1 16.4 49.2 10.1
5 8.7 98.3 44.7 82.3 27.0
6 12.9 72.4 24.1 59.5 18.2
7 27.4 25.6 7.0 14.7 7.9
8 35.6 66.6 58.5 53.1 63.1
9 33.4 92.4 54.0 84.0 74.7
10 30.3 117.4 39.4 124.9 59.2
11 28.6 31.3 31.8 17.8 45.3

(b) When No. of APs is 3
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Table 4.6 Average scalar discrepancies between actual headings and headings derived based
on linear regression of series’ positions estimated by respective methods in the case of route
B. Note that the values highlighted in grey are the heading errors of PM when the heading
correction is not applied; the values highlighted in green are smaller than those highlighted
in grey.

.

Path No.
Average Heading Error, (degree)

pPDR aTRI pKF pMCMC pSIR

1 7.2 7.0 5.9 6.3 5.7
2 10.2 58.5 44.7 26.3 23.8
3 12.3 11.6 10.3 7.4 5.6

(a) When No. of APs is 4

Path No.
Average Heading Error, (degree)

pPDR aTRI pKF pMCMC pSIR

1 7.2 22.0 16.0 10.0 7.5
2 10.2 62.3 53.6 40.2 36.8
3 12.3 39.0 35.5 17.0 14.3

(b) When No. of APs is 3
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Fig. 4.22 Positions estimated by aTRI for each path of Route B and its corresponding
regression line.
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(a) Positions estimated by pSIR for each path of Route B and its corresponding regression
line.
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(b) Positions estimated by pMCMC for each path of Route B and its corresponding regression
line.

Fig. 4.23 More examples of experimental results.
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4.3 Summary

This chapter presents two schemes that enhance the positioning accuracy of smart-device
-based PDR by utilizing the RSSI of Wi-Fi signals. Based on merely the sensory data from
the device’s embedded sensors, conventional PDR is employed for its simplicity as well as
its high but short-term reliability. To ensure PDR’s high reliability for long-term positioning,
its errors must be rectified whenever appropriate.

The first scheme aims to refine the PDR-estimated position of pedestrian, by ensuring
that the estimated position falls within certain region of corresponding Wi-Fi AP according to
the obtained RSSI value as well as inputted compass bearing. Admittedly, this scheme may
not be viable in situations where human intervention is not allowed. The second scheme aims
to correct the PDR-estimated headings based on linear regression, and subsequently update
the corresponding PDR-estimated positions. The heading correction, however, gets triggered
only upon detecting a long straight PDR-estimated trajectory which can be commonly
observed in pedestrian’s daily movements, e.g. moving along long straight pathways in
university, mega-mall, etc.

Both schemes had been experimentally tested. The test results have demonstrated: firstly,
the feasibility of the proposed schemes; secondly, PDR with proposed schemes outperform
some existing PDR-based positioning methods in terms of positioning accuracy as well as
robustness towards lack of Wi-Fi APs.





Chapter 5

Collaborative Indoor Positioning based
on Directed Graph

As mentioned in Chapter 2.4, many indoor positioning methods have already been proposed
leveraging the collaboration among pedestrians to achieve more refined positioning. In
contrast to those existing collaborative methods, the one proposed in this work first estimates
the pedestrians’ positions by using Pedestrian Dead-Reckoning or Tri-Lateration, and then
refines them via an iterative correction process with measurements derived from the Directed
Graph. The Directed Graph is constructed to express the spatial relations among the pedestri-
ans and site’s Wi-Fi APs. The procedure of the proposed collaborative positioning method is
briefly depicted in Figure 5.1.

Construct the Directed Graph 
based on collected information 

Collect from all pedestrians their individual 
RSSI data and estimated positions 

Correct the estimated positions of all pedestrians 
via a Particle Filter -based algorithm 

Fig. 5.1 Procedure of proposed collaborative positioning method.
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5.1 Construction of Directed Graph

An indoor crowded scenario where there are Np pedestrians is considered. There are also Na

units of Wi-Fi APs sparsely deployed at the site. The pedestrians can detect the surrounding
pedestrians and APs by observing the RSSI data via Bluetooth and Wi-Fi capabilities of
smart-devices. The true positions of APs are assumed known while pedestrians’ may vary
over time. Note that the pedestrian and the AP are now termed Mobile Node (MN) and
Beacon Node (BN), respectively.

Let a denote the index of MN and b denote the index of the RSSI source which can be
either MN or BN. b-th node is considered a neighbour to a-th node when the observed RSSI,
Ra,b ≥ Rth where Rth is an RSSI threshold which is to be defined empirically so that a-th
node is considered near to b-th node. The distance between the nodes, D can be derived from
the observed RSSI via Equation (4.2). Though the estimate is mostly inaccurate in practice,
it is somewhat representative for short distances when RSSI values are strong [31, 74].

The relations among MNs and BNs at time t is expressed by a weighted directed graph
G= (V,E) where V is the set of vertexes and E is the set of edges. The vertexes are comprised
of Np MNs and Na BNs, and the edges are the ordered pairs of vertexes. The weight of
each edge is their corresponding D. Then, the said graph can be represented by a weighted
adjacency matrix,

Mt =

 S1,1 . . . S1,Nv
... . . . ...

SNv,1 . . . SNv,Nv


where Nv is the summation of Na and Np; Si, j denotes the shortest distance from i-th vertex to
j-th vertex. When i equates j, Si, j is zero. Si, j is infinite when there is no path between i-th
vertex and j-th vertex. Figure 5.2 depicts an example of directed graph for four nodes and its
corresponding weighted adjacency matrix. In Figure 5.2, the number of red arrows going
outward from each node is equivalent to the number of neighbours each node has; though
node ‘1’ is distant and undetectable to node ‘4’, the distance between them can be deemed as
S4,1 = D4,3+D3,2+D2,1. The derived Si, j is not necessarily the actual displacement between
the nodes especially when there is no direct path between them. Nevertheless, it can be
used to somewhat bound the absolute difference between the nodes’ estimated positions.
Therefore, in such way, even those distant pedestrians besides the neighbouring ones could
also be useful references in refining the estimated positions.
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5.2 Correction Algorithm

Once the weighted adjacency matrix (Mt) at certain time t is ready, the correction of estimated
positions of all Np MN shall be executed. The correction of estimated positions is usually
an iterative process, as depicted in Figure 5.3 where Pi,x denotes the estimated position
of i-th MN at x-th iteration; and γ is an empirically defined parameter. Note that Pi,0 for
i = 1,2,3, . . . ,Np are estimated by employing Tri-Lateration or PDR; the algorithms of both
Tri-Lateration and PDR are explained in Chapter 3.

Adjust the estimated position  of 
each pedestrian by using 

Algorithm 5, Algorithm 6 or 
Algorithm 7 

START 

END 

Yes Any 
 𝜇𝑖  ≥ 𝛾 ? 

No 

First iteration:  
𝑧 = 1 

Next iteration: 
𝑧 = 𝑧 + 1 

For each pedestrian, compute the 
difference between estimated 

position of current iteration and  
that of previous iteration, 𝜇𝑖  : 

𝜇𝑖  = 𝑃𝑖,𝑧 − 𝑃𝑖,(𝑧−1)  

Fig. 5.3 Flowchart of Correction Process.

At every new iteration during the correction process, the estimated positions of all Np MN
can be adjusted by using any of the three algorithms depicted by Algorithm 5, Algorithm 6
and Algorithm 7 respectively. All these three algorithms have two things in common. Firstly,
all finite and non-zero Si, j obtained from Mt are utilized to somewhat bound the absolute
difference between Pi and corresponding j-th node. This means that besides neighbouring
nodes, even the distant ones could also be references. Secondly, BN is more influential than
MN in finalizing Pi. The reason behind is that the BN’s position, unlike the MN’s, remains
unaffected throughout the iterations and therefore serves to ground the correction process
which may otherwise converge with a significant bias. In fact, Algorithm 7 is the most pre-
ferred choice in refining the estimated positions, because Algorithm 5 and Algorithm 6 are
basically its predecessor versions which yield comparatively poorer positioning performance.
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Algorithm 5 Adjust the estimated position of i-th MN
1: I is an empty set
2: for j← 1, number of columns of Mt do
3: if Si, j ̸= 0 and Si, j ̸= ∞ then
4: if ∥Pi,(z−1)−Pj,(z−1)∥> Si, j then
5: θ ← the positive angle between vector

−−−−−−−−−→
Pj,(z−1)Pi,(z−1) and positive x-axis

6: p← Pj,(z−1)+Si, j×
[

cosθ sinθ
]⊺

7: add p to I
8: end if
9: end if

10: end for
11: if I is empty then
12: Pi,z← Pi,(z−1)
13: else
14: Pi,z← mean of I
15: end if
16: if any BN is a neighbour of i-th MN then
17: F ← position of corresponding BN
18: d← RSSI-derived distance between i-th MN and corresponding BN
19: θ ← the positive angle between vector

−−→
FPi,z and positive x-axis

20: if ∥Pi,z−F∥> d then
21: Pi,z← F +d×

[
cosθ sinθ

]⊺
22: end if
23: end if

The procedure of Algorithm 5 can be summarized into three steps. Firstly, the distance
between estimated position of i-th MN and estimated position of j-th node should not be
greater than their corresponding shortest distance (i.e. Si, j); else, the estimated position of
i-th MN should be shifted radially towards the corresponding j-th node’s estimated position.
Secondly, if the estimated position of i-th MN needs to be shifted towards multiple j-th
nodes, then the estimated position of i-th MN shall be the average of those shifted estimated
positions. Lastly, if i-th MN has a neighbour which is an AP, then the distance between
estimated position of i-th MN and corresponding AP’s actual position should not be greater
than the corresponding RSSI-derived distance; else, the estimated position of i-th MN shall
be shifted radially towards the corresponding AP’s actual position.
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Algorithm 6 Adjust the estimated position of i-th MN
1: I is an empty set
2: for j← 1, number of columns of Mt do
3: if Si, j ̸= 0 and Si, j ̸= ∞ then
4: θ ← the positive angle between vector

−−−−−−−−−→
Pj,(z−1)Pi,(z−1) and positive x-axis

5: p←
(
Pj,(z−1)+Si, j×

[
cosθ sinθ

]⊺)
6: add p to I
7: end if
8: end for
9: Pi,z← mean of I

10: if any BN is a neighbour of i-th MN then
11: F ← position of corresponding BN
12: d← RSSI-derived distance between i-th MN and corresponding BN
13: θ ← the positive angle between vector

−−→
FPi,z and positive x-axis

14: if ∥Pi,z−F∥> d then
15: Pi,z← F +d×

[
cosθ sinθ

]⊺
16: end if
17: end if

The procedure of Algorithm 6 can be summarized into three steps. Firstly, every non-
zero and finite Si, j along the i-th row of Mt shall contribute a preliminary estimate which
signifies the likely position of i-th MN. Secondly, the estimated position of i-th MN shall
be the average of all the preliminary estimates. Lastly, if i-th MN has a neighbour which
is an AP, then the distance between estimated position of i-th MN and corresponding AP’s
actual position should not be greater than their corresponding RSSI-derived distance; else,
the estimated position of i-th MN shall be shifted radially towards the corresponding AP’s
actual position.
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Algorithm 7 Adjust the estimated position of i-th MN
1: both A and B are empty sets
2: for j← 1, number of columns of Mt do
3: if Si, j ̸= 0 and Si, j ̸= ∞ then
4: θ ← the positive angle between vector

−−−−−−−−−→
Pj,(z−1)Pi,(z−1) and positive x-axis

5: I← Pj,(z−1)+Si, j×
[

cosθ sinθ
]⊺

6: for k← 1, desired number of samples do
7: Q[k]← sample from a Normal distribution, N (I,σ)

8: w[k]← 1√
2πσ

exp
(
− 1

2(σ)2 (Si, j−∥Q[k]−Pj,(z−1)∥)2
)

9: end for
10: w← divide w by the sum of w
11: for k← 1,N do
12: R[k]← randomly draw a sample from the weighted set of samples, i.e. {Q,w},

with probability proportional to its weight
13: end for
14: I← mean of R
15: if ( j-th node is an BN) and ( j-th node is a neighbour of i-th MN) then
16: add I to A
17: else
18: add I to B
19: end if
20: end if
21: end for
22: if B is empty then
23: Pi,z← mean of A
24: else
25: Pi,z← α×

(
mean of A

)
+
(
1−α

)
×
(
mean of B

)
26: end if

The procedure of Algorithm 7 can be summarized into three steps. Firstly, every non-
zero and finite Si, j along the i-th row of Mt shall contribute a preliminary estimate which
signifies the likely position of i-th MN. Secondly, every preliminary estimate is processed
via a custom Particle Filter (as detailed by lines no.6 to 14). Lastly, the estimated position
of i-th MN is finalized by computing the weighted mean of all the preliminary estimates.
Among all the preliminary estimates, only those which are acquired based on neighbouring
AP contribute comparatively more "weights". The α shown in line no.25 is an empirically
define parameter whose value ranges from 0 to 1. As BN is more influential than MN in
finalizing Pi, therefore α is supposed to be greater than 0.5.
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5.3 Evaluation I

The proposed collaborative method had been tested with four different layouts of testbed, as
illustrated in Figure 5.4 where ‘AP’ denotes the actual locations of Wi-Fi APs and ‘Actual’
denotes the actual positions of pedestrians. Note that the Wi-Fi APs were considered BNs
while pedestrians were considered MNs.
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(b) Layout no.2
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Fig. 5.4 Plane view of four different layouts of testbed

Each MN obtained the RSSI values from Wi-Fi signals emitted by BNs, and Bluetooth
signals emitted by other MNs. From the obtained RSSI value (R), the corresponding distance
(D) can thus be derived via a path loss model expressed by Equation (2.6) whose parameters’
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values are shown in Table 3.3. The RSSI source whose RSSI value passed the Rth was
considered as the neighbour of corresponding MN. Under this testbed, a node is considered
neighbour of a MN only if the distance between them is not greater than 5 meters. Therefore,
-60 dBM and -70 dBM were selected as Rth for Wi-Fi signal and Bluetooth signal respectively
so that the distance estimated via the path-loss model was unlikely to be greater than 5 meters.
For each layout of testbed, ten trials were conducted. For each trial, only the RSSI data
at single time instance were used to compute the positions of all MNs. Note that all MNs’
positions were estimated at the same time, by using the RSSI values which were collected at
that instant. For comparison purposes, five different positioning methods were considered:

1. TriA : Each MN’s position is estimated via Tri-Lateration by using the algorithm
described in Chapter 3.4.1.

2. TriB : The estimated position of each MN is the average of their respective TriA-
estimate and their neighbours’ TriA-estimates.

3. PmA : TriA-estimates are processed by the proposed collaborative method which
employs Algorithm 5.

4. PmB : TriA-estimates are processed by the proposed collaborative method which
employs Algorithm 6.

5. PmC : TriA-estimates are processed by the proposed collaborative method which
employs Algorithm 7.
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The errors of all ten trials for all five different methods in respective layouts of tesbed are
shown in Figure 5.5. The error metric is the absolute difference between the MN’s estimated
position and actual position. In Figure 5.5, each box-plot shows the distribution of NT ×Nm

errors where NT is the number of trials conducted and Nm is the number of MNs involved.
It is worth mentioning that the mean of errors does not represent well the performance of a
positioning method. Upper quartile, median and inter-quartile range should be the figures of
merit instead. The lower the upper quartile or median, the higher the accuracy. The shorter
the inter-quartile range, the higher the consistency. Therefore, from Figure 5.5, it is apparent
that regardless of which layout, the five methods arranged in the order from lowest to highest
positioning performance are TriA, TriB, PmA, PmB and PmC. Though insignificant, PmA
does outperform both PmB and PmC in layout no.4. More comparisons among PmA, PmB
and PmC shall be discussed later.

Number of references vs. Number of neighbours vs. Errors

While correcting the estimated position of an MN, the proposed method basically considers
any other nodes – which can be directly or indirectly linked to in the graph, as references.
Note that the nodes which are directly linked to MN are neighbours, while the indirectly
linked ones are non-neighbours. The number of neighbours each MN has might vary at any
time t because it depends on whether the RSSI values given by surrounding nodes pass the
RSSI thresholds. The number of references each i-th MN has is equivalent to the number
of j-th nodes which contribute non-zero and finite Si, j. Figure 5.6, Figure 5.7, Figure 5.8
and Figure 5.9 summarize some information regarding the ten trials conducted in respective
layouts. Each of these four Figures consists of three charts: firstly, the top chart shows the
number of references made available from the graph for every trial, where the red horizontal
line denotes the supposed number of available references; secondly, the middle chart illustrate
the distribution of number of neighbours for every trial; thirdly, the bottom chart presents the
distribution of errors yielded from three different proposed methods in every trial. As for the
top charts, the fact that the number of references made available by the constructed graph
fail to meet the supposed value in some trials implies that the Bluetooth RSSI data were not
reliable enough to ensure that all MNs can detect their respective neighbours successfully.
Nevertheless, by comparing the top charts with the middle charts, we can observe that the
number of available references in most of the trials approach/reach the supposed value even
though the number of neighbours a MN has may be as low as 1. Note that the number of
available references in trial no.8 for layout no.3 exceeds the maximum value by 1 because
‘AP4’, owing to erratic Wi-Fi RSSI, was accidentally considered as neighbour of 8-th MN.
By comparing the middle charts with the bottom charts, it seems that there is no correlation
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Fig. 5.5 Errors of five different methods for four different layouts of testbed.
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found between the number of neighbours and the error of proposed methods. The consistency
of numbers of neighbours does not necessarily imply the consistency of errors. For instance,
as referring to Figure 5.9, the errors of proposed methods in trial no.3 are comparable to
those in trial no.8 although the former trial has comparatively rather inconsistent number
of neighbours. The larger the interquartile range, the greater the inconsistency of values.
Besides, the error is not proportional to the number of neighbours. For example, as referring
to Figure 5.9, the difference between the errors in trial no.8 and those in trial no.9 is apparent
despite that they have almost identical number of neighbours. Such phenomenon is expected
because the majority of the neighbours each MN has are fellow MNs whose estimated
positions are subject to changes during the correction process.

Errors of respective MNs

In Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13, the top chart shows the numbers of
neighbours every MN had throughout all the trials in respective layouts, while the bottom
chart depicts the corresponding errors for every MN throughout all the trials in respective
layouts. By carefully comparing the top charts with the bottom charts, one can observe that
the MNs which are near to any AP (i.e. MNs no.1,4,13&16 in layout no.1, MNs no.1,4,7&10
in layout no.2, MNs no.1,4&10 in layout no.3, and MNs no.1,2,7&8 in layout no.4.) tend
to have lesser neighbours as well as smaller errors than the remaining MNs. This further
implies that greater number of neighbours does not necessarily result in lower errors. Other
than being affected by erratic RSSI, the reason why these MNs tend to have relatively lesser
neighbours is that they, as can be seen from Figure 5.4, are situated at the border and not
really surrounded by other MNs. These MNs have relatively lower errors probably because
they have an AP as their neighbour; recall that the proposed methods put more weights
on neighbouring AP than on neighbouring MN in correcting the estimated position of MN,
because AP’s position is fixed unlike the MN’s. Nonetheless, it is also worth pointing out
that sometimes the neighbouring AP might not be captured as neighbour due to erratic Wi-Fi
RSSI.
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Fig. 5.6 Trials’ results for layout no.1.
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Fig. 5.7 Trials’ results for layout no.2.
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Fig. 5.8 Trials’ results for layout no.3.
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Layout 4 
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Fig. 5.9 Trials’ results for layout no.4.
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Impact of lesser references on Errors of proposed method

One novel feature of the proposed collaborative method is the usage of directed graph to
acquire more references before applying the correction algorithm. The references primarily
comprise the neighbouring nodes, and possibly include the neighbouring nodes of neighbour-
ing nodes as well as the distant ones. The proposed correction algorithm then makes use
of every available references to refine the estimated position via iterating Multi-Lateration
with custom weighted averaging. PmA, PmB and PmC could also be modified in order that
only the neighbours of respective MNs are used as references, by replacing the line no.3 of
Algorithm 5, Algorithm 6 and Algorithm 7 with "if j-th node is a neighbour of i-th node
then". From Figure 5.14 that compares the errors of original versions to those of modified
versions, it is apparent that, except for PmA, the original versions outperform the modified
versions in all four layouts. Therefore, one can deduce that greater number of references
considered during correction is likely to mitigate the errors more effectively.

Impact of varying number of BNs on Errors of proposed method

As previously mentioned, BNs are more influential than MNs while refining the MN’s esti-
mated position (Pi,z). To examine the impact of having BNs on the correction’s effectiveness,
the number of Wi-Fi APs allowed to be included in the graph was varied according to cases
shown in Table 5.1. Note that the APs were regarded as BNs, and the number of APs allowed

Table 5.1 Number of APs allowed to be included in the Directed Graph for different cases

Case APs allowed

1 AP1, AP2, AP3, AP4
2 AP1, AP2, AP3
3 AP1, AP2
4 AP1
5 None

does not always equate to the number of BNs existing in the graph because sometimes the
AP may not be captured as neighbour to any MNs even though they are indeed very nearby.
Figure 5.15 compares the errors of all three proposed methods in all five cases for all four
layouts. Here, the accuracy metric is the upper quartile of the boxplot. The lower the upper
quartile, the higher the accuracy. From Figure 5.15, one can observe that: firstly, the accuracy
of all three proposed methods deteriorates as the number of APs allowed decreases; secondly,
highest accuracy’s deterioration rate goes to PmA, followed by PmB and then PmC; thirdly,
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Fig. 5.14 Errors of proposed methods: All references versus Neighbours only.
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among the three, PmC has the highest accuracy in all cases except case 5 for layout no.4.
Figure 5.16 shows one of the trials’ results in case 5 where BN is absent from the graph. From
Figure 5.16, it is apparent that the positions estimated by PmC visually form a distribution
that considerably matches the MNs’ actual positions, yet the distribution is slightly turned
clockwise and swayed to the right. The distribution could be shifted westward if ‘AP4’
were a neighbour of 4-th MN. This is because the estimated position of 4-th MN might be
shifted towards ‘AP4’, thereby also somewhat "pulling" the estimated positions of other MNs
towards the same directions. Generally, in whichever direction the distribution sways to, a
BN needs to be available at opposite direction to mitigate the sway.

Discussion

By comparing the errors (upper quartiles) of PmA, PmB and PmC shown in Figure 5.15
with the errors (upper quartiles) of TriB shown in Figure 5.5, one can observe that: firstly,
PmA seemingly outperforms TriB only in cases 1 & 2 for all four layouts; secondly, TriB
outperforms PmB only in cases 4 & 5 for layout no.3 as well as in case 5 for layout no.4;
thirdly, PmC outperforms TriB in all cases for any layouts except case 5 for layout no.4.
Such statistics implies two things: firstly, PmA, PmB and PmC are deemed pointless in the
aforementioned cases because TriB outperforms them despite being comparatively much
simpler in terms of computation/algorithm; secondly, among the three proposed methods,
PmC is the most robust towards the lack of BNs.

Admittedly, Beacon Node is not always available at the right place to anchor the MNs’
estimated positions, and therefore alternative way of anchoring is necessary. One potential
way to mitigate the sway of distribution is shifting the whole distribution until its centroid
matches with the centroid of actual positions. An illustration for such shifting is depicted in
Figure 5.17. Note that the estimated positions and actual positions in reality are unlikely to
be so neatly arranged. Figure 5.18, Figure 5.19, Figure 5.20 and Figure 5.21 depict the errors
of proposed methods before and after shifting. From these four Figures, it is apparent that, in
any cases and layouts, the errors after the shifting reduce and also become more consistent.
However, the main problem with such shifting is locating the actual centroid while the actual
positions of all MNs are originally unknown. Nevertheless, the actual centroid could be
possibly found if we know how the MNs are distributed within a known area, e.g. if the
people (MNs) are somewhat evenly scattered within a hall, then the actual centroid is simply
assumed the centroid of the hall.
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Fig. 5.15 Errors in all five cases for all four layouts.
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Fig. 5.18 Errors of proposed methods Before and After shifting (Layout no.1).
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Fig. 5.19 Errors of proposed methods Before and After shifting (Layout no.2).
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5.4 Evaluation II

Figure 5.22 shows the plane view of the testbed used to evaluate the efficacy of proposed
collaborative method in improving the positions estimated by some PDR -based positioning
methods. Note that the four Wi-Fi APs at the site were just deployed to provide RSSI data,
and they were not utilized as BNs by the proposed collaborative method under this testbed.
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Fig. 5.22 Plane view of testbed.

A total of ten trials were conducted. In each trial, ten MNs walked a long straight path from
their respective start positions until the end positions, and their positions were estimated by
five different PDR based methods which are listed as follows:

1. PdrA: Sole PDR, as explained in Chapter 3.3.

2. PdrB: PDR with Markov Chain Monte Carlo sampling, explained in Chapter 3.4.3.

3. PdrC: PDR with Sampling Importance Resampling, explained in Chapter 3.4.2.

4. PdrD: PDR with heading correction, as explained in Chapter 4.2.
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The initial headings of all MNs were provided. However, all MNs were required to make
few random turnings at their start positions before commencing the walk, and the resultant
headings were estimated by using Equation (3.4). The random turnings before the walk were
intended to introduce some heading errors in order to simulate unreliable PDR. Note that
PDR is well known for being vulnerable to erroneous heading. Then, when all MNs reached
their respective end positions, the proposed collaborative method was executed to correct the
end positions estimated by the aforementioned PDR based methods.

Besides, another collaborative method was also applied to correct the position estimates
given by aforementioned PDR based methods, and the corresponding results were compared
with those of proposed collaborative method. This method, which is adapted from [81],
corrects the estimated position of each MN via a Kalman Filter based algorithm summarized
by Algorithm 8. In Algorithm 8, t denotes the time instance, Pt−1 is MN’s estimated
position provided by PdrA, PdrB, PdrC or PdrD; both A and H are 2×2 identity matrices;
Q and R are the measurement noise covariance and process noise covariance respectively,
which are 2× 2 identity matrices multiplied with some appropriate scalars; and the error
covariance P is initially zero.

Algorithm 8 Collaborative method adapted from [81]
1: Predict next state: x← A×Pt−1

2: Predict next covariance: Pt ← A×Pt−1×A⊺+Q
3: Compute Kalman gain: K← Pt×H⊺ (H×Pt×H⊺+R)
4: if This MN has any neighbours then
5: Obtain measurement: zt ← average of estimated positions of all neighbours
6: Update predicted state: x← x+K× (zt−H× x)
7: Update predicted covariance: Pt ← Pt−K×H×Pt

8: end if
9: Finalize estimated position: Pt ← x

The error metric is the absolute difference between MN’s actual end position and es-
timated end position. Figure 5.23 compares the errors of all aforementioned PDR based
methods before and after being refined by the collaborative method, and each boxplot show
the distribution of NT ×Nm errors where Nt is the number of trials and Nm is the number
of MNs. Note that PM denotes the proposed collaborative method while EM denotes the
collaborative method described by Algorithm 8.

From Figure 5.23, it is apparent that PM outperforms EM in correcting the estimated
end positions of PdrA, PdrB and PdrD respectively. Besides, the errors of both PdrA and
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Fig. 5.23 Errors of four different PDR based methods: Before and After correction by
collaborative method.

PdrC before correction are similar, yet differ considerably after correction; the reason behind
this can be comprehended by referring to a trial’s results shown in Figure 5.24. From
Figure 5.24, one can observe that: firstly, the PM-corrected estimates are not as spread out as
the non-corrected estimates, in other words, the separation distances among the estimates
are somewhat improved after correction; secondly, the centroid of non-corrected estimates
somewhat determines the centroid of corrected estimates; thirdly, PM-corrected estimates
of both PdrA and PdrD, as compared to those of PdrB and PdrC, are distributed relatively
closer to the actual positions. This therefore deduces that the correction by PM is likely to
be more effective when the centroid of non-corrected estimates is nearer to the centroid of
actual positions, though the separation distances among non-corrected estimates might be
overly large.

Basically, PM corrects the estimated positions by adjusting the separation distances
among them, and the resultant estimates do not necessarily become closer to their respective
actual positions. For example, referring to the PdrB-estimates shown in Figure 5.23, the
correction causes the estimated position of MN no.10 to shift further apart from its actual
position, while significantly improves its separation distances from estimated positions of
multiple MNs (i.e. MN no.1, MN no.4, MN no.5, MN no.6, MN no.7, and MN no.8).
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5.5 Summary

This chapter proposes a collaborative positioning method that is based on Directed Graph.
The positions of all MNs can be initially estimated via either PDR or RSSI-based Tri-
Lateration. The directed graph is used to express the relations among the nodes (both MNs
and BNs). From the graph, the shortest distances from each MN to all other nodes may be
derived. The derived shortest distances, are then utilized to correct the estimated position of
each MN via an iterative process. In every iteration of correction process, estimated position
of each MN is finalized by averaging the sample points. The sample points are generated
based on the derived shortest distances via a Particle Filter. Among the sample points, only
those which are resulted from neighbouring BNs hold comparatively greater weights. The
proposed collaborative positioning method had been tested via simulation. The test results are
presented to demonstrate the feasibility and efficacy of the proposed method. The accuracy
of proposed method is likely to improve when BNs are available at the right spots to mitigate
the skewness of finalized estimates.





Chapter 6

Conclusion

6.1 Summary

In view of arising demand for indoor location based services (LBS), many indoor positioning
systems (IPS) have been developed by leveraging various technologies such as Micro-Electro-
Mechanical Systems (MEMS), Radio Frequency Identification (RFID). However, none of
these existing IPS are gaining mainstream adoption as much as their outdoor counterpart
i.e. GPS, probably owing to their corresponding implementation cost. The implementation
cost of an IPS includes the resources required for system’s start-up and maintenance, as
well as constraints that might be imposed to the users. Perhaps the most promising IPS are
those which leverage the smart-devices (i.e. smartphones and tablets), because smart-devices
are increasingly widespread and they are richly equipped with capabilities like GPS, Wi-
Fi, Bluetooth and motion detection. With such capabilities of smart-device, various sorts
of positioning algorithms are made possible and their underlying techniques are typically
Pedestrian Dead-Reckoning (PDR), Lateration and Fingerprinting.

PDR estimates the pedestrian’s present position by advancing their last known position
with heading and distance which are derived from data of motion sensors, i.e. accelerome-
ters, gyroscopes and magnetometers. PDR is well known for its relatively high positioning
accuracy which deteriorates over time due to inherent sensors’ biases and drifts. Unlike PDR
which can be implemented on smart-device alone, Lateration and Fingerprinting require
necessary devices to be deployed at the site to enable wireless transmission between de-
vices. Lateration deduces the pedestrian’s position based on RSSI-derived distance between
pedestrian and reference device, while Fingeprinting infers pedestrian’s position by matching
online RSSI measurements with pre-collected RSSI measurements. Albeit the latter, as com-
pared to the former, is more reliable and robust towards erratic RSSI data, its implementation
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is comparatively more complex. Further discussion regarding the fundamentals of indoor
positioning and related work are presented in Chapter 2.

In Chapter 4, two schemes that improve PDR’s long-term positioning accuracy by
utilizing the RSSI of Wi-Fi signals are proposed. The implementation of either scheme
is deemed low-cost since Wi-Fi APs are prevalent especially among the indoors. Upon
detecting strong RSSI value, the first scheme ensures that the estimated position lies within
acceptable region around the corresponding Wi-Fi AP. Subsequently, the estimated position
can be further refined if the bearing of the pedestrian from that AP is known. The second
scheme, on the other hand, corrects the PDR-estimated headings based on linear regression,
and subsequently updates the PDR-estimated positions. However, it is triggered only upon
detecting a long straight PDR-estimated trajectory. Nevertheless, such trajectory is commonly
observed in pedestrian’s daily movements such as walking down the long corridors within
the university or mega-mall. Both schemes had been proven feasible at real sites within the
Swinburne University of Technology Sarawak Campus, and experimental results show that
PDR with proposed schemes outperform some existing PDR -based positioning methods in
terms of accuracy and robustness.

More information taken into consideration is likely to result in more reliable estimation,
and thus positioning methods that estimate individual pedestrian’s position by utilizing
surrounding pedestrians’ information are gaining interest among IPS researchers. Such
collaborative methods are promising due to the fact that the pedestrians usually cluster either
knowingly or unknowingly among themselves, and most of them carry pervasive-computing
devices such as smart-devices and laptops. Therefore, in Chapter 5, a novel collaborative
positioning method that makes use of directed graph is proposed. The directed graph is
constructed to express the relations among the pedestrians and site’s anchors/APs. The
pedestrians’ positions are initially estimated via either PDR or RSSI-based Tri-Lateration,
and then refined by a Particle Filter based algorithm according to the information derived
from the graph. Both experimental and simulation results suggest the feasibility and efficacy
of the proposed method.
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6.2 Future Research Work

There are several issues that can be explored to further refine the methods proposed in this
thesis, and a number of them are listed as follows:

1. As mentioned in Chapter 4.2.1, all elements of series, regardless of whether they are
outliers, are indiscriminately considered in deriving the linear regression line. The
impact of outliers on the orientation of linear regression line should be investigated as
in which and how many outliers among the series’ elements can be useful or negligible.
Subsequently, weighted linear regression may also be attempted.

2. During the heading correction, the original headings (estimated by PDR) are simply
replaced by the headings which are derived based on linear regression. Admittedly, the
derived headings are not always more accurate than the original headings. Perhaps a
potential way to achieve more reliable heading correction is by combining the original
headings with the derived headings via some kinds of filters. Alternatively, indoor
floor plan (if provided) may be useful in determining whether heading correction is
necessary – for example, if the original long straight trajectory does not cross any
boundaries, then heading correction is not needed. Furthermore, the re-estimated
trajectory (which is resulted from corrected headings) should also reasonably align
with the floor plan [44, 57, 61].

3. As mentioned in Chapter 5.2, the neighbouring BNs are considered more reliable
references than other nodes while adjusting the estimated position of individual pedes-
trian. However, BNs (i.e. Wi-Fi APs) might not be in near vicinity of pedestrian
clusters at all times, and therefore alternative source of reliable references is needed. In
such cases, pedestrians may be considered as reliable references if they fulfill certain
criteria - for example, being stationary for a period of time and moving in the same
groups. In addition, the weight of each reference may be assigned according to the
criteria it fulfills.

4. As described in Chapter 5.4, the proposed collaborative method was executed only
when all MNs reached their respective actual end positions. In other words, only the
PDR-estimated end positions experience the correction. It was intended under the
presumption that, by the time the MN arrives at the end of route, the position error
would reach a stage where correction is necessary. At short intervals, the PDR accuracy
is relatively high, and so the correction may seem unnecessary. Therefore, the right
timing for the correction should be investigated.
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5. For the proposed collaborative method to work effectively, all MNs are required to
monitor RSSI from surrounding nodes continuously. Such requirement may cause
the proposed collaborative method prohibitively complex and energy heavy besides
compromising on privacy issues. This, however, is not discussed in this work because
the proposed collaborative method was designed so merely as an effort to examine the
possibility of achieving reliable indoor positioning by making use of the collaboration
among pervasive computing devices.

6. The proposed schemes are heavily reliant on empirically defined parameters and
thresholds which are likely to differ across different device models. Different devices
may observe dissimilar RSSI values even at same position. Moreover, they may vary
in terms of scan response time, sensor readings, etc.



References

[1] Abadi, M. J., Luceri, L., Hassan, M., Chou, C. T., and Nicoli, M. (2014). A collaborative
approach to heading estimation for smartphone-based pdr indoor localisation. In Indoor
Positioning and Indoor Navigation (IPIN), 2014 International Conference on, pages
554–563.

[2] Abdulrahim, K., Moore, T., Hide, C., and Hill, C. (2014). Understanding the performance
of zero velocity updates in mems-based pedestrian navigation. International Journal of
Advancements in Technology, 5(2):53–60.

[3] Ahmed, S. H., Bouk, S. H., Javaid, N., and Sasase, I. (2012). Combined human, antenna
orientation in elevation direction and ground effect on rssi in wireless sensor networks. In
Frontiers of Information Technology (FIT), 2012 10th International Conference on, pages
46–49.

[4] Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar,
M. A., and Al-Khalifa, H. S. (2016). Ultra wideband indoor positioning technologies:
Analysis and recent advances. Sensors, 16(5).

[5] Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE
Transactions on, 50(2):174–188.

[6] AT&T Laboratories Cambridge (2005 [cited 19 August 2016]). The bat ultrasonic
location system. Available from: http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/.

[7] Au, A. W. S., Feng, C., Valaee, S., Reyes, S., Sorour, S., Markowitz, S. N., Gold, D.,
Gordon, K., and Eizenman, M. (2013). Indoor tracking and navigation using received
signal strength and compressive sensing on a mobile device. IEEE Transactions on Mobile
Computing, 12(10):2050–2062.

[8] Bertram, J. and Ruina, A. (2001). Multiple walking speed-frequency relations are
predicted by constrained optimization. Journal of Theoretical Biology, 209:445–453.

[9] Bolic, M., Rostamian, M., and Djuric, P. M. (2015). Proximity detection with rfid: A
step toward the internet of things. IEEE Pervasive Computing, 14(2):70–76.

[10] Carrillo, D., Moreno, V., Úbeda, B., and Skarmeta, A. F. (2015). Magicfinger: 3d
magnetic fingerprints for indoor location. Sensors, 15(7).

http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/


120 References

[11] Chan, L.-w., Chiang, J.-r., Chen, Y.-c., Ke, C.-n., Hsu, J., and Chu, H.-h. (2006). Col-
laborative localization: Enhancing wifi-based position estimation with neighborhood links
in clusters. In Proceedings of the 4th International Conference on Pervasive Computing,
PERVASIVE’06, pages 50–66, Berlin, Heidelberg. Springer-Verlag.

[12] Chen, Z. (2003). Bayesian filtering: From Kalman Filters to Particle Filters, and
Beyond.

[13] Cho, S. Y. and Park, C. G. (2006). Mems based pedestrian navigation system. Journal
of Navigation, 59:135–153.

[14] Constandache, I., Choudhury, R. R., and Rhee, I. (2010). Towards mobile phone
localization without war-driving. In INFOCOM, 2010 Proceedings IEEE, pages 1–9.

[15] Correa, A., Barcelo, M., Morell, A., and Lopez Vicario, J. (2014). Enhanced inertial-
aided indoor tracking system for wireless sensor networks: A review. Sensors Journal,
IEEE, 14(9):2921–2929.

[16] Dardari, D., Closas, P., and Djuric, P. (2015). Indoor tracking: Theory, methods, and
technologies. Vehicular Technology, IEEE Transactions on, 64(4):1263–1278.

[17] Dias, M. H. C. and Siqueira, G. L. (2005). Indoor tdoa-aoa measurements at the 3g
systems frequency band – a simple approach. Journal of Communication and Information
Systems, 20(3):112–124.

[18] Fang, L., Antsaklis, P., Montestruque, L., McMickell, M., Lemmon, M., Sun, Y., Fang,
H., Koutroulis, I., Haenggi, M., Xie, M., and Xie, X. (2005). Design of a wireless
assisted pedestrian dead reckoning system - the navmote experience. IEEE Transactions
on Instrumentation and Measurement, 54(6):2342–2358.

[19] Foxlin, E. (2005). Pedestrian tracking with shoe-mounted inertial sensors. IEEE
Computer Graphics and Applications, 25(6):38–46.

[20] Graefenstein, J., Albert, A., Biber, P., and Schilling, A. (2009). Wireless node localiza-
tion based on rssi using a rotating antenna on a mobile robot. In Positioning, Navigation
and Communication, 2009. WPNC 2009. 6th Workshop on, pages 253–259.

[21] Graefenstein, J. and Bouzouraa, M. E. (2008). Robust method for outdoor localization
of a mobile robot using received signal strength in low power wireless networks. In
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages
33–38.

[22] Gu, Y., Lo, A., and Niemegeers, I. (2009). A survey of indoor positioning systems for
wireless personal networks. IEEE Communications Surveys Tutorials, 11(1):13–32.

[23] Gusenbauer, D., Isert, C., and Krösche, J. (2010). Self-contained indoor positioning on
off-the-shelf mobile devices. In Indoor Positioning and Indoor Navigation (IPIN), 2010
International Conference on, pages 1–9.

[24] Harle, R. (2013). A survey of indoor inertial positioning systems for pedestrians. IEEE
Communications Surveys Tutorials, 15(3):1281–1293.



References 121

[25] He, S. and Chan, S. H. G. (2016). Wi-fi fingerprint-based indoor positioning: Recent
advances and comparisons. IEEE Communications Surveys Tutorials, 18(1):466–490.

[26] He, Y. and Bilgic, A. (2011). Iterative least squares method for global positioning
system. Advances in Radio Science, 9:203–208.

[27] Hightower, J. and Borriello, G. (2001). Location systems for ubiquitous computing.
Computer, 34(8):57–66.

[28] Higuchi, T., Fujii, S., Yamaguchi, H., and Higashino, T. (2014). Mobile node local-
ization focusing on stop-and-go behavior of indoor pedestrians. IEEE Transactions on
Mobile Computing, 13(7):1564–1578.

[29] Higuchi, T., Yamaguchi, H., and Higashino, T. (2012). Clearing a crowd: Context-
supported neighbor positioning for people-centric navigation. In Proceedings of the 10th
International Conference on Pervasive Computing, Pervasive’12, pages 325–342, Berlin,
Heidelberg. Springer-Verlag.

[30] Honkavirta, V., Perala, T., Ali-Loytty, S., and Piche, R. (2009). A comparative survey
of wlan location fingerprinting methods. In Positioning, Navigation and Communication,
2009. WPNC 2009. 6th Workshop on, pages 243–251.

[31] Iwase, T. and Shibasaki, R. (2013). Infra-free indoor positioning using only smartphone
sensors. In International Conference on Indoor Positioning and Indoor Navigation (IPIN),
pages 1–8.

[32] J. Kim, H. Jang, D. H. and Park, C. (2004). A step, stride and heading determination for
the pedestrian navigation system. Journal of Global Positioning Systems, 3(1-2):273–279.

[33] Jimenez, A., Seco, F., Prieto, C., and Guevara, J. (2009). A comparison of pedestrian
dead-reckoning algorithms using a low-cost mems imu. In IEEE International Symposium
on Intelligent Signal Processing. WISP 2009., pages 37–42.

[34] Jin, Y., Motani, M., Soh, W. S., and Zhang, J. (2010). Sparsetrack: Enhancing indoor
pedestrian tracking with sparse infrastructure support. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9.

[35] Jin, Y., Soh, W.-S., Motani, M., and Wong, W.-C. (2013). A robust indoor pedestrian
tracking system with sparse infrastructure support. Mobile Computing, IEEE Transactions
on, 12(7):1392–1403.

[36] Jin, Y., Toh, H.-S., Soh, W.-S., and Wong, W.-C. (2011). A robust dead-reckoning
pedestrian tracking system with low cost sensors. In IEEE International Conference on
Pervasive Computing and Communications (PerCom), pages 222–230.

[37] Jo, C. and Lee, C. (2016). Multilateration method based on the variance of estimated
distance in range-free localisation. Electronics Letters, 52(12):1078–1080.

[38] Kalman, D. (2002). An underdetermined linear system for gps. The College Mathemat-
ics Journal, 33:384–390.



122 References

[39] Khmou, Y., Safi, S., and Frikel, M. (2014). Comparative Study between Several
Direction of Arrival Estimation Methods. Journal of Telecommunications and Information
Technology, 1:41–48.

[40] Klingbeil, L. and Wark, T. (2008). A wireless sensor network for real-time indoor
localisation and motion monitoring. In Information Processing in Sensor Networks, 2008.
IPSN ’08. International Conference on, pages 39–50.

[41] Lan, K.-C. and Shih, W.-Y. (2014). Using smart-phones and floor plans for indoor
location tracking. IEEE Transactions on Human-Machine Systems, 44(2):211–221.

[42] Lee, B. G. and Chung, W. Y. (2011). Multitarget three-dimensional indoor navigation
on a pda in a wireless sensor network. IEEE Sensors Journal, 11(3):799–807.

[43] Levi, R. and Judd, T. (1996). Dead reckoning navigational system using accelerometer
to measure foot impacts. US Patent 5,583,776.

[44] Li, F., Zhao, C., Ding, G., Gong, J., Liu, C., and Zhao, F. (2012). A reliable and accurate
indoor localization method using phone inertial sensors. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp ’12, pages 421–430, New York, NY,
USA. ACM.

[45] Liew, L. S. and Wong, W. S. H. (2016). Improved pedestrian dead-reckoning-based
indoor positioning by rssi-based heading correction. IEEE Sensors Journal, 16(21):7762–
7773.

[46] Lingwen Zhang, C. T. and Yang, G. (2011). Wireless positioning: Fundamentals,
systems and state of the art signal processing techniques. Cellular Networks - Positioning,
Performance Analysis, Reliability.

[47] Liu, H., Darabi, H., Banerjee, P., and Liu, J. (2007). Survey of wireless indoor
positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 37(6):1067–1080.

[48] Liu, H. F., Ren, W., Zhang, T., Gong, J., m. Liang, J., Liu, B., w. Shi, J., and Huang,
Z. (2014). An adaptive selection algorithm of threshold value in zero velocity updating
for personal navigation system. In Control Conference (CCC), 2014 33rd Chinese, pages
1035–1038.

[49] Liu, Y., Wang, Q., Liu, J., and Wark, T. (2012). Mcmc-based indoor localization with a
smart phone and sparse wifi access points. In IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops), pages 247–252.

[50] Luo, M. (2013). Indoor radio propagation modeling for system performance prediction.
PhD dissertation, INSA de Lyon.

[51] Luo, Y., Hoeber, O., and Chen, Y. (2013). Enhancing wi-fi fingerprinting for indoor
positioning using human-centric collaborative feedback. Human-centric Computing and
Information Sciences, 3(1):1–23.



References 123

[52] Mahfouz, S., Mourad-Chehade, F., Honeine, P., Farah, J., and Snoussi, H. (2016).
Non-parametric and semi-parametric rssi/distance modeling for target tracking in wireless
sensor networks. IEEE Sensors Journal, 16(7):2115–2126.

[53] Mardeni, R. and Nizam, O. S. (2010). Node positioning in zigbee network using
trilateration method based on the received signal strength indicator (rssi). European
Journal of Scientific Research, 46(1):48–61.

[54] Müller, P., Raitoharju, M., Ali-Löytty, S., Wirola, L., and Piché, R. (2016). A survey of
parametric fingerprint-positioning methods. Gyroscopy and Navigation, 7(2):107–127.

[55] Nikitin, P. V., Martinez, R., Ramamurthy, S., Leland, H., Spiess, G., and Rao, K. V. S.
(2010). Phase based spatial identification of uhf rfid tags. In 2010 IEEE International
Conference on RFID (IEEE RFID 2010), pages 102–109.

[56] Noh, Y., Yamaguchi, H., Lee, U., Vij, P., Joy, J., and Gerla, M. (2013). Clips:
Infrastructure-free collaborative indoor positioning scheme for time-critical team opera-
tions. In Pervasive Computing and Communications (PerCom), 2013 IEEE International
Conference on, pages 172–178.

[57] Pai, D., Malpani, M., Sasi, I., Aggarwal, N., and Mantripragada, P. (2012). Padati: A
robust pedestrian dead reckoning system on smartphones. In IEEE 11th International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
pages 2000–2007.

[58] Payal, A., Rai, C. S., and Reddy, B. V. R. (2015). Experimental analysis of some radio
propagation models for smart wireless sensor networks applications. In SAI Intelligent
Systems Conference (IntelliSys), 2015, pages 338–342.

[59] Pierlot, V. and Droogenbroeck, M. V. (2014). A new three object triangulation algorithm
for mobile robot positioning. IEEE Transactions on Robotics, 30(3):566–577.

[60] Rafael Berkvens, Dries Vandermeulen, C. V. H. P. and Weyn, M. (2014). Feasibility of
geomagnetic localization and geomagnetic ratslam. International Journal on Advances in
Systems and Measurements, 7(1&2):44–56.

[61] Rai, A., Chintalapudi, K. K., Padmanabhan, V. N., and Sen, R. (2012). Zee: Zero-effort
crowdsourcing for indoor localization. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, Mobicom ’12, pages 293–304, New
York, NY, USA. ACM.

[62] Rice, A. and Harle, R. (2005). Evaluating lateration-based positioning algorithms for
fine-grained tracking. In Proceedings of the 2005 Joint Workshop on Foundations of
Mobile Computing, DIALM-POMC ’05, pages 54–61, New York, NY, USA. ACM.

[63] Ruizhi, C., Ling, P., and Yuwei, C. (2011). A smart phone based pdr solution for indoor
navigation. In Proceedings of the 24th International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS 2911), pages 1404–1408.

[64] S. H. Shin, C. G. Park, H. S. H. and Lee, J. M. (2005). Mems-based personal navigator
equipped on the user’s body. In Proceedings of the 18th International Technical Meeting of
the Satellite Division of The Institute of Navigation (ION GNSS 2005), pages 1998–2002.



124 References

[65] Sarkar, T. K., Ji, Z., Kim, K., Medouri, A., and Salazar-Palma, M. (2003). A survey of
various propagation models for mobile communication. IEEE Antennas and Propagation
Magazine, 45(3):51–82.

[66] Schiller, J. and Voisard, A. (2004). Location Based Services. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[67] Shabbir, N., Sadiq, M. T., Kashif, H., and Ullah, R. (2011). Comparison of radio
propagation models for long term evolution (LTE) network. CoRR, abs/1110.1519.

[68] Shao, H. J., Zhang, X. P., and Wang, Z. (2014). Efficient closed-form algorithms for
aoa based self-localization of sensor nodes using auxiliary variables. IEEE Transactions
on Signal Processing, 62(10):2580–2594.

[69] Simon, D. (2010). Kalman filtering with state constraints: a survey of linear and
nonlinear algorithms. IET Control Theory Applications, 4(8):1303–1318.

[70] Smith, A. and Breen, T. (2007). Use of geo-stationary satellites to augment wide_area
multilateration synchronization. US Patent App. 11/343,079.

[71] Steinhoff, U. and Schiele, B. (2010). Dead reckoning from the pocket - an experimental
study. In IEEE International Conference on Pervasive Computing and Communications
(PerCom), pages 162–170.

[72] Stromback, P., Rantakokko, J., Wirkander, S.-L., Alexandersson, M., Fors, K., Skog, I.,
and Handel, P. (2010). Foot-mounted inertial navigation and cooperative sensor fusion for
indoor positioning. In Proceedings of the 2010 International Technical Meeting of The
Institute of Navigation, pages 89–98.

[73] Susi, M., Renaudin, V., and Lachapelle, G. (2013). Motion mode recognition and step
detection algorithms for mobile phone users. Sensors, 13(2):1539.

[74] Taniuchi, D., Liu, X., Nakai, D., and Maekawa, T. (2015). Spring model based
collaborative indoor position estimation with neighbor mobile devices. Selected Topics in
Signal Processing, IEEE Journal of, 9(2):268–277.

[75] Wadhwa, M., Song, M., Rali, V., and Shetty, S. (2009). The impact of antenna
orientation on wireless sensor network performance. In Computer Science and Information
Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on, pages 143–147.

[76] Wang, B., Zhou, S., Liu, W., and Mo, Y. (2015). Indoor localization based on curve
fitting and location search using received signal strength. IEEE Transactions on Industrial
Electronics, 62(1):572–582.

[77] Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M., and Choudhury, R. R. (2012).
No need to war-drive: Unsupervised indoor localization. In Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services, MobiSys ’12,
pages 197–210, New York, NY, USA. ACM.

[78] Want, R., Hopper, A., Falcão, V., and Gibbons, J. (1992). The active badge location
system. ACM Trans. Inf. Syst., 10(1):91–102.



References 125

[79] Weinberg, H. (2002). Using the adxl202 in pedometer and personal navigation applica-
tions. Analog Devices AN-602 Application Note.

[80] Yang, C. and r. Shao, H. (2015). Wifi-based indoor positioning. IEEE Communications
Magazine, 53(3):150–157.

[81] Yang, Z., Feng, X., and Zhang, Q. (2014). Adometer: Push the limit of pedestrian
indoor localization through cooperation. Mobile Computing, IEEE Transactions on,
13(11):2473–2483.

[82] Zahid Farid, R. N. and Ismail, M. (2013). Recent advances in wireless indoor local-
ization techniques and system. Journal of Computer Networks and Communications,
2013.

[83] Zhang, R., Hoflinger, F., and Reindl, L. (2013). Inertial sensor based indoor localization
and monitoring system for emergency responders. Sensors Journal, IEEE, 13(2):838–848.

[84] Zhongliang, D., Yanpei, Y., Xie, Y., Neng, W., and Lei, Y. (2013). Situation and
development tendency of indoor positioning. Communications, China, 10(3):42–55.

[85] Zhou, S. and Pollard, J. K. (2006). Position measurement using bluetooth. IEEE
Transactions on Consumer Electronics, 52(2):555–558.




	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Research Objective
	1.3 Problem Statement
	1.4 Contributions
	1.5 Thesis Structure

	2 Background
	2.1 Geometric Measurements with Wireless Technologies
	2.2 Conventional Positioning Techniques
	2.3 Bayesian Filtering
	2.4 Related Work
	2.5 Summary

	3 Experimental Setup and Preliminaries
	3.1 Setup
	3.2 RSSI-Distance Correlation
	3.3 PDR Implementation
	3.4 Benchmarks
	3.4.1 Algorithm of aTRI
	3.4.2 Algorithm of pSIR
	3.4.3 Algorithm of pMCMC
	3.4.4 Algorithm of pKF

	3.5 Summary

	4 Indoor Positioning by Pedestrian Dead-Reckoning with RSSI-based schemes
	4.1 Position Correction Scheme
	4.1.1 Methodology
	4.1.2 Evaluation

	4.2 Heading Correction Scheme
	4.2.1 Methodology
	4.2.2 Evaluation

	4.3 Summary

	5 Collaborative Indoor Positioning based on Directed Graph
	5.1 Construction of Directed Graph
	5.2 Correction Algorithm
	5.3 Evaluation I
	5.4 Evaluation II
	5.5 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Research Work

	References
	Blank Page
	Blank Page

